
Chapter 3

Marginalization for DIC – Part I

After beginning with a discussion of statistical model selection, this chapter will present

technical details regarding the deviance information criterion (DIC) and explore its behavior

in the mixed modeling setting. We discuss the mathematical and philosophical differences

between using marginalized vs. unmarginalized DIC computations, and we offer two schemes

for numerical approximation of the DIC in the linear mixed model (LMM) setting.

3.1 Background

In this section, we provide an introduction to the topic of statistical model selection and we

review a number of important developments therein. We focus primarily on the class of model

selection criteria known as information criteria, based on their connection to information

theory and their interpretation as the information lost through modeling—a notion that

arises from Kullback and Leibler (1951).
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3.1.1 Philosophy of Model Selection

George Box famously said, “All models are wrong, but some are useful” (Box and Draper

1987). While this is a valuable dictum, in the area of model selection we must recognize that

stochastic objects such as experimental data must, necessarily, arise from some stochastic

process. Even if that process is unknowable, the fundamental goal of model selection is to

identify—subject to certain constraints—which class of models best matches the unknown

data-generating process.

Conceptually, we can consider that somewhere in the space of all probability distributions

there exists a unique distribution by which our data were generated. If we consider a re-

stricted subspace of probability distributions such as a parametric family, model selection

seeks to find some distribution within this subset that comes as close as possible to repli-

cating the behavior of the data-generating distribution. Following the conventions of D. J.

Spiegelhalter et al. (2002), hereafter SBCV, we refer to the former generating distribution as

the true distribution and the latter approximating distribution as a pseudo-true distribution.

For a given true distribution there may be many different pseudo-true distributions, each

corresponding to a different subspace of probability distributions. A pseudo-true distribution

is often a parametric distribution, and in this case we refer to the parameter of a pseudo-

true distribution as a pseudo-true parameter. For example, a set of data might be modeled

by either a Weibull or a log-normal distribution. A pseudo-true Weibull distribution and

a pseudo-true log-normal distribution would both exist for that data, each with their own

pseudo-true parameters. These distributions would be the closest fit in each class to the true

data-generating distribution, but neither would necessarily be that true distribution.

The fundamental goal of statistical model selection is to identify a model with good predictive

accuracy for some set of response data y. Model selection tools often marry a measure of

goodness-of-fit to a measure of desirability. For example, Akaike’s information criterion
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(Akaike 1974) uses cross entropy as a measure of goodness-of-fit and adds a complexity

penalty equal to the number of parameters in the model. In this way, the criterion tends

to pick models with fewer parameters when they yield comparable cross entropies, but if

additional complexity can result in appreciably better goodness-of-fit, a larger model may

be preferred. Note, however, that when models are picked purely through comparison of

criteria such as this, one cannot guarantee that the resulting model fits the data well—only

that it fits the data better than the other models considered.

Before we turn to our own work with the deviance information criterion (DIC), we review the

basis for information criteria beginning with the Kullback-Leibler (KL) divergence and early

information criteria. We develop and explain the ideas behind the DIC, as well as discuss

two newer information criteria that have been created to address issues related to selection

in hierarchical models. We do this to provide a fuller understanding of the framework

surrounding DIC: both its historical place and how it relates to other criteria that are

frequently used in model selection.

3.1.2 Kullback-Leibler (KL) Divergence, 1951

Of particular interest here is what it means for two distributions to be similar to one another.

Traditionally, one would use a distance metric to express this. A common method has been

to use the Kullback-Leibler (KL) divergence (Kullback and Leibler 1951).

Formally, consider two probability measures µ0 and µ1, both absolutely continuous with

respect to a third measure λ. By the Radon-Nikodym theorem, for j ∈ {0, 1} there exist

measurable functions fj such that for a measurable set E under λ,

µj(E) =

∫
E
fj(y)dλ(y).
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Kullback and Leibler define log
f0(y)
f1(y)

to be the information in y for discriminating between

the hypothesis that y was selected from a population with probability measure µ0 and the

hypothesis that y was selected from a population with probability measure µ1. The µ0-

directed KL divergence is defined as the expected amount of information for discriminating

between these hypotheses contained in an observation from µ0, namely

KL(µ0:µ1) =

∫
log

(
f0(y)

f1(y)

)
f0(y)dλ(y).

The directed KL divergence is not a distance metric—it neither satisfies symmetry nor the

triangle inequality. Even so, it is a premetric, satisfying the properties

KL(µ0:µ1) ≥ 0 ∀µ0, µ1 and KL(µ0:µ1) = 0 ⇐⇒ µ0 = µ1.

We can rewrite the formula for the directed divergence as

KL(µ0:µ1) = Eµ0 [log f0(y)]− Eµ0 [log f1(y)] . (3.1)

The term −Eµ0 [log f0(y)] is known as the entropy of µ0. The term −Eµ0 [log f1(y)] is called the

cross entropy of µ0 and µ1. Thus, the KL divergence is often conceptualized as the difference

between the cross entropy of (µ0, µ1) and the entropy of µ0 alone. The cross entropy forms

the basis for many model selection procedures as we demonstrate below.

3.1.3 Akaike’s Information Criterion (AIC), 1974

Akaike (1974) proposed an information-criterion-based model selection procedure, the AIC,

that derives its validity from the interpretation of the negative cross entropy as a measure of

the proximity between an inexact model and a true generating distribution, as demonstrated
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with the KL divergence above. Akaike considers a scenario where µ0 is the true generating

distribution and µ1 is an inexact modeling distribution whose fit we want to assess. He

rewrites (3.1) as

KL(µ0:µ1) =

∫
log[f0(y)]f0(y)dλy −

∫
log[f1(y)]f0(y)dλ(y),

additively separating the component involving the modeling distribution from the component

that involves only the generating distribution. Akaike shows how the above form can be used

to compare different models, by recognizing that they share the unknown constant

c(µ0) =

∫
log[f0(y)]f0(y)dλy

that only involves the data-generating distribution.

What we are left with is an expectation over the data-generating distribution. Consider a

set of alternate modeling distributions, µ1, ..., µM . Then the directed KL divergence for µj

relative to the generating distribution is given by

KL(µ0:µj) = c(µ0)− Eµ0
[
log fj(y)

]
j ∈ {1, ...,M}.

Approximating this expectation with a sample mean of values that are generated by the

unknown distribution µ0 allows us to use the negative cross entropy as a measure of fit that

can be compared across a range of modeling distributions.

Now assume our modeling distributions µ1, ..., µM are parametric, with parameter vectors

θ1, ..., θM respectively. Assume further that the true distribution µ0 is parametric, with θ0.

Then let a sample of data yi
iid∼ f(yi | θ0), i ∈ {1, ..., n} and a consider µj with density fj(y | θj),

θj ∈ Θj. There exists a maximum likelihood estimate (MLE) for θj based on these data, θ̂j.

53



As Cavanaugh (1997) explains,

−2

n∑
i=1

log fj(yi | θ̂j)

is a biased estimator for twice the negative directed KL divergence between the true and

fitted models,

−2 Eθ0

[
KL

(θ0:θ̂j)

]
= −2c(µ0) + 2 Eθ0

[
n∑
i=1

log fj(yi | θ̂j)

]
.

Further, this bias is asymptotically equal to twice the dimension of θ̂j.

Then for this collection of models, Akaike writes

AICj = −2

n∑
i=1

log fj(yi | θ̂j) + 2kj , (3.2)

where kj is the dimension of θj—the number of parameters θj includes. He is able to ignore

c(µ0) because it constitutes a fixed adjustment to each model, and is thus not useful in making

comparing among those models.

Equation (3.2) marries a goodness-of-fit measure, the sample average cross entropy between

θ0 and θj, to a measure of model complexity, 2kj. This marriage is standard for information

criteria, and the complexity penalty guards against overfitting. Because the MLE θ̂j is

a function of the observed data, models with more parameters will tend to fit better than

submodels that include only a subset of those parameters. Together, these measures converge

to the cross entropy as long as θj is sufficiently close to θ0. Model selection is performed

by comparing AICj among a collection of models and choosing the model with the smallest

AICj.
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3.1.4 Bayes Factors (BF)

A common approach to model selection in the Bayesian setting is the Bayes factor (BF),

the ratio of marginal likelihoods for the data under two distinct models. It is most easily

understood in the context of hypothesis testing, where one of two models µ1 or µ2 is assumed

to be the true distribution for some observed data, y. Our explanation below is derived from

R. R. Christensen, Johnson, et al. (2010).

We define θ1, θ2 to be the parameters associated with µ1, µ2, and f1(y | θ1), f2(y | θ2) their

associated pdfs. In the Bayesian setting, we are also concerned with prior distributions on

these parameters, P1(θ1 | µ1), P2(θ2 | µ2); and prior probabilities for each model, q1, q2 where

q1 + q2 = 1. We will use µT to denote the true model, whichever one it is.

The Bayes factor is based on the marginal predictive density for y,

fj(y) =

∫
fj(y | θj)Pj(θj | µj)dθj j ∈ {1, 2},

and the associated marginal likelihood L(µi | y) ∝ fj(y). The posterior probability of µ1 = µT

is

Pr [µ1 = µT | y] =
q1f1(y)

q1f1(y) + q2f2(y)
.

Then the posterior odds for µ1 = µT are

Pr [µ1 = µT | y]

Pr [µ2 = µT | y]
=

q1f1(y)
q1f1(y)+q2f2(y)

q2f2(y)
q1f1(y)+q2f2(y)

=
q1f1(y)

q2f2(y)

≡ q1
q2
BF
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Thus the Bayes factor comparing µ1 to µ2 is defined as

BF1:2 =
f1(y)

f2(y)
. (3.3)

Since q1
q2

is the prior odds for µ1 = µT , we can understand the Bayes factor as the degree to

which our data change our prior beliefs about the odds. A Bayes factor above one means

that the data favor the conclusion that µ1 = µT , while a Bayes factor below one means that

the data favor µ2 = µT .

