Stationarity

This is a very important concept in T.S. Most of the
theory in T.S. is based on stationarity.

For state space models, we will relax this assumption.
We have two types of stationarity.

Second order stationarity: The mean is constant in
time and the covariance is a function of the difference in

time between observations
BE(Xy) =p;  Cov(Xy, Xs) = f(|t — s|)

Autocovariance function: For a second order

stationary process, this is defined as

Cov(Xy, Xeap) = Cov( Xy, Xi—pn) = v(h)




e Strict Stationarity: The probability distribution of
Xy, Xty, ... Xg, 18 invariant for any time shift of size 9
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e Strict stationarity implies second order stationarity. For
n =1, p(x;) = p(zt1s), then E(X;) = pu. For n = 2,
p(t, Ts) = P(Tt4n, Tsth)

e The reverse statement is not true except when we have a

Gaussian process X;




Autocovariance and autocorrelation

The concepts of autocovariance and autocorrelation are
key to formulate time series models for stationary

processes.

The main utility of these functions, is that they can help

us identify a time series process.

We’ll discuss these points further when we introduce
ARMA models.

As before, the theoretical autocovariance of a (second

order or weak) stationary process X; is defined as:

V(h) = cov{ Xy, Xevn} = E(Xy — p)(Xewn — p)

1t is the overall mean of X;




h is a positive integer that represents the “hth-lag”.

By extension, the theoretical autocorrelation function of

X; 1s defined in terms of the autocovariance as:

p(h) =~ (h)/~(0)
This implies that p(h) is between —1 and 1.

Alternatively and since we are assumning stationarity, we

could replace X;yp, by X;_p in the above definitions.

v(h) and p(h) are measures of the dependency between

observations separated by h units of time.

Based on a realization x; of a time series process, to

estimate the theoretical autocovariance function we use




n

dgh = Z (xt—f)(xt_h—f)/n; h=0,1,...
t=h+1

T is the sample mean.

To estimate the autocorrelation function at lag h, we use
rn = 9gn/g0; h=0,1,...

It is important to realize that g; is only formed with

n — h terms divided into n.

If we use n — h as a divisor instead of n, we could finish

with estimated autocorrelations (i.e. values of rp ) that

are greater than one or less than —1.

To visualize the dependencies of x; for different lags h,

we use the Correlogram.




A correlogram is a plot of h (x-axis) versus its

corresponding value of 7 (y-axis).

The correlogram may exhibit patterns and different

degrees of dependency in a time series.

A “band”of size 2/4/n is added to the correlogram

because asymptotically r, ~ N(0,1/n) if the data is close

to a white noise process.

This band is used to detect significant autocorrelations,

i.e. autocorelations that are different from zero.




Example

e 500 simulated observations of a white noise process
(N(0,1)).

e Using the function acfin R, we may plot the

autocorrelation function for different lags.

x <= rnorm(500)

par (mfrow=c(2,2))

lg <- ¢(25,50,100,200)

for(i in 1:4){acf(x,lag=1glil)}

mtext ("Correlogram for white noise data at

different lags",outer=T)

e notice that ocassionally we will have autocorrelations

outside the confidence band.
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Example
e 400 EEG recordings.
e First we will see the time series plot.

e Picture of the ACF was obtained for lags 25,50,100 and
200.

y <- scan("eeg")

y <- as.ts(y)
plot(y,ylab="EEG")

par (mfrow=c(2,2))

lg <- ¢(25,50,100,200)

for(i in 1:4){acf(y,lag=1lglil)}

mtext ("Correlograms for EEG",outer=T)
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Notice that in this last example, the correlogram exhibits

cyclic variation.

This ACF cyclic variation is the same as for the time

series.

For example, with monthly data if r¢ is ’large’ and

positive then ris is ’'large’ and negative.

If z; follows a sinusoidal pattern, r; also follows this

pattern.

For example, if x; = A cos(wt) where A is a constant, w

is frequency where 0 < w < T,

ry, & cos(hw)




