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Abstract

The Akaike (1973, 1974) information criterion, AIC, and the corrected Akaike information criterion (Hurvich and Tsai,
1989), AICc, were both designed as estimators of the expected Kullback-Leibler discrepancy between the model
generating the data and a fitted candidate model. AIC is justified in a very general framework, and as a result, offers
a crude estimator of the expected discrepancy: one which exhibits a potentially high degree of negative bias in
small-sample applications (Hurvich and Tsai, 1989). AICc corrects for this bias, but is less broadly applicable than AIC
since its justification depends upon the form of the candidate model (Hurvich and Tsai, 1989, 1993; Hurvich et al., 1990;
Bedrick and Tsai, 1994).

Although AIC and AICc share the same objective, the derivations of the criteria proceed along very different lines,
making it difficult to reconcile how AICc improves upon the approximations leading to AIC. To address this issue, we
present a derivation which unifies the justifications of AIC and AICc in the linear regression framework.
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1. Introduction

The Akaike information criterion, AIC, was developed by Akaike (1973,1974) to estimate the expected
Kullback-Leibler discrepancy between the model generating the data and a fitted candidate model. In
instances where the sample size is large and the dimension of the candidate model is relatively small, AIC
serves as an approximately unbiased estimator. In other settings, AIC may be characterized by a large
negative bias (Hurvich and Tsai, 1989) which limits its effectiveness as a model selection criterion. For such
instances, Hurvich and Tsai (1989) proposed the corrected Akaike information criterion, AICc.

Originally suggested for linear regression by Sugiura (1978), Hurvich and Tsai (1989) justified
AICc for linear and nonlinear regression and autoregressive modeling, and investigated the small-sample
superiority of AICc over AIC in these settings. Since then, AICc has been extended to a number of
additional frameworks, including autoregressive moving-average modeling (Hurvich et al,, 1990), vector
autoregressive modeling (Hurvich and Tsai, 1993), and multivariate regression modeling (Bedrick and
Tsai, 1994).
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The advantage of AICc over AIC is that in small-sample applications, AICc estimates the expected
discrepancy with less bias than AIC. The advantage of AIC over AICc is that AIC is more universally
applicable, since the derivation of AIC is quite general whereas the derivation of AICc relies upon the form of
the candidate model.

Although AIC and AICc share the same fundamental objective, the justifications of the criteria provided
by Akaike (1973) and Hurvich and Tsai (1989) proceed along different directions, making it difficult to
reconcile how AICc refines the approximations used to establish AIC. A derivation which links the
justifications would be instructive. With this as our goal, we formulate a derivation which connects the
motivations for the criteria in the setting of the linear regression model. We consider this framework in order
to keep our development straightforward: analogous derivations could be easily constructed for other
settings in which AICc has been justified. Our work leads to some useful guidelines on characterizing linear
regression settings in which AIC may provide an inadequate estimator of the expected discrepancy.

2. A unified derivation of AIC and AICc

A well-known measure of separation between two models is given by the nonnormalized K ullback-Leibler
information (Kullback, 1968), also known as the cross entropy or discrepancy. Let 6, represent the set of
parameters for the “true” or generating model, and let  represent the set of parameters for an approximating
or candidate model. Let @ represent the parameter space for 0. The discrepancy between the generating
model and the candidate model is defined as

d,(6,80) = Eo{—2 In L(6] Y,)},

where E, denotes the expectation under the generating model, and L(6|Y,) represents the likelihood
corresponding to the candidate model. R
Now for a given set of maximum likelihood estimates 6,,,

d,(8,,00) = Eo{—2 In L8] Y,)}s_s, (2.1)

would provide a useful measure of the separation between the generating model and the fitted candidate
model. Yet evaluating (2.1) is not possible, since doing so requires knowledge of 6,. Akaike (1973), however,
noted that —2 In L(6,|Y,) serves as a biased estimator of (2.1), and that the bias adjustment

Eo{Eo{=21n L(6] Y,)}o=5,} — Eo{—2 In L(B,] )} (2.2)

can often be asymptotically estimated by twice the dimension of §,.
Thus, if we let k represent the dimension of 6,, then under appropriate conditions, the expected value of

AIC =—2 In L(6,| Y,) + 2k (2.3)
should be asymptotically near the expected value of (2.1), say

A,(k,00) = Eq {dn(én’ 90)}-
Specifically, one can establish that

Eo{AIC} + o(1) = 4,(k, 6,). (2.4)

The demonstration of this fact requires the strong assumption that 6, is an element of @; i.e., that the
candidate family includes the generating model (see Linhart and Zucchini, 1986, p. 245).

