Settings for a Binary-Binomial response model

• Sample of target population. Each individual is independent and classified by *success, failure*.

Response	Predictors fo	r each individual
Y1=0	x11,x12,	,x1p
Y2=0	x21,x22,	, x2p
Y3=1	x31,x32,	, x3p

Individuals with same values for X₁, X₂, ..., X_p are grouped.

Group	Response
n1	Y1
n2	Y2
n3	YЗ

• n_i number of individuals, Y_i no. of successes for group *i*.

- Each group has an equal set of predictor variables. (dose-response experiment)
- For example, all individuals in group *i* have the same "age".
 - Few replicates of X_1, X_2, \ldots, X_p .
 - Data reported as 0 1
- Case 1: Binary non-replicated data.
- Case 2: Grouped data model or stratified Binomial model.
 - Observations grouped at covariate levels
 - Group sizes *n_i* much larger than 1.
- The MLEs of β₀, β₁,..., β_p do not depend on individuals begin grouped with covariates or not.

Distributional results on Binary/Binomial models

• If sample size large $(n = n_1 + n_2 + \ldots + n_N)$, then

$$\hat{\beta}_i \approx N(\beta_i, Var(\hat{\beta}_i))$$

- Typically $Var(\hat{\beta}_i)$ are obtained by software package.
- An approximate 95% confidence interval for β_i is

 $\hat{\beta}_i \pm (1.96)SE(\hat{\beta}_i).$

• To test $H_0: \beta_i = 0$ vs $H_a: \beta_i \neq 0$,

$$Z = \frac{\hat{\beta}_i - 0}{SE(\hat{\beta}_i)}$$

which is approximately a N(0, 1).

If z_{obs} is the observed value of Z, p-value=2P(Z > z_{obs}).
SAS reports Z² ≈ χ²₍₁₎

- Saturated model. Model with the the maximum number of parameters that can be estimated.
- Y₁, Y₂,..., Y_N are independent and Y_i ~ Binomial(n_i, π_i), log-likelihood is (except for constant),

$$I(\beta; Y) = \sum_{i=1}^{N} [y_i \log(\pi_i) - y_i \log(1 - \pi_i) + n_i \log(1 - \pi_i)]$$

- Saturated model: All $\pi'_i s$ are different and $\beta = (\pi_1, \pi_2, \dots, \pi_N)^T$
- The maximum likelihood estimates are $\hat{\pi}_i = y_i/n_i$ (b_{max}).
- The max. log-likelihood is

$$I(b_{max}; Y) = \sum_{i=1}^{N} [y_i \log(y_i/n_i) - y_i \log(1 - (y_i/n_i)) + n_i \log(1 - (y_i/n_i))]$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- For model with $\rho < N$ parameters, estimates $\hat{\pi}_i$.
- Fitted values, $\hat{y}_i = n_i \hat{\pi}_i$
- The log-likelihood,

1

$$I(b; Y) = \sum_{i=1}^{N} [y_i log(\hat{y}_i/n_i) - y_i log(1 - (\hat{y}_i/n_i)) + n_i log(1 - (\hat{y}_i/n_i))]$$

• The deviance (textbook)

$$D = 2[I(b_{max}; Y) - I(b; Y)]$$

=
$$2\sum_{i=1}^{N} \left[y_i \log\left(\frac{y_i}{\hat{y}_i}\right) + (n_i - y_i) \log\left(\frac{n_i - y_i}{n_i - \hat{y}_i}\right) \right]$$

• *D's* approximate sampling distribution is *chi-square*.

・ ロ と ・ 日 と ・ 日 と ・ 日 と

• R computes the null deviance. For all i

$$g(\pi_i) = \beta_0 \to \hat{\pi} = g^{-1}(\hat{\beta}_0)$$

- Fitted values $\hat{y}_i = n_i \hat{\pi}$
- Null deviance:

$$-2\sum_{i=1}^{N}\left[y_{i}log(\hat{\pi})+(n_{i}-y_{i})log(1-\hat{\pi})+\binom{n_{i}}{y_{i}}\right]$$

with degrees of freedom N - 1.

Residual deviance:

$$g(\pi_i) = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_p X_{pi}$$

• $\hat{\pi}_i$ are estimated with covariates and $\hat{y}_i = n_i \hat{\pi}_i$

Residual deviance:

$$D = -2\sum_{i=1}^{N} \left[y_i log(\hat{\pi}_i) + (n_i - y_i) log(1 - \hat{\pi}_i) + \binom{n_i}{y_i} \right]$$

with degrees of freedom N - (p + 1).

 Hypothesis testing: H₀ : β₁ = β₂ = ... = β_p = 0 vs. H₁ : at least one β_i ≠ 0.

D^{*} = Null deviance – Residual deviance

dof = (N - 1) - (N - (p + 1)) = p.

• D^* approximately follows a $\chi^2_{(p)}$.

 Alternatively if we just focus on the **Residual deviance** (grouped Binomial case),

$$dof = (n_1 + n_2 + \ldots + n_N) - (p + 1)$$

or dof = no. of covariate combinations – no. of estimated regression coefficients.

- In general, large values of D imply model lack of fit.
- *D* not testing for Binomial assumption of the data.
- *D* testing if one or more predictors have been omitted from the model.
- p-value for D: $P[D > D_{obs}]$ obtained from $\chi^2_{(dof)}$.

・ロット 小田 マイロマ

Other 'diagnostics' (summaries)

pseudo R² statistic,

pseudo
$$extsf{R}^2 = rac{ extsf{logL}_{ extsf{s}} - extsf{logL}(\hat{eta})}{ extsf{logL}_{ extsf{s}}}$$

where L_S is the max. likelihood for the saturated model and $L(\hat{\beta})$ is the max likelihood for a model with covariates.

- "proportional improvement in log-likelihood".
- Another pseudo R² statistic (Mc Fadden's)

pseudo R
$$^2 = \displaystyle \frac{\textit{logL}(\hat{eta}_0) - \textit{logL}(\hat{eta})}{\textit{logL}(\hat{eta}_0)}$$

Efron's

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{\pi}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{Y})^{2}}$$

- *Residuals* Y_i number of successes. n_i number of trials.
- $\hat{\pi}_i$ estimated probability of success based on a *glm*
- Pearson chi-square residuals

$$r_i = \frac{Y_i - n_i \hat{\pi}_i}{\sqrt{n_i \hat{\pi}_i (1 - \hat{\pi}_i)}}; i = 1, 2, \dots, N$$

Chi-square statistic,

$$X^2 = \sum_{i=1}^N r_i^2$$

has the same dofs as D, N - (p + 1).

• How does deviance work for a Poisson regression?

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・