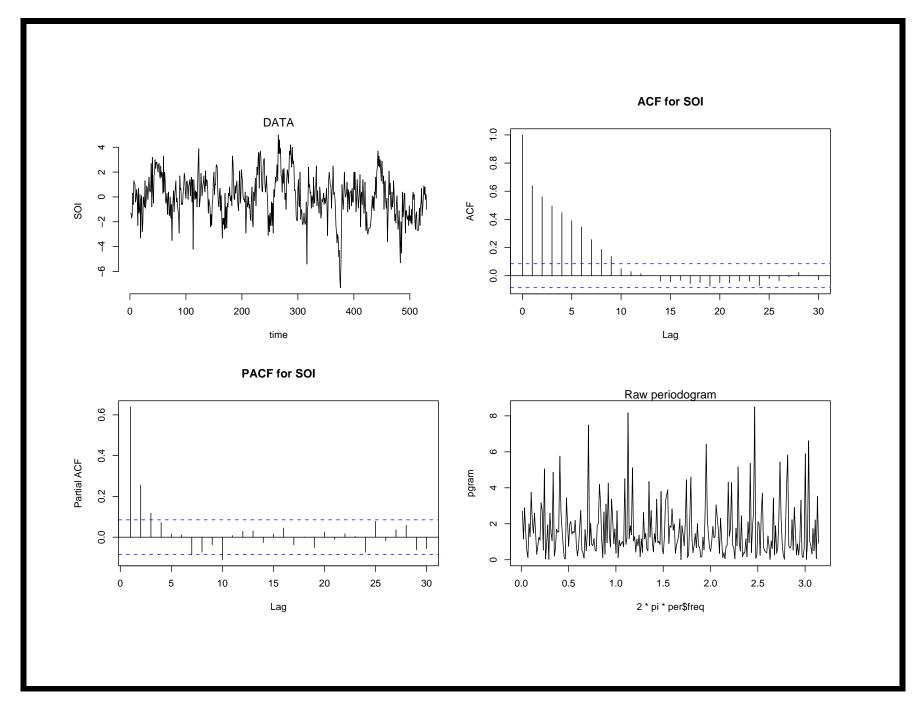
SOI data example. 540 monthly values, 1950-1995

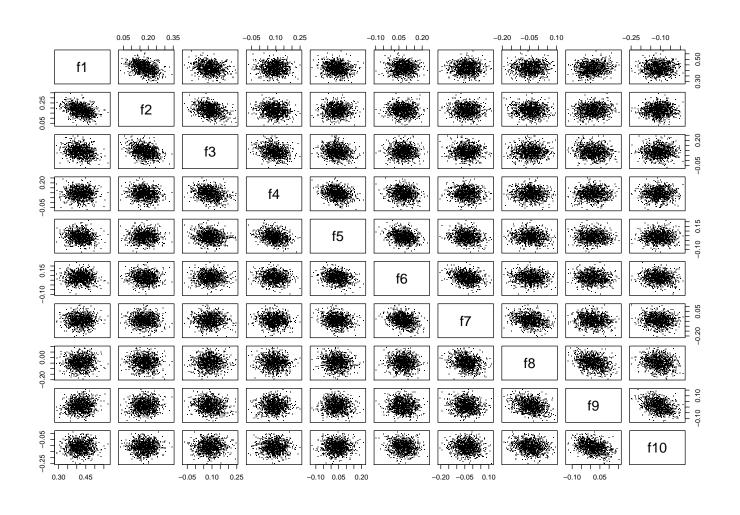
- This series is computed as the "difference of the departure from the long-term monthly mean sea level pressures" at Tahiti in the South Pacific and Darwin in Northern Australia.
- The index is one measure of the so-called "El Nino-Southern Oscillation".
- The fact that most of the observations in the last part of the series take negative values has been related to a recent warming in the tropical Pacific.
- A key question is to determine how unusual the event is, and if it can reasonably be explained by standard "stationary" time series models.

