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Preface

Industrial Statistics is largely devoted to achieving, maintaining, and improving quality. Industrial
Statistics provides tools to help in this activity. But management is in charge of the means of pro-
duction, so only management can achieve, maintain, or improve quality.

In the early 20th century Japan was renown for producing low quality products. After World War
II, with influence from people like W. Edwards Deming and Joseph M. Juran, the Japanese began
an emphasis on producing high quality goods and by the 1970s began out-competing American
automobile and electronics manufacturers. Deming had had previous unsuccessful experiences in
America with implementing (statistical) quality programs and had decided that the key was getting
top management to buy into an overall program for quality.

While the basic ideas of quality management are quite stable, actual implementations of those
ideas seem subject to fads. When I first become interested in Industrial Statistics, Total Quality
Management (TQM) was all the rage. That was followed by Six-Sigma which seems to have run its
course. Lean seems to have been next up and even that seems to be passing. Lean Six-Sigma is what
I see being pushed most in 2021. I expect a new fad to arise soon.

Wikipedia has separate entries for Quality Management, Quality Management Systems (QMS),
and TQM. I cannot tell that there is much difference between them other than what terminology is
in vogue. The American Society for Quality (ASQ) has four major topics on their list for learning
• Quality Management
• Standards
• Six-Sigma
• Lean

0.1 Standards

Standards refers to standards for quality management. The International Organization for Standard-
ization (ISO - not an acronym in any of English, French or Russian) produces the 9000 series
standards for Quality Management. The key document seems to be ISO 9001:2015 which specifies
requirements for quality management. This was reviewed and confirmed in 2021. Other key stan-
dards are ISO 9000:2015 on fundamentals and vocabulary and ISO 9004:2018 for continuous im-
provement of quality. See https://www.iso.org/iso-9001-quality-management.html and
https://www.iso.org/standard/62085.html.

0.2 Six-Sigma

Six-Sigma is an entire management system that began at Motorola and was famously exploited by
General Electric (GE). It is named after a very good idea related to control charts but has been
extrapolated far beyond that.

The basic idea of control charting is that with a process that is under control, virtually all of
the output should fall within three standard deviations of the mean. (For technical reasons when
determining control status this idea is best applied to the average of small groups of observations
that are combined for some rational reason [rational subgroups].) Indeed, this idea is the basis
for an operational definition of what it means to have a process under control. (For those with
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some probability background you can think of it as an operational definition of what it means to
be independent and identically distributed (iid).) The interval from the mean minus three standard
deviations up to the mean plus three standard deviations is known as the process capability interval.
Typically a product has some specification interval within which the product is required to fall. If
the process capability interval is contained within the specification interval we are good to go. The
standard deviation is typically denoted by the Greek letter sigma (σ ).

The fundament idea behind Six-Sigma is striving to get the much larger interval from the mean
minus six standard deviations (six-sigma) up to the mean plus six standard deviations within the
specification interval. To do this may require cutting product variability in half. In such a case, if
your process is on target (the middle of the specification interval) you will have very little variability
and even if your process strays off of the target a bit, you can remain within the specification limits.
But the overall Six-Sigma program is vastly more complicated.

David Wayne (http://q-skills.com/Deming6sigma.htm) says “Six Sigma, while purport-
ing to be a management philosophy, really seems more closely related to Dr. Joseph Juran’s more
project-oriented approach, with a deliberate, rigorous technique for reaching a problem resolution
or an improvement. Dr. Deming’s approach is more strategic, theoretical and philosophical in na-
ture, and does not carry the detailed explicitness of the Six Sigma approach.” My memory (I am still
looking for an exact reference) is that Deming was critical of Six-Sigma for being overly focused on
financial issues. (Not surprisingly, this emphasis on financial issues seems to have made Six-Sigma
more popular with top management.)

Hahn, Hill, Hoerl, and Zinkgraf (1999) and Montgomery and Woodall (2008) present overviews
of Six-Sigma from a statistical viewpoint. The panel discussion Stenberg et. al. (2008) also discusses
Six-Sigma quite a bit.

0.3 Lean

Lean is a program for eliminating waste based on Toyota’s program for doing so. It is often pre-
sented as a cycle similar to the Shewhart Cycle: Plan, Do, Study, Act that is discussed in Section 1.3.
The lean version is: Identify Value, Map the Value Stream, Create Flow, Establish Pull, Seek Per-
fection. The key ideas are to minimize steps in your process that do not add value and to imple-
ment steps that increase value. For more information see https://www.lean.org/WhatsLean/

Principles.cfm or cips-lean

0.4 This Book

Industrial Statistics obviously can involve any and all standard statistical methods but it places spe-
cial emphasis on two things, control charts and experimental design. Here we review a wide range
of statistical methods, discuss basic control charts, and introduce industrial experimental design.
The seminal work in modern Industrial Statistics is undoubtedly Walter Shewhart’s 1931 book Eco-
nomic Control of Quality of Manufactured Product. In my decidedly unhumble opinion, the two
best Statistics books that I have read both relate to industrial statistics. They are Shewhart’s (1939)
Statistical Method from the Viewpoint of Quality Control (heavily edited by W. Edwards Deming)
and D. R. Cox’s (1958) Planning of Experiments. Within experimental design Industrial Statistics
places special emphasis on screening designs and on response surface methodologies. My Topics in
Experimental Design (TiD) (https://www.stat.unm.edu/~fletcher/TopicsInDesign) dis-
cusses these subfields but is written at a higher mathematical level.

When I joined ASQ it seemed to be a professional organization similar to the American Sta-
tistical Association. Now it seems to me that they are primarily in the business of certifying qual-
ity professionals and selling materials to facilitate certification. Relative to their test for Manager
of Quality/Organizational Excellence Certification CMQ/OE, this book covers much of Section
IV (Quality Management Tools) and a bit of Section IIIe (Quality Models and Theories). Other
ASQ certifications whose bodies of knowledge have some crossover are Certified Quality Engi-
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https://www.lean.org/WhatsLean/Principles.cfm
https://www.lean.org/WhatsLean/Principles.cfm
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neer (CQE), Certified Six Sigma Black Belt (CSSBB), Certified Six Sigma Green Belt (CSSGB),
Certified Reliability Engineer (CRE), and Certified Quality Inspector (CQI).

0.4.1 Computing

The computing is done in Minitab because it is the simplest package I know. Minitab began as
a general statistical package but long ago oriented itself towards industrial applications. My in-
troduction to Minitab is available at www.stat.unm.edu/~fletcher/MinitabCode.pdf. It was
written as a companion to Christensen (2015). Chapters 1 and 3 are the most important. (It also
contains an intro to SAS.) Last I looked, you could get a six month Minitab academic license for
$33 at estore.onthehub.com. They also had a one-year $55 license. (This book does not use the
Minitab Workspace package!) I have no personal experience with it but JMP (a SAS product) seems
comparable to Minitab in ease of use and industrial orientation.

You can do pretty much anything in statistics using the free programming language R. There
are a number of R packages that address control charts among these are qcc, qcr (which uses
qcc), qicharts, qicharts2 , ggQC (quality control charts for ggplot). My introduction to R is
available at www.stat.unm.edu/~fletcher/Rcode.pdf. It has the same structure as my Minitab
introduction. I will discuss R only a little.

The data used here can be accessed from www.stat.unm.edu/~fletcher/industrial-data.

zip. The data in Table x.y is in file tabx-y.dat. FYI: references to qexx-yyy that occasionally oc-
cur are to data found in Quality Engineering, 19xx, page yyy.

Ronald Christensen
Albuquerque, New Mexico

July, 2021

MINITAB is a registered trademark of Minitab, Inc., 3081 Enterprise Drive, State College, PA
16801, telephone: (814) 238-3280, telex: 881612.

www.stat.unm.edu/~fletcher/MinitabCode.pdf
estore.onthehub.com
www.stat.unm.edu/~fletcher/Rcode.pdf
www.stat.unm.edu/~fletcher/industrial-data.zip
www.stat.unm.edu/~fletcher/industrial-data.zip




Chapter 1

Introduction

Most of this book deals with statistical tools used to establish and improve the quality of industrial
(and service sector) processes. These are good and useful tools, but they are only tools. Statistical
procedures are helpful and, when considered in the broadest sense, perhaps even indispensable to
achieving, maintaining, and improving quality. Without an appreciation for data and the variabil-
ity inherent in data, only the simplest of quality problems can be solved. Nonetheless, statistical
methods are only tools, they are not panaceas. Ultimately, management is responsible for quality.
Management owns the industrial processes and only management can improve them. Only a man-
agement that is committed to creating high quality products will achieve this goal. And even then, it
will only be the management teams that also have the knowledge base to execute their goals that will
be successful. In this chapter we briefly present some ideas on the kind of management necessary to
achieve high quality on a continuing basis. The remainder of the book focuses on statistical tools.

EXERCISE 1.0.1 Read the article https://williamghunter.net/george-box-articles/

the-scientific-context-of-quality-improvement to get the viewpoint of two famous
statisticians on quality improvement. It briefly surveys many of the topics we will discuss. (There is
a video presentation of this material that is linked to a video in a (much) later assignment.)

1.1 Four Principles for Quality

Around the middle of the twentieth century, W. Edwards Deming played an instrumental role in
convincing Japanese businesses to emphasize quality in production. In the last half of the twentieth
century, Japan became an industrial giant. Statistics plays a vital role in the production of high
quality goods and services. In discussing quality in the production of goods and services, one must
always remember that quality does not exist without consideration of price. Before getting an Apple
Watch and smart phone, for many years I was very content with my Pulsar wristwatch. It kept
time better than I needed and the cost was very reasonable. On the other hand, a Rolex looks more
spectacular and may have kept better time. Unfortunately, with my salary, the improved quality of
a Rolex was not sufficient to offset the increased cost. Similarly, I doubt that I will ever be in the
market for one of those wonderful cars made by Rolls-Royce. Nonetheless, consumers care deeply
about the quality of the goods and services that they are able to purchase. Ishikawa (1985, p. 44)
defines the goal of quality production, “To practice quality control is to develop, design, produce
and service a quality product which is most economical, most useful, and always satisfactory to the
consumer.” Goods and services must be produced with appropriate quality at appropriate prices and
in appropriate quantities.

This chapter examines some of Deming’s ideas about business management and the production
of high quality goods and services. Deming (1986) indicates that the proper goal of management
is to stay in business. Doing so provides jobs, including management’s own. He argues that, to a
large extent, profits take care of themselves in well run businesses. Well run businesses are those
that produce high quality goods and services and that constantly improve the quality of their goods
and services.

1
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2 1. INTRODUCTION

Deming’s (1986) quality management program involves 14 Points (P1 – P14), Seven Deadly
Diseases (DD1 – DD7), plus obstacles to quality improvement. We cannot remember that much so
we have reduced his ideas to four primary principles:

1. Institute and Maintain Leadership for Quality Improvement,
2. Create Cooperation,
3. Train, Retrain, and Educate,
4. Insist on Action.

In the next subsections, these are each discussed in turn. Deming (1993) is an easy to read introduc-
tion to Deming’s ideas. Deming (1986) is more expansive and detailed. Walton (1986) provides a
nice introduction to Deming’s ideas. (I’ve been trying unsuccessfully to get my wife to read Walton
for over a decade.)

1.1.1 Institute and Maintain Leadership for Quality Improvement

There is a process, instituted and maintained by management, for creating and improving new and
existing products and services. It is this process that determines quality and ultimately business
success. Developing a high quality product and service is not enough. The Process of Production
and Service Must be Continually Improved to keep ahead of the competition (Deming’s P5). Note
our use of the pair “product and service.” Service is the obvious product in many companies but
serving the needs of the customer is really the product in all companies. Everybody has a customer.
The first job in quality improvement is to identify yours. (Are students customers or products? Prior
to the internet, college textbooks were clearly written for instructors and not the more obvious target,
students.)

Quality improvement is not easy; you have to persist in your efforts. There are no quick fixes.
(Deming says there is no “instant pudding.”) Deming’s P2 is to Adopt the New Philosophy. Patching
up old methods is not sufficient to the task. Maintaining Constancy of Purpose is Deming’s P1. Lack
of constancy of purpose is also his DD1. Constancy of purpose is impossible with Mobility of Top
Management, Deming’s DD4. Managers who are not there for the long haul cannot focus on long
term objectives, like quality. Mobile managers need to look good in the short term so they can move
on to wrecking the next business. The lack of constancy of purpose leads to a debilitating Emphasis
on Short Term Profits, Deming’s DD2.

For a birthday present we bought a gift certificate at an Albuquerque T-shirt shop. Twenty dollars
to buy a twenty dollar certificate. When the recipient went to the store, he brought a coupon for
25% off the price of a shirt. The coupon, as is often the case, was not good with other special
offers. The manager of the store chose to view the use of a gift certificate as a special offer. The
manager received full price on the T-shirt bought that day; they maximized their short term profit.
But we never bought anything else from them and we discouraged our friends from patronizing
them. Apparently other people had similar experiences; the company is now out of business.

It is not enough to satisfy the customers current needs. It is not enough to produce current goods
and services of high quality. Management must lead the customer. Management must think about
what the company should be doing five years from now. They must anticipate what their customers
will need five years from now. Producers should have a better idea of where their industry is going
than their customers. If a competitor provides the next improvement, your customer will have to
switch to maintain her competitive position. This doesn’t mean rushing into the market with a low
quality product. That is not the way to long term success. It means entering the market in a timely
fashion with a high quality product. Improvement requires innovation. Innovation requires research.
Research requires education. Often, innovation comes from small focused groups rather than large
amorphous research institutions.

Improved quality does not just happen. It requires a program to succeed and a program requires
leadership. If your quality could improve without a program, why hasn’t it improved already? Dem-
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ing’s P7 is to Institute Leadership. Leadership requires a wide view of the business environment.
Just because you cannot measure something does not mean it is unimportant. It is easy to measure
the increased costs of a quality program but it is impossible to measure the increased revenue de-
rived therefrom. In general, many financial features are easy to measure. They are not all important.
Financial measures lead to shipping product regardless of quality. Quality, on the other hand, is hard
to measure. Running a company on visible figures alone is Deming’s DD5.

High quality means dependability; quality improvement means reducing variability in the pro-
cess of producing goods and services. First you need to establish that there is a market for your
product and service. Then you need to focus on doing well what you have chosen to do.

Until the mid 1970s Arby’s made a great roast beef sandwich, some of the time. Unfortunately,
getting an almost unchewable sandwich was not a rare event. It is common knowledge that the
key to success in the fast food business is uniformity of product. You serve the same basic food
every time to every customer from Fairbanks to Key West. Arby’s had a problem. They solved their
variability problem by switching to roasts made of pressed beef. Note that they did not find a better
way to serve the same product; they switched to a new product that had less variability. The chances
of getting a sandwich with tough meat are now very small but reducing the variability would have
served no purpose if nobody wanted to eat pressed beef roasts. As Arby’s is still in business, they
must have a market. It is not the same market they had before because it is not the same product
they had before. (I, for one, used to be a regular customer but have hardly set foot in an Arby’s for
45 years.) But Arby’s is undoubtedly serving their new market better than they served their old one.
Their customers know what they are going to get and go away contented with it.

Before one can improve the production of goods and services, the current process of production
must reach a stable point. If you perform the job one way this month and a different way next month,
then you don’t have any process of production. You must have a standard way of doing things before
you can begin to improve the way you do things. Statistical control charts are used 1) to establish
whether a system of production exists, 2) to display the variability built into the process, and 3) to
identify special causes that have disrupted the system.

Quality needs to be designed into the product and the process of making the product. A rule of
thumb (see Deming, 1986, p. 315) is that 94% of all problems are due to the system of production,
something only management can alter. Only 6% of problems are due to special causes that workers
may be able to control. It is obvious that if you have trouble with everybody’s work, i.e., if nobody
can accomplish the job the way you want it done, the problem must be in what you are asking people
to do. Management needs to find processes that allow everybody to accomplish the job successfully.
If you are unhappy with your workers and think you can solve your problem by getting new ones,
you are just kidding yourself. The pool of workers is stable; you need to improve your systems.
Leadership is taking the initiative to help people do their jobs better. Workers believe in quality.
Managers are the ones who sacrifice quality for short term profits.

1.1.2 Create Cooperation

Nearly everyone agrees that people are an organization’s greatest asset but few use that asset really
effectively. To use people effectively, management must Drive Out Fear (P8) and in other ways
Remove Barriers to Pride of Workmanship (P12). Innovation and improvement require communi-
cation; communication must be actively encouraged. Management must Break Down Barriers to
Communication (essentially P9).

Human life is a paradox of cooperation and competition. In questions of survival, people do both.
They are forced to compete with those that threaten them. They cooperate with other people who
are threatened by a common danger. Responses to competition frequently become dysfunctional
if the competition is too desperate. The trick is to foster cooperation within the organization and
to focus competition externally. If you are competing with another employee to survive within the
organization, you cannot cooperate with that employee for the good of the organization. Your own
needs will come first.
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When their survival is not threatened, people still compete with each other but on a tamer level
and not to the exclusion of productive, cooperative achievement. We need people competing to be
the most valuable player on a team rather than a hot-shot self-centered superstar. We need Larry
Birds and Magic Johnsons: people who’s greatness stemmed from making their teammates better.
(Maybe LeBron Jameses?)

Driving Out Fear (P8) starts with providing job security. If a person cannot perform adequately
in one job, find them another. The fear of failure is a huge barrier. Failure and mistakes are necessary
for innovation. If you can get an unpleasant job assignment or lose your raise, promotion, or job for
trying something new or making “annoying” suggestions, you won’t do it. In a climate of fear, you
cannot even find out what is going on in the organization because people fudge the figures out of
fear. If top management threatens to fire everyone in a shop if the shop ever exceeds 10% defectives,
you can be sure that nobody in the shop will ever tell management that defectives have exceeded
10% and management will never know the true percentage of defectives. You can buy a person’s
time but you have to earn their loyalty and confidence. After years of managing by fear, driving fear
out can be a long process.

Management must Remove Barriers to Pride of Workmanship (P12). This begins with simple
measures such as ensuring that tools and machines work properly. It begins by allowing people to
do their jobs correctly. But management must also remove the barriers that they have intentionally
set up. Setting goals without a program to meet them does not help anyone. To Eliminate Numerical
Quotas is Deming’s P11. If all your effort is devoted to producing 100 units per day, you have no
effort left for ensuring quality. Raising an already high quota is a guarantee of low quality. The least
damaging quotas are those that everyone can meet. Quotas also stifle effort and encourage standing
around because “I met my quota for the day.”

Deming’s P10 is Eliminate slogans, exhortations, and targets. No slogan or exhortation ever
helped a person to do a better job. High quality organizations frequently have slogans or commonly
used exhortations but these come after the fact. Once the quality is there, slogans arise naturally.
Until quality is visibly improving under a sincere improvement program, slogans have a negative
effect. They are viewed as blaming the worker for low quality.

Eliminate Performance, “Merit”, and Annual Reviews (DD3). They encourage short term think-
ing and discourage long term efforts and teamwork. People end up working for themselves rather
than the organization. Performance reviews are discouraging – people lose time recovering from
them. Typically, reviews are based on easily measured random numbers and they do not measure
people’s real value.

Rewarding merit is fine, if that is what you are really doing. True merit involves working above
the capabilities of the system. It is a very rare event. The typical merit program rewards people on a
random basis; this is counter productive. Within any system, performance varies. Purely by chance,
some people perform better than others within the capabilities of the system. Randomly picking a
tenth, or a quarter, or a half of your people to reward as meritorious can do nothing but discourage
the other, equally hard working, people.

To find out if someone is truly working above the capabilities of the system, you need to know
the capabilities of the system. This requires data and statistical analysis of the data to identify the
system’s capability. You should seek to find out what a person who works above the system’s ca-
pability does differently. Perhaps the person seeks out better raw materials to work with. If you
randomly identify people as meritorious, learning what they do differently is a waste of time and
effort and discourages the search for quality. Similarly, seeking out the particular causes of defects
that are built into the process is a waste of time.

Break Down Barriers to Communication (Essentially P9). Get people talking. In manufacturing
concerns, purchasers, design, engineering, production, and sales people all need to communicate.
All are part of the process, so all need to work together to improve the process. Moreover, suppliers
and customers need to be involved in process improvement. Suppliers who do not know your needs
cannot fill them. Similarly, you are the supplier to your customers.
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1.1.3 Train, Retrain, and Educate

The key to higher quality, higher productivity, and lower costs is to work smarter not harder. Man-
agement’s primary job is to provide workers the tools (intellectual and physical) to do this. Given
the chance, innovative workers will actually invent most of the tools. Management’s role is to iden-
tify good tools and put them to use. Working smarter requires training and education. These points
are essentially Deming’s P6 and P13.

Train people to perform their job. Teach them what their job is and how to do it. Teach them
when the job is finished and whether it was done correctly. The best efforts of workers are futile
if they do not know what to do. Deming (1986) gives example after example of people who were
never taught what their job was or how to do it. They learned their jobs from other workers who
had never been taught their jobs either. Motivating workers requires showing them how their job fits
into the larger scheme of things. Money is a poor long term motivator.

When the process changes, the job changes. Retraining for the new job is required. Occasionally,
people are found to be unsuited for a job, perhaps because of poor initial training. It is almost
impossible to undo bad training. These people must be retrained for a new job. Retraining is part of
driving out fear. Retraining allows workers to believe in the security of their jobs.

In addition to job training, management should assist in the general education of its employees.
Education gives workers perspective on their jobs and their industry. A narrow view loses the oppor-
tunity of taking useful and creative contributions from other, not obviously related, fields. Working
smarter rather than harder requires education. People’s best efforts are not good enough. They must
learn how to work smarter.

1.1.4 Insist on Action

Talk is cheap. Only action will improve quality. Start with little steps. Don’t jump in with both feet.
Keep it simple; keep it small. Begin by finding a process that is ripe for improvement, something
where the results will be immediate and obvious. Juran and Gryna (1993) suggest that initial projects
should last no longer than six months. Immediate and obvious results help convince workers, lower,
and middle management that top management is serious about quality improvement. Stick with it!
Build on a first success towards many others. There are many highly useful tools in developing
a program for quality, e.g., Quality Control Circles, Statistical Charts, and Statistical Design of
Experiments. However, without constancy of purpose and continued action, these tools are nothing
more than management fads. Insistence on Action is essentially Deming’s P14.

Improving the process of production and service can never stop. Always base actions on good
data and sound statistical analysis.

1.2 Some Technical Matters

In addition to the general principles discussed in the previous section, there are some specific busi-
ness practices on which Deming had strong opinions.

Stop Awarding Business on Price Tag Alone (P4). Every product and service requires raw mate-
rials to work with. If you have poor quality raw materials, the quality you produce suffers. Awarding
contracts to the lowest bidder is a guarantee of getting low quality materials. Typically, you need
to work with one supplier for a given input to ensure that the input is of appropriately high qual-
ity. Work with your suppliers to get what you need. It is hard to obtain quality materials from one
supplier; it is virtually impossible with several suppliers.

Maintain your infrastructure. It is difficult to achieve quality in the face of frequent and random
breakdowns of vital equipment. It is much better to maintain equipment on a regular schedule so
that down time is planned and accounted for and so the equipment works when it is needed. Deming
tells a story of a worker who told his supervisor about a bearing going out on a vital machine. The
bearing could be replaced easily in a few hours. The supervisor, under pressure to meet his quota,
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Figure 1.1: Shewhart Cycle

insisted that the worker continue using the machine. Inevitably, the bearing went out, causing major
damage to the machine and much more extensive delays. As the old saw goes, “There is never time
to do the job right but there is always time to do the job over.” Fear is counter-productive.

Maintenance also applies to the most important part of the infrastructure: people. Obviously
people are subject to “breakdowns” that impede their performance. Try to minimize these.

Cease Mass Inspection of Products and Services (P3). Quality is built into products and services.
Once a product is made or a service performed, it is too late. Quality products and services do not
require inspection. If the built-in quality is insufficient, inspect every unit to check whether it meets
standards. Even this will not find all defective items. Note that producing defective products and
services costs more than producing quality products and services because you pay once to produce
them and again to repair them. When you buy poor quality, even if the producer makes good on
defectives, the costs of producing and repairing defectives are built into the price you pay.

Deming mentions two other deadly diseases that apply in America: (DD6) Excessive Medical
Costs and (DD7) Excessive Costs Due to Litigation.

1.3 The Shewhart Cycle: PDSA

A useful tool in improving quality is the Shewhart Cycle. It is a simple algorithm for improving
quality. It can be applied almost anywhere.

1. Examine the process. Examine how can it be improved. What data are needed? Do they already
exist? To study the effect of a change in the process, you generally need to change it.

2. Find existing data or conduct a (small scale) experiment to collect data.
3. Analyze the data. Plotting data or looking at tables may be sufficient.
4. Act on the results.
5. Repeat the cycle.

To put it briefly, Plan the investigation, Do the investigation, Study (or Check) the results, Act: Plan,
Do, Study, Act: PDSA. The virtue of the Shewhart cycle is simply that it focuses attention on the
key issues: using prior knowledge to evaluate the situation, collecting hard data and analyzing that
data to evaluate the exact situation, and then acting on the analysis. Action is crucial, everything is
a waste of time and resources if it does not result in appropriate action.

The US Air Force uses a similar Observe, Orient, Decide, Act loop.
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1.4 Benchmarking

Another commonly used method of improving processes is benchmarking. Benchmarking consists
of identifying the best processes and comparing yourself to the best.

EXAMPLE 1.4.1. Holmes and Ballance (1994) discuss the benchmarking efforts of a supplier.
The supplier selected a world class partner and studied the processes of the partner. Some of the
results they found are given below:

System Supplier Partner
Leadtime 150 days 8 days
Order input times 6 minutes 0 minutes
Late deliveries 33% 2%
Shortages per year 400 4.

This chart clearly shows how far short the supplier’s performance fell relative to the partner. The
supplier looks pretty awful, at least in these measures, when the partner’s performance is used as
a benchmark. But the chart misses the real point. Identifying how badly you are doing is only of
value if it spurs improvement. The more valuable part of benchmarking involves examining, in this
case, the partner’s leadtime, order input, delivery, and inventory systems in an effort to improve the
supplier’s processes. Remember that fixing blame does not fix problems.

1.5 Exercises

EXERCISE 1.5.1. Watch the historically important NBC White Paper documentary on qual-
ity If Japan Can, Why Can’t We? https://www.youtube.com/watch?v=vcG_Pmt_Ny4 When
it comes to quality management everyone has a dog in the fight. I personally really like Dem-
ing’s ideas. Banks (1993) takes a very different view. You should not accept anyone’s pontifications
blindly.

EXERCISE 1.5.2. Watch Deming’s famous red beads experiment https://www.youtube.com/
watch?v=ckBfbvOXDvU

EXERCISE 1.5.3. Watch the famous “funnel experiment” on why you should not tamper with a
process that is under control. https://www.youtube.com/watch?v=cgGC-FPgPlA

EXERCISE 1.5.4. Watch Steve Jobs on Joseph Juran. https://www.youtube.com/watch?v=
XbkMcvnNq3g Jobs was a cofounder of Apple, founder of Next, and CEO of both. I include this
because I am a much bigger fan of Deming than of Juran so I thought Juran should get some time
from someone who is a fan.

EXERCISE 1.5.5. Watch ASA’s 2019 JSM Deming Lecture by Nick Fisher, “Walking
with Giants.” https://ww2.amstat.org/meetings/jsm/2019/webcasts/index.cfm?utm_

source=informz&utm_medium=email&utm_campaign=asa&_zs=HpXOe1&_zl=HDD56#deming.
There are other lectures on the link that you are not required to watch. (American Statistical Asso-
ciation) (Joint Statistical Meetings)

EXERCISE 1.5.6. Watch Scott Berry, “The Billion Dollar Statistical Concept” https://www.

youtube.com/watch?v=XzenJPwZE_I. Valuable video but not of particular relevance to this class.

EXERCISE 1.5.7. Watch my dissertation advisor Donald A. Berry, “Multiplicities: Big Data =
Big Problems” https://www.youtube.com/watch?v=ICOiKThwjoc. Valuable video but not of
particular relevance to this class.

https://www.youtube.com/watch?v=vcG_Pmt_Ny4
https://www.youtube.com/watch?v=ckBfbvOXDvU
https://www.youtube.com/watch?v=ckBfbvOXDvU
https://www.youtube.com/watch?v=cgGC-FPgPlA
https://www.youtube.com/watch?v=XbkMcvnNq3g
https://www.youtube.com/watch?v=XbkMcvnNq3g
https://ww2.amstat.org/meetings/jsm/2019/webcasts/index.cfm?utm_source=informz&utm_medium=email&utm_campaign=asa&_zs=HpXOe1&_zl=HDD56#deming
https://ww2.amstat.org/meetings/jsm/2019/webcasts/index.cfm?utm_source=informz&utm_medium=email&utm_campaign=asa&_zs=HpXOe1&_zl=HDD56#deming
https://www.youtube.com/watch?v=XzenJPwZE_I
https://www.youtube.com/watch?v=XzenJPwZE_I
https://www.youtube.com/watch?v=ICOiKThwjoc
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EXERCISE 1.5.8. Watch PBS’s Command and Control http://www.pbs.org/wgbh/

americanexperience/films/command-and-control/player/. This is a interesting docu-
mentary about a serious accident in a missile silo. The exercise is to write a summary of what
is being done poorly and what is being done well in these systems. There may be issues with seeing
the program.

EXERCISE 1.5.9. Watch NOVA’s Why Trains Crash http://www.pbs.org/wgbh/nova/tech/
why-trains-crash.html The exercise is to write a summary of what is being done poorly and
what is being done well in the systems discussed. There may be issues with seeing the program.

http://www.pbs.org/wgbh/americanexperience/films/command-and-control/player/
http://www.pbs.org/wgbh/americanexperience/films/command-and-control/player/
http://www.pbs.org/wgbh/nova/tech/why-trains-crash.html
http://www.pbs.org/wgbh/nova/tech/why-trains-crash.html


Chapter 2

Basic Tools

Statistics is data analysis — in any form. Statistics is the science and art of making sense out of
collections of numbers. Statistics can be as simple as graphing data or computing a few numeri-
cal summaries. It can be as complicated as developing complex statistical models and validating
the assumptions underlying those models. Conclusions from statistical analysis can be as simple as
stating the obvious (or rather what has become obvious after graphing and summarizing), or con-
clusions can be formal results of statistical tests, confidence intervals, and prediction intervals. In
the Bayesian approach, conclusions take the form of probability statements about the true condition
of the process under consideration.

Underlying all modern statistical procedures is an appreciation for the variability inherent in
data. Often, appreciating that data involve variability is referred to as “statistical thinking.” The
temptation is to over interpret data. To think that what occurred today is a meaningful pattern, rather
than the randomness that is built into the system. As the variability in the data increases, there is
more need to use formal statistical analysis to determine appropriate conclusions.

At the other end of the spectrum, statistics are needed to summarize large amounts of data into
forms that can be assimilated. Statistics must study both how to appropriately summarize data and
how to present data so that it can be properly assimilated.