3.1.5 Bayesian Information Criterion (BIC), 1978

Schwarz (1978) provides the next major advance in the development of statistical information

criteria. He begins by giving a concise summary of the criterion proposed by Akaike—quoted

below1:

An extension of the maximum likelihood principle is suggested... for the slightly more

general problem of choosing among different models with different numbers of param-

eters. His suggestion amounts to maximizing the likelihood function separately for

each model j, obtaining, say, fj(y1, ..., yn | θ̂j), and then choosing the model for which

log fj(y1, ..., yn | θ̂j)− kj is largest, where kj is the dimension of the model.

In contrast to this, Schwarz proposes that a model should instead minimize

BICj = −2

n∑
i=1

log fj(yi | θ̂j) + kj log n, (3.4)

1It is our standard practice in this dissertation, when quoting from other sources, to match their state-
ments to our notation for the ease of the reader. We have endeavored to render the quoted material here
and elsewhere as accurately as possible.
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a value that what would later come to be called the Bayesian Information Criterion. Schwarz

reasons asymptotically from the Bayesian strategy of picking the a posteriori most probable

model from a class of models that are all given positive probability. This is very reminiscent

of Equation (3.2). The only difference is the change in penalty term from 2kj for AIC to

kj log n for BIC. The BIC penalty scales with the number of observed data values; and as

more data are observed, BIC more strongly prefers a parsimonious model.

Formally Schwarz considers exponential family data with density h(y) exp (θt(y)− b(θ)) where

θ ∈ Θ is multidimensional. Modeling distributions for these data, µ1, ..., µM depend on pa-

rameters θ1, ..., θM where θj lives in a kj-dimensional subspace of Θ. Again, let qj be the

prior probability that model µj is correct, and let Pj(θj | µj) be the prior distribution for θj

conditional on µj. Then the Bayesian choice should select j to maximize

S(j) = log
(
qjfj(y1, ..., yn)

)
= log

∫
qj

(
n∏
i=1

h(yi)

)
exp

(
θj

n∑
i=1

t(yi)− nb(θj)

)
dPj(θj | µj)

= log

(
qj

n∏
i=1

h(yi)

∫
exp

(
θj

n∑
i=1

t(yi)− nb(θj)

)
dPj(θj | µj)

)

= log

(∫
exp

(
θj

n∑
i=1

t(yi)− nb(θj)

)
dPj(θj | µj)

)
+ log qj +

n∑
i=1

log h(yi)

Schwarz shows that

S(j) =

(
θ̂j

n∑
i=1

t(yi)− nb(θ̂j)

)
− 1

2
kj log n+Rj ,

where Rj is a remainder term bounded in n. As n grows, the boundedness of Rj means it goes

away relative to S(j) as a whole. This gives an asymptotic justification for using kj log n as

a complexity penalty in Equation (3.4) rather than Akaike’s 2kj in Equation (3.2). Of note

is the fact that Schwarz’s BIC relies on an asymptotic justification to eliminate prior beliefs

about model preference—the prior model probability qj is absorbed into the remainder Rj

that is asymptotically eliminated.
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Although the argument in Schwarz (1978) assumes the data come from an exponential family

distribution, Cavanaugh and Neath (1999) show this result more generally. They let Y =

{y1, ..., yn} and let f(Y ) be the marginal density for the data over all models µ1, ..., µM ,

f(Y ) =

M∑
l=1

qlfl(y1, ..., yn | µl).

Then Cavanaugh and Neath show that

log Pr
[
µj = µT | Y

]
+ log f(Y ) '

n∑
i=1

log fj(yi | θ̂j)−
1

2
kj log n

= −1

2
BICj

Since log f(Y ) does not depend on j, choosing a model based on BIC(θj) is asymptotically the

same as choosing a model based on the posterior model probability.

From this, we can also see another interesting feature of the BIC: its asymptotic relation to

the Bayes factor and the posterior odds. Observe that

log Pr
[
µj = µT | Y

]
+ log f(Y ) = log

(
qjfj(Y | µj)

f(Y )

)
+ log f(Y )

= log qj + log fj(Y | µj)

Then using our definition of the BIC, (3.4), and the result from Cavanaugh and Neath (1999),

we have

logBFj:j′ = log fj(Y | µj)− log fj′(Y | µj′)

=
(
log fj(Y | µj) + log qj − log qj

)
−
(
log fj′(Y | µj′) + log qj′ − log qj′

)
' −1

2
(BICj −BICj′) + (log qj′ − log qj)

If we assume equal prior probabilities for µj and µj′ , then, logBFj:j′ ' −1
2 (BICj −BICj′).
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3.1.6 Log Pseudo-Marginal Likelihood (LPML), 1979

Geisser and Eddy (1979) argue that a fixed-penalty decision approach for choosing the wrong

model, as Schwarz uses in his justification of the BIC, “may be reasonable for a selection

procedure, but if the ultimate goal is prediction, then the penalty should depend both on

sample size and type of error made.” They build a predictive criterion, the log pseudo-

marginal likelihood (LPML), using conditional predictive densities where each datapoint is

fit knowing the rest of the data vector.

Let Y(i) = {y1, ..., yi−1, yi+1, ..., yn}. This is the collection of all the elements in Y except yi.

Then for a model µj, Geisser and Eddy define a conditional predictive ordinate

CPOij = fj(yi | Y(i), µj)

and a pseudomarginal likelihood

Lj =

n∏
i=1

CPOij

=

n∏
i=1

fj(yi | Y(i), µj)

A. Gelfand and Dey (1994) provide an easy method for calculating the inverses of the con-

ditional predictive ordinates from a posterior sample θ
(1)
j , ..., θ

(B)
j ,

CPO−1ij = Eθj |Y

[
1

f(yi | θj , µj)

]
.
=

1

B

B∑
s=1

1

f(yi | θ
(s)
j , µj)
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The log pseudo-marginal likelihood itself, as the name implies, is given by

LPMLj = logLj

=

n∑
i=1

logCPOij .

Although not created as an information criterion, the LPML shares many of the same model

selection uses as the common information criteria when comparing two models. It also has

a standard interpretation as a “pseudo Bayes factor” (R. R. Christensen, Johnson, et al.

2010), and thus shares a connection with BIC in that they both provide approximations to

the same quantity. Watanabe (2010a) also proves the asymptotic equivalence of LPML and

the widely applicable information criterion (WAIC) presented in Section 3.1.8.

3.1.7 Deviance Information Criterion (DIC), 2002

Whereas Akaike and Schwarz are concerned with the deviation between a known model

(expressed through θ̂) and the truth, the approach of SBCV considers an average deviation

from the truth for a possible model. As before, let Y = {y1, ..., yn} be a set of observed data,

and let µ1, ..., µM be a collection of models with associated parameters θ1, ..., θM and pdfs

f1(Y | θ1), ..., fM (Y | θM ). Instead of using the cross entropy as defined in Section 3.1.2, SBCV

consider the posterior expectation of the log density. They define

DICj = −2 Eθj |Y,µj
[
log fj(Y | θj)

]
+ pDj , (3.5)

where pDj is a penalization term that will be defined below.

SBCV frame their method around a quantity D(θj) defined as

D(θj) = −2
[
log fj(Y | θj)− log f(Y )

]
,
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where SBCV describe f(Y ) as “some fully specified standardizing term that is a function of

the data alone.” Observe that f(Y ) will play a similar role to c(µ0) in the AIC development

above—as a constant term not based on the model being evaluated. Although it appears in

the formal development of DIC, because it is an empirical function of the data alone, it will

be irrelevant in comparing DICs for different models.

Based on D(θj), SBCV then define the quantities

D(θj) = −2 Eθj |Y,µj
[
log fj

(
Y | θj

)]
+ 2 log f(Y )

D(θ̂j) = −2 log fj

(
Y | θ̂j

)
+ 2 log f(Y ).

where θ̂j is some posterior summary for θj—most commonly a posterior mean, median, or

mode. SBCV describe D(θj) as a “Bayesian measure of fit [or] perhaps better considered

a measure of ‘adequacy’.” It it the posterior expectation of their D(θj), and it quantifies

how well the model fits on average, across the posterior distribution for θj. Meanwhile, they

describe D(θ̂j) as a “classical ‘plug-in’ measure of fit,” akin to the quantities used in the AIC

and BIC.

This classical measure will tend fit be better2 than SBCV’s Bayesian measure—and in fact

this is guaranteed to be the case when fj(Y | θj) is log-concave in θj and we choose θ̂j to be

the posterior mean of θj as SBCV recommend. Then Jensen’s inequality guarantees

log fj

(
Y | Eθj |Y,µj

[
θj
])
≥ Eθj |Y,µj

[
log fj

(
Y | θj

)]
,

which is the same as saying that the log-likelihood evaluated at the estimate θ̂j is larger than

the posterior expectation of the log-likelihood function for θj.

2Because SBCV have structured their work around the idea of deviances, “better” can be difficult to
follow here. D(θ̂j) is better than D(θj) when D(θ̂j) < D(θj).
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The penalization term, pDj, is then defined as

pD = D(θj)−D(θ̂j)

= −2 Eθj |Y,µj
[
log fj

(
Y | θj

)]
+ 2 log fj

(
Y | θ̂j

)
= 2

[
log fj

(
Y | θ̂j

)
− Eθj |Y,µj

[
log fj

(
Y | θj

)]]
,

(3.6)

SBCV interpret this quantity as the degree of overfitting when a classical measure of fit,

D(θ̂j), is used in place of a Bayesian measure of fit, D(θj).

