
Lecture 10: Logistic Regression - Two Introductory Examples

The data below are from a study conducted by Milicer and Szczotka on pre-teen and teenage

girls in Warsaw. The subjects were classified into 25 age categories. The number of girls in

each group (sample size) and the number that reached menarche (# RM) at the time of the

study were recorded. The age for a group corresponds to the midpoint for the age interval.

Sample size # RM Age Sample size # RM Age

376 0 9.21 200 0 10.21

93 0 10.58 106 67 13.33

120 2 10.83 105 81 13.58

90 2 11.08 117 88 13.83

88 5 11.33 98 79 14.08

105 10 11.58 97 90 14.33

111 17 11.83 120 113 14.58

100 16 12.08 102 95 14.83

93 29 12.33 122 117 15.08

100 39 12.58 111 107 15.33

108 51 12.83 94 92 15.58

99 47 13.08 114 112 15.83

1049 1049 17.58

The researchers were interested in whether the proportion of girls that reached menarche (

# RM/ sample size ) varied with age. One could perform a test of homogeneity by arranging

the data as a 2 by 25 contingency table with columns indexed by age and two rows: ROW1

= # RM and ROW2 = # that have not RM = sample size − # RM. A more powerful

approach treats these as regression data, using the proportion of girls reaching menarche as

the “response” and age as a predictor.

The data were imported into Stata using the infile command and labelled menarche,

total, and age. A plot of the observed proportion of girls that have reached menarche (ob-

tained in Stata with the two commands generate phat = menarche / total and twoway
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Figure 1: Estimated proportions p̂i versus AGEi, for i = 1, . . . , 25.

(scatter phat age)) shows that the proportion increases as age increases, but that the

relationship is nonlinear.

The observed proportions, which are bounded between zero and one, have a lazy S-shape

(a sigmoidal function) when plotted against age. The change in the observed proportions

for a given change in age is much smaller when the proportion is near 0 or 1 than when

the proportion is near 1/2. This phenomenon is common with regression data where the

response is a proportion.

The trend is nonlinear so linear regression is inappropriate. A sensible alternative might

be to transform the response or the predictor to achieve near linearity. A better approach is

to use a non-linear model for the proportions. A common choice is the logistic regression

model.

The Simple Logistic Regression Model

The simple logistic regression model expresses the population proportion p of individuals

with a given attribute (called a success) as a function of a single predictor variable X. The
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Figure 2: logit(p) and p as a function of X

model assumes that p is related to X through

logit(p) = log

(
p

1− p

)
= α + βX (1)

or, equivalently, as

p =
exp(α + βX)

1 + exp(α + βX)
.

The logistic regression model is a binary response model, where the response for

each case falls into one of 2 exclusive and exhaustive categories, often called success (cases

with the attribute of interest) and failure (cases without the attribute of interest). In many

biostatistical applications, the success category is presence of a disease, or death from a

disease.

I will often write p as p(X) to emphasize that p is the proportion of all individuals with

score X that have the attribute of interest. In the menarche data, p = p(X) is the population

proportion of girls at age X that have reached menarche.

The odds of success are p/(1−p). For example, the odds of success are 1 (or 1 to 1) when

p = 1/2. The odds of success are 2 (or 2 to 1) when p = 2/3. The logistic model assumes
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that the log-odds of success is linearly related to X. Graphs of the logistic model relating p

to X are given above. The sign of the slope refers to the sign of β.

There are a variety of other binary response models that are used in practice. The probit

regression model or the complementary log-log regression model might be appropriate

when the logistic model does not fit the data.

Data for Simple Logistic Regression

For the formulas below, I assume that the data are given in summarized or aggregate form:

X n D

X1 n1 d1

X2 n2 d2

. . .

. . .

Xm nm dm

where di is the number of individuals with the attribute of interest (number of diseased)

among ni randomly selected or representative individuals with predictor variable value Xi.

