
Stats 579 – Intermediate Bayesian Modeling

Assignment # 1 Solutions

1. Let yi|θ
iid∼ Bern (θ) for i ∈ {1, ..., n}, and let p(θ) = I[0,1](θ), i.e. θ is uniform on [0, 1].

(a) Obtain the marginal density of (y1, ..., yn).

f(y1, ..., yn)

=

∫
f(y1, ..., yn | θ)p(θ)dθ

=

∫
θ
∑n

i=1 yi(1− θ)n−
∑n

i=1 yidθ

=
Γ (1 +

∑n
i=1 yi) Γ (1 + n−

∑n
i=1 yi)

Γ (2 + n)

×
∫

Γ (2 + n)

Γ (1 +
∑n

i=1 yi) Γ (1 + n−
∑n

i=1 yi)
θ
∑n

i=1 yi(1− θ)n−
∑n

i=1 yidθ

=
Γ (1 +

∑n
i=1 yi) Γ (1 + n−

∑n
i=1 yi)

Γ (2 + n)
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(b) Calculate the predictive probability that yn+1 = 1 given that y1 = ... = yn = 1. Simplify
the formula you get using the fact that Γ(a + 1) = aΓ(a) and thus establish that for
n = 1000, Pr [yn+1 = 1] = 1001

1002 .

f(yn+1 | y1, ..., yn)

=

∫
f(yn+1 | θ)p(θ | y1, ..., yn)dθ

=

∫
θyn+1(1− θ)1−yn+1

× Γ (2 + n)

Γ (1 +
∑n

i=1 yi) Γ (1 + n−
∑n

i=1 yi)
θ
∑n

i=1 yi(1− θ)n−
∑n

i=1 yidθ

=
Γ (2 + n)

Γ (1 +
∑n

i=1 yi) Γ (1 + n−
∑n

i=1 yi)

∫
θ
∑n+1

i=1 yi(1− θ)(n+1)−
∑n+1

i=1 yidθ

=
Γ (2 + n)

Γ (1 +
∑n

i=1 yi) Γ (1 + n−
∑n

i=1 yi)

Γ
(

1 +
∑n+1

i=1 yi

)
Γ
(

1 + (n+ 1)−
∑n+1

i=1 yi

)
Γ (2 + (n+ 1))

×
∫

Γ (2 + (n+ 1))

Γ
(

1 +
∑n+1

i=1 yi

)
Γ
(

1 + (n+ 1)−
∑n+1

i=1 yi

) θ∑n+1
i=1 yi(1− θ)(n+1)−

∑n+1
i=1 yidθ

=
Γ (2 + n)

Γ (1 +
∑n

i=1 yi) Γ (1 + n−
∑n

i=1 yi)

Γ
(

1 +
∑n+1

i=1 yi

)
Γ
(

1 + (n+ 1)−
∑n+1

i=1 yi

)
Γ (2 + (n+ 1))

=
Γ (2 + n)

Γ (2 + (n+ 1))

Γ
(

1 +
∑n+1

i=1 yi

)
Γ
(

1 + (n+ 1)−
∑n+1

i=1 yi

)
Γ (1 +

∑n
i=1 yi) Γ (1 + n−

∑n
i=1 yi)

=
1

n+ 2

Γ
(

1 +
∑n+1

i=1 yi

)
Γ (1 +

∑n
i=1 yi)

Γ
(

1 + (n+ 1)−
∑n+1

i=1 yi

)
Γ (1 + n−

∑n
i=1 yi)

Observe that when yn+1 = 0, the second of these fractions is unity since 1 +
∑n

i=1 yi =
1 +

∑n+1
i=1 yi. In this case, the third fraction reduces to

Γ
(

1 + (n+ 1)−
∑n+1

i=1 yi

)
Γ (1 + n−

∑n
i=1 yi)

=
(1 + n−

∑n
i=1 yi) Γ (1 + n−

∑n
i=1 yi)

Γ (1 + n−
∑n

i=1 yi)
=

(
1 + n−

n∑
i=1

yi

)
.

