STATS 579 — INTERMEDIATE BAYESIAN MODELING

Assignment # 4

1. Suppose y is a random variable with cdf F(y) = 1 —e " for y > 0, a > 0. We say
y ~ Weibull (A, @). Explain how to simulate y from Uniform (0,1) random variables. Note
that y is a simple transformation of an Exp (A) random variable. What is the transformation?

We begin by observing the nature of the transformation. Let x ~ Exp (A). Then f,(z) =
Ae=**_ Consider the transformation y = g(z) = |z/| with inverse transformation z =
g~ (y) = y®. By the change of variables formula, this means the pdf of y must be
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which is the pdf for a Weibull (A, @) random variable. With this information, and knowing
how to simulate an exponential random variable from a Uniform (0, 1) random variable, sim-
ulating a Weibull (A, ) random variable is straightforward.

Let u ~ Uniform (0,1). Let Fy(x) = (1 — u) where F; is the Exp (\) cdf—or in other words,
let
r=F'(1—-u)= —logu.
A
This gives us © ~ Exp (\). Then, given what we’ve found above regarding the transformation,
let y = |&'/=|. This gives us y ~ Weibull (A, a).




2. IfY; n Gamma (a;, b) for i € {1,...,k}, we have shown that
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where S = ZleY;. Use Proposition B.4 to transform Y7,...,Y} into the random vector
Z1y ...y Zr—1,S. Show that S is independent of the other variables by showing that the
joint density of the random vector is the product of a Dirichlet (ay,...,a;) density and a

Gamma (Zle Qg b) density. The general Dirichlet density is an obvious extension of the

three-parameter Dirichlet density given in Table 2.1.

First, we observe that the joint density of the Y;’s for i € {1,...,k} is
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Now, if for every Z; we define a transformation function

_ i} _ _ - Y .
Z1 Yy Yl/Zf:1 Y;
Zs Yo (o> ne
: =g : = : )
Zr—1 Y1 Y’Cfl/zzc v,
K
L 5 LN VAN Y ¢
which admits an inverse
B T 71 ] [ AL
Yy 7o 795
Cl=gT ] ] = :
Y1 Z—1 Zy—15
| Y S S(l—zjf;f ZZ-)




To calculate the distribution of the transformed variables, we need to obtain the Jacobian.
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By careful consideration of the minors of the matrix, we are able to determine that the deter-
minant |J| is equal to S¥~1. (This takes too much space for me to want to show how to do it
in KTEX. The work proceeds by choosing the S row of the matrix and obtaining the minors
for each element of this row; then choosing the S column within the minor; recognizing that
the subminors for each element of this row must either be diagonal or contain a row of zeroes,
and calculating the determinant accordingly.)

Then we can obtain the joint density for the random vector {Z1,..., Zy_1,S}. First define
Zp=1-— Zf;ll Z;, then the density can be written as follows:
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Observe that in the final equality: the first line is the density for a Dirichlet (ay, ..., a;) random
vector; the second line is the density for a Gamma (Zle ag, b) random variable; and since

the two do not share random elements, the Dirichlet vector and the Gamma variable are
independent.



3. In acceptance-rejection sampling, consider the general choice of candidate distribution for a
log-concave target density as presented in class.

Recall that we have §; and fy, points on either side of the mode of £(8) = log[p.(6)]; and that
we have tangent lines to £(6) calculated at these points,

Yi(0) = £(6;) + £'(6;)(6 — 6,),

where ¢ € {1,2}. Then

for both i =1 and 7 = 2. We choose

Mq(f) = min {671(9), 672(0)} .

(a) Find 6, by setting v1(6+) = 72(6x) and solving.

(b) Integrate Mq(6) over (—oo,0) to determine M as a function of 6., 6y, and 6s.

Observe that by construction, one of the 7;’s will have a positive slope and one will have a
negative slope. Without loss of generality, we assume that #(6;) > 0 and ¢ (f2) < 0. Then
for all < 6., we will have v1(f) < 72(8) and Mq(0) = ). Similarly, for all § > 6, we
have Mq() = 7). Then we can divide the integral into two halves:
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(c) Obtain the cdf based on the density ¢(6), say

Qv) = / " 0)do.
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Do this first for v < 6, and then for v > 6,. Calculate the latter as ff’;o q(0)do +

f(;* q(0)do
Observe that after the preceding step, we can now concisely (ha ha) define ¢(0) as

S0 {;4 exp gz(él) +00:)(0 - él); 0 <0,

Lexp (€() + £/(62)(6 — 6) 0>0,

or even more concisely as

(9) W exp <€/(9~1)9) 0 < 0.
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We consider this latter form more concise, because we can recognize it as the concatenation
of a reflected Exp (6’ (51)> density and a Exp <—f’ (52)) density with appropriate rescaling

factors. Because we know how to find the cdf for an exponential density, putting ¢(€) in this



form helps us see how to proceed.

Then for v < 6, we can express Q(v) as
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When v = 6., this reduces to
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Finally, for v > 6, we have
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(d) Solve Q(v) = u for v so that v = Q~!(u). Thus if we sample U ~ Uniform (0,1), we
have Q~1(U) ~ q(-)

You know what? If you've made it this far, just pat yourself on the back and go home. I don’t
want to do this bit, and neither do you—but at this point, you should be able to recognize
that solving for v can be done with a stack of algebra, and it is possible to get a general
solution to the whole mess in terms of our arbitrarily chosen tangent points.



