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Abstract: We address the problem of model comparison and model mixing in time

series using the approach known as Hierarchical Mixtures-of-Experts. Our method-

ology allows for comparisons of arbitrary models, not restricted to a particular class

or parametric form. Additionally, the approach is flexible enough to incorporate

exogenous information that can be summarized in terms of covariables or simply

time, through weighting functions that define the hierarchical mixture. Huerta,

Jiang and Tanner (2001) showed how to estimate the parameters of such models

using the EM-algorithm. Here we present some theoretical properties of the method

in the context of time series modeling. In addition, we consider model estimation

using a full Bayesian approach based on Markov Chain Monte Carlo simulation.

Methods for model checking and diagnostics for this class of models are presented.

Finally, we explore our methodology by analyzing an economic-financial series: the

monthly US industrial production index from 1947 to 1993.
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1. Introduction

Recent advances in computational statistics offer a wide variety of tools for
parametric and non-parametric modeling, particularly in mixture modeling and
model comparison. Time series methods are no exception, and mixing is crucial to
improve forecasting or to detect changes in structure across time. Also, mixture
models in time series offer the possibility of approximating non-linearities with
the advantage that mixtures of simple, perhaps linear components, are usually
more tractable than more parsimonious non-linear processes.

The problem of model mixing and model comparison in time series has a
long tradition. From a Bayesian perspective, the weights of the mixture are de-
fined through the marginal posterior probability of each individual model. Based
on these posterior probabilities, comparisons and marginal inference are feasible.
Some examples in this area relate to the work by McCulloch and Tsay (1994)
for Difference Stationary-Trend Stationary modeling (see Section 3). Assuming
a class of linear autoregressive models, Troughton and Godsill (1997) propose a
MCMC reversible jump algorithm to deal with uncertainty about model order or
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autoregressive lag, which consequently allows comparisons of different autoregres-
sions up to an arbitrary order. In this direction, but using a stochastic variable
search approach, Huerta and West (1999) incorporate model order uncertainty
but put emphasis on inference for latent component structure. Comparisons
of multiple autoregressive models with very high orders are feasible with this
method. In terms of Bayesian Dynamic Linear Models (DLM), Harrison and
Stevens (1976) introduced an approach known as Multi-Process models. Since
DLMs are sequential in nature, Multi-Processes allow for model mixtures based
on posterior probabilities and comparison of different dynamic models at each
time given the past information. The class of DLMs is quite flexible since most
of the known time series models can be expressed as an element of this class.
On the other hand, particular cases like GARCH or EGARCH models lead to
non-normal DLMs which may involve challenging computational issues. Further
explanations of these issues may be found in West and Harrison (1997, Chap. 12
and Chap. 15).

The time series modeling approach that we adopt for this paper is based
on the idea of mixing models through the neural network architecture known
as Hierarchical Mixtures-of-Experts (HME). HME was first introduced in Jor-
dan and Jacobs (1994). The HME approach easily allows for model comparison
and permits one to represent the mixture weights as a function of time or other
covariables. With the additional hierarchy, it is possible to localize the compar-
isons to specific regions or regimes. Furthermore, the defining elements of the
mixture do not have to be restricted to a particular class of models, permitting
very general comparisons. First, we review how to estimate the model parame-
ters via maximum likelihood using the EM-algorithm. We then consider a full
Bayesian approach to explore the posterior distribution of the parameters based
on a Markov Chain Monte Carlo (MCMC) scheme that follows the lines of Peng,
Jacobs and Tanner (1996).

In this paper, we introduce the general framework of hierarchical mixtures
for time series, review inference via the EM-algorithm and consider some the-
oretical properties of this approach in the context of time series modeling. We
present a MCMC method to implement a full Bayesian solution of the time series
hierarchical mixture and discuss other approaches to averaging time series mod-
els. We apply the methodology to a financial-economic time series. We consider
approximately 45 years of the US industrial production index and discriminate
between stochastic-trend models and deterministic-trend models.

2. Hierarchical Mixtures of Time Series: Models and Theory

2.1. A general framework for time series modeling via HME

Let {yt}n
0 be a time series of endogenous or response variables, and {xt}n

0 be
a time series of exogenous variables or covariates. Suppose the main interest is
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to draw inference on {yt}n
0 conditional on {xt}n

0 . Let the conditional probability
density function (pdf) of yt be ft(yt|Ft−1,X ; θ), where θ is a parameter vector;
X is the σ-field generated by {xt}n

0 , representing the external information; and
for each t, Ft−1 is the σ-field generated by {ys}t−1

0 representing “the previous
history” at time t−1. Typically, the conditional pdf ft is assumed to depend on X
through xt only. In Mixtures-of-Experts (ME) methodology (Jacobs, Nolan and
Hinton (1991)) and Hierarchical Mixtures-of-Experts (HME) (Jordan and Jacobs
(1994)), the pdf ft of the response variable is assumed to be a conditional mixture
of the pdfs from simpler, well established models. In a time series context, this
mixture can be represented by the finite sum

ft(yt|Ft−1,X ; θ) =
∑
J

gt(J |Ft−1,X ; γ)πt(yt|Ft−1,X , J ; η), (1)

where the functions gt(·|·, ·; γ) are the mixture weights; πt(·|·, ·, J ; η) are the con-
ditional pdfs from simpler models each defined by a label J ; and γ and η are
vectors of sub-parameters from θ.

