1. Suppose y is a random variable with cdf $F(y) = 1 - e^{-\lambda y^\alpha}$ for $y > 0$, $\alpha > 0$. We say $y \sim \text{Weibull}(\lambda, \alpha)$. Explain how to simulate y from Uniform $(0, 1)$ random variables. Note that y is a simple transformation of an $\text{Exp}(\lambda)$ random variable. What is the transformation?

2. If $Y_i \overset{iid}{\sim} \text{Gamma}(a_i, b)$ for $i \in \{1, \ldots, k\}$, we have shown that $(Z_1, \ldots, Z_k) = \left(\frac{Y_1}{S}, \ldots, \frac{Y_k}{S}\right) \sim \text{Dirichlet}(a_1, \ldots, a_k)$, where $S = \sum_{i=1}^k Y_i$. Use Proposition B.4 to transform Y_1, \ldots, Y_k into the random vector (Z_1, \ldots, Z_k). Show that S is independent of the other variables by showing that the joint density of the random vector is the product of a Dirichlet (a_1, \ldots, a_k) density and a Gamma $\left(\sum_{i=1}^k a_i, b\right)$ density. The general Dirichlet density is an obvious extension of the three-parameter Dirichlet density given in Table 2.1.

3. In acceptance-rejection sampling, consider the general choice of candidate distribution for a log-concave target density as presented in class. Recall that we have $\tilde{\theta}_1$ and $\tilde{\theta}_2$, points on either side of the mode of $\ell(\theta) \equiv \log[p_*(\theta)]$; and that we have tangent lines to $\ell(\theta)$ calculated at these points,

$$
\gamma_i(\theta) = \ell(\tilde{\theta}_i) + \ell'(\tilde{\theta}_i)(\theta - \tilde{\theta}_i),
$$

where $i \in \{1, 2\}$. Then

$$
p_*(\theta) = e^{\ell(\theta)} \leq e^{\gamma_i(\theta)}
$$

for both $i = 1$ and $i = 2$. We choose

$$
Mq(\theta) = \min\left\{e^{\gamma_1(\theta)}, e^{\gamma_2(\theta)}\right\}.
$$

(a) Find θ_* by setting $\gamma_1(\theta_*) = \gamma_2(\theta_*)$ and solving.

(b) Integrate $Mq(\theta)$ over $(-\infty, \infty)$ to determine M as a function of θ_*, $\tilde{\theta}_1$, and $\tilde{\theta}_2$.

(c) Obtain the cdf based on the density $q(\theta)$, say

$$
Q(v) \equiv \int_{-\infty}^v q(\theta)d\theta.
$$

Do this first for $v \leq \theta_*$ and then for $v > \theta_*$. Calculate the latter as $\int_{\theta_*}^{\theta_*} q(\theta)d\theta + \int_{\theta_*}^v q(\theta)d\theta$.

(d) Solve $Q(v) = u$ for v so that $v = Q^{-1}(u)$. Thus if we sample $U \sim \text{Uniform}(0, 1)$, we have $Q^{-1}(U) \sim q(\cdot)$.