SOI data example. 540 monthly values, 1950-1995

e This series is computed as the “difference of the
departure from the long-term monthly mean sea level
pressures” at Tahiti in the South Pacific and Darwin in

Northern Australia.

The index is one measure of the so-called ” El

Nino-Southern Oscillation”.

The fact that most of the observations in the last part of
the series take negative values has been related to a

recent warming in the tropical Pacific.

A key question is to determine how unusual the event is,

and if it can reasonably be explained by standard

"stationary” time series models.
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Results for ‘“ar’” function

a$order [1] 10
round (a$ar,digits=2)

[1] 0.42 0.18 0.09 0.09 0.04 0.07 -0.03 -0.05
0.01 -0.11

a$order.max 27

a$var.pred 1.65

m[order(w)] 0.89 0.78 0.74 0.79 0.78
wlorder(w)] 0.17 0.94 1.50 2.14 2.84
2*%pi/wlorder(w)] 36.74 6.67 4.18 2.93 2.21
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Plot by pairs of samples for ¢; — ¢19
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Posterior samples of reciprocal roots (r;,\;)
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SOI data and 4 draws from the predictive dist.
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SOI data and MSE forecasts
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Estimation for ARMA models
e Recall than an ARMA(p,q) is defined by the expression

(I)(B)Xt — @(B)Et

or equivalently as

€ = 0161+ ...+ qut_q + Xt — 01 Xe 1 — ... — gprt—p

e Under the assumption of Normality and independence for
the errors, (¢; ~ N(0,0°) ) the log-likelihood of the
ARMA model is

1(,0,0%) = —(n/2)log(2m0?) — Ze%

e Notice that ¢ depends on ¢1,...,¢,,01,...,0,1n a

complicated way.
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To find the MLE for the model parameters numerical

optimization is required.

In R we can use the function arima to fit an ARMA to
data.

arima(x,order=c(1,1))

# Fits an ARMA(1,1) to x
arima(x,order=c(1,1,1))

# Fits an ARIMA(1,1,1) to x

As with the AR model there is some form of conditioning

to initial values.

If m = max{p, q}, it is assumed that the initial data

values x1, 29, ...x,, and the initial errors €1, €9, ... €, are

completely known.
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Usually these error are set equal to zero, i.e.
et =0,t=1,2,....m

As an example, we consider a smooth version of the

Darwin sea level pressure series (data file “darwin2”).

The annual cycle was removed and each data point is
average over adjacent 3 month periods MAM, JJA, SON,
DJF.

In a paper by Trenberth and Hoar (1996) The 1990-1995
El Nino-Southern oscillation event: Longest in Record.
Geophysical Research Letters, 23, 57-60.), an ARMA(3,1)

model was considered for this data.
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Darwin data
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x=scan(‘ ‘darwin2’’)

x=x-mean (x)

arma3l=arima(x,order=c(3,0,1),include.mean=F)

names (arma31)

"coef" "sigma2" "var.coef"

"loglik" "aic" "residuals"

# MLE results

round (arma31$coef ,digits=2)
arl ar2 ar3 mal
1.28 -0.32 -0.14 -0.71

se 0.16 0.13 0.06 0.16

round (arma31$sigma2,digits=2)
0.43
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Method of Moments

e For a method of moments approach consider the MA(1)

model Xt = €t — 9675_1.

From previous calculations for the ACF, we have that

p1=—0/(1+6%).

If we substitute p1, for pi, and solve the quadratic
equation for 6, we get that the MOM estimator is

- (—1 + /1 —45%) 1261

For p1 = 0.5 we have a unique solution 6 = —1/2p;

However there is no real solution if |p1| > 0.5.

There are two solutions if |g1]| < 0.5.
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e In general, the MOM estimator for ARMA models with
g > 1 is not used.

e Given that the model equation of an ARMA process

depends on both the X/s and the lagged €}s, we cannot

use our multiple linear regression framework for Bayesian

analysis.
Forecasting
e Forecasting is similar to the AR case.

e We consider the infinite MA representation for the
ARMA model,
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e It can be shown that the optimal MSE forecast for X;

is EF(X¢1p|Xn, Xn_1,...), the conditional expectation of

X1k given the data.

e Using R, for the Darwin data example the MSE forecasts

for the next 100 time periods are computed as

darwin.fr=predict(arma3l,n.ahead=100)
plot(c(x,darwin.fr$pred) ,type=’1’ ,xlab="time’)
lines(401:500,darwin.fr$pred+2*darwin.fr$se)
lines(401:500,darwin.fr$pred-2*darwin.fr$se)
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e We can simulate values of the process conditional on the
MLE using the function arima.sim and treat them as a

sample of “future” values.

e Formally this does not produce samples of the predictive

distribution.

err=rnorm(400,mean=0,sd=sqrt(arma31$sigma?))
arcf=arma31$coef [1:3]

macf=arma31$coef [4]

sim=arima.sim(400,model=1ist (ar=arcf,ma=macf),innov=efr)
sim=matrix(sim,4,100,byrow=T)

par (mfrow=c(4,1))

for(i in 1:4){plot(c(x,sim[i,]),axes=F,type="1",

xlab=’ ’,ylab=’ ’);abline(v=400)}
axis(1)
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Diagnostics

e The main difference with respect to the AR analysis is

the computation of the residuals.

Conditional on initial values, the residuals are obtained

recursively from the expression

€t — (9A1€t_1 + ...+ éqet_q -+ Xt — ¢A1Xt_1 — ... QbApXt—p

#Residuals for Darwin example

arma31$residuals; tsdiag(arma31l)

A white noise test can be applied to these residuals or

the Portmanteau (Box-Liung) test.

The degrees of freedom for the chi-square test statistic
are K — (p + q) instead of K — p.
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Standardized Residuals
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Selection of p and ¢
e We can use AIC and BIC as with AR models. For ARMA

models we a have functions of two arguments p and q.

AIC = —ZZog(L(qg, é, 02)) +2(p + q);
BIC = —2log(L(¢,0,02)) + log(n*)(p + q)

e The common sample size n* must be large enough so we
can fit an ARMA (p*,q*) where p* and ¢* are upper

bounds for p and g respectively.

e An ARMA(3,0) and an ARMA(2,0) models were also
considered in this paper by Trenberth and Hoar.
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arma3l=arima(x,order=c(3,0,1) ,n.cond=4)
arma30=arima(x,order=c(3,0,0) ,n.cond=4)
arma20=arima(x,order=c(2,0,0) ,n.cond=4)

arma31$aic

814.3246

arma308$aic

817.3109

arma20$aic

823.6855

e The minimum value of AIC is for the ARMA(3,1) model.
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