An important aspect of data analysis is making comparisons: either to long time standards
(known populations) or to other collected data. As with other statistical procedures, these com-
parisons can be made either informally or formally.

To know the current state of a process or to evaluate possible improvements, data must be col-
lected and analyzed. At its most sophisticated, data collection involves sample surveys and designed
experiments. The only way to be really sure of what happens when a process is changed is to de-
sign an experiment in which the process is actually changed. Sometimes it is more cost effective to
use data that are already available. In any case, sophisticated data typically require a sophisticated
analysis.

Often, great progress can be made collecting simple data and using simple statistical techniques.
Simple charts can often show at a glance the important features of the data. Histograms are a good
way of showing the main features of a single large set of data. Three other charts that are useful,
if not particularly statistical, are Cause and Effect diagrams, Flow charts, and Pareto charts. All
of these charts are discussed in this chapter. Control charts are used to evaluate whether processes
are under statistical control, cf. Chapter 4. Scatter plots show the relationship between pairs of
variables, cf. Chapter 5. Run charts are simply scatter plots in which one of the two variables is a
time measurement, cf. Chapters 4 and 6. The points in a run plot are often connected with a solid
line; the temporal ordering of the points makes this reasonable.

2.1 Data Collection

On one hand, data are worthless without a proper analysis. It is amazing how often people who
spend large amounts of time and money on collecting data think that they need to put almost no
resources into properly analyzing the data they have so painstakingly collected. On the other hand,

9



10 2. BASIC TOOLS

no amount of data analysis can give meaning to poorly collected data. A crucial aspect of statistical
data analysis is proper data collection.

Data need to be germane to the issue being studied. Plans must be made on how the data col-
lected can and will be used. Collecting data that cannot be used is a waste of time and money. Data
should not be collected just because they are easy to collect. Collecting data on the number of times
a person hits the “k” key on their computer keyboard is probably worthless. We suspect that collect-
ing data on the number of keys hit during the day is also probably worthless. Numbers such as these
are typically used to make sure that workers are working. Obviously, smart workers can find ways to
beat the system. But more importantly, if management has no better idea of what is going on in the
office than the number of keystrokes workers hit in a day, they have much more profound problems
than workers loafing. Data should be collected because they give information on the issues at hand.
It is a sad state of affairs when the best data that management can come up with on the condition of
their workplace is how often employees hit their keyboard.

At the beginning of the third millennium AD (or CE), one of the greatest changes in society is
the ease with which some types of data can be collected. Traditionally, data collection has been very
difficult. Along with the new found ability to collect masses of cheap data have come techniques that
try to separate the data wheat from the data chaff. What constitutes wheat changes from problem to
problem and there is no guarantee that an easily collected set of data will contain any wheat. This is
an apt time to recall that Deming’s fifth deadly disease (DD5) is essentially running a company on
easily collected data alone.

It is a capital mistake to act on data that give an incomplete picture of the situation. Transferring
the computer salesperson who has the lowest monthly sales (easily collected data) will be a disaster
if that person has informally become the technical resource person that all the other sales people
need in order to make their sales.

As discussed in Chapter 1, a key part of the Shewhart cycle for quality control and improve-
ment is the collection of appropriate data. There are many types of data that appear in business
applications. Some common types of data are

Process control data: data that are used to establish that an industrial (or service) process is under
control and thus that reliable predictions can be made on the future of this process.
On-line control data: data used to fine tune industrial processes. A key feature in on-line control
is the need to not overcontrol a process. A process that is under control should not be tampered
with. “Fine tuning” a process that is undercontrol actually decreases quality because it adds to
the variability in the process, cf. Deming (1986, p. 327).
Inspection data: data that are used to decide whether a batch of goods are of sufficiently high
quality to be used in production or to be shipped as products to customers. As alluded to in
Chapter 1 and as will also be discussed in Chapter 8, a major goal is to put an end to inspection.
Observational data: data that are collected on the current state of affairs. Control data are ob-
servational, but more generally, observational data can be taken on several variables and used to
suggest relationships and give ideas for solutions and/or experiments. (Easily collected electronic
data tend to fall in this category.)
Experimental data: data that are obtained from a formal experiment. These are the only data that
can be reliably used to determine cause and effect. This is discussed in Chapter 9. Experiments
are generally used for product improvement and for isolating the causes of major problems, i.e.,
problems that are not getting solved by other means.

Data collection should lead to action. Good data on specific issues are typically expensive to
collect and they should be collected for a reason. The reason for collecting data is that the data can
lead to useful action. In this day and age, collecting observational data is often very easy. Electronic
devices can collect huge masses of data: data that may never get examined and data that may contain
very little useful information. If such data are inexpensive to collect and store, then it might be of
some marginal value to do so, on the off chance that at some point in the future they might have
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Table 2.1: Causes of unplanned reactor shutdowns.

Cause Frequency Percentage
Hot melt system 65 38
Initiator system 25 15
Cylinder changes 21 12
Interlock malfunction 19 11
Human error 16 9
Other 23 14
Total 169 100

some value. But such data should not be collected and stored with the expectation that they are
useful merely because they are readily available. (This is quite distinct from the issue of trying to
find uses for the data that are available!)

In fact, while the Shewhart cycle illustrates the need to collect data, it can also be used as an
algorithm for proper data collection.

Plan the process of data collection. How to collect the data. What to collect. How to record it.
How to analyze it. Often the analysis is hampered by recording the data inappropriately!
Collect the data. Do it!
Analyze the data. Study it and learn from it. Good data are often expensive to collect; resources
have to be put into learning as much as possible from the data. Unanalyzed data, improperly
analyzed data, and poorly analyzed data are all a waste of time, effort, and money.
Take action based on the results of the data analysis. The data should have been collected for
a reason. Address that reason. Often, back at the planning stage, one can set up contingencies
indicating that if the data come out like this, our actions will be these. (But it is unwise to
completely tie oneself to such plans, because the analysis of the data may indicate new options
that did not appear at the planning stage.)

2.2 Pareto and Other Charts

In this section we illustrate Pareto charts and other charts including bar charts and pie charts. Pareto
charts are simply bar charts that are arranged to emphasize the Pareto principle which is that in any
problem, a few factors are responsible for the bulk of the problem. The importance of Pareto charts
and other charts is simply that they convey information very rapidly and make a visual impact. Of
course, it is important that the visual impact made be an accurate representation of the data being
portrayed.

EXAMPLE 2.2.1. Juran and Gryna (1993) present historical data on the causes of unplanned
reactor shutdowns. These are given in Table 2.1. Note that the table has been arranged in a particular
order. The largest cause of shutdowns is listed first, the second largest cause is listed second, etc.
The only exception is that the catch-all category “other” is always listed last. A Pareto chart is
simply a bar chart that adheres to this convention of the most important cause going first. A Pareto
chart is given in Figure 2.1. The vertical scale on the left of the diagram gives the raw frequencies
while the vertical scale on the right gives percentages. The line printed along the top of the diagram
gives cumulative percentages, thus the first two categories together account for 53% of unplanned
shutdowns and the first three categories together account for 65% of shutdowns.

Compare your immediate reactions to Table 2.1 and Figure 2.1. Don’t you find that the informa-
tion is presented much more effectively in Figure 2.1?

The point of Figure 2.1 is to illustrate that the main cause of shutdowns is the hot melt system.
In order to reduce the number of shutdowns, the first order of business is to improve the perfor-
mance of the hot melt system. It is interesting to note that prior to collecting this historical data, the
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Figure 2.1: Pareto chart: causes of unplanned reactor shutdowns.

Table 2.2: Costs of unplanned reactor shutdowns by cause.

Cost per Total Percentage
Cause Frequency Shutdown Cost of Cost
Hot melt system 65 1 65 26
Initiator system 25 3 75 30
Cylinder changes 21 1 21 8
Interlock malfunction 19 2 38 15
Human error 16 2 32 13
Other 23 1 23 9
Total 169 254 100

reactor personnel thought that cylinder changes would be the primary cause of unplanned reactor
shutdowns.

Any cause in the Pareto chart can be further broken down into its constituent parts and a new
Pareto chart formed for that cause. Typically, one would do this for the most import cause, but that
would get us into the details of the hot melt system. However, we can illustrate the same idea more
accessibly by breaking down the least important category. (Since it is the least important, it will
matter least if our speculations are jeered at by the nuclear engineering community.) Perhaps the
16 shutdowns due to human error could be broken down as: inadequate training, 11; asleep at the
switch (otherwise known as the Homer Simpson cause), 3; other, 2. Clearly a Pareto chart can be
formed from these.

An alternative to a Pareto chart based on frequencies of shutdowns is a Pareto chart based on
costs of shutdowns. Often when a problem occurs, say a manufacturing process shuts down, the cost
of fixing the problem depends on the cause of the problem. It may be more important to decrease the
cost of shutdowns rather than the number of shutdowns. Table 2.2 incorporates costs into the causes
of reactor shutdowns. Note that this is no longer a Pareto table because the most important cause (as
measured by cost now) is no longer listed first. Figure 2.2 gives a Pareto chart for shutdown causes
as ranked by cost.

Figure 2.3 gives a pie chart of the frequencies of unplanned reactor shutdowns. Figure 2.4 gives
a pie chart of the costs of unplanned reator shutdowns
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Figure 2.2: Pareto chart: causes of unplanned reactor shutdowns ranked by cost.

Figure 2.3: Pie chart: causes of unplanned reactor shutdowns ranked by frequency.

2.3 Histograms

Data have variability. An easy way to display variability is through a histogram. A histogram is just
a bar chart that displays either the frequencies or relative frequencies of different data outcomes.

EXAMPLE 2.3.1. Figure 2.5 gives a histogram for the heights, as measured in inches, of 781
people who rode a roller coaster one day. The most frequently observed height is 66 inches. This is
referred to as the mode. Most of the observations fall between 63 and 71 inches (85%).

Note the sharp drop off at 62 inches. This histogram is skewed, rather than symmetric, because
of the sharp drop off. This suggests that people under 62 inches are probably not allowed to ride this
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Figure 2.4: Pie chart: causes of unplanned reactor shutdowns ranked by cost.

Figure 2.5: Histogram of 870 rollercoaster riders.

particular roller coaster. In industrial applications, a histogram that looks like this would suggest
just about the same thing, i.e., that someone has inspected all of the material to make sure that it
satisfies a given specification. A sharp drop off at the top end would suggest that items have also
been inspected to see if they are too large.

There are a couple of problems with such inspection schemes. Probably the less significant
problem is that some “defective” items will pass the inspection. Some people under 62 inches will
actually be allowed to ride the roller coaster. A more serious problem occurs when we buy items
that are required to meet specifications. (Dare we think of wanting to buy human beings that are
supposed to be at least 62 inches tall?) When we buy items from a manufacturer who is producing
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Figure 2.6: Histogram of 492 males.

defective items along with the good items, even if we never explicitly buy a defective item, the cost
of the good items we buy have the overhead cost of producing the defective items built into them. If
the manufacturer improves the process so that it produces only acceptable items, the cost of those
items should go down!

For the height data, it is obvious that Figure 2.5 is displaying data that are really a combination of
two subgroups having different characteristics: males and females. Figure 2.6 gives the histogram
of roller coaster rider heights for males. Note that the histogram for males has a nice symmetric
shape with a mode of 67 inches. There is no sharp cutoff at 62 inches, because the heights naturally
decrease near 62 inches. Most heights are between 66 and 71 inches and almost all heights are
between 63 inches and 75 inches.

If we think of Figure 2.6 as showing results from an industrial process that is designed to make
products that are at least 62 units long, this process is not doing too badly. Almost all of the items
produced are greater than 62 and not many are produced that are even close to 62.

Figure 2.7 gives the histogram for females. This histogram again shows a sharp cutoff at 62
inches, causing it to appear skewed rather than symmetric. Even though there is not overt discrimi-
nation here against women, the cutoff value is set at a height that clearly causes implicit discrimina-
tion against females. One must weigh the safety concerns that motivated the creation of this cutoff
value against this implicit discrimination.

If we think of Figure 2.7 as showing results from an industrial process that is designed to make
products that are at least 62 units long, this process is not doing very well. The sharp drop off at 62
suggests that we are not seeing all of the production; that we are seeing only those units that exceed
the specification. The sharp drop off at 62 suggests that even though we will not get defective items
sold to us, we will be paying for producing defective items as part of the overhead involved in
buying good units.

Finally, Figure 2.8 gives a histogram with an interesting shape. The histogram has more than
one peak, which is referred to as being multimodal. The histogram was arrived at by combining
data from 100 female softball players, most of whom have heights around 65 to 69 inches, and male
basketball players, whose heights tend to center around 78 inches. The moral is that multimodal
histograms are often caused by combining groups that perhaps should not be combined. Note how-
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Figure 2.7: Histogram of 378 females.

Figure 2.8: Histogram of heights.

ever that combining groups does not always create a multimodal histogram as we saw in Figures 2.5
through 2.7.

2.3.1 Stem and Leaf Displays

Stem and leaf displays provide informal histograms yet give most of the original data. They are very
easy to construct and they lose almost no information in the data.

EXAMPLE 2.3.2 Vinyl Floor Covering Data.
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Table 2.3: Tear Test Results from Three Vinyl Floor Coverings - qe98-284

Case A B C
1 2288 2592 2112
2 2368 2512 2384
3 2528 2576 2096
4 2144 2176 2240
5 2160 2304 2320
6 2384 2384 2224
7 2304 2432 2224
8 2240 2112 2368
9 2208 2288 2112

10 2112 2752 2144

Depth Stem Leafs
3 21 146

3 22 048
4 23 068
1 24
1 25 2

Figure 2.9: Stem and Leaf Display of Floor Covering A. (Leafs are 10s.)

Table 2.3 gives data on tear test values for three vinyl floor coverings from Phillips et al. (1998).
We will use these data to illustrate stem and leaf displays in this subsection, dot plots in the next
subsection, and box plots in the next section.

Figure 2.9 gives the stem and leave display for the tear scores of vinyl type A. The display has
three parts, depth, stems, and leafs. The scores are 4 digit numbers. The last digit is ignored, the
first two digits are used as the stems and a histogram is created using the third digit. The third digits
are called the leaves. Thus in the first row of the display, the stem is 21 and the leafs are 1, 4, and 6.
Using an x to indicate that we do not know the fourth digits, the first row indicates that the numbers
211x, 214x, and 216x are tear scores for vinyl A. From the second row, the numbers are 220x, 224x,
and 228x. Thus, except for the fourth digits, the stem and leaf display is giving all of the data, while
providing a histogram (displayed on it’s side). In particular, at a glance we see that there are equal
numbers of observations in the 21xx’s the 22xx’s, and the 23xx’s. It should be noted that stem and
leaf displays are very easy to construct by hand. For small or moderate sized collections of data,
construction of a stem and leaf display should often be the first statistical analysis.

The depth column for the stem and leaf display is designed to help in finding the median obser-
vation, i.e., the observation that has as many values greater than it as there are numbers less than it.
The depth starts at both ends of the display, and counts the number of observations from the top or
bottom of the display. Thus, from the bottom, there is one number in the 25xx’s, cumulatively, one
number among the 25xx’s and 24xx’s, and a total of four numbers among the 25xx’s, 24xx’s, and
23xx’s. Counting from the bottom, we stop before the 22xx’s because including them would include
more than half the data – in this case there are 10 observations, so 5 observations would give half of
the data. Starting from the top down, the 21xx’s have three observations, but including the 22xx’s
would get above 5, so they are not included. The number of observations in the 22xx’s is displayed
separately. To find the median, the 5 smallest observations are 224x and smaller, and the 5 largest
observations are 228x and larger, so the median would be taken to be the average of 224x and 228x.

Figure 2.10 provides an alternative stem and leaf display in which the stems have been broken
in half. Thus the first stem includes any numbers from 210x to 214x and the second stem includes
numbers from 215x to 219x. This gives a more detailed histogram.

Finally, we can compare two sets of numbers by constructing back to back stem and leaf dis-
plays. This is illustrated for vinyls A and B in Figure 2.11. The stems are placed in the middle of
the display, the leafs for vinyl B are given to the left of the stems and the leafs for A are given to
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Depth Stem Leafs

2 21 14
3 21 6
5 22 04
5 22 8
4 23 0
3 23 68
1 24
1 24
1 25 2

Figure 2.10: Alternative Stem and Leaf Display of Floor Covering A. (Leafs are 10s.)

B Stem A
71 21 146
8 22 048

80 23 068
3 24

971 25 2
26

5 27

Figure 2.11: Back to Back Stem and Leaf Displays for Vinyls B and A of Floor Covering A. (Leafs are 10s.)

the right of the stems. It is clear that vinyl B tends to have larger tear results than vinyl A. However,
the minimum tear results are nearly the same for both vinyls. Note that back to back stem and leaf
displays only allow comparison of two vinyls, and we have three vinyls in the data.

2.3.2 Dot Plots

Dot plots provide yet another form of histogram. They consist of a plot of an axis (scaled to be
appropriate for the data) along with dots above the line to indicate each data point. Figure 2.12
gives the dot plot for the tear test results for vinyl A.

Dot plots can be used to give a visual comparison of several groups of observations. Figure 2.12
gives dot plots on a common scale for all three vinyls in Table 2.3. We can see that the observations
for vinyl B tend to be a bit larger and perhaps more spread out than those for vinyls A and C. Vinyls
A and C look quite comparable except for one observation just over 2520 in vinyl A.

. . . . . . . . . .

-------+---------+---------+---------+---------+---------

2160 2240 2320 2400 2480 2560

Figure 2.12: Dot Plot of Floor Covering A.

A . .. . . .. . . .

-----+---------+---------+---------+---------+---------+-

B . . .. . . . .. .

-----+---------+---------+---------+---------+---------+-

C

.: . : . . . .

-----+---------+---------+---------+---------+---------+-

2160 2280 2400 2520 2640 2760

Figure 2.13: Dot Plots for Three Floor Coverings.
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2160 2240 2320 2400 2480

Figure 2.14: Box Plot of Floor Covering A.

Table 2.4: Summary Statistics

Vinyl
Cover MIN Q1 MEDIAN Q3 MAX

A 2112 2156 2264 2372 2528
B 2112 2260 2408 2580 2752
C 2096 2112 2224 2332 2384

2.4 Box Plots

Box plots give an alternative visual display of the data based on a five number summary of the data.

EXAMPLE 2.4.1 Vinyl Floor Covering Data.
Figure 2.13 gives the box plot for the vinyl A data of Table 2.3. Note that the overall impression of
the plot is one of symmetry. The mark in the middle of the box is near the center of the box, and the
lines on the edges are not too dissimilar in length.

The five numbers on which box plots are based are the maximum observation, the minimum
observation, the median (the point that has half the data smaller than it and half the data larger), the
first quartile Q1 (the point that has 1/4 of the data smaller than it and 3/4 of the data larger), and
the third quartile Q3 (the point that has 3/4 of the data smaller than it and 1/4 of the data larger).
The plot makes a box using Q1 and Q3 as ends of the box, marks the median inside the the box, and
creates “whiskers” from the ends of the box out to the maximum and minimum. Many programs for
computing box plots define inner and outer fences and identify two classes of outliers as points that
fall outside the inner and outer fences.

EXAMPLE 2.4.1 Vinyl Floor Covering Data continued.
Table 2.4 gives the five summary statistics on which the box plots for the vinyls are created. The
median for cover A is actually any number between 2240 and 2288 but it is reported as the mean of
these two numbers.

To compare the vinyls visually, we can plot box plots for all three on a common scale. Fig-
ure 2.14 reconfirms the impression that vinyls A and C are roughly similar, with vinyl C looking a
little smaller and more compact. Vinyl B tends to be larger and more spread out but having the same
lowest observations.

While the length of the box plot is Q3−Q1, when plotting multiple box plots with very different
sample sizes it can be useful to use the square root of the sample size as the width of the box plot.
McGill, Tukey, and Larsen, (1978) discuss this and other variations on box plots.

2.5 Cause and Effect Diagrams

Cause and Effect diagrams, also known as Fishbone and Ishikawa diagrams, are a useful quality
improvment tool but are not really a statistical tool in that they do not involve analyzing numerical
data. Cause and Effect diagrams are just that, they diagram the potential causes of an effect. These
potential causes can then be explored to see what is the real cause of an effect. Usually, the effects
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------------------

A ----I + I--------------

------------------

-------------------------

B ---------------I + I--------------

-------------------------

------------------

C -I + I------

------------------

------+---------+---------+---------+---------+---------+

2160 2280 2400 2520 2640 2760

Figure 2.15: Box Plots for Three Floor Coverings.

Effect

Teacher

Exams

Students

Texts

Measurements

Environment

Cause and Effect (Fishbone) Diagram

Figure 2.16: Cause and Effect diagram with only primary causes.

of interest are somehow undesirable, the purpose of the cause and effect diagram is to brainstorm
possibilities for fixing problems.

EXAMPLE 2.5.1 Figures 2 .15 and 2.16 illustrate cause and effect diagrams for a statistics class.
At the end of the spine, is the effect of interest, the statistics class. On the primary ribs coming off
of the spine are the Primary causes. In Figure 2.15 these are listed as the Students, the Teacher,
The Text books, and the Exams. If Figure 2.16 additional detail is given to each primary cause,
identifying secondary causes. For Students these are the course prerequisites, their home life, and
their study habits. For the Teacher, these are the teacher’s knowledge, interest and communication
skills. Figure 2.17 presents the general idea.

2.6 Flow Charts

Flow charts (also known as process maps) are used to graphically display the steps in a process.
Minitab has support for constructing flow charts, see

support.minitab.com/en-us/workspace/get-started/map-your-process/

support.minitab.com/en-us/workspace/get-started/map-your-process/
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Effect

comm. skills
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grading
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Environment

Cause and Effect (Fishbone) Diagram

Figure 2.17: Fishbone diagram with both primary and secondary causes.

Flow charts can be made in R.
A sophisticated package that allows easy construction is DiagrammeR. After loading the package

the following simple code illustrates three simple flow charts.
library(DiagrammeR)

DiagrammeR("graph LR;

A-->B;

B-->C;

B->>D")

DiagrammeR("graph TB;

A(Rounded)-->B[Squared];

B---C{Rhombus!};

C-->D>flag shape];

C-->E((Circle));")

DiagrammeR("graph TB;

A(Both Working)-->B[One Working];

A-->C{Both \n Failed};

B-->A;")

Basic programing information is given at
https://cran.r-project.org/web/packages/DiagrammeR/DiagrammeR.pdf and the au-
thor provides a video at http://rich-iannone.github.io/DiagrammeR/. I found out about
this from
https://sites.temple.edu/psmgis/2017/07/30/flow-charts-in-r-using-diagrammer/

An alternative is the R package diagram.

EXAMPLE 2.6.1 Figure 2.18

https://cran.r-project.org/web/packages/DiagrammeR/DiagrammeR.pdf
http://rich-iannone.github.io/DiagrammeR/
https://sites.temple.edu/psmgis/2017/07/30/flow-charts-in-r-using-diagrammer/




Chapter 3

Probability

3.1 Introduction

In this chapter we review the basic notions of probability. Simply put, probability models are used
to explain random phenomena. Before we define a probability, let us try to understand how proba-
bilities are used and how probabilities are calculated.

Imagine that you are driving to work and you are interested in how many people are driving
the same model car as you. Your experiment consists of counting cars of the same model that you
encounter on your drive to work. The actual outcome of this experiment cannot be predicted with
certainty. The set of all possible outcomes is called the sample space and it is denoted by S. For
this experiment, the sample space is S = {0,1,2, ...,500} where we assume that you encounter at
most 500 cars on your drive to work. Within the sample space, we can define events of interest. For
example, you may want to make sure that your’s is a relatively exclusive model and you will believe
this if you see only 0, 1, or 2 others like it. We would express this event as A = {0,1,2}. You may
decide that the masses are driving this car if you see 3 or more cars of the same model on the road.
This event is expressed as B = {3,4,5,6,7...,500}.

Events are subsets of the sample space. Generally, we use capital letters from the beginning of
the alphabet to denote events. In examples like this in which we can list the possible outcomes,
probabilities are typically assigned to outcomes and are computed for events. Probabilities are al-
ways between 0 and 1 and can posibly be either 0 or 1. Something that happens with probability 1
is a sure thing and something that has no chance of happening has probability 0. Something must
always occur, i.e. some outcome in the sample space must always occur because the sample space
is a listing of everything that can occur. Therefore the probability of the sample space is 1. If some
event occurs with a certain probability, say 0.3, then the probability that it will not occur is 1−0.3.
If two events are mutually exclusive, they cannot both happen at the same time. For example, on
your drive to work, if you count a total of 3 or more cars, then the event A = {0,1,2} cannot happen,
because the event B has occurred.

The easiest way to compute probabilities are in situations where outcomes are equally likely. We
are all familiar with probability models such as tossing coins and rolling dice. In situations where
every outcome in the sample space is equally likely, we compute the probability of an event E as

Pr(E) =
number of outcomes in E

total number of outcomes in the sample space

This formula is a way of computing probabilities and is not a definition of probability. A rigorous
definition of probability is quite difficult, as difficult as defining concepts such as force and velocity
in physics.

We now examine an example in which the outcomes do not have equal probabilities.

EXAMPLE 3.1.1. Consider six outcomes having to do with your driving habits and the posibility
of you getting a speeding ticket. The outcomes are all combinations of two factors, first whether you
get a speeding ticket (Y ) or do not get a speeding ticket (N) and second, whether you never drive
over the speed limit (NDO), you sometimes drive over the speed limit (SDO), or you always drive

23
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Table 3.1: Speeding–Getting a Ticket probabilities

Speeding
NDO SDO ADO

Speeding Y 0.0 0.18 0.30
Ticket N 0.12 0.30 0.10

over the speed limit (ADO). The combinations of these factors define six possible outcomes. The
probabilities are listed in Table 3.1.

Note that each of the probabilities is between 0 and 1 (inclusive) and that each outcome has a
different probability. The probability of an event such as the event that you sometimes drive over
(SDO) the speed limit is computed as

Pr(SDO) = Pr[(SDO,Y ) or (SDO,N)]

= Pr(SDO,Y )+Pr(SDO,N)

= 0.30+0.18
= 0.48 .

Similarly, Pr(NDO) = 0.12 and Pr(ADO) = 0.40. These are called marginal probabilities (because
typically they would be written in the margin of the table). The marginal probabilities for whether
or not you get a ticket are

Pr(Y ) = 0.48, Pr(N) = 0.52.

These computations are illustrations of the addition rule for probabilities. If A and B are events
that cannot happen simultaneously, e.g., you cannot simultaneously get a tecket and not get a ticket
while sometimes driving over the speed limit, then Pr(A or B) = Pr(A)+Pr(B).

We can also compute conditional probabilities. These are probabilities of events that are condi-
tional on the knowledge of some other event. In our example, suppose your beloved knows that you
got a ticket on your way to work and he/she claims that you always drive over the speed limit. Now,
to defend yourself, you want to compute the probability that you always drive over (ADO) the speed
limit given that you received a ticket (Y). This is written Pr(ADO|Y ) and read as “the probability
of ADO given that the event Y has occurred”. It is computed as the joint probability of the events
ADO and Y divided by the marginal probability of the event Y ,

Pr(ADO|Y ) = Pr(ADO,Y )
Pr(Y )

=
0.3
0.48

= 0.625.

Notice that the probability that you always drive over is Pr(ADO) = 0.4 but given that you
received a speeding ticket, the conditional probability has jumped to 0.625. This says that the oc-
currence of the event Y which tells your beloved (and anyone else) that you received a speeding
ticket, has provided them with additional information about your driving habits.

We say two events, A and B are independent if knowledge of one event provides no information
about the other. In this case, the probability that both events occur is the product of their marginal
probabilities

Pr(A and B) = Pr(A)Pr(B).

In our example, we see that the event that you always drive over the speed limit is not independent
of the event that you get a speeding ticket

Pr(ADO and Y ) = 0.3 6= (0.4 ×0.48) = Pr(ADO)Pr(Y ).

Another, more intuitive, way to check for independence is to see whether the conditional probability
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of an event is altered from its unconditional probability, e.g., is Pr(ADO|Y ) = Pr(ADO)? If these
probabilities are the same, we say the events are independent. In our example Pr(ADO|Y ) = 0.625
and Pr(ADO) = 0.4, so kowing the event Y occurs provides additional information about ADO, in
this case making ADO more probable. Generally, independence is a property that is assumed, not
proven.

3.2 Something about counting

In order to define our sample space, we are interested in the number of ways in which something
can happen. Combinatorics is the field that is concerned with counting. For example, suppose you
are interested in the number of ways that you can get dressed in the morning. Suppose you’re a
poor college student and you own exactly 2 shirts that you plucked out of a dumpster, one is purple
and the other is orange. You also own 3 pairs of pants that were given to you by various loving
family members: their colors are fuschia, emerald, and poinsettia. Now, without regard to fashion
or style, the number of ways that you can get dressed on this particular day is 6. For each shirt
you choose, there are 3 possible pairs of pants to choose and so you have 2 shirts × 3 pants = 6
possible outcomes. Notice that if you were limited by concern about untoward fashion statements,
your number of ways to get dressed would be different.

Our shirts and pants example is an illustration of the Multiplication Principle of Counting:
Suppose we can select an object X in m ways and an object Y in n way. Then the pair of objects
(X ,Y ) can be selected in mn ways.

EXAMPLE 3.2.1. New Mexico car license plates used to have 3 digits followed by 3 letters. The
total number of possible license plates without restriction is:

(10×10×10)× (26×26×26).

There are 10 choices for each number and 26 choices for each letter. Of course, New Mexico car
licence plates are limed by concern about untoward three letter verbal statements.

Suppose now that we are not allowed to repeat any number or letter. There are still 10 ways to
pick the first number but once that is picked, there are only 9 ways to pick the second number. The
number of possible license plates without repetition of a number or letter is:

(10×9×8)× (26×25×24).

Here, the order in which the items are selected is important. The licence plate 123 ABC is different
from the plate 213 CBA. An ordered arrangement of 3 similar items is called a permutation. We
would not talk about a permutation in regard to a licence plate because it involves dissimilar items,
both numbers and letters. We would talk about a permutation of the numbers (or the letters). Count-
ing the number of licence plates without replications involves the 10×9×8 different permutations
of the ten numbers taken three at a time as well as the permutations of the 26× 25× 24 different
permutations of the twenty six letters taken three at a time.

Permutation: The number of permutations of n objects taken k at a time is

Pn
k = n(n−1)(n−2) · · ·(n− k+1).

A succinct way to write the right hand side of the above equation is

Pn
k =

n!
(n− k)!

where n!≡ n(n−1)(n−2) · · ·(2)(1) and 0!≡ 1. Our answer for the number of possible New Mexico
license plates without repeating a number or letter can be re-expressed in this notation as

P10
3 × P26

3 = 11,232,000.
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In New Mexico, there are plenty of licence plates for the number of cars, but one can see that in,
say, California, problems might develop.