AIC provides us with an approximately unbiased estimator of 4,(k, 6,) in settings where n is large and k is
comparatively small. Yet in other settings, 2k may be much smaller than the bias adjustment (2.2), making
AIC substantially negatively biased as an estimator of 4,(k, 8,). To correct for this negative bias, Hurvich
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and Tsai (1989) proposed AICc for linear and nonlinear regression and autoregressive modeling. For
simplicity, we introduce and consider AICc in the context of the linear regression model, although our
development here could easily be extended to other settings in which AICc has been justified.

Suppose that the generating model for the data is given by

y=XBo+e e~N,(0,05]), (2.5)
and that the candidate model postulated for the data is of the form
y=Xp+e e~N,0,62I) (2.6)

Here, y is an n x 1 observation vector, e is an n x 1 error vector, f§, and f§ are p x 1 parameter vectors, and X is
an n x p design matrix of full-column rank.

Now, assume fi, is such that for some 0 < p, < p, the last (p — po) components of §, are zero. Thus, model
(2.5) is nested within model (2.6). Let 8, and 8 respectively denote the k = (p + 1)-dimensional vectors
(Bo,ad) and (B, 02). Note that the nesting ensures that 0, is an element of @, which is required to prove the
analogue of (2.4) for AICc (see Hurvich and Tsai, 1989, p. 299).

Let ﬁ,, denote the least-squares estimator of f, and let 62 = (y — X E,,)’( y — XB,)/n. Hurvich and Tsai
(1989, p. 300) define AICc as

n(n + p)

nlné; + . 2.7
n—p—2
For convenience, we will use the operationally equivalent definition
N u 2 1
AICc = n1ng? + nln2n + D _ 1062 4 n(l + In2m)} + 22 D1 (2.8)
n—p-2 n—p—2

which differs from (2.7) by an additive constant that has no impact on the selection behavior of the criterion.
One can prove that in the linear regression setting,

Eo{AICc} = A,(k, 0,), (2.9)

thus establishing that AICc is exactly unbiased for 4,(k, 8,). (The preceding holds up to o(1) for other
modeling frameworks in which AICc has been justified and developed.)

We will derive AIC and verify (2.4) in a general setting, and derive AICc and verify (2.9) in the linear
regression setting. Our objective will be to do so in a manner which will clearly illustrate the way in which
AICc improves upon the approximations leading to AIC.

To begin, consider writing 4,(k, 8,) as follows:

An(k,00) = Eq{Eo{—2 In L(O|Ya)}ls=s,}

=Eq{—2 InL@&,|Y,)} (2.10)
+ [Eo{=2 In L(6o| Y,)} — Eo{—2 In L(B,| Y,)}] (2.11)
+ [Eo{Eo{—2In L] Y\)}lo—a} — Eo{—2 In L(6o] ¥,)}1. (2.12)

The derivation of AIC and verification of (2.4) are accomplished by establishing the following lemma,
which asserts that (2.11) and (2.12) are both within o(1) of k. The lemma can be justified as a special case of
Propositions 1 and 2 of Linhart and Zucchini (1986, pp. 240-242). A brief proof is sketched here for
completeness.
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We assume the necessary regularity conditions required to ensure the consistency and asymptotic
normality of the maximum likelihood vector 8,,.

Lemma 1.
Eo{—2In L(6o|Y,)} — Eo{—2 In L(B,|Y,)} = k + o(1), (2.13)
Eo{Eo{—21n L(6]Ya)}ls=s,} — Eo{—2 In L(6o| Ya)} =k + o(1). (2.14)

Proof. Define
0%InL(0]Y,)

00 06’

In(e,eo) = Eo[ 5000’

] and 4,(0,Y,) = [—M]

First, consider taking a second-order expansion of —21In L(6,| Y,,) about 8, and evaluating the expectation
(under 8,) of the result. We obtain

Eo{—2InL(6y|Y,)} = Eo{—2InL(8,| Y,)}
+ Eo{(0, — 00) {£:(B,, Y.)} (B, — 86)} + o(1). (2.15)

Next, consider taking a second-order expansion of Eo{—21InL(0|Y,)}|s-4, about 8,, again evaluating the
expectation (under ;) of the result. We obtain

Eo{Eo{—2InL(8|Y.)}lo_4,} = Eo{ —2In L(8o| Y,)}
+ Eo{(Bn — 00 {1,(60,00)} (B, — 60)} + o(1). (2.16)
Now the quadratic forms
(6, — 00) {400, Yo)} (B, — 00) and (B, — 00) {1,(60,00)} (8, — 65)

both converge to centrally distributed chi-square random variables with k degrees of freedom. (Recall again
that we are assuming 8, € @.) Thus, the expectations (under 6,) of both quadratic forms are within o(1) of k.
This fact along with (2.15) and (2.16) establishes (2.13) and (2.14). O

The asymptotic approximation of the sum {(2.11) + (2.12)} by 2k may be somewhat crude for small or
moderate sample-size applications. However, for a more precise assessment of this quantity, one would need
to further specify the underlying modeling framework. For example, in the linear regression setting of
interest, the following lemma will show that {(2.11) + (2.12)} can be exactly evaluated as a function of
p = (k — 1) and n. This evaluation will lead to the derivation of AICc and verification of (2.9).