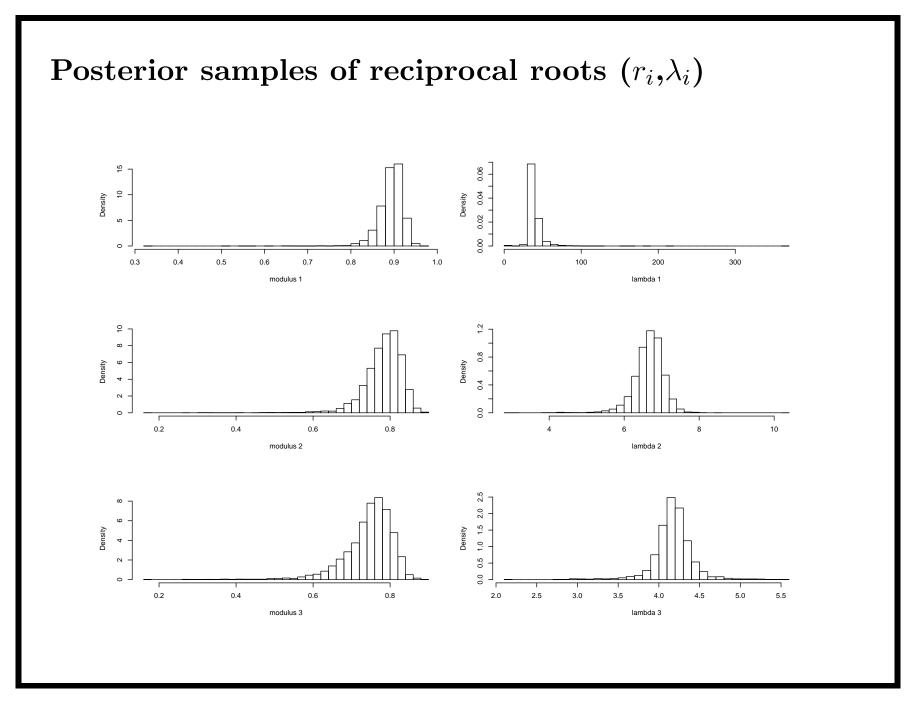


```
Results for "ar" function
```

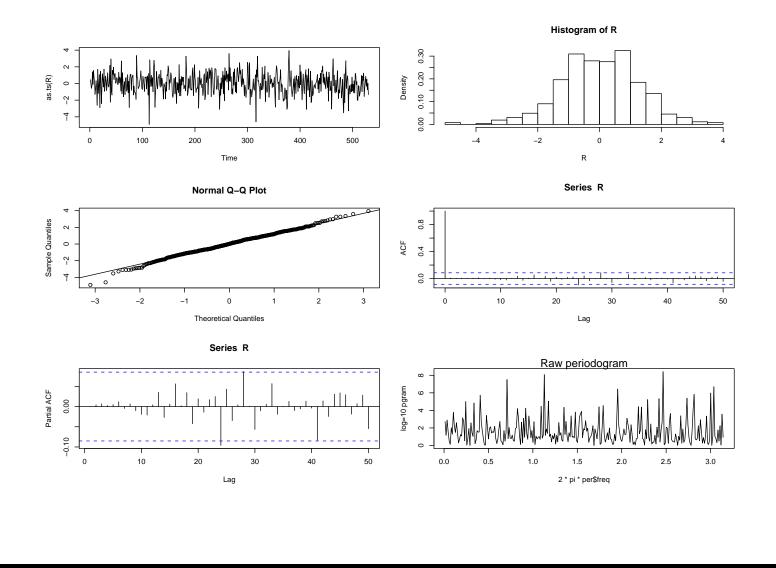
```
a$order [1] 10
round(a$ar,digits=2)
  [1] 0.42 0.18 0.09 0.09 0.04 0.07 -0.03 -0.05
0.01 -0.11
  a$order.max 27
a$var.pred   1.65
  m[order(w)]   0.89 0.78 0.74 0.79 0.78
  w[order(w)]   0.17 0.94 1.50 2.14 2.84
2*pi/w[order(w)]   36.74 6.67 4.18 2.93 2.21
```

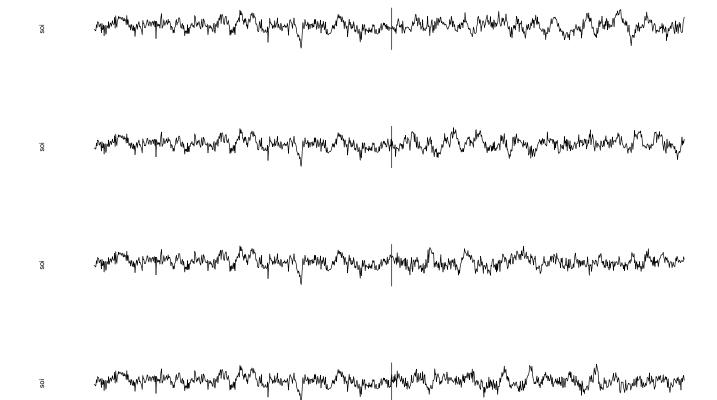
Plot by pairs of samples for $\phi_1 - \phi_{10}$



