
Example from Table 2.1 data

Yjk number of chronic medical conditions for women that
use similar practitioner services.
j = 1 ’town’; j = 2 ’country’
k = 1,2, . . . , kj where k1 = 26 and k2 = 23.
For ’town’ , Ȳ1· = 1.423 and SD = 1.17.
For ’country’, Ȳ2· = 0.913 and SD = 0.9.
We can try to model Y ′jks as independent Poisson(θj). θj
rate for group j .
Recall that if Yi ∼ Poisson(θ), the log-likelihood function is

l(θ; Y ) =
∑

i

Yi log(θ)− θ
∑

i

Yi +
∑

i

log(yi !)

Do women have similar levels in the two groups?
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Boxplots of the data by group
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Hypothesis testing problem,

H0 : θ1 = θ2 = θ vs H1 : θ1 6= θ2

Two models: Under H0, Yjk ∼ Poisson(θ).
Second model, Yjk ∼ Poisson(θj) (nested models).
Under H0,

l0 = l(θ; Y ) =
2∑

j=1

kj∑
k=1

[
yjk log(θ)− θ − log(yjk !)

]
The MLE is

θ̂ =
2∑

j=1

kj∑
k=1

yjk/N; N = 26 + 23 = 49
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Notice the MLE is ”pooled estimate” of the town and
country means.
The value of l0 at θ̂ is l̂0 = −68.3868.
If H1 is true,

l1 = l(θ1, θ2; Y ) =
2∑

j=1

kj∑
k=1

(
yjk log(θj)− θj − log(yjk !)

)
Sum of terms with θ1 plus sum of terms with θ2.
The MLEs are

θ̂1 = 1.423; θ̂2 = 0.913

The value of l1 at the MLEs is l̂1 = −67.0230
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Notice that regardless of the data l̂1 ≥ l̂0. Why?
How can we decide if difference in log-likelihood is
significant?
Need to know the sampling distribution of l(θ; Y ).
What is the distribution of Î1 − Î0?
Could also rely on the Akaike Information Criterion AIC.

AIC = −2l(θ̂; Y ) + 2p

where p is the number of parameters in the statistical
model.
Select model with minimum AIC.
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For our example,

AIC0 = 2(68.3868) + 2(1) = 138.7736

AIC1 = 2(67.0230) + 2(2) = 138.046

So the preferred model is θ1 6= θ2 but barely.
AIC rewards goodness of fit or models with large likelihood
Includes penalty that increases with number of parameters.
Attempts to avoid overfitting.
Different penalties provide different criteria,

BIC = −2l(θ̂; Y ) + p ∗ log(N)
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Residuals based on,

rik =
(Yik − θ̂k )√

θ̂k

For case where θ0 = θ1, θ̂k = 1.184, k = 1,2∑
k
∑

i r2
ik = 46.746

Compare to a χ2(m) distribution, where

m = no. observations − no. of estimated parameters

m = 26 + 23− 1 = 48 degrees of freedom.
Pr [χ2

(48) ≥ 46.75] ≈ 0.52
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For Model 2: θ0 6= θ1,
∑

k
∑

i r2
ik = 43.659

m = 26 + 23− 2 = 47 degrees of freedom.
Pr [χ2

(47) ≥ 0.6117] ≈ 0.52
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Histograms of residuals for Model1 and Model 2.
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General principles (sec 2.3)

Response variable Y and predictors X1,X2, . . . ,Xp.
Model building,

Specify (parametric) probability distribution of Y (Normal,
Poisson, etc.)
”Link” E(Y ) to predictors X1,X2, . . . ,Xp.

g(E(Y )) = β0 + β1X1 + . . .+ βpXp

a function of the mean of Y is a ”linear component”.
Parameter estimation: MLE, least squares, Bayes.
Model checking: consider model residuals.
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In Linear regression we use standardized residuals

ri =
(Yi − Ŷi)

σ̂
.

where Ŷi is a fitted value and σ̂ estimates the error SD.
Yi ∼ Poisson(θ); i = 1,2, . . . ,n

ri =
(Yi − θ̂)√

θ̂

Square root contribution to a Pearson goodness of fit
statistic: ∑

i

(Oi − ei)
2/ei

where Oi represents an observed value and ei an
expected value.
Exponential family of distributions.
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