In models where the likelihood admits a normal approximation, SBCV argue that pD is ap-

proximately the number of free parameters in the model. We give a more general argument

below that also suggests an asymptotic equivalency between DICj and AICj under the con-

ditions that Lj(θj | Y ), the likelihood for θj, admit a normal approximation; and the prior

pj(θj | µj) is sufficiently diffuse.

To begin, let θ̂ML
j be the MLE for θj and let θ̂Bj be the posterior mode for θj. We repeat

Equations (3.2) and (3.5):

AICj = −2

n∑
i=1

log fj

(
yi | θ̂ML

j

)
+ 2kj

DICj = −2 Eθj |Y,µj
[
log fj(Y | θj)

]
+ pDj

Now observe that since

pDj = −2 Eθj |Y,µj
[
log fj

(
Y | θj

)]
+ 2 log fj

(
Y | θ̂Bj

)
,

we can also write

−2 Eθj |Y,µj
[
log fj

(
Y | θj

)]
= pDj − 2 log fj

(
Y | θ̂Bj

)
.
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Then

DICj = −2

n∑
i=1

log fj

(
yi | θ̂Bj

)
+ 2pDj .

To show AICj ' DICj , it is sufficient to show that θ̂ML
j

.
= θ̂Bj and kj

.
= pDj.

It is well known that when the likelihood admits a normal approximation and the prior is

sufficiently diffuse; θ̂ML
j , θ̂Bj , and Eθj |Y,µj

[
θj
]

are consistent estimators of the same quantity

(Gelman et al. 2013, p.92), so asymptotic equivalence is clear. Further, the large sample

approximation to the posterior is known to be

θj | Y, µj
·∼ N

(
θ̂Bj , 2D̈(θ̂Bj )−1

)
,

as discussed in Gelman et al. (2013, p.93).

What remains to be shown is that pDj is asymptotically equal to the number of parameters

in the model, kj. Using a second-order Taylor expansion, we observe that

D(θj) ' D(θ̂Bj ) +
1

2

(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)
,

where the first-order Taylor term is zero because our choice of θ̂Bj ensures that Ḋ(θ̂Bj ) = 0.

Then as David Hinkley would argue,

D(θj) = Eθj |Y,µj
[
D(θj)

]
' Eθj |Y,µj

[
D(θ̂Bj ) +

1

2

(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]
= D(θ̂Bj ) +

1

2
Eθj |Y,µj

[(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]

Then since D(θj) = D(θ̂Bj ) + pDj, this indicates that

pDj '
1

2
Eθj |Y,µj

[(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]
.
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We now show that

1

2
Eθj |Y,µj

[(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]
.
= kj .

Since Eθj |Y,µj

[(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]
is a scalar, we can also write

Eθj |Y,µj

[(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]
= tr

(
D̈(θ̂Bj ) Eθj |Y,µj

[(
θj − θ̂Bj

)(
θj − θ̂Bj

)T ])
.

But our large sample posterior approximation gives

Eθj |Y,µj

[(
θj − θ̂Bj

)(
θj − θ̂Bj

)T ] .
= Covθj |Y,µj

[
θj
]

.
= 2D̈(θ̂Bj )−1.

Then

pDj '
1

2
Eθj |Y,µj

[(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]
.
=

1

2
tr
(
D̈(θ̂Bj )

(
2D̈(θ̂Bj )−1

))
= tr

(
D̈(θ̂Bj )D̈(θ̂Bj )−1

)
= kj

The interpretation of pD as the number of free parameters in a model is widely considered

to hold more generally than we argue above, but not without debate. The choice of a

posterior summary θ̂j can affect pDj, even to the point of making it negative. There is also

no guarantee that pDj will be positive when the posterior mean is chosen in cases where the

density is not log-concave in θj, as is often the case with mixture models. Further, the DIC

is not well defined in hierarchical models. Celeux et al. (2006) present eight possible DIC

constructions for hierarchical models, differing in how the latent parameters are handled by
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D(θj) and D(θ̂j). We discuss these issues further in the following sections, and we present

three DIC constructions pertaining to mixed modeling in Sections 3.3.1 below.

It is important to note also that DICj as it has been defined is not analytically tractable,

although it is simple to numerically approximate it given an MCMC sample from the poste-

rior distribution, θj, {θ
(1)
j , ..., θ

(B)
j }. Below is the standard computational form of DICj when

θ̂j is taken to be the posterior mean.

DICj ' −
4

B

B∑
s=1

log fj

(
Y | θ(s)j

)
+ 2 log fj

(
Y | 1

B

B∑
s=1

θ
(s)
j

)

3.1.8 Other Information Criteria

The Bayesian Predictive Information Criterion (BPIC; Ando 2007) and the Widely Appli-

cable Information Criterion (WAIC; Watanabe 2010b) are two newer information criteria

created to deal with the problems inherent in selection involving hierarchical models.

The first of these, the BPIC proposed by Ando in 2007, takes the form

BPICj = −2 Eθj |Y,µj
[
log fj(Y | θj)

]
+ 2nb̂θj

=
(
D(θj)− 2 log f(Y )

)
+ 2nb̂θj

where µ is a parametric model for y with parameter vector θ. Computation of the penalization

term b̂θ is quite involved, but it is meant to approximate the bias created by using D(θj) rather

than Eµ0
[
D(θj)

]
as a measure of model fit, where µ0 is the true generating distribution for

the data y as before.

Formally,

bθj =

∫ (
1

n
Eθj |Y,µj

[
log fj(Y | θj)

]
− Ez

[
Eθj |Y,µj

[
log fj(z | θj)

]])
dµ0(y),
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where µ0 is the true data-generating distribution, and where z ∼ µ0. BPIC is, thus, using the

same measure of fit—or as SBCV say, “adequacy”—as DIC, but with a different choice of

penalization term to approximate the asymptotic bias in D(θj) when the data are generated

under an unknown distribution.

WAIC, proposed by Watanabe in 2010, is an attempt to build a Bayesian criterion that does

not rely on plug-in point estimates of parameters. It depends on what Gelman et al. (2013)

call the log pointwise predictive density (LPPD) for a model µj,

LPPDj =
n∑
i=1

log fj(yi | Y, µj)

=

n∑
i=1

log

∫
fj(yi | θj)Pj(θj | Y, µj)dθj

where Pj(θj | Y, µj) is the posterior density for θj. If a sample {θ(1)j , ..., θ
(B)
j } is available from

this posterior, then LPPDj can be numerically approximated with

LPPDj '
n∑
i=1

log

(
1

B

B∑
s=1

fj(yi | θ
(s)
j )

)
.

Then WAICj is defined as

WAICj = LPPDj + pWAICj
,

where pWAICj
is an overfitting penalty. Although Gelman et al. (2013, p.173) give two versions

of this penalty, we do not intend to do an exhaustive review of the criterion here and will
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only report the first.

pWAICj
= 2

n∑
i=1

(
log fj(yi | Y, µj)− Eθj |Y,µj

[
log fj(yi | θj)

])
= 2

n∑
i=1

(
log Eθj |Y,µj

[
fj(yi | θj)

]
− Eθj |Y,µj

[
log fj(yi | θj)

])

' 2

n∑
i=1

(
log

(
1

B

B∑
s=1

fj(yi | θ
(s)
j )

)
− 1

B

B∑
s=1

log fj(yi | θ
(s)
j )

)

WAIC has a number of nice properties. Principally, it does not rely on point estimation as

AIC, BIC, and DIC do. It has also been shown to be asymptotically equivalent to LPML

(Watanabe 2010a), as well as to Bayesian leave-one-out cross-validation (Gelman et al. 2013,

p.176).

3.2 Model Selection in Mixed Models

As we mentioned in Section 3.1.7, mixed modeling is an area where the DIC is not well

defined and many competing constructions have been offered (Celeux et al. 2006). In this

section we introduce the mixed modeling framework. We then discuss how the definition of

pD in particular is complicated by these models. We close the section with an example to

demonstrate the behavior of pD in a simple random effects model.

3.2.1 The Mixed Modeling Framework

Mixed models, models that incorporate both fixed and random effects, are commonly used

in statistical analysis. To understand their appeal, consider a simple linear regression of a

response y on a covariate x.
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Let y and x both be measured at multiple times on multiple individuals. Denote as yij the

response on individual i at time j, and define xij analogously. In a simple linear regression

we may write yij = β0 + xijβ1 + eij, where β0 is the intercept of a regression line, β1 is the

slope of that line, and eij is the amount by which yij differs from the value that would be

predicted for it based on the regression line. The standard assumption is that eij
iid∼ N(0, σ2)

for some constant variance σ2 across all observations.

A linear mixed model (LMM) with random intercepts for each individual would be written

as yij = β0 + xijβ1 + γi + e∗ij. Note that both of these models can apply to the same set of

response and covariate data. In the LMM, we assume that γi
iid∼ N(0, τ2) and e∗ij

iid∼ N(0, σ2r ),

with the γ’s and e∗’s independent of each other. The total variability in the response data

around the regression line is unchanged, but now we are splitting it into two terms: one

that represents variability shared by observations on the same individual (γi) and another

that represents leftover error that can’t be attributed to individuals (e∗ij). Since the total

variability is the same, it is easy to see that σ2r ≤ σ2 and τ2 ≤ σ2. Because much of statistical

inference depends on the amount of error in a dataset, using mixed models to account for

between-subject variability allows statisticians to obtain more precise results when such

variability exists. When such variability does not exist, τ2 = 0 and σ2r = σ2, and the modeling

cost incurred is simply that of estimating one extra parameter.