The simpler models in HME are often referred to as the “experts”. In a
time series context, one “expert” could be an AR(1) model, another “expert”
could be a GARCH(1,1) model or an EGARCH(1,1) model. For example, in a
situation where it is not clear whether to use a stochastic or a deterministic trend,
one expert could be a trend-stationary process, another a difference-stationary
process. A somewhat simpler situation occurs when all the experts propose a
model of the same type, e.g., linear autoregressive, but perhaps with different
values for the coefficients or for the model order.

Furthermore, the HME models we use in this paper have an additional layer
designed with the purpose of local time series modeling. The HME partitions
the covariate space, which could include time, into O overlapping regions called
“overlays”. In each overlay, M models are to compete with each other, in the
hope that the model most suitable to the specific region is favored by a high
weight. By having multiple overlays, the hierarchical mixture model allows for
modeling multiple switching across regions.

Therefore, the expert index J can be expressed as J = (o,m), where the
overlay index o takes a value from {1, . . . , O} and the model-type index m from
{1, . . . ,M}, so that the mixture can now be represented by

ft(yt|Ft−1,X ; θ) =
O∑

o=1

M∑
m=1

gt(o,m|Ft−1,X ; γ)πt(yt|Ft−1,X , o,m; η). (2)

We allow the same type of model m to assume different versions or more
specifically different parameter values, at each possible overlay. It is worth noting
that this framework defines the two-layer HME architecture of Jordan and Jacobs
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(1994), where the first layer of gating functions hypothesizes O overlays on the
entire time axis, and the second layer of gating functions defines weights for each
of the M model types within each overlay. When the input space for the gating
functions is time, the hierarchical mixture model can identify the region over
which a model or a set of models is (are) dominant in a data-adaptive manner.
Thus, the present approach allows for modeling multiple regime switching. The
mixing weights are often referred to as “gating functions”. They can depend on
the previous history (Zeevi, Meir and Adler (1988)), exogenous information, or
can exclusively depend on t. Typically the gating functions have the form

gt(o,m|Ft−1,X ; γ) =

{
evo+uT

o wt∑O
s=1 evs+uT

s wt

}
 e

vm|o+uT
m|owt

∑M
l=1 e

vl|o+uT
l|owt


 , (3)

where the v’s and u’s are parameter components of γ, and wt is an “input”
at time t which is measurable with respect to the σ-field induced by Ft−1 ∪
X . For example, the input wt could be the covariate xt, the “two-lag” history
(yt−1, yt−2)T , or exclusively depend on time t.

In the context where one is interested in how the weighting for individual
models is assigned across different time periods, wt can be taken as (t/n). The
use of (t/n) instead of simply t is suggested to avoid computational overflow
errors when implementating the EM algorithm or a MCMC method with these
models. Therefore, one can adopt the following parametric form for the gating
functions:

gt(o,m|Ft−1,X ; γ) = gom(t; γ) ≡
{

evo+uo(t/n)∑O
s=1 evs+us(t/n)

}{
evm|o+um|o(t/n)∑M
l=1 evl|o+ul|o(t/n)

}
.

(4)
Here γ includes the following components: v1, u1, . . ., vO−1, uO−1, v1|1, u1|1, . . .,
vM−1|1, uM−1|1, . . ., vM−1|O, uM−1|O. For identifiability, we set vO = uO =
vM |o = uM |o = 0 for all o = 1, . . . , O. This restriction ensures that the gat-
ing functions are uniquely identified by the γ parameter.

More generally, write the right hand side of (3) as gom(wt; γ), which is a
function defined on W, the support of wt. Suppose we impose the constraint
vO = uO = vM |o = uM |o = 0 for all o = 1, . . . , O, and denote by γ the collec-
tion of all other parameters vo’s and um|o’s. Denote g as the vector of all gom

components. Then we have the following.

Proposition 1. Suppose the support W of the covariate wt contains p+1 ‘design
points’ w0, . . .wp such that the design matrix D = [(1,w0)T , . . . , (1,wp)T ] is
nonsingular. Then, g(w; γ) = g(w; γ′) for all w ∈ W, if and only if γ = γ′.
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Proof. The ‘if’ is obvious. To prove the ‘only if’, note that g(w; γ) = g(w; γ′)
implies that ∑M

m=1 gom(w, γ)∑M
m=1 gOm(w, γ)

=
∑M

m=1 gom(w, γ′)∑M
m=1 gOm(w, γ′)

,

which implies that vo +uT
o w = v′o + u

′T
o w for all w in W. Choose the p + 1 sup-

port points making D nonsingular and solve the equation, we obtain (vo,uT
o ) =

(v′o,u
′T
o ), which holds for all o. Similarly, from g(w; γ) = g(w; γ′) we are able

to cancel the first factors from both sides, and conclude that vm|o + uT
m|ow =

v′m|o + u
′T
m|ow for all w in W. Based on the non-singularity of D, we obtain

(vm|o,uT
m|o) = (v′m|o,u

′T
m|o) for all o and m. Therefore γ = γ′.

Remark 1. This argument can be repeated to prove identifiability of mixing
weights for HME with more than two layers.

