1. Let $y_i | \theta \sim \text{Bern}(\theta)$ for $i \in \{1, ..., n\}$, and let $p(\theta) = I_{[0,1]}(\theta)$, i.e. θ is uniform on $[0, 1]$.

(a) Obtain the marginal density of $(y_1, ..., y_n)$.

$$f(y_1, ..., y_n)$$

$$= \int f(y_1, ..., y_n \mid \theta)p(\theta)d\theta$$

$$= \int \theta^{\sum_{i=1}^{n} y_i} (1 - \theta)^{n - \sum_{i=1}^{n} y_i} d\theta$$

$$= \frac{\Gamma(1 + \sum_{i=1}^{n} y_i) \Gamma(1 + n - \sum_{i=1}^{n} y_i)}{\Gamma(2 + n)}$$

$$\times \int \frac{\Gamma(2 + n)}{\Gamma(1 + \sum_{i=1}^{n} y_i) \Gamma(1 + n - \sum_{i=1}^{n} y_i)} \theta^{\sum_{i=1}^{n} y_i} (1 - \theta)^{n - \sum_{i=1}^{n} y_i} d\theta$$

$$= \frac{\Gamma(1 + \sum_{i=1}^{n} y_i) \Gamma(1 + n - \sum_{i=1}^{n} y_i)}{\Gamma(2 + n)}$$
(b) Calculate the predictive probability that \(y_{n+1} = 1 \) given that \(y_1 = \ldots = y_n = 1 \). Simplify the formula you get using the fact that \(\Gamma(a+1) = a\Gamma(a) \) and thus establish that for \(n = 1000 \), \(\Pr[y_{n+1} = 1] = \frac{1001}{1002} \).

\[
\begin{align*}
 f(y_{n+1} \mid y_1, \ldots, y_n) &= \int f(y_{n+1} \mid \theta)p(\theta \mid y_1, \ldots, y_n)d\theta \\
 &= \int \theta^{y_{n+1}}(1 - \theta)^{1-y_{n+1}} \\
 &\quad \times \frac{\Gamma(2 + n)}{\Gamma(1 + \sum_{i=1}^n y_i)\Gamma(1 + n - \sum_{i=1}^n y_i)} \theta^{\sum_{i=1}^n y_i}(1 - \theta)^{n - \sum_{i=1}^n y_i}d\theta \\
 &= \frac{\Gamma(2 + n)}{\Gamma(1 + \sum_{i=1}^n y_i)\Gamma(1 + n - \sum_{i=1}^n y_i)} \int \theta^{\sum_{i=1}^{n+1} y_i}(1 - \theta)^{(n+1) - \sum_{i=1}^{n+1} y_i}d\theta \\
 &= \frac{\Gamma(2 + n)}{\Gamma(1 + \sum_{i=1}^n y_i)\Gamma(1 + n - \sum_{i=1}^n y_i)} \frac{\Gamma(1 + (n+1) - \sum_{i=1}^{n+1} y_i)}{\Gamma(2 + (n+1))} \\
 &\quad \times \int \frac{\Gamma(2 + n)}{\Gamma(1 + \sum_{i=1}^{n+1} y_i)\Gamma(1 + n - \sum_{i=1}^{n+1} y_i)} \theta^{\sum_{i=1}^{n+1} y_i}(1 - \theta)^{(n+1) - \sum_{i=1}^{n+1} y_i}d\theta \\
 &= \frac{\Gamma(2 + n)}{\Gamma(1 + \sum_{i=1}^n y_i)\Gamma(1 + n - \sum_{i=1}^n y_i)} \frac{\Gamma(1 + (n+1) - \sum_{i=1}^{n+1} y_i)}{\Gamma(2 + (n+1))} \\
 &= \frac{1}{n+2} \frac{\Gamma(1 + \sum_{i=1}^{n+1} y_i)}{\Gamma(1 + \sum_{i=1}^n y_i)} \frac{\Gamma(1 + (n+1) - \sum_{i=1}^{n+1} y_i)}{\Gamma(1 + n - \sum_{i=1}^n y_i)}.
\end{align*}
\]

