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Background

Diasorin is a commercial assay (test) which, its manufacturers
claim, can differentiate between individuals with low and
normal bone turnover.

Bone turnover refers to the continual process where old bone
cells in the body are replaced with new bone cells.

When kidneys fail to maintain proper levels of phosphorous
and calcium in the blood, knowing a patient’s rate of bone
turnover is important for managing their health.
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The Study

34 kidney patients from the bone registry at the University of
Kentucky were identified as low or normal turnover by other
means.

These patients were then given the commercial assay to
determine whether it could correctly identify them.
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A Data Concern

From boxplots a normal sampling model appears untenable
due to marked skewness but boxplots and quantile plots of the
log transformed data seem reasonably normal.
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Data Structure

In general we assume the sampling model

y11, . . . , y1n1 |µ1, τ1
iid∼ N(µ1, 1/τ1) ⊥⊥

y21, . . . , y2n2 |µ2, τ2
iid∼ N(µ2, 1/τ2).

We typically assume independent priors

µ1, τ1 ⊥⊥ µ2, τ2.

We can use any of the one-sample techniques: reference
priors, conjugate priors, or independence priors, to determine
the prior distributions.
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Eliciting Priors on µ

We need to elicit priors on both parameters of the log-normal
distribution: µ and τ .

We will elicit different priors for both our groups.

We will also consider a reference prior for sensitivity analysis.
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Eliciting Priors on µ

Remember that we’ve log-transformed our data – so the
distribution of the data, and by Jensen’s Inequality its
expectation, have changed.

The median is unchanged by the transformation, however, so
we’ll elicit prior information on it.

We specify a best guess, m̃, for the median, and a percentile,
ũ, for which we are, say, 95% sure that the median is below
(or above).
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Eliciting Priors on µ

An expert tells us that he thinks the median for the low bone
turnover group will be 130. Further, he is 95% sure that the
median of will be less than 142 in this patient population.

For the normal bone turnover group, he believes the median
will be 220, with 95% certainty that it is below 240.
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Eliciting Priors on µ

Our expert has given us priors on the real data scale, but
we’ve log-transformed our data. So now we need to
log-transform our priors.

Why? The median of a Normal distribution is equal to the
mean, so if we log-transform our expert’s guesses at the
median, we’ll receive information on the mean of the Normal
distribution for the log-transformed data.

Then we obtain µL ≡ µ1 ∼ N(4.87, 0.00288) and
µN ≡ µ2 ∼ N(5.39, 0.00280).
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Eliciting Priors on τ

τ is a much harder quantity to understand than µ. It
measures the degree of variability in the data.

Moreover, we want an idea of the variability of the data on its
original scale, where we’ve got evidence of non-normality.

The easiest way to elicit a prior on a scale/rate parameter like
τ is to ask about percentiles of the underlying data.
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Eliciting Priors on τ

We elicit information from our expert about the 90th (or some
other) percentile of the data distribution. The log of this is
µ+ 1.645

√
1/τ . The elicitation is now conditional on the

best guess for µ being log(m̃).

Then our best guess for τ , conditional on our best guess for
µ, is obtained by solving log(u0.90) = log(m̃) + 1.645

√
1/τ̃

We obtain log(u0.9/m̃) = 1.645
√

1/τ̃ or

τ̃ = 1.6452/{log(u0.9/m̃)}2.
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Eliciting Priors on τ

Since we assume a Gamma(c , d) prior for τ , set
(c − 1)/d = τ̃ or equivalently c = 1 + τ̃d .

We can proceed with eliciting an upper limit on u0.90 but
often the expert wants to stop in which case we introduce the
same large variability as in a proper Gamma reference prior by
picking d = 0.001.
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Eliciting Priors on τ

Our expert provided his best guess for the 90th percentile of
Diasorin values in the low (u0.90,1 = 170) and normal
(u0.90,2 = 280) bone turnover groups.

We use gamma priors with modes 170 and 280, and with large
variances: τ1 ∼ Gamma(1.0376, 0.001) and
τ2 ∼ Gamma(1.04653, 0.001).
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“This log-normal thing seems like a real pain. We can use
whatever distribution we feel like for the priors, so why can’t we
pick an easier distribution for the data?”

At the end of the day, our models are only as good as their
ability to represent reality. We want to use them to predict
what will happen in the future, or to understand the
probability associated with future events.

We need sensible distributions for any part of the model we’re
interested in interpreting after the fact.
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“Eliciting expert information and turning them into prior
distributions seems like a lot of work. Why can’t we just use
reference priors instead?”

For me, there are two big reasons: intellectual honesty and
understanding the problem.
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“Eliciting expert information and turning them into prior
distributions seems like a lot of work. Why can’t we just use
reference priors instead?”

