## Stats 579 – Intermediate Bayesian Modeling

## Assignment # 4

1. Suppose y is a random variable with cdf  $F(y) = 1 - e^{-\lambda y^{\alpha}}$  for y > 0,  $\alpha > 0$ . We say  $y \sim \text{Weibull}(\lambda, \alpha)$ . Explain how to simulate y from Uniform (0, 1) random variables. Note that y is a simple transformation of an  $\text{Exp}(\lambda)$  random variable. What is the transformation?

We begin by observing the nature of the transformation. Let  $x \sim \text{Exp}(\lambda)$ . Then  $f_x(x) = \lambda e^{-\lambda x}$ . Consider the transformation  $y = g(x) = |x^{1/\alpha}|$  with inverse transformation  $x = g^{-1}(y) = y^{\alpha}$ . By the change of variables formula, this means the pdf of y must be

$$f_y(y) = f_x \left( g^{-1}[y] \right) \left| \frac{d}{dy} g^{-1}(y) \right|$$
$$= f_x \left( y^{\alpha} \right) \left| \alpha y^{\alpha - 1} \right|$$
$$= \lambda \alpha y^{\alpha - 1} \exp \left( -\lambda y^{\alpha} \right),$$

which is the pdf for a Weibull  $(\lambda, \alpha)$  random variable. With this information, and knowing how to simulate an exponential random variable from a Uniform (0,1) random variable, simulating a Weibull  $(\lambda, \alpha)$  random variable is straightforward.

Let  $u \sim \text{Uniform}(0,1)$ . Let  $F_x(x) = (1-u)$  where  $F_x$  is the Exp $(\lambda)$  cdf—or in other words, let

$$x = F_x^{-1}(1 - u) = \frac{-\log u}{\lambda}.$$

This gives us  $x \sim \text{Exp}(\lambda)$ . Then, given what we've found above regarding the transformation, let  $y = |x^{1/\alpha}|$ . This gives us  $y \sim \text{Weibull}(\lambda, \alpha)$ .

2. If  $Y_i \stackrel{\text{iid}}{\sim} \text{Gamma}(a_i, b)$  for  $i \in \{1, ..., k\}$ , we have shown that

$$(Z_1,...,Z_k) = \left(\frac{Y_1}{S},...,\frac{Y_k}{S}\right) \sim \text{Dirichlet}(a_1,...,a_k),$$

where  $S = \sum_{i=1}^{k} Y_i$ . Use Proposition B.4 to transform  $Y_1, ..., Y_k$  into the random vector  $Z_1, ..., Z_{k-1}, S$ . Show that S is independent of the other variables by showing that the joint density of the random vector is the product of a Dirichlet  $(a_1, ..., a_k)$  density and a Gamma  $\left(\sum_{i=1}^{k} a_i, b\right)$  density. The general Dirichlet density is an obvious extension of the three-parameter Dirichlet density given in Table 2.1.

First, we observe that the joint density of the  $Y_i$ 's for  $i \in \{1, ..., k\}$  is

$$f(Y_1, ..., Y_k) = \prod_{i=1}^k f(Y_i)$$

$$= \prod_{i=1}^k \frac{b^{a_i}}{\Gamma(a_i)} y_i^{a_i - 1} \exp(-by_i) I_{(0, \infty)}(y_i)$$

$$= \frac{b^{\sum_{i=1}^k a_i}}{\prod_{i=1}^k \Gamma(a_i)} \left(\prod_{i=1}^k y_i^{a_i - 1}\right) \exp\left(-b\sum_{i=1}^k y_i\right)$$

Now, if for every  $Z_i$  we define a transformation function

$$\begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_{k-1} \\ S \end{bmatrix} = g \begin{pmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_{k-1} \\ Y_k \end{bmatrix} \end{pmatrix} = \begin{bmatrix} Y_1/\sum_{i=1}^k Y_i \\ Y_2/\sum_{i=1}^k Y_i \\ \vdots \\ Y_{k-1}/\sum_{i=1}^k Y_i \\ \sum_{i=1}^k Y_i \end{bmatrix},$$

which admits an inverse

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_{k-1} \\ Y_k \end{bmatrix} = g^{-1} \begin{pmatrix} \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_{k-1} \\ S \end{bmatrix} \end{pmatrix} = \begin{bmatrix} Z_1 S \\ Z_2 S \\ \vdots \\ Z_{k-1} S \\ S \left(1 - \sum_{i=1}^{k-1} Z_i\right) \end{bmatrix}.$$

To calculate the distribution of the transformed variables, we need to obtain the Jacobian.