Observe that when \(y_{n+1} = 0 \), the second of these fractions is unity since \(1 + \sum_{i=1}^n y_i = 1 + \sum_{i=1}^{n+1} y_i \). In this case, the third fraction reduces to

\[
\frac{\Gamma(1 + (n+1) - \sum_{i=1}^{n+1} y_i)}{\Gamma(1 + n - \sum_{i=1}^{n+1} y_i)} = \frac{(1 + n - \sum_{i=1}^n y_i)\Gamma(1 + n - \sum_{i=1}^n y_i)}{\Gamma(1 + n - \sum_{i=1}^n y_i)} = \left(1 + n - \sum_{i=1}^n y_i\right).
\]

This gives a predictive distribution of

\[
f(y_{n+1} = 0 \mid y_1, \ldots, y_n) = \frac{1 + n - \sum_{i=1}^n y_i}{n + 2}.
\]

By an analogous chain of arguments, we will find that

\[
f(y_{n+1} = 1 \mid y_1, \ldots, y_n) = \frac{1 + \sum_{i=1}^n y_i}{n + 2}.
\]

Applying this to the case where \(y_1 = \ldots = y_n = 1 \) with \(n = 1000 \) gives us

\[
f(y_{1001} = 1 \mid y_1, \ldots, y_{1000}) = \frac{1001}{1002}.
\]
2. Suppose in a random sample of 10 transportation workers, all were found to be on drugs. Find Box’s marginal p-value and perform Bayesian significance tests to evaluate whether such data are consistent with the following models:

(a) $y_1, \ldots, y_{10} \mid \theta \overset{iid}{\sim} \text{Bern}(0.10)$

Recall that Box’s marginal p-value is given by

$$p = \Pr[f(y) \leq f(y_{obs})] = \int I_{(-\infty,f(y_{obs})]}[f(y)]f(y)dy.$$

Further, since our prior for θ is a degenerate point-mass at 0.10, we have

$$f(y) = \int f(y \mid \theta)p(\theta)d\theta$$
$$= 0.1 \sum_{i=1}^{10} y_i 0.9^{10-\sum_{i=1}^{10} y_i}$$

In this particular application, $y_1 = \ldots = y_{10} = 1$, so $f(y_{obs}) = 0.1^{10} 0.9^0 = \frac{1}{10^{10}}$. Consideration of the problem should indicate that no event is less likely under this model than ten successes in ten trials, so $f(y)$ is minimized at y_{obs}. Then Box’s marginal p-value for this model with these data gives $p = 0.0000000001$. Clearly, a significance test for this model indicates that these data are not consistent with the model suggested.
(b) \(y_1, \ldots, y_{10} \mid \theta \sim \text{Bern} (\theta); \quad \theta \sim \text{Beta} (0.05, 0.45) \)

Here, our prior leads to a more interesting marginal distribution for \(y \).

\[
f(y) = \int f(y \mid \theta)p(\theta)d\theta
= \int \theta^{\sum_{i=1}^{10} y_i}(1 - \theta)^{10 - \sum_{i=1}^{10} y_i} \frac{\Gamma(0.5)}{\Gamma(0.05)\Gamma(0.45)} \theta^{-0.95}(1 - \theta)^{-0.55}d\theta
= \frac{\Gamma(0.5)}{\Gamma(0.05)\Gamma(0.45)} \frac{\Gamma(0.05 + \sum_{i=1}^{10} y_i)\Gamma(10.45 - \sum_{i=1}^{10} y_i)}{\Gamma(10.5)}
\times \int \theta^{-0.95 + \sum_{i=1}^{10} y_i}(1 - \theta)^{9.45 - \sum_{i=1}^{10} y_i}d\theta
= \frac{\Gamma(0.5)}{\Gamma(0.05)\Gamma(0.45)} \frac{\Gamma(0.05 + \sum_{i=1}^{10} y_i)\Gamma(10.45 - \sum_{i=1}^{10} y_i)}{\Gamma(10.5)}
\]