Lemma 2. For the generating model (2.5) and the candidate model (2.6),

A2
Eo{—2 In L(Bo| Y,)} — Eo{—2 In L(8,| Y,)} = —Eq {nln %} (2.17)
(1]

Eo{Eo{—21n L(0|Y,)}o-5} — Eo{—2 In L(6|Y,)} = Eo {nln o:_,i} + _2(_p+_1)n (2.18)
i n—p-—2

Proof. The log-likelihood for the candidate model (2.6) is given by

n n 1
InL(@|Y,) = —§1n21t ——z-lno2 —?(y —XB)(y — Xp).
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Under the generating model (2.5), one can easily establish the following relations:

Eo{—2 In L(0,]Y,)} =nlnol + n(1 + In2n), (2.19)

Eo{—2 In L(0,]Y,)} = Eq{nln 62} + n(1 + In2n), (2.20)
A2 no—g L 5 ’ ’ o

Eo{—21In L(| Y,)}|y_s = nlné? + 57+ p(ﬂ,, — Bo) (X' X} By — Bo) + nln2m. (2.21)

Now to evaluate the expected value of (2.21) under (2.5), note that (nd;? /o) has a chi-square distribution
with (n — p) degrees of freedom, the quadratic form {(8, — o) {(1/62)(X'X)} (B, — Bo)} has a chi-square
distribution with p degrees of freedom, and 62 and §, are independent. Using the fact that the expectation of
the reciprocal of a chi-square random variable with df degrees of freedom is given by (1/(df — 2)), one can
argue that the expectation of (2.21) under (2.5) reduces to

2
+—
~-p—2 n—p-2

Eo{Eo{~21n L(O]Y,)}ls-0,} = Eo{nInG}} +- +nln2n (2.22)

(see Hurvich and Tsai, 1989, p. 299).
By (2.19) and (2.20), we have (2.17). By (2.19) and (2.22), we have (2.18). [

AICc is derived and (2.9) verified by using Lemma 2 in conjunction with the representation of 4, (k, 0,) as
the sum of (2.10)-(2.12). Note that in the present setting, we can use (2.17) and (2.18) to write 4,(k,6,) as
follows:

A4k, 00) = Eo{Eo{—2 In L(O| Y,)}ls—0}
= Eo{—2 In L(6,|Y,)}
A2 A2 2 1
o4 o4 n—p-—2

) 1
_ By (=2 In L@, v,)} + 22 DR
n—p-—2

The preceding justifies that

2(p+ n

—21In L(G,|Y,) +
n—p-—2

(2.23)

1s exactly unbiased for 4,(k,8,). Yet since
—2InL@#,|Y,) =nlné? + n(l + In2mn),

(2.23) is precisely the same as the definition of AICc provided by (2.8).

In summary, we have derived AIC and verified (2.4) through utilizing Lemma 1 along with the representa-
tion of A4,(k,0,) as the sum of (2.10)—(2.12). For the linear regression setting, we have derived AICc and
verified (2.9) through utilizing Lemma 2 along with the same representation of 4,(k, 0,).

The third and final lemma provides a predictable albeit meaningful connection between AIC and AICc.
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Lemma 3. For the generating model (2.5) and the candidate model (2.6),

A2
—E, {n In %} = (p+ 1) + o(1), (2.24)
0
A2
Eo {nln gg} n %(f—:% —(p+ 1)+ o). 2.25)

Proof. We begin by considering an asymptotic approximation for —Ey{nln(¢?/a3)}.
Let X4 represent a chi-square random variable with df degrees of freedom. By taking a second-order
expansion of In X4 about df and evaluating the expectation of the result, one can justify the relation

1 1

(see Bickel and Doksum, 1977, p. 31). Using this relation along with the fact that (nd?/c3) has a chi-square
distribution with (n — p) degrees of freedom, we can write

A2 X2
—E, {nlnf‘—g—} =nlnn — nk, {ln noz,,}
o o

0 0

=nlnn—n{ln(n—p)—nip+0<(n_1p)2)}. (2.26)

Next, consider taking a first-order expansion of In(n — p) about n to obtain

2
Inn—p)=inn—-L + o<p—2>. (2.27)
n n
Substituting (2.27) into (2.26) yields
Ga p p’ n
—Eginlnt} = )+ ——+0(= . 2.28
oAt =0 0+ o) o) =

