Estimation of AR models

e Recall that the AR(p) model is defined by the equation

p
X:=> ¢jXij+e
=1

where ¢; are assumed independent and following a
N (0, 0?) distribution.

e Assume p is known and define ¢ = (¢1, 2, @3,...,0p),

the vector of model coefficients.

e Given the data z,z9,x3,...,x,, we want to estimate

(¢,07).
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Method of moments

e Recall that Yule Walker’s equations establish that,

Pk = P1Pk—1 + P2Pp—2 + - .. + DpPr—p

If we write these equations for £k =1,2,...,p, we obtain a

system for ¢1,@2,...,¢p.

We can solve this system with an estimator for the

autocorrelation py.

For example, we could use the sample autocorrelation
pr = 11 and then solve the p equations for ¢.

This method is implemented in R using the function ar.

# For example try

a=ar (x,method=’’yule walker’’)

117



list(a)
a$ar
# this gives the MOM estimate of ph

# for your data
Maximum likelihood estimation

e For MLE, first we need to find the likelihood function for
the AR model.

e Since the AR process has a Markovian structure, the

joint density of the data is given by the expression

p(ﬂfl,xQ,...,xn’QS,Oj) — p(ajlaana"'?xp‘gb?Uz)

n
H p('rt‘xt—ly co oy Lt—py q57 0-2)
t=p+1
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Assume the first p observations (initial values)

(x1,22,...,xp) are completely known.

Then the model likelihood is defined by ignoring

p(z1,x2,...,xp) from the above expression, i.e.

n
p($1,332,...,37n’¢,0'2)0< H p($t|ﬁl3t_1,...,$t_p,¢,0'2)
t=p+1

What is p(z¢|xe—1, ..., Ti—p, P, 02)? From the AR model
definition, x; can be seen as the response of a linear
regression with “regressors” x;_1,Ti—92,%t—3,...,Tt—p,
then

p<xt‘xt—17 vy Lt—p, ¢7 0-2) — N<xt‘fz/¢7 0-2)

/
where fz — (mt—la Lt—2y Lt—3, - - - 7'5Ct—p)~
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Define F' to be a matrix with rows f,L-/; 1 = p+1... n and
T = (Tpt1, Tpt2s---,Tn)-
The likelihood function of the AR model conditional on

the initial values is a multivariate Normal of dimension

n — p with mean F¢ and covariance oI (
N($|F¢, U2I(n—p)><(n—p))'
The Maximum Likelihood Estimator (MLE) for (¢, c?) is

A

n—p)x(n—p)> 1-€:

— (FF)'Fax
s = R/(n—p)

where R = (z — F¢) (z — F¢).
For an unbiased estimator of o2, we use

si=R/(n — 2p)
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The MLE is also given by the “ar” function available in
R/Splus.

a=ar (x,method=’’mle’’)
a$ar # AR coefficients

a$var # AR variance

All these results are valid if we ignore the uncertainty

due to the initial values.

The complete likelihood of the model considers the extra

part, p(z1,T2,...,Ty|¢,0?), which is a complicated

function of the parameters.

For the complete likelihood we require numerical methods
(Newton-Raphson) to obtain the MLE of the AR model.

Bayesian analysis of AR(p) model
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e In the context of linear regression (initial values known),

we can use a non-informative prior for the parameters,
2 2
p(¢,07) x 1/o

e Using Bayes theorem, the posterior distribution for
(¢,0?) is given by:

— ¢ conditional on ¢? follows a multivariate Normal

N(¢|p, 0*(F F)7).
— The marginal distribution for o follows an Inverse
Gamma posterior IG((n — 2p)/2, R/2).

— The marginal distribution for ¢ follows multivariate t

distribution with n — 2p degrees of freedom and

location parameter &

e For posterior inference using the complete model
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likelihood, we require numerical techniques such as
Markov chain Monte Carlo (MCMC) methods.

Inference on characteristic reciprocal roots

e For this, we need to find the solutions to the equation
®(B) = 0 where ®(B) is the characteristic polynomial of
the AR process.

We have close form expressions for this characteristic
roots if p = 1,2, but if p > 2 it becomes really hard to

obtain the solutions.
We can use the R/Splus function polyroot to find the
roots.
ph = c(2%x0.95%co0s(0.5),-0.9572)
ph
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[1] 1.667407 -0.902500

polyroot(c(1,-ph))

[1] 0.9237711+0.50465851 0.9237711-0.5046585i
1/polyroot(c(1,-ph))

[1] 0.8337034-0.4554543i 0.8337034+0.4554543i
# For modulus and frequencies

Mod (1/polyroot(c(1,-ph)))

[1] 0.95 0.95

Arg(1/polyroot(c(1,-ph)))

[1] -0.5 0.5

2*pi/Arg(1/polyroot(c(1l,-ph))

[1] -12.56637 12.56637

Given some estimate ¢, we can compute estimates

aq, o, ..., o, for the reciprocal roots.
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7

Bayesian inference for roots. Mapping from ¢ to “roots

is mathematically intractable (unless p = 1,2).