The subscripts identify the group of cases in the data set. In many situations, the sample

size is 1 in each group, and for this situation di is 0 or 1.

For raw data on individual cases, the sample size column n is usually omitted and D

takes on 1 of two coded levels, depending on whether the case at Xi is a success or not. The

values 0 and 1 are typically used to identify “failures” and “successes” respectively.

Estimating Regression Coefficients

The principle of maximum likelihood is commonly used to estimate the two unknown pa-

rameters in the logistic model:

log

(
p

1− p

)
= α + βX.

129



The maximum likelihood estimates (MLE) of the regression coefficients are estimated

iteratively by maximizing the so-called Binomial likelihood function for the responses, or

equivalently, by minimizing the deviance function (also called the likelihood ratio LR chi-

squared statistic)

LR = 2
m∑

i=1

{
dilog

(
di

nipi

)
+ (ni − di)log

(
ni − di

ni − nipi

)}

over all possible values of α and β, where the pis satisfy

log

(
pi

1− pi

)
= α + βXi.

The ML method also gives standard errors and significance tests for the regression estimates.

The deviance is an analog of the residual sums of squares in linear regression. The choices

for α and β that minimize the deviance are the parameter values that make the observed

and fitted proportions as close together as possible in a “likelihood sense”.

Suppose that α̂ and β̂ are the MLEs of α and β. The deviance evaluated at the MLEs:

LR = 2
m∑

i=1

{
dilog

(
di

nip̂i

)
+ (ni − di)log

(
ni − di

ni − nip̂i

)}
,

where the fitted probabilities p̂i satisfy

log

(
p̂i

1− p̂i

)
= α̂ + β̂Xi,

is used to test the adequacy of the model. The deviance is small when the data fits the

model, that is, when the observed and fitted proportions are close together. Large values

of LR occur when one or more of the observed and fitted proportions are far apart, which

suggests that the model is inappropriate.

If the logistic model holds, then LR has a chi-squared distribution with m − r degrees

of freedom, where m is the number of groups and r (here 2) is the number of estimated

regression parameters. A p-value for the deviance is given by the area under the chi-squared

curve to the right of LR. A small p-value indicates that the data does not fit the model.

Stata does not provide the deviance statistic, but rather the Pearson chi-squared test

statistic, which is defined similarly to the deviance statistic and is interpreted in the same

manner:
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X2 =
m∑

i=1

(di − nip̂i)
2

nip̂i(1− p̂i)
.

This statistic can be interpreted as the sum of standardized, squared differences between

the observed number of successes di and expected number of successes nip̂i for each covariate

Xi. When what we expect to see under the model agrees with what we see, the Pearson statis-

tic is close to zero, indicating good model fit to the data. When the Pearson statistic is large,

we have an indication of lack of fit. Often the Pearson residuals ri = (di−nip̂i)/
√

nip̂i(1− p̂i)

are used to determine exactly where lack of fit occurs. These residuals are obtained in Stata

using the predict command after the logistic command. Examining these residuals is

very similar to looking for large values of (O−E)2

E
in a χ2 analysis of a contingency table as

discussed in the last lecture. We will not talk further of logistic regression diagnostics.

Age at Menarche Data: Stata Implementation

A logistic model for these data implies that the probability p of reaching menarche is related

to age through

log

(
p

1− p

)
= α + β AGE.

If the model holds, then a slope of β = 0 implies that p does not depend on AGE, i.e.

the proportion of girls that have reached menarche is identical across age groups. However,

the power of the logistic regression model is that if the model holds, and if the proportions

change with age, then you have a way to quantify the effect of age on the proportion reaching

menarche. This is more appealing and useful than just testing homogeneity across age groups.