This gives a predictive distribution of

f(yn+1 = 0 | y1, ..., yn) =
1 + n−

∑n
i=1 yi

n+ 2
.

By an analogous chain of arguments, we will find that

f(yn+1 = 1 | y1, ..., yn) =
1 +

∑n
i=1 yi

n+ 2
.

Applying this to the case where y1 = ... = yn = 1 with n = 1000 gives us

f(y1001 = 1 | y1, ..., y1000) =
1001

1002
.
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2. Suppose in a random sample of 10 transportation workers, all were found to be on drugs.
Find Box’s marginal p-value and perform Bayesian significance tests to evaluate whether such
data are consistent with the following models:

(a) y1, ..., y10 | θ
iid∼ Bern (0.10)

Recall that Box’s marginal p-value is given by

p = Pr [f(y) ≤ f(yobs)] =

∫
I(−∞,f(yobs)][f(y)]f(y)dy.

Further, since our prior for θ is a degenerate point-mass at 0.10, we have

f(y) =

∫
f(y | θ)p(θ)dθ

= 0.1
∑10

i=1 yi0.910−
∑10

i=1 yi

In this particular application, y1 = ... = y10 = 1, so f(yobs) = 0.1100.90 = 1/1010 . Consider-
ation of the problem should indicate that no event is less likely under this model than ten
successes in ten trials, so f(y) is minimized at yobs. Then Box’s marginal p-value for this
model with these data gives p = 0.0000000001. Clearly, a significance test for this model
indicates that these data are not consistent with the model suggested.
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(b) y1, ..., y10 | θ
iid∼ Bern (θ); θ ∼ Beta (0.05, 0.45)

Here, our prior leads to a more interesting marginal distribution for y.

f(y) =

∫
f(y | θ)p(θ)dθ

=

∫
θ
∑10

i=1 yi(1− θ)10−
∑10

i=1 yi
Γ(0.5)

Γ(0.05)Γ(0.45)
θ−0.95(1− θ)−0.55dθ

=
Γ(0.5)

Γ(0.05)Γ(0.45)

Γ(0.05 +
∑10

i=1 yi)Γ(10.45−
∑10

i=1 yi)

Γ(10.5)

×
∫

Γ(10.5)

Γ(0.05 +
∑10

i=1 yi)Γ(10.45−
∑10

i=1 yi)
θ−0.95+

∑10
i=1 yi(1− θ)9.45−

∑10
i=1 yidθ

=
Γ(0.5)

Γ(0.05)Γ(0.45)

Γ(0.05 +
∑10

i=1 yi)Γ(10.45−
∑10

i=1 yi)

Γ(10.5)

Again, successes are less likely than failures, so f(y) is minimized at yobs. In this case,

p = f(yobs)

=
Γ(0.5)

Γ(0.05)Γ(0.45)

Γ(10.05)Γ(0.45)

Γ(10.5)

=
Γ(0.5)

Γ(10.5)

Γ(10.05)

Γ(0.05)

=
Γ(0.5)

Γ(0.5)
∏9
i=0(i+ 0.5)

Γ(0.05)
∏9
i=0(i+ 0.05)

Γ(0.05)

=

∏9
i=0(i+ 0.05)∏9
i=0(i+ 0.5)

' 0.0326

A significance test based on this p-value again suggests that the data aren’t consistent with
the model suggested (although they’re much more consistent with this model than with the
preceding one).
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(c) y1, ..., y10 | θ
iid∼ Bern (θ); θ ∼ Beta (1, 1)

The form of our answer to this problem is much like the form of our answer to the last
problem. Here, a slight rework of the marginal gives us

f(y) =
Γ(2)

Γ(1)Γ(1)

Γ(1 +
∑10

i=1 yi)Γ(11−
∑10

i=1 yi)

Γ(12)

=
Γ(1 +

∑10
i=1 yi)Γ(11−

∑10
i=1 yi)

Γ(12)
,

where the final equality holds because Γ(2) = 1Γ(1) and Γ(1) = 1.

