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1. INTRODUCTIONIn statistical modeling, an investigator must often choose a suitable modelamong a collection of viable candidates. Such a determination may be facili-tated by the use of a selection criterion, which assigns a score to every �ttedmodel in a candidate class based on some underlying statistical principle. The�tted model which is favored is the one corresponding to the minimum score(or maximum score, depending on how the criterion is de�ned).The Schwarz information criterion (SIC, BIC, SBC), introduced by Schwarz(1978) as a competitor to the Akaike (1973, 1974) information criterion (AIC),is one of the most popular and e�ective of the criteria used for model se-lection. Schwarz derived SIC to serve as an asymptotic approximation to atransformation of the Bayesian posterior probability of a candidate model. Inlarge-sample settings, the �tted model favored by SIC ideally corresponds tothe candidate model which is a posteriori most probable; i.e., the model whichis rendered most plausible by the data at hand. The computation of SIC isbased on the empirical log-likelihood and does not require the speci�cation ofpriors.In Bayesian applications, pairwise comparisons between models are oftenbased on Bayes factors. Assuming two candidate models are regarded asequally probable a priori, a Bayes factor represents the ratio of the posteriorprobabilities of the models. The model which is a posteriori most probable isdetermined by whether the Bayes factor is less than or greater than one. Incertain settings, model selection based on SIC is roughly equivalent to modelselection based on Bayes factors (Kass and Ra�erty, 1995; Kass and Wasser-man, 1995). Thus, SIC has appeal in many Bayesian modeling problems wherepriors are hard to set precisely.Though motivated from a Bayesian perspective, SIC is also used extensivelyin frequentist applications. Unlike many of its competitors (such as AIC), SIC1



has the following consistency property: provided that the family of candidatemodels under consideration includes the model which generates the data, SICwill asymptotically identify the true model with probability one. In practice,this optimality property is exhibited by the tendency of SIC to select modelswhich are attractively simple.Schwarz (1978, p. 462) established SIC \for the case of independent, identi-cally distributed observations, and linear models," under the assumption thatthe likelihood is from the regular exponential family. Haughton (1988) ex-tended the derivation to the curved exponential family. However, the criterionhas long been applied in a more general array of model selection settings.Most notably, it has been successfully used in many time series frameworks,including univariate ARMA modeling, vector AR modeling, and state-spacemodeling. (See, respectively, Sneek, 1984; L�utkepohl, 1985; Koehler and Mur-phree, 1988.) Informal generalizations of the criterion, such as those presentedby Stone (1979), Kashyap (1982), Leonard (1982), Kass (1983), and Neath andCavanaugh (1997), suggest that the applicability of SIC extends to a very widerange of modeling settings. However, a rigorous generalization of Schwarz'sdevelopment seems to be lacking from the literature (cf. Kass and Ra�erty,1995, p. 779).To better justify the widespread use of SIC, we present a derivation whichestablishes the validity of the criterion in a very general framework: one whichdoes not assume any speci�c form for the likelihood function, but only requiresthat it satis�es certain non-restrictive regularity conditions. Our derivation ispresented in the same spirit as the original justi�cation of SIC provided bySchwarz (1978), in that it is based on the same motivation and involves analo-gous arguments. Thus, our derivation veri�es that the broad-based use of SICis defensible by showing that, under general conditions, the criterion can bedeveloped in the context proposed by Schwarz, rather than by showing that2



the criterion can be re-derived from another perspective. (In this regard, Ris-sanen, 1978, provides an alternate justi�cation of SIC based on the minimumdescription length principle from information theory. Under this principle,the preferred model is the one which permits a reconstruction of the sam-ple utilizing the smallest possible number of bits. Thus, the preferred modelcorresponds to a codi�cation of the data which is complete yet as concise aspossible.)In the next section, we brie
y describe model selection based on SIC. InSection 3, we list the regularity conditions on the likelihood required for thederivation, which follows in Section 4. In Section 5, we discuss a practicalmodeling framework in which the use of SIC is supported by our derivation,yet not by the original justi�cation provided by Schwarz.2. MODEL SELECTION BASED ON SICLet Yn denote the observed data. Assume that Yn is to be described usinga model Mk selected from a sequence of candidate modelsM1; : : : ;ML; whichare not necessarily nested. Assume that eachMk is uniquely parameterized bya vector �k, presumed to lie in a parameter space �(k) � <k. Let Dk denotethe dimension of Mk; i.e., the number of functionally independent parametersin �k which must be estimated.Let L(�k jYn) represent the likelihood for �k based on Yn. Let �̂kn denotethe estimator of �k obtained by maximizing the likelihood L(�k jYn) over �(k).Let L(�̂kn jYn) denote the corresponding empirical likelihood.The Schwarz information criterion can be de�ned asSIC = �2 lnL(�̂kn jYn) +Dk lnn:In settings where the sample size n is ambiguous, it is often recommended thatn be chosen to grow at the same rate as the Hessian of � lnL(�k jYn) (see,e.g., Kass and Ra�erty, 1995, p. 779). (This recommendation is supported by3