Remark 2. Provided extra conditions on the “expert” densities which basically
say that the experts are different, it is possible to establish the identifiability of
the probability density functions up to some permutations of the expert labels,
which can become completely identified with some order restriction. A detailed
study in the context of non-hierarchical mixtures of generalized linear models is
included in Jiang and Tanner (1999).

Remark 3. The condition on W, in the case of a single covariate t, reduces to
requiring that there exist two design points t1 and t2 in the support of t such
that t1 �= t2. This condition typically holds for any time series of length n ≥ 2.

As an example, suppose that one believes that the entire time period under
observation may be modeled with three overlays decomposed into three regions
O1, O2 and O3 with unknown locations, and in each of these regions one of the
two types of candidate models may be most appropriate: (M1) a random walk
with a drift, yt = yt−1 + α+ εt, and (M2) a linear trend model with no intercept,
yt = β(t/n) + et. Here, M = 2 and O = 3. In the gating function (4), the first
factor softly splits the entire time period into the three regions O1, O2 and O3
indexed by o = 1, 2, 3, and the second factor weights the model types m = 1 and
2 (named M1 and M2) in each region o (see Figure 1). Assuming independent
standard normal innovation errors et and εt, the pdfs defined by the experts are
πt|o,m=1 = φ(yt − yt−1 −αo) and πt|o,m=2 = φ(yt −βot) for o = 1, 2, 3, where φ(·)
denotes the pdf of a standard normal. Notice that the parameters or versions of
each model-type can differ for distinct regions.



1102 GABRIEL HUERTA, WENXIN JIANG AND MARTIN A. TANNER

Figure 1. A graphical representation of a two-layer HME.

For describing such a situation, a single-layer HME (i.e., the Mixtures-of-
Experts or ME (Jacobs et al. (1991))) can also be used in principle. Multiple
versions of M1 and M2 can be combined by single-layer gating functions (here a
single-layer gating function is a multinomial logit-linear function of time which
may look similar to a single factor in (4)). The disadvantage of this ME approach
compared to a two layer HME is that the competition between types of models
within each region becomes confused.

Inference on the parameter θ can be based on the log-likelihood function,
conditional on y0, X and “averaged” in time, which is

Ln(·) = n−1
n∑

t=1

log ft(yt|Ft−1,X ; ·). (5)

We denote the maximum likelihood estimate (MLE) of θ as θ̂ = arg maxLn(·).
For a Bayesian analysis, inferences on θ are based on the elicitation of a prior
distribution p(θ) that leads, through Bayes theorem, to the posterior distribution
p(θ|Fn,X ).

The free vector of parameters γ in the gating functions automatically deter-
mines the location and the “softness” of the splitting of the regions. The number
of distinct model-types M usually is specified by the practitioner, depending on
the number of models that are of interest to the specific problem. The number
of regions O can sometimes be selected based on subjective considerations, es-
pecially if there is historical information which may be thought to influence the
time series.

Given θ, there are two ways in evaluating the relative weighting of each of
the M model types at time t. One is the conditional probability of each model
m (with the current response yt being conditioned on) defined by:

Pt(m|yt,Ft−1,X , θ) ≡ hm(t) ≡
O∑

o=1

hom(t; θ). (6)
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Another approach is to consider the unconditional probability / weight of
model m at time t (unconditional on the current response yt):

Pt(m|Ft−1,X , θ) ≡ gm(t) ≡
O∑

o=1

gom(t; θ). (7)

Point estimates of both probabilities can be obtained with the MLE θ̂ or by
taking the expectation with respect to the posterior distribution p(θ|Fn,X ). As
we show in Section 3, the point estimates of (6) can vary point-wise over time due
to the conditioning on yt. The point estimates of the second weighting scheme
(7) are more smoother when describing a regional change of preference for model
m, when the gating functions depend on a single covariate t. We compare each
of these weighting approaches in the data analysis.

2.2. The EM algorithm

As noted in Huerta, Jiang and Tanner (2001), the EM algorithm provides a
method for frequentist inference in this context. The EM algorithm starts with
an initial estimate of the parameters θ0. Then a sequence {θi} is obtained by
iterating between the following two steps: For i = 0, 1, 2, . . .,

E-step: Construct

Qi(θ) =
n∑

t=1

∑
o,m

hom(t; θi) log{πt(yt|Ft−1,X , o,m; η)gt(o,m|Ft−1,X ; γ)}, (8)

where θ = (γ, η), θi = (γi, ηi), hom(t; θi) = hom(t; θ)|θ=θi , and

hom(t; θ) =
gom(t; γ)πt(yt|Ft−1,X , o,m; η)∑O

s=1

∑M
l=1 gsl(t; γ)πt(yt|Ft−1,X , s, l; η)

(9)

is the “conditional probability” of choosing the expert (o,m) at time t and
gom(t; γ) is the corresponding “unconditional probability”.

M-step: Find θi+1 = arg maxθ Qi(θ).

In fact, Qi(θ) is the posterior expectation with respect to zom(t) and condi-
tional on θi of the augmented log-likelihood,

LA(θ) =
n∑

t=1

∑
o,m

zom(t) log{πt(yt|Ft−1,X , o,m; η)gt(o,m|Ft−1,X ; γ)}, (10)

where zom(t) are indicator variables that take the value 1 if expert (o,m) is chosen
at time t and zero otherwise.
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It is well-known (Tanner (1996)) that the limit of the sequence {θi}, denoted
by θ̂(θ0), is a root of the likelihood equation ∇θLn = 0 corresponding to a
stationary point. When the likelihood is multimodal, the limit depends on the
different modes so we use multiple starting points and find the corresponding
limits via the EM algorithm. We adopt as the point estimate the limit which
results in the largest likelihood Ln over the multiple starting points.