Again, successes are less likely than failures, so \(f(y) \) is minimized at \(y_{\text{obs}} \). In this case,

\[
p = f(y_{\text{obs}})
= \frac{\Gamma(0.5)}{\Gamma(0.05)\Gamma(0.45)} \frac{\Gamma(10.05)\Gamma(0.45)}{\Gamma(10.5)}
= \frac{\Gamma(0.5)}{\Gamma(0.05)} \frac{\Gamma(10.05)}{\Gamma(10.5)}
= \frac{\Gamma(0.5)}{\Gamma(0.05)} \frac{\prod_{i=0}^{9}(i + 0.5)}{\Gamma(0.05)}
= \frac{\prod_{i=0}^{9}(i + 0.5)}{\prod_{i=0}^{9}(i + 0.5)}
\approx 0.0326
\]

A significance test based on this \(p \)-value again suggests that the data aren’t consistent with the model suggested (although they’re much more consistent with this model than with the preceding one).
(c) $y_1, \ldots, y_{10} \mid \theta \overset{\text{iid}}{\sim} \text{Bern}(\theta); \quad \theta \sim \text{Beta}(1,1)$

The form of our answer to this problem is much like the form of our answer to the last problem. Here, a slight rework of the marginal gives us

$$f(y) = \frac{\Gamma(2)}{\Gamma(1)\Gamma(1)} \frac{\Gamma(1 + \sum_{i=1}^{10} y_i) \Gamma(11 - \sum_{i=1}^{10} y_i)}{\Gamma(12)}$$

$$= \frac{\Gamma(1 + \sum_{i=1}^{10} y_i) \Gamma(11 - \sum_{i=1}^{10} y_i)}{\Gamma(12)},$$

where the final equality holds because $\Gamma(2) = 1\Gamma(1)$ and $\Gamma(1) = 1$.

Here, however, we observe that both ten successes and ten failures will be equally likely under the model (with all other outcomes being more likely). Then

$$p = \Pr[f(y) \leq f(y_{obs})]$$

$$f(y_{obs}) = \frac{\Gamma(11)\Gamma(1)}{\Gamma(12)}$$

$$= \frac{1}{11}$$

$$f(y_1 = \ldots = y_{10} = 0) = \frac{\Gamma(1)\Gamma(11)}{\Gamma(12)}$$

$$= \frac{1}{11}$$

So $p = \frac{1}{11} + \frac{1}{11} \approx 0.1818$. In this case, a significance test indicates that the data are somewhat consistent with this model.
3. Let $y|\theta \sim \text{Pois} (\theta)$. Conduct the following Bayesian hypothesis tests:

(a) Assume a prior on θ of Gamma (1, 1). For $H_0 : \theta \leq 1$ versus $H_1 : \theta > 1$ obtain the formula for the posterior probability that H_0 is true. Use software (e.g. R, WinBUGS) to calculate the probability for $y = 3, 5, \text{and } 7$.

To begin, note that the stated prior induces a prior probability of $1 - e^{-1}$ on H_0, and equivalently a prior probability of e^{-1} on H_1. To perform the hypothesis test, we simply find the posterior distribution for θ given the data y and calculate the posterior probability that $\theta \leq 1$.

We observe that the Pois (θ) distribution is conjugate with the Gamma (1, 1) distribution, yielding a Gamma $(y + 1, 2)$ posterior. Then in general, we can say that

$$
\Pr [H_0 | y] = \int_0^1 \frac{2^{y+1}}{\Gamma(y + 1)} q^y e^{-2q} \, dq.
$$

This integral is not, in general, analytically tractable. We use the `pgamma` function in R to find the posterior probability for H_0 for the three listed values of y, obtaining

| y | $\Pr [H_0 | y]$ |
|-----|----------------|
| 3 | 0.1429 |
| 5 | 0.0166 |
| 7 | 0.0011 |

Comparing this to the prior probability for H_0, $\Pr [H_0] \simeq 0.6321$, we can see that for any of these data, we have shifted our beliefs considerably toward favoring H_1.

(b) For $H_0 : \theta = 1$ versus $H_1 : \theta \neq 1$ with $q_0 = 0.5$ and $p_1(\theta) = e^{-\theta}$, obtain the analytical formula for the posterior probability that H_0 is true. Use software (e.g., WinBUGS, R) to calculate the exact probabilities for $y = 3, 5, \text{and } 7$.

