
Seasonal variation

• “Variation in the data that is annual in period. For

example, unemployment is typically ’high’ in the winter

but lower in the summer.”

• Seasonality also refers to variation that is quarterly,

monthly, weekly, etc. in period.

• Apart from seasonal effects, we can find a fixed period

due to some other physical cause. Example: daily

variability in temperature.

• Both concepts are also related to periodicity.

• If seasonality or cyclic variation are not of interest, they

could be removed from the process.
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Trend

• Loosely speaking ’long term change in mean’ (20 years or

50 years?)

• A trend can be confounded with cyclic variation

depending on the number of observations in our data.

• The simplest type of trend is linear for which

Xt = α + βt + ωt.

• α and β are constants. ωt is a zero mean error.

• The mean level µt = α + βt is also known as the “trend

term”.

• Others prefer to think of β as the trend; change of the

mean level per unit of time.
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• This model is too rigid and usually inadeaquate to fit real

data.

• Consider again the Brazilian Industrial Production Index.
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• Alternatively, we could use other polynomials to represent

the mean level. For example: Xt = α + βt + δt2 + ωt or

Xt = α + βt + δt2 + γt3 + ωt.

• Still, these more general mean functions could be

inadequate in practice.

• Another idea is to use locally linear regression.

Xt = αt + βtt + ωt

• Now the parameters αt, βt are time dependent.

• This falls within the state space modeling approach.
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Lowess

• The trend can also be represented by a lowess estimator.

• This is based on locally least squares regression of the

type αt + βtt

• Lowess depends on a smoothing parameter denoted by f

which basically determines the shape of the mean

estimator.

• Different values of f must be tested before reporting a

lowess curve.

• lowess is available as an R function so further

information is available through the R help option.

> help(lowess)
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• Reference: Cleveland, W. S. (1979). Robust locally

weighted regression and smoothing scatterplots. Journal

of the American Statistical Association, 74, 829-836.

• The following Figure shows different lowess estimators for

the Brazilian IPI with f = 0.25, f = 0.5, f = 0.8 and

f = 1.0.

• Notice that when f is small the estimated mean level is

flexible.

• When f is close to one, the mean level resembles our

regression line α + βt.
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Filtering

• Another exploratory procedure for dealing with a trend.

• The data xt is converted into a “new” series yt by the

linear operation.

yt =
+s∑

j=−q

wjxt+j

• The w′

js are weights such that
∑

+s
j=−q wj = 1

• yt is considered a “smooth” version of xt.

• This operation is also known as a moving average.

• Moving averages are often symmetric; s = q and aj = a−j

• This is a weighted average of the q-previous and the

q-next observation corresponding to each xt.
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• Simplest moving average; wj = 1/(2q + 1); j = −q, . . . ,+q

• The smooth value of xt is given by

Sm(xt) =
1

2q + 1

q∑

j=−q

xt+j

• The next figure shows the Brazilian IPI with Sm(xt) for

q = 4, 8, 12, 40.
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• This moving average is not always recommended to

remove trend.

• Notice that Sm(xt) is only valid from t = q + 1 to

t = N − q; N equal to the sample size.

• Alternatively, we could use exponential smoothing

xt =
∞∑

j=0

α(1 − α)jxt−j

• α is such that 0 < α < 1 and the weights wj = α(1 − α)j

decay geometrically in j.

• This filter only involves present and past values of xt.
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Differencing

• The purpose is to remove the trend in the data.

• This technique is integral part of the so-called

Box-Jenkins methodology.

• If data is non-seasonal usually a first order difference is

sufficient.

• The first order difference of the data is defined as

zt = xt − xt−1 = ∇xt; t = 2, 3, . . . , N .

• The second difference is

∇
2xt = ∇zt = xt − 2xt−1 + xt−2; t = 3, . . . , N .

• d differences are denoted by ∇
dxt.

• Next: first, second and third differences for Brazilian IPI.
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More R code

# Moving Average function

movavg <- function(x, k)

{

m <- 2 * k + 1

n <- length(x)

y <- rep(0, n)

for(i in 1:n) {

k1 <- max( - k, (1 - i))

k2 <- min(k, (n - i))

y[i] <- mean(x[(i + k1):(i + k2)])

}

return(y)

}
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m<- read.table("braipi",skip=1)

y <- as.vector(m[,2])

# Col 2 is the IPI

ym <- matrix(NA,nrow=length(y),ncol=4)

qvals <- c(4,8,12,40)

for(i in 1:4){ym[,i] <- movavg(y,qvals[i])}

par(mfrow=c(2,2))

for(i in 1:4){plot(ym[,i],xlab="time",

ylab=" ",type="l")}

mtext("The Brazilian IPI and different moving

average smoothers",outer=T)

# Lowess Estimators

par(mfrow=c(4,1))

l <- lowess(y,f=0.25)

51



plot(y,l$y,xlab="time",ylab="IPI",type="l")

mtext("f=0.25")

l<-lowess(y,f=0.5)

plot(y,l$y,xlab="time",ylab="IPI",type="l")

mtext("f=0.5")

l<-lowess(y,f=0.8)

plot(y,l$y,xlab="time",ylab="IPI",type="l")

mtext("f=0.8")

l<-lowess(y,f=1.0)

plot(y,l$y,xlab="time",ylab="IPI",type="l")

mtext("f=1.0")

mtext("Lowess estimators of trend for

Brazilian IPI data",outer=T)
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