We proceed to give a mathematical definition for the mixed model that we use throughout

the next three chapters.

Let Y = {Yi} = {yij} be a kn × 1 vector of response data on individuals i ∈ {1, ..., k}, with

j ∈ {1, ..., n} observations per individual. We use a balanced design with common n for all

individuals to simplify some of the following linear algebra, but the results we obtain do not

require this balance.
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Let β be a p × 1 vector of regression parameters. Let X be the kn × p design matrix for the

regression parameters, Xi be the n× p block of the X matrix corresponding to cluster i, and

Xij be the 1× p row vector corresponding to the jth observation on cluster i.

Let γ =

[
γT1 ... γTk

]T
be a kq× 1 vector of random effects, with γi the q× 1 vector of random

effects corresponding to cluster i. Let Z be the kn× kq block diagonal design matrix for the

random effects. Let Zi be the n × q submatrix of Z corresponding to its ith diagonal block,

and Zij be the 1× q row vector corresponding to the jth row of the Zi matrix.

Let ψ =

[
ψT1 ... ψTk

]T
be the mean of the random effects vector γ, and let Σ be block

diagonal Σi, i ∈ {1, ..., k} be the covariance matrix of the random effects. We assume that

γ ∼ Nkq(ψ,Σ), or equivalently here that γi
indep∼ Nq(ψi,Σi). We use θ to refer to the collection of

parameters {β,ψ,Σ}.

Then the linear mixed model can be written as

yij = Xijβ + Zijγi + eij ,

γi
indep∼ Nq(ψi,Σi),

eij
iid∼ N

(
0, σ2

)
.

(3.7)

Or equivalently

Y = Xβ + Zγ + e,

γ ∼ Nkq(ψ,Σ),

e ∼ Nkn

(
0kn, σ

2Ikn

)
.

(3.8)

3.2.1.1 The role of y and x

Both y and x are observed values gathered by researchers. As Bayesians, we consider these

values to be fixed—statheric nodes, from the Greek word for ‘constant’, as contrasted with
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the stochastic (random) nodes θ and γ. In a mixed model, we always assume some sort of

structure in the observations that allows us to account for part of the observed response

variability by grouping “like” observations together. Usually this is indicative of some type

of observational unit or cluster: individuals who have been observed repeatedly, hospitals

where data were gathered on multiple patients, nations whose economic output is observed

over a number of years.

3.2.1.2 The role of θ

We use θ here, and throughout the next two chapters, to refer to the collection of all pa-

rameters in a model. In the simple linear regression example described above, θ = {β0, β1, σ2}

before random effects are added and θ = {β0, β1, τ2σ2r} when they are included. In the general

form, θ refers to the collection of parameters {β,ψ,Σ, σ2}.

3.2.1.3 The role of γ

The random terms, γ, allow us to efficiently account for unexplained subject-level variability

without having to add a fixed-effect parameter for each individual. When random effects, γ,

are included in a model, this is tantamount to making a statement that there are individual-

level differences in the response—baseline differences and/or differences in covariate effect

on the response—that are not captured by the fixed covariate effects model. Random effects

act as a catchall for structural elements that the statistician hasn’t built into a model. They

are expressed efficiently because the only parameter they add to the model is a variance term

for the individual-level differences.

The elements of γ are not themselves parameters, but are more accurately thought of as

latent random variables. They are unknown stochastic objects whose inclusion can help

us better understand our response data. The linear mixed model can be written in such
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a way that γ is never specified—see the section below on preprocessing marginalization.

Generalized linear mixed models (GLMMs), where the response data are assumed to arise

from some non-normal distribution, do not allow for this convenient marginalization; but

the role of γ as a latent random vector is the same.

3.2.2 Complications with pD in Mixed Models

In this section, we will explain why pD is not well defined for mixed models and how this

relates to SBCV’s notion of a model “focus”, the collection of stochastic objects one is

interested in. We then give an example showing how pD can differ considerably, even in a

simple model, depending on the focus one chooses.

In their initial paper on the Deviance Information Criterion (DIC), SBCV identify a key

concern in applying DIC to mixed- and hierarchical models:

Since the complexity [penalty pD] depends on the focus, a decision must be made

whether nuisance parameters, e.g. variances, are to be included in [the collection of

model parameters] Θ or integrated out before specifying the model P (x | θ, µ). However,

such a removal of nuisance parameters may create computational difficulties.

To prevent confusion with traditional statistical notion for parameters (that do not admit

the “nuisance parameters” mentioned by SBCV), we again distinguish between stochastic

and statheric objects in a Bayesian model. Data and statically defined parameters for priors

in the model are statheric: fixed by the analyst and not subject to MCMC sampling. All

other objects—parameters for the data distribution and latent variables—are stochastic. In

the parlance of SBCV, stochastic objects include both focal parameters (objects that interest

the researcher) and nuisance parameters (objects that do not).

71



The crux of this issue is embedded in the definition of θ in Equations (3.5) and (3.6). If θ

is the collection of parameters in a model, then the DIC should provide a reasonable model

selection criterion. However, if θ is defined more generally as the collection of all stochastic

objects in a Bayesian model, this becomes problematic. We demonstrate this with the

following example.

Consider a simple case discussed in Hodges and Sargent (2001), a traditional random effects

model, and see how this issue manifests. Let Y = {yij : i ∈ {1, ..., k}, j ∈ {1, ..., n}}, where yij

represents the j-th measurement of some variable on an individual i, and let N = k ∗ n. Here

and throughout this work, we use In to refer to an n-dimensional identity matrix, Jn to refer

to an n × 1 vector of 1’s, and Jnn to refer to an n × n matrix of 1’s. We write this random

effects model as

yij = γi + εij

γi ∼ N

(
ψ,

1

τg

)
εij ∼ N

(
0,

1

τe

)
,

(3.9)

or equivalently

Y ∼ NN

(
ψJN ,

(
1

τg
Ik ⊗ Jnn +

1

τe
IN

))
.

The parameters in this model are θ = {ψ, τg, τe}. As previously discussed, the k×1 vector of γ’s

can be thought of as latent variables—unknown random objects that model correlation and

extra heterogeneity in the data. By Equation (3.6), we can define a marginal pD construction

for this model:

pDm = −2
(

Eθ|y[log f(y | θ)]− log f
(
y | Eθ|y[θ]

))
= −2

(
Eθ|y

[
log

(∫
f(y | θ,γ)P (γ | θ)dγ

)]
− log

(∫
f
(
y | Eθ|y[θ] ,γ

)
p
(
γ | Eθ|y[θ]

)
dγ

))
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We use the subscript m to denote a marginalized pD and henceforward we use the subscript

j to denote what we will call a “joint” (or naive) pD construction—that is, a pD where the

focus includes γ among the stochastic nodes of interest. Unfortunately, the value of pD that

many software packages calculate assumes γ to be a stochastic vector of interest, leading to

the construction

pDj = −2
(

Eθ,γ|y[log f(y | θ,γ)]− log f
(
y | Eθ,γ|y[θ,γ]

))

As the above example makes clear, there is a fundamental difference between pDm and pDj.

Succinctly, the issues related to the application of pD and DIC in instances like this are

referred to as “the marginalization problem”—so named because the differences depend on

whether or not γ is marginalized out before calculating pD and DIC.

How big is this marginalization problem? Let us assume—uncharacteristically for this model,

but it helps us to see an analytic example of the effect—that τg and τe are known. We also

assume that ψ has an improper flat reference prior. With these assumptions, it is well known

that

E[ψ | Y] =
1

N
JTNY ≡ y··

Var[ψ | Y] =
1

Nτe
+

1

kτg
≡ b

Further, let us define

yi· =
1

n

n∑
j=1

yij

Y =

[
y1· ... yk·

]T
=

(
1

n
Ik ⊗ Jn

)T
Y
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Then we can write the distribution of the random effects, γ, when Y and θ are known.

γ | Y, ψ ∼ Nk

(
τg

τg + nτe
ψJk +

nτe
τg + nτe

Y ,
1

τg + nτe
Ik

)
.

We now give names to two quantities from the above distribution, to help us simplify our

work below:

w ≡ τg/(τg + nτe)

v ≡ 1/(τg + nτe)

This allows us to rewrite the above distribution of γ as

γ | Y, ψ ∼ Nk
(
wψJk + (1− w)Y , vIk

)
.

Then plugging into the formula for pDm, we have

Eθ|Y[log f(y | θ)]

= Eψ|Y

[
log

(
(2π)−N/2

∣∣∣∣ 1

τg
Ik ⊗ Jnn +

1

τe
IN

∣∣∣∣−1/2
)
− 1

2
(Y − ψJN )T

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
(Y − ψJN )

]

= log

(
(2π)−N/2

∣∣∣∣ 1

τg
Ik ⊗ Jnn +

1

τe
IN

∣∣∣∣−1/2
)
− Eψ|Y

[
1

2
(Y − ψJN )T

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
(Y − ψJN )

]

for the first term, and
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log f
(
y | Eθ|Y[θ]

)
= log

(
(2π)−N/2

∣∣∣∣ 1

τg
Ik ⊗ Jnn +

1

τe
IN

∣∣∣∣−1/2
)

− 1

2

(
Y − Eψ|Y[ψ] JN

)T [ 1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1 (
Y − Eψ|Y[ψ] JN

)
= log

(
(2π)−N/2

∣∣∣∣ 1

τg
Ik ⊗ Jnn +

1

τe
IN

∣∣∣∣−1/2
)
− 1

2
(Y − y··JN )T

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
(Y − y··JN )

for the second term. Since the constants of integration are the same and the logs of those

constants cancel, combining these two terms leads to the following equation for pDm.

pDm = Eψ|Y

[
(Y − ψJN )T

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
(Y − ψJN )

]

− (Y − y··JN )T
[

1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
(Y − y··JN )

=

(
YT

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
Y −YT

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
Y

)

−

(
Eψ|Y[ψ] JTN

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
Y − y··JTN

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
Y

)

−

(
YT

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
Eψ|Y[ψ] JN −YT

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
y··JN

)

+

(
Eψ|Y

[
ψJTN

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
ψJN

]
− y··JTN

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
y··JN

)

=
(

Eψ|Y
[
ψ2
]
− y2··

)
JTN

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
JN

= Var[ψ | Y] JTN

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
JN

= bτe

k∑
i=1

JTn

[
In −

τe
τg + nτe

Jnn

]
Jn

= Nτewb

= 1
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So pDm in this setting is identically equal to 1, which is what we would like. The only free

parameter in the model we have described is ψ—since τe and τg are both known; and although

the random vector γ is a stochastic node in an MCMC sampler, it is not a parameter vector.