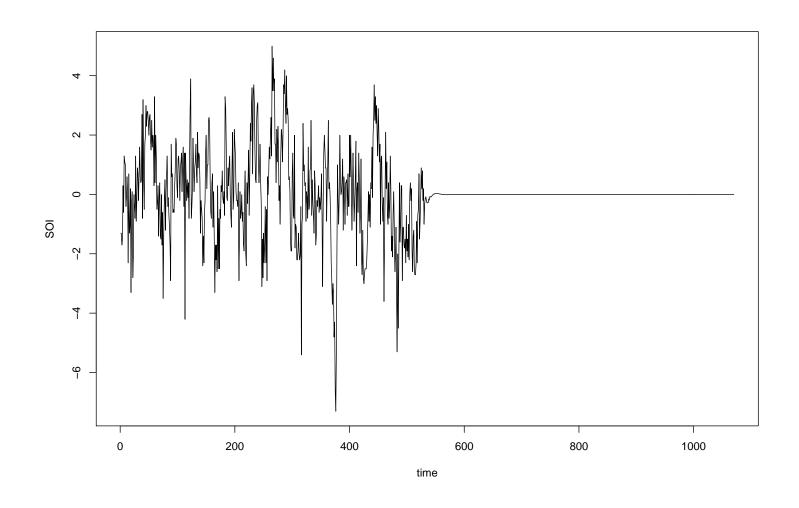


Plots based on residuals





SOI data and MSE forecasts



Estimation for ARMA models

• Recall than an ARMA(p,q) is defined by the expression

$$\Phi(B)X_t = \Theta(B)\epsilon_t$$

or equivalently as

$$\epsilon_t = \theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q} + X_t - \phi_1 X_{t-1} - \ldots - \phi_p X_{t-p}$$

• Under the assumption of Normality and independence for the errors, $(\epsilon_t \sim N(0, \sigma^2))$ the log-likelihood of the ARMA model is

$$l(\phi, \theta, \sigma^2) = -(n/2)log(2\pi\sigma^2) - \sum_{t=1}^{n} \epsilon_t^2$$

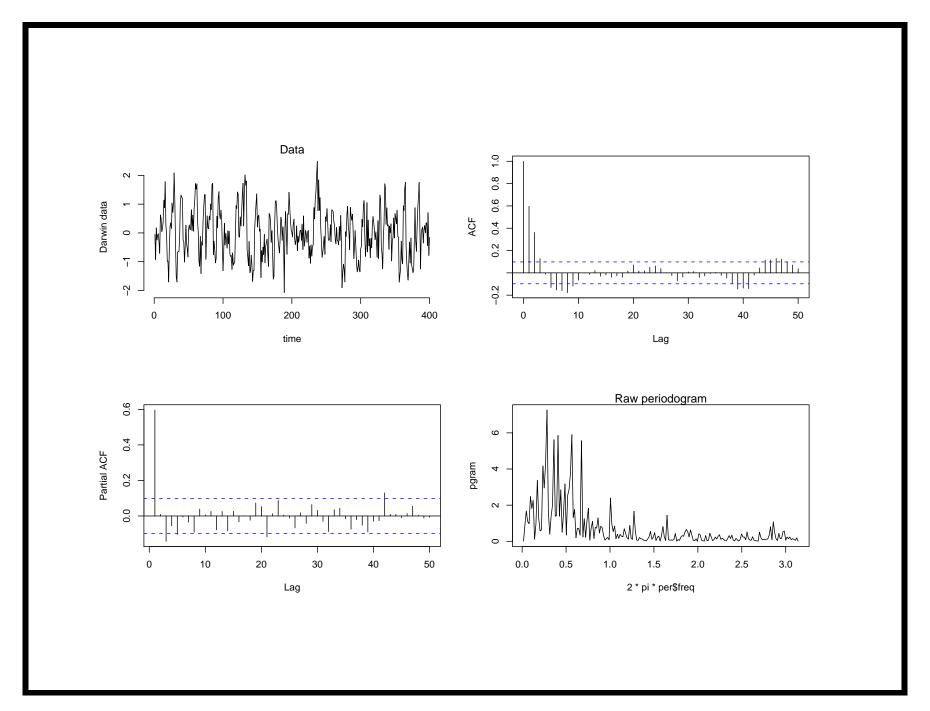
• Notice that ϵ_t depends on $\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$ in a complicated way.