our forthcoming derivation, where division by n must ensure the convergenceof the Hessian to a positive de�nite matrix.)In practice, SIC is computed for each of the models M1; : : : ;ML; and themodel corresponding to the minimum value of SIC is selected. In our deriva-tion, we show that SIC provides a large-sample approximation to�2 lnP (Mk jYn) � 2 lnfh(Yn)g;where P (Mk jYn) denotes the posterior probability of the model Mk given thedata Yn, and h(Yn) denotes the marginal density of Yn. Since h(Yn) does notdepend on Mk, the model associated with the minimum value of SIC shouldtherefore correspond to the model with the highest posterior probability amongM1; : : : ;ML.As previously mentioned, the original derivation of SIC by Schwarz (1978)justi�es the criterion in a setting where Yn consists of independent, identicallydistributed data, and L(�k jYn) belongs to the regular exponential family. Ourgeneralized derivation extends the justi�cation beyond this context, to appli-cations where L(�k jYn) need only satisfy a set of non-restrictive regularityconditions. These conditions are listed in the next section.3. REGULARITY CONDITIONS ON THE LIKELIHOODLet Vn(�k) = �1n lnL(�k jYn) and Wn(�k) = EfVn(�k)g:We assume the following regularity conditions on Vn(�k) and Wn(�k).(1) Vn(�k) has �rst- and second-order derivatives which are continuous over�(k). LetV (1)n (�k) = @ Vn(�k)@ �k and V (2)n (�k) = @2Vn(�k)@ �k @ �k 0 :4



(2) Vn(�k) has a unique global minimum at �̂kn, where �̂kn is an interior pointof �(k).(3) As n ! 1, Wn(�k) converges to a function W (�k) that has �rst- andsecond-order derivatives which are continuous over �(k). The conver-gence is uniform in �k over �(k). LetW (2)(�k) = @2W (�k)@ �k @ �k 0 :(4) W (�k) has a unique global minimum at �k� , where �k� is an interior pointof �(k).(5) Vn(�k)!W (�k) almost surely as n!1, uniformly in �k over �(k).(6) V (2)n (�k) ! W (2)(�k) almost surely as n ! 1, uniformly in �k over�(k).(7) W (2)(�k) is positive de�nite in a neighborhood of �k�. Over this neigh-borhood, the eigenvalues of W (2)(�k) are bounded and bounded awayfrom zero.Note that the preceding conditions, in particular (2), (4), and (5), implythat �̂kn converges almost surely to �k� as n!1.The preceding conditions are characteristic of those which arise in estab-lishing the asymptotic normality of the maximum likelihood estimator whenthe underlying data is not necessarily independent and the model being �t tothe data is possibly misspeci�ed. See, for example, Ljung and Caines (1979),Sto�er and Wall (1991), Cavanaugh and Shumway (1997). Demonstratingthe asymptotic normality of pn (�̂kn � �k�) often proceeds by taking a �rst-order expansion of 0 = V (1)n (�̂kn) about �k�, using the convergence of V (2)n (�k�)to W (2)(�k�), and establishing the asymptotic normality of pnV (1)n (�k�). Ourjusti�cation of SIC requires a set of conditions which will allow us to take a5