Often, we are interested in arrangements where order is not important. For example, suppose
your nutritious lunch box contains an apple, a tangerine, and a pear. If you cared about what order
you ate them in, you would eat lunch in P3

3 = 3! ways. From the point of view of your taste buds,
it matters which fruit you eat first, second and third. However, from the point of view of your
stomach, it merely gets a lump of all 3 fruit and therefore only one end result. This way of selecting
3 fruit from 3 fruit without regard to order is called a combination. If you had 3 fruits available, but
promised a colleague first choice, so you only eat 2, there are three different lumps that could exist
in your stomach: [apple, tangerine], [apple, pear], and [tangerine, pear]. Recall that to your stomach
[tangerine, pear] is the same combination as [pear, tangerine].

Combination: An unordered arrangement of k objects selected from n objects is called a combi-
nation and is expressed as (

n
k

)
=

n!
k!(n− k)!

.

In our two fruit example, (
3
2

)
=

3!
2!(3−2)!

= 3.

A combination is a permutation with the number of ways to order the selected objects divided out.
In our fruit example, there are P3

2 permutations but 2! ways to arrange the chosen fruit, therefore the
combination is P3

2 /(2!) = 3.

3.3 Working with Random Variables

A random variable links the outcomes of an experiment with numbers. When you roll a die, you
look at it and read off a number. The random experiment is rolling a cube that has dots marked on
its various faces. The outcome is actually the face that ends up on top. Without even thinking about
it, we look at the face and read off a number. The number is the random variable. Random variables
represent outcomes as numbers. The probabilities associated with outcomes are now transformed to
probabilities associated with the corresponding random number. When rolling a die, we discuss the
probability of getting a number from 1 to 6 rather than discussing the otherwise hard to describe
outcomes. Similarly, if we select a card from a deck of cards, say the one with seven hearts on it, we
recognize that as a 7 and the suit as hearts. Numbers that are determined by random mechanisms
are called random variables.

In this chapter we use capital letters from the end of the alphabet to denote random variables
and the corresponding lower case letters to denote their observed values. For example, the outcomes
resulting from rolling a die can be represented by random variable X . X takes on any value from
1,2,3,4,5,6. Once the die is rolled, we observe the outcome X = x, a specific value of X . If we
observe a 4, we write X = 4. We say the random variable X takes on the value x with probability
1/6 since all of the outcomes are equally likely. This is written Pr(X = x) = 1/6 for x = 1, ...,6. In
subsequent chapters we will be more flexible in notation.

A random variable that has a finite or countable number of outcomes is called a discrete random
variable. Since the outcomes can be listed, we can assign probabilities to each outcome. Random
variables that yield random measurements typically do not have a countable number of outcomes.
We can imagine the height of a person being 56.6πcm but we cannot count all such numbers.
Random variables that can take on any value in some contiguous part of the real line are called
continuous random variables. For continuous random variables, we cannot list all the outcomes
so we must assign probabilities in some other way. In fact, we assign probabilities to intervals of
numbers. Of course, it is fairly obvious that all random variables we can measure must be discrete
random variables, because we are not capable of measuring heights like 56.6πcm. Nonetheless,
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Table 3.2: Probability mass function for X

x −2 0 3 4
Pr(X = x) 0.25 0.1 .4 .25

when dealing with measurements, continuous random variables provide a valuable approximation
to the extremely complicated discrete random variables that actually apply to measurements.

3.3.1 Probability Distributions, Expected Values

A probability distribution is a list of (numerical) outcomes and a means of specifying probabilities
for the events containing the outcomes. It assigns probabilities to the outcomes of random variable
X . may need to explain this, not everyone may know. From elementary physics, we can think of
probability as a mass spread over the possible outcomes of a random variable X . X has associated
with it a center of gravity. This is called the expected value of the random variable. For a random
variable X with a discrete number of outcomes x this is

E(X) = ∑
all x

xPr(X = x).

E(X) is a weighted average of all possible values of X . The weights (masses) are the probabilities.

EXAMPLE 3.3.1. A computer program is used by the Psycho Fiends Brigade to bill people who
call their 1-900 number. The PFB’s software is a complicated Bayesian belief network, but it has
bugs in it. It charges 2 minutes less than a person called, the correct time, or either 3 or 4 minutes
more than was called. The incorrect billings caused by the Psyco Fiends network has the probability
distribution given in Table 3.2.

The expected value of X , written E(X), is a measure of the center of the random distribution. It
is computed as the weighted average of the outcomes x where the weights are given by the corre-
sponding probabilities.

E(X) = ∑
all x

xPr(X = x) = (−2)(0.25)+(0)(0.1)+(3)(0.4)+(4)(0.25) = 1.7.

On average, people are getting billed for 1.7 minutes more than they use. Thus, if the Psycho Fiends
charged everyone 1.7 minutes less, they might make the District Attorney’s office happy, although
65% of their clients would still be upset over being billed too much.

On occasion, we need to compute the expected value of a function of X . For example E(X2) is
computed as

E(X2) = ∑
all x

x2Pr(X = x)

= (−2)2(0.25)+(0)2(0.1)+(3)2(0.4)+(4)2(0.25)
= 8.6

In general,
E[g(X)] = ∑

all x

g(x)Pr(X = x).

Note that on the left hand side of the equation, we take the expected value of a function of the
random variable X , say, g(X). On the right hand side, for each specific outcome x of X , we use g(x).

With regard to the Psycho Fiends call charges, the DA may care only about average charges, but
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you as a customer care about being charged accurately. OK, you don’t mind being undercharged,
but you don’t want to be overcharged, and the Fiends cannot stay in business if they undercharge
everyone. Thus, we need to measure, not only the center of the distribution with E(X), but also
the variability associated with X . The variance of a random variable is a measure of spread (or
variability or dispersion) of the distribution of the values of the random variable. The variance of a
random variable X , is denoted Var(X). Suppose X has mean, E(X) = µ . Then the variance of X is
defined as

Var(X) = E(X−µ)2 = ∑
all x

(x−µ)2Pr(X = x).

Note that since X is a random variable, X−µ is also a random variable, as is (X−µ)2, which is the
squared distance between X and the center of its distribution, E(X). The farther away X is from its
mean µ , the larger the value of (X−µ)2. The expected value of (X−µ)2 measures the spread of the
values of X about the mean µ , i.e., it is a measure of the average spread. This average is a weighted
average with the weights being the probabilities that X takes on that specific value x. From physics,
just as the expected value is the center of gravity of the probability mass function of X , the variance
of X is the moment of inertia about the central axis (mean).

The Var(X) for X defined in Example 3.3.1. is

Var(X) = (−2−1.7)2(0.25)+(0−1.7)2(0.1)+(3−1.7)2(0.4)+(4−1.7)2(0.25) = 5.71.

Note that while the units of X are minutes, this quantity has units of minutes2.
The standard deviation of X is defined as the positive square root of the variance, and is denoted

s.d.(X). For this example, the standard deviation is

s.d.(X) =
√

5.71 = 2.39.

Note that s.d.(X) is a measure of variability that is again measured in minutes.
These definitions extend to functions of random variables. Suppose X is a random variable, a

and b are constants, and we consider Y , a function of X , given by Y = aX +b. Y is a random variable.
For example, X might be a random temperature measurement in degrees Celsius and Y = 1.8X +32
is the same random temperature measured in degrees Fahrenheit. We find the expected value of Y
as

E(Y ) = E(aX +b).

It can be shown that
E(Y ) = E(aX +b) = aE(X)+b

and that the variance and standard deviation are

Var(Y ) = a2Var(X) and s.d(Y ) = |a|s.d.(X).

3.3.2 Independence, Covariance, Correlation

Suppose we record the time it takes an automobile to accelerate from 0 to 60 miles per hour, and
also record its fuel consumption rate. Here we have defined 2 random variables, X is the time in
seconds, and Y is the miles per gallon. A joint probability distribution of these random variables
would give us all of the information about them. A joint probability distribution would specify all
the outcomes for every pair (x,y) and specify the probabilities associated with such pairs. The joint
distribution gives us relevant quantities of interest such as means and variances, as well as telling us
whether events involving only X are independent of events involving only Y . For example, suppose
we also record the age of the car. In later chapters, we will consider questions such as predicting
how fast the car will achieve the 0 to 60 MPH speed if we know its age and fuel consumption rate,
i.e. predict the value of one variable given the values of some other variable(s).
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Table 3.3: Joint probability mass function

X
−1 0 2

1 0.1 0 0.3
Y 2 0 0.2 0

3 0.2 0 0.2

EXAMPLE 3.3.2. we need a story for this, why not the miles per gallon story. Suppose X and
Y have joint probability mass function given by Table 3.3. Here X is a measure of the number of
seconds it takes a car to go from 0 to 60mph where 0 indicates 30 seconds, -1 is 20 seconds, and 2
is 50 seconds. Y is miles per gallon with 1 = 10mpg, 2 = 20mpg, etc.

We denote joint probabilities as Pr(X = x,Y = y) = p(x,y). So, p(−1,2) = 0, tells us that the
probability X = −1 and Y = 2 is 0. If we wanted only information about X from this joint mass
function, we would compute the marginal probability mass function (pmf) of X by summing out Y

Pr(X = x) = ∑
all y

p(x,y).

For example, Pr(X =−1) = 0.1+0.2 = 0.3.
We can extend the definition of independence of events to include independence of random

variables since random variables are based on events. Two random variables X and Y are indepen-
dent if any events based on only X are independent of any events based on only Y . In other words,
knowing anything about X does not change the probability for any event involving Y . In terms of
probabilities, it is sufficient to have

Pr(X = x,Y = y) = Pr(X = x)Pr(Y = y).

In Example 3.3.2. , for X =−1 and Y = 1, we check independence

Pr(X =−1,Y = 1) = .1
Pr(X =−1) = .3 and Pr(Y = 1) = 0.4

so
Pr(X =−1)Pr(Y = 1) = 1.2 6= 0.1 = Pr(X =−1,Y = 1).

Here are two events (X = 1) and (Y = 1) that are not independent, therefore X and Y are not
independent.

We can also see whether X and Y have any sort of linear relationship. The covariance is a
measure of linear relationship. Suppose X and Y are random variables with means µX and µY re-
spectively, the covariance between X and Y is given by

Cov(X ,Y )≡ E[(X−µX )(Y −µY )] = ∑
(x,y)

(x−µX )(y−µY )Pr(X = x,Y = y).

Note that a special case of this is
Cov(X ,X) = Var(X).

Another special case occurs when we have independence. If the random variables X and Y are inde-
pendent, their covariance is 0. In general, the covariance can be positive or negative and its relative
value depends on the units of X and Y . Positive covariances occur when large values of X occur
with large values of Y and small values of X occur with small values of Y . Negative covariances
occur when small values of X occur with large values of Y and large values of X occur with small
values of Y . If X is the time in seconds to accelerate from 0 to 60 in our car example and Y is the
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Table 3.4: Joint probability mass function

X
−1 0 2 Pr(Y = y)

1 0.1 0 0.3 0.4
Y 2 0 0.2 0 0.2

3 0.2 0 0.2 0.4
Pr(X = x) 0.3 0.2 0.5 1

fuel consumption rate in MPG, and we compute the covariance between X and Y , the value should
be negative. Note that this covariance would change if we were to record Y in kilometers per litre.

To standardize the covariance measure, a unitless quantity called the correlation is defined,

Corr(X ,Y )≡Cov(X ,Y )/
√

Var(X)Var(Y ).

The correlation is always a number between −1 and 1. The meaning of a correlation is the same as
that of a covariance but in addition, if the correlation between X and Y is 1, we say there is a perfect
linearly increasing relationship between X and Y . will probably cause confusion with earlier use of
X and Y If the correlation is −1, this is a perfect linearly decreasing relationship. A perfect linear
relationship between two random variables means that an increase of 1 unit in one random variable
is associated with an exactly proportional change in the other. In our car example, this means that if
we make a series of time observations on the car accelerating from 0 to 60 m.p.h and we record the
fuel consumption rate in miles per gallon and kilometers per litre, the pairs of numbers should have
a perfect linear relationship. We emphasize that the relationship is linear because the correlation
does not identify perfect nonlinear relationships.

EXAMPLE 3.3.3. Let X and Y be random variables with joint probability mass function as defined
in example 3.3.2, cf. Table 3.?. Then

E(X) = (−1)(0.3)+(0)(0.2)+(2)(0.5) = 0.7,
E(Y ) = (1)(0.4)+(2)(0.2)+(3)(0.4) = 2,

Var(X) = (−1−0.7)2(0.3)+(0−0.7)2(0.2)+(2−0.7)2(0.5) = 0.81,
Var(Y ) = (1−2)2(0.4)+(2−2)2(0.2)+(3−2)2(0.4) = 0.8,

Cov(X ,Y )

= (−1−0.7)(1−2)(0.1)+(0−0.7)(1−2)(0)+(2−0.7)(1−2)(0.3)
= (−1−0.7)(2−2)(0)+(0−0.7)(2−2)(0.2)+(2−0.7)(2−2)(0)
= (−1−0.7)(2−2)(0.2)+(0−0.7)(3−2)(0)+(2−0.7)(3−2)(0.2)
= −0.3,

Corr(X ,Y ) =
−0.3√

(0.81)(0.8)
= −0.37.

This correlation is quite a bit larger that −1, but indicates that small values of X tend to occur
with large values of Y , as we can see from the probability distribution.

3.3.3 Expected values and variances for sample means

We now present some useful results for working with expected values, variances, and covariances of
linear combinations of random variables. All of the results presented here generalize to more than 2
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random variables. Suppose X1, X2, X3, and X4 be random variables and let a1, a2, a3, and a4 be real
constants.
1. E(a1) = a1 and E(a1X1) = a1E(X1).
2. E(a1X1 +a2X2) = a1E(X1)+a2E(X2).

3. Var(a1) = 0 and Var(a1X1) = a2
1Var(X1).

4. Var(a1X1 +a2X2) = a2
1Var(X1)+a2

2Var(X2)+2a1a2Cov(X1,X2).
5. If X1 and X2 are independent, then Cov(X ,Y ) = 0. in which case 4 reduces to Var(a1X1+a2X2) =

a2
1Var(X1)+a2

2Var(X2)0.
6. Cov(a1X1 +a2X2,a3X3 +a4X4) = a1a3Cov(X1,X3)

+a1a4Cov(X1,X4)+a2a3Cov(X2,X3)+a2a4Cov(X2,X4).

The most basic data we collect is a random sample from a population. These are just independent
random observations on the same population. Since the populations are the same, these observations
will have the same distribution, which means that each of them would have the same mean (expected
value) and variance.

We now concentrate on a function of random variables that is very important is statistical infer-
ence the sample mean. Let X1,X2, ...,Xn be random variables each with the same population mean
E(Xi) = µ for i = 1, ...,n. The average of these random variables is also a random variable. Define
the sample mean as

X̄ =
X1 +X2 + · · ·+Xn

n
.

We can find the expected value of this average of the random variables by finding the expected value
of the linear combination

E(X̄) = E(
1
n

X1 +
1
n

X1 + · · ·+
1
n

Xn)

=
1
n

E(X1)+
1
n

E(X2)+ · · ·+
1
n

E(Xn)

=
1
n

µ +
1
n

µ + · · ·+ 1
n

µ (n terms)

=
1
n

nµ

= µ

When we have a random sample, we use X̄ to estimate the population mean µ . The fact that E(X̄) =
µ indicates that X̄ is a reasonable estimate of µ .

If we assume further that X1,X2, ...,Xn are independent and have the same variance, say,
Var(Xi) = σ2 for i = 1, ...,n, we can compute the variance of X̄

Var(X̄) = Var(
1
n

X1 +
1
n

X2 + · · ·+
1
n

Xn)

=
(1

n

)2
Var(X1)+

(1
n

)2
Var(X2)+ · · ·+

(1
n

)2
Var(Xn)

=
1
n2 σ

2 +
1
n2 σ

2 + · · ·+ 1
n2 σ

2 (n terms)

=
1
n2 nσ

2

=
σ2

n

The variance of X̄ is the variance of an individual observation, Var(Xi) divided by n. When we
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have a random sample, σ2/n gives a measure of the variability of X̄ as our estimate of µ . More
commonly, we use the standard deviation s.d.(X̄) = σ/

√
n. Regardless of the measure, X̄ has much

less variability than an individual observation Xi (depending on the size of n). Ultimately, after
collecting data we compute X̄ which means we we get to look at one observation on X̄ . Because X̄
has less variability, that one observation on X̄ is likely to be closer to µ than if we were to look at a
single observation, say X1.

Define the sample variance as

S2 =
(X1− X̄)2 +(X2 +−X̄)2 · · ·+(Xn− X̄)2

n−1
.

The rules for expected values can be used to establish that

E(S2) = σ
2,

although doing so is more laborious than our results for the sample mean. The degrees of freedom
(df) for a variance estimate is an index of how much information is in the estimate. For the sample
variance the degrees of freedom are n−1 because there are n observations but we lose one degree
of freedom for not knowing E(Xi) = µ and replacing it with its estimate X̄ . In Chapters 4 and 9 we
will average several independent variance estimates so their degrees of freedom will be the sum of
the df for the individual estimates.

3.4 Binomial Distribution

Certain distributions arise repeatedly in statistical applications. These distributions are given names.
The binomial distribution is one that arises when we have a fixed number of independent and identi-
cal random trials that result in one of two types of outcomes. (Binomial comes from roots meaning
two names.) We are interested in the random numbers of each type of outcome. Note that with a
fixed number of trials, if we know the number of times one outcome occurs, we can immediately
figure out the number of the other outcome. Examples are

testing a batch of identical components and counting the number of components that pass (or
fail) the test,
checking airline scheduling accuracy and counting the number of flights that left on time.
checking whether a community meets the standards for group immunity against measles, and
counting the number of people who have been vaccinated against measles

Each of these situations has only two possible outcomes. Generally, these are termed successes or
failures. To understand the distribution of the number of successes in these situations, consider the
first example. Suppose we have a batch of 4 resistors and we are going to test each one to see whether
or not it works. Each resistor is a trial. The probability that a resistor is good is p and the probability
that a resistor is bad is 1− p. We usually call the outcome we are interested in a “success”. In this
case, Pr(success) = p and the probability of the complementary event, Pr( f ailure) = 1− p. Let
X count the number of good resistors, so X can take on the values 0,1,2,3,4. Define events G =
resistor is good and D = resistor is defective. The event {X = 0} means that none of the resistors
are good. Using the independence of the resistors, we find the probability X = 0 as

Pr(X = 0) = Pr(DDDD)

= Pr(D)Pr(D)Pr(D)Pr(D)

= (1− p)(1− p)(1− p)(1− p) = (1− p)4.

The event {X = 1} means that one of the resistors is good and the other 3 are defective. This
can happen in many ways. We can think of this as the number of ways to select one good resistor
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Table 3.5: Probability mass function for the number of good resistors

X Pr(X = x)
0

(4
0

)
p0(1− p)4

1
(4

1

)
p1(1− p)3

2
(4

2

)
p2(1− p)2

3
(4

3

)
p3(1− p)1

4
(4

4

)
p4(1− p)0

from the resistors. Using the addition rule and independence, Pr(X = 1) is

Pr(X = 1)
= P{ GDDD or DGDD or DDGD or DDDG }
= Pr(GDDD)+Pr(DGDD)+Pr(DDGD)+Pr(DDDG)

= p(1− p)3 +(1− p)p(1− p)2 +(1− p)2 p(1− p)+(1− p)3 p

= 4p(1− p)3

=

(
4
1

)
p(1− p)3.

The Pr(X = 2) is the probability of having 2 good resistors.

Pr(X = 2)
= P{GGDD or GDGD or DGGD or DGDG or DGGD or DDGG}
= Pr(GGDD)+Pr(GDGD)+Pr(DGGD)

+Pr(DGDG)+Pr(DGGD)+Pr(DDGG)

= 6p2(1− p)2

=

(
4
2

)
p2(1− p)2,

where the last line is given as an alternative to get the probability. Rather than listing each outcome,
we can think of the number of ways of having 2 defective resistors in 4 resistors,

(4
2

)
= 6. The

probability of any one of these outcomes with 2 good and 2 bad resistors is p2(1− p)2 and there are
6 ways that this can happen. We compute the remaining probabilities in the same manner and they
are listed in Table 3.5.

In general, we do not want to list every single outcome every single time we have a situation
like this, and especially not if the number of trials n is large! The general functional form for this
type of probability distribution, called the binomial distribution is

Pr(X = x) =
(

n
x

)
px(1− p)n−x, for x = 0,1, ...,n, 0≤ p≤ 1.

We use the notation X ∼ Bin(n, p) to mean that random variable X is binomially distributed with
parameters n and p.

EXAMPLE 3.4.4. When one of us was a student, she owned a car that was designed such that
every time it rained, water leaked through and took out a fuse or 2 or 3. Fortunately, she lived in
the desert, but in any case, she was forced to buy fuses in boxes of 10. On any given box, there
was a warranty that stated that she could get her money back if 2 or more fuses were defective. The
probability that a fuse is defective is .01. What is the probability that she would get my money back?

First check to see whether this fits a binomial situation. There are n = 10 fuses. Each fuse is a
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trial. We can reasonably assume for the moment that the fuses are defective independently of one
another. Each fuse is defective with probability p = 0.01. Let X count the number of defective fuses
in a box, then X ∼ Bin(10, .01). The event {X ≥ 2} is the event that the money-back warranty would
have to be honored. So we find Pr(X ≥ 2)

Pr(X ≥ 2) = Pr(X = 2)+Pr(X = 3)+Pr(X = 4)+ · · ·+Pr(X = 10).

It is easier to look at the complementary event

Pr(X ≥ 2) = 1−Pr(X ≤ 1)
= 1− [Pr(X = 0)+Pr(X = 1)]

= 1−
[(

10
0

)
(0.01)0(1−0.01)10+

(
10
1

)
(0.01)1(1−0.01)9

]
= 0.004

The mean and variance of X ∼ Bin(n, p) are difficult to compute from the definitions in Subsec-
tion 3.3.1, but are quite simple to compute using results from Subsection 3.3.3. We merely state the
results:

E(X) = np Var(X) = np(1− p).

Note also from the definition of a binomial, that if X1 ∼ Bin(n1, p) and independently X2 ∼
Bin(n2, p) then X1 +X2 ∼ Bin(n1 +n2, p).

mean and variance of a binomial. sums of binomials.

3.5 Poisson distribution

A probability distribution that is closely related to the Binomial is called the Poisson distribution.
The Poisson distribution is used to model the occurrence of very rare events, e.g., rare diseases and
the number of defects in high quality products. While the proportion of defects may be very small,
when there are a very large number of trials the number of defects that occur can be substantial. An
advantage of the Poisson distribution is that it can be used to model product defects when we have
no clear idea of the number of units that have been produced that could be defective. For example,
one might consider the number of painting defects on a piece of sheet metal. How many locations
are there for the painting to be defective? Innumerable. The probability of having a painting defect
at any one point is very small but the number of defects can still be substantial.

Suppose we have a binomial with a very large number of trials n and a very small probability
of occurrence p. Since n is large and p is small, their product, which is the expected number of
defectives, can be of moderate size, say µ = np. The binomial variance is np(1− p) = µ(1− p) but
since p is very small, 1− p is essentially 1 and the variance is essentially µ . In other words, if Y
has a Poisson distribution with parameter µ , write Y ∼ P(µ). The expected value is E(Y ) = µ and
Var(X) = µ .

3.6 Normal Distribution

Often, our random variables of interest are continuous. Ideally, a continuous random variable can
take on any value in an interval. The actual value of such a variable is limited by the precision of
the measuring instrument. Examples are time, temperature, weight, and strength. All are measured
to the nearest unit. When we say that the temperature is 70◦F , we mean that it is somewhere in an
interval about 70◦F , say between 69.5◦ and 70.5◦. There are many continuous distributions that are
useful for modeling continuous data. The most common of these is the normal distribution.

The normal distribution arises naturally in many physical experiments. In particular, the normal
distribution can provide a close approximation to both the Binomial and Poisonn distributions when
their expected values are reasonably large.
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Discuss standard normal and need for more generality. Examples and pictures, Maybe use the
roller coaster riders.





Chapter 4

Control Charts

In this chapter, we examine control charts. Control charts are used to establish whether a process is
in statistical control. Theoretically, a process is in statistical control when it generates a sequence
of random observations that are independent with the same statistical distribution for each obser-
vation (iid). Unfortunately, it is impossible to tell whether a process is iid by observing it. Control
charts provide an operational definition (one that can be checked against observations) for whether
observations are close enough to iid for us to treat them as such. Since we are not proving that
the observations are iid, we define the process to be under control when the operational definition
is satisfied. Here we discuss components for a definition of “under control” that have been found
useful historically, along with their statistical motivations. Essentially, we use observable properties
of iid sequences to define what it means to be under control.

Control charts are merely plots of the data or data summaries with control limits superimposed
on the plots. The control limits are used to identify processes that are out of statistical control. Con-
trol charts were developed by the founder of statistical quality control, Walter A. Shewhart.
His ideas were systematically introduced in Shewhart (1931). The ultimate goal of establishing that
a process is under statistical control is that it provides a basis for making accurate predictions about
the future product from the process.

EXAMPLE 4.0.1 Table 4.1 contains 50 observations on a person’s diastolic blood pressure. This
is actually a subset of a collection of 460 blood pressures taken on this individual twice each day
as reported by Shumway (1988). The individual in question determines a process for producing
diastolic blood pressures. We will investigate these 50 observations to examine whether the process
is in statistical control. We will also consider control charts for blood pressures that were measured
four times on a regular basis but were not measured every day. Diastolic blood pressures of 94 or
greater are considered high; we will also consider control charts that examine the frequency of high
blood pressure values. 2

Control limits are based on a simple idea. Let y be a random data point, let the population mean
of such observations be E(y) = µ , and let the population variance be Var(y) = σ2 so that the pop-
ulation standard deviation is σ . Control limits are based on the fact that y will very probably fall
between µ − 3σ and µ + 3σ . If y happens to follow a normal distribution, the probability of be-
ing in this interval is 99.7%. Chebeshev’s inequality ensures that the probability is always at least

Table 4.1: Diastolic Blood Pressures

0 1 2 3 4 5 6 7 8 9
00 105 92 98 98 98 95 92 94 92 92
10 95 92 94 93 98 96 92 94 98 91
20 92 90 88 97 93 95 96 84 93 92
30 94 90 90 85 94 90 95 94 95 85
40 94 92 94 92 92 90 94 90 85 90

Read across and then down.

37
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1−(1/32)
.
= 88.9% and, under weak conditions discussed in Pukelsheim (1994) or briefly in Chris-

tensen (1996, Section 1.3), this can be raised to 1− [(2.25)32]−1 .
= 95.1%. When an observation

does not fall within the interval, something unusual, i.e., a special cause has occurred. (Common
causes are those that determine the inherent variability of the process and can only be controlled by
management.) Control charts differ depending on the exact nature of the datum y. Often, the datum
is actually the average of several observations. Sometimes the datum is the number of defectives
among a fixed number of items. Sometimes the datum is the number of defectives in a large but
unspecified number of items. Moreover, µ and σ are, in practice, unknown and must be estimated.
Various control charts use different estimates of µ and σ .

It is not our goal to give an exhaustive discussion of control charts but rather to present examples
that introduce some of the main ideas and types of control charts in a simple manner. To this end,
we use notation that is consistent with the rest of the book but therefore is less consistent with
traditional discussions. We also present charts that are simple but less commonly used. Rather than
illustrating all of the more commonly used charts, we often merely discuss their differences from
those presented here. For a detailed discussion of control charts see, for example, Ryan (1989).

Control charts and the corresponding control limits have clear connections to statistical predic-
tion intervals and statistical tests. The charts are computed using assumptions that, ideally, should be
subjected to verification. We could clearly do more sophisticated analyses than control charting but
at the danger of intimidating and even driving away users of statistics. Control charts should perhaps
be viewed as simply a plot of the data along with an estimate of the average level of the process and
a rough measure of how much variability one reasonably expects to see. In practice, control charts
are often used by people with a minimum of statistical training. They are rough and ready (quick
and dirty?) procedures. In practice, the choice is often between a simple data analysis and no data
analysis. Moreover, one can, and probably should, take a different philosophical approach to control
charts that calls in question the association with statistical tests and prediction intervals. We return
to the philosophical issue later.

Basically the operational definition of whether a processes is under control is that it stays within
the control limits of
• a means chart and a dispersion (s, R, or S2) chart for rational subgroup data or
• an individual chart and moving range chart for individual observations or
• a p, Np, c or u chart for attribute data.
To that operational definition one can add extra conditions like those described in Nelson (1984) or
possibly versions of EWMA charts or CUSUM charts. All of these procedures are discussed in this
chapter.

Perhaps more important than the details of constructing control charts is getting people to graph
their data and look at it.

4.1 Individuals Chart

EXAMPLE 4.1.1 An I (individuals) chart. Consider the single sample of data presented in Ta-
ble 4.1. From these data compute n = 50, ȳ· = 92.880, and s = 3.799. We want control limits of
µ±3σ . These are estimated with ȳ·±3s so the estimated upper control limit is

UCL = 92.880+3(3.799) = 104.277

and the estimated lower control limit is

LCL = 92.880−3(3.799) = 81.483.

The control chart is displayed in Figure 4.1. The plot displays all of the observations, the upper
and lower control limits are given as horizontal lines, and a horizontal line is used to indicate the
estimated mean value of 92.88.



4.1 INDIVIDUALS CHART 39

Figure 4.1: I (Individuals) Chart for Table 4.1.

We will defer a detailed discussion of interpreting control charts until the next example but note
that the very first observation is beyond (apparently on) the upper control limit and that four of the
first five observations are at a substantial distance above the mean line. Both of these facts indicate
that the process is not in control. To get the process under control, some action is needed. Perhaps
the initial high readings are due to the patient going on a beer, licorice, and salted peanut binge just
before the study started. This is one possible explanation for the process being out of control. Other
possible explanations must be sought out.

Traditionally, the sample standard deviation s is not used for estimating σ in this control chart.
The traditional method involves going through the data and averaging the distances between adja-
cent data points (moving ranges). (Recall that distances are always positive.) This average distance
is then divided by a tabled adjustment factor to give an estimate of σ . Alternatively, the sample stan-
dard deviation s is sometimes divided by a different tabled adjustment factor to give an unbiased
estimate of σ . In deriving all of the estimates of σ , the observations are assumed to be independent.
In addition, the tabled adjustment factors both depend on the data being normally distributed. The
assumption of independence is frequently a bad one for data used in control charts and we will see
later that it is a particularly bad assumption for the diastolic blood pressure data.

Figure 4.2 gives a control chart based on the moving ranges. It is a plot of the distances between
consecutive observations and is designed to evaluate whether the variability of the process remains
constant. The average of the moving ranges can be used to develop an alternative estimate of the
standard deviation that is not as liable to bias due to a shift in the process mean but it requires
an assumption of normal data. The center line is the mean of the moving ranges and the standard
deviation of a moving range is a multiple of σ and so is estimated using a tabled multiplier of the
mean moving range. (This can all be related to the theory behind Tukey’s HSD multiple comparison
method.) Minitab commands for control charts are given in Section 4.8. 2

Alternatively, the variance can be estimated by the squared distance between consecutive points
(squared moving ranges),

σ̃
2 ≡ 1

2(n−1)

n−1

∑
i=1

(yi+1− yi)
2.
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Figure 4.2: Moving Range Chart for Table 4.1.