In general, there is no close form expression to the

posterior distribution of the a’s, although we know

(¢, 0?) follow a Normal/Inverse Gamma posterior.

We will rely on Monte Carlo simulation to study the

posterior distribution for the a’s.

Monte Carlo simulation scheme:

— Simulate a value o from an IG((n — 2p)/2, R/2)

distribution.
— Simulate the vector of coefficients ¢ from
N(¢|p, o2(F' F)~1) distribution.

— With the simulated value for ¢ solve the equation
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®(B) = 0. This leads to one generate sample from the

posterior distribution of the o's.
— Iterate until we collect M samples and summarize

samples.

e This algorithm produces “exact” Monte Carlo samples of
a posterior distribution. It does not require convergence

monitoring or a burn-in period.

To simulate a multivariate Normal distribution, we need

to use Cholesky’s decomposition (chol function in R).

If 2 is a k-dimensional vector that follows a multivariate
N(z|m, V), where m is the mean and V is the covariance

matrix, this function chol allows us to find a matrix A
such that V = AA’.
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e To simulate a z vector, we generate yi, 1o, ...,y 1id

N(0,1) random deviates and make

z=m + Ay

where y = (y1,¥2,...,yxr) and A is the Cholesky’s

decomposition of V.

e If V is numerically close to a singular matrix, we could
use the Singular Value Decomposition of V' (svd) instead

of Cholesky’s decomposition.
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Identification of AR roots

e The AR model is invariant for different labeling of the

a’s, since the characteristic polynomial

The values of the AR coefficients are ¢ are invariant to

permutations of the sub-indices for the o's

For identification, complex reciprocal roots are ordered

by modulus (7’s) or by frequencies (w's)

If we have C complex pairs of reciprocal roots ordered by

modulus then

a1 = riexp(tiw); ag = reexp(Fiws);. . .;ac = roexp(tiwd]

with the condition, ry > r9 > r3... > (.
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Ordering the roots by frequencies means that

W <<wr < ...<WwWe.

For the case of real roots the natural thing to do, is to
order them from the smallest to the largest. For R real

roots,
T <ro<rg...<rp

Example EEG trace of 400 observations. The
ACF /PACEF of this series suggests the use of an AR
model with p = 8,9, or 10.

Fitting an AR(10) using R/Splus (it could also been an
AR(8) or AR(9) gives the following MOM estimator for

the parameters are

A

¢» =(0.27,0.03-0.16,-0.18,-0.14,-0.15,-0.23,-0.1,-0.05,-0.11)
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and o2 = 3808.58.

The reciprocal roots denoted by (7;,w;) and associated to

this qAb vector are:
(.97, .48); (.8,2.21); (.75,2.86); (.75,.99); (.74, 1.48)

No real reciprocal were obtained for this AR fit.

The MLE (rounded to 2 digits) is ¢ =(0.25,0.04,-0.17 -
0.17,-0.13,-0.17,-0.24,-0.11,-0.05,-0.11) , and
02 = 3657.47.

The unbiased estimate for o2 is 3753.72.

The MLE for each reciprocal root in terms of modulus
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and frequency:

(.97, .48); (.8,2.22); (.77, 2.85); (.75, 1.47); (.74, .99)

a=ar (eeg,aic=F,order=10,method="mle")
ph=a$ar

v=a$var.pred

round (ph,2)

arl ar2 ar3 ard arb ar6 ar’ ar3
0.25 0.03 -0.16 -0.17 -0.13 -0.17 -0.24 -0.11
ar9 arl0

-0.05 -0.11

round(v,?2)

[1] 3609.46

alpha=1/polyroot(c(1,-ph))

round (m<-Mod (alpha),2)
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[1] 0.97 0.80 0.80 0.97 0.74 0.76
0.75 0.74 0.75 0.76
round (w<-Arg(alpha) ,2)
[1] -0.48 -2.22 2.22 0.48 -1.00
-2.85 1.47 1.00 -1.47 2.85

#order by modulus

m=m [w>0]

w=w [w>0]

rev(m[order(m)])

[1] 0.97 0.79 0.76 0.75 0.74
rev(wlorder(m)])

[1] 0.48 2.22 2.85 1.47 0.99
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e We now show the results for a Bayesian Analysis of an
AR(10) model and based on 5000 Monte Carlo samples.
The graphs include:

Histograms of posterior samples for ¢ coefficients and

the variance o2

Histograms of posterior samples for the a’s ordered by

modulus.

Histograms of posterior samples for the a’s ordered by

periods (or frequencies).

