STATS 579 — INTERMEDIATE BAYESIAN MODELING

Assignment # 1 Solutions

1. Let y;|0 % Bern (0) for i € {1,...,n}, and let p(0) = Ijg)(0), i.e. 0 is uniform on [0, 1].

(a) Obtain the marginal density of (yi1, ..., yn)-
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(b) Calculate the predictive probability that y,+; = 1 given that y; = ... = y,, = 1. Simplify
the formula you get using the fact that I'(a + 1) = al'(a) and thus establish that for
n = 1000, Pr[yn41 = 1] = 1902
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Observe that when y,41 = 0, the second of these fractions is unity since 1+ > ", y; =
1+ ZZLJHI y;. In this case, the third fraction reduces to
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This gives a predictive distribution of
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By an analogous chain of arguments, we will find that
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Applying this to the case where y; = ... = y,, = 1 with n = 1000 gives us
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2. Suppose in a random sample of 10 transportation workers, all were found to be on drugs.
Find Box’s marginal p-value and perform Bayesian significance tests to evaluate whether such
data are consistent with the following models:

iid
(a‘) Y1, ---, Y10 ‘ 6 ~ Bern (010)

Recall that Box’s marginal p-value is given by
p=PrlF () < Foe)) = [ Tooustna P} ).

Further, since our prior for # is a degenerate point-mass at 0.10, we have
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In this particular application, y; = ... = y10 = 1, 50 f(Yops) = 0.1190.9° = 1/;410. Consider-
ation of the problem should indicate that no event is less likely under this model than ten
successes in ten trials, so f(y) is minimized at y,ps. Then Box’s marginal p-value for this
model with these data gives p = 0.0000000001. Clearly, a significance test for this model
indicates that these data are not consistent with the model suggested.



(b) y1,..sy10 | 0 14 Bern (0); 6 ~ Beta (0.05,0.45)

Here, our prior leads to a more interesting marginal distribution for y.
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Again, successes are less likely than failures, so f(y) is minimized at y.ps. In this case,
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A significance test based on this p-value again suggests that the data aren’t consistent with
the model suggested (although they’re much more consistent with this model than with the
preceding one).



(€) Y1510 | H%Bern(ﬁ); 6 ~ Beta(1,1)

The form of our answer to this problem is much like the form of our answer to the last
problem. Here, a slight rework of the marginal gives us
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where the final equality holds because I'(2) = 1T'(1) and I'(1) = 1.

Here, however, we observe that both ten successes and ten failures will be equally likely under
the model (with all other outcomes being more likely). Then

p=Pr [f(y) < f(yobs)]
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Sop= ﬁ + 1—11 ~ (.1818. In this case, a significance test indicates that the data are somewhat
consistent with this model.



3. Let y|6 ~ Pois (#). Conduct the following Bayesian hypothesis tests:

(a) Assume a prior on 6 of Gamma (1,1). For Hy : 6 < 1 versus H; : § > 1 obtain the
formula for the posterior probability that Hy is true. Use software (e.g. R, WinBUGS)
to calculate the probability for y = 3, 5, and 7.

To begin, note that the stated prior induces a prior probability of 1 — e' on Hy, and equiv-
alently a prior probability of e~! on H;. To perform the hypothesis test, we simply find the
posterior distribution for 8 given the data y and calculate the posterior probability that § < 1.

We observe that the Pois (¢) distribution is conjugate with the Gamma (1,1) distribution,
yielding a Gamma (y + 1,2) posterior. Then in general, we can say that
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1
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This integral is not, in general, analytically tractable. We use the pgamma function in R to
find the posterior probability for Hy for the three listed values of y, obtaining

y Pr[Ho |y
3 0.1429
5 0.0166
7 0.0011

Comparing this to the prior probability for Hy, Pr[H] ~ 0.6321, we can see that for any of
these data, we have shifted our beliefs considerably toward favoring H;.



(b) For Hy: 0 =1 versus Hy : 6 # 1 with go = 0.5 and p;(6) = e~?, obtain the analytical
formula for the posterior probability that Hy is true. Use software (e.g. WinBUGS, R)
to calculate the exact probabilities for y = 3, 5, and 7.
Following the textbook, we define a prior for 6 as

p(0) = qoly13(0) + (1 - QO)G_GI(O,OO)(Q)-

Then the posterior probability for Hy is given by
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so these are indeed probability density functions for discrete random variables. Then the
posterior probability that # = 1 is relatively simple to calculate using the formula above, for
any given choice of y. In particular, when gy = 0.5,

y Pr[Ho |y
3 0.4952
5 0.1640
7 0.0183




4. For h > 0, let x1, ..., z; be exchangeable random quantities and let

Assume that for each random quantity x;, all moments exist—that is,
Elz;] = 1, E[e}] = po,

Further assume that n < h and let j; for i € {1,...,h} represent any of the h! re-orderings of

the indicies 1, ..., h. Then
n
i=1

Prove that for all n,
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Since n < h, we can consider the elements of this sum according to how many of k1, ..., kj, are

equal to zero. When h — n of the k;’s are equal to zero, since Z?zl k; = n, it is necessarily
true that the non-zero k;’s are all equal to 1. There are (Z) = #ln), ways that the k;’s can

be chosen so that n of them equal 1 and A — n of them equal 0. Further,
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In general, for any combination of k;’s, we recognize that s < n of them will be positive and
n — s of them will be repeats among those s terms. A general expression for the number of
ways we can choose these coefficients is then given by (g) s"7%. This term comes about from



drawing s distinct random quantities out of {1, ..., x5} and then re-drawing with replacement
from these s quantities a total of n — s times. Then for general s, we will have
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where vy, 1, is the expectation associated with products of the random quantities sharing
the same k; indices, potentially reordered.

We do not know the value of vy,  x, in general, but we can inductively use the Cauchy-
Schwarz inequality to prove that it is finite based on our assumptions. Consider the random
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quantity ¢}'¢5%...t% with v € N and let T5_q = t]"t5*...t,°'. Then by Cauchy-Schwarz,
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If we know that all the moments of ¢y, ...,ts exist, then clearly E[t?“S] exists and is one of

these moments. Then if we let s = 2, we know that E[T2 ;] = E [t%“l} and E [t%m} both
exist. This means that
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Then by induction, we can see that for any s and any collecton of u;’s,
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Applying this to our scenario, since the moments of the z;’s all exist, we know that vy, g,
is finite for all choices of ki, ..., kp.
Now, consider
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When s < n, this limit is 0 because the numerator is of order h® and the denominator is of
order h". When s = n, however, both numerator and denominator are of the order A™ and
we have, in particular,
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Then we have

lim B[]
h—00

= lim
h—o0

(

1

h

)

n n ! h .
> X kﬂ?.kh!E[Hl‘fl]

s=1ki+...4+kp=n
Zi Iki>0:5

1\" n!
<h> 2 Tl ol Rk

k1+.4.+kh:n
Zi Iki>0:5

W(h—1)l.(h —n + 1)!

h—o0 h™ "

10