This can be shown to have
E
(
σ̃

2)= σ
2.

If the process is subject to a mean shift at some time, as a function of the moving ranges, σ̃2 is
subject to far less bias due to the mean change than is s2.

The key point from Example 4.1.1 is that when the process is out of control, action must be taken
to bring the process under control before attempting to improve the process by reducing variability.
As with any control chart, once the process is brought under control, the control chart needs to be
recomputed.

4.2 Means Charts and Dispersion Charts

Perhaps the most commonly used control charts are based on data collected in rational subgroups.
An example of such data is given in Table 4.2. This contains 19 groups of four blood pressure
readings. The four readings were taken under essentially identical conditions. Two charts are tradi-
tionally constructed: one that plots the means for the various samples and one that plots the ranges
of the various samples. Recall that the range of a sample is simply the largest observation in the
sample minus the smallest observation in the sample. The means chart is a tool to identify changes
in the process mean but it can also show changes in process variability. In Subsection 9.1.2 we will
discuss the ability of the means chart to detect lack of independence. The range chart is designed
to examine the process variability. Alternatives to the range chart are the sample standard deviation
chart and the sample variance chart. In the next example, we examine the means chart, the sample
standard deviation chart, and the range chart. The last two of these are typically referred to as s and
R charts, respectively. The means chart is traditionally called an X (X-bar) chart but we always use
y for the variable being analyzed, so we would refer to this as a ȳ chart. (Software may label them
as X or X-bar.)

The standard advice is that one should never interpret a means chart unless a corresponding
dispersion chart (range, standard deviation, or variance) has already established that the variability
is under control. While means charts are sensitive to a lack of control in the variability of the process,
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Table 4.2: Nineteen Samples of Diastolic Blood Pressures

Group Data Mean Std. Dev. Range
i yi1 yi2 yi3 yi4 N ȳi· si Ri
1 105 92 98 98 4 98.25 5.32 13
2 95 96 84 93 4 92.00 5.48 12
3 90 97 97 90 4 93.50 4.04 7
4 90 88 86 90 4 88.50 1.915 4
5 100 92 92 90 4 93.50 4.43 10
6 78 82 82 84 4 81.50 2.52 6
7 90 83 83 87 4 85.75 3.40 7
8 95 85 88 90 4 89.50 4.20 10
9 92 90 87 85 4 88.50 3.11 7

10 84 85 83 92 4 86.00 4.08 9
11 90 87 84 90 4 87.75 2.87 6
12 93 88 90 88 4 89.75 2.36 5
13 92 94 87 88 4 90.25 3.30 7
14 86 87 91 88 4 88.00 2.16 5
15 90 94 94 82 4 90.00 5.66 12
16 95 95 87 90 4 91.75 3.95 8
17 96 88 90 84 4 89.50 5.00 12
18 91 90 90 88 4 89.75 1.258 3
19 84 82 90 86 4 85.50 3.42 8

Total 76 89.434 4.848 7.947

to know whether a problem identified in a means chart is a problem with the level of the process or
a problem with variability, one needs to examine both charts.

EXAMPLE 4.2.1 The data in Example 4.1.1 are actually a subset of 460 blood pressure mea-
surements. The complete data were sampled to obtain the data given in Table 4.2. Frequently it is
impractical or wasteful to take measurements on every item produced. Going to a doctor’s office
twice every day to have your blood pressure measured is certainly very inconvenient and is likely
to be quite expensive. (Much nicer to buy your own wrist cuff.) To simulate realistic sampling from
a process, the 460 observations were divided into 18 consecutive groups of 25 with a final group of
10. The first four observations from each group were taken as the sample from the group. The data
are given in Table 4.2 along with the group mean, standard deviation, and range.

This method of obtaining data is similar in spirit to evaluating an industrial process in which a
worker produces 25 units per day and measuring the first four units produced each day. Alternative
sampling schemes might be to sample units produced at four specified times during the day or to
take a random sample of four units from the 25 produced in a day. If one samples at specified times
of day, the times may need to be worked into the analysis, in which case the data structure would
differ from Table 4.2. In any case, the groups must be formed in some rational manner. Shewhart
emphasized that they should be taken under essentially identical conditions. This leaves room for
detecting effects that appear when conditions are not identical. (Sampling at specified times of day to
form a group is a bad idea if the process can change in the course of a day.) Shewhart also suggested
that one should probably have 25 or more groups (more than our 19 groups) before declaring a
process to be under control, i.e, we can potentially find our process to be out of control but no
matter what the data tell us we should be hesitant to say that it is under control.

The last row of Table 4.2 includes the sample standard deviation of the 76 observations com-
puted by ignoring the group structure, 4.848, and the grand mean of all observations, ȳ·· = 89.434,
which is used to estimate µ . It also contains the mean of the sample ranges, R = 7.947. The pooled
estimate of the variance σ2 is just the average of the s2

i s. This is often called the mean squared error
(MSE). The value is 14.48 and the pooled estimate of σ is

√
MSE = 3.81.
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Figure 4.3 Means Chart for the (i, ȳi·) data of Table 4.2 using
√

MSE. (The label at the top of the chart is
created by Minitab and refers to the four columns of numbers in the table that are yi1 through yi4.)

Note that for an iid process, if we select groups of observations from the process using any selec-
tion criteria that does not depend on the actual values of the observations, then each datum is an
independent observation from the process (population).

The control chart for the sample means is given in Figure 4.3. For a process under control, a
typical observation yi j is assumed to have mean E(yi j) = µ and Var(yi j) = σ2. The observations
plotted in the control chart are the group mean values ȳi·. The mean values have E(ȳi·) = µ but
Var(ȳi·) = σ2/4 because there are 4 observations in each mean. The upper and lower control limits
are determined by the standard deviation of ȳi· which is σ/2. The control limits are µ ± 3(σ/2).
Using the estimated parameters from the previous paragraph, the estimated control limits become

UCL = ȳ··+3

√
MSE

4
= 89.434+3

3.81
2

= 95.15

and

LCL = ȳ··−3

√
MSE

4
= 89.434−3

3.81
2

= 83.72.

In general, if each sample has size N, the estimated control limits are

ȳ··±3

√
MSE

N
.

Using the MSE as an estimate of σ2 assumes that the observations within each group are uncor-
related (or independent). This is often a poor assumption; we will return to it later. (Independence
between groups of observations is not crucial but, oddly, because groups tend to be more widely
separated in time or other factors, the assumption of independence between groups is frequently
reasonable.)

The control chart in Figure 4.3 is nonstandard. More commonly, estimates of σ other than√
MSE are used. The alternative estimates involve using tabled adjustments. The tabled adjustments

assume that the observations within each group are both independent and have normal distributions.
Often, σ is estimated by the average of the sample ranges, R = 7.947, divided by a tabled constant.
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This estimate is unbiased because, for independent normal observations, the expected value of the
range of a sample is σ times this constant that depends only on the sample size. Alternatively, σ is
sometimes estimated by

√
MSE divided by a tabled constant. Although MSE is an unbiased estimate

of σ2,
√

MSE is not an unbiased estimate of σ . The tabled constant corrects for the bias that occurs
when the observations are independent and normal. (Even though a little statistical bias is not really
such a bad thing in an estimate.) The means chart using the bias corrected estimate of σ based on√

MSE is very similar to Figure 4.3 because, with a large number of degrees of freedom for error,
the bias correction factor is very close to one. (The degrees of freedom for MSE is the sum of the df
for each s2

i , hence is n(N−1).)
Traditionally, means charts use R in estimating σ and R charts are used to evaluate dispersion.

Interestingly, Shewhart (1931) never uses such charts. I presume their use was popularized because
ranges are easier to calculate by hand than standard deviations but also because, for small group
sizes like N = 4, the inefficiency introduced by using the range is small. (Although Mahmoud et
al., 2010, take strong exception to this statement.) Ranges should not be used unless group sizes are
very small and, with the accessibility of electronic calculation, there seems to be little point in ever
using ranges. (Moving ranges for individuals are another story.)

As discussed earlier, we have to know the distribution of the yis to know the probability that an
individual observation, one that is under control, will appear to be under control. If we are plotting
observations with normal distributions, the probability is 99.77%. Chebeshev’s inequality assures us
that the probability is at least 88.9% and, with additional assumptions, at least 95%. One advantage
of means charts is that means tend to have distributions more like the normal than do individual
(unaveraged) observations. Thus we can be more confident of having a relatively large probability
of identifying means as being under control when they truly are under control.

Return now to interpreting Figure 4.3. Two of the observations, the first and the sixth, are beyond
the control limits. The first three points and cases 3, 4, and 5 both have the property that two of the
three consecutive points are more than two standard deviations above the center line of 89.43. (Two
standard deviations above the center line is 89.43+(2/3)(95.15− 89.43) = 93.24). Each of these
events is highly unlikely when the group means are independent and normally distributed. Moreover,
four of the first five points are more than one standard deviation above the center line. Again, this
event is highly unlikely if the group means are independent and normally distributed.

As mentioned earlier, we should not interpret the means chart unless a corresponding dispersion
chart establishes that the variability is under control. We now examine dispersion charts for these
data. We will see that the dispersion seems to be controlled.

Figure 4.4 is a control chart of the sample standard deviations. It is used to detect changes in the
variation of the process. The points plotted are just the sis from Table 4.2. The center line at 3.521
is just

√
MSE times the ratio of two bias adjustment factors.

√
MSE is divided by one adjustment

factor to get an unbiased estimate of σ and then multiplied by another adjustment factor so that
the center line has the same bias as the sis that are being plotted. In this way, the center line is
an estimate of the expected value of the sis. The control limits are the expected value of si plus
and minus three times the standard deviation of si. For independent and normally distributed data,
the standard deviation of si is a tabled multiple of σ that depends on the group sample size. The
estimated control limits are 3.521 plus and minus three times the tabled value times the estimate
of σ . Sometimes, as in this chart, the computed lower control limit is a negative number. Standard
deviations cannot be negative so in such cases the lower control limit is taken to be zero. The s chart
shows no lack of control.

The R chart in Figure 4.5 is an alternative control chart for detecting changes in the variation
of the process. In this chart the ranges of the samples, as reported in Table 4.2, are used to indicate
variability. The center line of the chart is the average of the sample ranges from Table 4.2, R =
7.947. The control limits are the expected value of a range plus and minus three times the standard
deviation of a range. For independent and normally distributed data, the standard deviation of a
range is a tabled multiple of σ that depends on the group sample size. The estimated control limits
in Figure 4.5 are 7.947 plus and minus three times the tabled value times the estimate of σ . In
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Figure 4.4: s Chart for the (i,si) data of Table 4.2.

Figure 4.5: R Chart for the (i,Ri) data of Table 4.2.

this chart, the estimate of σ was taken as the appropriate multiple of R. As with the s chart, if the
lower control limit is negative, it is adjusted to zero because a range cannot be negative. The R chart
displays no lack of control. 2

Although they do not seem to be as popular as s and R charts, mathematically it is easy to create
a variance (s2) chart. If the variance in each group is the same,

σ
2 = E(MSE) = E(s2

i ),

so the chart plots the pairs (i,s2
i ) with center line MSE. With independent normal observations,
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(N− 1)s2
i /σ2 has something known as a chi-squared distribution with N− 1 degrees of freedom,

written
(N−1)s2

i /σ
2 ∼ χ

2(N−1).

From properties of the χ2(N−1) distribution we get

(N−1)E[s2
i ]/σ

2 = N−1 and (N−1)2Var[s2
i ]/σ

4 = 2(N−1).

From this it follows that

E[s2
i ] = σ

2 and Var[s2
i ] = 2σ

4/(N−1).

(The first of these holds without the normality assumption that leads to the chi-squared distribution.)
Estimating σ2 with MSE we get control limits of MSE±3MSE

√
2/(N−1) and no need for finding

correction factors.

There are several criteria (tests) commonly used with control charts to evaluate (determine)
whether a process is under control.

1. The first test is obviously whether any points fall beyond the control limits. (Shewhart refers to
this as Condition I.)

2. A second indication is the existence of 9 or more consecutive points on the same side of the
center line.

3. A third indication is a trend of 6 or more points that are all increasing or decreasing. (Some
authors require 7 points for a trend.)

4. A periodic, up and down cycling in the plot indicates nonrandomness and lack of control. Having
14 consecutive points that alternate up and down, i.e., no three points are increasing or decreas-
ing, indicates a problem.

5. Too many, say 15, consecutive points within one standard deviation of the center line is a prob-
lem.

6. Having 8 consecutive points beyond one standard deviation of the center line is another problem.
7. Having two of three consecutive points beyond two standard deviations is a problem.
8. Having four of five consecutive points on the same side of the center line and beyond one standard

deviation is a problem.

For more details, see Nelson (1984).1

In constructing means charts, Shewhart (1931) emphasizes that the observations must be divided
into rational subgroups that have data generated under essentially identical conditions. Rational
subgroups must be determined by the subject matter. If the observations are taken in time sequence,
it is rational to group observations made at similar times. If 100 observations are the result of
having four observations on each of 25 workers, it is rational to group the observations by worker.
Shewhart (1931) also emphasizes the use of small subgroups because they are sensitive to fleeting
changes in the process. N = 4 observations per group is very commonly used. Shewhart (1939, p.
37) recommends that one have at least 25 groups of 4 observations that appear to be in control
before drawing the conclusion that a process is under control.

Control charts are used for two purposes: process analysis and process control. In our examples
we discuss process analysis. We have past data on a process and seek to determine whether the
process was in control when the data were obtained. Process control also uses past data to form a
control chart but the center line and control limits are extended into the future so that new data can
be plotted as they arrive. As long as the new data are consistent with a process in control, the process

1Stationary processes as discussed in Chapter 6 are “under control” but could easily violate these conditions.
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is allowed to continue. When the new data indicate that the process is out of control, the process is
adjusted to put it back in control. When the process is adjusted, control charts must be recomputed.

Once the process is under control, the goal should be to reduce variability while keeping the
process on target, i.e., focused on the ideal specification. Staying on target is usually easier to
achieve than reducing variability.

The data used for constructing a means chart has the same structure as data used in one-way
analysis of variance, cf. Section 9.1. Also, Ott’s Analysis of Means procedure, cf. Christensen (1996,
Subsection 6.5.1), provides a test for equality of means that is directly related to means charts.

4.2.1 Process Capability

In many applications, notably industrial production, a process is required to produce items that
meet certain specifications. Typically, these specifications come in the form of specification limits
that items must fall between. It becomes of considerable importance to recognize whether a process
is capable of meeting such specifications. Processes that are not under control have no capability to
meet any specifications.2 The capability of a process that is under control is defined to be µ ± 3σ .
The process can be expected to produce items within these limits. If the observations are indepen-
dent and normally distributed, 99.7% of the items produced will fall within the µ ± 3σ interval. If
the interval defined by the specification limits contains the process capability interval, the process
is capable of meeting specifications. In other words, if the upper specification limit is above µ +3σ

and the lower specification limit is below µ−3σ , the existing process will meet the specifications
(at least 99.7% of the time for normal, independent data). If the specification interval partially over-
laps or misses the process capability interval, the process needs to be changed before it can meet
specifications. Until the process is brought under control with the capability of meeting specifica-
tions, all items produced must be inspected individually to see whether they meet specifications.
When the process is controlled and capable, none of the items need to be inspected.

The process capability is estimated to have limits.

ȳ·±3s or ȳ··±3
√

MSE,

or the same formula incorporating bias adjustments for s or
√

MSE. For individuals, these are just
the estimated control limits. An estimated process capability is also easily obtained from a means
chart. The control limits in a means chart are µ ± 3σ/

√
N where N is the group sample size. The

process capability limits are µ ± 3σ . The difference between the two control limits is 6σ/
√

N.
Multiplying this difference of 6σ/

√
N by

√
N/2 gives 3σ from which it is easy to obtained the

process capability. To illustrate the computations, reconsider the means chart in Figure 4.3. Recall
that the blood pressure process is not under control, so the process has no capability. We are merely
illustrating the computations for process capability. The difference between the control limits in
Figure 4.3 is 95.15−83.72 = 11.43. In Figure 4.3, N = 4, so the estimate of 3σ is 11.43(

√
4/2) =

11.43. The estimated process capability would be the value of the center line, 89.43, plus and minus
the estimate of 3σ . From Figure 4.3, the process capability would be estimated as 89.43± 11.43,
i.e, the interval from 78.00 to 100.86 (if this process were under control and had a capability).

Figure 4.6 contains Minitab’s process capability chart. As far as I can tell, this figure does not
actually compare the capability limits to the specification limits. In the left box LSL and USL are
the lower and upper specification limits, respectively, set here as blood pressures of 55 and 94. A
target blood pressure was not specified. Below these in the left box are numbers related to the sum-
maries from Table 4.2: the grand mean ȳ··, the total sample size 19×4 = 76, a bias adjusted

√
MSE

[StdDev(Within)], and the bias adjusted overall sample standard deviation computed from all 76
observations. (The bias adjustments converge to 1 when the sample sizes – technically the degrees

2To be predictable, a process need only be stationary, not iid. Positively correlated stationary processes would have
artificially narrower control limits, hence a greater probability of getting outside the limits. BUT the justification for these
control limits is not a probability statement but the experience that they work!
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Figure 4.6: Process Capability Chart for the Data of Table 4.2

of freedom – get large and in this example the “overall” adjustment is negligible.) In the boxes
below the graph, PPMs are parts per million (rather than percentages or estimated probabilities).
The observed performance is just that. The expected within and overall performances are based on
approximating normal distributions using the grand mean and an estimated standard deviation (ei-
ther within or overall). The stuff in the right box are commonly used measures that I have not yet
decided are worth caring about. For example, this Cp statistic is the length of the specification inter-
val divided by the length of the process capability interval, so a value greater than 1 tells you that
you could potentially meet specifications if you were exactly on target. The other “C” measures are
refinements on Cp. (This Cp is not the commonly used Mallows’ Cp created for variable selection
in regression.)

4.2.1.1 Six-Sigma

There has been much discussion of achieving 6σ process control. There is a narrow focus of 6σ

which is merely an aspect of process capability. There is also a general focus with Six-Sigma being
the name of a quality management program, see Hahn et al. (1999) and the January 2002 issue of
Quality Progress.

As an aspect of process capability, the 6σ concept has sometimes been misunderstood. When
misunderstood, 6σ can easily lead to lowering the quality of products. For a process under control,
the capability remains the µ±3σ limits. Properly understood, 6σ limits have been achieved when
the specification interval contains the limits µ ± 6σ . This can only happen when σ is very small
relative to the variability allowed with the specification limits.

If the specification limits happen to be 3σ from the mean µ , so they happen to agree with the
control limits, with normal data about 0.3% (3 out of 1000) units will be outside of specifications.
If the variance has been reduced so that now the specification limits agree with µ± 6σ , almost no
units will be outside specifications. Anytime the µ ± 6σ limits are within the specification limits
your “process capability” is fantastic. (But you could potentially do even better in overall quality by
moving µ closer to the specified target, say µ0.)

The point is that 6σ is something to be achieved by reducing variability – which is very difficult.
If 6σ is somehow imposed rather than being achieved, it has almost certainly been misunderstood
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Table 4.3: High Blood Pressure Readings

# of High
Group (i) N Pressures (yi) p̂i

1 25 13 0.52
2 25 10 0.40
3 25 9 0.36
4 25 3 0.12
5 25 2 0.08
6 25 2 0.08
7 25 2 0.08
8 25 2 0.08
9 25 1 0.04

10 25 0 0.00
11 25 1 0.04
12 25 1 0.04
13 25 3 0.12
14 25 2 0.08
15 25 11 0.44
16 25 4 0.16
17 25 1 0.04
18 25 1 0.04

Total 450 68 0.151

and the misunderstanding is ruining quality. For example, making the incorrect claim that a process
is under control whenever observations are within µ±6σ will have disastrous results.

As a method of quality management, Six-Sigma focuses on using quality methods to improve
financial measures – something that is probably inevitable for a successful program given the nature
of American business management.

4.3 Attribute Charts

Frequently, control charts are used to evaluate whether certain attributes of a process are under
control. We now consider such charts.

EXAMPLE 4.3.1 Np chart
Diastolic blood pressures are considered to be high if they are 94 or larger. To illustrate what are
known as Np charts, we dichotomized the 460 blood pressure observations into pressures that were
high and those that were not. Further we divided the 460 observations into 18 consecutive groups of
25 while ignoring the last 10 observations. The data are given in Table 4.4. The values for p̂i in the
table are simply the observed proportions of high blood pressures, i.e., the number of high pressures
divided by 25. An Np control chart is a plot of the number of high blood pressures versus the group.
The chart is given in Figure 4.7.

If the 460 observations have the same distribution, there is some fixed probability p that an
observation will be 94 or greater. If the observations are all independent, then the number of high
pressures out of each group of 25 has a binomial distribution, i.e., the number of high counts yi
has yi ∼ Bin(N, p) where N = 25 is the number of trials in each group. As seen in Section 3.4,
E(yi) = Np, Var(yi) = Np(1− p), and the standard deviation of yi is

√
Np(1− p). It follows that the

center line for the Np chart is at Np and the control limits are at Np±3
√

Np(1− p). As mentioned,
N = 25, but we do not know p and must estimate it. We combine information across groups. From
Table 4.4 there are a total of 68 high blood pressure readings out of 450 total readings, so the total
estimate of p is 68/450 = 0.151. The center line is estimated as 25(0.151) = 3.778. (Note that the
center line value can also be computed as the number of high blood pressures averaged over the 18
groups, i.e., 68/18.) The control limits are 3.778± 3

√
25(0.151)(1−0.151). The number of high
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Figure 4.7: Np Chart for High Diastolic Blood Pressures

Figure 4.8: p Chart for High Diastolic Blood Pressures

blood pressures is nonnegative so if the computed lower control limit is negative, the limit is taken
as 0. Similarly, the number of high blood pressures cannot be larger than N = 25.

From the Np chart, the process is obviously out of control. Three points are above the control
limits while there is a string of 11 consecutive points that are below the center line. It should also
be noted that, as with other charts, the attribute data for this chart was obtained by forming rational
subgroups. We looked at the numbers of high readings in groups of 25 consecutive observations.
And again, we have only 18 groups rather than Shewhart’s suggested 25 so even if the process were
not out of control, we would be hesitant to claim that it was in control. 2
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It is not always the case that one has the same number of trials in each group. The yis could
be yi ∼ Bin(Ni, p) where the Nis change from group to group. In such cases the Np chart can be
modified but the modified chart will not have a horizontal center line. In these cases it is convenient
to form a p chart. In a p chart, the proportions (the p̂is) are plotted against the group identifier.
The center line of the plot is the pooled estimate of p, i.e., the total number of events divided by
the total number of trials. For the high blood pressures, the p̂is from Table 4.4 would be plotted
against group number with a center line at 68/450 = 0.151. In this plot, the upper and lower control
limits may vary from group to group. For group i, p̂i has E(p̂i) = p and Var(p̂i) = p(1− p)/Ni.
Thus the estimated control limits for the number of high blood pressures in a group of, say, Ni =
10 measurements are 0.151± 3

√
0.151(1−0.151)/10. Different groups with different numbers

of trials Ni will have different control limits. For Ni = 10, the estimated upper limit is 0.49. The
estimated lower limit is −0.19 which is adjusted to 0. If the proportion of high readings among
10 measurements is greater than 0.49, in other words if 5 or more of the 10 readings are high, the
process is out of control.

EXAMPLE 4.3.2 p chart
Figure 4.8 gives the p chart for the data of Table 4.3. Because the Nis all equal 25, it looks just like
the Np chart except all the entries are divided by 25. The following exercise adds more data and
changes the results. 2

EXERCISE 4.1 Shumway gave 460 BP readings. The first 450 are summarized in Table 4.3. The
final 10 readings contain 0 high blood pressures. Reconstruct the p chart incorporating this extra
group of data.

Example 4.3.4 also contains a p chart with substantial variation in the Nis.
The final types of control charts that we will discuss in any detail are c and u charts. These

charts are based on count data having a Poisson distribution. Poisson data are similar to Binomial
data with small probabilities of detecting an attribute but many trials in which to detect them. For
example, the number of defects on the surface of a table might have a Poisson distribution where the
probability of a defect at any location is small but there is no obvious limit to the number of locations
on the table surface. If yi is Poisson, and E(yi) = µ , then µ determines the entire distribution and in
particular Var(yi) = µ .

The c chart involves plotting the number of occurrences versus the “group.” (A group may be
a single object like a table.) The center line is µ , which is identical to that in the Np chart. µ is
estimated as the average number of defects per group. The control limits are µ ± 3

√
µ and are

estimated by replacing µ with its estimate.

EXAMPLE 4.3.3 c chart.
We illustrate the c chart by once again using the data of Table 4.3. These data are more properly
analyzed with an Np or p chart but the sample sizes are not small and the probability of getting
a high blood pressure reading is not large, so the application is not too inappropriate. As in the
Np chart, numbers of high readings are plotted against groups. As in the Np chart, the center line is
3.778. It is the average number of high readings per group, 68/18 = 3.778. In the c chart, the control
limits are 3.778±3

√
3.778 as opposed to the Np chart values of 3.778±3

√
3.778(1−0.151). Even

though the sample sizes of N = 25 are not terribly large and the estimated probability 0.151 is not
terribly small, the c chart given in Figure 4.9 is very similar to the Np chart in Figure 4.7. The upper
control limit is noticeably higher in Figure 4.9 but we still see three points above the UCL and 11
consecutive points below the center line. 2

Variations on the c chart are also necessary. For example, when looking at the number of painting
defects on a piece of sheet metal, if we have different sized pieces of sheet metal we need to adjust
for that fact. These adjustments are made in what are known as u charts. Suppose the observations yi
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Figure 4.9: c Chart for High Diastolic Blood Pressures

Table 4.4: Moisture Resistance Test Failures

Lot Size Failures Lot Size Failures
1 80 3 14 200 27
2 125 7 15 200 1
3 80 4 16 200 9
4 80 7 17 125 0
5 200 0 18 200 1
6 80 0 19 200 1
7 200 9 20 315 5
8 125 1 21 315 2
9 125 0 22 200 0

10 125 0 23 50 1
11 125 8 24 200 2
12 125 1 25 315 3
13 200 1 26 315 3

are Poisson with mean λ`i where λ is a failure rate and `i is a measure of size for the ith observation.
The chart is based on plotting the values yi/`i. The mean of these values is λ and the variance is
λ/`i, so the chart is based on λ ± 3

√
λ/`i. Here λ is estimated from the data, not as the mean of

the yi/`i values, but as

λ̂ ≡ ∑
n
i=1 yi

∑
n
i=1 `i

.

EXAMPLE 4.3.4 u chart.
King (1995, qe95-495) presents data on the number of failures per lot observed during moisture
resistance tests on a plastic-encapsulated metal-film resistor. These are given in Table 4.4. Note that
the sample sizes vary from lot to lot, so a p chart is appropriate, cf. Figure 4.10. Also notice that
all of the sample sizes are quite large and the rates of defects are small, so the p chart will be well
approximated by a u chart, cf. Figure 4.11. Also see Exercises 4.9.18 and 4.9.22.
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Figure 4.10: p Chart for moisture resistance failures.

Figure 4.11: u Chart for moisture resistance failures.
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4.4 Control Chart Summary

Suppose we have data on a process yh, h = 1, . . . ,n. If the process is under control, any manner of
selecting the data, as long as the selection does not depend on the yh values, should provide a random
sample from the process. In other words, the yhs should be independent and identically distributed
(iid). Unfortunately, we cannot look at a group of numbers and tell whether they are observations
from an iid process. The point of control charts is to create an operational definition of what it means
to be iid. If the control chart is satisfied, then the data are close enough to iid for us to use them for
reliable prediction.

Control charts constitute an operational definition, not a statistical test, but like a statistical
test, they are set up assuming things about the data, in this case that the data are iid. The idea is that
if the data are not iid, the control charts have a good chance of spotting the problem. We assume
that for h = 1, . . . ,n,

E(yh) = µ, Var(yh) = σ
2.

Most often µ and σ2 are two unrelated, unknown parameters but in some problems (for attribute
data) σ2 is actually a function of µ .

If the process is under control (i.e., if the observations are iid) then it should remain (largely)
within the interval having the (control) limits

µ±3σ .

These limits also define the process capability. If the process capability interval is contained within
the specification limits associated with the product, we are good to go. A process that is out of control
has no capability!! The “Six-Sigma” program is named for the requirement that µ ± 6σ be within
the specification limits. Such a requirement necessitates both reduced variability and (usually) that
the target µ be near the center of the specification limits.

A key idea, perhaps the key idea, behind control charts is dividing the data into rational sub-
groups having essentially identical conditions. When that is done, it becomes convenient to replace
the subscript h with a pair of subscripts i j wherein i identifies the rational subgroup and j identifies
observations with the group. Rewrite the data as yi j, i = 1, . . . ,n, j = 1, . . . ,Ni. Here we must have a
total sample size of N1 + · · ·+Nn. As before,

E(yi j) = µ, Var(yi j) = σ
2.

As discussed earlier, Shewhart recommends n≥ 25.
From within each subgroup, we define a statistic of interest, say θ̂i ≡ θ̂i(yi1, . . . ,yiNi). These are

typically the sample mean, sample standard deviation, or perhaps the sample range. The statistic of
interest is chosen so that the expected value is the same for every group, say,

E(θ̂i) = θ

but the variance may depend on the group size, so write

Var(θ̂i) =Vi.

A theoretical control chart would plot the pairs (i, θ̂i), with a central horizontal line at θ and control
limits

θ ±3
√

Vi.

In many charts, Vi is the same for all i, which makes for a more attractive chart. In practice, we need
to estimate both θ and the Vis.

As discussed in Section 2, in addition to requiring that the plotted points remain within the
control limits, there are a number of other criteria that one may incorporate into the operational
definition of a process being under control.
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Table 4.5: Control Chart Summary. σ estimated by
√

MSE, i.e., not bias corrected.