We now turn our attention to the calculation of pDj, the pD construction with naive focus.

Again, we start by specifying the elements of the pDj formula for this problem, given above.

The first term is given by

Eθ,γ|Y[log f(y | θ,γ)]

= Eψ,γ|Y

[
log

(
(2π)−N/2

∣∣∣∣ 1

τe
IN

∣∣∣∣−1/2
)
− 1

2
(Y − γ ⊗ Jn)T

[
1

τe
IN

]−1
(Y − γ ⊗ Jn)

]

= log

(
(2π)−N/2

∣∣∣∣ 1

τe
IN

∣∣∣∣−1/2
)
− Eψ,γ|Y

[
1

2
(Y − γ ⊗ Jn)T

[
1

τe
IN

]−1
(Y − γ ⊗ Jn)

]
.

The second term is more complicated, necessitating our use of the Law of Total Expectation.

log f
(
y | Eθ,γ|Y[θ,γ]

)
= log f

(
y | Eψ|Y[ψ] ,Eψ|Y

[
Eγ|Y,ψ[γ]

])
= log

(
(2π)−N/2

∣∣∣∣ 1

τe
IN

∣∣∣∣−1/2
)

− 1

2

(
Y − Eψ|Y

[
Eγ|Y,ψ[γ]

]
⊗ Jn

)T [ 1

τe
IN

]−1 (
Y − Eψ|Y

[
Eγ|Y,ψ[γ]

]
⊗ Jn

)
= log

(
(2π)−N/2

∣∣∣∣ 1

τe
IN

∣∣∣∣−1/2
)

− 1

2

(
Y −

(
wy··JN + (1− w)Y ⊗ Jn

))T [ 1

τe
IN

]−1 (
Y −

(
wy··JN + (1− w)Y ⊗ Jn

))
.
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Once again, we recognize that these terms have equal constants of integration, and that the

logs of those constants cancel. Combining terms, we obtain the following equation for pDj.

pDj = Eψ,γ|Y

[
(Y − γ ⊗ Jn)T

[
1

τe
IN

]−1
(Y − γ ⊗ Jn)

]

−
(
Y −

(
wy··JN + (1− w)Y ⊗ Jn

))T [ 1

τe
IN

]−1 (
Y −

(
wy··JN + (1− w)Y ⊗ Jn

))
=

(
YT

[
1

τe
IN

]−1
Y −YT

[
1

τe
IN

]−1
Y

)

−

((
Eψ,γ|Y[γ]⊗ Jn

)T [ 1

τe
IN

]−1
Y −

(
wy··JN + (1− w)Y ⊗ Jn

)T [ 1

τe
IN

]−1
Y

)

−

(
YT

[
1

τe
IN

]−1 (
Eψ,γ|Y[γ]⊗ Jn

)
−YT

[
1

τe
IN

]−1 (
wy··JN + (1− w)Y ⊗ Jn

))

+ Eψ,γ|Y

[
(γ ⊗ Jn)T

[
1

τe
IN

]−1
(γ ⊗ Jn)

]

−
(
wy··JN + (1− w)Y ⊗ Jn

)T [ 1

τe
IN

]−1 (
wy··JN + (1− w)Y ⊗ Jn

)

Note that each of the first three lines of the foregoing equality are equal to 0. Then

pDj = τe

(
Eψ,γ|Y

[
(γ ⊗ Jn)Tγ ⊗ Jn

]
−
(
wy··JN + (1− w)Y ⊗ Jn

)T (
wy··JN + (1− w)Y ⊗ Jn

))
= nτe

(
Eψ,γ|Y

[
γTγ

]
−
(
wy··Jk + (1− w)Y

)T (
wy··Jk + (1− w)Y

))
= nτe

(
Eψ|Y

[
k∑
i=1

Eγi|Y,ψ
[
γ2i

]]
−

k∑
i=1

(wy·· + (1− w)yi·)
2

)

= nτe

k∑
i=1

(
Eψ|Y

[
Varγi|Y,ψ[γi] + Eγi|Y,ψ[γi]

2
]
− (wy·· + (1− w)yi·)

2
)

Recalling that γ | Y, ψ ∼ Nk
(
wψJk + (1− w)Y , vIk

)
, we can now finish simplifying the equation

for pDj in this setting.
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pDj = nτe

k∑
i=1

(
Eψ|Y

[
v + (wψ + (1− w)yi·)

2
]
− (wy·· + (1− w)yi·)

2
)

= Nτev + nτe

k∑
i=1

(
Eψ|Y

[
w2ψ2 + 2w(1− w)yi·ψ + (1− w)2y2i·

]
− (wy·· + (1− w)yi·)

2
)

= Nτev + nτe

k∑
i=1

(
w2
(

Eψ|Y
[
ψ2
]
− y2··

)
+ 2w(1− w)

(
yi· Eψ|Y[ψ]− yi·2

)
+ (1− w)2

(
yi·

2 − yi·2
))

= Nτev + nτe

k∑
i=1

(
w2 Varψ|Y[ψ]

)
= Nτe(v + w2b)

= 1 + (k − 1)
nτe

τg + nτe

As we saw, pDm is identically equal to 1 in this setting. Similarly, when τg is much larger

than nτe, pDj also approaches 1. When τg is much smaller than nτe, however, pDj approaches

k. This is reasonable given the choice of focus and the situation described. The quantity

pDm identifies a single free parameter, ψ. When τg � nτe, there is very little variability in the

random effects terms relative to the variability within individuals, and the data behave like

they come from a common population and pDj is near 1. When τg � nτe on the other hand,

the data behave like k separate populations, each having their own effect.

This, then, is the marginalization problem. Although the marginal construction gives pD = 1,

as we would expect, the naive construction gives 1 ≤ pD ≤ k. In the next section, we discuss

why we believe this inconsistency necessitates use of the marginal construction.

3.3 The Need for Marginalization

We will now endeavor to describe three distinct constructions for pD and DIC in the mixed

model setting. These are the joint and marginal constructions, as discussed above, and the
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BUGS numerical approximations. After discussing these three constructions, we proceed

to give our argument as to why we believe the marginal construction should be preferred.

Finally, we discuss some counterarguments against a preference for marginalization in model

selection.

3.3.1 Three DIC Constructions for Mixed Models

In the following three chapters, we make extended reference to three different numerical

approximations to DIC: the joint DIC, the BUGS DIC, and the marginal DIC. As explained

above, in mixed models the value of the DIC depends on the choice of focal objects. We

now explain the difference between these three approximations, and why we consider the

marginal DIC to be philosophically preferable for doing model selection in the mixed model

setting.

3.3.1.1 The joint DIC

The first construction for DIC is what one might consider the naive construction. This

construction assumes that all stochastic objects are of focal interest. It centers on what we

call a joint likelihood for both θ and γ,

L(θ, γ | y) ∝ f(y | γ, θ).
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Under the joint construction, we have the following definitions:

pDj = Eθ,γ|y[−2 logL(θ, γ | y)] + 2 logL(θ̂, γ̂ | y)

= D(θ, γ)−D(θ̂, γ̂),

DICj = 2 Eθ,γ|y[−2 logL(θ, γ | y)] + 2 logL(θ̂, γ̂ | y)

= 2D(θ, γ)−D(θ̂, γ̂).

In other words, the joint DIC treats γ as if it were a model parameter alongside θ, and uses

the posterior mean of both θ and γ to obtain the fitted deviance. Here, θ̂ = Eθ,γ|y[θ] and

γ̂ = Eθ,γ|y[γ].

The joint construction above is similar to the construction for DIC7 in Celeux et al. (2006),

with two notable differences. First, they choose θ̂ and γ̂ to be the joint maximum a posteriori

(MAP) estimates conditional on y. We choose θ̂ and γ̂ to be the posterior means. Their choice

to use joint MAP estimates is based on the poor behavior of estimators of γ in latent random

variable problems and their concern with how the DIC behaves in mixture models, where

the posterior mean may live in an area of relatively low posterior density. Our use of the

posterior mean stems from SBCV’s recommendation to use posterior means and our belief

that this construction is more likely to be used than DIC7 by others who might encounter a

mixed modeling scenario.

Second, while we call this a joint construction, Celeux et al. (2006) call it a conditional

construction. This is a fundamental difference in how we regard these constructions. We call

this a joint construction because θ and γ appear jointly in a likelihood statement, and are

considered jointly by the DIC formulae. They call this a conditional construction because

the density (as opposed to likelihood) of interest is f(y | γ, θ), where y is conditioned on γ.
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3.3.1.2 The BUGS DIC

Our information on how OpenBUGS constructs the DIC is drawn from The BUGS Book

(Lunn et al. 2013) and the OpenBUGS User Manual (D. Spiegelhalter et al. 2014). The

manual describes how OpenBUGS obtains D(θ) and D(θ̂) as follows:

D(θ): this is the posterior mean of the deviance, which is exactly the same as if the

node ‘deviance’ had been monitored. This deviance is defined as −2 logP (y|θ), where y

comprises all stochastic nodes given values (i.e. data), and θ comprises the stochastic

parents of y – ‘stochastic parents’ are the stochastic nodes upon which the distribution

of y depends, when collapsing over all logical relationships.