Intellectual Honesty – Science doesn’t happen in a vacuum.
The very fact that we’re able to formulate scientific
hypotheses says a lot about our level of knowledge about
natural phenomena. Pretending that we don’t have this
information for the sake of “objectivity” is just papering over
the truth. It’s better to accept our prior beliefs and
incorporate them into our work. Techniques like sensitivity
analysis help us confront those beliefs head-on and see
whether they’re affecting our results.
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“Eliciting expert information and turning them into prior
distributions seems like a lot of work. Why can’t we just use
reference priors instead?”

Understanding the Problem – Any high-level modeling work is
going to involve a lot of parameters and data vectors, and it’s
easy to lose sight of what you really care about in a problem.
Eliciting expert information and building informative priors is
one way to explore your data and try to understand it better.
If you have some sense of what data values you can expect,
it’s easier to spot output that doesn’t make sense. More
positively, it’s easier to spot meaningful results when you see
them.
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“Normal priors aren’t bad, but Gamma priors suck. Can’t we use
different priors that are easier to understand?”

You can use whatever priors you want. But your models will
work best – be most efficient, be free of errors – if you use
priors that make sense in context.

Uniform and (scaled) Beta priors only make sense when you
know that there are hard limits for which values you can see,
since they have finite support.

Normal priors are great for anything you think is symmetric.

If you don’t have hard limits or symmetry, i.e. if you have a
skewed distribution without finite support, the Gamma
distribution is usually the easiest choice.
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We’ll start by looking at the posterior distribution for these data
under the informative priors, and those priors themselves.

(a) Posterior from Informative Priors
Parameter mean sd 2.50% median 97.50%

µL 4.86 0.05212 4.757 4.86 4.961
µN 5.395 0.05143 5.294 5.395 5.496

µN − µL 0.5356 0.07315 0.3922 0.5355 0.6793

τL 1.275 0.3944 0.6245 1.231 2.161
τN 1.285 0.4389 0.5757 1.236 2.274

τN/τL 1.114 0.5547 0.3873 1.003 2.496

(b) Informative Priors
Parameter mean sd 2.50% median 97.50%

µL 4.87 0.053 4.765 4.87 4.975
µN 5.39 0.053 5.286 5.39 5.494

µN − µL 0.52 0.07546 0.3724 0.5201 0.668

τL 1037 1019 29.45 729.59 3767.5
τN 1046 1023 30.48 738.26 3786.03

τN/τL 10.11 638.7 0.02897 1.01 35.67
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Next, let’s look at what would happen if we used reference priors
(proper or improper).

(c) Posterior from Proper Reference Prior for Means
Parameter mean sd 2.50% median 97.50%

µL 4.706 0.2167 4.278 4.706 5.131
µN 5.49 0.2486 4.997 5.491 5.984

µN − µL 0.784 0.3296 0.135 0.7826 1.435

τL 1.252 0.3961 0.5991 1.208 2.147
τN 1.227 0.4319 0.5332 1.178 2.205

τN/τL 1.088 0.5596 0.3643 0.9723 2.49

(d) Posterior from Improper Reference Prior
Parameter mean sd 2.50% median 97.50%

µL 4.71 0.94 4.257 4.71 5.163
µN 5.49 0.97 4.953 5.49 6.027

τL 1.13 0.377 0.517 1.089 1.979
τN 1.06 0.401 0.427 1.013 1.983
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The next slide gives predictive densities for a future log
Diasorin value from the low and normal groups. Note the
similarity of the distributional shapes, which is due to the
similarity of the precisions. With similar precisions, it becomes
clear that the “normal” group has higher scores and that the
means characterize the differences between the two
distributions.
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If the variances were not the same, the difference in means
would not be nearly so meaningful. To illustrate this, the next
slide gives the predictive distributions of the Diasorin scores.
These densities are much more difficult to interpret relative to
one another. In particular, it is not obvious that the difference
in the means of the predictive distributions would be a good
measure of how the two distributions differ.
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The Heteroscedasticity Problem

When we’ve got unequal variances for two populations we want to
compare, comparing the means is not necessarily a good idea. We need
to stop and think about what sort of comparisons we’re actually
interested in.

If we’re interested in long-term averages, the mean may still be a
reasonable point to consider. But if we’re interested in uncommon events
(which we sometimes call tail behavior), knowing which population has a
higher density over a given region of the support becomes important.

Also, if we consider unbalanced loss functions (where an incorrect

decision in one direction is more damaging than an incorrect decision in

the other direction – think Type I and Type II error), we will be more

concerned about the entire density of the two populations than just the

mean of those populations.
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