A logistic regression model with a single predictor can be fit using one of the many

commands available in Stata depending on the data type and desired results: logistic

(raw data, outputs odds ratios), logit (raw data, outputs model parameter estimates),

and blogit (grouped data). The logistic command has many more options than ei-

ther logit or blogit, but requires you to reformat the data into individual records, one

for each girl. For an example of how to do this, check out the online Stata help at
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http://www.stata.com/support/faqs/stat/grouped.html. The Stata command blogit

menarche total age yields the following output:

Logit estimates Number of obs = 3918
LR chi2(1) = 3667.18
Prob > chi2 = 0.0000

Log likelihood = -819.65237 Pseudo R2 = 0.6911
------------------------------------------------------------------------------

_outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age | 1.631968 .0589509 27.68 0.000 1.516427 1.74751
_cons | -21.22639 .7706558 -27.54 0.000 -22.73685 -19.71594

------------------------------------------------------------------------------

The output tables the MLEs of the parameters: α̂ = −21.23 and β̂ = 1.63. Thus, the

fitted or predicted probabilities satisfy:

log

(
p̂

1− p̂

)
= −21.23 + 1.63AGE

or

p̂(AGE) =
exp(−21.23 + 1.63AGE)

1 + exp(−21.23 + 1.63AGE)
.

The p-value for testing H0 : β = 0 (i.e. the slope for the regression model is zero) based

upon the chi-squared test p-value (P>|z|) is 0.000, which leads to rejecting H0 at any of the

usual test levels. Thus, the proportion of girls that have reached menarche is not constant

across age groups.

The likelihood ratio test statistic of no logistic regression relationship (LR chi2(1) =

3667.18) and p-value (Prob > chi2 = 0.0000) gives the logistic regression analogue of the

overall F-statistic that no predictors are important to multiple regression. In general, the chi-

squared statistic provided here is used to test the hypothesis that the regression coefficients

are zero for each predictor in the model. There is a single predictor here, AGE, so this test

and the test for the AGE effect are both testing H0 : β = 0.

To obtain the Pearson goodness of fit statistic and p-value we must reformat the data

and use the logistic command as described in the webpage above:

generate w0 = total - menarche
rename menarche w1
generate id = _n
reshape long w, i(id) j(y)
logistic y age [fw=w]
lfit
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We obtain the following output:

Logistic regression Number of obs = 3918
LR chi2(1) = 3667.18
Prob > chi2 = 0.0000

Log likelihood = -819.65237 Pseudo R2 = 0.6911
------------------------------------------------------------------------------

y | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age | 5.113931 .3014706 27.68 0.000 4.555917 5.740291
------------------------------------------------------------------------------
Logistic model for y, goodness-of-fit test

number of observations = 3918
number of covariate patterns = 25

Pearson chi2(23) = 21.87
Prob > chi2 = 0.5281

Using properties of exponential functions, the odds of reaching menarche is exp(1.632) =

5.11 times larger for every year older a girl is. To see this, let p(Age + 1) and p(Age) be

probabilities of reaching menarche for ages one year apart. The odds ratio OR satisfies

log(OR) = log

(
p(Age + 1)/(1− p(Age + 1))

p(Age)/(1− p(Age))

)

= log (p(Age + 1)/(1− p(Age + 1)))− log (p(Age)/(1− p(Age)))

= (α + β(Age + 1))− (α + β Age)

= β

so OR = eβ. If we considered ages 5 years apart, the same derivation would give us OR =

e5β = (eβ)5. You often see a continuous variable with a significant though apparently small

OR, but when you examine the OR for a reasonable range of values (by raising to the power

of the range in this way), then the OR is substantial.

You should pick out the the estimated regression coefficient β̂ = 1.632 and the estimated

odds ratio exp(β̂) = exp(1.632) = 5.11 from the output obtained using the blogit and

logistic commands respectively. We would say that, for example, that the odds of 15 year

old girls having reached menarche are between 4.5 and 5.7 times larger than for 14 year old

girls.