- To find the MLE for the model parameters numerical optimization is required.
- In R we can use the function *arima* to fit an ARMA to data.

```
arima(x,order=c(1,1))
# Fits an ARMA(1,1) to x
arima(x,order=c(1,1,1))
# Fits an ARIMA(1,1,1) to x
```

- As with the AR model there is some form of conditioning to initial values.
- If $m = max\{p, q\}$, it is assumed that the initial data values $x_1, x_2, \dots x_m$ and the initial errors $\epsilon_1, \epsilon_2, \dots \epsilon_m$ are completely known.

- Usually these error are set equal to zero, i.e. $\epsilon_t = 0, t = 1, 2, \dots, m$
- As an example, we consider a smooth version of the Darwin sea level pressure series (data file "darwin2").
- The annual cycle was removed and each data point is average over adjacent 3 month periods MAM, JJA, SON, DJF.
- In a paper by Trenberth and Hoar (1996) The 1990-1995 El Niño-Southern oscillation event: Longest in Record. Geophysical Research Letters, 23, 57-60.), an ARMA(3,1) model was considered for this data.



```
x=scan(''darwin2'')
x=x-mean(x)
arma31=arima(x,order=c(3,0,1),include.mean=F)
names(arma31)
"coef" "sigma2" "var.coef"
"loglik" "aic" "residuals"
# MLE results
round(arma31$coef,digits=2)
   ar1 ar2 ar3 ma1
    1.28 - 0.32 - 0.14 - 0.71
 se 0.16 0.13 0.06 0.16
round(arma31$sigma2,digits=2)
0.43
```

Method of Moments

- For a method of moments approach consider the MA(1) model $X_t = \epsilon_t \theta \epsilon_{t-1}$.
- From previous calculations for the ACF, we have that $\rho_1 = -\theta/(1+\theta^2)$.
- If we substitute $\hat{\rho_1}$, for ρ_1 , and solve the quadratic equation for θ , we get that the MOM estimator is

$$\hat{\theta} = \left(-1 \pm \sqrt{1 - 4\hat{\rho}_1^2}\right) / 2\hat{\rho}_1$$

- For $\hat{\rho}_1 = 0.5$ we have a unique solution $\hat{\theta} = -1/2\hat{\rho}_1$
- However there is no real solution if $|\hat{\rho_1}| > 0.5$.
- There are two solutions if $|\hat{\rho_1}| < 0.5$.

- In general, the MOM estimator for ARMA models with $q \ge 1$ is not used.
- Given that the model equation of an ARMA process depends on both the X'_ts and the lagged ϵ'_ts , we cannot use our multiple linear regression framework for Bayesian analysis.

