Stat 574: GLMs and Survival Analysis

Gabriel Huerta

Department of Mathematics and Statistics University of New Mexico Albuquerque, NM, E.U.A.

Chapter 1, summary notes.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Poisson regression example

- N_i number of virus mutations for patient i = 1, 2, ..., n.
- *T_i* is the time between treatment visits.
- Model: $N_i \sim Poisson(e^{\beta_0 + \beta_1 T_i}); i = 1, 2, \dots, n$
- Rate parameter is $\lambda_i = e^{\beta_0 + \beta_1 T_i}$.
- The mean response $E(N_i) = \lambda_i$ and $\lambda_i > 0$

$$log(E(N_i)) = log(\lambda_i) = \beta_0 + \beta_1 T_i$$

- a function of the mean gives us a *Linear model* (in this case log). Link function
- What is the link function in linear regression?

・ロ ・ ・ 御 ・ ・ ヨ ・ ・ ヨ ・

Ideas on Survival Analysis

- Observed time: T_i , i = 1, 2, ..., n (time to event).
- Covariates: X_{ij}; i = 1, 2, ..., n, j = 1, ..., p (factors that relate to "failure).
- Censoring variable: δ_i; i = 1, 2, ..., n (people move or leave. no follow-up).
- Difficult part: incorporate δ into the *likelihood* function.
- Kaplan-Meier estimator of CDF of T to account for biases.
- Parametric Model: Exponential, Weibull or Gumbel.
- *Cox proportional hazard* model: semi-parametric. incorporates *X*_{ij}.

ヘロン 人間 とくほ とくほ とう

Maximum Likelihood Estimation (MLE)

- $Y = [Y_1, Y_2, ..., Y_n]^T$. Joint probability distribution $f(Y|\theta)$.
- *Likelihood function:* Y = y is observed (fixed). θ unknown.
- Ω parameter space; set of all possibilities for θ .

$$L(\theta|Y=y)=f(y|\theta)$$

- MLE is the value θ , $\hat{\theta}$, that maximizes $L(\theta | \mathbf{Y} = \mathbf{y})$.
- So $log(L(\hat{\theta}|Y = y)) \ge log(L(\theta|Y = y))$ for all $\theta \in \Omega$.
- If θ is a scalar, try to solve

$$\frac{dlog(L(\theta|Y=y))}{d\theta} = 0$$

• In GLM's and Survival models $\hat{\theta}$ is obtained numerically (Newton-Raphson).

Example: Tropical cyclones

- Y_i number of tropical cyclones in successive seasons.
 n = 13.
- Data: 6, 5, 4, 6, 6, 3, 12, 7, 4, 2, 6, 7, 4.
- Model Y_i as independent variables $Y_i \sim Poisson(\theta)$.

$$f(Y_i|\theta) = \frac{\theta^{Y_i} e^{-\theta}}{y_i!}; y_i = 0, 1, 2, \dots$$

- To find MLE or $\hat{\theta}$,
 - Find joint distribution $f(y_1, y_2, \dots, y_n | \theta)$
 - Take 'log' and find first derivative with respect to θ.
- Likelihood equation

$$\frac{dI}{d\theta} = \frac{\sum Y_i}{\theta} - n = 0.$$

• Solve for θ implies

$$\hat{\theta} = \frac{\sum Y_i}{n} = \bar{Y} = 5.538$$

- Check second derivative is negative at
 ô.
- **Teaser on Bayes**: In addition to $f(y_1, y_2, ..., y_n | \theta)$ we need a *prior* on θ , $p(\theta)$ or $\pi(\theta)$.
- $p(\theta)$ represents our 'state of uncertainty' of θ .
- In this example, one could use a Gamma(a, b) prob. distribution.
- Bayes theorem: provides the 'posterior distribution',

 $p(\theta|y_1, y_2, \ldots, y_n)$ (prop to prior \times likelihood)

 requires probability distributions, solving integrals or Openbugs/Winbugs.

Least Squares

- $Y_1, Y_2, ..., Y_n$ with means $\mu_1, \mu_2, ..., \mu_n$ (cyclone example $\mu_i = \theta_i$).
- Suppose each μ_i is a function of $\beta = (\beta_1, \beta_2, \dots, \beta_p)^T$) so $E(Y_i) = \mu_i(\beta)$.
- Least squares: Find $\hat{\beta}$ that minimizes

$$\mathcal{S} = \sum_{i=1}^n (Y_i - \mu_i(eta))^2$$
(sum of errors squared)

- Simultaneously solve $\frac{dS}{d\beta_i} = 0; j = 1, 2, \dots, p$.
- For the cyclone data example, $\theta = e^{\beta}$ (or $log(\theta) = \beta$).

• The sum of squares is $S = \sum_{i} (Y_i - e^{\beta})^2$. $\hat{\beta}$?

- Weighted Least Squares: Suppose $Var(Y_i) = \sigma_i^2$ (depends on observations).
- Minimize

$$S = \sum_{i=1}^{n} w_i [Y_i - \mu_i(\beta)]^2$$

- where $w_i = 1/\sigma_i^2$ (reciprocal variance).
- 'observations with large variance have less influence on estimates'.
- Distributional results: (Section 1.4 Dobson's book)
 - Linear combinations of Normal variables.
 - chi-square (sum of) distribution.
 - t-distribution (from N(0,1) and chi-square).
 - F-distribution.

(ロ) (回) (三) (三) (三)