D(θ̂): this is a point estimate of the deviance (−2 logP (y|θ)) obtained by substituting

in the posterior means 1
B

∑B
s=1 θ

(s) of θ: thus D(θ̂) = −2 log p
(
y | 1

B

∑B
s=1 θ

(s)
)

As this construction pertains to hierarchical models, The BUGS Book describes numerical

approximations to DIC in the BUGS family of programs as follows:

WinBUGS (and OpenBUGS) separately reports the contribution to D(θ), pD, and DIC

for each differently named (scalar, vector, or array) node, together with a total. This

enables the individual contributions from different portions of data to be assessed. In

some circumstances some of these contributions may need to be ignored and removed

from the total.

This is not, unfortunately, enough information to classify OpenBUGS’s construction of the

DIC for hierarchical models into the framework provided by Celeux et al. (2006). We do not

have sufficient information on which nodes constitute stochastic parents of our data in the

mixed model. We can state, however, that for all the models considered in this dissertation,

OpenBUGS reports DIC contributions from only our data y and cannot be partialed out
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as described above. We believe, based on the information presented in the manual and

The BUGS Book, that OpenBUGS’s construction of the DIC should match our DICj, but

simulation results presented in Chapters 4 and 5 confirm that there are differences in the

numerical approximation algorithms.

We nonetheless present results for DICb and related quantities because we consider it im-

portant to compare the numerical approximations under methods we develop to what is

given by commercially available software, since numerical approximations to DIC given by

commercially available software are what practitioners are most likely to use.

3.3.1.3 The marginal DIC

Our final construction focuses only on the stochastic node θ, treating γ as a latent random

vector to be marginalized out. The marginal DIC can be expressed using three different

likelihood functions, which we briefly clarify before giving the formulae for this construction.

L(θ | y, γ) ∝ f(y, γ | θ)

L(θ, γ | y) ∝ f(y | γ, θ)

L(θ | y) ∝ f(y | θ)

=

∫
f(y, γ | θ)dγ

=

∫
f(y | γ, θ)P (γ | θ)dγ

= Eγ|θ[L(θ, γ | y)]
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Then we define the marginal construction with a few equivalent expressions:

pDm = Eθ|y[−2 logL(θ | y)] + 2 logL(θ̂ | y)

= Eθ|y

[
−2 log

∫
L(θ | y, γ)dγ

]
+ 2 log

∫
L(θ̂ | y, γ)dγ

= Eθ|y
[
−2 log Eγ|θ[L(θ, γ | y)]

]
+ 2 log Eγ|θ

[
L(θ̂, γ | y)

]
= D(θ)−D(θ̂)

DICm = 2 Eθ|y[−2 logL(θ | y)] + 2 logL(θ̂ | y)

= 2D(θ)−D(θ̂).

where

θ̂ = Eθ|y[θ]

=

∫
θP (θ | y)dθ

=

∫
θ

∫
P (θ, γ | y)dγdθ

=

∫ ∫
θP (θ, γ | y)dγdθ

= Eθ,γ|y[θ]

Note that, as shown above, the quantities in the marginal construction can be written both

as integrals of likelihoods and as expectations over the distribution P (γ | θ). These are subtly

different interpretations, and both will prove useful to us in our discussion of methods for

approximating DICm in Section 4.2.2.

This construction is given by Celeux et al. (2006) as DIC1, who refer to it as an “observed

DIC” to match their terminology for L(θ | y), which they call an observed likelihood.
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To simplify notation where necessary, we use the j subscript (e.g. pDj, DICj, Dj, D(θ̂)j) to

refer to the DIC calculations focusing on the joint distribution of θ and γ. Similarly, we use

the b subscript for the BUGS calculations and the m subscript for the marginal calculations.

3.3.2 Why Do We Prefer the Marginal DIC?

Having established that pD can depend the set of focal stochastic objects with our example

in Section 3.2.2, we now consider whether this dependence is worth our concern. We believe

so, and in the subsections below we make our case for using the marginal DIC. We give three

reasons based on: (1) the conceptual difference between adopting the marginal or the joint

foci, (2) the rise of automated model selection procedures, (3) and the interpretation of pD

in hierarchical models.

3.3.2.1 Conceptual differences between marginalized and joint foci

We begin with a discussion of what it means for the DIC to focus on θ and γ, rather than

θ alone. An individual-level random effect can, in general, be thought of as a catch-all

correction factor encapsulating all of the remaining differences among individuals that are

germane, after conditioning on every covariate already measured and included in the model.

For example, if we consider the human fertility study referenced in the preceding chapter, a

model might suggest that the probability of ovulation during a particular cycle is a function

of certain covariates: e.g. ethnicity, age, weight, average daily caffeine intake, etc. But infor-

mation on these covariates alone may not be sufficient to describe the differences observed

among individuals. There may also be additional random slopes—individual differences in

the relationships between time-varying covariates and the response of interest.

84



Random effects are usually specified by a particular parametric distribution, and the random

effect for each individual is assumed to be independently drawn from this distribution. Re-

searchers may be interested in the parameters of this random effects distribution—measures

that reflect how much inter-individual variability remains in the response data that hasn’t

been captured by the covariates3. These so-called variance components are included in θ.

The (random) γ’s are the latent random effects, which under such a distribution reflect how

far an individual’s response differs from the overall population mean, adjusted for observed

covariates.

The choice of whether one is interested in making inferences for particular γ’s is essentially

a choice about whether one is concerned with the population of individuals who haven’t

been sampled, or concerned only with the individuals in the sample. Both choices can

be reasonable—but when one is concerned only with understanding the individuals in the

sample, this is more accurately reflected by considering a fixed effect for those individuals.

The choice to consider random, rather than fixed, effects is essentially a choice to prioritize

generalizability. Otherwise why would one be concerned with the distributional properties

of the random effects?

We consider that the marginalized approach to be philosophically preferable. The real dis-

tinction between fixed and random effects is whether one wants to make specific inferences

about the observed clusters in particular, or whether one wants to extrapolate to the general

population from which those clusters were sampled. If one wants to make inferences about

the observed clusters, then one should fit a fixed effects model. The usual DIC, in that

case, requires no marginalization. If one doesn’t care about observed clusters, then the only

parameter of interest should be the covariance matrix for the random effects, Σ. This leads

3Note that the example in Section 3.2.2 was developed under the assumption that these values were
known. This was done in order to provide insight about the behavior of pD as a function of the precisions
for the random effects and error distributions. SBCV consider a similar example with ψ constant and τe
unknown, obtaining analogous results.
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to the need to marginalize over the γ and simply focus on the parameters of interest, which

includes Σ as well as any other model parameters.

Suggestions have been made to us that a scientist might be concerned with both general-

izability to a wider population, and with details of individual-level effects for the sampled

clusters. Some may have such interests—but considering the role of DIC as a model selection

criterion, for it to be meaningful, a prioritization must be made. We have observed that pD

can depend on the choice of focal stochastic objects, and that the θ and (θ, γ) foci can yield

different results. A fixed-effects structure replacing random effects gives results that differ

from either of these, since the parameters of the random effects distribution are not of focal

interest when those effects are considered as fixed. What we are left with, then, is the choice

between three possible DIC calculations. A scientist whose interests are only out-of-sample

generalizability should use DICm. A scientist whose interests are only on the k sampled

clusters should use the fixed effects model and its associated DIC. We believe that the third

option, the DICj construct, is never preferable to these. It depends on the ratio of random

effects and error variances, and its meaning in the mixed model setting remains unclear.

Certainly, it does not appear possible to argue that DICj represents a principled reweighting

of DICm and the fixed effects DIC that will always reflect the inferential priorities of the

user.

3.3.2.2 Automated model selection requires carefully chosen tools

The issue of focal choice is further complicated by the increasing reliance on automated model

selection procedures. As a thought example, consider how Google places advertisements on

websites. The following information is condensed and summarized from Google’s AdSense

Help Center (Help 2017).
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When a website using Google AdSense has adspace for sale, computers at Google classify the

website according to “factors [such] as keyword analysis, word frequency, font size, and the

overall link structure of the web.” Then the Google systems search a database of advertisers

and select those whose ads are deemed relevant to the content or users of the website. Google

creates an automated auction where advertisers can bid on the available adspace in units of

cost-per-click (CPC), which is how much the advertiser is willing to pay the website owner for

each click their advertisement receives. Google combines CPC bids with a quality score—a

measure of how likely an ad is to be clicked based on its past performance and how well its

content matches the website—to decide which advertiser wins an auction. Further, Google

estimates how likely it is that an ad click will lead to a business transaction for its advertisers,

and dynamically reduces some advertiser bids. The rationale behind this practice is that

it protects advertisers from overspending on advertisements that are unlikely to result in

business transactions, and allows advertisers to bid more freely in the auctions.