$$|J| = \begin{vmatrix} \frac{\partial}{\partial Z_1} Z_1 S & \frac{\partial}{\partial Z_2} Z_1 S & \dots & \frac{\partial}{\partial Z_{k-1}} Z_1 S & \frac{\partial}{\partial S} Z_1 S \\ \frac{\partial}{\partial Z_1} Z_2 S & \frac{\partial}{\partial Z_2} Z_2 S & \dots & \frac{\partial}{\partial Z_{k-1}} Z_2 S & \frac{\partial}{\partial S} Z_2 S \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{\partial}{\partial Z_1} Z_{k-1} S & \frac{\partial}{\partial Z_2} Z_{k-1} S & \dots & \frac{\partial}{\partial Z_{k-1}} Z_{k-1} S & \frac{\partial}{\partial S} Z_{k-1} S \\ \frac{\partial}{\partial Z_1} S \left(1 - \sum Z_i\right) & \frac{\partial}{\partial Z_2} S \left(1 - \sum Z_i\right) & \dots & \frac{\partial}{\partial Z_{k-1}} S \left(1 - \sum Z_i\right) & \frac{\partial}{\partial S} S \left(1 - \sum Z_i\right) \end{vmatrix} = \begin{vmatrix} S & 0 & \dots & 0 & Z_1 \\ 0 & S & \dots & 0 & Z_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & S & Z_{k-1} \\ -S & -S & \dots & -S & \left(1 - \sum_{i=1}^{k-1} Z_i\right) \end{vmatrix}$$

By careful consideration of the minors of the matrix, we are able to determine that the determinant |J| is equal to  $S^{k-1}$ . (This takes too much space for me to want to show how to do it in  $\LaTeX$ . The work proceeds by choosing the S row of the matrix and obtaining the minors for each element of this row; then choosing the  $\partial S$  column within the minor; recognizing that the subminors for each element of this row must either be diagonal or contain a row of zeroes, and calculating the determinant accordingly.)

Then we can obtain the joint density for the random vector  $\{Z_1,...,Z_{k-1},S\}$ . First define  $Z_k = 1 - \sum_{i=1}^{k-1} Z_i$ , then the density can be written as follows:

$$f_{Z,S}(Z_{1},...,Z_{k-1},S) = f_{Y}\left(g^{-1}\left(\left[Z_{1} ... Z_{k-1} S\right]^{T}\right)\right)|J|$$

$$= \frac{b^{\sum_{i=1}^{k} a_{i}}}{\prod_{i=1}^{k} \Gamma(a_{i})} \left(\prod_{i=1}^{k-1} (Z_{i}S)^{a_{i}-1}\right) \exp\left(-b\sum_{i=1}^{k-1} (Z_{i}S)\right)$$

$$\times \left(S\left(1 - \sum_{i=1}^{k-1} Z_{i}\right)\right)^{a_{k}-1} \exp\left(-bS\left(1 - \sum_{i=1}^{k-1} Z_{i}\right)\right) S^{k-1}$$

$$= \frac{b^{\sum_{i=1}^{k} a_{i}}}{\prod_{i=1}^{k} \Gamma(a_{i})} \left(\prod_{i=1}^{k} Z_{i}^{a_{i}-1}\right) S^{\left(\sum_{i=1}^{k} a_{i}\right)-1} \exp\left(-bS\right)$$

$$= \frac{\Gamma\left(\sum_{i=1}^{k} a_{i}\right)}{\prod_{i=1}^{k} \Gamma(a_{i})} \left(\prod_{i=1}^{k} Z_{i}^{a_{i}-1}\right)$$

$$\times \frac{b^{\sum_{i=1}^{k} a_{i}}}{\Gamma\left(\sum_{i=1}^{k} a_{i}\right)} S^{\left(\sum_{i=1}^{k} a_{i}\right)-1} \exp\left(-bS\right)$$

Observe that in the final equality: the first line is the density for a Dirichlet  $(a_1, ..., a_k)$  random vector; the second line is the density for a Gamma  $\left(\sum_{i=1}^k a_i, b\right)$  random variable; and since the two do not share random elements, the Dirichlet vector and the Gamma variable are independent.

3. In acceptance-rejection sampling, consider the general choice of candidate distribution for a log-concave target density as presented in class.