The Pearson chi-square statistic is 21.87 on 23 df, with a p-value of 0.5281. The large

p-value suggests no gross deficiencies with the logistic model.
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Logistic Regression with Two Effects: Leukemia Data

Feigl and Zelen reported the survival time in weeks and the white cell blood count (WBC)

at time of diagnosis for 33 patients who eventually died of acute leukemia. Each person was

classified as AG+ or AG- (coded as IAG = 1 and 0, respectively), indicating the presence

or absence of a certain morphological characteristic in the white cells. The researchers are

interested in modelling the probability p of surviving at least one year as a function of WBC

and IAG. They believe that WBC should be transformed to a log scale, given the skewness in

the WBC values. Where Live=0, 1 indicates whether the patient died or lived respectively,

the data are

IAG WBC Live IAG WBC Live IAG WBC Live

---------------------------------------------

1 75 1 1 230 1 1 430 1

1 260 1 1 600 0 1 1050 1

1 1000 1 1 1700 0 1 540 0

1 700 1 1 940 1 1 3200 0

1 3500 0 1 5200 0 1 10000 1

1 10000 0 1 10000 0 0 440 1

0 300 1 0 400 0 0 150 0

0 900 0 0 530 0 0 1000 0

0 1900 0 0 2700 0 0 2800 0

0 3100 0 0 2600 0 0 2100 0

0 7900 0 0 10000 0 0 10000 0

As an initial step in the analysis, consider the following model:

log

(
p

1− p

)
= α + β1LWBC + β2IAG,

where LWBC = log WBC. This is a logistic regression model with 2 effects, fit using the

logistic command. The parameters α, β1 and β2 are estimated by maximum likelihood.

134



The model is best understood by separating the AG+ and AG- cases. For AG- individ-

uals, IAG=0 so the model reduces to

log

(
p

1− p

)
= α + β1LWBC + β2 ∗ 0 = α + β1LWBC.

For AG+ individuals, IAG=1 and the model implies

log

(
p

1− p

)
= α + β1LWBC + β2 ∗ 1 = (α + β2) + β1LWBC.

The model without IAG (i.e. β2 = 0) is a simple logistic model where the log-odds of

surviving one year is linearly related to LWBC, and is independent of AG. The reduced

model with β2 = 0 implies that there is no effect of the AG level on the survival probability

once LWBC has been taken into account.

Including the binary predictor IAG in the model implies that there is a linear rela-

tionship between the log-odds of surviving one year and LWBC, with a constant slope for

the two AG levels. This model includes an effect for the AG morphological factor, but more

general models are possible. Thinking of IAG as a factor, the proposed model is a logistic

regression analog of ANCOVA.

The parameters are easily interpreted: α and α + β2 are intercepts for the population

logistic regression lines for AG- and AG+, respectively. The lines have a common slope, β1.

The β2 coefficient for the IAG indicator is the difference between intercepts for the AG+

and AG- regression lines. A picture of the assumed relationship is given below for β1 < 0.

The population regression lines are parallel on the logit (i.e. log odds ) scale only, but the

order between IAG groups is preserved on the probability scale.

The data are in the raw data form for individual cases. There are three columns: the

binary or indicator variable iag (with value 1 for AG+, 0 for AG-), wbc (continuous),

live (with value 1 if the patient lived at least 1 year and 0 if not). Note that a frequency

column is not needed with raw data (and hence using the logistic command) and that the

success category corresponds to surviving at least 1 year.

Before looking at output for the equal slopes model, note that the data set has 30 distinct

IAG and WBC combinations, or 30 “groups” or samples that could be constructed from the

33 individual cases. Only two samples have more than 1 observation. The majority of
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the observed proportions surviving at least one year (number surviving ≥ 1 year/ group

sample size) are 0 (i.e. 0/1) or 1 (i.e. 1/1). This sparseness of the data makes it difficult to

graphically assess the suitability of the logistic model (Why?). Although significance tests on

the regression coefficients do not require large group sizes, the chi-squared approximations to

the deviance and Pearson goodness-of-fit statistics are suspect in sparse data settings. With

small group sizes as we have here, most researchers would not interpret the p-values for the

deviance or Pearson tests literally. Instead, they would use the p-values to informally check

the fit of the model. Diagnostics would be used to highlight problems with the model.