Here, however, we observe that both ten successes and ten failures will be equally likely under
the model (with all other outcomes being more likely). Then

p = Pr [f(y) ≤ f(yobs)]

f(yobs) =
Γ(11)Γ(1)

Γ(12)

=
1

11

f(y1 = ... = y10 = 0) =
Γ(1)Γ(11)

Γ(12)

=
1

11

So p = 1
11 + 1

11 ' 0.1818. In this case, a significance test indicates that the data are somewhat
consistent with this model.
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3. Let y|θ ∼ Pois (θ). Conduct the following Bayesian hypothesis tests:

(a) Assume a prior on θ of Gamma (1, 1). For H0 : θ ≤ 1 versus H1 : θ > 1 obtain the
formula for the posterior probability that H0 is true. Use software (e.g. R, WinBUGS)
to calculate the probability for y = 3, 5, and 7.

To begin, note that the stated prior induces a prior probability of 1 − e1 on H0, and equiv-
alently a prior probability of e−1 on H1. To perform the hypothesis test, we simply find the
posterior distribution for θ given the data y and calculate the posterior probability that θ ≤ 1.

We observe that the Pois (θ) distribution is conjugate with the Gamma (1, 1) distribution,
yielding a Gamma (y + 1, 2) posterior. Then in general, we can say that

Pr [H0 | y] =

∫ 1

0

2y+1

Γ(y + 1)
θye−2θdθ.

This integral is not, in general, analytically tractable. We use the pgamma function in R to
find the posterior probability for H0 for the three listed values of y, obtaining

y Pr [H0 | y]

3 0.1429
5 0.0166
7 0.0011

Comparing this to the prior probability for H0, Pr [H0] ' 0.6321, we can see that for any of
these data, we have shifted our beliefs considerably toward favoring H1.
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(b) For H0 : θ = 1 versus H1 : θ 6= 1 with q0 = 0.5 and p1(θ) = e−θ, obtain the analytical
formula for the posterior probability that H0 is true. Use software (e.g. WinBUGS, R)
to calculate the exact probabilities for y = 3, 5, and 7.

Following the textbook, we define a prior for θ as

p(θ) = q0I{1}(θ) + (1− q0)e−θI(0,∞)(θ).

Then the posterior probability for H0 is given by

Pr [θ = 1 | y] =
q0f0(y)

q0f0(y) + (1− q0)f1(y)
,

where

f0(y) =

∫
f(y | θ)dp0(θ)

= f(y | θ = 1)

=
e−1

y!

and

f1(y) =

∫
f(y | θ)dp1(θ)

=

∫
θye−θ

y!
e−θdθ

=
1

y!

∫
θye−2θdθ

=
1

Γ(y + 1)

Γ(y + 1)

2y+1

∫
2y+1

Γ(y + 1)
θye−2θdθ

=
1

2y+1

A little calculus shows us that

∞∑
y=0

e−1

y!
=

∞∑
y=0

1

2y+1
= 1,

so these are indeed probability density functions for discrete random variables. Then the
posterior probability that θ = 1 is relatively simple to calculate using the formula above, for
any given choice of y. In particular, when q0 = 0.5,

y Pr [H0 | y]

3 0.4952
5 0.1640
7 0.0183
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4. For h > 0, let x1, ..., xh be exchangeable random quantities and let

yh =
1

h

h∑
i=1

xi.

Assume that for each random quantity xi, all moments exist—that is,

E[xi] = µ1, E
[
x2i
]

= µ2, ....

Further assume that n ≤ h and let ji for i ∈ {1, ..., h} represent any of the h! re-orderings of
the indicies 1, ..., h. Then

E

[
n∏
i=1

xji

]
= mn.

Prove that for all n,
lim
h→∞

E[ynh ] = mn

By the multinomial theorem, we know that

ynh =

(
1

h

)n ∑
k1+...+kh=n

n!

k1!...kh!

h∏
i=1

xkii .

