
Stats 579 – Intermediate Bayesian Modeling

Assignment # 3 Solutions

1. An hypothetical study considers the lifespan of fluorescent light bulbs. Let y1, ..., yn be the
duration (in years) it takes for each of n light bulbs to fail. Assume that all tests are performed
under laboratory conditions and observations are iid. Researchers are interested in whether
bulb lifespan is better modeled with model M1, an Exp (λ) distribution, or with model M2,
a Weibull (3, λ) distribution. For both models, the researchers assume p(λ) = e−λ.

For this problem, please use the Exponential and Weibull parameterizations from your text-
book, which give

yE ∼ Exp (λ)

f(yE | λ) = λ exp (−λy) I(0,∞)(y)

yW ∼Weibull (α, λ)

f(yW | α, λ) = λαyα−1 exp (−λyα) I(0,∞)(y)

(a) Obtain the marginal density for these data under each model. (HINT: Take advantage
of conjugacy.)

The marginal density under the exponential model is given by

f(y1, ..., yn |M1) =

∫ [ n∏
i=1

f (yE | λ)

]
p(λ)dλ

=

∫ [ n∏
i=1

λ exp (−λyi) I(0,∞)(yi)

]
exp(−λ)dλ

=

[∫
λn exp

(
−λ

[
1 +

n∑
i=1

yi

])
dλ

]
n∏
i=1

I(0,∞)(yi)

=
Γ(n+ 1)

(1 +
∑n

i=1 yi)
n+1

n∏
i=1

I(0,∞)(yi)

×
∫

(1 +
∑n

i=1 yi)
n+1

Γ(n+ 1)
λn exp

(
−λ

[
1 +

n∑
i=1

yi

])
dλ

=
Γ(n+ 1)

(1 +
∑n

i=1 yi)
n+1

n∏
i=1

I(0,∞)(yi)
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The marginal density under the Weibull model is given by

f(y1, ..., yn |M2) =

∫ [ n∏
i=1

f (yW | λ)

]
p(λ)dλ

=

∫ [ n∏
i=1

3λy2
i exp

(
−λy3

i

)
I(0,∞)(yi)

]
exp(−λ)dλ

= 3n

[∫
λn exp

(
−λ

[
1 +

n∑
i=1

y3
i

])
dλ

]
n∏
i=1

y2
i I(0,∞)(yi)

= 3n
Γ(n+ 1)(

1 +
∑n

i=1 y
3
i

)n+1

n∏
i=1

y2
i I(0,∞)(yi)

×
∫ (

1 +
∑n

i=1 y
3
i

)n+1

Γ(n+ 1)
λn exp

(
−λ

[
1 +

n∑
i=1

y3
i

])
dλ

=
3nΓ(n+ 1)(

1 +
∑n

i=1 y
3
i

)n+1

n∏
i=1

y2
i I(0,∞)(yi)

(b) Obtain an expression for the Bayes factor comparing M1 to M2.

This is straightforward from part (a). The Bayes factor comparing M1 to M2 is given by

BF(M1 : M2) =
f(y1, ..., yn |M1)

f(y1, ..., yn |M2)

=

Γ(n+1)

(1+
∑n

i=1 yi)
n+1

∏n
i=1 I(0,∞)(yi)

3nΓ(n+1)

(1+
∑n

i=1 y
3
i )

n+1

∏n
i=1 y

2
i I(0,∞)(yi)

=

(
1 +

∑n
i=1 y

3
i

)n+1

3n (1 +
∑n

i=1 yi)
n+1∏n

i=1 y
2
i

Note that this quantity is defined only for y1, ..., yn satisfying
∏n
i=1 I(0,∞)(yi) > 0, otherwise

the Bayes factor is undefined.

(c) Evaluate the Bayes factor when the data are: {8.05, 6.56, 3.20, 6.85, 5.67}.

Using R to evaluate the value, I obtain 0.5885679.

(d) Explain which model seems preferable based on the Bayes factor. Explain which model
would be preferable if you had a prior belief that M1 were nine times more likely to be
correct than M2.

According to the Bayes factor, these data appear more likely to have arisen from M2 than
from M1, but not extraordinarily more likely to have done so. If our prior odds were 9/1, then
the posterior odds for M1 over M2 would be about 5.297, still strongly in favor of the first
(exponential) model.
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2. Using the same set-up as in Problem 1, the researchers want to compare these models in
terms of AIC.

(a) Find the MLE for λ underM1 andM2. Note that although both models have a parameter
named λ, these parameters are not the same and may maximize at different values for
each model. It may be helpful to write the MLEs as λ̂1 and λ̂2 to help distinguish them.

