S426/S26 Bayesian Theory and Data Analysis

◆□ > ◆□ > ◆三 > ◆三 > ・三 の < ⊙

General points about Bayesian methods

- Logical conclusions based on the *laws of probability*.
- Incorporates *expert* opinion in the form of *prior* information.
- Prior information should be independent of the *data* and quantified with probability.
- Combine data and prior knowledge with probability rules.
- Predictions are fundamental. Most areas of science and technology are about prediction.
- The basis of Bayesian inference is *conditional probability*.

Examples in Chapter 1 of CJBH book

- **Example 1.1:** Production process *θ* proportion of defective parts. 2430 parts are examined.
- Y= no. of defective parts. Y|θ ~ Binomial(2430, θ) (sampling distribution).
- 'Vice-President' thinks that $P(\theta \le 0.05) = .025$, $P(\theta \ge 0.15) = 0.025$.
- If $\theta \sim Beta(a, b)$ then $\theta \sim Beta(12.05, 116.06)$ is a prior.
- Goal: Obtain posterior distribution with Bayes theorem.
- Will check that,

$$\theta | \mathbf{y} \sim \text{Beta}(\mathbf{a} + \mathbf{y}, \mathbf{n} - \mathbf{y} + \mathbf{b}).$$

• If y = 219, n = 2430, $\theta | y = 219 \sim Beta(231.05, 2327.06)$.

• **Example 1.2:** y_i zinc percentage of sample *i*, i = 1, 2, ..., 12.

•
$$y_1, ..., y_{12} | \mu, \sigma^2 \sim N(\mu, \sigma^2).$$

- *iid* = independent and identically distributed.
- Need prior on (μ, σ²).
- A VP of operations outlines: with 95% probability the mean percentage is between 4.5 and 5 centered at 4.75.
- Therefore, $E(\mu) = 4.75$ and $P(4.5 < \mu < 5) = 0.95$.
- We can assume μ follows a Normal distribution, μ ~ N(m, ν).
- Set m = 4.75 and $(1.96)(v)^{1/2} = 0.25$. Then v = 0.0163.

- Prior on σ²? Reference prior: 'common base for people to evaluate data'.
- Work with *precision* $1/\sigma^2$.
- $\sigma^{-2} \sim Gamma(0.001, 0.001).$
- Prior mean =1. Variance = $.001/(0.001)^2 = 1000$.
- What is $Pr(a < \mu < b | y_1, y_2, \dots, y_{12})$?
- What is the value $\tilde{\mu}$ so that $Pr(\mu < \tilde{\mu} | y_1, y_2, \dots, y_{12}) = 0.5$?
- If y₁₃ is the zinc value of a future batch, one may want to find,

$$P(Y_{13} \leq 4.4 | y_1, y_2, \dots, y_{12})$$

(posterior predictive probability.)

- Naive solution: Find point estimators $\hat{\mu}$ and $\hat{\sigma^2}$.
- Use a Normal distribution $P(Y_{13} \le 4.4 | \hat{\mu}, \hat{\sigma^2}) = \Phi\left(\frac{4.4 \hat{\mu}}{\hat{\sigma}}\right)$.
- $\Phi(\cdot)$ is the cumulative distribution function of a standard normal.
- Treats estimates as *true* parameters values.
- Attempt to compute,

$$\int \int \boldsymbol{P}(\boldsymbol{y}_{13} \leq 4.4 | \boldsymbol{\mu}, \sigma^2) \pi(\boldsymbol{\mu}, \sigma^2 | \boldsymbol{y}_1, \boldsymbol{y}_2, \dots, \boldsymbol{y}_{12}) \boldsymbol{d} \boldsymbol{\mu} \boldsymbol{d} \sigma^2$$

Sorry, Bayesian answers require solving multidimensional integrals!

- **Example 1.3:** *n* = 38 of *Ache* men (tribe in Paraguay).
- y_i = no. of armadillos killed by the i-th man in a given day.
- $y_1, y_2, \ldots, y_n | \theta \sim Poisson(\theta)$ so θ is the 'kill rate'.
- Dr. Mc. Millan an 'expert' believes that $\theta \approx 0.5$ which we take as the median of the prior.
- 95 % probability that the *mean daily* number of kills is no greater than 2.
- $\theta \sim Gamma(a, b)$. Find *a* and *b* so that

 $P(\theta \le 0.5 | a, b) = 0.5, P(\theta \le 2 | a, b) = 0.95.$

• The prior is $\theta \sim Gamma(1.11, 1.64)$.

• The posterior distribution for θ is

$$\theta|\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n \sim \textit{Gamma}\left(\sum_{i=1}^n \mathbf{y}_i + \mathbf{a}, n + b\right)$$

• For the Ache data, n = 38, $\sum_{i=1}^{38} y_i = 10$

$$\theta|y_1, y_2, \dots, y_n \sim Gamma(11.1, 39.61)$$

 Posterior median, p(θ ≤ 0.5|y₁, y₂,..., y₃₈) = 0.272 and a 95% probability interval is (0.140, 0.468).

