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The Study

The methods I’m going to discuss today arose while I was
working on a problem with Dr. Ulrike Luderer from the UCI
Center for Occupational and Environmental Health.

We looked at the effect of poly-aromatic hydrocarbons (PAHs,
a form of atmospheric pollution) on various menstrual cycle
outcomes.

Full details are available in “Associations between urinary
biomarkers of polycyclic aromatic hydrocarbon exposure and
reproductive function during menstrual cycles in women” by
U. Luderer et al. (2017), in Environment International.
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The Data

Longitudinal data (∼6 menstrual cycles per woman) collected
on 51 women.

Response variables are all functionals of cycle-long hormone
trajectory vectors on luteinizing hormone (LH) and estrone
3-glucuronide (E13G).

Longitudinal pollutant exposure data on 9 hydroxylated PAH
compounds—the end result of the body’s metabolization
process on PAHs, excreted via urine.

A range of demographic information recorded once for each
woman at the start of the study.
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The Goal

Data Exploration

_

Model Building

_

Model Validation

_

Prediction

Previous work had linked PAHs to
fertility in animals, and more
granular pollution measures to
human fertility.

This was the first major study
examining how the human
reproductive system is affected by
pollutants on the PAH level.

We wanted to establish whether
PAHs are important to this topic
and begin looking at their role.

Response data were collected with
a new research tool, and we hoped
to show it could be used effectively.
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The Results

Models including both demographic and PAH covariates
generally outperformed models with demographic covariates
alone.

This included models involving smoking status, the most
common avenue for environmental PAH exposure.

One interesting finding is that the profile of related PAH
metabolites may relate to endocrine outcomes.

That is, differences in how women’s bodies process
environmental pollutants—rather than the quantity of the
pollutants themselves—may have an important role in
predicting the outcomes we considered.
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The Results

Figure 1.
Follicular phase
length as a function
of OH-PAH levels.
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Ugly Data Make for Interesting Methods

Complication 1 – Missing Covariate Information

PAH data are obtained through expensive laboratory analyses
of urine or stool samples.

Dr. Luderer and colleagues were able to collect samples for
each menstrual cycle for each woman—but due to funding
limitations, lab analyses are only available for about half of
them.

Philosophically, we don’t believe in throwing away good data
if it can be helped.

Given that the relationships between response measures and
PAH covariates are our primary scientific interest, we want a
method that lets us take advantage of the observations where
we don’t have PAH data as well.
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Ugly Data Make for Interesting Methods

Complication 2 – Missing Response Information

Response measures are all functionals of vectors of daily
hormone measurements. These vectors are commonly called
trajectories.

Hormone trajectory data were collected by participants in their
homes, using a urine-based fertility monitor each morning.

There is considerable cycle-to-cycle variability in the
proportion of days per cycle when data were collected.

One of our response variables, ovulation, is binary. Because of
the nature of the functional for calculating ovulation status,
the probability on the outcome is dependent on the proportion
of trajectory data observed. (A Yes is easier to see than a
No.)
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An Outline of Our Method

The Easy Way to Think About It – Two Models

Consider fitting two linked models to these data: one to the
observations with PAH information, and one to the
observations without PAH information.

These models will share parameters across the PAH and
non-PAH groups when possible. These include coefficients on
the demographic covariates, and subject-level random effects.

Other parameters will be model-specific: coefficients for
PAHs, and the additional error variance in the reduced model
where no PAHs are observed.
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An Outline of Our Method

The Easy Way to Think About It – Two Models

Let i = 1, ..., k index the women in our study and
j = 1, ..., nip , ..., (nip + nic ) index the longitudinal observations
on each woman. Let nip be the number of observations per
woman for which we lack PAH exposure data, and let nic be
the number of observations per woman for which we have
such information.

Then a simple two-model approach would give us

Yij = Xijβ +ξi + εij + εij j ∈ {1, ..., nip}
Yij = Xijβ + Zijγ +ξi + εij j ∈ {(nip + 1), ..., (nip + nic )}

Note that now β, ξ, and ε are elements of both models.
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An Outline of Our Method

The Easy Way to Think About It – Two Models

A Note on Parameters:

Yij = Xijβ +ξi + εij + εij j ∈ {1, ..., nip}
Yij = Xijβ + Zijγ +ξi + εij j ∈ {(nip + 1), ..., (nip + nic )}

β is the collection of model parameters for the data we
observe on every unit.

γ is the collection of model parameters for the partial
covariate data—the data we only observe on a subset of units.

ξ is the subject-specific random effect.

ε is the error in the complete model.

