Exponential family of distributions

• Probability distribution on Y that has the form,

$$f(y|\theta) = exp[a(y)b(\theta) + c(\theta)d(y)]$$

- $a(\cdot), d(\cdot)$ are functions of y.
- $b(\cdot)$, $c(\cdot)$ are functions of θ .
- $b(\theta)$ is called the *natural parameter*.
- In fact,

$$E(a(Y)) = \frac{-c'(\theta)}{b'(\theta)}; Var(a(Y)) = \frac{b''(\theta)c'(\theta) - c''(\theta)b'(\theta)}{[b'(\theta)]^3}$$

Normal, Poisson, Binomial, are members of this family.

ヘロン 人間 とくほ とくほ とう

Generalized linear models (GLM)

• Independent random variables Y_1, Y_2, \ldots, Y_n where each Y_i

$$f(y_i|\theta_i) = \exp\left[a(y_i)b(\theta_i) + c(\theta_i)d(y_i); i = 1, 2, \dots, n\right]$$

•
$$E(Y_i) = \mu_i$$
 is a function of θ_i .

• For a GLM,

$$g(\mu_i) = \mathbf{x}_i^t \beta$$

- where x_i^t = (x_{i1}, x_{i2},..., x_{ip}) set of covariates (predictors) for Y_i.
- $\beta^t = (\beta_1, \beta_2, \dots, \beta_p)$ set of regression coefficients.
- $g(\cdot)$ is the *link function*. Monotone and differentiable.
- $g(\cdot)$ is a modeling choice. Linear regression: $g(\mu_i) = \mu_i$.

Example 3.4

- Y_1, Y_2, \ldots, Y_n are n-independent success-failure trials.
- $P(Y_i = 1) = \pi$ and $P(Y_i = 0) = 1 \pi$., π is the probability of success.
- Probability function of Y_i is

$$f(y_i|\pi) = \pi^{y_i}(1-\pi)^{1-y_i}; y_i = 0, 1$$

- $E(Y_i) = \pi$ but π is between 0 and 1.
- Define a link function as

$$g(\pi) = \log(\pi/(1-\pi)) = x^t \beta$$

Maps (0, 1) into (−∞, ∞).

• Solve equation for π , we get the *logistic* function.

$$\pi = rac{exp(x^teta)}{1+exp(x^teta)}$$

For one-predictor X,

$$\pi = \frac{exp(\beta_1 + \beta_2 X)}{1 + exp(\beta_1 + \beta_2 X)}$$

- If $F(\cdot)$ is another cumulative distribution function (CDF), $\pi = F(\beta_1 + \beta_2 X).$
- Probit function:

$$\pi = \Phi(\beta_1 + \beta_2 X)$$

where $\Phi(\cdot)$ is the CDF of N(0, 1) (pnorm in R).

• Then, Φ^{-1} is the link function (qnorm in R) so

$$\Phi^{-1}(\pi) = \beta_1 + \beta_2 X$$

Comparision logistic/probit. $\beta_1 = 0.5$; $\beta_2 = 0.5, -0.5$

Logistic (solid curves); Probit (dashed curves)

Table 3.2 example

- Number of deaths from coronary heart disease of men.
- Population sizes and several age groups
- *Y*₁, *Y*₂,..., *Y_n* represent no of deaths occurring in successive age groups.
- Possible model,

$$E(Y_i) = \mu_i = n_i exp(\theta * i)$$

- *n_i* is the population size for group *i* and θ is some rate increase.
- $i = 1, 2, \dots, 8$ represents group age. As a GLM,

$$log(\mu_i) = \log(n_i) + \theta * i$$

Table 3.2 Mortality rates data

Table	3.2 Mor	tality	rate
age	deaths	popula	ation
30-34	1	17742	2
35-39	5	16554	1
40 - 44	5	16059	9
45-49	12	13083	3
50-54	25	10784	1
55-59	38	9645	5
60-64	54	10700	5
65-69	65	9933	3

S

Scatter plot of data

Fit of model with glm R-function

```
glm(deaths~age, offset=log(pop/100000),
family=poisson(link="log"))
Coefficients:
(Intercept)
                     age
      2.497 0.522
Degrees of Freedom: 7 Total (i.e. Null); 6 Residual
AIC: 54.37
glm(deaths~age-1, offset=log(pop/100000),
family=poisson(link="log"))
Coefficients:
   age
0.8682
Degrees of Freedom: 8 Total (i.e. Null); 7 Residua
ATC: 115.9
                                   イロン イヨン イヨン イヨン
```