second-order expansion of Vn(�k) about �̂kn, establish asymptotic bounds for thesecond-order term over a neighborhood of �k�, and characterize the convergenceof the expansion. Our development does not require assumptions regarding themodel structure or the data dependency, generally utilized in demonstrationsof asymptotic normality pertaining to the behavior of pn V (1)n (�k�). Thus, theconditions we require are less technical than those required to demonstrateasymptotic normality.4. GENERALIZED DERIVATION OF SICThe motivation behind SIC can be outlined as follows.Suppose that the conditional density of the data Yn given both Mk (thekth candidate model) and �k (the parameter vector for Mk) is denoted byf(Yn j (Mk; �k)). Let �(Mk) denote a discrete prior over the set of the candi-date models which assigns a prior probability to each of the modelsM1; : : : ;ML.Let g(�k jMk) denote a prior on the parameter vector �k given the model Mk.We assume that the prior �(Mk) assigns a positive probability to eachmodelMk, 1 � k � L. Further, we assume that the prior g(�k jMk) is boundedover �(k), and is bounded away from zero over a neighborhood of �k� .Applying Bayes' theorem, the joint posterior of (Mk; �k) can be written asf((Mk; �k) jYn) = �(Mk) g(�k jMk) f(Yn j (Mk; �k))h(Yn) : (4.1)A Bayesian model selection procedure could then be based on choosing themodel Mk which is a posteriori most probable; i.e., choosing the Mk whichmaximizes P (Mk jYn), whereP (Mk jYn) = Z f((Mk; �k) jYn) d�k: (4.2)Since f(Yn j (Mk; �k)) = L(�k jYn), we can use (4.1) to write (4.2) asP (Mk jYn) = h(Yn)�1 �(Mk) Z L(�k jYn) g(�k jMk) d�k: (4.3)6



Now consider minimizing �2 lnP (Mk jYn) as an alternative to maximizingP (Mk jYn). From (4.3), we have�2 lnP (Mk jYn) = 2 ln fh(Yn)g � 2 ln f�(Mk)g�2 ln�Z L(�k jYn) g(�k jMk) d�k� : (4.4)The �rst of the three terms on the right-hand side of (4.4) does not depend onthe model Mk, and is therefore irrelevant for the purpose of model selection.Consider the third term on the right-hand side of (4.4). Through the appli-cation of two lemmas, we will demonstrate that this term is asymptoticallybounded between �2 lnL(�̂kn jYn) +Dk lnn+R2(Dk) (4.5)and �2 lnL(�̂kn jYn) +Dk lnn +R1(Dk); (4.6)where R2(Dk) < R1(Dk), and R1(Dk); R2(Dk) do not depend on n. (Recallthat Dk denotes the dimension of Mk.) If we then ignore the terms in (4.5),(4.6), and (4.4) which do not grow in magnitude as n ! 1, we obtain fromthese expressions the following approximate large-sample relation:�2 lnP (Mk jYn)� 2 ln fh(Yn)g � �2 lnL(�̂kn jYn) +Dk lnn:This motivates the use of SIC for model selection, where we choose thecandidate model Mk by �nding the �tted model which minimizesSIC = �2 lnL(�̂kn jYn) +Dk lnn:In large-sample applications, this �tted model should correspond to the can-didate model which maximizes P (Mk jYn).We now state and prove the two lemmas which will be used to establishthe asymptotic bounds (4.5) and (4.6).7



Lemma 1For some positive constants �1 and �2, the following will hold for �k in aneighborhood of �k� provided that n is su�ciently large:Vn(�̂kn) + �22 (�k � �̂kn) 0 (�k � �̂kn)� Vn(�k) �Vn(�̂kn) + �12 (�k � �̂kn) 0 (�k � �̂kn):Proof:Expanding Vn(�k) about �̂kn, the point at which Vn(�k) attains its globalminimum, yieldsVn(�k) = Vn(�̂kn) + (�k � �̂kn) 0 V (1)n (�̂kn)+12 (�k � �̂kn) 0 V (2)n (
kn) (�k � �̂kn)= Vn(�̂kn) + 12 (�k � �̂kn) 0 V (2)n (
kn) (�k � �̂kn); (4.7)where 
kn is between �k and �̂kn.Let �minn (�k) and �maxn (�k) represent, respectively, the smallest and largesteigenvalues of the matrix V (2)n (�k). For any �k in �(k), we have that(�k � �̂kn) 0 (�k � �̂kn)�minn (
kn) � (�k � �̂kn) 0 V (2)n (
kn) (�k � �̂kn)� (�k � �̂kn) 0 (�k � �̂kn)�maxn (
kn): (4.8)Now the regularity conditions imply that for every �k in �(k), �minn (�k)and �maxn (�k) respectively converge, almost surely, to the smallest and largesteigenvalues of W (2)(�k). Within a neighborhood of �k�, W (2)(�k) is positivede�nite and has its eigenvalues bounded between two positive constants. It istherefore possible to choose an n1 and a neighborhood N(�k�) of �k� such thatfor some constants �1; �2 satisfying 0 < �2 < �1 <1, we have�2 � infn>n1 ( inf�k2N(�k�)�minn (�k)) and �1 � supn>n1 8<: sup�k2N(�k�)�maxn (�k)9=; : (4.9)8



