
Settings for a Binary-Binomial response model

Sample of target population. Each individual is
independent and classified by success, failure.
Response Predictors for each individual
Y1=0 x11,x12, ,x1p
Y2=0 x21,x22, ,x2p
Y3=1 x31,x32, ,x3p

Individuals with same values for X1,X2, . . . ,Xp are
grouped.
Group Response
n1 Y1
n2 Y2
n3 Y3

ni number of individuals, Yi no. of successes for group i .

UNM



Each group has an equal set of predictor variables.
(dose-response experiment)
For example, all individuals in group i have the same ”age”.

Few replicates of X1,X2, . . . ,Xp.
Data reported as 0− 1

Case 1: Binary non-replicated data.
Case 2: Grouped data model or stratified Binomial model.

Observations grouped at covariate levels
Group sizes ni much larger than 1.

The MLEs of β0, β1, . . . , βp do not depend on individuals
begin grouped with covariates or not.
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Distributional results on Binary/Binomial models

If sample size large (n = n1 + n2 + . . .+ nN ), then

β̂i ≈ N(βi ,Var(β̂i))

Typically Var(β̂i) are obtained by software package.
An approximate 95% confidence interval for βi is

β̂i ± (1.96)SE(β̂i ).

To test H0 : βi = 0 vs Ha : βi 6= 0,

Z =
β̂i − 0
SE(β̂i )

which is approximately a N(0,1).
If zobs is the observed value of Z , p-value=2P(Z > zobs).
SAS reports Z 2 ≈ χ2

(1)
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Saturated model. Model with the the maximum number of
parameters that can be estimated.
Y1,Y2, . . . ,YN are independent and Yi ∼ Binomial(ni , πi),
log-likelihood is (except for constant),

l(β; Y ) =
N∑

i=1

[yi log(πi)− yi log(1− πi) + ni log(1− πi)]

Saturated model: All π′i s are different and
β = (π1, π2, . . . , πN)T

The maximum likelihood estimates are π̂i = yi/ni (bmax ).
The max. log-likelihood is

l(bmax ; Y ) =
N∑

i=1

[yi log(yi/ni )−yi log(1−(yi/ni ))+ni log(1−(yi/ni ))]
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For model with p < N parameters, estimates π̂i .
Fitted values, ŷi = ni π̂i

The log-likelihood,

l(b; Y ) =
N∑

i=1

[yi log(ŷi/ni )− yi log(1− (ŷi/ni )) + ni log(1− (ŷi/ni ))]

The deviance (textbook)

D = 2[l(bmax ; Y )− l(b; Y )]

= 2
N∑

i=1

[
yi log

(
yi

ŷi

)
+ (ni − yi)log

(
ni − yi

ni − ŷi

)]
D′s approximate sampling distribution is chi-square.
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R computes the null deviance. For all i

g(πi) = β0 → π̂ = g−1(β̂0)

Fitted values ŷi = ni π̂

Null deviance:

−2
N∑

i=1

[
yi log(π̂) + (ni − yi)log(1− π̂) +

(
ni

yi

)]
with degrees of freedom N − 1.
Residual deviance:

g(πi) = β0 + β1Xi1 + . . .+ βpXpi

π̂i are estimated with covariates and ŷi = ni π̂i
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Residual deviance:

D = −2
N∑

i=1

[
yi log(π̂i) + (ni − yi)log(1− π̂i) +

(
ni

yi

)]
with degrees of freedom N − (p + 1).
Hypothesis testing: H0 : β1 = β2 = . . . = βp = 0 vs.
H1 : at least one βi 6= 0.

D∗ = Null deviance − Residual deviance

dof = (N − 1)− (N − (p + 1)) = p.
D∗ approximately follows a χ2

(p).
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Alternatively if we just focus on the Residual deviance
(grouped Binomial case),

dof = (n1 + n2 + . . .+ nN)− (p + 1)

or dof = no. of covariate combinations −
no. of estimated regression coefficients.
In general, large values of D imply model lack of fit.
D not testing for Binomial assumption of the data.
D testing if one or more predictors have been omitted from
the model.
p-value for D: P[D > Dobs] obtained from χ2

(dof ).
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Other ’diagnostics’ (summaries)

pseudo R2 statistic,

pseudo R2 =
logLs − logL(β̂)

logLs

where LS is the max. likelihood for the saturated model
and L(β̂) is the max likelihood for a model with covariates.
”proportional improvement in log-likelihood”.
Another pseudo R2 statistic (Mc Fadden’s)

pseudo R2 =
logL(β̂0)− logL(β̂)

logL(β̂0)

Efron’s

R2 = 1−
∑N

i=1(yi − π̂i)
2∑N

i=1(yi − Ȳ )2
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Residuals Yi number of successes. ni number of trials.
π̂i estimated probability of success based on a glm
Pearson chi-square residuals

ri =
Yi − ni π̂i√
ni π̂i(1− π̂i)

; i = 1,2, . . . ,N

Chi-square statistic,

X 2 =
N∑

i=1

r2
i

has the same dofs as D, N − (p + 1).
How does deviance work for a Poisson regression?
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