ε is the additional error in the model when only partial
covariate information is available.
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An Outline of Our Method

The Matrix Representation

Linear algebraic notation also helps us understand what’s
happening here. Assume woman i has six observations, with
nip = nic = 3. Then we can write

Yi1

Yi2

Yi3

Yi4

Yi5

Yi6

 =



Xi1 0
Xi2 0
Xi3 0
Xi4 Zi4

Xi5 Zi5

Xi6 Zi6


[
β
γ

]
+



ξi
ξi
ξi
ξi
ξi
ξi

+



εi1
εi2
εi3
εi4
εi5
εi6

+



εi1
εi2
εi3
0
0
0


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An Outline of Our Method

The Matrix Representation

Put another way, we can say that Yi from the last slide has a
multivariate normal distribution, with

Yi1

Yi2

Yi3

Yi4

Yi5

Yi6

 ∼ N





Xi1β
Xi2β
Xi3β

Xi4β + Zi4γ
Xi5β + Zi5γ
Xi1β + Zi6γ

 , σ
2I6 + τ2

[
I3 03

3

03
3 03

3

]
+ ρJ 6

6


Where εij

iid∼ N(0, σ2) is the error distribution for the full

model, εij
iid∼ N(0, τ2) is the distribution of additional errors

for the partial model, and ξi
iid∼ N(0, ρ) is the random effect

distribution.
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Practical Considerations

Assumptions of Shared-Parameter Modeling

Yij = Xijβ +ξi + εij + εij j ∈ {1, ..., nip}
Yij = Xijβ + Zijγ +ξi + εij j ∈ {(nip + 1), ..., (nip + nic )}

In addition to the standard linear modeling assumptions, two
additional assumptions are implied by the shared-parameter
model. These assumptions ensure that β plays the same role
in both equations.

1 Z is centered, or includes an intercept – Without this, β0 in
the complete-covariate and partial-covariate models will differ.
BLUEs for each subset of the data would necessarily estimate
different values for β, rather than a shared value.

2 X ⊥⊥ Z – More generally, this assumption ensures that the βs
estimated are equivalent between models. This is a strong
assumption, however, and we will look at how robust the
method is to violation.
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Practical Considerations

Effects of Shared-Parameter Modeling

The largest benefits of shared-parameter modeling are in
estimating subject-specific random effects, which leads to
substantial improvement in out-of-sample prediction accuracy
on previously observed subjects.

There are smaller benefits to the precision of estimates of the
partial data parameters.

When X ⊥⊥ Z holds, there are also substantial improvements
in the precision and accuracy of estimates of complete data
parameters.
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Monte Carlo Results

Monte Carlo Sample Construction

By examining the linear algebraic mechanics of the shared
parameter model, we developed suspicions about the scenarios
under which it would show the greatest improvements over
alternative modeling strategies.

We generate longitudinal data for k units, with np partial
observations and nc complete observations per unit.

Two covariates are generated for each of the k(np + nc)
observations, and information on one of the covariates is
removed for the knp partial observations after response values
are calculated.

Response data are generated based on the two covariates, the
observational unit, and an additional error term.
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Monte Carlo Results

Monte Carlo Sample Construction

In our Monte Carlo analysis, we considered three candidate
models:

1 The shared-parameter model that I’ve discussed.
2 A model where observations without the partial data are

dropped from the sample.
3 A model where the partial covariates themselves are removed,

leaving the full sample size.

Here we compare fit only under the constraint that the full
model is true.
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Monte Carlo Results

What We’re Looking For

We are primarily interested in the out-of-sample prediction
error for these techniques—does shared-parameter modeling
give appreciably better predictions than we would get if we
simply ignored the partial observations?

We are also interested in how parameter estimates change (in
both value and precision) between our two candidate models.

We want to know how simulation parameters (within-subject
sample sizes np and nc , within-subject correlation ψ, and
correlation between covariates φ) affect estimator precision
and predictive accuracy.
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Monte Carlo Results

Predictive Accuracy Depends on Correlation

Average prediction error when k = 50 and nc = ni = 3. True
parameter values are β = γ = 1.
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Monte Carlo Results

Predictive Accuracy Depends on Amount of Data

Average prediction error when k = 50, ψ = 0.7, and φ = 0.0. True
parameter values are β = γ = 1.
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Monte Carlo Results

Takeaways on Prediction

Predictive accuracy is up to 20% better for shared-parameter
modeling when between-subject variability is comparable to
within-subject variability.

Predictive accuracy also improves more when nc is small and
np is large.