The o’s are shown in terms of the pairs (r;,w;) or
(ri, Ai); i =1,2,...,5.
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Posterior histograms for ¢; — ¢g
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Posterior histograms for ¢; — ¢19 and o

phi_9

Histogram of sigma2

T
4000

sigma"2
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Posterior histograms ordered by modulus of
(7“@', wz-), = 1, 2, 3
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Posterior histograms ordered by modulus of
(ri,wi) 1= 4, 5)
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Posterior histograms ordered by modulus of
(’I"Z', )\Z), 1= 1, 2, 3
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Posterior histograms ordered by modulus of
(7“@', )\Z),Z = 4, 5
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Posterior histograms ordered by wavelength of
(’I“Z', wz-), 1= 1, 2, 3

o
S 1<
<
o
o
@ ®
o
« 8
o
= S
o o

0 1 2 3 4 5 6

140



Posterior histograms ordered by wavelength of
(’I"Z', wi), 1= 4, 5)
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Posterior histograms ordered by wavelength of
(’I"Z', )\Z), 1= 1, 2, 3
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Posterior histograms ordered by wavelength of
(’I"Z', wi), 1= 4, 5)
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Graphs based on residuals obtained at the MLE qAS
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AR(10) spectrum computed at the MLE

AR(10) spectrum
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Computing the “approximate” test for white noise for the
model residuals gives T' = 17138.13 and a p-value of
.839543.

The p-value is “large” so we don’t have any evidence
against the null hypothesis of the residuals following a

white noise process.

Using this Bayesian approach, we make statements about

this process following a stationary series or not.

For our 5000 samples, we can count have many of this
samples produce a characteristic reciprocal root with a

modulus greater than one.

The relative frequency of the event “modulus greater

than one” gives us an estimate of the posterior
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probability of this EEG series comes from “a

non-stationary process”.

e For these 5000 samples, the posterior probability is 0.026.

e In a similar way, we can compute the posterior

probability of having at least one real root under the
AR(10) process (0.0032).

147



Code for Bayesian AR estimation

eeg=scan("eeg")

# Building F matrix for AR(10)

n <- length(eeg)

x <- eeglll:n]

f1 <- eegl[10:(n-1)]; £2 <- eegl[9:(n-2)]

f3 <- eegl8:(n-3)]; f4 <- eegl7:(n-4)]

f5 <- eegl[6:(n-5)]; f6 <- eegl[5:(n-6)]

f7 <- eegl4:(n-7)]; £8 <- eegl[3:(n-8)]

f9 <- eegl[2:(n-9)]; £10 <-eegll:(n-10)]

#

Fdes <- cbind(f1,f2,f3,f4,f5,f6,f7,£f8,f9,f10)
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# F°tF mle and R

FF.t<- t(Fdes)/x*/Fdes

FF.inv <-solve(t(Fdes)’%*/Fdes)
phhat <- FF.inv*/t (Fdes)/*%x
R <- (x - (Fdes)%x*)phhat)

s <- (ssg=sum (R*R))/(n-10)

# Compute Cholesky decomposition
FF.inv <- 0.5%(FF.inv + t(FF.inv))

FF.inv.cd <- t(chol(FF.inv))

# ar 10 function that draws from the

# posterior for (phi,sigma”2)
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arl0 <- function (m)

{

phhatmat <- matrix(phhat,10,m)
v <- rchisq(m, (n-20))

v <-ssq/v

# generation of ph

norbi <- matrix(rnorm(10*m) ,ncol=m)

normv <- t(sqrt(v)*t(norbi))
ph <- (FF.inv.cd/*)normv) + phhatmat

#result
ph <- t(ph)
return(ph,v)

+
phlist=ar10(5000)
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phsim=phlist$ph
sigma2=phlist$v

# Compute roots for draws of coefficients
coef=cbind(rep(1,5000) ,-phsim)

roots=1/t (apply(coef,1,polyroot))

mod=Mod (roots)

om=Arg(roots)

#

# Ordering by modulus

lam=2%pi/om

lam[om<=1e-9|om>=pi-1e-9]=0

om[om<=1e-9|om >=pi-1e-9]=0
mod [om<=1e-9|om >=pi-1e-9]=0
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#

Im=matrix (NA,nrow=dim(lam) [1] ,ncol=dim(lam) [2])

md=matrix (NA,nrow=dim(mod) [1] ,ncol=dim(mod) [2])

w=matrix (NA,nrow=dim(om) [1] ,ncol=dim(mod) [2])

#

for(i in 1:5000){ind=order(modl[i,]);
wli,]=om[i,ind];
Im[i,]=1lam([i,ind];
md[i,]=mod[i,ind]}

# Some residual analysis

ts.plot(as.ts(R))

hist(R,nclass=30,prob=T,density=-1)

qgnorm(R)

qqline(R)
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