Asymptotically, each of the final three terms on the right-hand side of (2.28) is o(1) as n — oo when p is held

constant. However, each of these terms is also o(1) when p is allowed to grow at a rate less than ﬁ asn — 0.
Thus, assuming n — 0o and p is O(n1/27°), § > 0, (2.28) allows us to write

0':2

—E, {nln —';} =(p+ 1)+ o(l).
0o

This establishes (2.24). The justification of (2.25) follows since we can write

2(p+ D(p + 2)}

A2
Eo{nlna_';}+M={_(p+1)+0(1)}+{2(p+1)+ —

g n—p-—2

=(p+1D+o(l). O

3. Discussion

The development in Section 2 along with the results of Hurvich and Tsai (1989) suggest that for linear
regression, AICc is preferable to AIC as an estimator of 4,(k,8,) unless p is “small” and n is “large”. The
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penalty term of AICc is exactly equal to the sum {(2.11) + (2.12)}, whereas the penalty term of AIC only
provides an approximation to this sum. How crude is the approximation of (2.11) and (2.12) by k = (p + 1)?
To address this question in the linear regression setting, we evaluate (2.11) and (2.12) for various values of
p and n and present the results in Table 1. The exact computation of (2.11) and (2.12) is possible using the fact
that

A2 _
Eo{ln "02"} =1In2+ t//(n——I)),
J9o 2

where  is the digamma or psi function (Kotz et al,, 1982, p. 373) (see Hurvich and Tsai, 1989, p. 303).
Bernardo (1976) presents a simple algorithm for computing values of .

The results help to illustrate two interesting principles. First, the approximation of (2.12) by (p + 1) is
uniformly worse than the approximation of (2.11) by (p + 1), due to the fact that (p + 1) is always less than
(2.11) and (2.11) is always less than (2.12). Thus, the bias correction provided by AICc to AIC plays a more
important role in refining the approximation of (2.12) than in refining the approximation of (2.11),
particularly where n is small and p is large.

Second, in reference to (2.24) and (2.25), it can be easily shown that if n > (p + 2)(2p + 3), then 2(p + 1) is
less than one unit smaller than 2(p + 1)n)/(n — p — 2). If n exceeds (p + 2)(2p + 3), then (p + 1) appears to
provide a good approximation to (2.12), and hence to (2.11). However, if n is substantially less than
(p + 2)(2p + 3), then (p + 1) may be much smaller than (2.12) (or (2.11)) even when n is “large”. In such
settings, AIC may greatly underestimate 4,(k, 65), and as a result, may perform poorly as a model selection
criterion.

We close by noting that the development in Section 2 suggests that —21n L@#,|Y,)isa justifiable choice
for the goodness-of-fit term in AICc. The derivations of AICc presented by Hurvich and Tsai (1989, 1993) and

Table 1
Evaluation of (2.11) and (2.12) for various values of n and p

p n @.11) 2.12) P n @.11) (2.12)
2 20 3.24 426 2 80 3.06 3.26
4 20 5.74 8.55 4 80 5.16 5.65
8 20 11.93 2407 8 80 9.55 11.03

16 20 37.60 302.40 16 80 19.11 24.76
2 30 3.15 3.77 2 160 3.03 3.13
4 30 5.46 7.04 4 160 5.08 5.31
8 30 10.69 1631 8 160 9.26 9.94

16 30 25.06 59.94 16 160 17.97 2034
2 40 311 3.55 2 320 3.01 3.06
4 40 534 6.43 4 320 5.04 5.15
8 40 10.19 1381 8 320 9.13 9.45

16 40 22.12 39.70 16 320 17.46 18.56
2 50 3.09 343 2 640 3.01 3.03
4 50 526 6.10 4 640 5.02 5.08
8 50 9.92 12.58 8 640 9.06 922

16 50 20.77 32.36 16 640 17.23 1775

(2.11) = Eo{—2 In L(8,| Y,)} — Eo{ =2 In L(5,| Y,)}.
(2.12) = Eo{Eo{~2 In L(8] Y,)}ls=0,} — Eo{~2 In L(8o| Y.)}-
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Bedrick and Tsai (1994) arrive at goodness-of-fit terms of the form nln 67, where 67 represents the estimate of
the error variance. Of course in linear regression, the terms nlné2 and —21nL(8,|Y,) differ only by the
additive constant n(1 + In 2x); thus, it does not matter which quantity is used for the goodness-of-fit term.
Yet in many applications, such as with autoregressive or autoregressive moving-average models, there may
be a substantial difference between nln 62 and —21n L(8,| Y,,). Hurvich et al. (1990) present a convincing case
for preferring the latter to the former as a goodness-of-fit term in defining model selection criteria of the same
basic form of AIC or AlCc: e.g., the criteria of Schwarz (1978), Hannan and Quinn (1979), etc. The
development in Section 2 shows that the choice of —21In L(B,]Y,) in the definition of AICc is theoretically
well motivated.
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