# Beta-Binomial model{ y ~ dbin(theta,10) theta ~ dbeta(1,1) } list(y=7) list(theta=.5) # model{ y ~ dbin(theta, n) # Model the data ytilde ~ dbin(theta, m) # Prediction of future binomial theta ~ dbeta(a, b) # The prior prob <- step(ytilde - 20) # Pred prob that ytilde >= 20 } list(n = 100, m = 100, y = 10, a = 1, b = 1) # The data list(theta = 0.5, ytilde =10) # Starting/initial values # model{ y1 ~ dbin(theta1, n1) # Modeling the data as y2 ~ dbin(theta2, n2) # independent binomials theta1 ~ dbeta(1, 1) # Specifying the priors theta2 ~ dbeta(1, 1) prob1 <- step(theta1-theta2) # Pr(theta1 >= theta2|data) y1tilde ~ dbin(theta1, m1) # Get predictive densities y2tilde ~ dbin(theta2, m2) prob2 <- step(y1tilde - y2tilde -11) } list(y1=25, y2=10, n1=100, n2=100, m1=100, m2=100) # The data list(theta1=.5, theta2=.5, y1tilde=20, y2tilde=20) #Starting values