- Example 1.4: Two groups of cows "infected", "uninfected".
- Interest on time to abortion.
- Group 1: $y_{1,1}, y_{1,2}, \dots, y_{1,19} \sim LN(\mu_1, \sigma_1^2)$.
- Group 2: $y_{2,1}, y_{2,2}, \dots, y_{2,26} \sim LN(\mu_2, \sigma_2^2)$.
- If $Y \sim LN(\mu, \sigma^2)$ then $log(Y) \sim N(\mu, \sigma^2)$.
- Apparently no expert opinion on model parameters.
- Reference priors: μ_i ~ N(0, 1000) and 1/σ_i² ~ Gamma(0.001, 0.001), i = 1, 2.
- Median times, $exp(\mu_1)$, $exp(\mu_2)$.
- Parameter of interest: $\Delta = exp(\mu_1) exp(\mu_2)$.

Posterior distribution:

 $\Delta | \mathbf{y}_{1,1}, \mathbf{y}_{1,2}, \dots, \mathbf{y}_{1,19}, \mathbf{y}_{2,1}, \mathbf{y}_{2,2}, \dots, \mathbf{y}_{2,26}.$

- 95 % probability interval for Δ is (1.7, 55.2).
- Provides evidence that time to abortion for Group 1 is greater than for Group 2.
- Since data is assumed to have a log normal distribution, is not sufficient to provide an interval for μ₁ – μ₂.
- May find a point estimator,

$$\hat{\Delta} = exp(\hat{\mu_1}) - exp(\hat{\mu_2})$$

with
$$\hat{\mu}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} log(Y_{ij}), i = 1, 2.$$

Confidence interval for Δ?

- Example 1.5: Y_{ij} i = 1,..., 38, j = 1,..., n_i daily number of armadillos killed by 38 males of an Ache tribe over several *forest treks*.
- Interest to model how a man's age affects daily kill success.
- A sampling model can be specified as

$$\begin{aligned} y_{ij}|\lambda_i &\sim Poisson(\lambda_i), i = 1, \dots, 38; j = 1, \dots, n_i\\ log(\lambda_i) &= \beta_1 + \beta_2(a_i - \bar{a}) + \beta_3(a_i - \bar{a})^2 + \delta_i\\ \delta_i|\tau &\sim N(0, \tau^{-1}) \end{aligned}$$

- λ_i is the kill rate and a_i is the age for subject *i*.
- \bar{a} is the average age.

- Model assumes a quadratic effect of the log of kill rate and age.
- δ_i is a *random effect* and measures the natural ability.
- τ is the precision of the random effects.
- Due to lack of prior information, $\beta_i \sim N(0, 1000), i = 1, 2, 3$
- *τ* ~ *Gamma*(0.001, 0.001).
- An estimate of the quadratic term β₃ with an interval can provide if the effect is non-zero.
- Also,

$$\hat{\lambda}(\boldsymbol{a}) = \hat{\beta}_1 + \hat{\beta}_2(\boldsymbol{a} - \bar{\boldsymbol{a}}) + \hat{\beta}_3(\boldsymbol{a} - \bar{\boldsymbol{a}})^2$$

Conditional probability and Bayes theorem

 For two events A, B, the conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

assuming that P(B) > 0.

Also,

$${\sf P}({\sf B}|{\sf A})=rac{{\sf P}({\sf A}\cap {\sf B})}{{\sf P}({\sf A})}$$

• Total probability, $P(B) = P(B|A)P(A) + P(B|A^c)P(A^c)$.

Bayes theorem,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

- Drug Screening Example: 'D' indicates drug user. 'C' someone who is clean.
- "+" test result is positive. "-" test result is negative.
- Overall prevalence of "D" is established by P(D) = 0.01.
 Drug use is rare.
- P(+|D) = 0.98 "sensitivity of the test". P(-|C) = 0.95 "specificity of the test".
- Applying Bayes theorem,

$$P(D|+) = \frac{P(+|D)P(D)}{P(+|D)P(D) + P(+|C)P(C)}$$

= $\frac{(0.98)(0.01)}{(0.98)(0.01) + (0.05)(0.99)} = 0.165$

- P(D) is the prior probability. P(D|+) is the posterior probability.
- Conditional on the test giving a "+", the posterior probability is more than 16 times greater than the prior.
- If P(D) = 0.5 (50/50 chance of drug use),

$$P(D|+) = rac{(0.98)(0.5)}{(0.98)(0.5) + (0.05)(0.95)} = 0.95$$

increased by a factor of 1.9.

• P(D|+)/P(D) is a *posterior* to *prior* ratio.