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Intermediate Bayesian Modeling
Midterm Exam

Instructions: Attempt as many parts of as many problems as possible. Show enough work to
convince me that you know what you are doing. Write your answer to each problem on the blank
paper provided. Write on only one side of each page. Do well!

1. (40 pts.) Video sharing websites like YouTube are interested in how many views are received
by videos on their platform. Let u be the number of views received by a particular video in
a one-hour span. Assume that u is well-modeled by a Pois (θ) distribution. Further assume
that a Bayesian statistician puts a Gamma

(
1, 1/150

)
prior on the rate parameter θ for this

Poisson distribution.

(a) Find the marginal distribution for u based on this model and prior. (15 pts.)

f(u) =

∫
S(θ)

f(u | θ)p(θ)dθ

=

∫
S(θ)

θu exp(−θ)
u!

× 1

150
exp

(
− θ

150

)
dθ

=
1

150u!

∫
S(θ)

θu exp

(
−151

150
θ

)
dθ

=
1

150 Γ(u+ 1)
× 150 Γ(u+ 1)

151
(
151
150

)u
×
∫
S(θ)

(
151
150

)u+1

Γ(u+ 1)
θu exp

(
−151

150
θ

)
dθ

=
150u

151u+1

(b) Describe how this marginal distribution can be used to test whether seeing u = 1280 views
in one hour is consistent with the given model and prior. (10 pts.)

Using Box’s marginal p-value test, we can measure how unlikely we would be to see data
like what was seen given our model and prior. Here, the marginal distribution is strictly
decreasing in u, so the values of u which are less likely than u = 1280 are all values
above 1280. Then we can calculate the probability up to u by summing the individual
probabilities and,

pB(u) = 1− 1

151

u∑
i=0

(
150

151

)u
.
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(c) Consider a collection of exponential random variables vi | θ
iid∼ Exp

(
1/θ
)
, which can be

thought of as the waiting times (in hours) between new viewers watching the previously
discussed video. Explain the conditions under which identical Bayesian inferences will
be made for θ using either the u data or the vi data. (15 pts.)

Identical Bayesian inferences will be made about θ when the likelihood principle holds—
that is, when the likelihood of θ under the two models are proportional to one another—
and when the same prior is used for θ. (In other words, identical inferences will be made
whenever the kernel of the posterior distribution is the same for both approaches.)

Assuming that we use the same prior for both approaches, we only need likelihood
proportionality. Under the Poisson approach, we have L(θ) ∝ θu exp(−θ). Under the
exponential approach, the joint likelihood for waiting times up to the uth viewing would
be

L(θ | v1, ..., vu) ∝ θu exp(−θ
u∑
i=1

vi).

Then we can see that we will make identical inferences—the likelihoods are proportional
to one another—if the time it takes for us to reach the uth view is exactly 1 hour,∑u

i=1 vi = 1, and we don’t consider data past those u views.

2. (40 pts.) Recall that in the development of the Deviance Information Criterion, the penal-
ization term pD is given by

pD = Eθ|y[−2`(θ | y)] + 2`(θ̂ | y),

where `(θ | y) is the log-likelihood for some parameter θ given observed data y, and where θ̂
is an estimator for θ.

(a) Prove that if θ̂ is the posterior mean for θ, pD must be non-negative whenever the like-

lihood is log-concave ( d2

dθ2
`(θ | y) < 0 for all θ). (25 pts.)

According to Jensen’s inequality, if a function f(u) is concave, then Eu[f(u)] ≤ f (Eu[u]).
Because the likelihood function is log-concave, this inequality holds for `—that is,
Eθ|y[`(θ | y)] ≤ `(Eθ|y[θ] | y). If we multiply by a constant -2, this will reverse the
inequality, giving us

Eθ|y[−2`(θ | y)] ≥ −2`(Eθ|y[θ] | y)

Eθ|y[−2`(θ | y)] + 2`(Eθ|y[θ] | y) ≥ 0.

This completes the proof.

(b) In certain circumstances and for certain choices of θ̂, the quantity pD may be negative.
This would be inconvenient, since pD is a penalty term. If θ̂ is chosen to be the poste-
rior median, what additional constraint or constraints—beyond log-concavity—could be
imposed to guarantee that pD is positive? (You can explain this in words; you don’t need
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to show it mathematically.) (15 pts.)

The simplest additional constraint is to require that the the posterior be symmetric. If
the posterior were symmetric, the mean and median of the posterior would be the same
value, and the argument above would hold for the median as well. Other constraints
may also be possible, but are more difficult to show if the Jensen’s inequality argument
isn’t preserved.