We obtain the following modified output:

. infile iag wbc live using c:/biostat/notes/leuk.txt

. generate lwbc = log(wbc)

. logistic live iag lwbc

. logit

. lfit
Logistic regression Number of obs = 33

LR chi2(2) = 15.18
Prob > chi2 = 0.0005

Log likelihood = -13.416354 Pseudo R2 = 0.3613
------------------------------------------------------------------------------

live | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iag | 12.42316 13.5497 2.31 0.021 1.465017 105.3468
lwbc | .3299682 .1520981 -2.41 0.016 .1336942 .8143885

------------------------------------------------------------------------------
Logit estimates Number of obs = 33
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LR chi2(2) = 15.18
Prob > chi2 = 0.0005

Log likelihood = -13.416354 Pseudo R2 = 0.3613
------------------------------------------------------------------------------

live | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iag | 2.519562 1.090681 2.31 0.021 .3818672 4.657257
lwbc | -1.108759 .4609479 -2.41 0.016 -2.0122 -.2053178

_cons | 5.543349 3.022416 1.83 0.067 -.380477 11.46718
------------------------------------------------------------------------------
Logistic model for live, goodness-of-fit test

number of observations = 33
number of covariate patterns = 30

Pearson chi2(27) = 19.81
Prob > chi2 = 0.8387

The large p-value (0.8387) for the lack-of-fit chi-square (i.e. the Pearson statistic) indi-

cates that there are no gross deficiencies with the model. Given that the model fits reasonably

well, a test of H0 : β2 = 0 might be a primary interest here. This checks whether the re-

gression lines are identical for the two AG levels, which is a test for whether AG affects the

survival probability, after taking LWBC into account. The test that H0 : β2 = 0 is equivalent

to testing that the odds ratio exp(β2) is equal to 1: H0 : eβ2 = 1. The p-value for this test

is 0.021. The test is rejected at any of the usual significance levels, suggesting that the AG

level affects the survival probability (assuming a very specific model). In fact we estimate

that the odds of surviving past a year in the AG+ population is 12.4 times the odds of

surviving past a year in the AG- population, with a 95% CI of (1.4, 105.4); see below for

this computation carried out explicitly.

The estimated survival probabilities satisfy

log

(
p̂

1− p̂

)
= 5.54− 1.11LWBC + 2.52IAG.

For AG- individuals with IAG=0, this reduces to

log

(
p̂

1− p̂

)
= 5.54− 1.11LWBC,

or equivalently,

p̂ =
exp(5.54− 1.11LWBC)

1 + exp(5.54− 1.11LWBC)
.

For AG+ individuals with IAG=1,

log

(
p̂

1− p̂

)
= 5.54− 1.11LWBC + 2.52 ∗ (1) = 8.06− 1.11LWBC,
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or

p̂ =
exp(8.06− 1.11LWBC)

1 + exp(8.06− 1.11LWBC)
.

Using the logit scale, the difference between AG+ and AG- individuals in the estimated

log-odds of surviving at least one year, at a fixed but arbitrary LWBC, is the estimated IAG

regression coefficient:

(8.06− 1.11LWBC)− (5.54− 1.11LWBC) = 2.52.

Using properties of exponential functions, the odds that an AG+ patient lives at least one

year is exp(2.52) = 12.42 times larger than the odds that an AG- patient lives at least one

year, regardless of LWBC.

Although the equal slopes model appears to fit well, a more general model might fit

better. A natural generalization here would be to add an interaction, or product term,

IAG ∗ LWBC to the model. The logistic model with an IAG effect and the IAG ∗ LWBC

interaction is equivalent to fitting separate logistic regression lines to the two AG groups.

This interaction model provides an easy way to test whether the slopes are equal across AG

levels. I will note that the interaction term is not needed here.
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