Although collinearity creates bias in parameter estimates,
predictive accuracy still improves under shared-parameter
modeling for mild collinearity.
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Monte Carlo Results

Parameter Distributions Depend on Correlation

Posterior characteristics of β and γ when k = 50 and nc = ni = 3.
True parameter values are β = γ = 1.
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Monte Carlo Results

Parameter Distributions Depend on Amount of Data

Posterior characteristics of β and γ when k = 50, ψ = 0.7, and
φ = 0.0. True parameter values are β = γ = 1.
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Monte Carlo Results

Takeaways on Parameter Estimation

Even small amounts of collinearity create bias in the
parameter estimates.

Correlation between observations on the same unit increases
the precision of the posteriors on the parameter distributions.

Precision improves more when nc is small and np is large.

Considerable improvement can be obtained in precision on the
βs. Improvement is made on the precision of the γs, but this
is considerably smaller.
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Discussion

Where Might This Be Useful?

This technique is best applied to longitudinal data where
some of the covariates are only available on a subset of
observations for each unit.

These issues are most likely to arise in settings where some
data are very expensive to obtain.

One application area I believe this may be particularly
well-suited for is in monitoring chronic conditions, as a way to
develop retrospective subject-specific baselines immediately
following diagnosis, or when some critical medical data will be
difficult to collect frequently.
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An Example from Research

Revisiting Our Data

Recall that in the PAH and endocrine function data, one of
our response variables of interest was whether a given cycle
was ovulatory or anovulatory.

Recall also that in our data, ovulation status is a functional of
the LH hormone trajectory, and that trajectory information is
incomplete for many cycles.

While our missing data under the first complication is
(surprisingly) MCAR, missingness here is MNAR—and thus
much more problematic.
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An Example from Research

How Did the Detection Dependence Arise?

Our functional for ovulation status involves the detection of
an “LH surge”—a distinct feature in the menstrual hormone
trajectory that occurs when a woman’s body releases the
necessary hormones to provoke ovulation and the creation of a
corpus luteum.

The LH surge lasts approximately one day. With incomplete
data collection, it is easy to miss the occurrence of this
feature.

We need to see nearly a full trajectory to decide ovulation
didn’t happen. We can make a decision that it did happen,
however, with as little as two days of data.
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An Example from Research

Some Example Hormone Trajectories

Figure 2. Representative urinary LH and E13G concentrations for
two participants across multiple menstrual cycles.
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A Formal Definition

What is Detection Dependence?

Consider the setting of estimating prevalence, π, for some
condition C. (Let C represent the absence of condition C.)

We have a test that, given sufficient data, can identify C with
perfect accuracy.

We know that in many cases our data are not sufficient to
make a determination about C—that is, we fail to detect
either C or C.

Let D represent detection—of either C or C. Let D represent
non-detection—the event that we are unable to determine
presence or absence of the condition from our data.
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A Formal Definition

What is Detection Dependence?

Detection dependence arises when Pr[C|D] and Pr[C] are not
equal.

In the case of perfect information, where Pr[D] = 1, then
Pr[C|D] = Pr[C]. But when detection is not assured, these
probabilities differ.

The present work shows how supplemental information on the
adequacy of the data to make a detection can be used to
enhance estimation of Pr[C] in a Bayesian setting.
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A Formal Definition

Detection Dependence in Ovulation Data

Again, the key element here is that it is much easier to
conclusively determine that an LH surge occurred—you only
need to see two days, if you see the correct two days—than to
determine that one did not occur.

Technically, this is the relation Pr[D|C] ≥ Pr[D|C], not the
relation described in the definition of detection dependence.
Their equivalence is straightforward to show, however.

Proposition 1

Let Pr[D|C] ≥ Pr[D|C], and define Pr[C,D] + Pr[C,D] = π.
Then Pr[C|D] ≥ π ≥ Pr[C|D].
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Additional Notation

Quantifying Detectability

Let Y be a collection of test data, of various levels of
adequacy for detection.

We will index Y according to the data’s adequacy to detect.
Assume that there exist I distinct levels of adequacy, and let
Gi , i ∈ {1, ..., I} be used to index those levels of adequacy.

Now, for each Gi , define the following two-way table:

C C
D yi ui ni
D zi vi mi

oi pi Ni

Where Ni is the total number of tests in the Gi sufficiency level,
and the other variables are as indicated by the table.
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Additional Notation

Probabilities of Interest

Now define the following probabilities of interest:

Pr[D|Gi ] = δi

Pr[C|D,Gi ] = θDi

Pr[C|D,Gi ] = θDi

And recall that we have, from before:

Pr[C] = Pr[C|Gi ]
= Pr[C,D|Gi ] + Pr[C,D|Gi ]

= θDi δi + θDi (1− δi )
= π
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The Identifiability Issue, and How We Deal With It

Identifiability Concerns

Note that within the i-th table, we have three parameters but
only two independent pieces of information. So within the i-th
table, θDi is non-identifiable.