Chart θ̂i θ θ̂
√

Vi
√

V̂i Notes
Means ȳi· µ ȳ··

√
σ2/Ni

√
MSE/Ni

Variance s2
i σ2 MSE 2σ

2

Ni−1
2MSE
Ni−1

S si cN−1σ cN−1
√

MSE
√

CN−1σ2
√

CN−1MSE N ≡ N1 = · · · = Nn

R Ri dNσ R̄
√

DNσ2
√

DNMSE N ≡ N1 = · · · = Nn

NP yi ≡ Nȳi· Np≡ nµ N p̂ = Nȳ··
√

N p(1− p)
√

N p̂(1− p̂) N ≡ N1 = · · · = Nn

P p̂i ≡ ȳi· p≡ µ p̂ = ȳ··
√

p(1−p)
Ni

√
p̂(1− p̂)

Ni

C yi µ µ̂ ≡ ∑yi/n≡ ȳ· ]sqrtµ
√

µ̂ yi ∼ Pois(µ)

U yi/`i λ λ̂ ≡ ∑yi/∑`i
√

λ/`i

√
λ̂/`i yi ∼ Pois(λ`i)

Table 4.5 summarizes the standard control charts within this context. In the Np and p attribute
charts we assume that the yi js only take on the values 0 and 1. The U and C charts essentially have
Ni =∞ but that causes no problem. The dispersion/variability charts all incorporate values that are
only valid for data with normal distributions. In particular, the use of the χ2 distribution and comput-
ing the bias constants cNi−1, CNi−1, dNi , and DNi all involve assuming the yi j have normal distribu-
tions. With (Ni−1)s2

i /σ2 ∼ χ2(Ni−1), write cNi−1 as the constant for which E(si) = cNi−1σ . Write
CNi−1 for the value with Var(si) =CNi−1σ2. Write dNi for the value such that E(Ri) = dNiσ and DNi

for the value with Var(Ri) = DNiσ
2. I am happy to estimate σ with

√
MSE and have done so in the

table. Some people, including the makers of Minitab, prefer to estimate σ with
√

MSE/c∑Ni−n, so
one could change the table accordingly. Also, when N ≡ N1 = · · ·= Nn one could alternatively use
R̄/dN as the estimate of σ .

As discussed in Chapter 6, a process that generates iid data is not the only process for which
reliable predictions can be made. If the process is stationary, the associated data will also be pre-
dictable. Informally, a stationary processes is one in which, no matter when you choose to start
looking at the process, future and past observations always show the same patterns. For this to be
true, the mean and variance cannot change with time, but the observations do not have to be inde-
pendent. In practice we can only evaluate past data, but we can look at “future” data relative to some
point in the past. An iid process is always stationary, but stationary processes need not be iid. It is
much more difficult to give an operational definition for a general stationary process than for an iid
process. One needs to be very careful if trying to claim that a process that fails control charts is still
predictable because the control chart failure is due to the process being stationary but not iid.

4.5 Average Run Lengths

When testing statistical hypotheses, tests are often evaluated by their size and power. The size is the
probability of rejecting an hypothesis when it is true and the power is the probability of rejecting
an hypothesis when it is false. The average run length is a related concept for control charts. The
run length is the (random) number of points you plot until you see a point that is out of control. The
average run length is the expected value of the random run length. We want the average run length
to be large for processes that are under control and short for processes that are out of control. The
EWMA and CUSUM charts in Section 7 were developed to have shorter average run lengths for out
of control processes.
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4.6 Discussion

Control charts are really designed as an operational definition of what it means for a process to be
under control. Not infrequently, statisticians want to interpret them as statistical tests for whether
the mean of the process has jumped from its historical/previous value or for whether the data display
trends, i.e., whether the mean of the process is gradually increasing or decreasing. Two useful pro-
cedures for conducting such tests are CUSUM (cumulative sum) charts and EWMA (exponentially
weighted moving average) charts and are discussed in the next section.

In a statistical test one makes a series of assumptions and checks to see whether the data are
consistent with those assumptions. Most often, a particular assumption is isolated as the null hy-
pothesis and if the data are inconsistent with the assumptions we conclude that the null hypothesis
is false. Logically, concluding that the null hypothesis is false requires us to believe that the other
assumptions are valid.

The whole point of control charting is to decide whether the data are independent observations
from a fixed process (population). It is not difficult to jump to the conclusion that this is an assump-
tion we wish to test. However, one can take a very different philosophical view. One can take the
view that the problem is not one of testing the assumptions but rather one of defining the terms used
in the assumptions. What does it actually mean for, say, 50 observations to be independent from the
same population. If we have an operational definition of what these terms mean, we will be able to
look at 50 numbers and decide whether they are independent observations from the same population
or not. The philosophy behind control charts is not to test ill defined assumptions but rather to give
an operational definition of statistical control, see Shewhart (1939, p. 40). A person looks at various
characteristics of a control chart and if they are appropriate one concludes that the process satisfies
the operational definition of being in statistical control. This is not too different from the philosophy
frequently adopted in Statistics. Typically, we do an informal check of mathematical assumptions
and, if the assumptions are not too bad, we proceed with formal statistical inferences, i.e, tests,
confidence intervals, and prediction intervals. The only real difference is that in control charting,
the checks on mathematical assumptions are formalized into an operational definition while the in-
ferences are informal prediction intervals. It is of interest to note that typically informal checks on
assumptions do not include methods for checking independence, whereas we will see in Subsec-
tion 9.1.1 that means charts (and, it turns out, Np, p, c, and u charts) are effective at detecting lack
of independence when rational subgroups have been chosen.

As pointed out above, many of the characteristics of traditional control charts (bias adjustments,
variances of dispersion measures) are calculated by using results that relate to independent normally
distributed data. It follows that normal distributions are being built into the operational definitions of
statistical control whereas normality is not part of the mathematical definition of statistical control.
In our earlier discussion we were somewhat critical of this feature. From the philosophical point of
view presented here, our earlier discussions about the validity of assumptions need to be recast as
discussions on the nature of an appropriate operational definition for statistical control.

Deming (1986, Chapter 11) alludes to these issues. On pages 334 and 335 he seems to suggest
that one should just use control charts without worrying about whether the data satisfy the assump-
tions underlying the calculations. But earlier, on page 319, he indicates that usable decision rules
must be made in advance and that the 3σ control limits work well “under a wide range of unknow-
able circumstances”. In fact, I believe he is saying that one needs operational definitions and that
the 3σ control limits have been found to provide a useful definition. More generally, Deming argues
that a major problem in economic activities is that management fails to provide workers with opera-
tional definitions and consequently, workers never know whether they have done a task successfully.
Shewhart (1939) discusses these issues in more detail.
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4.7 Testing Mean Shifts from a Target

Control charts (with or without the additional criteria discussed by Nelson, 1984) are used to create
an operational definition for what it means to have a process under control. We now present two
sequential statistical tests for whether a process is on target at a specified value µ0. Only if you let
the data empirically determine the value µ0 can these be considered as potential additional criteria
for whether a process is under control, because being under control has nothing to do with being on
target.

Exponentially weighted moving average (EWMA) charts and Cumulative Sum (CUSUM) charts
provide sequential tests for whether a process experiences a mean shift away from a target. We will
discuss the tests in terms of a sequence of observations y1,y2,y3, . . . ,yn that are independent and
have the same variance σ2. Let E(yi) = µi. The tests assume a null hypothesis that the means remain
stable throughout the process at a fixed target value E(yi)= µ0. These procedures are good at picking
up the alternative that, up to some time T , the mean remains on target E(yi) = µ0, i = 1, . . . ,T but
then the entire process shifts slightly off target so that now E(yi) = µ0+δ , i = T +1, . . . ,n for some
small δ 6= 0. They work best when T is small. The process control versions of these tests are more
sensitive than individuals (or means) charts when δ is relatively small.

Both procedures can be used for process control using the empirical choice µ0 = ȳ·, similar
in spirit to the eight tests discussed by Nelson (1984). In fact, except at the beginning of the data
sequence, EWMA charts do not depend heavily on the value µ0, so if you get past the first few
observations an EWMA chart can be used as a criterion for process control even without empirically
choosing µ0.

When applied to individual observations yi, the variance σ2 is estimated as it would be in
an individuals chart. However both procedures can also be applied to a sequence of mean values
ȳ1·, ȳ2·, ȳ3·, . . . obtained from rational subgroups of size N. In this case the variance of an “obser-
vation” σ2 is replaced by Var(ȳi·) = σ2/N and σ2 is well estimated by pooling the within group
sample variances.

4.7.1 Exponentially Weighted Moving Average Charts

Exponentially weighted moving average (EWMA) charts are a tool often used alongside control
charts but they are really tests for whether the data display a mean shift away from a target µ0. The
chart uses the specified center line µ0 and plots the EWMA over time while checking whether the
EWMA remains within 3 standard deviations of the center line.

For the purpose of constructing an EWMA chart, an EWMA is commonly defined via the recur-
sive relationship

µ̃t ≡ (1−α)yt +αµ̃t−1,

where 0 < α < 1 and µ̃0 ≡ µ0. It is by no means clear what this has to do with an exponentially
weighted moving average.

The obvious way to define an EWMA is to apply exponentially decreasing weights to each
observation, i.e., for 0 < α < 1,

µ̂t ≡ (αyt +α
2yt−1 +α

3yt−2 + · · ·+α
ty1)
/ t

∑
i=1

α
i =

∑
t
i=1 α iyt−i+1

∑
t
i=1 α i .

The point of this is that older observations get multiplied by much smaller numbers. We will later
show that when t is large, µ̂t very nearly satisfies the recursive definition for µ̃t and we will give
explicit formulae for µ̃t that display exponential downweighting of older observations.

As will be shown later, the standard deviation for µ̃t with a fixed starting point µ0 is

σ

√(
1−α

1+α

)
(1−α2t).
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Figure 4.12: Exponentially weighted moving average chart for grouped diastolic blood pressures.

Typically, one just rejects the constant mean hypothesis whenever a plotted value gets outside of
3 estimated standard deviations from the target µ0. The plot displays all of these results for t =
1,2,3, . . . ,n. Note that as t gets large, the standard deviation rapidly approaches the limit

σ

√(
1−α

1+α

)
.

The variance σ2 is estimated as in the individual charts of Section 4.1 or, when appropriate, the
means charts of Section 4.2. Lucas and Saccucci (1990) facilitate the construction of more formal
tests.

Of course one needs to specify the value of α . A common default choice is α = 0.8. Many
discussions of EWMA charts are presented in terms of

λ ≡ 1−α,

in which case the common default choice is λ = 0.2.
To turn the “on target” test of H0 : µi = µ0, i = 1, . . . ,n into an under control test of H0 : µi = µ ,

i = 1, . . . ,n for come unspecified µ , we use µ0 = ȳ·, the empirical choice. When doing so, people
typically use the same variance formula ignoring the fact that ȳ· is now random. One obvious alter-
native choice is to start the recursion with µ̃1 ≡ y1, for which the variance will be given in the next
subsection.

To a great extent, the niceties of turning the “on target” EWMA test into an under control cri-
terion can be ignored because the exponential weighting soon discounts the target value µ0 out of
the picture. For the first few steps t, the procedure is sensitive to whether E(yt) = µ0, but before
long the chart essentially reduces to a test of whether there is a constant mean for all observations
or whether at some point in time the mean shifts.

Figure 4.12 gives the empirically centered EWMA chart with α = 0.8 for the grouped blood
pressure data of Table 4.2. Because it is grouped data the value of σ in the formulae should be
replaced with

√
MSE/N or possibly a bias corrected version of that.
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4.7.1.1 Derivations of results

Three fundamental equalities about power series are needed. The first is obtained by looking at each
term in the product (1−α)∑

∞
i=0 α i,

1
1−α

=
∞

∑
i=0

α
i,

α

1−α
=
∞

∑
i=1

α
i,

and finally,

t

∑
i=1

α
i =

∞

∑
i=1

α
i−

∞

∑
i=t+1

α
i

=
∞

∑
i=1

α
i−α

t+1
∞

∑
i=0

α
i

=
α

1−α
−α

t+1 1
1−α

=
α−α t+1

1−α

.
=

α

1−α
,

when t is large.
We can now see that µ̂t approximately satisfies the recursive relationship that defines µ̃t when t

is large.

µ̂t ≡ ∑
t
i=1 α iyt−i+1

∑
t
i=1 α i

=
αyt +∑

t
i=2 α iyt−i+1

(α−α t+1)/(1−α)

.
=

αyt +∑
t
i=2 α iyt−i+1

α/(1−α)

= (1−α)yt +
∑

t
i=2 α iyt−i+1

α/(1−α)

= (1−α)yt +α
∑

t
i=1 α iyt−1−i+1

α/(1−α)

.
= (1−α)yt +α

∑
t−1
i=1 α iy(t−1)−i+1

α−α t/(1−α)

= (1−α)yt +αµ̂t−1.

Assuming the data are uncorrelated (or independent) with E(yt) = µ and Var(yt) = σ2,

Var(µ̂t) = Var
(

∑
t
i=1 α iyt−i+1

(α−α t+1)/(1−α)

)
=

∑
t
i=1 α2iVar(yt−i+1)

[(α−α t+1)/(1−α)]2

= σ
2 ∑

t
i=1 α2i

[(α−α t+1)/(1−α)]2

= σ
2 (α

2−α2t+2)/(1−α2)

[(α−α t+1)/(1−α)]2
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= σ
2
(

α2−α2t+2

(α−α t+1)2

)(
(1−α)2

1−α2

)
= σ

2 α2−α2t+2

(α−α t+1)2

(
1−α

1+α

)
= σ

2
(

1−α2t

(1−α t)2

)(
1−α

1+α

)
= σ

2
(

1+α t

1−α t

)(
1−α

1+α

)
.
= σ

2(1−α)/(1+α).

When t is small it pays to use the exact formula.
From the recursive definition of µ̃t that starts with µ̃1 = y1,

µ̃t = (1−α)yt +αµ̃t−1

= (1−α)yt +α [(1−α)yt−1 +αµ̃t−2]

= (1−α)yt +α(1−α)yt−1 +α
2
µ̃t−2

= (1−α)yt +α(1−α)yt−1 +α
2 [(1−α)yt−2 +αµ̃t−3]

= (1−α)yt +α(1−α)yt−1 +α
2(1−α)yt−2 +α

3
µ̃t−3

= (1−α)yt +α(1−α)yt−1 +α
2(1−α)yt−2 +α

3 [(1−α)yt−3 +αµ̃t−4]

= (1−α)
t−2

∑
i=0

α
iyt−i +α

t−1
µ̃1

= (1−α)
t−2

∑
i=0

α
iyt−i +α

t−1y1.

This involves exponential weighting but not as clearly as µ̂ . Again assuming the data are uncorre-
lated with E(yt) = µ and Var(yt) = σ2,

Var(µ̃t) = Var

(
(1−α)

t−2

∑
i=0

α
iyt−i +α

t−1y1

)

= (1−α)2
t−2

∑
i=0

α
2iVar(yt−i)+α

2(t−1)Var(y1)

= σ
2

[
(1−α)2

t−2

∑
i=0

α
2i +α

2(t−1)

]

= σ
2

[
(1−α)2

α2

t−1

∑
i=1

α
2i +α

2(t−1)

]

= σ
2
[
(1−α)2

α2
α2−α2t

1−α2 +α
2(t−1)

]
= σ

2
[(

(1−α)2

1−α2

)(
α2−α2t

α2

)
+α

2(t−1)
]

= σ
2
[(

1−α

1+α

)
(1−α

2(t−1))+α
2(t−1)

]
.

For the more common choice of a nonrandom starting point for the recursive definition of µ̃t ,
say µ̃0 = µ0, we get

µ̃t = (1−α)
t−1

∑
i=0

α
iyt−i +α

t
µ0.
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and

Var(µ̃t) = Var

(
(1−α)

t−1

∑
i=0

α
iyt−i +α

t
µ̃0

)

= (1−α)2
t−1

∑
i=0

α
2iVar(yt−i)

= σ
2
(

1−α

1+α

)
(1−α

2t).

4.7.2 CUSUM charts

CUSUM charts again involve a specified target µ0 that is being tested. The basic CUSUM statistic
is

Ct =
t

∑
i=1

(yi−µ0).

The standard deviation of Ct is
√

tσ so if the process is on target it should remain within ±3
√

tσ .
A plot would display the three numbers Ct , ±3

√
tσ for t = 1,2,3, . . . ,n. But why make life that

simple? The additional complications of standard procedures are related to their theory as sequential
statistical tests. (For just about any conceivable sample size the ±3

√
tσ limits are wider than the

Law of the Iterated Logarithm limits±σ
√

2t log(log(t)) that for arbitrarily large t contain all of the
observations with probability one, so clearly there is room for improvement.)

Standard CUSUM procedures have upper and lower control limits of ±hσ and require another
slack parameter k such that mean shifts up to ±kσ are not considered worth bothering about. Thus,
a standard CUSUM will be good for detecting small shifts off of µ0 but only small shifts that are
at least ±kσ . Quite a bit of work can go into selecting the values h and k, cf. Woodall and Adams
(1993). Minitab uses the defaults h = 4 and k = 0.5. The qcc R package uses the defaults h = 5 and
k = 1.

We now define upper and lower (high and low) cumulative sums that respectively look for a drift
of the process above the target and a drift of the process below the target. A process is identified as
off target if either of the following numbers gets outside the control limits,

Ch
t = max{0,Ch

t−1 +(yt −µ0)− kσ}

and
Cl

t = min{0,Cl
t−1 +(yt −µ0)+ kσ}.

Here Ch
0 =Cl

0 = 0. (Starting at points other than 0 is sometimes used to give a “fast initial response.”)
As long as the cumulative sum Ct remains larger than ktσ , Ch

t is positive, but, once the upper
cumulative sum goes negative, Ch

t zeros out and starts again looking for a positive drift. As long
as Ci ≥ kiσ , i = 1, . . . , t− 1, the process is declared off target when Ct > (h+ kt)σ . This initially
seems unreasonably stringent (typical default values for (h+ tk)σ are much larger than 3

√
tσ ) but

the high and low CUSUMs are quite easy to zero out which restarts the the process of checking
for a mean shift and restarting seems like a good thing. (It is similar to the downweighting of
earlier observations used in the EWMA.) This procedure is sometimes called the tabular procedure
as opposed to George Barnard’s more old-fashioned V-mask procedure. [The use of the High and
Low cumulative sums was well illustrated in the quality training film of the same name by Akira
Kurasawa.]

Replacing µ0 with ȳ· provides a method for identifying an out of control process. The variance
is estimated as in an individuals chart when plotting individual observations yi or as in a means
chart when plotting rational subgroup means ȳi·. Figure 4.13 applies the default Minitab CUSUM
procedure to the grouped blood pressure data.
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Figure 4.13 Cusum chart for diastolic blood pressures. The default is µ0 = 0 which, given the vertical scale,
is why ±hσ/

√
N and Cl

t are indistinguishable on this plot.

4.8 Computing

4.8.1 Minitab

The whole point of using Minitab is that it is really easy to use. It is menu driven, the menus are
easy to use, the menus construct the underlying code, and even the underlying code is very easy to
use. Minitab went through 19 versions before they decided to run it off the web so that they can
continually improve it. For academic access, see estore.onthehub.com.

The Minitab menus are along the top. The current version displays five windows. On the left is
a Navigator window for selecting the output to look at in the the Session window at the center top.
The center bottom displays the Worksheet containing the data. The worksheet operates rather like a
spreadsheet. On the top right is a Command Line window for entering and running commands. The
bottom right is a History window of the commands run. If you use the menu structure, the History
window shows you the commands that the menus generated.

Minitab is not good at reading my data files. Before reading any file you should look at it and
compare it to the corresponding table in the book. (Notepad and Wordpad are good Windows editors
for doing this.) To read my data files, count the number of columns of data and remove any variable
names. The file for Table 4.2 is tab4-2.dat and it contains variable names, so I removed them and
saved the data as tab4-2a.dat. The file has 9 columns so use the commands

read c1-c9;

file "c:\e-drive\books\quality\bookdata\tab4-2a.dat".

My “path” is

e-drive\books\quality\bookdata

Yours will be different. If you are copying commands from a .pdf file, some characters do not
always copy appropriately, like ˜ and -. You may need to delete and retype them.

Small data files can also be copied and pasted directly into the worksheet. After copying the
data, put your cursor in the worksheet at the top left of where you want to paste the the data. The
menu that appears when you try to Paste is pretty self explanatory.

Generally when reading files one would go to the File menu on the top left and choose Open. In

estore.onthehub.com
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the new window find the appropriate folder and file and open it. Check the preview and, for my data
files, change the Field delimiter option to Space. Typically, uncheck the Data has column

names box but you can see whether to do that from the preview. If the preview looks ok, hit OK. On
my data files this rarely works because I included extra spaces to make them look good in an editor.

The following Minitab commands were used to obtain Figure 4.1 from data file tab4-1.dat.
The data file looks a little funky but it is just one column of numbers and it can be read using
the standard Minitab menus. For the current version of Minitab, copy the following text into the
Command Line window on the top right, highlight it, and hit the “Run” button at the bottom of that
window.

describe c1

ichart c1;

mu 92.880;

sigma 3.799.

Minitab will show you the ichart output. To see the describe output go to the “navigator” win-
dow on the left and click on “descriptive statistics.” Semicolons are used to let Minitab know you
are specifying a subcommand. The final period indicates that you are done with a command that
involves subcommands. In fact, I had to run the describe command prior to the ichart command
because I used the describe output to get the values I put into the mu and sigma subcommands of
ichart.

Older versions of Minitab provided prompts of MTB > or SUBC> prior to commands

MTB > describe c1

MTB > ichart c1;

SUBC> mu 92.880;

SUBC> sigma 3.799.

To reproduce the Individuals chart Figure 4.1 using the menus, after reading the data of Ta-
ble 4.1, go to the Stat menu and then the Describe option to compute the mean and standard
deviation. Then, again within the stat menu, choose the Control Charts option and choose
Variables Charts for Individuals, choose Individuals and enter the mean and standard
deviation using the I Chart Options button. Of course you could just run the individuals chart
without entering the mean and standard deviation but it will look a bit different.

The following Minitab commands were used to generate the control charts for Example 4.2.1
from file tab4-2.dat. The xbar command allows subcommands for specifying µ and σ and for
specifying various control chart tests. This application uses the subcommand RSub to specify that
the rational subgroup data are in columns c2 through c5, each row of these columns being a different
group. The commands for performing s and R charts work similarly and the menus do a good job of
explaining the options.

xbar;

RSub c2-c5;

mu 89.434;

sigma 3.81;

tests 1:8.

schart;

RSub c2-c5.

rchart;

RSub c2-c5;

rbar.

An alternative data structure would be to have a single column of numbers, say c15, with the
rational subgroups being each, say, 4 consecutive numbers in c15.
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xbar c15 4;

mu 89.434;

sigma 3.81;

tests 1:8.

4.8.2 R Commands

R has lots of relevant capabilities including the package/library qcc for basic charts. Start by
looking at https://cran.r-project.org/web/packages/qcc/vignettes/qcc_a_quick_

tour.html. If you want to use R you might want to look at http://www.stat.unm.edu/

~fletcher/Rcode.pdf which gives a short introduction to R and covers most, but not all, of
the regression, analysis of variance, and experimental design topics considered here. Also, http:
//www.stat.unm.edu/~fletcher/R-TD.pdf gives some, and over time should give more, code
for topics covered in TiD. At the moment it mostly directs you to relevant R packages for experi-
mental design.

I have not actually run any of this code yet. The code reads in nine columns (vectors) including
y1,y2,y3,y4 for which row i gives the four observations on group i. The object s.data (denoting
Shumway data), as used below, requires y1,y2,y3,y4 to be rearranged into one vector of numbers
y with a corresponding index vector i to identify its groups. There may be more efficient ways to
define s.data from y1,y2,y3,y4.

rm(list = ls())

bp <- read.table("C:\\E-drive\\Books\\quality\\BookData\\tab4-2a.dat",sep="",

col.names=c("Group","y1","y2","y3","y4","N","ybar-i","s-i","Range"))

attach(bp)

bp

# Rearrange y1,y2,y3,y4 into y as indicated

# HAVEN’T DONE IT YET

#install.packages("qcc")

library(qcc)

sdata=qcc.groups(y,i)

qcc(sdata,type="xbar")

qcc(sdata,type="S")

qcc(sdata,type="R")

# If the group structure in y is every 4 rows

sdata=y

qcc(sdata,type="xbar",size=4)

qcc(sdata,type="S",size=4)

qcc(sdata,type="R",size=4)

The package qcc also has capabilities for process capability, the various attribute charts, EWMA
and CUSUM charts, as well as the multivariate charts of Appendix A and the Pareto charts and
cause-and-effect diagrams of Chapter 2.

mycc=qcc(sdata,type="xbar")

process.capability(mycc,c(spec1,spect2))

qcc(y,sizes=N,type="Np")

qcc(y,sizes=N,type="p")

qcc(y,type="c")

https://cran.r-project.org/web/packages/qcc/vignettes/qcc_a_quick_tour.html
https://cran.r-project.org/web/packages/qcc/vignettes/qcc_a_quick_tour.html
http://www.stat.unm.edu/~fletcher/Rcode.pdf
http://www.stat.unm.edu/~fletcher/Rcode.pdf
http://www.stat.unm.edu/~fletcher/R-TD.pdf
http://www.stat.unm.edu/~fletcher/R-TD.pdf
http://www.stat.unm.edu/~fletcher/TopicsInDesign.pdf
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Table 4.6: Ball Bearing Weights

16.5 10.9 10.6 11.2 11.4 10.2 13.4
10.2 12.7 12.6 12.8 12.0 16.5 9.7
10.1 11.3 12.5 13.9 9.7 8.9 9.9
10.1 8.8 12.0 8.7 14.2 12.3 10.7
10.4 13.2 9.7 12.2 11.0 10.6 10.3
12.3 11.4 10.7 13.4 10.3 10.5 11.8
10.2 15.4 8.7 10.6 12.6 10.0 10.8
15.4 13.1 11.4 7.6 12.5 13.0 13.0
13.5 13.1 7.5 11.1

Read across and then down.

qcc(y,sizes=N,type="u")

ewma()

cusum()

mqcc

pareto.chart()

cause.and.effect()

4.9 Exercises

EXERCISE 4.9.1 Construct an individuals chart from the data on ball bearing weights in Ta-
ble 4.6. Which, if any, bearings are out of control?

EXERCISE 4.9.2 Using consecutive groups of size four, construct s and R charts from the ball
bearing data of Table 4.6. Which, if any, points are out of control on the s chart? Which, if any,
points are out of control on the R chart? Do you detect any difference in the sensitivity of the two
charts?

EXERCISE 4.9.3 Construct a means chart from the ball bearing data of Table 4.6 using groups of
four. Which, if any, points are out of control?

EXERCISE 4.9.4 What is the capability of the process explored in Table 4.6. The target value for
the ball bearings is 12.5. How well is the manufacturer doing?

EXERCISE 4.9.5 Construct an individuals chart from the data of Table 4.7 on diameters of a
coupling made for a refrigerator. Which, if any, couplings are out of control?

EXERCISE 4.9.6 Using consecutive groups of size four, construct s and R charts from the data
of Table 4.7. Which, if any, points are out of control on the s chart? Which, if any, points are out of
control on the R chart? Do you detect any difference in the sensitivity of the two charts?

EXERCISE 4.9.7 Construct a means chart from the data of Table 4.7 using groups of four. Which,
if any, points are out of control?

EXERCISE 4.9.8 What is the capability of the process explored in Table 4.7. The target value for
the coupling diameters is 22. How well is the manufacturer doing?
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Table 4.7: Coupling Diameters

21.8 23.5 21.9 22.2 21.8 22.9 21.7 21.7
24.7 21.1 21.7 22.6 20.7 22.6 23.4 22.6
20.8 22.1 22.5 21.8 22.5 21.3 22.1 21.1
22.6 21.8 21.6 21.6 21.1 19.4 27.3 20.4
22.6 22.0 22.3 21.1 22.3 21.9 21.9 18.2
22.9 21.3 22.6 20.7 22.6 20.4 22.7 22.2
22.8 21.5 22.6 20.6 22.6 21.9 22.4 22.7
19.1 23.2 22.8 23.3

Read across and then down.

Table 4.8: Side Board Lengths

Group Mean Variance Group Mean Variance Group Mean Variance
1 19.7 0.97 10 16.6 2.83 19 16.5 9.41
2 18.5 4.77 11 15.8 6.71 20 16.1 1.25
3 14.7 0.32 12 14.3 7.59 21 19.7 2.85
4 13.3 5.56 13 15.2 4.64 22 20.7 3.51
5 15.0 5.84 14 18.7 2.49 23 16.6 0.91
6 16.4 1.71 15 15.8 4.92 24 17.2 9.93
7 18.1 0.28 16 14.4 6.04 25 20.3 3.25
8 13.9 2.43 17 17.4 0.54
9 17.8 0.37 18 17.2 13.09

EXERCISE 4.9.9 Table 4.8 contains sample means and variances for rational subgroups of four
units observing the lengths of a side board used in the construction of a television stand. Construct
a means chart and an s chart and evaluate whether the process is under control.

EXERCISE 4.9.10 Table 4.9 contains sample means and standard deviations (S. D.) for rational
subgroups of four units. The measurements pertain to the length of the top of a television stand.
Construct a means chart and an s chart and evaluate whether the process is under control.

EXERCISE 4.9.11 Table 4.10 contains the number of defectives in groups of 40 ball bearings.
Construct an Np chart from the data and evaluate the state of control of the process.

EXERCISE 4.9.12 Table 4.11 contains the number of defectives in groups of 30 refrigerator
couplings. Construct an Np chart from the data and evaluate the state of control of the process.

EXERCISE 4.9.13 Table 4.12 contains the number of defectives in groups of various sizes of ball
bearings. Construct a p chart from the data and evaluate the state of control of the process.

Table 4.9: TV Stand Top Lengths

Group Mean S. D. Group Mean S. D. Group Mean S. D.
1 33.9 2.77 10 37.1 1.37 19 33.9 2.52
2 39.8 0.66 11 30.8 3.24 20 36.7 2.66
3 37.5 1.23 12 35.8 3.76 21 32.0 6.04
4 32.4 0.67 13 35.5 1.63 22 35.7 5.31
5 38.6 2.07 14 34.6 1.82 23 29.8 7.29
6 35.8 5.21 15 31.1 1.53 24 33.2 5.19
7 39.5 2.20 16 41.3 3.18 25 33.3 9.54
8 35.5 2.05 17 30.8 2.59
9 33.1 1.38 18 33.3 1.65
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Table 4.10: Defective Ball Bearings

2 3 3 4 2 1 2 3 5 2
2 0 2 5 3 5 2 1 3 4
2 2 5 3 4 2 6 3 5 2

Read across and then down.

Table 4.11: Defective Refrigerator Couplings

2 5 4 2 2 3 4 3 7 4
4 4 4 3 5 3 1 5 4 3

10 4 8 3 3 9 5 3 7 13
1 2 4 4 5 6 7 5 6 8

Read across and then down.

EXERCISE 4.9.14 Construct a c chart for the data of Table 4.10 and compare the results to the
Np chart computed in Exercise 4.9.11.

EXERCISE 4.9.15 Data on the purity of a product were provided by van Nuland (1994) and are
reproduced in Table 4.13. Construct a means chart and a dispersion chart to evaluate whether the
process is under control.

EXERCISE 4.9.16 Hopper Data.
The data in Table 4.14 were provided by Schneider and Pruett (1994). They were interested in
whether the measurement system for the weight of railroad hopper cars was under control. A stan-
dard hopper car weighing about 266,000 pounds was used to obtain the first 3 weighings of the day
on 20 days. The process was to move car onto the scales, weigh the car, move car off, move car on,
weigh the care, move it off, move it on, and weigh it a third time. The tabled values are the weight
of the car minus 260,000. Summary statistics are given in Table 4.15.