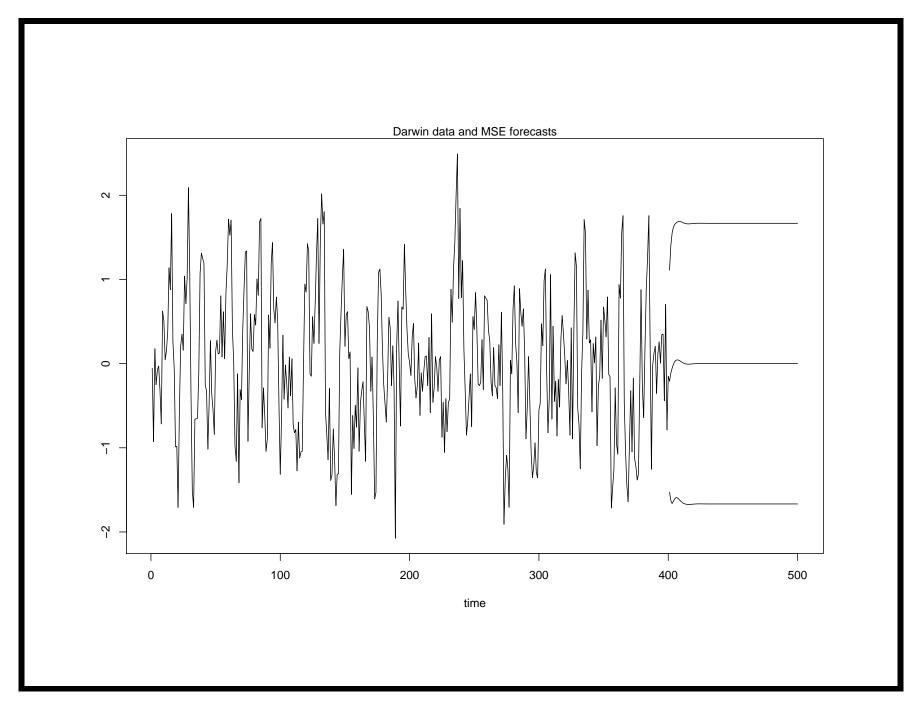
Forecasting

- Forecasting is similar to the AR case.
- We consider the infinite MA representation for the ARMA model,

$$X_t = (\phi(B))^{-1}\theta(B)\epsilon_t = \sum_{j=0}^{\infty} a_j \epsilon_{t-j}$$

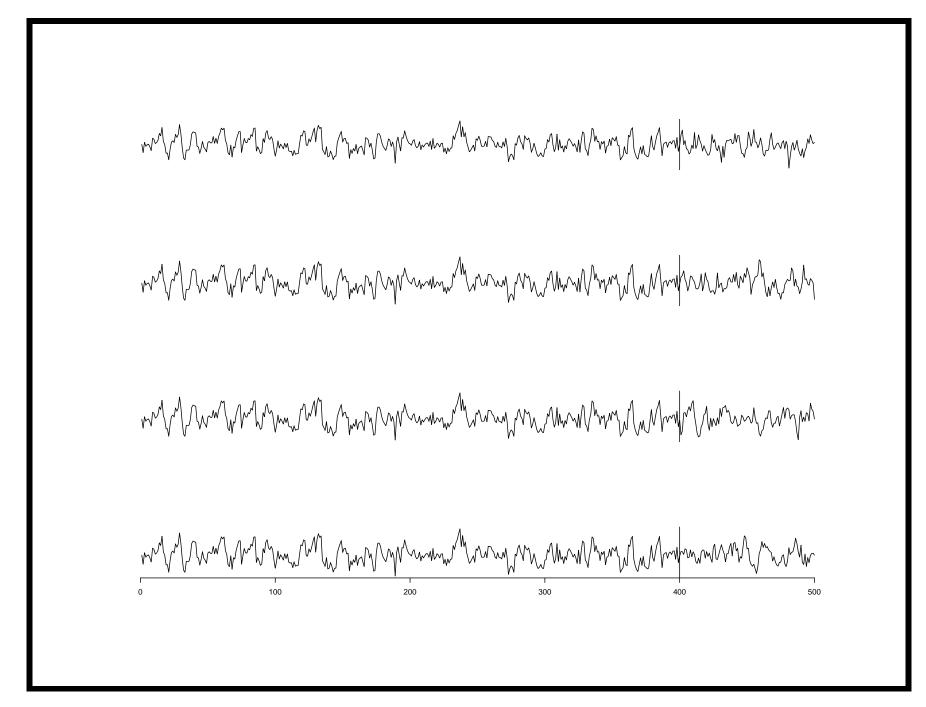
- It can be shown that the optimal MSE forecast for X_{t+k} is $E(X_{t+k}|X_n, X_{n-1}, ...)$, the conditional expectation of X_{t+k} given the data.
- Using R, for the Darwin data example the MSE forecasts for the next 100 time periods are computed as

```
darwin.fr=predict(arma31,n.ahead=100)
plot(c(x,darwin.fr$pred),type='l',xlab='time')
lines(401:500,darwin.fr$pred+2*darwin.fr$se)
lines(401:500,darwin.fr$pred-2*darwin.fr$se)
```