A statistician will recognize many areas in this process where covariate modeling and model

selection procedures are relevant. Which website factors will best predict click-through rate

(CTR) for a particular ad or class of ads? How much should an advertiser bid in a certain

situation if that advertiser wants its ads to be seen? Which ad and advertiser characteristics

best predict that ad clicks will result in business transactions? Because of the speed and

frequency necessary for these decision-making problems, however, direct supervision is dif-

ficult if not impossible. New advertisements, and new websites, enter the marketplace too

quickly for individual analysts to study or classify them. Simplicity of classification will tend

to result in less content-specific ad placement, reducing revenue for the website owner, the

advertisers, and Google itself. Incentives are high, in this situation, to create model selection

algorithms that do not need supervision. This is an example of the discipline of machine

learning.
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Modern statisticians must anticipate encountering situations where it is necessary to choose

a principled model selection procedure that behaves in a desired fashion even without close

monitoring. With the rise of “big data,” it is now more important than ever that statisticians

and scientists have a clear understanding of their model selection tools—especially how those

tools may give different results than other model selection tools, and which tool selects

models that are preferred for a given application. Even in relatively simple settings, the

various model selection criteria discussed above can lead to considerably different model

choices. R. R. Christensen (2017) has shown that when comparing two nested linear models,

selection by Adjusted R2 is equivalent to selecting the larger model when the F statistic

is greater than 1, selection by Cp corresponds to F > 2, selection by AIC is asymptotically

equivalent to F > 2, and selection by BIC corresponds asymptotically to F > log n. For more

complicated settings like LMMs and GLMMs, good understanding of available criteria is even

more important. We consider this another reason why the marginal DIC calculations should

be preferred to other DIC calculation methods. Marginal DIC calculations are more easily

understood, because the theory surrounding them is relatively straightforward compared to

the broader theory surrounding DIC calculations for hierarchical models (c.f. Celeux et al.

2006). The asymptotic equivalence we showed between DIC and AIC in Section 3.1.7 fails

when random effects are included in the model.

3.3.2.3 Interpreting pD in hierarchical models

The problem of using DICj for model selection in hierarchical models has received consider-

able attention, especially as it relates to pD, and has already been discussed by us in Section

3.2.2. Brooks (2002) explains that “[s]adly, in many cases the calculation of pD will be im-

possible for the focus of primary interest since the deviance will not be available in closed

[form],” including in random effects and state-space models. To elucidate the behavior of

pD, Sahu (2002) provides a simpler version of our own example in Section 3.2.2 to discuss
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the fact that pD → ∞ as k → ∞ under the DICj construct. Although not related directly to

the DIC, Su and Johnson (2006) provide contributions explaining the asymptotic behavior

of random effects models with respect to the roles of large n and large k.

Celeux et al. (2006) provide a comprehensive review of a number of DIC constructions and

associated issues. As we mentioned above, our DICm corresponds directly with their DIC1,

and our DICj roughly with their DIC7. Celeux et al. are concerned with cases such as

mixture models where E[θ | y, γ] may result in poor performance of DIC leading to a negative

pD. They show that in certain problems, using the maximum a posteriori (MAP) estimates

for θ and γ can result in better behavior than the posterior mean. Celeux et al. also concur

with our assessment that constructions of the DICj form, those that treat the latent random

variable γ like a parameter vector, are unsatisfactory. They state that “this approach has

obvious asymptotic and coherency difficulties, as discussed in previous literature” and “in

the random effect model... computing the pD’s and therefore the DIC’s does not really make

sense.”

In this section, we have argued that when random effects are needed, DICm is the sensible

construct to consider because it correctly treats the random effects as “nuisance”. We have

argued that understanding the behavior of model selection criteria is especially important in

situations where model selection must be automated, and that we should avoid criteria whose

behavior is difficult to understand. And we have discussed the concerns other researchers

have expressed with the behavior of pD in hierarchical models. Neither DICj nor—based on

their reported numerical results—any of the other constructions considered by Celeux et al.

(2006) provide estimates of the number of parameters in an hierarchical model that match

the number we would expect from a marginalized model.
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3.3.3 Arguments Against Marginalization

We have made our case for why we believe the marginal definition for DIC is to be preferred.

We recognize, however, that our position is not universally held. Below, we discuss two

critiques of the marginal preference that we have encountered.

3.3.3.1 Criterion instability with variance components

We have been made aware of inconsistencies in criterion behavior when selecting among

models with different variance component structures. Specifically, Dr. Daniel Gillen of

the University of California, Irvine, has mentioned that information criteria can exhibit a

“skipping” behavior when variance components are added to or removed from a model. We

believe this may be analogous to an effect we have previously observed in our own work with

Dr. Gillen, which involved in part the simulation of a linear mixed effects models with a

LASSO penalty. The simulation behavior of LASSO models is often evaluated in terms of

out-of-sample prediction error as the LASSO penalty, λ, varies. In our work with Dr. Gillen,

we observed that in mixed effects models, the prediction error for five-fold cross-validation

as a function of λ was not a continuous function for linear mixed models; it generally does

appear as a continuous function for fixed effect models. Figure 3.1, taken from this earlier

simulation work, displays the skipping behavior we describe to help the reader envision the

phenomenon.

This skipping behavior occurs when the LASSO adds or removes a covariate. When a

covariate is added or removed, assuming this covariate relates to the response variable, the

random effect appears to lose or gain (respectively) variability to account for the change in

the fixed effects model. This assumes, of course, that the random effects are also related to

the covariates.
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Figure 3.1: “Skipping” behavior in a simulation study of LASSO use for linear mixed models.
As the LASSO penalty (λ) increases, five-fold cross-validation prediction error makes distinct
jumps at certain lambda values.
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Dr. Gillen reports that similar phenomena can be observed when information criteria are

used for model selection purposes and variance components are allowed to be added and

removed as in the marginal selection setting we describe. Our examples in this dissertation

all presuppose a cluster-level random effect and do not appear to be subject to these issues;

but studies that involve multi-level clustering (c.f. the cow abortion data of Thurmond et al.

(2005) that we will describe in Section 6.2.3) may require us to choose which clusters are

and are not modeled with random effects distributions. Above, we advocated for the use of

selection criteria whose behavior is well-understood and consistent, especially in automated

selection settings. We continue to advocate this policy here as well, and believe that further

investigation of the behavior of marginal selection criteria like DICm is warranted when

selecting among variance components.

3.3.3.2 Inferential priorities

Some statisticians suggest that model selection for mixed models should take account of both

the random effects for the observed clusters and the variance components for those random

effects. They suggest this because scientific interest can reside in both areas simultaneously:

how the model functions for new observations in the sampled clusters, as well as how it

functions for new observations on new clusters. In the Bayesian setting, fixed effects and

random effects have very similar specifications within a probability model; the primary

difference between them is how they are handled in inference, once a posterior sample has

been obtained. We agree that both the conditional effects on a response when cluster is

known, and the marginal effects on a response are legitimate areas of scientific interest, but

as discussed above we find it difficult to carefully define how model selection should proceed

when both conditional and marginal inferences are desired.

Nonetheless, the argument has been made to us that, following from the example in Section

3.2.2 one should reasonably want to penalize a model as if it has k fixed effects if data are
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sufficiently different from cluster to cluster; or that one should penalize a model as if it had

only a grand mean if data are sufficiently homogenous across clusters. “The behavior of pDj

is not a bug, it’s a feature,” one might say. This is a view we have encountered with some

frequency, though we remain troubled by the fact that this argument presumes that the

appropriate penalization of a model is in some sense dependent on the number of clusters

one happens to select, even when inference for those clusters is not itself desired.

Other statisticians suggest that DIC may not be the preferred tool for situations such as the

ones we describe. Gelman et al. (2013) place DIC in a hierarchy with AIC and BIC where

they suggest that DIC should be preferred when inference is desired for individuals within the

sampled clusters, AIC should be preferred when inference is desired for unsampled clusters

of a similar character, and BIC should be preferred when inference is desired marginally on

the population. This suggests that they consider DIC less useful for model selection relative

to marginal population-level models, though we believe the marginalization techniques we

develop in this dissertation broaden the scope of situations in which DIC may be usefully

applied.

3.4 Marginalization in the Linear Mixed Model

Our arguments in the preceding section lead to the question of why marginalization is not

performed more often when selecting a model. One answer is that marginalization is dif-

ficult, especially in the GLMM setting where closed-form marginal equations do not exist.

Marginalization is both possible and practical in the LMM setting, however, and so we begin

by explaining two marginalization approaches for the DIC. The methods explained here, par-

ticularly our approach to postprocessing marginalization, point the way toward the methods

we develop in the next two chapters for marginalization of GLMMs.
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3.4.1 Methods for Marginalization

In the linear mixed model, when a normal distribution is used for the random effects, there

are two methods for getting the marginal likelihood L(θ | y) and thus the marginal DIC

calculations. The first, which we call the preprocessing approach, involves expressing the

model directly in its marginalized form. MCMC sampling directly using the marginal model

will, obviously, yield the desired marginal DIC calculations. The second approach, which we

refer to as postprocessing marginalization, uses the complete-the-square formula (Proposition

3.1, below) after re-expressing f(y, γ | θ) as f(γ | y, θ)f(y | θ) when both γ | θ and y | γ, θ have

multivariate normal distributions.

3.4.1.1 Preprocessing marginalization

In this section we discuss MCMC sampling that is based on using the marginal likelihood

for θ, L(θ | y) ∝
∫
f(y | γ, θ)P (γ | θ)dγ. When the marginal likelihood is available in closed form,

as is the case for the LMM discussed above, it is relatively straightforward to implement

MCMC sampling to obtain iterates {θ(1), ..., θ(B)} from the posterior, P (θ | y), with the help of

packaged software like OpenBUGS, JAGS, STAN etc. This will involve monitoring D(θ) =

−2 log(L(θ | y)) in one of these packages, to obtain D(θ). Then, we use θ̂ = 1
B

∑B
s=1 θ

(s) to

numerically approximate pDm and DICm with

pDm ' −
2

B

B∑
s=1

log f
(
Y | θ(s)

)
+ 2 log f

(
Y | θ̂

)

DICm ' −
4

B

B∑
s=1

log f
(
Y | θ(s)

)
+ 2 log f

(
Y | θ̂

)

We now proceed to analytically obtain the marginal likelihood.