A nice feature of the EM algorithm is that the objective function Qi, in each
step, has the form of a double sum of logarithms, instead of a “sum log sum”
typical for the log likelihood function Ln. For this reason, the maximization of
the objective function can be decomposed into a number of smaller maximization
problems which involve fewer parameters and usually define “known” maximiza-
tions of widely used models. For example, suppose the expert pdf has the form

πt(yt|Ft−1,X , o,m; η) = pt(yt|Ft−1,X ,m; ηom), (11)

where η is decomposed into a collection of sub-parameter ηom, each of which only
appears in the pdf of one expert (see the example in Section 3). The parameter
ηom carries an index o in addition to m to allow one type of model to take
different versions (parameters) in different overlays. In such a situation, in the
M step, the maximization over the ηom’s and γ can be performed separately. For
example, for each o, m, i,

ηi+1
om = arg max

ηom

n∑
t=1

hom(t; θi) log pt(yt|Ft−1,X ,m; ηom), (12)

which becomes the “standard” (albeit weighted by the h’s) maximum likelihood
problem for model type-m.

2.3. Some analytical considerations

Standard results on the properties of the MLEs, such as the ones described in
Lehmann (1991, Chap.6), are established for the situation when data are indepen-
dent and identically distributed. The observed data {yt}n

0 in this paper, however,
are dependent and non-stationary. It is a very difficult problem to study the prop-
erties of MLEs for such nonstandard cases. However there is some relevant work,
mostly based on various approaches of relaxing the independence assumption,
under the frameworks of martingale dependence (Crowder (1976)), mixingale de-
pendence, near epoch dependence (Gallant and White (1988), Chap.3−Chap.5),
etc. Consistency and asymptotic normality of the MLEs can be proved under
certain regularity conditions (see, e.g., Crowder (1976), Sarma (1986) and Weiss
(1973)). However, these regularity conditions can be nonintuitive and difficult to
check.
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In the following proposition, we show that the (“unaveraged”) score functions
form a martingale and, under very mild conditions, the true parameter θ0 is an
approximate solution to the likelihood equation in the large sample size limit
with a certain rate of precision. This, in a very general context, provides some
justification of the maximum likelihood procedure which searches for an exact
solution of the likelihood equation. Stronger results can be obtained if further
regularity conditions are imposed, an exact solution of the likelihood equation
can be shown consistent and asymptotically normal (see, e.g., Crowder (1976),
Sarma (1986) and Weiss (1973)). It is noted, however, that these regularity
conditions typically involve the properties of certain expectations which may be
difficult to check, due to the nonlinearity of the time series.

Proposition 2. Suppose ft(yt|Ft−1,X ; θ) is differentiable with respect to θ, and
∇θ and

∫
dyt commute when acting on ft at θ = θ0. Let ut(θ) = ∇θ log ft(yt|Ft−1,

X ; θ), the “score increment” at time t so the “averaged” score function is ∇θLn(θ)
= n−1∑n

t=1 ut(θ). Let || · || be the Euclidean norm. We have:
(i) {ut(θ0)} is a sequence of martingale differences (so the unaveraged score

functions form a martingale);
(ii) P{||∇θ0Ln(θ0)|| > ε} ≤ (nε)−2∑n

t=1 E||ut(θ0)||2, for each positive ε;
(iii)∇θ0Ln(θ0) = Op(n−δ/2) if

∑n
t=1 E||∇θ0 log ft(yt|Ft−1,X ; θ0)||2 = O(n2−δ).

Proof. For each t = 1, 2, . . .,

E{ut(θ0)|Ft−1,X}
= E{∇θ0 log ft(yt|Ft−1,X ; θ0)|Ft−1,X}
=
∫

dyt{ft(yt|Ft−1,X ; θ0)ft(yt|Ft−1,X ; θ0)−1∇θ0ft(yt|Ft−1,X ; θ0)} = 0,

by exchangeability of ∇θ and
∫
, and

∫
ft = 1. Hence (i).

(ii) is straightforward from Chebyshev’s inequality, noting that E{us(θ0)T

ut(θ0)} = E||ut(θ0)||2δst by using (i). Here δst is the Kronecker’s delta.
(iii) follows from (ii) by taking ε = Mn−δ/2 for a positive constant M which

can be arbitrarily large.

Remark 4. This proposition shows that the true parameter satisfies the like-
lihood equation approximately in the large-n limit, if the exponent δ in (iii) is
positive. This is a very mild requirement – it is satisfied as long as the growth of
E||∇θ0 log ft(yt|Ft−1,X ; θ0)||2 in time is slower than t, which basically disallows
the variances of the “score increments” to blow up as fast as t.

2.4. A Bayesian approach

A standard way to deal with parameter uncertainties in a mixture model
context is through a Bayesian approach with MCMC methods. To explore the
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posterior distributions of an HME time series model, we propose an MCMC
scheme with a format similar to the HME approach used by Peng, Jacobs and
Tanner (1996) for speech recognition tasks. A key benefit of MCMC methods
is the ability to obtain samples from the posterior distribution of any functional
form of the parameters of the model. In this way, more information is obtained
than can be provided by just a point estimate as given by the EM-algorithm.