Thus, by (4.8) and (4.9), for all n > n1 and for 
kn 2 N(�k�), it follows that0 � (�k � �̂kn) 0 (�k � �̂kn)�2 � (�k � �̂kn) 0 V (2)n (
kn) (�k � �̂kn)� (�k � �̂kn) 0 (�k � �̂kn)�1: (4.10)Now since �̂kn converges to �k� almost surely, �̂kn 2 N(�k�) for all n exceedingsome n2. Moreover, since 
kn is between �̂kn and �k, whenever �̂kn 2 N(�k�) and�k 2 N(�k�), it must also hold that 
kn 2 N(�k�). Thus by (4.7) and (4.10),the bounds stated in the lemma will hold for all �k 2 N(�k�), provided thatn > n0 = maxfn1; n2g. 2Lemma 2Consider two sequences of positive random variables fTng and fUng and aconvergent positive sequence f�ng de�ned such that [Tn � Un] whenever[Un > �n]. Suppose there exists two positive constants 
 and " such thatP [(Tn � �n) � 
] � " for all n:For any positive constant �, the following holds for su�ciently large n:flnE(T nn )� lnE(Unn )g > ��:Proof:Let Rn = ( Un for Un � �nTn for Un > �n:Consider the di�erence (Rnn � T nn ). If Rn = Tn, then this di�erence is zero.If Rn = Un and Un 6= Tn, then we must have Rn = Un � �n, and this di�erencecannot exceed �nn. Thus, it follows that Rnn � T nn � �nn: This relation impliesE(Rnn) � E(T nn ) + �nn;which leads to E(Rnn)E(T nn ) � 1 + �nnE(T nn ) : (4.11)9



Now using the Markov inequality (Billingsley, p. 74, 1986), one can showthat for any positive sequence fcng,fE(T nn )g1=n � cn fP [Tn � cn]g1=n ;meaning fE(T nn )g1=n�n � cn�n fP [Tn � cn]g1=n : (4.12)Choose the sequence fcng by setting cn = �n + 
: For this cn, we have thatlimn!1 cn�n > 1; (4.13)and since P [Tn � cn] = P [(Tn � �n) � 
] � " > 0;we also have that limn!1 fP [Tn � cn]g1=n = 1: (4.14)Thus, by (4.12), (4.13), and (4.14), there exists an � > 0 and an n0 suchthat whenever n > n0, fE(T nn )g1=n�n > 1 + �:This implies limn!1(1 + �nnE(T nn )) = 1: (4.15)Now from (4.11) and (4.15), for any � > 0, we can �nd an n1 such that forall n > n1, E(Rnn)E(T nn ) < exp(�):Yet since Rn � Un, the preceding implies that whenever n > n1,E(T nn )E(Unn ) > exp(��);or equivalently, flnE(T nn )� lnE(Unn )g > ��: 210



