Settings for a Binary-Binomial response model

@ Sample of target population. Each individual is
independent and classified by success, failure.
Response Predictors for each individual

Y1=0 x11,x12, , x1p
Y2=0 x21,x22, , X2P
Y3=1 x31,x32, , X3p
@ Individuals with same values for X, X, ..., X, are
grouped.
Group Response
nl Y1l
n2 Y2
n3 v3 o\

@ n; number of individuals, Y; no. of successes for group /. UNM



@ Each group has an equal set of predictor variables.
(dose-response experiment)

@ For example, all individuals in group i/ have the same "age”.

o Few replicates of Xy, X,..., X.
e Data reported as 0 — 1
@ Case 1: Binary non-replicated data.
@ Case 2: Grouped data model or stratified Binomial model.

o Observations grouped at covariate levels
e Group sizes n; much larger than 1.

@ The MLEs of 3y, 54, ..., Bp do not depend on individuals
begin grouped with covariates or not.
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Distributional results on Binary/Binomial models

@ If sample size large (n=ny + np + ... + ny), then
Bi ~ N(B;, Var(5;))
@ Typically Var(j3;) are obtained by software package.
@ An approximate 95% confidence interval for 5; is
Bi =+ (1.96)SE(5)).
@ Totest Hy: i =0vs Hy: 3; # 0,
7_ Bi —AO
SE(f1)
which is approximately a N(0, 1).
@ If z,s is the observed value of Z, p-value=2P(Z > zys). €N\

@ SAS reports Z% ~ X%) UNM




@ Saturated model. Model with the the maximum number of
parameters that can be estimated.

@ Y1, Y, ..., Yy areindependent and Y; ~ Binomial(n;, 7;),
log-likelihood is (except for constant),

N
I(8;Y) =Y lyilog(m;) — yilog(1 — mi) + nilog(1 — )]
i=1
@ Saturated model: All 7js are different and
B =(m,m,....7n)"
@ The maximum likelihood estimates are #; = y;/n; (bmax)-
@ The max. log-likelihood is

N
I(bmax; Y) =Y _lyilog(yi/ni)—yilog(1—(yi/m))+nilog(1—(yi/ni)) €
=1 UNM



@ For model with p < N parameters, estimates ;.
o Fitted values, y; = ni7;
@ The log-likelihood,

N
I(b; Y) = _lyilog(yi/ni) — yilog(1 — (7i/)) + nilog(1 — (9/m))]
i=1

@ The deviance (textbook)

D = 2[(bmax;Y) - I(b;Y)]

N
Yi ni—VYi
= 23 |wlog (%) + (m~ yiog (7=21)]
;[y, g(y;) (n = yi)log { . —

1 i

@ D’s approximate sampling distribution is chi-square. UN



@ R computes the null deviance. For all i
g(mi) = Bo — & =g~ " (Bo)

o Fitted values y; = n;#
@ Null deviance:

23" iog(#) + (—y)eg(1 )+ ()]
i=1 |

with degrees of freedom N — 1.
@ Residual deviance:

9(mj) = Bo + B1Xin + ... + BpXpi o

@ #; are estimated with covariates and j; = n;#; UNM



@ Residual deviance:
N n:
D~ -23 |yiogt) + (n~ miog(1 ) + ()]
i=1 !

with degrees of freedom N — (p + 1).
@ Hypothesis testing: Hy : 31 = P2 = ... = Bp =0 vs.
H; : at least one 3; # 0.

D* = Null deviance — Residual deviance

dof =(N—1)— (N~ (p+1)) = p.
@ D* approximately follows a X?p)' o
UNM



@ Alternatively if we just focus on the Residual deviance
(grouped Binomial case),

dof =(ni+m+...+ny)—(p+1)

or dof = no. of covariate combinations —
no. of estimated regression coefficients.

@ In general, large values of D imply model lack of fit.
@ D not testing for Binomial assumption of the data.

@ D testing if one or more predictors have been omitted from
the model.

@ p-value for D: P[D > Dyps] obtained from x2,,,. o
UNM



Other ‘diagnostics’ (summaries)

@ pseudo R? statistic,
logLs — logL(3)
logLs
where Lg is the max. likelihood for the saturated model
and L(/3) is the max likelihood for a model with covariates.

@ “proportional improvement in log-likelihood”.
@ Another pseudo R? statistic (Mc Fadden’s)

logL (/%) — logL(33)

pseudo R? =

pseudo R? = -
logL(5o)
@ Efron’s
R2 — 1 _Z;\;(Yi—fﬁ)2 o\
SN - V) UNM



@ Residuals Y; number of successes. n; number of trials.
@ 7; estimated probability of success based on a gim
@ Pearson chi-square residuals

Yi—nit
r=_ U 2. N
niwi(1 — #;)

@ Chi-square statistic,

has the same dofs as D, N — (p + 1).
@ How does deviance work for a Poisson regression? Ulf\IIR/I