3. (40 pts.) Let Xi, i ∈ N be an infinite exchangeable sequence of random quantities and define
Yh and Yk to be the averages of h and of k random quantities from among the Xi’s. Assume
De Finetti’s law of large numbers applies here—that is, for any ε and θ, there exist H and K
such that

h ≥ H, k ≥ K −→ Pr [|Yh − Yk| > ε] < θ.

If Φn(ξ) = Pr [Yn ≤ ξ], prove that limn→∞Φn(ξ) exists.

By the law of total probability,

Pr [Yn ≤ ξ] = Pr [Yn ≤ ξ ∩ Yh > ξ + ε] + Pr [Yn ≤ ξ ∩ Yh ≤ ξ + ε] .

Observe that

Pr [Yn ≤ ξ ∩ Yh > ξ + ε] = Pr [Yn ≤ ξ < Yh − ε]
≤ Pr [Yn < Yh − ε]
= Pr [ε < Yh − Yn]

≤ Pr [ε < |Yh − Yn|] ,

with the final inequality holding because Yh − Yn ≤ |Yh − Yn| irrespective of Yh and Yn.

We note that this is the form of De Finetti’s law of large numbers, which we’ve assumed
to hold here. Therefore, for any ε, θ > 0, ∃Nε,θ, Hε,θ ∈ N such that ∀n ≥ Nε,θ, h ≥ Hε,θ,
Pr [ε < |Yh − Yn|] < θ. Combining this result with the above development, we obtain the
following result:

For any choice of ε, θ > 0, there exist Nε,θ, Hε,θ ∈ N such that n ≥ Nε,θ, h ≥ Hε,θ implies
Pr [Yn ≤ ξ ∩ Yh > ξ + ε] < θ.

Now considering the second term of the total probability sum, by the definition of joint
probability we have

Pr [Yn ≤ ξ ∩ Yh ≤ ξ + ε] = Pr [Yn ≤ ξ | Yh ≤ ξ + ε]× Pr [Yh ≤ ξ + ε]

≤ Pr [Yh ≤ ξ + ε] .

Then using the same Nε,θ, Hε,θ above, for any ε, θ > 0 we have

Pr [Yn ≤ ξ] < θ + Pr [Yh ≤ ξ + ε] .
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Now consider the quantity Pr [Yh ≤ ξ − ε]− θ. Using the same law of total probability trick,
we can see that

Pr [Yh ≤ ξ − ε]− θ = Pr [Yh ≤ ξ − ε ∩ Yn > ξ] + Pr [Yh ≤ ξ − ε ∩ Yn ≤ ξ]− θ.

Taking the first term, we can see that

Pr [Yh ≤ ξ − ε ∩ Yn > ξ] = Pr [Yh + ε ≤ ξ < Yn]

≤ Pr [Yh + ε < Yn]

= Pr [ε < Yn − Yh]

≤ Pr [ε < |Yn − Yh|] ,

so once again we have Pr [Yh ≤ ξ − ε ∩ Yn > ξ] < θ under the same Nε,θ, Hε,θ as before.

The second term here undergoes a similar development:

Pr [Yh ≤ ξ − ε ∩ Yn ≤ ξ] = Pr [Yh ≤ ξ − ε | Yn ≤ ξ]× Pr [Yn ≤ ξ]
≤ Pr [Yn ≤ ξ] .

So we have

Pr [Yh ≤ ξ − ε]− θ < θ + Pr [Yn ≤ ξ]− θ
= Pr [Yn ≤ ξ] .

Taken together, these two developments give us the following set of inequalities:

Pr [Yh ≤ ξ − ε]− θ < Pr [Yn ≤ ξ] < Pr [Yh ≤ ξ + ε] + θ,

which we can express using simpler notation as

Φh(ξ − ε)− θ < Φn(ξ) < Φh(ξ + ε) + θ.

At this point, it is good to revisit what we need to prove. We want to show that limn→∞Φn(ξ)
exists. Since Φn(ξ) ∈ R, it is sufficient to show that the sequence Φn(ξ) is Cauchy—that is,
there exist Hη,Kη ∈ N such that for all h ≥ Hη, k ≥ Kη, |Φh(ξ) − Φk(ξ)| < η. This is very
nearly what we have above, except that we have θ instead of η and our Φh(·) statements
include ε which, we know from De Finetti’s law of large numbers, can be arbitrarily small.

Observe that the Φ functions are nondecreasing. Then

Φh(ξ − ε) ≤ Φh(ξ) ≤ Φh(ξ + ε),

and it follows that

Φh(ξ − ε)− θ ≤ Φh(ξ)− θ < Φh(ξ) + θ ≤ Φh(ξ + ε) + θ.

