S426/S26 Bayesian Theory and Data
Analysis




General points about Bayesian methods

@ Logical conclusions based on the laws of probability.
@ Incorporates expert opinion in the form of prior information.

@ Prior information should be independent of the data and
quantified with probability.

@ Combine data and prior knowledge with probability rules.

@ Predictions are fundamental. Most areas of science and
technology are about prediction.

@ The basis of Bayesian inference is conditional probability.




.
Examples in Chapter 1 of CJBH book

@ Example 1.1: Production process 6 proportion of defective
parts. 2430 parts are examined.

@ Y=no. of defective parts. Y|0 ~ Binomial(2430, )
(sampling distribution).
@ 'Vice-President’ thinks that P(6 < 0.05) = .025,
P(6 > 0.15) = 0.025.
@ If # ~ Beta(a, b) then 6§ ~ Beta(12.05,116.06) is a prior.
@ Goal: Obtain posterior distribution with Bayes theorem.
@ Will check that,

0|y ~ Beta(a+y,n—y + b).
e If y =219, n=2430, ]y = 219 ~ Beta(231.05,2327.06).



@ Example 1.2: y; zinc percentage of sample /,
i=1,2,...,12.

@ yi,..., Yzl o ~ N(M?‘jz)'

@ jid = independent and identically distributed.

@ Need prior on (u, 02).

@ A VP of operations outlines: with 95% probability the mean
percentage is between 4.5 and 5 centered at 4.75.

@ Therefore, E() = 4.75 and P(4.5 < u < 5) = 0.95.
@ We can assume p follows a Normal distribution,
w~ N(m,v).
@ Set m=4.75and (1.96)(v)"/2 = 0.25. Then v = 0.0163.



@ Prior on ¢2? Reference prior: ‘common base for people to
evaluate data’.

@ Work with precision 1/c2.

@ 02 ~ Gamma(0.001,0.001).

@ Prior mean =1. Variance = .001/(0.001)? = 1000.

@ Whatis Pr(a< pu < blyt,¥2,...,¥12)?

@ What is the value i so that Pr(u < fily1, Yo, ..., y12) = 0.5?

@ If y45 is the zinc value of a future batch, one may want to
find,
P(Yiz <4.4|y1,¥2,...,Y12)

(posterior predictive probability.)



@ Naive solution: Find point estimators /i and o2,
@ Use a Normal distribution P( Y15 < 4.4|f1,02) = ® (4%“)

@ &(.) is the cumulative distribution function of a standard
normal.

@ Treats estimates as true parameters values.
@ Attempt to compute,

//P(Y13 < 4.4, 0% (1, 0%\ Y1, Yo, . . ., Y12)dpdo®

@ Sorry, Bayesian answers require solving multidimensional
integrals!



@ Example 1.3: n = 38 of Ache men (tribe in Paraguay).
@ y; = no. of armadillos killed by the i-th man in a given day.
@ yi,Yo,...,¥n|0 ~ Poisson(0) so 6 is the ’kill rate’.

@ Dr. Mc. Millan an ’expert’ believes that 6 ~ 0.5 which we
take as the median of the prior.

@ 95 % probability that the mean daily number of kills is no
greater than 2.

@ 0 ~ Gamma(a, b). Find a and b so that
P(6 < 0.5|a,b) =0.5,P(0 < 2|a,b) = 0.95.

@ The prioris 6 ~ Gamma(1.11,1.64).



@ The posterior distribution for ¢ is

n
0y1, Y2, .., Yn ~ Gamma (Zyi+a,n+b)

i=1
e For the Ache data, n =38, >3, y, = 10

Oly1, Y2, .-, ¥n ~ Gamma(11.1,39.61)

@ Posterior median, p(60 < 0.5|y1, yo,...,y3s) = 0.272 and a
95% probability interval is (0.140,0.468).




@ Example 1.4: Two groups of cows "infected”, "uninfected”.
@ Interest on time to abortion.

® Group 1: y1.1,¥1,2,-- -, ¥1,19 ~ LN(p1, 02).

® Group 2: yo1, Y22, .., Y226 ~ LN(pi2, 03).

@ If Y ~ LN(u1,0?) then log(Y) ~ N(u, o2).

@ Apparently no expert opinion on model parameters.

@ Reference priors: pj ~ N(0,1000) and
1/0? ~ Gamma(0.001,0.001), i =1, 2.

@ Median times, exp(j1), exp(u2).

@ Parameter of interest: A = exp(u1) — exp(p2)-




@ Posterior distribution:
AlY14, Y12, Y119: Y21, Y22, - - -, ¥Y2,26.
@ 95 % probability interval for A is (1.7,55.2).

@ Provides evidence that time to abortion for Group 1 is
greater than for Group 2.

@ Since data is assumed to have a log normal distribution, is
not sufficient to provide an interval for py — pp.

@ May find a point estimator,
A = exp(1i1) — exp(iiz)

with 2 = -5 log(Yy),i=1,2.
@ Confidence interval for A?



o Example 1.5: Y;i=1,...,38,j=1,...,n;daily number
of armadillos killed by 38 males of an Ache tribe over
several forest treks.

@ Interest to model how a man’s age affects daily Kkill
success.

@ A sampling model can be specified as

yilAi ~ Poisson(\;),i=1,...,38;j=1,....n;

log(\) = Bi1+ B2(a —a)+ Ba(a — @) +
silt ~ N,

@ )\, is the kill rate and a; is the age for subject /.
@ ais the average age.



Model assumes a quadratic effect of the log of kill rate and
age.

@ ¢; is a random effect and measures the natural ability.

@ 7 is the precision of the random effects.

@ Due to lack of prior information, g; ~ N(0,1000),i=1,2,3
@ 7 ~ Gamma(0.001,0.001).

°

An estimate of the quadratic term S5 with an interval can
provide if the effect is non-zero.

@ Also,

Na) = B + Bo(a—2a) + f3(a— 2)?




Conditional probability and Bayes theorem

@ For two events A, B, the conditional probability of A given B
is

P(AB) = P(;‘(g)m

assuming that P(B) > 0.
@ Also, PANB
PBIA) = T

@ Total probability, P(B) = P(B|A)P(A) + P(B|A°)P(A°).
@ Bayes theorem,

P(BIA)P(A)
(BIA)P(A) + P(B|A°)P(A°)

P(AIB) = -



@ Drug Screening Example: 'D’ indicates drug user. 'C’
someone who is clean.

@ "+” test result is positive. ”-” test result is negative.

@ Overall prevalence of "D” is established by P(D) = 0.01.
Drug use is rare.

@ P(+|D) = 0.98 "sensitivity of the test”. P(—|C) = 0.95
"specificity of the test”.

@ Applying Bayes theorem,

P(+|D)P(D)
P(+|D)P(D) + P(+|C)P(C)
(0.98)(0.01)
(0.98)(0.01) + (0.05)(0.99)

P(Dl+)

=0.165




@ P(D) is the prior probability. P(D|+) is the posterior
probability.

@ Conditional on the test giving a ”+”, the posterior
probability is more than 16 times greater than the prior.

@ If P(D) = 0.5 (50/50 chance of drug use),

(0.98)(0.5)

(0.98)(0.5) + (0.05)(0.95) 0.95

P(D|+) =

increased by a factor of 1.9.
@ P(D|+)/P(D) is a posterior to prior ratio.