EXERCISE 4.9.17 Injection Molding Data.
Schneider and Pruett (1994) present data on the outside diameters of bottles made by an injection
molding machine. The machine has four heads, so four bottles can be made at once. We treat these
as rational subgroups. The data are given in Table 4.16 with summary statistics in Table 4.17. Create
a means chart and a dispersion chart and draw conclusions from these charts. There is a problem
with these data that the means and dispersion charts do not pick up. We will explore the problem
further in Chapter 9. Check to see if there are too many observations too close to the center line of
the control chart.

Table 4.12: Defective Ball Bearings

Group Size Defectives Group Size Defectives Group Size Defectives
1 40 3 11 40 2 21 20 4
2 40 1 12 40 3 22 20 2
3 40 2 13 40 1 23 20 3
4 40 3 14 40 7 24 20 2
5 40 2 15 40 3 25 20 3
6 40 5 16 40 3 26 20 1
7 40 2 17 40 3 27 20 2
8 40 3 18 40 5 28 20 3
9 40 4 19 40 6 29 20 3

10 40 3 20 40 4 30 20 5
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Table 4.13: Purity of a product

1 8.76 8.81 9.21 9.00
2 9.13 9.18 9.01 9.35
3 9.34 9.16 8.91 8.98
4 9.14 9.12 9.13 9.14
5 9.21 8.58 8.53 9.14
6 8.55 8.79 9.04 8.88
7 9.09 8.85 8.90 8.67
8 8.81 8.88 8.68 9.17
9 9.31 8.85 9.51 8.93
10 9.14 9.15 9.06 8.85
11 8.92 8.57 8.62 9.50
12 9.33 8.64 9.23 9.20
13 8.97 9.33 9.22 8.86
14 9.03 9.07 8.85 8.72
15 9.29 8.97 8.75 9.33
16 9.28 8.96 9.26 8.88
17 9.05 9.13 8.93 8.85
18 9.19 9.06 9.45 9.07
19 8.51 9.10 9.52 9.25
20 8.56 8.64 8.85 9.51
21 9.17 9.27 8.89 9.15
22 9.04 8.63 9.49 8.85
23 8.69 9.00 9.10 9.25
24 8.72 9.18 9.06 9.23
25 8.71 9.52 9.85 9.81

Table 4.14: Multiple weighings of a hopper car

Day First Second Third Day First Second Third
1 5952 5944 6004 11 5986 5920 5944
2 5930 5873 5895 12 6036 6084 6054
3 6105 6113 6101 13 6035 6136 6128
4 5943 5878 5931 14 6070 6016 6111
5 6031 6009 6000 15 6015 5990 5950
6 6064 6030 6070 16 6049 5988 6000
7 6093 6129 6154 17 6139 6153 6151
8 5963 5978 5966 18 6077 6012 6005
9 5982 6005 5970 19 5932 5899 5944

10 6052 6046 6029 20 6115 6087 6078

Table 4.15: Summary Statistics for Hopper Data

DAY N MEAN STDEV DAY N MEAN STDEV
1 3 5966.7 32.6 11 3 5950.0 33.4
2 3 5899.3 28.7 12 3 6058.0 24.2
3 3 6106.3 6.1 13 3 6099.7 56.1
4 3 5917.3 34.6 14 3 6065.7 47.6
5 3 6013.3 15.9 15 3 5985.0 32.8
6 3 6054.7 21.6 16 3 6012.3 32.3
7 3 6125.3 30.7 17 3 6147.7 7.6
8 3 5969.0 7.9 18 3 6031.3 39.7
9 3 5985.7 17.8 19 3 5925.0 23.3

10 3 6042.3 11.9 20 3 6093.3 19.3
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Table 4.16: Outside diameter of injection molded bottles

Head Head
Sample 1 2 3 4 Sample 1 2 3 4

1 2.01 2.08 2.08 2.04 11 1.99 1.99 2.09 2.11
2 1.97 2.03 2.09 2.10 12 1.98 2.02 2.03 2.08
3 2.03 2.09 2.08 2.07 13 1.99 1.98 2.05 2.04
4 1.96 2.06 2.07 2.11 14 2.01 2.05 2.07 2.08
5 1.94 2.02 2.06 2.11 15 2.00 2.05 2.06 2.06
6 2.01 2.03 2.07 2.11 16 2.00 2.00 2.08 2.14
7 2.00 2.04 2.09 2.06 17 2.01 2.00 2.05 2.15
8 2.01 2.08 2.09 2.09 18 2.03 2.09 2.11 2.12
9 2.01 2.00 2.02 2.07 19 1.99 2.10 2.09 2.09

10 2.01 1.96 2.08 2.11 20 2.01 2.01 2.01 2.11

Table 4.17: Summary Statistics for Injection Data

Sample N MEAN STDEV Sample N MEAN STDEV
1 4 2.0525 0.0340 11 4 2.0450 0.0640
2 4 2.0475 0.0602 12 4 2.0275 0.0411
3 4 2.0675 0.0263 13 4 2.0150 0.0351
4 4 2.0500 0.0638 14 4 2.0525 0.0310
5 4 2.0325 0.0718 15 4 2.0425 0.0287
6 4 2.0550 0.0443 16 4 2.0550 0.0681
7 4 2.0475 0.0377 17 4 2.0525 0.0685
8 4 2.0675 0.0386 18 4 2.0875 0.0403
9 4 2.0250 0.0311 19 4 2.0675 0.0519

10 4 2.0400 0.0678 20 4 2.0350 0.0500

EXERCISE 4.9.18 p and u charts.
Construct the p and u charts for Example 4.3.4.

EXERCISE 4.9.19 Clark and Milligan (1994, qe94-389) report the data in Table 4.18 on filling
barrels of honey that were provided by Dutch Gold Honey for use in making Haagen-Daz special
blend. The goal was to fill the barrels with at least 660 units, but as little more than that as possible.
The values reported are the decimal values x for readings that are 660.x units. Construct a means
chart and a dispersion chart and evaluate the results.

EXERCISE 4.9.20 Table 4.19 gives data from van Nuland (1992, qe96-444) and Chao and Cheng
(1996) on a DSC apparatus. Construct a means chart and a dispersion chart for these data and
evaluate the results.

Table 4.18: Haagen-Daz special blend

Time Time
Sample 1 2 3 Sample 1 2 3

1 0 4 2 11 1 2 2
2 2 4 1 12 2 2 1
3 2 4 1 13 1 3 2
4 0 2 2 14 4 2 2
5 3 0 1 15 4 0 2
6 4 4 0 16 0 2 1
7 2 2 3 17 2 2 4
8 1 4 2 18 0 4 2
9 0 0 4 19 4 3 1

10 0 0 2
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Table 4.19: Data on a DSC apparatus

Group Observations
1 2.2 2.3 2.0 2.1
2 1.9 2.1 1.8 1.6
3 1.7 1.8 1.8 1.9
4 1.5 2.0 1.7 2.0
5 1.7 2.2 2.2 1.5
6 2.2 1.5 2.1 1.8
7 1.8 2.1 1.8 1.9
8 2.4 1.8 1.9 2.1
9 2.2 1.9 2.5 2.8

10 1.8 2.6 1.4 2.3
11 2.4 2.0 1.8 2.1
12 1.0 1.1 1.4 1.5
13 2.0 1.4 0.7 0.4
14 0.9 1.1 1.3 0.7
15 1.1 0.9 1.0 1.3
16 1.0 1.6 1.3 0.9
17 1.7 1.7 1.0 1.0
18 1.3 1.0 0.9 1.7
19 1.4 1.0 0.9 1.6
10 0.9 0.5 0.7 1.5
21 0.9 1.5 1.8 1.7
22 1.8 0.9 1.5 0.6
23 1.2 1.9 2.1 1.7
24 1.5 1.7 1.5 1.0
25 1.5 1.0 1.4 1.2

Table 4.20: Automobile Assembly Data

−0.2302 0.9196 1.2809 0.9288 0.0430 0.4074 1.9086 0.1009
1.1807 −0.1985 0.2714 −0.1458 −0.1269 0.0350 1.5164 1.1236
−0.0814 −0.3408 2.1323 0.3683 0.1120 0.3759 −0.2727 0.2610

1.2097 0.3638 1.3688 2.0566 0.5649 0.7998 0.9407 0.3447
0.8107 0.1849 0.4069 0.2707 0.0701 −0.0498 −0.6768 0.5909
0.3270 0.3255 0.7791 1.5059 0.4731 1.1318 0.5256 0.8239
−0.1833 1.3530 −0.2356 −0.9623 0.8188 −0.0955 −0.3808 0.3889

0.7145 0.2056
Read across and then down.

EXERCISE 4.9.21 Table 4.20 gives Radson and Alwan (1996, qe96-171) data from a car assem-
bly plant. Laser sensors are used to measure auto dimensions, and these data are a key dimension
for attaching front wheel components. Proper placement of these components is related to vehicle
stability when driving the car. The measurements are deviations relative to the standard given in
millimeters. Give an individuals chart for these data and evaluate the results.

EXERCISE 4.9.21 When constructing a u chart we use the estimatate

λ̂ ≡ ∑
n
i=1 yi

∑
n
i=1 `i

rather than more obvious estimate

λ̃ ≡ ∑
n
i=1 yi/`i

n
.

Show that
Var
(

λ̂

)
≤ Var

(
λ̃

)
.





Chapter 5

Prediction from Other Variables

The primary purpose of Statistics is to allow us to make predictions. Indeed, prediction is a primary
aspect of all science and technology. If we turn on a light switch, we do so in anticipation that our
little corner of the world will become brighter. When a school looks at the results of a student’s
college preparatory exam, they do so because they believe the results help predict the performance
of the student in college. Turning on a light switch actually causes the world to get brighter, but
a college preparatory exam does not cause a student to do well or poorly in school. The college
preparatory exam is merely correlated with student performance. High exam scores tend to go with
good performance and low exam scores with poor performance — but the relationship is far from
perfect.

The point of control charts is that if a process is under control, we can expect the future behavior
of the process to be like the past behavior that we observed. In this chapter we examine the use of one
variable, such as preparatory exam score, to predict another variable, such as grade point average
(gpa) after two semesters. To make such predictions, we will need training data on the exam scores
and 2nd semester gpas for a collection of students. From these data we can develop a prediction
model and when a new student is presented to us with their exam score, we can predict their 2nd
semester gpa. An important aspect of data based prediction is that the data for the prediction must be
collected in a similar fashion to the training data. For example, a predictive model based entirely on
data from suburban high school students will probably not work well for predicting the performance
of inner city high school students.

Not all prediction models are created equally. Although ACT and SAT scores unquestionably
have some ability to predict 2nd semester gpa, there is a lot of error in such predictions. On the other
hand, if you are rolling a smooth round steel ball over a given smooth surface for exactly 2 seconds,
the initial velocity of the ball will be very good at predicting how far the ball will roll. But again,
the quality of the predictions depend on having the future observations being taken similarly to the
past observations. If we change the steel ball or the surface on which it is rolling, using the past data
to predict these new events is highly questionable.

Statistical analysis cannot properly be used as the basis for inferring causation. Statistical anal-
ysis is only concerned with correlation, i.e., the tendency of two events to occur together. We have
already discussed the fact that college preparatory exam scores do not in any reasonable way cause
2nd semester gpas. We said that turning on a light switch causes more light, but the causation that
we infer is not based on statistics. It is based on the idea that turning the switch will complete an
electrical circuit that will cause the light bulb to work. The statistics involved are simply the data
that the switch is turned and the light comes on. It could be that turning on the switch gives an
electrical jolt to a rat who then often decides to eat something and the rat’s food tray is set up so that
the light goes on when the rat eats something. In this case the rat eating can be considered a cause,
but the electrical jolt given the rat is merely correlated with the light coming on — no matter how
reliable is the event of the light coming on when the switch is thrown.
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Table 5.1: Prater’s gasoline–crude oil data

y x y x y x y x
6.9 235 10.0 267 24.8 360 32.1 444

14.4 307 15.2 300 26.0 365 34.7 345
7.4 212 26.8 367 34.9 395 31.7 402
8.5 365 14.0 351 18.2 272 33.6 410
8.0 218 14.7 379 23.2 424 30.4 340
2.8 235 6.4 275 18.0 428 26.6 347
5.0 285 17.6 365 13.1 273 27.8 416

12.2 205 22.3 275 16.1 358 45.7 407

Figure 5.1: Gasoline percentage versus temperature.

5.1 Scatter Plots and Correlation

A scatter plot is a simple tool for seeing whether a relationship exists between two variables and it
is even a simple tool for making predictions.

EXAMPLE 5.1.1. Table 5.1 gives data from Hader and Grandage (1958), Atkinson (1985), and
Christensen (1996, Exercise 13.8.3.) on y, the percent of gasoline obtained from crude oil,and x, the
temperature in ◦F at which all the crude oil is vaporized. Figure 5.1 is a scatter plot showing the
relationship between x and y. From the plot, if the temperature were 325◦F, we would predict about
15% gasoline. More realistically, we might predict somewhere between 9% and 24%. Notice that
the data seem to be more variable as the temperature increases, e.g., the data are more spread out
around 425◦F than they are around 225◦F.

In the next section we will introduce a mathematical model for prediction. The model is going to
assume that the variability in the data does not depend on the temperature. Since that is not the case
for these data, we need to do something. A standard method of dealing with this problem is to try
transforming the data. In Figures 5.2, 5.3, and 5.4, we have plotted three standard transformations of
the data:

√
y, log(y), and 1/y versus temperature. In Figure 5.2 the data seem to maintain the same

variability throughout. In Figures 5.3 and 5.4, the data get less variable as temperature increases.
From Figure 5.2 we might predict the square root of the gasoline percentage for 325◦F to be

about 4 with an interval of about 2.5 to 5. This corresponds to predictions of 16% with an interval
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Figure 5.2: Square root of gasoline percentage versus temperature.

Figure 5.3: Natural logarithm of gasoline percentage versus temperature.
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Figure 5.4: Reciprocal of gasoline percentage versus temperature.

of 9% to 25%. Admittedly, these are very crude and come from simply looking at the picture. They
are also about what we got from Figure 5.1. For some purposes, these predictions may be entirely
adequate. In the next section, we develop more sophisticated prediction methods.

The correlation coefficient is a unitless number between −1 and 1 that measures the linear rela-
tionship between two variables. A value of 0 indicates no linear relationship and values of −1 and
1 indicate perfect linear relationships. A value of 1 indicates a perfect positive linear relationship.
For example if the correlation between temperature and square root of gasoline percentage was 1,
then the plot of the two variables would be a perfect line with a positive slope. The positive slope
indicates that as one variable increases, the other also increases. In Figure 5.2, the data form a line
but it is far from perfect. In particular, the sample correlation is the sample covariance divided by
the product of the sample standard deviations:

r ≡
sxy

sxsy
= 0.729.

Similarly, a value of −1 indicates a perfect negative linear relationship. If the correlation between
two variables is −1, then the plot of the two variables would be a perfect line with a negative slope,
so that as one variable gets larger, the other variable gets smaller.

5.2 Simple Linear Regression

What we are seeing in both Figures 5.1 and 5.2 is something that looks basically like a line. However,
it is not a perfect linear relationship, so the line must incorporate some error. For n data points, we
use the statistical model

yi = β0 +β1xi + εi (5.2.1)

i = 1, . . . ,n where the line is y = β0 + β1x and the errors εi are assumed to be independent and
identically distributed as N(0,σ2). In this model, yi is an observable random variable and xi is
treated as a fixed known number. There are three unknown parameters, β0 and β1 from the line and
σ2, the variance of the errors. We estimate β0 and β1 by taking them to minimize

n

∑
i=1

(yi−β0−β1xi)
2.
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Notice that the yis and xis are observed, so only β0 and β1 are unknown. The minimizing values, say
β̂0 and β̂1 are called least squares estimates. It turns out that

β̂0 = ȳ·− β̂1 x̄·; β̂1 =
sxy

s2
x
.

The variance σ2 is estimated by something call the mean squared error (MSE). The estimated errors
(residuals) are

ε̂i ≡ yi−
(

β̂0 + β̂1xi

)
and we average their squared values to get the MSE,

MSE =
1

n−2

n

∑
i=1

(yi− β̂0− β̂1xi)
2.

Note that in averaging the squared errors, we divide by n−2 rather than n, that is because to obtain
the estimated errors we had to estimate two parameters β0 and β1. MSE is an unbiased estimate of
σ2, i.e.,

E(MSE) = σ
2.

Similarly, it turns out that
E(β̂0) = β0; E(β̂1) = β1.

The least squares estimates have

Var(β̂0) = σ
2
[

1
n
+

x̄2
·

(n−1)s2
x

]
; Var(β̂1) =

σ2

(n−1)s2
x
.

Therefore,

SE(β̂0) =

√
MSE

[
1
n
+

x̄2
·

(n−1)s2
x

]
; SE(β̂1) =

√
MSE

(n−1)s2
x
.

5.2.1 Basic Analysis

For the gasoline data of Table 5.1, the estimated regression equation is√
ŷ =−0.137+0.0132x.

Typically, information about the regression is given by computer programs in two tables:

Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant −0.1366 0.7676 −0.18 0.860
x 0.013226 0.002263 5.84 0.000

Analysis of Variance
Source df SS MS F p
Regression 1 26.386 26.386 34.14 0.000
Error 30 23.184 0.773
Total 31 49.570

Historically, the place for the Mean Squared Total is left blank but its value would be the sample
variance of all n (here 32) observations in the data, ignoring any and all structure in the data.

The first table gives the estimated regression coefficients β̂0 = −0.1366 and β̂1 = 0.013226 in
the second column. The first column simply identifies the terms. The third column gives a measure
of variability in the estimate called the standard error. Roughly, we will be 95% confident that the
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true value of the parameters is within two standard errors of the estimate. In other words, we are
roughly 95% confident that β1 will be somewhere between of−0.1366−2(0.7676) and−0.1366+
2(0.7676). The multiplier 2 is what is “rough” about this interval. The multiplier should depend on
the sample size, getting larger for small samples (giving bigger intervals and less precise knowledge)
and smaller for large samples. The column t provides tests of whether the regression coefficients β0
and β1 are different from 0. The values are computed as t = β̂k/SE(β̂k). Roughly, if the value of
t corresponding to β1 is larger than 2, there is statistical evidence that β1 6= 0. In simple linear
regression, a value of β1 = 0, indicates that there is no relationship between x and y, i.e., the model
becomes

yi = β0 + εi

which does not involve x. Again, the comparison value of 2 is only rough. It should change with the
samples size. The final column is labeled P and gives information about the t tests. If the parameter
being tested really does equal 0, P gives the probability of seeing a value of t that is as weird or
weirder than what we actually saw. In this context, weird values are those that are far from 0. After
all, β̂k is an estimate of βk, so if βk = 0, then β̂k should be close to 0, relative to its intrinsic variability
which is measured by SE(β̂1). For testing β1 = 0, having P = 0.000 means that if β1 really is 0, we
are seeing something extremely rare. There is almost no chance (P = 0.000) of getting a value of
t as large as 5.84 when β1 is 0. If there is a very small chance of seeing a t value this large when
β1 = 0, it follows logically that β1 is probably not 0. Confidence intervals and tests are discussed in
more detail in the next section.

The second table is called the Analysis of Variance (ANOVA) table. The entry in row “Error”
and column “MS” is the mean squared error. The columns are Sources, degrees of freedom (df),
sums of squares (SS), mean squares (MS), F , and P. Notice that if we add the degrees of freedom
for Regression and Error we get the degrees of freedom for Total. The same thing works for the
sums of squares but not the mean squares. The mean squares are just the sums of squares divided by
the degrees of freedom. The F statistic provides at test of whether β1 = 0 with values much larger
than 1 indicating that β1 6= 0. Roughly, in this context, by much larger than 1 we mean larger than
4. Note that

F = 34.14 = (5.84)2

where 5.84 is the t value corresponding to β1. The P value is the same as for the t test of β1 = 0. In
this context, it is the probability of getting a value of F as large or larger than 34.14 when β1 = 0.

An internal measure of predictive ability of a model is the coefficient of determination

R2 = 53.2% = 0.532.

From the SS column of the Analysis of Variance Table, R2 = 26.386/49.570. It is the percentage of
the total variability that is being explained by the simple linear regression model. This is an internal
measure of the predictive ability in that it is based entirely on how the model fits this one set of
data. An external measure of predictive ability would examine how well this model predicts for a
different set of data that were collected similarly. R2 values close to 1 indicate very strong predictive
abilities and R2 values close to 0 indicate weak predictive abilities. Note that R2 is not a measure
of whether this model is correct or incorrect, it is a measure of how useful the model is for making
predictions. Note also that if β1 6= 0, the model has some usefulness for making predictions. R2 is a
measure of how much usefulness it has.

It should be noted that in cases like this with only one predictor variable, R2 is the same as the
square of the correlation coefficient, i.e., R2 = r2.

5.2.2 Residual Analysis

Finally, the model involves assumptions that the εis are independent distributed N(0,σ2). It is im-
portant to check these assumptions and we do so by using the residuals

ε̂i = yi−
(

β̂0 + β̂1xi

)
.



5.2 SIMPLE LINEAR REGRESSION 77

Figure 5.5: Residuals versus predicted values, data: root y

Actually, we most often use standardized residuals

ri =
ε̂i√

MSE(1−hi)

where the term in the denominator is an estimate of the standard deviation of the residual, so is
designed to make the standardized residual have a variance of about 1. The leverage hi measures
how strange a particular value of xi is relative to the other xis.

The residuals are often plotted against the predicted values (fitted values)

ŷi = β̂0 + β̂1xi.

In this plot we are looking to see an amorphous blob of points. Any systematic structure such as
a curve or a horn shape indicates problems with the model. Figure 5.5 gives this plot and it seems
alright.

The residuals are also often plotted against normal scores (rankits). In this plot we are looking
for something that is roughly a straight line. Strong deviations from a straight line indicate problems
with the normality assumption. The value of R2 between the residuals and the normal scores is called
W , to distinguish it from the R2 between for x and y. Small values of W indicate problems with
normality. W = 0.988 for these data, which is good. The normal scores plot is given as Figure 5.6.
A little of the theory behind normal plots is presented in Section 11.4 (in order to motivate methods
for analyzing data that do not provide a MSE).

5.2.3 Prediction

The prediction of
√

y at 325 degrees is

4.162 =−0.137+0.0132(325).

Transforming back to the original scale gives a prediction of 4.1622 = 17.322%. A 95% predic-
tion interval is (2.338, 5.985) which transforms back to (5.47, 35.82). In other words, we are 95%
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Figure 5.6: Normal Plot for root y; W = 0.988

confident that a new observation at 325 degrees would give a gasoline yield of between 5.47% and
35.82%. In an effort to get something in line with the crude intervals of section 1, an 80% prediction
interval is (2.99225,5.33175) which transforms back to (8.95, 28.42), not too far from the values of
Section 1.

Again, the 95% prediction intervals are roughly the prediction plus and minus 2 times an appro-
priate standard error. The prediction is an estimate of the point on the line β0 +β1(325). There are
actually two different issues of interest relative to this value. One is just to estimate the value and to
measure how much variability there is in the estimate. The other is to use the estimate as a prediction
for a new observation at 325 degrees and to measure how much variability there is for predicting
a new observation. Note that when used for prediction, the variability will be greater because there
is variability associated with using the estimate of the value of the line at 325 degrees plus there is
variability that is intrinsic to taking a new observation.

For these data the standard error for the value of the line at 325 is SE(line) = 0.156. A 95% con-
fidence interval for β0 +β1(325) is (3.843,4.481). Note that this is roughly 4.162±2(0.156). Actu-
ally, it is roughly 4.162±2.04(0.156). On the original scale this transforms back to (3.8432,4.4812)
or (14.77, 20.08).

To get a prediction interval we need

SE(pred.) =
√

MSE +SE(line)2 =
√

0.773+(0.156)2 = 0.8929.

so the 95% prediction interval is roughly 4.162± 2(0.8929), or is precisely 4.162± 2.04(0.8929),
which is (2.338, 5.985). The 80% prediction interval involves changing the multiplier from around
2 to 1.31. In particular, the interval is 4.162±1.31(0.8929).

It turns out that for predicting at a point x,

SE(line)2 = MSE
[

1
n
+

(x− x̄·)2

(n−1)sx2

]
.
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5.3 Statistical Tests and Confidence Intervals

In statistics, we frequently establish models to help explain the behavior of data. Often we want to
check whether those models seem reasonable. The purpose of a statistical test is to check whether the
data are consistent with a specified model. The model establishes certain predictions about how data
should behave. We then collect data and check whether the data are consistent with the predictions.
In particular, many statistical tests are based on identifying a parameter of interest (Par), an estimate
(Est) of that parameter, a measure of the variability of the estimate [SE(Est)], and a distribution
for (Est −Par)/SE(Est). For example, with the data of Example 5.2.1, suppose we hypothesize
a simple linear regression model in which the slope parameter β1 equals 0.02. We want to check
whether the data are consistent with this hypothesized model, or whether the data (tend to) contradict
it. If our interest focuses on β1, we have a parameter of interest (Par ≡ β1). We already have an
estimate of β1, β̂1 = 0.013226. If our model with β1 = 0.02 is correct, the estimate β̂1 should be close
to 0.02. We evaluate this by checking whether 0.013226−0.02 is close to zero. Is 0.013226−0.02
is close to zero? That actually depends on the variability associated with the estimate of β̂1. If
our model is correct, in repeated sampling (β̂1− 0.02)/SE(β̂1) should have a t(dfE) distribution,
where dfE = 30 in Example 5.2.1. This is the behavior predicted by the model. We check this
against the data actually collected. We actually have collected data that give us β̂1 = 0.013226 and
SE(β̂1) = 0.002263, so if our model is correct (0.013226−0.02)/0.002263 =−2.99 should be one
observation from a t(30) distribution. In sampling from a t(30), 99.44% of the time we would get
an observation closer to zero than −2.99. Only 0.56% of the time would we get something farther
from zero than −2.99. The value −2.99 does not seem like it could reasonably come from a t(30)
distribution, as it was supposed to if our model were correct. The data seem to contradict the model.
The number 0.56% = 0.0056 given above is called the P value, and is used as a measure of how
strange these data are relative to the behavior predicted by the model.

Sometimes tests are presented as formal decision rules as to whether the model should be re-
jected or not. In such cases, an α level is chosen (usually 0.05 or 0.01), and the model is rejected
if P < α . Another way to write this procedure is to find t(1−α/2,dfE), the number that cuts off
the top α/2 of a t(dfE) distribution. For α = 0.05 and dfE = 30, this is t(0.975,30) = 2.0423. The
formal decision rule is to reject the model if

Est−0.02
SE(Est)

=
β̂1− .02

SE(β̂1)
> 2.0423

of if
Est−0.02
SE(Est)

=
β̂1− .02

SE(β̂1)
<−2.0423.

Note that the decision rule can be established without knowing the data — but using the rule requires
knowing actual values for β̂1 and SE(β̂1).

This test has been focused on a particular parameter of the model, β1. While the test is really
a test of whether the entire model fits, it is particularly good at detecting differences β1 6= 0.02. In
fact, the test is often presented as a test of a null hypothesis H0 : β1 = 0.02 versus an alternative
hypothesis HA : β1 6= 0.02. But this formulation ignores the sensitivity of the test to all of the aspects
of the model other than β1 = 0.02.

A 95% confidence interval for β1 contains all of the parameter values β1 that are consistent with
the data (and the model) as evaluated by an α = 0.05 test. Here, 95% = 0.95 = 1− .05 = 1−α . The
95% confidence interval is every parameter value β1 that cannot be rejected in an α = 0.05 test. A
particular value β1 will not be rejected if

−t(1−α/2,dfE)<
β̂1−β1

SE(β̂1)
< t(1−α/2,dfE) .
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Table 5.2: Prater’s gasoline–crude oil data

y x1 x2 x3 x4 y x1 x2 x3 x4
6.9 38.4 6.1 220 235 24.8 32.2 5.2 236 360

14.4 40.3 4.8 231 307 26.0 38.4 6.1 220 365
7.4 40.0 6.1 217 212 34.9 40.3 4.8 231 395
8.5 31.8 0.2 316 365 18.2 40.0 6.1 217 272
8.0 40.8 3.5 210 218 23.2 32.2 2.4 284 424
2.8 41.3 1.8 267 235 18.0 31.8 0.2 316 428
5.0 38.1 1.2 274 285 13.1 40.8 3.5 210 273

12.2 50.8 8.6 190 205 16.1 41.3 1.8 267 358
10.0 32.2 5.2 236 267 32.1 38.1 1.2 274 444
15.2 38.4 6.1 220 300 34.7 50.8 8.6 190 345
26.8 40.3 4.8 231 367 31.7 32.2 5.2 236 402
14.0 32.2 2.4 284 351 33.6 38.4 6.1 220 410
14.7 31.8 0.2 316 379 30.4 40.0 6.1 217 340
6.4 41.3 1.8 267 275 26.6 40.8 3.5 210 347

17.6 38.1 1.2 274 365 27.8 41.3 1.8 267 416
22.3 50.8 8.6 190 275 45.7 50.8 8.6 190 407

Some algebra establishes that β1 will satisfy these conditions if and only if

β̂1− t(1−α/2,dfE)SE(β̂1)< β1 < β̂1 + t(1−α/2,dfE)SE(β̂1).

The endpoints of the interval are

β̂1± t(1−α/2,dfE)SE(β̂1).

For our data with dfE = 30 and α = 0.05, this is 0.013266± 2.0423(0.002263) for an interval
(0.00864, 0.01789).

In more generality, if you have a Par of interest, with Est and SE(Est), and the distribution
(Est−Par)/SE(Est)∼ t(dfE), then a, say, 99% confidence interval will have limits

Est± t(1−α/2,dfE)SE(Est),

where α = 1−0.99.

5.4 Scatterplot Matrix

It is relatively easy to see the relationship between two variables simply by plotting them. With
a sophisticated plotting device, one can even examine the relationships between three variables,
however with more than three variables, simultaneous plotting becomes impossible. One commonly
used method to overcome this is the scatterplot matrix. It is simply a matrix of all of the pairwise
plots that can be constructed from a collection of variables,

EXAMPLE 5.4.1. Hader and Grandage (1958), Atkinson (1985), and Christensen (1996) have
presented Prater’s data on gasoline. The variables are y, the percentage of gasoline obtained from
crude oil; x1, the crude oil specific gravity oAPI; x2, crude oil vapor pressure measured in lbs/in2;
x3, the temperature in oF at which 10% of the crude oil is vaporized; and x4, the temperature in oF
at which all of the crude oil is vaporized. The data are given in Table 5.2. Ideally, a scatterplot matrix
would be a 5× 5 array of plots but that it too big to fit well on a page. A scatterplot matrix of the
predictor variables x j is given in Figure 5.7 and Figure 5.8 contains plots of y versus the predictor
variables.

In Section 1 we examined the simple linear regression between
√

y and what we are now calling
x4.
√

y was used in that example because if you look at a plot of y on x4, (or a plot of the residuals
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Figure 5.7: Scatterplot Matrix for Gasoline Data: Predictor variables.

