
Stationarity

• This is a very important concept in T.S. Most of the

theory in T.S. is based on stationarity.

• For state space models, we will relax this assumption.

• We have two types of stationarity.

• Second order stationarity: The mean is constant in

time and the covariance is a function of the difference in

time between observations

E(Xt) = µ; Cov(Xt,Xs) = f(|t − s|)

• Autocovariance function: For a second order

stationary process, this is defined as

Cov(Xt,Xt+h) = Cov(Xt,Xt−h) = γ(h)
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• Strict Stationarity: The probability distribution of

Xt1 ,Xt2 , . . . Xtn is invariant for any time shift of size δ

p(xt1 , xt2 , . . . , xtn) = p(xt1+δ, xt2+δ, . . . , xtn+δ)

• Strict stationarity implies second order stationarity. For

n = 1, p(xt) = p(xt+δ), then E(Xt) = µ. For n = 2,

p(xt, xs) = p(xt+h, xs+h)

• The reverse statement is not true except when we have a

Gaussian process Xt

25



Autocovariance and autocorrelation

• The concepts of autocovariance and autocorrelation are

key to formulate time series models for stationary

processes.

• The main utility of these functions, is that they can help

us identify a time series process.

• We’ll discuss these points further when we introduce

ARMA models.

• As before, the theoretical autocovariance of a (second

order or weak) stationary process Xt is defined as:

γ(h) = cov{Xt,Xt+h} = E(Xt − µ)(Xt+h − µ)

• µ is the overall mean of Xt
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• h is a positive integer that represents the “hth-lag”.

• By extension, the theoretical autocorrelation function of

Xt is defined in terms of the autocovariance as:

ρ(h) = γ(h)/γ(0)

• This implies that ρ(h) is between −1 and 1.

• Alternatively and since we are assumning stationarity, we

could replace Xt+h by Xt−h in the above definitions.

• γ(h) and ρ(h) are measures of the dependency between

observations separated by h units of time.

• Based on a realization xt of a time series process, to

estimate the theoretical autocovariance function we use
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gh =
n∑

t=h+1

(xt − x)(xt−h − x)/n; h = 0, 1, . . .

• x is the sample mean.

• To estimate the autocorrelation function at lag h, we use

rh = gh/g0; h = 0, 1, . . .

• It is important to realize that gh is only formed with

n − h terms divided into n.

• If we use n − h as a divisor instead of n, we could finish

with estimated autocorrelations (i.e. values of rh ) that

are greater than one or less than −1.

• To visualize the dependencies of xt for different lags h,

we use the Correlogram.
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• A correlogram is a plot of h (x-axis) versus its

corresponding value of rh (y-axis).

• The correlogram may exhibit patterns and different

degrees of dependency in a time series.

• A “band”of size 2/
√

n is added to the correlogram

because asymptotically rh ∼ N(0, 1/n) if the data is close

to a white noise process.

• This band is used to detect significant autocorrelations,

i.e. autocorelations that are different from zero.
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Example

• 500 simulated observations of a white noise process

(N(0,1)).

• Using the function acf in R, we may plot the

autocorrelation function for different lags.

x <- rnorm(500)

par(mfrow=c(2,2))

lg <- c(25,50,100,200)

for(i in 1:4){acf(x,lag=lg[i])}

mtext("Correlogram for white noise data at

different lags",outer=T)

• notice that ocassionally we will have autocorrelations

outside the confidence band.
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Example

• 400 EEG recordings.

• First we will see the time series plot.

• Picture of the ACF was obtained for lags 25,50,100 and

200.

y <- scan("eeg")

y <- as.ts(y)

plot(y,ylab="EEG")

par(mfrow=c(2,2))

lg <- c(25,50,100,200)

for(i in 1:4){acf(y,lag=lg[i])}

mtext("Correlograms for EEG",outer=T)
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• Notice that in this last example, the correlogram exhibits

cyclic variation.

• This ACF cyclic variation is the same as for the time

series.

• For example, with monthly data if r6 is ’large’ and

positive then r12 is ’large’ and negative.

• If xt follows a sinusoidal pattern, rh also follows this

pattern.

• For example, if xt = A cos(ωt) where A is a constant, ω

is frequency where 0 < ω < π,

rh ≈ cos(hω)
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