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Poisson regression example

N; number of virus mutations for patient i =1,2,...,n.
T; is the time between treatment visits.

Model: N; ~ Poisson(e%+517i):j =1,2,... n

Rate parameter is \; = e tA1Ti,

The mean response E(N;) = A\;and A; > 0

log(E(N;)) = log(Ai) = Bo + 51T,

@ a function of the mean gives us a Linear model (in this
case log). Link function

@ What is the link function in linear regression? o\
UNM



Ideas on Survival Analysis

@ Observed time: T;,i =1,2,...,n (time to event).

@ Covariates: Xj;i=1,2,...,n,j=1,...,p (factors that
relate to failure).

@ Censoring variable: 6;;i =1,2,...,n (people move or
leave. no follow-up).

@ Difficult part: incorporate ¢ into the likelihood function.
@ Kaplan-Meier estimator of CDF of T to account for biases.
@ Parametric Model: Exponential, Weibull or Gumbel.
@ Cox proportional hazard model: semi-parametric.
incorporates Xj. o\
UNM



Maximum Likelihood Estimation (MLE)

Y =[Y4, Ya,..., Yy]". Joint probability distribution f( Y|6).
Likelihood function: Y = y is observed (fixed). # unknown.
Q parameter space; set of all possibilities for 6.

L(O]Y = y) = f(y10)
MLE is the value 6, 6, that maximizes L(0|Y = y).
So log(L(A]Y = y)) > log(L(6]Y = y)) for all € Q.
If 6 is a scalar, try to solve
dlog(L(0]Y = y))
o[7

@ In GLM’s and Survival models 4 is obtained numerically @\
(Newton-Raphson). UNM

=0




Example: Tropical cyclones

@ Y; number of tropical cyclones in successive seasons.
n=13.

@ Data: 6,5,4,6,6,3,12,7,4,2,6,7,4.

@ Model Y; as independent variables Y; ~ Poisson(6).

9Yig—?
f(Yilo) =

;y,-:0,1,2,...

@ To find MLE or 4,
e Find joint distribution f(y1, y2, ..., ¥nl0)
e Take ’log’ and find first derivative with respect to 6.

@ Likelihood equation

d _Yi ., o\
- o T UNM




@ Solve for 6 implies

>

= Zny" — Y =5538

@ Check second derivative is negative at 6.

@ Teaser on Bayes: In addition to f(y1, y2, ..., ¥n|0) we need
a prioron 6, p(9) or 7().

@ p(0) represents our ’state of uncertainty’ of 6.

@ In this example, one could use a Gamma(a, b) prob.
distribution.
@ Bayes theorem: provides the ’posterior distribution’,

p(0|y1, Y2, ..., ¥n) (prop to prior x likelihood)

@ requires probability distributions, solving integrals or o\
Openbugs/Winbugs. UNM



Least Squares

@ Yy, Yo, ..., Yywith means pq, po, ..., un (Cyclone example
wi = 0;).

@ Suppose each y; is a function of 5 = (54, B2, . . ., Bp)T) o)
E(Yi) = ni(B).

@ Least squares: Find 3 that minimizes

S= Z (Y; — pi(B))?(sum of errors squared)

@ Simultaneously solve < dﬁ =0;j=1,2,...,p.

@ For the cyclone data example, # = &° (or log(d) = j3). -\
@ The sum of squares is S = 3 ;(Y; — €°)2. 3? UNM



e Weighted Least Squares: Suppose Var(Y;) = o2
(depends on observations).
@ Minimize

S=> wlYi— ()P
i=1

@ where w; = 1/02 (reciprocal variance).

@ ’observations with large variance have less influence on
estimates’.

@ Distributional results: (Section 1.4 Dobson’s book)

e Linear combinations of Normal variables.

e chi-square (sum of) distribution.

e t-distribution (from N(0,1) and chi-square). ﬁ

o F-distribution. -
UNM