Figure 5.8: Scatterplot Matrix for Gasoline Data: Predictor variables with y.
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versus x4), the variability of y seems to increase with the value of x4. Note that this plot also occurs
on the right side of Figure 5.8. A log transformation did not seem to eliminate the problem, but the
square root seemed to work fine. Alas, the situation is somewhat more complex. If you look at the
plot of x3 versus x4, you see a rough linear trend in which the x3 values show increased variability as
x4 increases. However, x3 is also an important predictor of y that we were ignoring in Section 1. In
the simple linear regression of y on x4, the increasing variability is really a lack of fit. By ignoring
the important variable x3, we expect to see more variability. If the x3 values are more spread out for
large x4 values than for small x4 values, we should fit the line worse at large x4 values than at small
ones. That is exactly what we saw. It turns out that if you do a regression of y on both x3 and x4, you
do not see the same serious problem with residual variability.

5.5 Multiple Regression

We now want to extend the ideas of simple linear regression to include all 4 of the predictor variables
included in the Prater data. A multiple regression model is

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi, i = 1, . . . ,32 .

In general, with n observations and p predictor variables the model is

yi = β0 +β1xi1 +β2xi2 + · · ·+βpxi,p + εi, i = 1, . . . ,n , (5.5.1)

where εis are assumed to be independent N(0,σ2).

EXAMPLE 5.5.1. For the Prater data we examine a regression of y on x1, x2, x3, and x4:

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi . (5.5.2)

The estimated regression equation is

ŷ =−6.8+0.227x1 +0.554x2−0.150x3 +0.155x4

with tables of statistics
Table of Coefficients

Predictor Est SE t P
Constant −6.82 10.12 −0.67 0.506
x1 0.22725 0.09994 2.27 0.031
x2 0.5537 0.3698 1.50 0.146
x3 −0.14954 0.02923 −5.12 0.000
x4 0.154650 0.006446 23.99 0.000

Analysis of Variance
Source df SS MS F P
Regression 4 3429.27 857.32 171.71 0.000
Error 27 134.80 4.99
Total 31 3564.08

In the coefficients table, we have the least squares (maxium likelihood) estimates of each param-
eter, the standard error of each parameter, the t statistic for testing whether the coefficient is equal
to 0, and the P value for the test. Note that for x3 the t statistic is−5.12 which is far from 0 and very
inconsistent with β3 being equal to 0, as measured by the very small P value. Thus it is clear that
x3 is needed to help explain the data. On the other hand, there is no strong evidence that β2 6= 0 and
the evidence that β1 6= 0 is much weaker than for β3 and β4. So there is no strong evidence that x2
is needed in the model and relatively weak evidence that x1 is needed. A key fact about this table is
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that everything depends on everything else. For example, if we decided that a variable should only
be in the model if the corresponding P value is less than 0.01, we could conclude that either x1 or
x2 can be dropped from the model. But we cannot conclude that both should be dropped from the
model. The test for whether β2 = 0 is based on having x1 in the model and similarly the test for
whether β1 = 0 is based on having x2 in the model. If you want to find out whether you can drop
both x1 and x2 you have to fit a model that drops both variables and compare it to a model that has
all 4 variables. A method for making such comparisons will be discussed later.

In the ANOVA table, the regression has 4 degrees of freedom because there are 4 predictor
variables. The degrees of freedom for error is 27 = 32− 5 where the n = 32 is the number of
observations in the data and p+1 = 5 is the number of βk coefficients being fitted in the model. The
degrees of freedom total is n−1 = 32−1 = 31 and the sum of squares total is 31 times the sample
variance of the 32 y values. The sum of squares error is the sum of squared residuals. The residuals
are

ε̂i = yi− β̂0− β̂1xi1− β̂2xi2− β̂3xi3− β̂4xi4

and

SSE =
n

∑
i=1

ε̂
2
i =

n

∑
i=1

(yi− β̂0− β̂1xi1− β̂2xi2− β̂3xi3− β̂4xi4)
2.

The mean squared error is

MSE = SSE/dfE = 134.80/27 = 4.99.

The sum of squares regression is the sum of squares total minus the sum of squares error,

SSReg = 3564.08−134.80 = 3429.27

The F statistic provides a test of whether any of the predictor variables is useful in explaining the
data, i.e., it tests whether we could drop all of x1, x2, x3, and x4 and still do an adequate job of
explaining the data, i.e., it tests whether β1 = β2 = β3 = β4 = 0. The test is rejected if the F value
is much larger than 1. In particular, the test is rejected if, assuming the variables are not needed, the
probability of seeing an F value as large or larger than the one we actually saw is too small, i.e., if
the P value is too close to 0.

The R2 for these data is

R2 =
SSReg
SSTot

=
3429.27
3564.08

= 96.2%.

Consider a prediction for the values x1 = 44, x2 = 6, x3 = 230, x4 = 230. Using the estimated
regression equation, the point prediction is

7.677 =−6.8+0.227(44)+0.554(6)−0.150(230)+0.155(230) .

Typical computer output provides a standard error for the fitted surface, in this example it is
SE(sur f ) = 0.953. As discussed in Section 2, this standard error must be modified to give a standard
error appropriate for a prediction interval,

SE(pred) =
√

MSE +[SE(sur f )]2 =
√

4.99+[0.953]2) = 2.429

The 95% prediction interval is approximately 7.677 plus or minus 2 times this standard error. Here
the exact interval involves a multiplier slightly larger than 2, so the exact interval is (2.692,12.662),
cf. Christensen (1996, Secs. 13.2 and 15.4).

The sequential sums of squares are
Source df Seq SS

x1 1 216.26
x2 1 309.85
x3 1 29.21
x4 1 2873.95
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5.6 Polynomial Regression

We can fit more general models than those used in the previous section. In particular we can use the
same methods for fitting quadratic models. For simplicity, we focus on only two variables. For the
Prater data we focus on x3 and x4. We now consider a quadratic model

yi = β00 +β10xi3 +β01xi4 +β20x2
i3 +β02x2

i4 +β11xi3xi4 + εi .

The fitted regression equation is

ŷ = 40.6−0.371x3 +0.133x4 +0.000687x2
3 +0.000222x2

4−0.000519x3x4.

The tables of statistics are similar to those used earlier.

Table of Coefficients
Predictor Est SE t P
Constant 40.59 19.78 2.05 0.050
x3 −0.3712 0.1462 −2.54 0.017
x4 0.13330 0.06214 2.15 0.041
x2

3 0.0006872 0.0003288 2.09 0.047
x2

4 0.0002224 0.0001114 2.00 0.056
x3x4 −0.0005187 0.0002380 −2.18 0.039

Analysis of Variance
Source df SS MS F P
Regression 5 3431.38 686.28 134.46 0.000
Error 26 132.70 5.10
Total 31 3564.08

R2 = 96.3%

In addition, one should examine residual plots and one can examine predictions.
Figures 5.9 and 5.10 plot the regression surface. In experimental design such polynomial sur-

faces are referred to as response surfaces and are the subject of considerable theory, cf TiD.

5.7 Matrices

Computations and theory for regression are greatly simplified by using matrices. Virtually all com-
puter programs for doing regression are matrix oriented. We briefly introduce matrix notation for
regression problems. This section presumes that the reader knows how to add and multiply matrices.
Near the end we also use the concepts of the transpose of a matrix and of the inverse of a square
matrix. A vector is a matrix with just one column.

EXAMPLE 5.7.2. Simple Linear Regression.
Consider the relationship between y, the percent of gasoline obtained from crude oil, and x, the
temperature in ◦F at which all the crude oil is vaporized. Five observations are given below.

xi yi
307 14.4
365 26.0
235 2.8
428 18.0
345 34.7

We can fit the model
yi = β0 +β1xi + εi, i = 1, . . . ,5,

https://www.stat.unm.edu/~fletcher/TopicsInDesign
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Figure 5.9: Surface plot of y.

Figure 5.10: Contour plot of y.
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where the εi’s are assumed to be independent N(0,σ2). In matrix notation we can write the model
as 

y1
y2
y3
y4
y5

=


β0 +β1(307)+ ε1
β0 +β1(365)+ ε2
β0 +β1(236)+ ε3
β0 +β1(428)+ ε4
β0 +β1(345)+ ε5

 . (5.7.1)

These two matrices are equal if and only if the corresponding elements are equal, which occurs
if and only if the simple linear regression model holds. The xi’s are assumed to be fixed known
numbers, so we have incorporated them into the statement of the model. The yi’s are assumed to be
random variables, the values given earlier for the yi’s are realizations of the random variables. We
use them to fit the model (estimate parameters), but they are not part of the model itself.

We can also write the simple linear regression model as
y1
y2
y3
y4
y5

 =


1 307
1 365
1 235
1 428
1 345


[

β0
β1

]
+


ε1
ε2
ε3
ε4
ε5


Y = X β + e

Multiplying and adding the matrices on the right-hand side establishes that this is equivalent to
equation (5.7.1). Note that we observe the Y vector to be

Y = (14.4,26.0,2.8,18.0,34.7)′.

In general, the model yi = β0 +β1xi + εi, i = 1, . . . ,n, can be written as
y1
y2
...

yn

=


β0 +β1x1 + ε1
β0 +β1x2 + ε2

...
β0 +β1xn + εn


or, equivalently, 

y1
y2
...

yn

 =


1 x1
1 x2
...

...
1 xn

 [
β0
β1

]
+


ε1
ε2
...

εn


Yn×1 = Xn×2 β2×1 + en×1

The usual conditions are that the εi’s are independent N(0,σ2). We can restate this as that (a) all
εis are independent, (b) E(εi) = 0 for all i, (c) Var(εi) = σ2 for all i, (d) all are normally distributed.
Condition (b) translates into matrix terms as

E(e)≡


E(ε1)
E(ε2)

...
E(εn)

=


0
0
...
0

= 0n×1,

where 0 is the n×1 matrix containing all zeros. Conditions (a) and (c) imply that

Cov(e) = σ
2I,
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where I is the n× n identity matrix. Here Cov(e) is defined as the n× n matrix with i j element
Cov(εi,ε j). By definition, the covariance matrix Cov(e) has the variances of the εi’s down the di-
agonal. The variance of each individual εi is σ2, so all the diagonal elements of Cov(e) are σ2, just
as in σ2I. Also by definition, the covariance matrix Cov(e) has the covariances of distinct εi’s as its
off-diagonal elements. The covariances of distinct εi’s are all 0 because they are independent, so all
the off-diagonal elements of Cov(e) are zero, just as in σ2I.

In general linear model is any model

Y = Xβ + e,

where Y is an observable random vector, X is fixed and known, β is fixed but unknown, so e is the
only thing random on the right of the equation and E(e) = 0. It follows that

E(Y ) = E(Xβ + e) = Xβ +E(e) = Xβ

and, with our usual assumptions about the εis,

Cov(Y ) = Cov(Xβ + e) = Cov(e) = σ
2I.

These results follow directly from properties enumerated in Subsection 3.3.3 but, more to the point,
they are intuitive since the vector Xβ is fixed and has no variability. Cov(e) = σ2I is a common but
not necessary assumption for having a linear model.

EXAMPLE 5.7.3. Polynomial Regression.
Rather than fitting a line to the (x,y) data of Example 5.7.2, we can fit, say, a quadratic model,

yi = β0 +β1xi +β2x2
i + εi, i = 1, . . . ,5,

where the εi’s are assumed to be independent N(0,σ2). In matrix notation we can write the model
as 

y1
y2
y3
y4
y5

=


β0 +β1(307)+β2(3072)+ ε1
β0 +β1(365)+β2(3652)+ ε2
β0 +β1(236)+β2(2362)+ ε3
β0 +β1(428)+β2(4282)+ ε4
β0 +β1(345)+β2(3452)+ ε5

 .
or 

y1
y2
y3
y4
y5

 =


1 307 3072

1 365 3652

1 235 2362

1 428 4282

1 345 3452


β0

β1
β2

 +


ε1
ε2
ε3
ε4
ε5


Y = X β + e.

In general, the model yi = β0 +β1xi +β2x2
i + εi, i = 1, . . . ,n can be written as

y1
y2
...

yn

=


β0 +β1x1 +β2x2

1 + ε1
β0 +β1x2 +β2x2

2 + ε2
...

β0 +β1xn +β2x2
n + εn


or, equivalently, as 

y1
y2
...

yn

=


1 x1 x2

1
1 x2 x2

2
...

...
...

1 xn x2
n


β0

β1
β2

+


ε1
ε2
...

εn


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Similarly, the cubic model yi = β0 +β1xi +β2x2
i +β3x3

i + εi, i = 1, . . . ,n, can be written as


y1
y2
...

yn

=


β0 +β1x1 +β2x2

1 +β3x3
1 + ε1

β0 +β1x2 +β2x2
2 +β3x3

2 + ε2
...

β0 +β1xn +β2x2
n +β3x3

n + εn


or, equivalently, as 

y1
y2
...

yn

 =


1 x1 x2

1 x3
1

1 x2 x2
2 x3

2
...

...
...

...
1 xn x2

n x3
n




β0
β1
β2
β3

 +


ε1
ε2
...

εn


Yn×1 = Xn×4 β4×1 + en×1

Other polynomials follow the same pattern.

EXAMPLE 5.7.5. Multiple Regression.
Consider the relationship between y, the percent of gasoline obtained from crude oil, x1, the tem-
perature in ◦F at which 10% of the crude oil is vaporized, and x2, the temperature at which all the
crude oil is vaporized. Five observations are given below.

xi1 xi2 yi
231 307 14.4
220 365 26.0
267 235 2.8
316 428 18.0
190 345 34.7

The multiple regression model can be written as

yi = β0 +β1xi1 +β2xi2 + εi, i = 1,2,3,4,5.

In matrix terms the model can be rewritten as the equality of two 5×1 matrices,
y1
y2
y3
y4
y5

=


β0 +β1(231)+β2(307)+ ε1
β0 +β1(220)+β2(365)+ ε2
β0 +β1(267)+β2(235)+ ε3
β0 +β1(316)+β2(428)+ ε4
β0 +β1(190)+β2(345)+ ε5

 .
Breaking up the right-hand-side gives

y1
y2
y3
y4
y5

 =


1 231 307
1 220 365
1 267 235
1 316 428
1 190 345


β0

β1
β2

 +


ε1
ε2
ε3
ε4
ε5


Yn×1 = Xn×p βp×1 + en×1.

We could also fit a polynomial in these two variables, say,

yi = β0 +β1xi1 +β2xi2 +β11x2
i1 +β22x2

i2 +β12xi1xi2 + εi .
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In matrix form this is
y1
y2
y3
y4
y5

=


1 231 307 2312 3072 231(307)
1 220 365 2202 3652 220(365)
1 267 235 2672 2352 267(235)
1 316 428 3162 4282 316(428)
1 190 345 1902 3452 190(345)




β0
β1
β2
β11
β22
β12

+


ε1
ε2
ε3
ε4
ε5

 .

The general multiple regression model can be written as

yi = β0 +β1xi1 +β2xi2 + · · ·+βp−1xi,p−1 + εi, i = 1, . . . ,n.

In matrix terms the model involves equality of two n×1 matrices,
y1
y2
...

yn

=


β0 +β1x11 +β2x12 + · · ·+βp−1x1,p−1 + ε1
β0 +β1x21 +β2x22 + · · ·+βp−1x2,p−1 + ε2

...
β0 +β1xn1 +β2xn2 + · · ·+βp−1xn,p−1 + εn

 .
Breaking up the right-hand-side gives

y1
y2
...

yn

 =


1 x11 x12 · · · x1,p−1
1 x21 x22 · · · x2,p−1
...

...
...

. . .
...

1 xn1 xn2 · · · xn,p−1




β0
β1
β2
...

βp−1

 +


ε1
ε2
...

εn


Yn×1 = Xn×p βp×1 + en×1

Multiplying and adding the right-hand side gives the equivalence.
Once again, the usual conditions on the εi’s translate into

E(e) = 0,

where 0 is the n×1 matrix consisting of all zeros, and

Cov(e) = σ
2I,

where I is the n×n identity matrix.
For a general linear model

Y = Xβ + e, E(e) = 0, Cov(e) = σ
2I,

it is not too difficult to show that the least squares estimates satisfy

β̂ = (X ′X)−1X ′Y,

where X ′ denotes the transpose of the matrix X and, when such a matrix exists, (X ′X)−1 is the
unique matrix that satisfies (X ′X)−1(X ′X) = I. The sum of squares for error is

SSE ≡ (Y −X β̂ )′(Y −X β̂ ).

The variances of the β̂ js are the diagonal elements of the matrix

Cov(β̂ ) = σ
2(X ′X)−1.

The last three displayed matrix equations are enough to determine both the Table of Coefficients
and the ANOVA table.
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Table 5.3: Regression

Output Rate Align B gap Proll Air Temp. Calrd
1.83 68 2 1 0.95 2 2 2
−3.17 76 1 1 1.05 2 2 1
−3.92 68 1 2 0.95 2 1 1

0.83 76 2 1 0.95 1 2 2
−3.92 76 1 2 0.95 1 1 1
−2.08 85 1 2 1.05 1 2 2
−3.08 85 2 2 1.05 2 1 1
−4.17 68 2 2 1.05 1 2 1

1.50 76 2 2 1.05 2 1 2
−1.58 85 1 1 0.95 2 2 2
−3.83 85 2 1 0.95 1 1 1

1.50 68 1 1 1.05 1 1 2

5.8 Logistic Regression

Test for lack of fit of intercept only in any binomial problem from Chapter 4. Test for linear time
trend.

Table 4.18: Haagen-Daz special blend. One-way and Two way. Poisson model?

5.9 Missing Data

Hand, David J. Dark Data
Missing at random. Remaining data are still a random sample.
Missing because of data you have. (x,y) plot, not allowed to collect y if x is too low. Don’t

complete items that are unlikely to meet specs.
Missing because of the data you would have got. (x,y) plot, items with low y not measured. Toss

out items that look like they will not meet specs.

5.10 Exercises

Carter qe96-502
Rate: 68 or 76
Alignment: right 1 inch (2) or left 1 inch (1)
B gap: loose (2) or tight (1)
Proll: 0.95 or 1.05
Air: closed (2) or open (1)
Room Temp.: hot (2) or cold (1)
Calrd: on (2) or off (1)
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Table 5.4: DBP Measurements of Carbon Black

Time At Smoke End
(Hour) Header Product

7 94.8 90.5
9 94.8 91.1
11 94.2 89.1
13 94.4 89.2
15 93.4 89.3
17 94.2 89.2
19 94.6 87.3
21 96.6 88.2
23 96.3 89.7
1 96.6 91.1
3 96.7 90.6

Schneider and Pruett (1994). qe94-345
predict end product dbp from earlier smoke header dbp.
Plot versus lags 0, 1, 2, 3. (lag 1 means 2 hours) get decent correlation at lag 3 but looks weird

in plot. relationship is all from last 3 points with much larger smoke headers.
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Table 5.5: Relation between two variables

Bending Bending
Case Strength Sturdiness Case Strength Sturdiness

1 170 111 11 171 113
2 168 106 12 160 105
3 154 108 13 161 115
4 170 115 14 160 107
5 161 114 15 166 117
6 173 113 16 166 111
7 172 112 17 171 108
8 175 114 18 162 103
9 164 109 19 157 106

10 160 106 20 159 107

Shi and Lu(1994). qe94-526 SLR



Chapter 6

Time Series

In an industrial or service process, as discussed in Chapter 4, our ideal is that data generated by the
process be independent and identically distributed. In particular, the data would all have the same
mean value and variance. Processes that display these characteristics are under control. The object of
this desire for having processes under control is that, when the data are independent and identically
distributed, we can make predictions about the future of the process. If the process displays changes
in the mean value, or the variance, or even in the distribution, often the causes of such changes
can be identified and eliminated and the process put back under control. Alas, sometimes (perhaps
often) the problem with a process is that the observations are not independent. Means charts are
sensitive to this problem, i.e., they will tend to go out of control more often if the observations have
positive correlation. But lack of independence is typically more difficult to rectify than are problems
with changing means or variances. Fortunately, lack of independence is often a problem that one
can simply live with. Rather than requiring that observations be independent, we can require that
the observations be stationary.

A sequence of observations is called stationary if the statistical properties of the observations
remain the same regardless of what time you choose to look at them. The word “stationary” is
a reference to the fact that these properties do not change. If you have a stationary process, the
mean values remain the same over time and the variances remain the same over time, just like they
would if the observations were independent and identically distributied. Really, the only assumption
that is being weakened with stationary observations is the assumption of independence. The beauty
of having a stationary process is that one can still make predictions about the future, because the
conditions in the future should be the same as those in the past when we collected our data. As a
matter of fact, a formal definition of a stationary process includes observations that are independent
and identically distributed as a special case of a stationary process. So the methods of Chapter 4 are
methods for a special case of stationary processes.

We need two things to work with stationary processes. First, we need to be able to identify sit-
uations in which observations are stationary but not independent. Second, we need to have control
charts for stationary processes. The next section deals with methods for detecting lack of indepen-
dence.

EXERCISE 6.0.1. Watch the video of George Box rethinking quality control and be prepared to
answer very simple questions about it. (You can skip the 15 minutes of Q&A.) He discusses sta-
tionary processes, EWMAs, and suggests control charting the estimated errors (residuals) of models
like those discussed below. He has some attitudes that are very different from Shewhart/Deming in
that at one points he essentially advocates plotting against limits that the process owner would find
disturbingly off target rather than worrying about whether the process is under control. Recall that
EWMA charts are really tests for being on target. Along these lines, the posted comments surround-
ing the video provide some perspective. Insightful people tend to do better statistics than dogmatic
people, no matter how good the dogma is. (And there are some very good statistical dogmas.)

Box quite famously believes that all models are wrong but that some are useful. Not surprisingly,
he believes that no real processes are stationary. That brings us back to the issue of finding an

93

https://deming.org/rethinking-statistics-for-quality-control-with-george-box/
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Table 6.1: Temperature Data

0.64 0.94 0.91 0.92 0.89 1.04 1.07 0.99 0.95 1.05
1.14 1.36 1.15 1.25 1.33 1.39 1.35 1.41 1.04 0.93
1.05 1.53 1.88 1.80 1.65 2.05 2.33 1.72 1.48 1.66
1.28 0.93 0.87 1.05 1.18 0.86 1.16 1.21 1.22 1.69
1.59 1.69 0.93 0.57 1.03 1.54 0.98 0.84 0.78 1.03
1.05 1.31 1.46 1.56 0.91 1.16 1.02 0.80 1.38 1.70
1.88 2.24 2.03 2.00 2.32 1.59 1.03 1.46 1.93 1.57
1.20 0.82 1.39 1.32 1.52 1.08 1.16 1.41 1.09 0.89

Read across then down.

Figure 6.1: Plot of temperature data versus time

operational definition of when a process is close enough to being stationary that we can make useful
predictions.

6.1 Autocorrelation and Autoregression

The next example illustrates a technique from time series analysis for detecting lack of independence
in a series of observations.

EXAMPLE 6.1.1 The data in Table 6.1 are from Box and Lucero (1997). They consist of 80
temperatures taken “from the output of an industrial process.” Figure 6.1 presents the standard
time series plot of the data versus the time at which the observations were obtained. Since we are
interested in industrial statistics, Figure 6.2 presents the corresponding individuals control chart.
The process is wildly out of control. Not only do observations get outside the control limits but
Minitab’s supplemental tests 2 and 6 are violated many times and test 8 is also violated. Despite this
fact, one can make a decent case for these data being the result of a stationary process and therefore
predictable and capable of yielding temperatures that could be within some specifications.

Figure 6.3 plots each value against the previous measurement, i.e., it plots the pairs (yt ,yt−1).
There is an obvious linear relationship, leading us to expect that the current temperature should give
us some ability to predict the next temperature.
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Figure 6.2: Individuals control chart: Temperature data. (Not “residuals.”)

Figure 6.3: Plot of yt versus yt−1: Temperature data.

If there is a lag 1 linear relationship, there should be a (typically weaker) lag 2 linear relationship.
Figure 6.4 plots each value against the measurement prior to the previous measurement, i.e., it plots
the pairs (yt ,yt−2). Again, there is something of a linear relationship but it is not as strong as in
Figure 6.3.

The linear relationship visible is Figure 6.3 suggests that we might want to perform a regression
of yt on yt−1, which in a sense, is a regression of yt on itself, and so is called an autoregression. This
first order autoregression model can be written as

yt = β0 +β1yt−1 + εt .
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Figure 6.4: Plot of yt versus yt−2: Temperature data.

Often the names of the β parameters are changed to

yt = α +φyt−1 + εt .

Since there also seems to be a linear relationship between yt and yt−2, we might consider fitting
the multiple regression model

yt = β0 +β1yt−1 +β2yt−2 + εt .

This is also referred to as a second order autoregressive model and rewritten as

yt = α +φ1yt−1 +φ2yt−2 + εt .

Figures 6.3 and 6.4 look at the simple linear relationship between yt and yt−1 and between yt and
yt−2 respectively. As discussed in Chapter 5, the linear relationship in these plots can be measured by
something called the (sample) correlation coefficient. Figure 6.5 gives a plot of the autocorrelation
function (ACF). The horizontal axis is the “lag” and the vertical axis is the correlation coefficient.
At lag k it is the sample correlation between the pairs (yt ,yt−k). For instance, at lag 1, the correlation
is 0.664, thus the correlation for the data in Figure 6.3 is 0.664. Similarly, at lag 2, the correlation is
0.358, so the correlation for the data in Figure 6.4 is 0.358. The correlation at lag 17 is −0.262 so
a plot of yt versus yt−17 would display a correlation of −0.262. The graph in Figure 6.5 is simply
a visual display of the (auto)correlations. (In computing autocorrelations there are fewer data pairs
available for computing a lag 20 correlation than for a lag 1 correlation so corrections, or their lack,
get involved in computing the ACF.)

To determine if a correlation is significantly different from zero, when the sample size n is large
the estimated correlation can be compared to its approximate (null) standard error, 1/

√
n. Thus, in

this example, a correlation larger than two standard deviations, about 2/
√

80 = 0.224, is evidence
for lack of independence. Figure 6.5 gives several correlations that provide evidence for a lack of
independence. (The limits in Figure 6.5 are fine tuned so they get a little larger as k gets larger.)
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Figure 6.5: Autocorrelation Function for Temperature Data

6.2 Autoregression and Partial Autocorrelation

Earlier we discussed that based on Figures 6.3 and 6.4 we might consider fitting either of the regres-
sion models

yt = β0 +β1yt−1 + εt

or
yt = β0 +β1yt−1 +β2yt−2 + εt .

The partial autocorrelation function (PACF) displayed in Figure 6.5 can help us decide between
the two models. At lag 1, the value in the PACF is identical to the value in the ACF, it is just the
correlation between yt and yt−1. However, the value of the PACF at lag 2 is very different from the
value of the ACF at lag 2. At lag 2 the ACF is just the correlation between yt and yt−2. At lag 2 the
PACF is the correlation between the residuals from fitting yt on yt−1 and the residuals from fitting
yt−2 on yt−1. The idea is that if yt−2 really is needed in the regression model, then there should be
a substantial correlation between these two sets of residuals. If there is no such correlation between
the residuals, it suggests that the linear relationship we are seeing in Figure 6.4 is merely an artifact.
From Figure 6.3, we know that yt and yt−1 are linearly related, which immediately implies that yt−1
and yt−2 are linearly related, it follows that there must be some linear relationship between yt and
yt−2. The PACF at lag 2 is looking to see if there is any direct relationship between yt and yt−2 over
and above the artifactual one induced by them both being related to yt−1. In fact, the correlation of
−0.150 is quite small, so there is no evidence that we need to include yt−2 as a predictor variable in
our regression.

In general, the lag k partial autocorrelation is the the sample correlation between the residuals
from regressing yt on yt−1, . . . ,yt−k+1 and the residuals from regressing yt−k on yt−1, . . . ,yt−k+1.

A curious behavior in the PACF for these data is the relatively large value at lag 20 of −0.325.
This is indicting that if we regressed yt on all of yt−1, . . . ,yt−19 and regressed yt−20 on all of
yt−1, . . . ,yt−19, the residuals have a correlation of −0.325. This could either be caused by a real
phenomenon or could be a mere artifact of the data. If, for example, there were 20 temperature
measurements made each day, large PACF values at only lags 1 and 20 indicate that the current tem-
perature depends directly on two things, the previous temperature and the temperature at the same
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Figure 6.6: Partial Autocorrelation Function for Temperature Data

time the previous day. Such effects on a time series that stem from periods that are far removed
are called seasonal effects. The terminology comes from the fact that many business and economic
time series display regular changes associated with the seasons of the year. (Retail sales go up every
Christmas, fuel oil sales for heating go down in the summer and up in the winter, etc.) We will not
discuss seasonal effects further.

As indicated earlier, if you use standard regression programs to reproduce the correlations dis-
cussed here, you will probably get slightly different numbers, because the way in which correlations
are computed for time series data are slightly different than the way they are computed in regression.

6.3 Fitting Autoregression Models

The simplest way to analyze the first order autoregressive model is to simply fit it using a standard
program for regressing yt on yt−1. Note that although there are 80 observations in the series, there
are only 79 pairs of (yt ,yt−1) observations. The estimated regression equation is

ŷt = 0.428+0.673yt−1.

The usual tables of information are

Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant 0.4283 0.1121 3.82 0.000
yt−1 0.67306 0.08256 8.15 0.000

Analysis of Variance
SOURCE DF SS MS F p
Regression 1 5.5050 5.5050 66.45 0.000
Error 77 6.3786 0.0828
Total 78 11.8836

The coefficient of determination is R2 = 46.3%.
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The predicted value for the next observation is obtained by plugging the last observation, y80 =
0.89, into the regression function:

ŷ81 = 0.428+0.673(0.89) = 1.0273.

The standard error for fitting the line is SE(line) = 0.0469, so the standard error of prediction is
SE(pred) =

√
0.0828+[0.0469]2 and the 95% prediction interval is (0.4466,1.6080).

To obtain a prediction for the subsequent day, plug the prediction ŷ81 into the regression equa-
tion.

ŷ82 = 0.428+0.673(1.0273) = 1.119.

To get a prediction interval, one would have to rerun the regression program asking for a prediction
at 1.0273.

Note that if necessary, we could also have used both yt−1 and yt−2 as predictors of yt . This would
have given a multiple regression model,

yt = β0 +β1yt−1 +β2yt−2 + εt

with a similar analysis.
While standard regression fitting procedures work reasonably well for these autoregressive mod-

els, they are slightly inefficient and do not generalize to other useful time series models. We now
give the results of an alternative model fitting algorithm that is more efficient and does generalize.
This method is also based on finding parameters by using least squares, but does so in a slightly
different way. This method is an iterative procedure that starts with crude estimates of the parame-
ters and successively modifies them until the values converge to appropriate estimates, whereas the
regression estimates are found in just one step. In this example, it took 8 modifications of the crude
estimates before they converged. The final estimates are given in a standard table

Table of Coefficients
Type Estimate SE t P
AR 1 0.6986 0.0821 8.51 0.000
Constant 0.38165 0.03237 11.79 0.000
Mean 1.2661 0.1074

The row for “AR 1” is for the slope estimate, and the “Constant” row is as in the regression table.
Note the rough similarity of these estimates to those obtained by simply doing linear regression.
The third row in this table is for the mean. It is the value that will be approached by predictions for
the distant future. It is the estimate of the mean of the stationary process.

