Example from Table 2.1 data

@ Y number of chronic medical conditions for women that
use similar practitioner services.

@ j=1"town’; j = 2 country’

@ k=1,2,...,k where ky = 26 and ky = 23.

@ For’town’, Y;. =1.423 and SD = 1.17.

@ For ’country’, Y». =0.913 and SD = 0.9.

@ We can try to model Y} s as independent Poisson(6;). 0,
rate for group j.

@ Recall that if Y; ~ Poisson(#), the log-likelihood function is

I(6; Y) =" Yilog(6) — 6> Y;+ > log(yi!)

@ Do women have similar levels in the two groups? UNM



Boxplots of the data by group
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@ Hypothesis testing problem,
H0:01 :92:9V8H1 : 04 7&92

@ Two models: Under Hy, Yy ~ Poisson(f).
@ Second model, Yj ~ Poisson(6;) (nested models).
@ Under Hy,

=

2
b = 1(6; Y) :ZZ [Yilog(8) — 6 — log(yi")]
j=1 k=1
o The MLE is
k;

2
0= yk/N:N=26+23=49 o\
J=1 k=1 UNM

<



@ Notice the MLE is "pooled estimate” of the town and
country means.

@ The value of | at § is T, = —68.3868.
@ If Hy is true,

2 Kk
h = /(91 ,0o; Y) = Z Z (y/klog(el) — (9]' — IOg(y/k'))
j=1 k=1
@ Sum of terms with #; plus sum of terms with 65.
@ The MLEs are

6, =1.423: 6> = 0.913

@ The value of /4 at the MLEs is /; = —67.0230 UNM



@ Notice that regardless of the data ; > T. Why?

@ How can we decide if difference in log-likelihood is
significant?

@ Need to know the sampling distribution of 1(6; Y').

@ What is the distribution of 7y — 1?

@ Could also rely on the Akaike Information Criterion AlC.

AIC = —21(0; Y) +2p

where p is the number of parameters in the statistical
model.

@ Select model with minimum A/C. f\
UNM



@ For our example,
AlCy, = 2(68.3868) + 2(1) = 138.7736

AlC; = 2(67.0230) + 2(2) = 138.046

@ So the preferred model is 61 # 65 but barely.

@ AIC rewards goodness of fit or models with large likelihood
@ Includes penalty that increases with number of parameters.
@ Attempts to avoid overfitting.

@ Different penalties provide different criteria,

BIC = —2I(8; Y) + p = log(N)




@ Residuals based on,

(Y — 0k)

Ok

lik =

@ For case where 6y = 64, 0 = 1184,k = 1,2
@ > > rﬁ( = 46.746
@ Compare to a x2(m) distribution, where

m = no. observations — no. of estimated parameters

@ m=26+ 23 — 1 = 48 degrees of freedom.

° Pr[x%48) > 46.75] ~ 0.52 UR/I



@ For Model 2: 0 # 01, >, >; ra = 43.659
@ m =26+ 23 — 2 = 47 degrees of freedom.
° Pf[xf47) > 0.6117] ~ 0.52

dchisq(x, 47)
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Histograms of residuals for Model1 and Model 2.
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General principles (sec 2.3)

@ Response variable Y and predictors X, Xz, ..., Xp.
@ Model building,

e Specify (parametric) probability distribution of Y (Normal,
Poisson, etc.)
e "Link” E(Y) to predictors Xi, X, ..., Xp.

g(E(Y)) = fo + B1X +...+5pxp

e a function of the mean of Y is a "linear component”.
e Parameter estimation: MLE, least squares, Bayes.
e Model checking: consider model residuals.




@ In Linear regression we use standardized residuals
_i=v)

] ~

g
where Y; is a fitted value and & estimates the error SD.
@ Y;~ Poisson(0);i=1,2,...,n
Y._ &
(i)
Vi

@ Square root contribution to a Pearson goodness of fit

statistic:
> (0 —e)?/e;
i
where O; represents an observed value and e; an
expected value.
@ Exponential family of distributions.

UNM