- We can simulate values of the process conditional on the MLE using the function arima.sim and treat them as a sample of "future" values.
- Formally this does not produce samples of the predictive distribution.

```
err=rnorm(400,mean=0,sd=sqrt(arma31$sigma2))
arcf=arma31$coef[1:3]
macf=arma31$coef[4]
sim=arima.sim(400,model=list(ar=arcf,ma=macf),innov=err)
sim=matrix(sim,4,100,byrow=T)
par(mfrow=c(4,1))
for(i in 1:4){plot(c(x,sim[i,]),axes=F,type='l',
xlab=' ',ylab=' ');abline(v=400)}
axis(1)
```



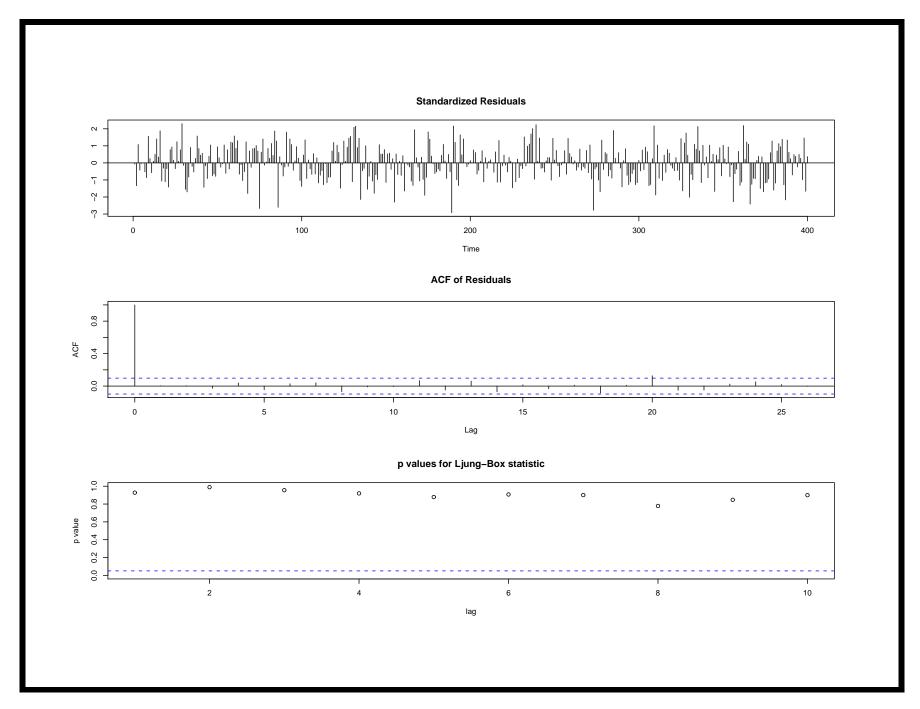
Diagnostics

- The main difference with respect to the AR analysis is the computation of the residuals.
- Conditional on initial values, the residuals are obtained recursively from the expression

$$\epsilon_t = \hat{\theta_1} \epsilon_{t-1} + \ldots + \hat{\theta_q} \epsilon_{t-q} + X_t - \hat{\phi_1} X_{t-1} - \ldots - \hat{\phi_p} X_{t-p}$$

#Residuals for Darwin example arma31\$residuals; tsdiag(arma31)

- A white noise test can be applied to these residuals or the Portmanteau (Box-Liung) test.
- The degrees of freedom for the chi-square test statistic are K (p + q) instead of K p.



Selection of p and q

• We can use AIC and BIC as with AR models. For ARMA models we a have functions of two arguments p and q.

$$AIC = -2log(L(\hat{\phi}, \hat{\theta}, \sigma^2)) + 2(p+q);$$

$$BIC = -2log(L(\hat{\phi}, \hat{\theta}, \sigma^2)) + log(n^*)(p+q)$$

- The common sample size n^* must be large enough so we can fit an ARMA (p^*,q^*) where p^* and q^* are upper bounds for p and q respectively.
- An ARMA(3,0) and an ARMA(2,0) models were also considered in this paper by Trenberth and Hoar.

```
arma31=arima(x,order=c(3,0,1),n.cond=4)
arma30=arima(x,order=c(3,0,0),n.cond=4)
arma20=arima(x,order=c(2,0,0),n.cond=4)
arma31$aic
814.3246
arma30$aic
817.3109
arma20$aic
823.6855
```

• The minimum value of AIC is for the ARMA(3,1) model.