First, we assume that the prior distribution for θ = (η, γ) has the form

p(θ) = p(η)p(γ). (13)

So the “expert” parameters η and the “gating” parameters γ are a-priori
independent.

We define Z = {Z(t); t = 1, . . . , n} and, for each t, Z(t) = {zom(t); o =
1, 2, . . . , O,m = 1, 2, . . . ,M} is the set of indicator variables at time t. The
sets Z(t), t = 1, . . . , n are mutually independent and, given θ, p(Z(t)|θ,X ) has a
multinomial distribution with total count 1 and cell probabilities gom(t; γ).

Our MCMC method is based on the fact that is simpler to obtain samples
of (θ,Z) from the augmented posterior distribution p(θ,Z|Fn,X ) than samples
from the posterior p(θ|Fn,X ). This is in accordance with the principles for
calculation of posterior distributions by data augmentation introduced by Tanner
and Wong (1987). The general structure of the conditional posterior distributions
required for our MCMC-data augmentation algorithm are briefly outlined here.
Specifically,

• The conditional posterior distribution for p(Z|θ,Fn,X ) is sampled via the
marginal conditional posterior distributions p(Z(t)|θ,Fn,X ) for each value
of t. Given θ, Fn and X , the vector Z(t) has a multinomial distribution
with total count 1 and for which

Pr[zom(t) = 1|θ,Fn,X ] = hom(t; θ), (14)

where hom(t; θ) is defined at (9). Certainly, Pr[zom(t) = 1|θ,Fn,X ] =
Pr[zom(t) = 1|θ,Ft,X ] since all the information of {yt}n

0 for zom(t) is sum-
marized in πt(yt|Ft−1,X , o,m; ηom).

• The parameter θ = (η, γ) is sampled in two stages. η is sampled from the
conditional posterior distribution p(η|γ,Z,Fn,X ) and γ is sampled from
the conditional posterior distribution p(γ|η,Z,Fn,X ). By Bayes theorem,

p(η|γ,Z,Fn,X ) ∝
n∏

t=1

O∏
o=1

M∏
m=1

πt(yt|Ft−1,X , o,m; η)zom(t)p(η). (15)
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Similarly,

p(γ|η,Z,Fn,X ) ∝
n∏

t=1

O∏
o=1

M∏
m=1

gt(o,m|Ft−1,X ; γ)zom(t)p(γ). (16)

If η is decomposed into a collection of sub-parameters ηom and these are
assumed a-priori independent, each ηom may be sampled individually. If
ηom has a prior that is conjugate with respect to the pdf of model “m” and
expert “o”, its conditional posterior has a closed-form and is usually easy to
sample. For γ, we use Metropolis-Hastings steps to obtain samples from its
full conditional distribution. Specific issues of model implementation and
prior specifications depend on the particular application, as illustrated in
Section 3.

In contrast to the EM algorithm, the full Bayesian approach allows com-
plete assessment of uncertainties in estimating the parameters and the condi-
tional and unconditional model probabilities. However, the EM-based approach
is computationally less intensive and could be used as a first step to the MCMC
implementation.

2.5. Comparison with other approaches

We now compare our HME approach with other methods for model selec-
tion/averaging, among a candidate set of models labeled by m = 1, . . . ,M .

Our method provides model selection probabilities which can change gradu-
ally over time, over the multiple overlapping sub-regions. The smooth parametric
g’s provide the “unconditional” weights for the models of interest, in addition
to the less smooth h’s. The gating function g’s may be regarded as a “prior”
probability of model m that depends on some parameter γ to be estimated from
the data. The g’s are also dependent on time t and are parameterized in the
multinomial logit form, which can be suitable for describing regional changes for
the model selection probability. In some other model selection methods, how-
ever, only a point-wise (rather than a regional) description of the model selection
probability is provided. One such example is hidden Markov modeling (see the
papers by Hamilton (1989), and a Bayesian approach by McCulloch and Tsay
(1994)), where the choice over M = 2 models is formulated as a two-state Markov
chain and the resulting model probabilities fluctuate pointwise in time. Filardo
(1994) extends this Markov switching modeling to allow time-varying transition
probabilities that depend on exogenous variables. He suggests a logistic func-
tional form for the transition probabilities and uses direct maximum likelihood
to estimate model parameters. Still, the methodology seems only capable of host-
ing problems in which the means, variances and coefficients of an autoregressive
process evolve in time in a dichotomous manner.
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McCulloch and Tsay (1993, Section 4) consider random mean shift and ran-
dom variance shift models. They suggest a probit structure (see their equation
13) to relate the probability of a shift to possible exogenous variables. In their
approach they consider a baseline model and at any given time point, there can
be a shift from that model. In our context, we consider M specific competing
models, where M ≥ 2.