Following the textbook, we define a prior for θ as

$$p(\theta) = q_0 f_{11}(\theta) + (1 - q_0) e^{-\theta} I_{(0, \infty)}(\theta).$$

Then the posterior probability for H_0 is given by

$$\Pr[\theta = 1 \mid y] = \frac{q_0 f_0(y)}{q_0 f_0(y) + (1 - q_0) f_1(y)},$$

where

$$f_0(y) = \int f(y \mid \theta) \, dp_0(\theta)$$
$$= f(y \mid \theta = 1)$$
$$= e^{-1} \frac{1}{y!}$$

and

$$f_1(y) = \int f(y \mid \theta) \, dp_1(\theta)$$
$$= \int \frac{\theta^y e^{-\theta}}{y!} \, d\theta$$
$$= \frac{1}{y!} \int \theta^y e^{-2\theta} d\theta$$
$$= \frac{1}{\Gamma(y + 1)} \frac{\Gamma(y + 1)}{2^{y+1}} \int \frac{\theta^y e^{-2\theta}}{\Gamma(y + 1)} 2^{y+1} d\theta$$
$$= \frac{1}{2^{y+1}}$$

A little calculus shows us that

$$\sum_{y=0}^{\infty} \frac{e^{-1}}{y!} = \sum_{y=0}^{\infty} \frac{1}{2^{y+1}} = 1,$$

so these are indeed probability density functions for discrete random variables. Then the posterior probability that $\theta = 1$ is relatively simple to calculate using the formula above, for any given choice of y. In particular, when $q_0 = 0.5$,

<table>
<thead>
<tr>
<th>y</th>
<th>$\Pr[H_0 \mid y]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.4952</td>
</tr>
<tr>
<td>5</td>
<td>0.1640</td>
</tr>
<tr>
<td>7</td>
<td>0.0183</td>
</tr>
</tbody>
</table>
4. For \(h > 0 \), let \(x_1, ..., x_h \) be exchangeable random quantities and let
\[
y_h = \frac{1}{h} \sum_{i=1}^{h} x_i.
\]
Assume that for each random quantity \(x_i \), all moments exist—that is,
\[
E[x_i] = \mu_1, \quad E[x_i^2] = \mu_2, \quad
\]
Further assume that \(n \leq h \) and let \(j_i \) for \(i \in \{1, ..., h\} \) represent any of the \(h! \) re-orderings of the indices 1, ..., \(h \). Then
\[
E \left[\prod_{i=1}^{n} x_{j_i} \right] = m_n.
\]
Prove that for all \(n \),
\[
\lim_{h \to \infty} E[y_h^n] = m_n.
\]

By the multinomial theorem, we know that
\[
y_h^n = \left(\frac{1}{h} \right)^n \sum_{k_1+...+k_h=n} \frac{n!}{k_1!...k_h!} \prod_{i=1}^{h} x_{k_i}.
\]

Then by linearity of expectation,
\[
E[y_h^n] = E \left[\left(\frac{1}{h} \right)^n \sum_{k_1+...+k_h=n} \frac{n!}{k_1!...k_h!} \prod_{i=1}^{h} x_{k_i} \right]
= \left(\frac{1}{h} \right)^n \sum_{k_1+...+k_h=n} \frac{n!}{k_1!...k_h!} E \left[\prod_{i=1}^{h} x_{k_i} \right].
\]

Since \(n \leq h \), we can consider the elements of this sum according to how many of \(k_1, ..., k_h \) are equal to zero. When \(h - n \) of the \(k_i \)’s are equal to zero, since \(\sum_{i=1}^{h} k_i = n \), it is necessarily true that the non-zero \(k_i \)’s are all equal to 1. There are \(\binom{h}{n} = \frac{h!}{n!(h-n)!} \) ways that the \(k_i \)’s can be chosen so that \(n \) of them equal 1 and \(h - n \) of them equal 0. Further,
\[
\sum_{k_1+...+k_h=n, k_i \in \{0,1\}} \frac{n!}{k_1!...k_h!} E \left[\prod_{i=1}^{h} x_{k_i} \right] = \frac{h!}{n!(h-n)!} \frac{n!}{k_1!...k_h!} m_n
= \frac{h!}{(h-n)!^2} m_n
\]