Then by linearity of expectation,

E[ynh ] = E

(1

h

)n ∑
k1+...+kh=n

n!

k1!...kh!

h∏
i=1

xkii


=

(
1

h

)n ∑
k1+...+kh=n

n!

k1!...kh!
E

[
h∏
i=1

xkii

]
.

Since n ≤ h, we can consider the elements of this sum according to how many of k1, ..., kh are
equal to zero. When h − n of the ki’s are equal to zero, since

∑h
i=1 ki = n, it is necessarily

true that the non-zero ki’s are all equal to 1. There are
(
h
n

)
= h!

n!(h−n)! ways that the ki’s can
be chosen so that n of them equal 1 and h− n of them equal 0. Further,

∑
k1+...+kh=n

ki∈{0,1}

n!

k1!...kh!
E

[
h∏
i=1

xkii

]
=

h!

n!(h− n)!

n!

k1!...kh!
mn

=
h!

(h− n)!
mn

In general, for any combination of ki’s, we recognize that s ≤ n of them will be positive and
n − s of them will be repeats among those s terms. A general expression for the number of
ways we can choose these coefficients is then given by

(
h
s

)
sn−s. This term comes about from
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drawing s distinct random quantities out of {x1, ..., xh} and then re-drawing with replacement
from these s quantities a total of n− s times. Then for general s, we will have

∑
k1+...+kh=n∑

i Iki>0=s

n!

k1!...kh!
E

[
h∏
i=1

xkii

]
=

h!

s!(h− s)!
sn−s

n!

k1!...kh!
νk1,...,kh ,

where νk1,...,kh is the expectation associated with products of the random quantities sharing
the same ki indices, potentially reordered.

We do not know the value of νk1,...,kh in general, but we can inductively use the Cauchy-
Schwarz inequality to prove that it is finite based on our assumptions. Consider the random
quantity tu11 t

u2
2 ...t

us
s with u ∈ N and let Ts−1 = tu11 t

u2
2 ...t

us−1

s−1 . Then by Cauchy-Schwarz,

s∏
i=1

tuii = Ts−1t
us
s

E

[
s∏
i=1

tuii

]
= E[Ts−1t

us
s ]

≤
√

E
[
T 2
s−1
]

E
[
t2uss

]
If we know that all the moments of t1, ..., ts exist, then clearly E

[
t2uss

]
exists and is one of

these moments. Then if we let s = 2, we know that E
[
T 2
s−1
]

= E
[
t2u11

]
and E

[
t2u22

]
both

exist. This means that

T2 =
2∏
i=1

tuii

E[T2] ≤
√

E
[
t2u11

]
E
[
t2u22

]
Then by induction, we can see that for any s and any collecton of ui’s,

E

[
s∏
i=1

tuii

]
≤

√√√√ s∏
i=1

E
[
t2uii

]
.

Applying this to our scenario, since the moments of the xi’s all exist, we know that νk1,...,kh
is finite for all choices of k1, ..., kh.

Now, consider

lim
h→∞

h!
s!(h−s)!s

n−s n!
k1!...kh!

hn
.

When s < n, this limit is 0 because the numerator is of order hs and the denominator is of
order hn. When s = n, however, both numerator and denominator are of the order hn and
we have, in particular,

lim
h→∞

h!/(h−n)!

hn
= 1.
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Then we have

lim
h→∞

E[ynh ]

= lim
h→∞

(
1

h

)n n∑
s=1

∑
k1+...+kh=n∑

i Iki>0=s

n!

k1!...kh!
E

[
h∏
i=1

xkii

]

=
n∑
s=1

lim
h→∞

(
1

h

)n ∑
k1+...+kh=n∑

i Iki>0=s

n!

k1!...kh!
νk1,...,kh

=
n−1∑
s=1

0 + lim
h→∞

h!(h− 1)!...(h− n+ 1)!

hn
mn

= mn

�
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