It is noted that ME, HME and the related hidden Markov decision trees
have had wide applications in time series modeling − see for example Jordan,
Ghahramani and Saul (1996) and Zeevi, Meir and Adler (1998). The focus there,
however, is mainly on the flexibility of the methodology (e.g., improvement in fit),
rather than on model selection. Also, in that literature, experts typically have the
same model type, albeit in different “versions” (i.e., with different parameters).
The paper by Weigand, Mangeas and Srivastava (1995) uses gated experts (GE)
to discover regime switching. In GE, the experts combined are standard neural
networks with a linear output unit and tanh hidden units. This provides a
very flexible modeling scheme since it switches among unknown submodels, due
to the approximation property of the neural network experts. However, in the
situation of selecting among M candidate models, types of which are specified
by the researcher, GE is less efficient. Our HME approach uses the M specific
models, and does not involve approximation, while the GE uses M neuralnets,
each with P tanh nodes to approximate the exact models. The GE will have to
employ many nodes and can only achieve an approximation to the exact model.
Thus GE requires more parameters, and has a less clear interpretation for the
purpose of model comparison.

2.6. Model checking

For issues on model checking and diagnostics, we propose the use of one-step-
ahead predictive distribution functions as in Kim, Shephard and Chib (1998) and
Elerian, Chib and Shephard (2001). For this, let

Ft(yt|Ft−1,X , θ) = Pr(Yt ≤ yt|Ft−1,X , θ). (17)

Given the definition of a ME or HME,

Ft(yt|Ft−1,X , θ) =
∑
J

gt(J |Ft−1,X ; γ)Fπt(yt|Ft−1,X , J ; η), (18)

where Fπt(·|·, ·, J ; η) is the distribution function of the simpler models each in-
dexed by a label J . We note that, given the model parameters, the calculation of
the overall distribution function is direct from the evaluation of the distribution
function of the individual models.
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It can be shown that if the model is correctly specified, ut is uniformly
distributed on the interval (0, 1) and defines an independent sequence (Rosen-
blatt(1952)). We can estimate ut by ût = Ft(yt|Ft−1,X , θ̂) where θ̂ can be the
MLE estimate obtained with the EM algorithm or a posterior summary based
on a MCMC scheme. In consequence, we can judge model adequacy by the se-
rial correlation and the distributional shape of {ût}, or with transformed values
via an inverse cdf, for example, the N(0, 1) cdf. Additionally, Kim, Shephard
and Chib (1998) suggest focusing on 2|ût − 0.5| to explore the correlation and
distributional form under a correct model.

Additionally, we can also compute the standardized forecast errors as

yt − E(yt|Ft−1,X , θ̂)√
V ar(yt|Ft−1,X , θ̂)

; t = 1, . . . , n, (19)

where E(yt|Ft−1,X , θ̂) and V ar(yt|Ft−1,X , θ̂) are the conditional expectation
and conditional variance of yt given the history up to time t − 1, the exogenous
variables and a parameter estimate θ̂. The numerator of the standardized fore-
cast errors is very similar to the generalized residual approach of Lai and Wong
(2001), Section 4.3. However, the models of Lai and Wong (2001) are different
from HME. Corresponding to their equation 9a, the numerator of equation 19
involves a combination of error terms from several different models with possible
different variances. Distributional aspects of the standardized errors are harder
to determine than for ut, but they may provide a graphical aid to indentifying
model misspecifications.

3. Application

3.1. Difference stationary-trend stationary modeling

We now consider the United States industrial production index as reported
by the Federal Reserve Statistical Release G.17 (see McCulloch and Tsay (1994)).
The data were obtained on a monthly basis from January 1947 to December
1993 and are seasonally adjusted. In total, the time series includes n = 546
observations that appear in Figure 2. From this picture, we can see that the
production index exhibits a trend towards higher values with the progression of
time. An important matter for economical policy is to determine if the trend has
a stochastic or a deterministic nature. That is, which of the following is a more
appropriate model:

yt = φ0 + yt−1 + φ1,1(yt−1 − yt−2) + . . . + φ1,u(yt−u − yt−u−1) + ε1,t,

yt = β0 + β1t/n + φ2,1yt−1 + . . . + φ2,vyt−v + ε2,t,
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where β0, β1, φ0, φ1,i and φ2,j are constants, εi,t is the innovation error with
variance σ2

i ; i = 1, 2. Note that u and v are non-negative integers and B is the
lag operator of order 1, Byt = yt−1.

Figure 2. US Industrial Production Index. Monthly-seasonally adjusted
observations from January 1947 to December 1993.

For these data, it has been suggested that autoregressions of order higher
than two are unnecessary for adequate modeling, so we fix u = v = 2. For analysis
using a HME we define πt|o,m=1 to be the pdf determined by the difference-
stationary model and πt|o,m=2 to be the pdf defined by the trend-stationary
model, so M = 2. Our first analysis uses O = 2, i.e., two overlays for each
model-type combination. The EM was implemented by using 20 starting points,
with parameters φ0, φ1,i ,φ2,j and σ2

1 fixed at the MLE based on fitting only a
difference-stationary model. Similarly, β0, β1, φ2,i and σ2

2 were initialized at the
MLE via a trend-stationary assumption. The initial values for the parameters
in the mixing weights or gating functions, v1, u1, v1|1, u1|1 and v1|2, u1|2 were
generated randomly from a uniform distribution on [−a, a], with a large. In
each case, the EM was run for 500 iterations and traces of individual parameters
indicate that the EM finds a local mode at about 500 iterations. The 20 solutions
were ranked by evaluating the log-likelihood of the HME, Ln(·), and the solution
that produced the maximum likelihood estimates (MLE) was used to obtain
Figures 3-4.

