Seasonal variation

e “Variation in the data that is annual in period. For
example, unemployment is typically ’high’ in the winter

but lower in the summer.”

Seasonality also refers to variation that is quarterly,

monthly, weekly, etc. in period.

Apart from seasonal effects, we can find a fixed period
due to some other physical cause. Example: daily

variability in temperature.

Both concepts are also related to periodicity.

If seasonality or cyclic variation are not of interest, they

could be removed from the process.




Trend

e Loosely speaking ’long term change in mean’ (20 years or

50 years?)

A trend can be confounded with cyclic variation

depending on the number of observations in our data.

The simplest type of trend is linear for which
X = a+ 8t + wy.

o and § are constants. w; IS a zero mean error.

The mean level yu; = a + St is also known as the “trend

term” .

Others prefer to think of 3 as the trend; change of the

mean level per unit of time.




e This model is too rigid and usually inadeaquate to fit real
data.

e Consider again the Brazilian Industrial Production Index.
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Alternatively, we could use other polynomials to represent

the mean level. For example: X; = o + Bt + 6t* 4+ w; or
X; = a+ Bt + 6t? +4t° + wy.

Still, these more general mean functions could be

inadequate in practice.

Another idea is to use locally linear regression.
Xt = ap + Ot + wy

Now the parameters a4, 5; are time dependent.

This falls within the state space modeling approach.




Lowess

The trend can also be represented by a lowess estimator.

This is based on locally least squares regression of the
type a¢ + Ot

Lowess depends on a smoothing parameter denoted by f
which basically determines the shape of the mean

estimator.

Different values of f must be tested before reporting a

lowess curve.

lowess is available as an R function so further

information is available through the R help option.

> help(lowess)




e Reference: Cleveland, W. S. (1979). Robust locally
weighted regression and smoothing scatterplots. Journal
of the American Statistical Association, 74, 829-836.

e The following Figure shows different lowess estimators for
the Brazilian IPI with f = 0.25, f = 0.5, f = 0.8 and
f =1.0.

e Notice that when f is small the estimated mean level is
flexible.

e When f is close to one, the mean level resembles our

regression line o + [3t.







Filtering
e Another exploratory procedure for dealing with a trend.

e The data x; is converted into a “new” series y; by the

linear operation.

+s
Yo = D Wit
J=—q

The w;-S are weights such that ijs_q w; = 1

y; is considered a “smooth” version of x;.
This operation is also known as a moving average.
Moving averages are often symmetric; s = g and a; = a_;

This is a weighted average of the g-previous and the

g-next observation corresponding to each x;.




e Simplest moving average; w; =1/(2¢+1);j = —q,...,+q

e The smooth value of z; is given by

1 q

J=—q

e The next figure shows the Brazilian IPI with Sm/(x;) for
g =4,8,12,40.
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This moving average is not always recommended to

remove trend.

Notice that Sm(x;) is only valid from t = ¢+ 1 to
t = N —q; N equal to the sample size.

Alternatively, we could use exponential smoothing

o
Ty = Zoz(l —a)zy_
j=0

« is such that 0 < a < 1 and the weights w; = a(1 — Oz)j

decay geometrically in j.

This filter only involves present and past values of z;.




Differencing

The purpose is to remove the trend in the data.

This technique is integral part of the so-called
Box-Jenkins methodology.

If data is non-seasonal usually a first order difference is

sufficient.

The first order difference of the data is defined as
_t — Xt — Tp—1 — th;t: 2,3,...,N.

The second difference is
Vzlljt — VZt = Xt — 23375_1 —|—33t_2;t — 3, ,N.

d differences are denoted by V%x;.

Next: first, second and third differences for Brazilian IPI.
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More R code

# Moving Average function
movavg <- function(x, k)

{

2 x k + 1
length(x)
rep(0, n)

for(i in 1:n)
k1 <- max( - k, (1 - 1))
k2 <- min(k, (n - 1))
y[i] <- mean(x[(i + k1):(i + k2)])
t

return(y)




m<- read.table("braipi",skip=1)

y <- as.vector(m[,2])

# Col 2 is the IPI

ym <- matrix(NA,nrow=length(y),ncol=4)
gvals <- c(4,8,12,40)

for(i in 1:4){ym[,i] <- movavg(y,qvals[i])}
par (mfrow=c(2,2))

for(i in 1:4){plot(ym[,i],xlab="time",
ylab=" ",type="1")}

mtext ("The Brazilian IPI and different moving

average smoothers",outer=T)
# Lowess Estimators

par (mfrow=c(4,1))

1 <- lowess(y,f=0.25)




plot(y,18$y,xlab="time",ylab="IPI", type="1")
mtext ("£f=0.25")

1<-lowess(y,£=0.5)
plot(y,18y,xlab="time",ylab="IPI", type="1")
mtext ("£=0.5")

1<-lowess(y,f=0.8)
plot(y,1$y,xlab="time",ylab="IPI",type="1")

mtext ("f=0.8")

1<-lowess(y,f=1.0)
plot(y,1$y,xlab="time",ylab="IPI",type="1")
mtext ("f=1.0")

mtext ("Lowess estimators of trend for

Brazilian IPI data",outer=T)