Then if Φn(ξ) − Φh(ξ − ε) < θ and Φh(ξ + ε) − Φn(ξ) < θ, it necessarily follows that
Φn(ξ)−Φh(ξ) < θ and Φh(ξ)−Φn(ξ) < θ. This is identical to saying |Φn(ξ)−Φh(ξ)| < θ, so
for our above choice of Nε,θ, Hε,θ, we have established that this sequence is Cauchy. Since it
is a Cauchy sequence in R, it converges, completing the proof.�
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4. (40 pts.) A common tool for thinking about discrete probabilities is the Pólya urn scheme.
We imagine an urn containing α red balls and β blue balls. Balls are drawn from the urn
and observed. This is analogous to sampling from a population with two options—successes
or failures on a Bernoulli trial, say. Different distributions can be modeled in this way based
on whether or how balls are replaced in the urn after being drawn.

Imagine you are at the decennial Statistics Carnival, playing a game. In this game, a carnival
worker has you draw a ball from an urn. Then you return the ball to the carnival worker.
The carnival worker then takes one of three actions (always the same after each draw):

(1) The carnival worker does not return the ball to the urn.

(2) The carnival worker returns the ball to the urn.

(3) The carnival worker returns the ball to the urn, adding another ball of the same color.

You will draw 10 balls, and then you will guess which action the carnival worker has been
taking. The game begins with one red ball and one blue ball in the urn.

(a) The carnival worker indicates that the three replacement actions are equally probable.
Explain why the carnival worker is obviously lying. (5 pts.)

It is impossible to draw 10 balls if the carnival worker chooses Action 1. Either the
game will fail to be playable after two draws, or the carnival worker self-evidently did
not choose Action 1. (Technically, it is possible for the carnival worker to choose each
of the three actions equiprobably, so it may be unfair to say that they are lying. It is
fair to say that Action 1 has zero probability in the following discussion of the problem,
however, since it would be deterministically either verified or rejected by the successful
action of picking a third ball.)

(b) What probability distribution is followed by Y , the total number of red balls seen in 10
draws, if the carnival worker takes Action 2. (10 pts.)

If the carnival worker takes Action 2, then the same number of balls of each type will be
in the urn after each draw. This means each draw can be thought of as an independent
trial with probability α

α+β of a success. Here, since α = β = 1, Y follows a Bin
(
10, 1/2

)
distribution.

(c) Action 3 gives rise to a beta-binomial distribution with parameters n = 10, α = 1,
and β = 1. This is the same as the marginal distribution for Y if Y were distributed
Bin (10, p) with a Beta (1, 1) prior on the probability of a red ball, p. Find the probability
mass function for this beta-binomial distribution. (10 pts.)
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This is just another marginal distribution calculation:

f(y) =

∫
S(p)

(
10

y

)
py(1− p)10−y × Γ(1 + 1)

Γ(1) Γ(1)
p1−1(1− p)1−1dp

=

(
10

y

)∫
S(p)

py(1− p)10−ydp

=

(
10

y

)
Γ(y + 1) Γ(11− y)

Γ(12)

∫
S(p)

Γ(12)

Γ(y + 1) Γ(11− y)
py(1− p)10−ydp

=
10!

11!
× y!

y!
× (10− y)!

(10− y)!

=
1

11
I{0,...,10}(y)

I’ve left the support for y off until the last line for notational simplicity, but it is good
to reintroduce it there. Note that this means y is distributed Discrete Uniform over the
values 0 to 10.

(d) Assume that you’ve seen Y = 8 red balls in 10 draws. Calculate the Bayes factor com-
paring Model A—the carnival worker replaces balls according to Action 2, and Model
B—the carnival worker replaces balls according to Action 3. (15 pts.)

Recall that the Bayes factor is given by

BFA,B =
Pr [y | A]

Pr [y | B]
=

∫
S(p) f(y | p,A)p(p | A)dp∫
S(p) f(y | p,B)p(p | B)dp

.

Under Action 2, we know that the data follow a Bin
(
10, 1/2

)
distribution—in other

words, we have a prior giving point mass 1 to p = 0.5. The probability of seeing y = 8
under Action 2, then, is f(8 | A) =

(
10
8

)
/210 = 0.044. Under Action 3, we know that

the marginal distribution for y is discrete uniform and f(8 | B) = 1
11 = 0.091. Then the

Bayes factor comparing Model A to Model B is BFA,B = 0.044
0.091 = 0.483, meaning that

these data are about half as likely to occur if the carnival worker picks Action 2 than if
the carnival worker picks Action 3.

(e) EXTRA CREDIT: Pretend α = β = 10. What probability distribution would be followed
by Y if the carnival worker took Action 1?

This would be a sampling-without-replacement scheme from a fixed population, which is how
we define the hypergeometric distribution.
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