In general, for any combination of \(k_i \)’s, we recognize that \(s \leq n \) of them will be positive and \(n - s \) of them will be repeats among those \(s \) terms. A general expression for the number of ways we can choose these coefficients is then given by \(\binom{h}{s} s^{h-s} \). This term comes about from
drawing s distinct random quantities out of \(\{x_1, \ldots, x_h\} \) and then re-drawing with replacement from these s quantities a total of $n - s$ times. Then for general s, we will have

\[
\sum_{\sum_i k_i = n} \frac{n!}{k_1! \cdots k_h!} E \left[\prod_{i=1}^h x_i^{k_i} \right] = \frac{h!}{s!(h-s)!} s^{n-s} \frac{n!}{k_1! \cdots k_h!} \nu_{k_1, \ldots, k_h},
\]

where ν_{k_1, \ldots, k_h} is the expectation associated with products of the random quantities sharing the same k_i indices, potentially reordered.

We do not know the value of ν_{k_1, \ldots, k_h} in general, but we can inductively use the Cauchy-Schwarz inequality to prove that it is finite based on our assumptions. Consider the random quantity $t_1^{u_1} t_2^{u_2} \cdots t_s^{u_s}$ with $u \in \mathcal{N}$ and let $T_{s-1} = t_1^{u_1} t_2^{u_2} \cdots t_{s-1}^{u_{s-1}}$. Then by Cauchy-Schwarz,

\[
\prod_{i=1}^s t_i^{u_i} = T_{s-1} t_s^{u_s}
\]

\[
E \left[\prod_{i=1}^s t_i^{u_i} \right] = E[T_{s-1} t_s^{u_s}]
\]

\[
\leq \sqrt{E[T_{s-1}^2] E[t_s^{2u_s}]}
\]

If we know that all the moments of t_1, \ldots, t_s exist, then clearly $E[t_s^{2u_s}]$ exists and is one of these moments. Then if we let $s = 2$, we know that $E[T_{s-1}^2] = E[t_1^{2u_1}]$ and $E[t_2^{2u_2}]$ both exist. This means that

\[
T_2 = \prod_{i=1}^2 t_i^{u_i}
\]

\[
E[T_2] \leq \sqrt{E[t_1^{2u_1}] E[t_2^{2u_2}]}
\]

Then by induction, we can see that for any s and any collecton of u_i’s,

\[
E \left[\prod_{i=1}^s t_i^{u_i} \right] \leq \sqrt{\prod_{i=1}^s E[t_i^{2u_i}]}
\]

Applying this to our scenario, since the moments of the x_i’s all exist, we know that ν_{k_1, \ldots, k_h} is finite for all choices of k_1, \ldots, k_h.

Now, consider

\[
\lim_{h \to \infty} \frac{\frac{h!}{s!(h-s)!} s^{n-s} \frac{n!}{k_1! \cdots k_h!}}{h^n}.
\]

When $s < n$, this limit is 0 because the numerator is of order h^s and the denominator is of order h^n. When $s = n$, however, both numerator and denominator are of the order h^n and we have, in particular,

\[
\lim_{h \to \infty} \frac{\frac{h!}{(h-n)!}}{h^n} = 1.
\]
Then we have

\[
\lim_{h \to \infty} E[y^n_h] = \lim_{h \to \infty} \left(\frac{1}{h} \right)^n \sum_{s=1}^{n} \sum_{k_1 \ldots k_h = n, \sum_i i_{k_i} > 0 = s} \frac{n!}{k_1! \ldots k_h!} \left[\prod_{i=1}^{h} x_i^{k_i} \right] \\
= \sum_{s=1}^{n} \lim_{h \to \infty} \left(\frac{1}{h} \right)^n \sum_{k_1 \ldots k_h = n, \sum_i i_{k_i} > 0 = s} \frac{n!}{k_1! \ldots k_h!} \nu_{k_1, \ldots, k_h} \\
= \sum_{s=1}^{n-1} 0 + \lim_{h \to \infty} \frac{h!(h-1)! \ldots (h-n+1)!}{h^n} m_n \\
= m_n
\]