Note the result of Lemma 2 implies limn!1 flnE(T nn )� lnE(Unn )g � 0;provided that the limit exists.We now use our lemmas to establish the asymptotic bounds (4.5) and (4.6).Let Zn(�k) = expf�Vn(�k)g;X1;n(�k) = exp(�Vn(�̂kn) � �12 (�k � �̂kn) 0 (�k � �̂kn)) ;X2;n(�k) = exp(�Vn(�̂kn) � �22 (�k � �̂kn) 0 (�k � �̂kn)) :By application of Lemma 1, we can �nd an n0 and a neighborhood N(�k�) of�k� such that for all n > n0 and for all �k 2 N(�k�), we haveX1;n(�k) � Zn(�k) � X2;n(�k): (4.16)Now, consider applying Lemma 2 to the positive random variables Un =X1;n(�k) and Tn = Zn(�k), where the relevant probability measure is g(�k jMk).De�ne X1(�k) = exp(�W (�k�)� �12 (�k � �k�) 0 (�k � �k�)) ;Z(�k) = expf�W (�k)g:The regularity conditions indicate that both X1(�k) and Z(�k) attain a com-mon global maximum at �k�. The conditions also ensureX1;n(�k)! X1(�k) almost surely, uniformly in �k; andZn(�k)! Z(�k) almost surely, uniformly in �k:Thus, there exists an n1 and a convergent positive sequence f�ng such thatn�k jX1;n(�k) > �n for n > n1o � N(�k�): (4.17)Moreover, n1 and f�ng can be chosen so that for some positive constants 
and ", we have P h�Zn(�k)� �n� � 
i � " for all n > n1: (4.18)11



Now take n2 = maxfn0; n1g: Note that whenever both X1;n(�k) > �n andn > n2, (4.17) will apply, and the ordering (4.16) will hold: i.e., we will haveX1;n(�k) � Zn(�k). By virtue of this fact and (4.18), application of Lemma 2(with Un = X1;n(�k), Tn = Zn(�k), n > n2) guarantees that for any �� > 0,hlnEfZnn (�k)g � lnEfXn1;n(�k)gi > ���2 (4.19)provided that n is su�ciently large. One can appeal to Lemma 2 in a similarmanner to establish thathlnEfXn2;n(�k)g � lnEfZnn (�k)gi > ���2 (4.20)when n is su�ciently large.Thus, by (4.19) and (4.20), there exists an n� such that for all n > n�,lnEfXn1;n(�k)g � ��2 < lnEfZnn (�k)g < lnEfXn2;n(�k)g+ ��2 ;or equivalently,�2 lnEfXn2;n(�k)g � �� < �2 lnEfZnn (�k)g < �2 lnEfXn1;n(�k)g+ ��: (4.21)The relation (4.21) will lead to the justi�cation of the asymptotic bounds(4.5) and (4.6). Note that the middle term in (4.21) can be written as�2 lnEfZnn (�k)g = �2 ln Z hexpf�Vn(�k)gin g(�k jMk) d�k= �2 ln Z L(�k jYn) g(�k jMk) d�k: (4.22)We will reduce and bound the left-hand and right-hand terms in (4.21) byutilizing the previously mentioned boundedness requirements on the priorg(�k jMk). Speci�cally, we assume that for some constants 0 < b � B <1,0 � g(�k jMk) � B for all �k 2 �(k); (4.23)b � g(�k jMk) for all �k within a neighborhood N�(�k�) of �k� : (4.24)12



Further, we assume that the n� which ensures (4.21) holds whenever n > n�is large enough to also ensure �̂kn 2 N�(�k�) whenever n > n�.For the left-hand term in (4.21), utilizing (4.23), we have�2 lnEfXn2;n(�k)g= �2 ln Z�(k) "exp(�Vn(�̂kn)� �22 (�k � �̂kn) 0 (�k � �̂kn))#n g(�k jMk) d�k� �2 ln Z<k B exp(�nVn(�̂kn)� n�22 (�k � �̂kn) 0 (�k � �̂kn)) d�k= 2nVn(�̂kn)� 2 lnB�2 ln24� 2�n�2�Dk=2 Z<k  n�22� !Dk=2 exp(�12 (�k � �̂kn) 0 (�k � �̂kn)(1=n�2) ) d�k35= �2 lnL(�̂kn jYn)� 2 lnB � 2 ln� 2�n�2�Dk=2= �2 lnL(�̂kn jYn) +Dk lnn +R2(Dk); (4.25)where R2(Dk) = Dk ln�2 �Dk ln 2� � 2 lnB.For the right-hand term in (4.21), we must argue the existence of a positivelower bound for the integralZN�  n�12� !Dk=2 exp(�12 (�k � �̂kn) 0 (�k � �̂kn)(1=n�1) ) d�k; (4.26)where N� denotes the neighborhood N�(�k�) referenced in (4.24). Note thatthe integrand in (4.26) is a Dk-dimensional Gaussian density with mean �̂knand variance/covariance matrix (1=n�1)I. As n ! 1, �̂kn converges almostsurely to �k� and (1=n�1) converges to 0; as a result, the density becomesincreasingly concentrated about �k� and the integral (4.26) converges almostsurely to 1. Moreover, since �̂kn 2 N�(�k�) whenever n > n�, there exists an� > 0 (depending on N�(�k�) and �1) such that (4.26) is no less than � for anyn > n�. Utilizing (4.24), we therefore have for all n > n��2 lnEfXn1;n(�k)g= �2 ln Z�(k) "exp(�Vn(�̂kn)� �12 (�k � �̂kn) 0 (�k � �̂kn))#n g(�k jMk) d�k13