Recall that we have  $\tilde{\theta}_1$  and  $\tilde{\theta}_2$ , points on either side of the mode of  $\ell(\theta) \equiv \log[p_*(\theta)]$ ; and that we have tangent lines to  $\ell(\theta)$  calculated at these points,

$$\gamma_i(\theta) = \ell(\tilde{\theta}_i) + \ell'(\tilde{\theta}_i)(\theta - \tilde{\theta}_i),$$

where  $i \in \{1, 2\}$ . Then

$$p_*(\theta) = e^{\ell(\theta)} \le e^{\gamma_i(\theta)}$$

for both i = 1 and i = 2. We choose

$$Mq(\theta) = \min \left\{ e^{\gamma_1(\theta)}, e^{\gamma_2(\theta)} \right\}.$$

(a) Find  $\theta_*$  by setting  $\gamma_1(\theta_*) = \gamma_2(\theta_*)$  and solving.

$$\begin{split} \gamma_1(\theta_*) &= \gamma_2(\theta_*) \\ \ell(\tilde{\theta}_1) + \ell'(\tilde{\theta}_1)(\theta_* - \tilde{\theta}_1) = \ell(\tilde{\theta}_2) + \ell'(\tilde{\theta}_2)(\theta_* - \tilde{\theta}_2) \\ \ell(\tilde{\theta}_1) - \ell(\tilde{\theta}_2) &= \ell'(\tilde{\theta}_2)(\theta_* - \tilde{\theta}_2) - \ell'(\tilde{\theta}_1)(\theta_* - \tilde{\theta}_1) \\ &= \theta_* \left[ \ell'(\tilde{\theta}_2) - \ell'(\tilde{\theta}_1) \right] - \ell'(\tilde{\theta}_2)\tilde{\theta}_2 + \ell'(\tilde{\theta}_1)\tilde{\theta}_1 \\ \left[ \ell(\tilde{\theta}_1) + \ell'(\tilde{\theta}_1)\tilde{\theta}_1 \right] - \left[ \ell(\tilde{\theta}_2) + \ell'(\tilde{\theta}_2)\tilde{\theta}_2 \right] &= \theta_* \left[ \ell'(\tilde{\theta}_2) - \ell'(\tilde{\theta}_1) \right] \\ \frac{\left[ \ell(\tilde{\theta}_1) + \ell'(\tilde{\theta}_1)\tilde{\theta}_1 \right] - \left[ \ell(\tilde{\theta}_2) + \ell'(\tilde{\theta}_2)\tilde{\theta}_2 \right]}{\ell'(\tilde{\theta}_2) - \ell'(\tilde{\theta}_1)} &= \theta_* \end{split}$$

(b) Integrate  $Mq(\theta)$  over  $(-\infty, \infty)$  to determine M as a function of  $\theta_*$ ,  $\tilde{\theta}_1$ , and  $\tilde{\theta}_2$ .

Observe that by construction, one of the  $\gamma_i$ 's will have a positive slope and one will have a negative slope. Without loss of generality, we assume that  $\ell'(\tilde{\theta}_1) > 0$  and  $\ell'(\tilde{\theta}_2) < 0$ . Then for all  $\theta < \theta_*$ , we will have  $\gamma_1(\theta) < \gamma_2(\theta)$  and  $Mq(\theta) = e^{\gamma_1(\theta)}$ . Similarly, for all  $\theta > \theta_*$  we have  $Mq(\theta) = e^{\gamma_2(\theta)}$ . Then we can divide the integral into two halves:

$$\begin{split} \int_{-\infty}^{\infty} Mq(\theta) d\theta &= \int_{-\infty}^{\theta_*} Mq(\theta) d\theta + \int_{\theta_*}^{\infty} Mq(\theta) d\theta \\ &= \int_{-\infty}^{\theta_*} \exp\left(\ell(\tilde{\theta}_1) + \ell'(\tilde{\theta}_1)(\theta - \tilde{\theta}_1)\right) d\theta + \int_{\theta_*}^{\infty} \exp\left(\ell(\tilde{\theta}_2) + \ell'(\tilde{\theta}_2)(\theta - \tilde{\theta}_2)\right) d\theta \\ &= \int_{-\infty}^{\theta_*} e^{\ell(\tilde{\theta}_1) - \ell'(\tilde{\theta}_1)\tilde{\theta}_1} \exp\left(\ell'(\tilde{\theta}_1)\theta\right) d\theta + \int_{\theta_*}^{\infty} e^{\ell(\tilde{\theta}_2) - \ell'(\tilde{\theta}_2)\tilde{\theta}_2} \exp\left(\ell'(\tilde{\theta}_2)\theta\right) d\theta \\ &= e^{\ell(\tilde{\theta}_1) - \ell'(\tilde{\theta}_1)\tilde{\theta}_1} \int_{-\infty}^{\theta_*} \exp\left(\ell'(\tilde{\theta}_1)\theta\right) d\theta + e^{\ell(\tilde{\theta}_2) - \ell'(\tilde{\theta}_2)\tilde{\theta}_2} \int_{\theta_*}^{\infty} \exp\left(\ell'(\tilde{\theta}_2)\theta\right) d\theta \\ &= \frac{e^{\ell(\tilde{\theta}_1) - \ell'(\tilde{\theta}_1)\tilde{\theta}_1}}{\ell'(\tilde{\theta}_1)} \left[ \exp\left(\ell'(\tilde{\theta}_1)\theta\right) \right]_{-\infty}^{\theta_*} + \frac{e^{\ell(\tilde{\theta}_2) - \ell'(\tilde{\theta}_2)\tilde{\theta}_2}}{\ell'(\tilde{\theta}_2)} \left[ \exp\left(\ell'(\tilde{\theta}_2)\theta\right) \right]_{\theta_*}^{\infty} \\ &= \frac{e^{\ell(\tilde{\theta}_1) - \ell'(\tilde{\theta}_1)\tilde{\theta}_1}}{\ell'(\tilde{\theta}_1)} \left[ \exp\left(\ell'(\tilde{\theta}_1)\theta_*\right) \right] + \frac{e^{\ell(\tilde{\theta}_2) - \ell'(\tilde{\theta}_2)\tilde{\theta}_2}}{\ell'(\tilde{\theta}_2)} \left[ - \exp\left(\ell'(\tilde{\theta}_2)\theta_*\right) \right] \\ &= \frac{e^{\ell(\tilde{\theta}_1) - \ell'(\tilde{\theta}_1)\tilde{\theta}_1}}{\ell'(\tilde{\theta}_1)} \left[ \exp\left(\ell'(\tilde{\theta}_1)\theta_*\right) \frac{\left[\ell(\tilde{\theta}_1) + \ell'(\tilde{\theta}_1)\tilde{\theta}_1\right] - \left[\ell(\tilde{\theta}_2) + \ell'(\tilde{\theta}_2)\tilde{\theta}_2\right]}{\ell'(\tilde{\theta}_2) - \ell'(\tilde{\theta}_2)\tilde{\theta}_2} \right] \right) \\ &+ \frac{e^{\ell(\tilde{\theta}_2) - \ell'(\tilde{\theta}_2)\tilde{\theta}_2}}{\left|\ell'(\tilde{\theta}_2)\right|} \left[ \exp\left(\ell'(\tilde{\theta}_2) \frac{\left[\ell(\tilde{\theta}_1) + \ell'(\tilde{\theta}_1)\tilde{\theta}_1\right] - \left[\ell(\tilde{\theta}_2) + \ell'(\tilde{\theta}_2)\tilde{\theta}_2\right]}{\ell'(\tilde{\theta}_2) - \ell'(\tilde{\theta}_2)\tilde{\theta}_2} \right]} \right) \\ &= M \end{split}$$

(c) Obtain the cdf based on the density  $q(\theta)$ , say

$$Q(v) \equiv \int_{-\infty}^{v} q(\theta) d\theta.$$

Do this first for  $v \leq \theta_*$  and then for  $v > \theta_*$ . Calculate the latter as  $\int_{-\infty}^{\theta_*} q(\theta) d\theta + \int_{\theta_*}^{v} q(\theta) d\theta$ .

Observe that after the preceding step, we can now concisely (ha ha) define  $q(\theta)$  as

$$q(\theta) = \begin{cases} \frac{1}{M} \exp\left(\ell(\tilde{\theta}_1) + \ell'(\tilde{\theta}_1)(\theta - \tilde{\theta}_1)\right) & \theta \leq \theta_* \\ \frac{1}{M} \exp\left(\ell(\tilde{\theta}_2) + \ell'(\tilde{\theta}_2)(\theta - \tilde{\theta}_2)\right) & \theta > \theta_* \end{cases},$$

or even more concisely as

$$q(\theta) = \begin{cases} \frac{e^{\ell(\tilde{\theta}_1) - \ell'(\tilde{\theta}_1)\tilde{\theta}_1}}{M} \exp\left(\ell'(\tilde{\theta}_1)\theta\right) & \theta \leq \theta_* \\ \frac{e^{\ell(\tilde{\theta}_2) - \ell'(\tilde{\theta}_2)\tilde{\theta}_2}}{M} \exp\left(\ell'(\tilde{\theta}_2)\theta\right) & \theta > \theta_* \end{cases}.$$

We consider this latter form more concise, because we can recognize it as the concatenation of a reflected  $\operatorname{Exp}\left(\ell'(\tilde{\theta}_1)\right)$  density and a  $\operatorname{Exp}\left(-\ell'(\tilde{\theta}_2)\right)$  density with appropriate rescaling factors. Because we know how to find the cdf for an exponential density, putting  $q(\theta)$  in this

form helps us see how to proceed.