Refer to Equation (3.9), the matrix specification for the linear mixed model. We can rewrite

this model as Y −Xβ = Zγ + e. Recall that γ ∼ Nkq(ψ,Σ) and e ∼ Nkn
(
0kn, σ

2Ikn
)
. Then we
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can write the marginal for the data as

Y ∼ Nkn

(
Xβ + Zψ,ZTΣZ + σ2Ikn

)
. (3.10)

Since the matrix Σi is often relatively uncomplicated—in the case of a random intercepts

model, it is the scalar variance of the random intercepts—it is thus easy to write the linear

mixed model in terms of its induced marginal mean vector and covariance matrix, ignoring

γ entirely.

If this approach is used, we should be cognizant of how MCMC sampling efficiency is affected.

MCMC sampling for Bayesian models can be improved by including intermediate stochastic

nodes like γ, so avoiding them as we do in the preprocessing approach may lead to sampling

behaviors we dislike. Preprocessing ensures that the numerical DIC approximations obtained

from software like OpenBUGS are approximations to the desired DICm construct, but we

must weigh this against the potential loss of sampling efficiency under this approach.

3.4.1.2 Postprocessing marginalization

Here we begin with the full description of the model that involves γ. We sample from this

model involving γ, but then obtain an analytical form for the marginal into which we can

plug our posterior iterates to obtain our own numerical approximation to DICm.

We start by writing the joint density for the data and γ conditional on θ, f(y, γ | θ), and then

through a series of algebraic manipulations, we obtain an equivalent expression, namely

f(y, γ | θ) = f(y | θ)f(γ | y, θ), where the conditional distribution in γ is normal with parameters

depending on θ. Thus upon integrating over γ, we obtain an analytical expression for f(y | θ).

Thus given a MC sample from the posterior for θ, which is easily obtained using BUGS or

some other package, we are able to numerically approximate the marginal model based DIC.
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Below, we develop a new expression for the marginal density f(y | θ). This is not necessary

for the LMM setting—it should be clear that the marginal form in Equation (3.10) will

serve this purpose, and in fact must be equivalent to the expression we develop below. The

work we present here is crucial to subsequent work in our development of a marginalization

approach for GLMMs during the next two chapters. In the GLMM setting, no closed-form

marginalization exists and we are unable to use a preprocessing approach. We thus consider

it preferable to introduce this work here where there are no complications.

Our alternate expression for the marginal density takes advantage of the fact that both

f(y | γ, θ) and P (γ | θ) are normal densities. Mathematically, we can use the complete-the-

square formula to combine the two and isolate the γ terms.

Following from the notation in Section 3.2.1, we assume X and Z are full rank and write the

following:

f(yij | γi, θ) =
1√

2πσ2
exp

(
−1

2

(
yij − (xijβ + zijγi)

σ

)2
)

f(Yi | γi, θ) = (2πσ2)−k/2 exp

(
−1

2
[Yi − (Xiβ + Ziγi)]

T
(
σ2In

)−1
[Yi − (Xiβ + Ziγi)]

)
f(γi | θ) = (2π)−q/2|Σi|−1/2 exp

(
−1

2
[γi − ψi]T Σ−1i [γi − ψi]

)

This gives the joint density

f(Yi, γi | θ)

= (2π)−(k+q)/2σ−k|Σi|−1/2

× exp

(
−1

2
[Yi − (Xiβ + Ziγi)]

T
(
σ2In

)−1
[Yi − (Xiβ + Ziγi)]

)
× exp

(
−1

2
[γi − ψi]T Σ−1i [γi − ψi]

)
.

96



To simplify notation, define Ỹi = Yi −Xiβ. This allows us to write

[
Ỹi − Ziγi

]T (
σ2In

)−1 [
Ỹi − Ziγi

]
=
[
Ỹi − Ziγ̂i + Ziγ̂i − Ziγi

]T ( 1

σ2
In

)[
Ỹi − Ziγ̂i + Ziγ̂i − Ziγi

]
=
[
Ỹi − Ziγ̂i

]T ( 1

σ2
In

)[
Ỹi − Ziγ̂i

]
+ [Ziγ̂i − Ziγi]T

(
1

σ2
In

)
[Ziγ̂i − Ziγi]

+
[
Ỹi − Ziγ̂i

]T ( 1

σ2
In

)
[Ziγ̂i − Ziγi] + [Ziγ̂i − Ziγi]T

(
1

σ2
In

)[
Ỹi − Ziγ̂i

]
=
[
Ỹi − Ziγ̂i

]T ( 1

σ2
In

)[
Ỹi − Ziγ̂i

]
+ [γ̂i − γi]T

(
1

σ2
ZTi Zi

)
[γ̂i − γi] .

Then apply the “complete-the-square” formula below, which is proven in the appendix, to

combine the quadratic terms for γi in the exponent. This results in a Normal kernel for γi

and a second term that is free of γi, making it possible for us to easily marginalize.

Proposition 3.1. For conformable vectors X, µ1, and µ2; and for conformable symmetric

matrices A1 and A2;

(X − µ1)TA1(X − µ1) + (X − µ2)TA2(X − µ2)

= (X − µ∗)T (A1 +A2)(X − µ∗) + (µ1 − µ2)TA1(A1 +A2)−1A2(µ1 − µ2),

where µ∗ = (A1 +A2)−1(A1µ1 +A2µ2).

In our context for the linear mixed model, we substitute γi for X above. We take µ1 = ψi and

A1 = Σ−1i for the first quadratic portion. For the second, we choose µ2 = γ̂i = (ZTi Zi)
−1ZTi (Yi−

Xiβ) and A2 = σ−2ZTi Zi. Using the complete-the-square formula, we have

(γi − ψi)T Σ−1i (γi − ψi) +
1

σ2
(γi − γ̂i)T ZTi Zi (γi − γ̂i)

= (γi − γ∗i )T
(

Σ−1i +
1

σ2
ZTi Zi

)
(γi − γ∗i )

+
1

σ2
(ψi − γ̂i)TΣ−1i

(
Σ−1i +

1

σ2
ZTi Zi

)−1
ZTi Zi(ψi − γ̂i),
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where

γ∗i =

(
Σ−1i +

1

σ2
ZTi Zi

)−1(
Σiψi +

1

σ2
ZTi (Yi −Xiβ)

)
.

We use this new expression to rewrite the joint density for Yi and γi.

f(Yi, γi | θ) = (2π)−(n+q)/2σ−n|Σi|−1/2

× exp

(
− 1

2σ2

(
Ỹi − Ziγ̂i

)T (
Ỹi − Ziγ̂i

))
× exp

(
− 1

2σ2
(ψi − γ̂i)TΣ−1i

(
Σ−1i +

1

σ2
ZTi Zi

)−1
ZTi Zi(ψi − γ̂i)

)

× exp

(
−1

2
(γi − γ∗i )T

(
Σ−1i +

1

σ2
ZTi Zi

)
(γi − γ∗i )

)

Note that γ only appears in the final term, which has the form of a Normal kernel. This

allows us to rewrite the joint density as follows:

f(Yi, γi | θ) = (2πσ2)−n/2|Σi|−1/2
∣∣∣∣Σ−1i +

1

σ2
ZTi Zi

∣∣∣∣−1/2
× exp

(
− 1

2σ2

(
Ỹi − Ziγ̂i

)T (
Ỹi − Ziγ̂i

))
× exp

(
− 1

2σ2
(ψi − γ̂i)TΣ−1i

(
Σ−1i +

1

σ2
ZTi Zi

)−1
ZTi Zi(ψi − γ̂i)

)

× (2π)−q/2
∣∣∣∣Σ−1i +

1

σ2
ZTi Zi

∣∣∣∣1/2 exp

(
−1

2
(γi − γ∗i )T

(
Σ−1i +

1

σ2
ZTi Zi

)
(γi − γ∗i )

)
= f(Yi | θ)× f(γi | Yi, θ)

Since observations on different clusters are assumed to be conditionally independent, the

marginal for the entire data set is just
∏k
i=1 f(Yi | θ), and we thus obtain a numerical approx-
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imation to DICm using the marginal density:

f(Y | θ) = (2πσ2)−kn/2|Σ|−1/2
∣∣∣∣Σ−1 +

1

σ2
ZTZ

∣∣∣∣−1/2
× exp

(
− 1

2σ2

(
Ỹ − Zγ̂

)T (
Ỹ − Zγ̂

))
× exp

(
− 1

2σ2
(ψ − γ̂)TΣ−1

(
Σ−1 +

1

σ2
ZTZ

)−1
ZTZ(ψ − γ̂)

)
,

where γ̂ = (ZTZ)−1ZT (Y −Xβ).

We remind the reader that, given a sample from the joint posterior, P (θ, γ | y), the iterates

for θ are from the marginal posterior P (θ | y), say {θ(s) : s = 1, 2, ...B}. Then

pDm
.
= − 2

B

B∑
s=1

log f
(
Y | θ(s)

)
+ 2 log f

(
Y | θ̂

)

DICm
.
= − 4

B

B∑
s=1

log f
(
Y | θ(s)

)
+ 2 log f

(
Y | θ̂

) (3.11)

The MCMC sample can be obtained using OpenBUGS, JAGS, STAN or any other available

sampling software.

In the next chapter, we will consider a special case of the generalized linear mixed model

(GLMM), where closed-form marginalization is not possible, but where the expression we

have here derived points the way toward a new method for approximate marginalization.
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