STATS 579 – INTERMEDIATE BAYESIAN MODELING

Assignment # 1

- 1. Let $y_i | \theta \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$ for $i \in \{1, ..., n\}$, and let $p(\theta) = I_{[0,1]}(\theta)$, i.e. θ is uniform on [0,1].
 - (a) Obtain the marginal density of $(y_1, ..., y_n)$.
 - (b) Calculate the predictive probability that $y_{n+1} = 1$ given that $y_1 = \dots = y_n = 1$. Simplify the formula you get using the fact that $\Gamma(a + 1) = a\Gamma(a)$ and thus establish that for n = 1000, $\Pr[y_{n+1} = 1] = \frac{1001}{1002}$.
- 2. Suppose in a random sample of 10 transportation workers, all were found to be on drugs. Find Box's marginal *p*-value and perform Bayesian significance tests to evaluate whether such data are consistent with the following models:
 - (a) $y_1, ..., y_{10} \mid \theta \stackrel{\text{iid}}{\sim} \text{Bern}(0.10)$ (b) $y_1, ..., y_{10} \mid \theta \stackrel{\text{iid}}{\sim} \text{Bern}(\theta); \qquad \theta \sim \text{Beta}(0.05, 0.45)$ (c) $y_1, ..., y_{10} \mid \theta \stackrel{\text{iid}}{\sim} \text{Bern}(\theta); \qquad \theta \sim \text{Beta}(1, 1)$
- 3. Let $y|\theta \sim \text{Pois}(\theta)$. Conduct the following Bayesian hypothesis tests:
 - (a) Assume a prior on θ of Gamma (1, 1). For $H_0: \theta \leq 1$ versus $H_1: \theta > 1$ obtain the formula for the posterior probability that H_0 is true. Use software (e.g. R, WinBUGS) to calculate the probability for y = 3, 5, and 7.
 - (b) For $H_0: \theta = 1$ versus $H_1: \theta \neq 1$ with $q_0 = 0.5$ and $p_1(\theta) = e^{-\theta}$, obtain the analytical formula for the posterior probability that H_0 is true. Use software (e.g. WinBUGS, R) to calculate the exact probabilities for y = 3, 5, and 7.
- 4. For h > 0, let $x_1, ..., x_h$ be exchangeable random quantities and let

$$y_h = \frac{1}{h} \sum_{i=1}^h x_i.$$

Assume that for each random quantity x_i , all moments exist—that is,

$$\mathbf{E}[x_i] = \mu_1, \quad \mathbf{E}\left[x_i^2\right] = \mu_2, \quad \dots$$

Further assume that $n \leq h$ and let j_i for $i \in \{1, ..., h\}$ represent any of the h! re-orderings of the indicies 1, ..., h. Then

$$\mathbf{E}\left[\prod_{i=1}^{n} x_{j_i}\right] = m_n.$$

Prove that for all n,

$$\lim_{h \to \infty} \mathbf{E}[y_h^n] = m_n$$