Then for  $v \leq \theta_*$  we can express Q(v) as

$$\begin{split} Q(v) &= \int_{-\infty}^{v} \frac{e^{\ell(\tilde{\theta}_{1}) - \ell'(\tilde{\theta}_{1})\tilde{\theta}_{1}}}{M} \exp\left(\ell'(\tilde{\theta}_{1})\theta d\theta\right) \\ &= \frac{e^{\ell(\tilde{\theta}_{1}) - \ell'(\tilde{\theta}_{1})\tilde{\theta}_{1}}}{\ell'(\tilde{\theta}_{1})M} \int_{\theta_{*} - v}^{\infty} \ell'(\tilde{\theta}_{1}) \exp\left(-\ell'(\tilde{\theta}_{1})\theta d\theta\right) \\ &= \frac{e^{\ell(\tilde{\theta}_{1}) - \ell'(\tilde{\theta}_{1})\tilde{\theta}_{1}}}{\ell'(\tilde{\theta}_{1})M} \left[1 - \int_{0}^{\theta_{*} - v} \ell'(\tilde{\theta}_{1}) \exp\left(-\ell'(\tilde{\theta}_{1})\theta\right) d\theta\right] \\ &= \frac{e^{\ell(\tilde{\theta}_{1}) - \ell'(\tilde{\theta}_{1})\tilde{\theta}_{1}}}{\ell'(\tilde{\theta}_{1})M} \left(1 - \left[1 - \exp\left(-\ell'(\tilde{\theta}_{1})(\theta_{*} - v)\right)\right]\right) \\ &= \frac{e^{\ell(\tilde{\theta}_{1}) - \ell'(\tilde{\theta}_{1})\tilde{\theta}_{1}}}{\ell'(\tilde{\theta}_{1})M} \left[\exp\left(-\ell'(\tilde{\theta}_{1})(\theta_{*} - v)\right)\right] \\ &= \frac{\exp\left(\ell(\tilde{\theta}_{1}) - \ell'(\tilde{\theta}_{1})\tilde{\theta}_{1}}{\ell'(\tilde{\theta}_{1})M} \left[\tilde{\theta}_{1} + \theta_{*} - v\right]\right)}{\ell'(\tilde{\theta}_{1})M} \end{split}$$

When  $v = \theta_*$ , this reduces to

$$Q(\theta_*) = \frac{\exp\left(\ell(\tilde{\theta}_1) - \ell'(\tilde{\theta}_1)\tilde{\theta}_1\right)}{\ell'(\tilde{\theta}_1)M}.$$

Finally, for  $v > \theta_*$  we have

$$\begin{split} Q(v) &= Q(\theta_*) + \int_{\theta_*}^v \frac{e^{\ell(\tilde{\theta}_2) - \ell'(\tilde{\theta}_2)\tilde{\theta}_2}}{M} \exp\left(\ell'(\tilde{\theta}_2)\theta d\theta\right) \\ &= Q(\theta_*) + \frac{e^{\ell(\tilde{\theta}_2) - \ell'(\tilde{\theta}_2)\tilde{\theta}_2}}{-\ell'(\tilde{\theta}_2)M} \int_0^{v - \theta_*} \left[-\ell'(\tilde{\theta}_2)\right] \exp\left(\ell'(\tilde{\theta}_2)\theta\right) d\theta \\ &= Q(\theta_*) + \frac{e^{\ell(\tilde{\theta}_2) - \ell'(\tilde{\theta}_2)\tilde{\theta}_2}}{-\ell'(\tilde{\theta}_2)M} \left[1 - \exp\left(\ell'(\tilde{\theta}_2)[v - \theta_*]\right)\right] \end{split}$$

(d) Solve Q(v) = u for v so that  $v = Q^{-1}(u)$ . Thus if we sample  $U \sim \text{Uniform}(0,1)$ , we have  $Q^{-1}(U) \sim q(\cdot)$ .

You know what? If you've made it this far, just pat yourself on the back and go home. I don't want to do this bit, and neither do you—but at this point, you should be able to recognize that solving for v can be done with a stack of algebra, and it is possible to get a general solution to the whole mess in terms of our arbitrarily chosen tangent points.