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Poisson regression example

Ni number of virus mutations for patient i = 1,2, . . . ,n.
Ti is the time between treatment visits.
Model: Ni ∼ Poisson(eβ0+β1Ti ); i = 1,2, . . . ,n
Rate parameter is λi = eβ0+β1Ti .
The mean response E(Ni) = λi and λi > 0

log(E(Ni)) = log(λi) = β0 + β1Ti

a function of the mean gives us a Linear model (in this
case log). Link function
What is the link function in linear regression?
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Ideas on Survival Analysis

Observed time: Ti , i = 1,2, . . . ,n (time to event).
Covariates: Xij ; i = 1,2, . . . ,n, j = 1, . . . ,p (factors that
relate to ”failure).
Censoring variable: δi ; i = 1,2, . . . ,n (people move or
leave. no follow-up).
Difficult part: incorporate δ into the likelihood function.
Kaplan-Meier estimator of CDF of T to account for biases.
Parametric Model: Exponential, Weibull or Gumbel.
Cox proportional hazard model: semi-parametric.
incorporates Xij .
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Maximum Likelihood Estimation (MLE)

Y = [Y1,Y2, . . . ,Yn]T . Joint probability distribution f (Y |θ).
Likelihood function: Y = y is observed (fixed). θ unknown.
Ω parameter space; set of all possibilities for θ.

L(θ|Y = y) = f (y |θ)

MLE is the value θ, θ̂, that maximizes L(θ|Y = y).
So log(L(θ̂|Y = y)) ≥ log(L(θ|Y = y)) for all θ ∈ Ω.
If θ is a scalar, try to solve

dlog(L(θ|Y = y))

dθ
= 0

In GLM’s and Survival models θ̂ is obtained numerically
(Newton-Raphson).
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Example: Tropical cyclones

Yi number of tropical cyclones in successive seasons.
n = 13.
Data: 6,5,4,6,6,3,12,7,4,2,6,7,4.
Model Yi as independent variables Yi ∼ Poisson(θ).

f (Yi |θ) =
θYi e−θ

yi !
; yi = 0,1,2, . . .

To find MLE or θ̂,
Find joint distribution f (y1, y2, . . . , yn|θ)
Take ’log’ and find first derivative with respect to θ.

Likelihood equation

dl
dθ

=

∑
Yi

θ
− n = 0.
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Solve for θ implies

θ̂ =

∑
Yi

n
= Ȳ = 5.538

Check second derivative is negative at θ̂.
Teaser on Bayes: In addition to f (y1, y2, . . . , yn|θ) we need
a prior on θ, p(θ) or π(θ).
p(θ) represents our ’state of uncertainty’ of θ.
In this example, one could use a Gamma(a,b) prob.
distribution.
Bayes theorem: provides the ’posterior distribution’,

p(θ|y1, y2, . . . , yn) (prop to prior × likelihood)

requires probability distributions, solving integrals or
Openbugs/Winbugs.
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Least Squares

Y1,Y2, . . . ,Yn with means µ1, µ2, . . . , µn (cyclone example
µi = θi ).
Suppose each µi is a function of β = (β1, β2, . . . , βp)T ) so
E(Yi) = µi(β).
Least squares: Find β̂ that minimizes

S =
n∑

i=1

(Yi − µi(β))2(sum of errors squared)

Simultaneously solve dS
dβj

= 0; j = 1,2, . . . ,p.

For the cyclone data example, θ = eβ (or log(θ) = β).
The sum of squares is S =

∑
i(Yi − eβ)2. β̂?
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Weighted Least Squares: Suppose Var(Yi) = σ2
i

(depends on observations).
Minimize

S =
n∑

i=1

wi [Yi − µi(β)]2

where wi = 1/σ2
i (reciprocal variance).

’observations with large variance have less influence on
estimates’.
Distributional results: (Section 1.4 Dobson’s book)

Linear combinations of Normal variables.
chi-square (sum of) distribution.
t-distribution (from N(0,1) and chi-square).
F-distribution.
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