Because of our formulation of the problem, however, knowing
θDi is equivalent to knowing π. That is, if we know the
probability of detection, and if we know the conditional
probability of having the condition given detection, and if we
know the population-level probability of having the condition,
then we would also know θDi with perfect accuracy.

This gives us a model with many constraints, but at most one
non-identifiable parameter across all I tables.
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The Identifiability Issue, and How We Deal With It

Identifiability in Bayesian Modeling

Bayesian models can be constructed, even for non-identifiable
problems—but it is important to understand how
identifiability impacts them.

Here, we are modeling the parameters {π, θD , δ} where θD

and δ represent the appropriate vectors of θDi and δi
parameters.

In our construction thus far, π is non-identifiable. That has an
important meaning for how a Bayesian model will deal with π.
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The Identifiability Issue, and How We Deal With It

Posteriors for Non-Identifiable Parameters

Suppose the likelihood is free of π. Then:

p(π, θ, δ|Y ) =
L(π, θ, δ|Y )p(π, θ, δ)

f (Y )

=
L(θ, δ|Y )p(θ, δ)p(π|θ, δ)

f (Y )

= p(θ, δ|Y )p(π|θ, δ)

So the posterior distribution for π conditional on θ and δ does
not involve the data in any way. It is equivalent to its prior.

But the posterior for θ and δ does involve the data, so our
beliefs about π can be updated indirectly.
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The Identifiability Issue, and How We Deal With It

Taking a Step Back

Recall that our Pr[C] = Pr[C|Gi ] constraint reduced us from
I + 1 non-idenifiable parameters to just one.

Constraining models is a standard approach to reducing or
eliminating identifiability issues, but there are other
approaches.

Hui and Walter (1980) resolved the problem of
non-identifiability in diagnostic tests without a gold standard
by adding information on a second test and a second
population.

Steinberg and Cardell (1992) addressed the non-identifiability
created by observing only one level of a binary response by
supplementing their data with an outside sample when
finite-population sampling rates are available.
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Our Approach

A Combination of Methods

We augment our binary response data with information from
the non-detection set and a measure of data adequacy to
address identifiability concerns.

In addition to the constraint previously discussed, we can also
constrain our model such that the detection rate, δi increases
as a function of the data’s adequacy for detection.

We operationalize adequacy for detection using a finite
measure, µ(Gi ) ≡ wi .

We will use µ(Gi ) in our prior specification for δ. The key
feature of the measure is that it should accurately reflect an
ordering among the Gi ’s according to data adequacy for
detection.
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Our Approach

An Initial Model

Recall our two-way table for the information contained in Gi :

C C
D yi ui ni
D zi vi mi

oi pi Ni

Then we propose the model:

yi ∼ Bin(ni , θ
D
i )

mi ∼ Bin(Ni , 1− δi )

zi ∼ Bin(mi , θ
D
i )
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Our Approach

An Initial Model

Our choice of priors reflects the logical constraints we place on the
model:

logit(π) ∼ N(a0, b0)

logit(δ1) ∼ N(a1, b1)

logit(δi+1)− logit(δi ) ∼ Exp

(
c1

wi+1 − wi

)
logit(θDi )− logit(π) ∼ Exp

(
c2

1− wi

)
θDi =

π − θDi δi
1− δi
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Our Approach

Where We Are Now

We are currently in the process of developing coherent models
that approximate satisfying the set of constraints we impose.

We are looking at relaxing some of our assumptions to allow
the model to be used with standard Gibbs software, and
seeing if we’ll still get the results we want.

The method should be tractable with a hand-coded Gibbs or
Metropolis algorithm, though this could limit its usefulness for
applied researchers.
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Other Work in Progress

Marginal DIC Estimation

Model comparison in the original paper used the marginalized
deviance information criterion (DIC).

Accurate DIC calculation requires careful attention to focal
and non-focal stochastic elements of a Bayesian model,
something not provided by naive software implementations.

We are working toward a computationally efficient method for
taking existing MCMC iterates and improving DIC estimation
based on focal element choice.

We also want to better understand what, precisely, is being
calculated as DIC by common software packages, and how it
relates to the properly marginalized value.
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Other Work in Progress

Classification Based On Longitudinal Trajectories

We’re also interested in using Bayesian non-parametrics to
explore classification methods that rely on full hormone
trajectory information instead of just functionals applied to
those trajectories.

This would give us a flexible tool for pattern detection that
doesn’t rely on parametric modeling assumptions.

Up to now, classification and discrimination have not involved
the simultaneous use of multiple biological processes to
distinguish individuals.

The Bayesian approach that we will use will provide a
coherent method to accomplish this goal.
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That’s all, folks!

Thank you!
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