
S426/S26 Bayesian Theory and Data
Analysis



General points about Bayesian methods

Logical conclusions based on the laws of probability.
Incorporates expert opinion in the form of prior information.
Prior information should be independent of the data and
quantified with probability.
Combine data and prior knowledge with probability rules.
Predictions are fundamental. Most areas of science and
technology are about prediction.
The basis of Bayesian inference is conditional probability.



Examples in Chapter 1 of CJBH book

Example 1.1: Production process θ proportion of defective
parts. 2430 parts are examined.
Y= no. of defective parts. Y |θ ∼ Binomial(2430, θ)
(sampling distribution).
’Vice-President’ thinks that P(θ ≤ 0.05) = .025,
P(θ ≥ 0.15) = 0.025.
If θ ∼ Beta(a,b) then θ ∼ Beta(12.05,116.06) is a prior.
Goal: Obtain posterior distribution with Bayes theorem.
Will check that,

θ|y ∼ Beta(a + y ,n − y + b).

If y = 219, n = 2430, θ|y = 219 ∼ Beta(231.05,2327.06).



Example 1.2: yi zinc percentage of sample i ,
i = 1,2, . . . ,12.
y1, . . . , y12|µ, σ2 ∼ N(µ, σ2).
iid = independent and identically distributed.
Need prior on (µ, σ2).
A VP of operations outlines: with 95% probability the mean
percentage is between 4.5 and 5 centered at 4.75.
Therefore, E(µ) = 4.75 and P(4.5 < µ < 5) = 0.95.
We can assume µ follows a Normal distribution,
µ ∼ N(m, v).
Set m = 4.75 and (1.96)(v)1/2 = 0.25. Then v = 0.0163.



Prior on σ2? Reference prior: ’common base for people to
evaluate data’.
Work with precision 1/σ2.
σ−2 ∼ Gamma(0.001,0.001).
Prior mean =1. Variance = .001/(0.001)2 = 1000.
What is Pr(a < µ < b|y1, y2, . . . , y12)?
What is the value µ̃ so that Pr(µ < µ̃|y1, y2, . . . , y12) = 0.5?
If y13 is the zinc value of a future batch, one may want to
find,

P(Y13 ≤ 4.4|y1, y2, . . . , y12)

(posterior predictive probability.)



Naive solution: Find point estimators µ̂ and σ̂2.

Use a Normal distribution P(Y13 ≤ 4.4|µ̂, σ̂2) = Φ
(

4.4−µ̂
σ̂

)
.

Φ(·) is the cumulative distribution function of a standard
normal.
Treats estimates as true parameters values.
Attempt to compute,∫ ∫

P(y13 ≤ 4.4|µ, σ2)π(µ, σ2|y1, y2, . . . , y12)dµdσ2

Sorry, Bayesian answers require solving multidimensional
integrals!



Example 1.3: n = 38 of Ache men (tribe in Paraguay).
yi = no. of armadillos killed by the i-th man in a given day.
y1, y2, . . . , yn|θ ∼ Poisson(θ) so θ is the ’kill rate’.
Dr. Mc. Millan an ’expert’ believes that θ ≈ 0.5 which we
take as the median of the prior.
95 % probability that the mean daily number of kills is no
greater than 2.
θ ∼ Gamma(a,b). Find a and b so that

P(θ ≤ 0.5|a,b) = 0.5,P(θ ≤ 2|a,b) = 0.95.

The prior is θ ∼ Gamma(1.11,1.64).



The posterior distribution for θ is

θ|y1, y2, . . . , yn ∼ Gamma

(
n∑

i=1

yi + a,n + b

)

For the Ache data, n = 38,
∑38

i=1 yi = 10

θ|y1, y2, . . . , yn ∼ Gamma(11.1,39.61)

Posterior median, p(θ ≤ 0.5|y1, y2, . . . , y38) = 0.272 and a
95% probability interval is (0.140,0.468).



Example 1.4: Two groups of cows ”infected”, ”uninfected”.
Interest on time to abortion.
Group 1: y1,1, y1,2, . . . , y1,19 ∼ LN(µ1, σ

2
1).

Group 2: y2,1, y2,2, . . . , y2,26 ∼ LN(µ2, σ
2
2).

If Y ∼ LN(µ, σ2) then log(Y ) ∼ N(µ, σ2).
Apparently no expert opinion on model parameters.
Reference priors: µi ∼ N(0,1000) and
1/σ2

i ∼ Gamma(0.001,0.001), i = 1,2.
Median times, exp(µ1),exp(µ2).
Parameter of interest: ∆ = exp(µ1)− exp(µ2).



Posterior distribution:
∆|y1,1, y1,2, . . . , y1,19, y2,1, y2,2, . . . , y2,26.
95 % probability interval for ∆ is (1.7,55.2).
Provides evidence that time to abortion for Group 1 is
greater than for Group 2.
Since data is assumed to have a log normal distribution, is
not sufficient to provide an interval for µ1 − µ2.
May find a point estimator,

∆̂ = exp(µ̂1)− exp(µ̂2)

with µ̂i = 1
ni

∑ni
j=1 log(Yij), i = 1,2.

Confidence interval for ∆?



Example 1.5: Yij i = 1, . . . ,38, j = 1, . . . ,ni daily number
of armadillos killed by 38 males of an Ache tribe over
several forest treks.
Interest to model how a man’s age affects daily kill
success.
A sampling model can be specified as

yij |λi ∼ Poisson(λi), i = 1, . . . ,38; j = 1, . . . ,ni

log(λi) = β1 + β2(ai − ā) + β3(ai − ā)2 + δi

δi |τ ∼ N(0, τ−1)

λi is the kill rate and ai is the age for subject i .
ā is the average age.



Model assumes a quadratic effect of the log of kill rate and
age.
δi is a random effect and measures the natural ability.
τ is the precision of the random effects.
Due to lack of prior information, βi ∼ N(0,1000), i = 1,2,3
τ ∼ Gamma(0.001,0.001).
An estimate of the quadratic term β3 with an interval can
provide if the effect is non-zero.
Also,

λ̂(a) = β̂1 + β̂2(a− ā) + β̂3(a− ā)2



Conditional probability and Bayes theorem

For two events A, B, the conditional probability of A given B
is

P(A|B) =
P(A ∩ B)

P(B)

assuming that P(B) > 0.
Also,

P(B|A) =
P(A ∩ B)

P(A)

Total probability, P(B) = P(B|A)P(A) + P(B|Ac)P(Ac).
Bayes theorem,

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|Ac)P(Ac)



Drug Screening Example: ’D’ indicates drug user. ’C’
someone who is clean.
”+” test result is positive. ”-” test result is negative.
Overall prevalence of ”D” is established by P(D) = 0.01.
Drug use is rare.
P(+|D) = 0.98 ”sensitivity of the test”. P(−|C) = 0.95
”specificity of the test”.
Applying Bayes theorem,

P(D|+) =
P(+|D)P(D)

P(+|D)P(D) + P(+|C)P(C)

=
(0.98)(0.01)

(0.98)(0.01) + (0.05)(0.99)
= 0.165



P(D) is the prior probability. P(D|+) is the posterior
probability.
Conditional on the test giving a ”+”, the posterior
probability is more than 16 times greater than the prior.
If P(D) = 0.5 (50/50 chance of drug use),

P(D|+) =
(0.98)(0.5)

(0.98)(0.5) + (0.05)(0.95)
= 0.95

increased by a factor of 1.9.
P(D|+)/P(D) is a posterior to prior ratio.