For M1, we have the likelihood

L1(λ | y1, ..., yn) = λn exp

(
−λ

n∑
i=1

yi

)
,

and the log-likelihood

l1(λ | y1, ..., yn) = n log λ− λ
n∑
i=1

yi.

Taking the derivative gives us

l′1(λ | y1, ..., yn) =
n

λ
−

n∑
i=1

yi,

and the second derivative yields

l
(2)
1 (λ | y1, ..., yn) = − n

λ2
.

Since the second derivative is non-negative, any root of the first derivative must be a maxi-
mum. The first-derivative maximizes at

λ̂1 =
n∑n
i=1 yi

,

which is thus the maximum likelihood estimate for λ under M1.

Under M2, our likelihood is

L2(λ | y1, ..., yn) =
n∏
i=1

3nλn

(
n∏
i=1

y2
i

)
exp

(
−λ

n∑
i=1

y3
i

)
,

with log-likelihood

l2(λ | y1, ..., yn) = n log (3λ) + 2

n∑
i=1

log yi − λ
n∑
i=1

y3
i .

The derivative for this log-likelihood is

l′2(λ | y1, ..., yn) =
n

λ
−

n∑
i=1

y3
i ,

and the second derivative again yields

l
(2)
2 (λ | y1, ..., yn) = − n

λ2
.
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Since the second derivative is again non-negative, any root of the first derivative must be a
maximum. The first-derivative maximizes at

λ̂2 =
n∑n
i=1 y

3
i

,

which is the maximum likelihood estimate for λ under M2.

(b) Calculate AIC for each model using the data provided above. Which model seems
preferable based on AIC?

In our scenario, the AIC for model j is given by the equation

AICj = −2
n∑
i=1

log fj

(
yi | λ̂j

)
+ 2kj ,

where fj specifies the density function for model j and kj is the number of parameters in the
model. Note that kj is one for both M1 and M2 since λ is the only unknown parameter in
both models.

Using the data from Question 1, we find that the MLE for M1 is 0.165 and for M2 it is
0.00373. Plugging these into the model equations, we find

AIC1 = −2
5∑
i=1

(
log λ̂1 − λ̂1yi

)
+ 2

= −10 log λ̂1 + 2λ̂1

5∑
i=1

yi + 2

= −10 log λ̂1 + 12

= 30.027

AIC2 = −2

5∑
i=1

(
log
(

3λ̂2

)
+ 2 log yi − λ̂2y

3
i

)
+ 2

= −10 log
(

3λ̂2

)
− 4

n∑
i=1

log yi + 2λ̂2

n∑
i=1

y3
i + 2

= −10 log
(

3λ̂2

)
− 4

n∑
i=1

log yi + 12

= 21.770

Thus by AIC, we also find M2 preferable to M1.
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3. Let y1, ..., yn be independent conditional on some model parameter θ. Let yi ∼ f(yi | θ) and
let θ have prior p(θ). Consider the conditional predictive ordinate for an observation yj ,

CPOj = f
(
yj | y(j)

)
,

where y(j) denotes the set {y1, ..., yj−1, yj+1, ..., yn}.

(a) Show that

CPOj =

∫ ∏n
i=1 f(yi | θ)p(θ)∫ ∏
i 6=j f(yi | θ)p(θ)

.

CPOj = f
(
yj | y(j)

)
=

∫
f(yj | θ)p(θ | y(j))dθ

=

∫
f(yj | θ)

(∏
i 6=j f(yi | θ)p(θ)

f(y(j))

)
dθ

=
1

f(y(j))

∫ n∏
i=1

f(yi | θ)p(θ)dθ

=

∫ ∏n
i=1 f(yi | θ)p(θ)dθ∫ ∏
i 6=j f(yi | θ)p(θ)dθ

(b) Now show that

CPO−1
j =

∫ [
1

f(yj | θ)

]
p(θ | y)dθ,

where y denotes the entire collection of data.

CPO−1
j =

1

f
(
yj | y(j)

)
=

∫ ∏
i 6=j f(yi | θ)p(θ)dθ∫ ∏n
i=1 f(yi | θ)p(θ)dθ

=

∫ ∏
i 6=j f(yi | θ)p(θ)dθ

f(y)

=

∫
1

f(yj | θ)

(∏n
i=1 f(yi | θ)p(θ)

f(y)

)
dθ

=

∫
1

f(yj | θ)
p(θ | y)dθ

Thus the inverse CPO, CPO−1
j , is equal to the posterior expectation of the inverse of the

density for yj .
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