Figure 3 presents our ML estimate of gm(t) for m = 1, 2 as a function of
time, where 1 represents difference-stationary and 2 represents trend-stationary.
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For the first part of the series, up to about 200 observations, the HME weights
towards a difference-stationary model. For more recent information, it favors a
trend-stationary process.

Figure 3. Maximum likelihood estimates of gm(t) for both model-types con-
sidered: Difference-stationary and Trend-stationary.

Figure 4 presents our ML estimate for hm(t), m = 1, 2, which for large
samples sizes approximately gives the posterior probability for each model given
all the information available up to time t (see Section 2). Due to this asymptotic
behavior, comparisons of this picture to Figure 2 of McCulloch and Tsay (1994)
(MT) are valid. Both HME and MT split the data in two parts, the first favors
difference-stationarity, but the second HME favors trend-stationarity while for
MT it is harder to distinguish the two models. On the other hand, HME seems
to reflect a transition period for the second part of the information. In other
words, as time passes, the data is moving toward a trend-stationary behavior
and, particularly by the end of the series, there are many points for which the
probability of trend-stationary is higher than 0.8. It is noted that Figure 3
offers a smooth version of Figure 4 which is less affected by individual, perhaps
contrasting observations. At least for large sample sizes, this smooth behavior
of the estimate of gm(t) relative to the estimate of hm(t) will be observed, since
gm(t) is approximately the expected value of hm(t) with respect to the data.

For the full Bayesian analysis of the HME using the MCMC method of Sec-
tion 2.4, we fixed O = 2 and u = v = 2. Define φo

1 = (φo
0, φ

o
1,1, φ

o
1,2) to be the vec-

tor of parameters for the difference-stationary model and φo
2 = (βo

0 , βo
1 , φo

2,1, φ
o
2,2)

to be the vector of parameters for the trend-stationary model, o = 1, 2.
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Figure 4. Maximum likelihood estimates of hm(t) for both model-types
considered: Difference-stationary and Trend-stationary.

To obtain conditional posterior distributions for φo
1 and φo

2 that are conjugate,
we assume independence a-priori and that each vector follows a multivariate
normal distribution, i.e., φo

i ∼ N(mi, Ci); i = 1, 2; o = 1, 2.
Also to obtain conjugate conditional distributions, we assume that σ2

1 and
σ2

2 are independent a-priori with an inverse gamma prior distribution, i.e., σ2
i ∼

IG(αi, βi); i = 1, 2.
For the gating parameters, we assume that the vector (v1, u1) is independent

of the vector (v1|1, u1|1) both with uniform/improper priors, i.e., p(v1, u1) ≡
p(v1|1, u1|1) ∝ 1.

The form of the conditional posterior distributions is as follows. Assuming
known initial values y0, y−1, y−2, for o = 1, 2, let wo be a column vector with
entries wo

t = zo,1(t)(yt − yt−1), t = 1, . . . n. For o = 1, 2, let Xo be a matrix
with columns defined by zo,1(t), zo,1(t)(yt−1 − yt−2) and zo,1(t)(yt−2 − yt−3), t =
1, . . . , n. Then it can be shown that the conditional posterior distribution for φo

1

is N(ao
1, V

o
1 ), where

ao
1 = V o

1

(
(Xo)two

σ2
1

+ C−1
1 m1

)−1

;V o
1 =

(
(Xo)tXo

σ1
2

+ C−1
1

)−1

.

For o = 1, 2, redefine wo as a column vector with entries wo
t = zo,2(t)yt,

t = 1, . . . n, and Xo a four-dimensional matrix with columns zo,2(t), zo,2(t)t/n,
zo,2(t)yt−1 and zo,2(t)yt−2, t = 1, . . . , n. The conditional posterior distribution
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for φo
2 follows a N(ao

2, V
o
2 ) where

ao
2 = V o

2

(
(Xo)two

σ2
2

+ C−1
2 m2

)−1

;V o
2 =

(
(Xo)tXo

σ2
2

+ C−1
2

)−1

.

Furthermore, the conditional posterior distribution for σ2
i is an IG(α∗

i , β
∗
i );

i = 1, 2, where

α∗
i = αi +

n∑
t=1

2∑
o=1

zo,i(t)/2; β∗
i = βi +

n∑
t=1

2∑
o=1

zo,i(t)(yt − µo,i(t))2

with µo,1(t) = φo
0 + yt−1 + φo

1,1(yt−1 − yt−2) + φo
1,2(yt−2 − yt−3) and µo,2(t) =

βo
0 + βo

1t/n + φo
2,1yt−1 + φo

2,2yt−2; o = 1, 2.
The conditional posterior distributions for (u1, v1) and (u1|1, v1|1) do not have

a simple analytic form and we sample them with a Metropolis-Hastings step. In
both cases, we implement the Metropolis Hastings algorithm using a random-walk
proposal. Particularly, the proposal distribution is a bivariate normal centered at
the previous sampled value of (u1, v1) or (u1|1, v1|1) respectively, with a covariance
matrix of the form δ2I. The accept-reject ratio is computed with the expression
for a bivariate normal density function and the part of the augmented-likelihood
(see (12)) that has the function gom(t; θ).