� �2 ln ZN� b exp(�nVn(�̂kn)� n�12 (�k � �̂kn) 0 (�k � �̂kn)) d�k= 2nVn(�̂kn)� 2 ln b�2 ln24� 2�n�1�Dk=2 ZN�  n�12� !Dk=2 exp(�12 (�k � �̂kn) 0 (�k � �̂kn)(1=n�1) ) d�k35� �2 lnL(�̂kn jYn)� 2 ln b� 2 ln� 2�n�1�Dk=2 � 2 ln �= �2 lnL(�̂kn jYn) +Dk lnn +R1(Dk); (4.27)where R1(Dk) = Dk ln�1 �Dk ln 2� � 2 ln b� 2 ln �.Thus, by (4.21), (4.25), and (4.27), expression (4.22) is bounded between(4.5) and (4.6) whenever n > n�. This completes the proof.5. CONCLUSIONIn addition to extending Schwarz's derivation to a large collection of likeli-hoods, our derivation features other important generalizations of the originaldevelopment. Unlike Schwarz's justi�cation, ours does not assume the under-lying data is independent and identically distributed. Also, the asymptoticarguments in Schwarz's derivation assume that the data (exhibited in theform of a su�cient statistic) is �xed while the sample size goes to in�nity (seeSchwarz, 1978, Proposition, p. 462). This simpli�es the derivation, since the�xed data translates to a �xed set of parameter estimates for the �tted model.In our justi�cation, such an assumption is not employed.As mentioned in the introduction, SIC has long been successfully used asa selection criterion in time series applications. To illustrate a setting whichis within the scope of our derivation yet beyond the scope of the originaljusti�cation, consider the state-space framework. The state-space model isbecoming increasingly popular in time series analysis due to its versatilityand generality. Shumway (1988, p. 173) points out that \[the model] seemsto subsume a whole class of special cases of interest in much the same way14



that linear regression does." The successful application of SIC in the state-space framework is illustrated in Koehler and Murphree (1988) and Neath andCavanaugh (1997), among others.Estimation in the state-space setting is routinely accomplished by maxi-mizing the Gaussian log-likelihood in its innovation form (cf. Shumway, 1988,p. 178). Ljung and Caines (1979) present an asymptotic theory which canbe used to justify the strong consistency and asymptotic normality of theGaussian maximum likelihood estimator, even in the absence of normally dis-tributed errors or a correctly speci�ed model. (See Caines, 1988, p. 499; Har-vey, 1989, pp. 128-130.) Our regularity conditions in Section 3 are implied bythe assumptions under which this theory holds. This can be easily veri�ed,since our notation is quite similar to that used by Ljung and Caines (1979).Note that our regularity condition (1) is implied by the initial requirement intheir last subsection of Section 2 (see also their de�nition (2.3)); our condition(2) is assumed in the statement of their Theorem 1; and our conditions (3),(4), and (7) follow from the assumptions in the statement of their Corollaryto Theorem 1. Our conditions (5) and (6) are established utilizing their as-sumptions (2.4) through (2.10) along with (3.11); see their results (3.2) and(A.11).The asymptotic theory of Ljung and Caines (1979) therefore encompassesthe regularity conditions used in our derivation: if the requirements of thetheory are accepted to justify maximum likelihood estimation in the state-space setting, those same requirements will justify the application of SIC. Ourderivation should similarly support the use of SIC in other frameworks whereour regularity conditions are enveloped by a theoretical structure conducive tomaximum likelihood estimation. 15
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