For the initial value of the MCMC-data augmentation algorithm, we use
the EM solution that produced the maximum likelihood estimates. The prior
is set in a “vague” fashion to illustrate how our MCMC performs. We set mi

equal to a zero vector, Ci is a diagonal matrix with diagonal elements equal to
1,000, and αi = βi = 1, i = 1, 2. Other priors may be used to express personal
knowledge about parameters or models. We present posterior inference based on
5,000 samples, collected after a burn-in of 10,000 iterations and skipping every
10 iterations to break possible MCMC autocorrelations. Convergence diagnostics
confirm that convergence is achieved after such a number of iterations.

Table 1 presents some parameter estimates for both EM and MCMC meth-
ods with posterior standard deviations. A referee noticed that in Table 1, the
parameters at (o,m) = (1, 1) and (o,m) = (2, 2) are not precisely estimated (i.e.,
the difference-stationary model parameters in the first overlay (φ1

0, φ1
1,1 and φ1

1,2),
as well as the trend-stationary parameters in the second overlay (β2

0 , β2
1 , φ2

2,1 and
φ2

2,2), have large posterior standard deviations). One possible reason is that at
o = 2, model m = 1 (difference-stationary) is dominant, while at o = 1, model
m = 2 (trend-stationary) is dominant. Therefore at o = 1, parameters for m = 1
(and also the parameters for m = 2 at o = 2) cannot be precisely estimated since
the weight of this model is very small. Figures 5 and 6 present the posterior
mean of gm(t) and hm(t),m = 1, 2, respectively. In contrast to the EM approach
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based on a point estimate of θ, at each MCMC iteration we compute gm(t) and
hm(t) with the sampled value of θ and average across samples. In comparison,
the probabilities of Figures 3 and 5 are esentially the same. The probabilities of
Figure 6 are affected by individual observations and have the general pattern of
Figure 4, but seem to be smooth compared to Figure 4. In general, we find very
small diferences between the EM and posterior mean approaches to estimate the
relative weighting of each model.

Table 1. Parameter estimates with EM and MCMC for both model-types
considered: Difference-stationary and Trend-stationary.

φo
0 φo

1,1 φo
1,2 βo

0 βo
1/n φo

2,1 φo
2,2

MLE (o = 1) 0.160 0.284 0.273 1.279 0.008 0.697 0.249
Posterior Mean (o = 1) -0.531 0.209 0.034 1.253 0.011 0.968 -0.035

Posterior SD (o = 1) 31.707 31.841 31.862 0.360 0.003 0.038 0.034
MLE (o = 2) -0.110 0.601 0.023 0.709 0.013 2.106 -1.187

Posterior Mean (o = 2) 0.026 0.429 0.205 -0.309 -0.315 0.606 0.256
Posterior SD (o = 2) 0.025 0.058 0.052 31.582 31.205 31.786 31.523

Figure 5. Posterior mean estimates of gm(t) for both model-types considered:
Difference-stationary and Trend-stationary.

One advantage of implementing a full Bayesian analysis with respect to the
EM algorithm is to visualize the complete behavior of posterior distributions.
Diagnostic summaries are included in Figures 7 and 8. Figure 7 presents the
autocorrelation function and a qqplot for ût and 2|ût − 0.5|, where ût is com-
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puted with equation (17) of Section 2.6 and θ̂ is the posterior mean. In both
cases, to explore the distributional assumption of ut under a correct model, we
transformed the sequence using the inverse CDF of a standard normal. The qq-
plot of the transformed values of ût and 2|ût − 0.5| shows most points at the
qqline with some deviation from a Normal. Figure 8 presents a time plot of the
standardized forecast errors or residuals. We notice there are some time points
with large errors. On the other hand, these standardized forecast errors are not
as informative for checking the model assumption on individual error terms as
in the case of Lai and Wong (2001). Even though the HME model may not be
completely satisfactory for modeling the data, it gives insight on model weight-
ing and comparison. The analysis of ût based on the EM solution results in the
same conclusions. A more complicated structure for HME may be needed for a
larger data set resulting in a heavier computational burden. For this example,
the computing time for 250 iterations of the EM algorithm implemented in Splus
and in a Sun workstation is approximately 45 minutes. Also, 10000 iterations of
the MCMC method implemented in Fortran and running in a PC with a Pentium
III processor is approximately 10 minutes. If we fix O = 3 instead of O = 2, the
estimates of hm(t) and gm(t) are practically the same. This gives some evidence
that a third overlay is unnecessary for this example. Some comments on the
selection of O appear in the next section.

Figure 6. Posterior mean estimates of hm(t) for both model-types considered:
Difference-stationary and Trend-stationary.
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Figure 7. Graphical summaries for ût and 2|ût − 0.5|: Autocorrelation func-
tion up to lag 50 and qqplot of transformed series with Φ−1(·).

Figure 8. Time series plot of standardized residuals evaluated at the poste-
rior mean of θ.

4. Extensions

We have not considered the situation in which the number of overlays O

is uncertain. Selection of O can be performed using a criteria such as AIC or
BIC which we discuss in more detail in further work. Alternatively, we could
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adddress this issue by using extensions to our current MCMC approach based
on reversible jump or variable selection schemes that include model uncertainty
on O or model uncertainty on the parameters of the defining models, such as the
orders of the autoregressions in the trend−difference stationary example. These
extensions will be studied in the future.
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