Rather than giving an Analysis of Variance table, this procedure simply reports DFE = 78,
SSE = 6.50357, and MSE = 0.08338.

The predicted value for the next observation is obtained by plugging the last observation, y80 =
0.89, into the estimated autoregression function:

ŷ81 = 0.38165+0.6986(0.89) = 1.00337.

and the 95% prediction interval is given by the program as (0.43730,1.56945). Note the similarity
of this point prediction and prediction interval to those obtained by doing simple linear regression.

To obtain a prediction for the subsequent day, plug the prediction ŷ81 into the regression equa-
tion.

ŷ82 = 0.38165+0.6986(1.00337) = 1.08257

with 95% prediction interval (0.39206,1.77309).
As with any regression we examine the residuals to check if the model assumptions seem rea-

sonable. Figures 6.7 through 6.10 are various residual plots. Figure 6.7 looks at the standard residual
plots associated with regression yt on yt−1. It looks ok. The errors εt are assumed to be iid, so we
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Figure 6.7: Residual plots for Temperature Data

can use our time series and control plots to check whether the residuals seem consistent with the
errors being iid. Figures 6.8 through 6.10 give the ACF, PACF, and individuals chart applied to the
residuals. They all look consistent with the errors being iid.

Finally, the program gives diagnostic tests as to how well the model fits the data. The chi-square
statistics are based on a weighted sum of the squared residual autocorrelations back to, respectively,
lags 12, 24, 36, and 48.

Modified Box-Pierce (Ljung-Box) χ2 statistics
Lag 12 24 36 48
Chi-Square 13.0 40.7 52.5 69.1
DF 10 22 34 46
P-Value 0.222 0.009 0.022 0.015

Unfortunately, these are not tremendously good for the temperature data, especially for longer lags.
This probably relates to the odd behavior observed in the large partial autocorrelation at lag 20 and
makes me wonder if there might be some unexpected seasonal component.

6.4 ARMA and ARIMA Models

The time series program used is designed for fitting integrated autoregressive moving average
(ARIMA) models. We have only discussed autoregressive models such as the second order au-
toregressive model [AR(2) model]

yt = β0 +β1yt−1 +β2yt−2 + εt .

Typically, different parameter letters are used for fitting time series. This model is identical to

yt = α +φ1yt−1 +φ2yt−2 + εt ,

only the names of the parameters have been changed to confuse the reader. Moving average models
are similar but involve relating current observations to the errors involved with earlier observations.
A second order moving average model [MA(2) model] is

yt = µ + εt −ψ1εt−1−ψ2εt−2.
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Figure 6.8: Autocorrelation plot: Temperature Data Residuals

Figure 6.9: Partial autocorrelation plot: Temperature Data Residuals

These can be combined into an autoregressive moving average model

yt = α +φ1yt−1 +φ2yt−2 + εt −ψ1εt−1 +ψ2εt−2

that is second order in both the AR and the MA. This is referred to as an ARMA(2,2) model.
ARMA models are used to model stationary processes. To model nonstationary models, differ-

encing is often used. For example, if a process has a linear trend over time, taking first differences
of the time series, i.e., yt − yt−1 will eliminate the trend.

The word “integrated” in integrated autoregressive moving average models actually refers to
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Figure 6.10: Individuals Control Chart: Temperature Data Residuals

differencing. An ARIMA(2,1,2) model is actually an ARMA(2,2) model for the series differenced
series yt − yt−1. In general, one can fit ARIMA(p,d,q) models which take d differences (a sec-
ond order difference is analyzing wt −wt−1 where wt ≡ yt − yt−1) and fit p autoregressive terms
(yt−1, . . . ,yt−p) and q moving average terms (εt−1, . . . ,εt−q).

It turns out that an ARIMA(0,0,1) leads to predictions that are essentially EWMAs. In the video
cited earlier, Box mentions that he has found IMA(1,1) (ARIMA(0,1,1)) models to be very useful
in industrial applications.

6.5 Computing

Minitab is easy.

R code from my book ALM-III

rm(list = ls())

coal.production <- read.table(

"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM6-1.dat",

sep="",col.names=c("Year","Wt"))

attach(coal.production)

coal.production

#install.packages("forecast")

library(forecast)

MO=c(2,1,1)

fit = Arima(Wt,order=MO,include.constant=TRUE,method = "ML")

fit

Est=coef(fit)

SE=sqrt(diag(fit$var.coef))



6.6 EXERCISES 103

Tratio=Est/SE

Tabcd = c(Est,SE,Tratio)

TabCoef=matrix(Tabcd,I(MO[1]+MO[3]+1),3,dimnames = list(NULL,c("Est", "SE", "t")))

TabCoef

# Variance estimate

SSE = t(fit$residuals)%*%fit$residuals

# SSE/(length(Wt)-I(MO[1]+MO[2]+MO[3]+1))

# Eliminate "+1" if "constant=FALSE"

# Correlation Matrix

diag(1/SE,nrow=I(MO[1]+MO[3]+1))%*%fit$var.coef%*%diag(1/SE,nrow=I(MO[1]+MO[3]+1))

# Figs 7-5

par(mfrow=c(2,1))

Acf(residuals(fit),ylim=c(-1,1))

Pacf(residuals(fit),ylim=c(-1,1))

par(mfrow=c(1,1))

# Results not shown

# normal plot, periodogram

# fhat_5 spectral density

qqnorm(residuals(fit),ylab="Wt residuals")

spec.pgram(residuals(fit),taper=0,detrend=FALSE,fast=FALSE)

spec.pgram(residuals(fit),taper=0,detrend=FALSE,fast=FALSE,

kernel("daniell", 2))

# Fig 7-6

plot(Year,residuals(fit),type="b")

# Fig 7-7

fitpred=forecast(fit,7)

fitpred

Yearfuture=c(81,82,83,84,85,86,87)

Wtfuture=c(818.4,833.5,777.9,891.8,879.0,886.1,912.7)

plot(Year,Wt,type="l",xlim=c(20,87),ylim=c(300,925))

lines(Yearfuture,Wtfuture,type="l")

lines(Yearfuture,fitpred$mean,type="l",lty=5)

lines(Year,fit$fit,type="l",lty=5)

legend("topleft",c("Actual","ARIMA"),lty=c(1,5))

6.6 Exercises

EXERCISE 6.6.1 Dodson (1995) looks at “daily viscosity readings from an oil house that supports
a sheet metal rolling mill.” The data are in Table 6.2.

regress on time and look at residuals for time series effect.
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Table 6.2: Oil house viscosity readings

304 314 307 315 297 304 314 321 307 321
288 302 308 341 300 287 280 281 285 281
283 287 281 285 291 281 283 284 291 278
280 263 254 261 270 254 260 259 260 263
268 270 253 253 247 247 256 256 260 237

Read across then down

Table 6.3: Finished product carbon black DBP values

pm am pm am
3 7 11 3 7 11 3 7 11 3 7 11
95 100 104 105 111 99 100 108 101 105 113 114

109 110 100 104 97 127 112 106 103 100 98 102
103 103 98 103 102 106 93 98 108 111 107 104
78 102 112 95 96 90 91 97 90 90 90 100
97 97 93 98 101 98 94 98 100 94 97 103
97 98 99 101 99 102 105 106 107 105 103 116

autoregress using least squares and look at resids for white noise
autoregress using ts procedure and look at resids
time series plot shows downward trend. compute first differences and replot. fit a model.

EXERCISE 6.6.2. Schneider and Pruett (1994, qe94-348.dat) look at carbon black DBP values
over 12 days with 6 readings per day at 3, 7, and 11, both AM and PM (days start at 3PM). The data
are in Table 6.3. Do a time series analysis. Look for day effects and for time within day effects.

EXERCISE 6.6.3. Consider again the data of Exercise 4.9.17 and Table 4.16.
The data are repeated in Table 6.4. Look for autocorrelations within Heads.

Table 6.4: Outside diameter of injection molded bottles. (qe94-347.dat)

Head
Sample 1 2 3 4

1 2.01 2.08 2.08 2.04
2 1.97 2.03 2.09 2.10
3 2.03 2.09 2.08 2.07
4 1.96 2.06 2.07 2.11
5 1.94 2.02 2.06 2.11
6 2.01 2.03 2.07 2.11
7 2.00 2.04 2.09 2.06
8 2.01 2.08 2.09 2.09
9 2.01 2.00 2.02 2.07

10 2.01 1.96 2.08 2.11
11 1.99 1.99 2.09 2.11
12 1.98 2.02 2.03 2.08
13 1.99 1.98 2.05 2.04
14 2.01 2.05 2.07 2.08
15 2.00 2.05 2.06 2.06
16 2.00 2.00 2.08 2.14
17 2.01 2.00 2.05 2.15
18 2.03 2.09 2.11 2.12
19 1.99 2.10 2.09 2.09
20 2.01 2.01 2.01 2.11
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EXERCISE 6.6.4. Reanalyze all of the individuals chart data from the Chapter 4 exercises as time
series.





Chapter 7

Reliability

7.1 Introduction

The topic of reliability covers a wide spectrum of material. Here we introduce the analysis of time-
to-event data. Time-to-event data involves measuring how long it takes for something to happen: a
ball bearing failure, an automobile crash, death due to cancer, etc. Analysis includes modeling and
estimation of lifetime distributions and probabilistic methods for predicting and estimating mean
lifetimes, survival probabilities, and survival times for both individual components and systems. In
particular, we introduce some peculiarities that arise with time-to-event data

The first peculiarity of time to event data is some some new notation and concepts. Typically,
we are concerned with the cumulative distribution function F and the probability density function f
of random variables. With time to event data one is often interested in corresponding concepts, the
reliability function R (known in biological applications as the survival function S) and the hazard
function h. If you are testing how long a refrigerator lasts under stress, you may have to quit the
study before all the refrigerators die. This creates censored data. Censored data seems much more
prevalent when dealing with biological applications than industrial, but it raises its ugly head in
both. These new ideas are introduced in Section 2.

The second peculiarity is that time to event data are often skewed rather than symmetric. As
a result, statistical analysis is often based on distributions other than the normal. Several of these
distributions are introduced in Section 3.

In general, reliability deals with the study of the proper functioning of equipment and systems.
Our main area of focus is component and system reliability, i.e., in finding the reliability of a com-
plex system from the knowledge of the reliabilities of its components. For a more extensive intro-
duction to the subject, see Hoyland and Rausand (1994) or Crowder et al. (1991). For an alternative
approach based on Bayesian statistics see Hamada et al. (2008).

In addition to the study of lifetime or failure-free operating time for a system or piece of equip-
ment, reliability can include broader aspects of a systems performance over time. This allows vary-
ing levels of performance, possibility of repeated failures/repairs etc. It uses stochastic processes.
e.g. Markov processes, to model system performance, cf. Huzurbazar (2004).

7.2 Reliability/Survival, Hazards and Censoring

7.2.1 Reliability and Hazards

Failure models are probability distributions used for modeling the time to failure of a component (or
system) in reliability. Let T be the random time to failure of a unit, that is, the time from when the
unit is put into operation until it first fails. For example, suppose T represents the time to breakage
of a timing belt on a car. We could measure time here as calendar time but in this case a more
relevant measure of “time” is the miles driven by the car. Here T represents the number of miles
driven by car before the belt breaks and t = 0 is the mileage on the car when the belt was put into
operation. For the remainder of this chapter, we assume that T is continuously distributed on [0,∞)

107
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with probability density function f (t) and cumulative distribution function (cdf)

F(t) = Pr(T ≤ t) =
∫ t

0
f (x)dx for t > 0. (7.2.1)

F(t) denotes the probability that the unit fails in the time interval (0, t]. By the Fundamental Theo-
rem of Calculus, the probability density function is

f (t) =
d
dt

F(t). (7.2.2)

The reliability function of a unit is defined as

R(t)≡ 1−F(t) = P(T > t). (7.2.3)

This is the probability that the unit does not fail in the time interval (0, t] or, equivalently, the
probability that the unit is still functioning (survives) beyond the time t. In biological applications
R(t) is often called the survival function and denoted S(t).

The probability that a unit fails in a short time, say, (t, t +δ t] is

Pr(t < T ≤ t +δ t) .
= f (t)δ t (7.2.4)

Often, we are interested in the hazard function or failure rate function, denoted h(t), which is defined
from the probability that the unit fails in a short time interval (t, t + δ t] given that it has not failed
by time t, i.e.,

Pr(t < T ≤ t +δ t|T > t) =
F(t +δ t)−F(t)

1−F(t)
.
=

f (t)δ t
[R(t)]

. (7.2.5)

Mathematically, the hazard is the rate at which this probability changes at time t, that is, the limit as
δ t gets small of the conditional probability of the interval, divided by the length δ t of the interval,

h(t)≡ lim
δ t→0

Pr(t < T ≤ t +δ t|T > t)
δ t

= lim
δ t→0

F(t +δ t)−F(t)
[1−F(t)]δ t

=
f (t)
R(t)

.

The density function f (t) and the hazard function h(t) are mathematically interchangeable in
that knowing one determines the other but they answer different questions. Suppose at time t = 0
we have a new unit and want the probability that this unit will fail in the interval (t, t +δ t]. This is
approximately equal to the probability density f (t) times the length of the interval δ t as given by
(7.2.4). Now suppose that the unit has survived up to time t and we want to know the probability that
this unit will fail in the next interval (t, t + δ t]. This probability is now the conditional probability
in (7.2.5) and is approximately equal to the hazard function h(t) times the length of the interval δ t.

If the hazard h(t) is an increasing function of t, the chance of a failure becomes greater as
time goes on. Such hazards are useful when the unit suffers from fatigue or cumulative damage. If
the hazard function is a decreasing function of t, the chance of a failure decreases with time. This
corresponds to the “burn-in” period for some electronic components where substandard units burn
out early. If one restricts attention to an item’s mature period, the chance of failure is often constant
over time, i.e., the hazard is flat. Household appliances often display this when they are neither very
young or old.

A bathtub shaped hazard function is often appropriate for the entire life of an item. Newly
manufactured items (refrigerators, automobiles, even infants) are subject to high initial hazards that
decrease as they mature. (If something is fundamentally wrong, it tends to show up early.) The
items then settle into a long period of maturity where the hazard is essentially constant. Finally, as
the items age or wear out, their hazards tend to increase again.

Figure 7.1 gives a bathtub hazard function showing the “burn-in”, useful life, and wear-out
period of a component. This hazard is a combination of the three shapes discussed previously. The
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Figure 7.1: Bathtub shaped hazard function.

“burn-in” or “infant mortality” period shows a high hazard initially which represents undiscovered
defects in substandard units. The “useful life” period is also called the “chance failure” period. This
is the stable part of the unit’s life. As the unit ages, it enters it’s wear-out period. In practice, this
hazard shape is difficult to use. Many units are tested via a quality control process before being
released to users so that the “infant mortality” period is removed. For mechanical units, the useful
life period often shows a slightly increasing tendency.

Often when analyzing failures we are restricted to limited age ranges of an item where the hazard
shapes are constant, increasing, or decreasing. The Exponential distribution of the next section is
often useful because it has a flat hazard. Many of the models in the next section display either flat or
increasing hazards. Many include the Exponential as a special case. To have a flat hazard you must
have an Exponential distribution.

The mean time to failure (MTTF) of a unit is defined as

MT T F = E(T ) =
∫ ∞

0
t f (t)dt

where E(T ) is the expected value of the random variable T . The MTTF can also be expressed as

MT T F =
∫ ∞

0
R(t)dt.

In more complicated systems we might incorporate the time to repair an item, say, U . The mean
time between failures (MTBF) is the MTTF plus the mean time to repair (MTTR), i.e..

MT BF = MT BF +MT T R = E(T )+E(U).

7.2.2 Censoring

Consider the joint distribution of T , the time to event, and a random variable C the determines the
time after which you will no long be able to observe T . If you started an experiment in the morning
and have to quit and go home at 5PM, that determines C. In studies on people, C is when a person
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becomes no longer available to the study. Perhaps they died. Perhaps they moved to another town.
Perhaps they tired of the hassle of being studied. Censoring is particularly convenient when it occurs
independently of the time T being studied. But if you think about the event being death, the closer
death, gets the more likely one is to quit a study. When subject to censoring, the actual data observed
are

(X ,δ )≡
{
(T,1) if T ≤C
(C,0) if C > T .

δ is a random indicator for not being censored. (That does not keep people from sometimes calling
it the censoring indicator.) Let fT be the density for T and fC the density for C. The likelihood for
observing X = u and δ is defined as

fT (u)δ ST (u)1−δ .

7.3 Some Common Distributions

Commonly used distributions for modeling the skewed data associated with time to event data are
the Exponential, Lognormal, and Weibull. Another useful distribution is the Gamma.We now intro-
duce these.

7.3.1 Exponential Distributions

The exponential distribution is the most widely used in reliability mainly because of its tractability
and nice properties. We have already mentioned that it has a flat hazard function. It also has a
memoryless property that

Pr(T > t +u|T > t) = Pr(T > u)

and the minimum of several iid Exponentials is again an Exponential (but with a different parame-
ter).

The are two different parameterizations for the Exponential distribution that are in common use.
The density, cdf, reliability, and hazard functions are given by

f (t) = θ exp(−θ t) for θ > 0, t > 0,
F(t) = 1− exp(−θ t),

R(t) = exp(−θ t),

h(t) =
θ exp(−θ t)
exp(−θ t)

= θ , (7.3.1)

or by

f (t) = (1/λ )exp(−t/λ ) for λ > 0, t > 0,
F(t) = 1− exp(−t/λ ),

R(t) = exp(−t/λ ),

h(t) =
(1/λ )exp(−t/λ )

exp(−t/λ )
= 1/λ . (7.3.2)

We will use the first parameterization and indicate T having an exponential distribution by T ∼
Exp(θ). Note that if X ∼ Exp(1) then T ≡ X/θ ∼ Exp(θ).

7.3.2 Weibull Distributions

Weibull distributions are a straightforward generalization of the exponential. If X ∼ Exp(θ) then
T = X1/α has a Weibull(α,θ) distribution when the Weibull is parameterized as

f (t) = αθ tα−1 exp(−θ tα) for θ > 0, α > 0, t > 0
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F(t) = 1− exp(−θ tα)

R(t) = exp(−θ tα)

h(t) = αθ tα−1.

An alternate parameterization is

f (t) =
α

λ

( t
λ

)α−1
exp[(−t/λ )α ] for λ > 0, α > 0, t > 0

F(t) = 1− exp[(−t/λ )α ]

R(t) = exp[(−t/λ )α ]

h(t) =
(

α

λ α

)
tα−1.

For α = 1 this is the exponential. For α > 1 the hazard function is increasing as a power of t. For
α < 1 the hazard is decreasing.

7.3.3 Gamma Distributions

Gamma distributions are a less straightforward generalization of the exponential.
The are two different parameterizations for the Gamma distribution that are in common use.

f (t) =
β α

Γ(α)
tα−1e−β t for α > 0, β > 0, t > 0

or

f (t) =
1

Γ(α)λ α
tα−1e−t/λ for α > 0, λ > 0, t > 0.

There are no particularly nice functional forms for the cdf, reliability function, or hazard. α is known
as the shape parameter, β is a scale parameter.

Using the Gamma(α,β ) parameterization, a Gamma(1,θ) is an Exp(θ).

7.3.4 Lognormal Distributions

If X ∼ N(µ,σ2) then Y = log(X) has a lognormal distribution with median eµ and scale parameter
σ . Turns out the the mean is exp[µ +(σ2/2)].

7.3.5 Pareto

This is primarily of interest because it has a decreasing hazard function. It can be constructed as
a mixture of exponential distributions using gamma distribution weights. (To a Bayesian, it is the
marginal distribution of the data for a conditional distribution that is exponential and a prior that is
gamma.)

f (t) =
βαβ

(t +α)β+1 for α > 0, λ > 0, t > 0,

F(t) = 1−
(

α

t +α

)β

,

R(t) =

(
α

t +α

)β

,

h(t) = β/(t +α).
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Table 7.1: Plackett-Burman L12 Screening design for thermostats

Trial A B C D E F G H I J K
1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 1 1 1 1 1 1
3 0 0 1 1 1 0 0 0 1 1 1
4 0 1 0 1 1 0 1 1 0 0 1
5 0 1 1 0 1 1 0 1 0 1 0
6 0 1 1 1 0 1 1 0 1 0 0
7 1 0 1 1 0 0 1 1 0 1 0
8 1 0 1 0 1 1 1 0 0 0 1
9 1 0 0 1 1 1 0 1 1 0 0
10 1 1 1 0 0 0 0 1 1 0 1
11 1 1 0 1 0 1 0 0 0 1 1
12 1 1 0 0 1 0 1 0 1 1 0

Table 7.2: Number of temp cycle changes before thermostat failure.

Trial Data
1, , 957, 2846, 7342, 7342, 7342, 7342, 7342, 7342, 7342, 7342,
2, , 206, 294, 296, 305, 313, 343, 364, 420, 422, 543,
3, , 63, 113, 129, 138, 149, 153, 217, 272, 311, 402,
4, , 76, 104, 113, 234, 270, 364, 398, 481, 517, 611,
5, , 92, 126, 245, 250, 390, 390, 479, 487, 533, 573,
6, , 490, 971, 1615, 6768, 7342, 7342, 7342, 7342, 7342, 7342,
7, , 232, 326, 326, 351, 372, 446, 459, 590, 597, 732,
8, , 56, 71, 92, 104, 126, 156, 161, 167, 216, 263,
9, , 142, 142, 238, 247, 310, 318, 420, 482, 663, 672,

10, , 259, 266, 306, 337, 347, 368, 372, 426, 451, 510,
11, , 381, 420, 7342, 7342, 7342, 7342, 7342, 7342, 7342, 7342,
12, , 56, 62, 92, 104, 113, 121, 164, 232, 258, 731

7.4 An Example

Bullington, Lovin, Miller, and Woodall (1993) examine the number of temperature cycle changes a
thermostat endures before failure. They examined 11 factors each at 2 levels that were thought to
possibly affect the performance.
A: Diaphram Plating Rinse (clean primary – pure secondary, contaminated primary – no secondary)
B: Current Density (5 min at 60 amps, 10 min at 15 amps)
C: Sulfuric Acid Cleaning (3 sec, 30 sec)
D: Diaphragm Electroclean (2 min, 12 min)
E: Beryllium Copper Grain Size (0.008in, 0.018in)
F: Stress Orientation (perpendicular, in line – relative to seam weld)
G: Humidity (wet, dry)
H: Heat Treatment (45 min, 4hrs – at 600◦ F)
I: Brazing Machine (no cooling water or flux – excess water, 3 times normal flux)
J: Power Element Electroclean (like D)
K: Power Element Plating Rinse (like A)

This determines 211 treatment combinations of which only 12 were observed as indicated in Ta-
ble 7.1 wherein 0s indicate the first factor level as given above.

Table 7.1 is a Placket-Burman design as discussed in TiD and a Taguchi L12 design as discussed
in Chapter 11 and TiD. Table 7.2 contains the 10 observations on each observed treatment combi-
nations.

Rather than doing a full analysis of this complicated design, use one treatment to illustrate a one
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sample problem and two treatments to illustrate two sample problems. Introduce censoring from
some trials.

Some Random Thoughts

give an example early on to motivate these things. why does anyone really care about R(t) or h(t)?
The first couple of things are bullets to be worked into an example

• Nuclear reactor safety study. Need to look up.
• Germany WWII; V1 missile. First 10 were fiascos. Careful attention was paid to details but first

10 exploded on the launch pad or landed “too soon” in the English channel. Later, people thought
about probability for series components.
P(system works)= ∏ P(individual components work)¡¡ P(any one component works)

Imagine we have 10 components in series. Each has prob 0.90 of working. Prob the system works
is .910 = .3486 which is far less than the prob of any individual component working.
• Point out that this will only get worse when we have components in series and parallel as is the

case with a full-fledged missile or even your washing machine...
start with what is reliability in general

Things to add possibly
• repairable systems. k out of p systems, system functions when ≥ k components work properly.





Chapter 8

Random Sampling

Random sampling is the tool used to ensure that samples are collected without bias. It is all too easy
for people to choose samples that will bias the results of the study. If one is studying how much milk
school children drink in a school district, a sample chosen by the whim of teachers would probably
be biased. The students chosen would probably not be representative of the students as a whole. In
fact, they may well be chosen (perhaps subconsciously) to reinforce the attitudes of the teacher.

If a shipment of automobile components were being evaluated to check the rate of defectives,
the containers at the front of the shipment may not be representative of the entire shipment. This
could happen if the supplier is disreputable and suspects that you will only sample those crates that
are easy to sample. More realistically (we hope) the state of the production process can change over
time and so when crates are placed for shipment, they are placed in time order, so where you sample
is related to the time of production. Random sampling is a device for selecting a sample that has no
systematic bias.

8.1 Acceptance Sampling

Suppose you manufacture audio equipment and you have just received a shipment of electrical
components. How do you decide whether these components are of sufficiently high quality for your
manufacturing process?

By far the best way to do this is to have a history with the supplier which tells you that they are a
reputable firm. Then, have the supplier show you the control charts they used in production. Based
on the control charts, if the manufacturing process was under control and meeting specifications,
you can purchase the item without reservations.

What if you don’t trust the supplier to show you accurate control charts? Why are you dealing
with a supplier like that? What if this is a new supplier that does not have control charts? Why are
you dealing with a supplier like that? We could go on and on like this, but the fact is that sometimes
people end up making purchases under less than optimal conditions. In such situations, how can
you decide whether to accept a shipment of components or not. A reasonable method is to take a
random sample of the shipment and inspect the sample to learn about the shipment as a whole.

Deming would probably argue that while sampling may be reasonable to determine what to
do with the entire shipment, once the decision is made to use the components, sampling should
either cease or every single component should be inspected to determine if it meets specifications.
Juran and Gryna (1993) give reasons for performing acceptance sampling but they suggest that
acceptance sampling should be used in an overall quality control process designed to eliminate the
need for acceptance sampling. Some situations where sampling is important are destructive testing
(in which to test a product you have to destroy it), expensive testing (in which the cost of examining
every unit is excessive), situations where production is continuous, so that no natural definition
of a manufacturing unit exits (examples of this are textiles, thread, paper, photographic film, etc.)
and where production runs are too large and too fast, so that there are too many units to inspect
(examples include the production of nuts, bolts, screws, etc.).

115
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8.2 Simple Random Sampling

Suppose a shipment of automobile components contains N = 300 units. Suppose we want to take
a sample of n = 50 of these units to inspect for defectives. To take a simple random sample, we
have to make a list of all 300 units, assigning each a number between 1 and 300. It doesn’t matter
how we make the list as long as each unit appears once and only once on the list. It could be a list
of serial numbers or, if the components were delivered on a palate in crates, one to a crate, we can
just imagine assigning a number to each crate on the palate. Using a method for generating random
numbers, you randomly select 50 numbers between 1 and 300 without replacement. Having obtained
the 50 numbers, go back to the list and identify the automobile components that correspond to the
numbers on the list. These are the automobile components that need to be inspected for defects.

The Minitab commands below will make such a selection and list the 50 numbers in column C2.

set c1

1:300

end.

sample 50 c1 c2

Or you can enter the same information by navigating the menus:
Calc > Make Patterned Data > Simple Set of Numbers

Calc > Random Data > Sample from Columns

To fix ideas we present an artificially small example.

EXAMPLE 8.2.1 A collection of N = 40 video tapes, I mean DVDs, I mean downloads, no I really
do mean DVDs, of the popular English costume comedy Blue Asp were obtained. The running times
of these DVDs are designed to be exactly 34 minutes. Each DVD is clearly identified and assigned
a number from 1 to 40. A simple random sample of size n = 5 from the numbers between 1 and 40
gave 9, 23, 13, 38, 6. The 5 DVDs corresponding to these numbers were pulled out of the collection
and the running times of the DVDs were measured. The run times were 34.610, 34.743, 34.480,
34.239, 33.939. The estimate of the population mean running time is the sample mean running time

µ̂ ≡ x̄ =
x1 + x2 + · · ·+ xn

n
=

34.610+34.743+34.480+34.239+33.939
5

= 34.4022

The estimate of the population variance is the sample variance

s2 =
1

n−1

n

∑
i=1

(xi− x̄)2

=
1

5−1
[
(34.610−34.4022)2 + · · ·+(33.939−34.402)2]

= 0.1016417

The usual standard error of x̄ from an introductory statistics course is

SE(x̄) =

√
s2

n

with a 95% confidence interval for the population mean running time of

x̄±2SE(x̄).

Alas, a slight modification of the standard error is necessary in our current situation. The usual
results given above assume that either the population being sampled is infinitely large or that the
sampling occurs with replacement. Sampling with replacement means that after an object has been
sampled from the population, it is placed back into the population so that it has the possibility of
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being sampled again. That is not how simple random sampling is conducted in practice. In practice,
sampling is without replacement. Once an object has appeared in a sample, it cannot appear again.
This actually causes the sampling to be more accurate. If you take a simple random sample with
replacement of size 5 from a population of size 5, you may or may not see every element in the
population. If you take a simple random sample without replacement of size 5 from a population
of size 5, you are guaranteed to have seen every element in the population and the sample mean is
guaranteed to equal the population mean. Similarly, there will be less variability in x̄ for a sample
of size 5 from a population of size 40 when sampled without replacement, than there will be if the
population is sampled with replacement. The difference can be accounted for by a finite population
adjustment,

1− n
N

where n is the sample size and N is the population size. The sample mean and variance without
replacement remain

µ̂ ≡ x̄ =
x1 + x2 + · · ·+ xn

n
= 34.4022

and

s2 =
1

n−1

n

∑
i=1

(xi− x̄)2

= 0.1016417

but now, using the finite population adjustment,

SE(x̄) =

√(
1− n

N

) s2

n
=

√(
1− 5

40

)
0.1016417

5
= 0.13337.

With this new standard error, the 95% confidence interval is

x̄±2SE(x̄)

or
34.4022±2(0.13337)

for in interval of (34.135,34.669). The interval does not contain the target value 34, so the DVDs
seem to be running longer than they are supposed to run.

It turns out that for sampling without replacement

E(x̄) = µ, Var(x̄) =
σ2

n

(
1− n−1

N−1

)
, E(s2) = σ

2 N
N−1

.

From these it is not difficult to show that

E
[(

1− n
N

) s2

n

]
= Var(x̄).

Note that, whenever n approaches N, Var(x̄) approaches 0 and that, as N gets large, these approach
the usual sampling with replacement results.

8.3 Stratified Random Sampling

Suppose you have bought automobile components from a company, but the parts delivered come
from three different manufacturing plants. For production purposes, it is probably best to just treat
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these as three different shipments and evaluate the quality of the three shipments separately. How-
ever for some purposes, perhaps cost accounting, it may be necessary to get an estimate of the
overall total number of defectives coming from this company. The appropriate technique is to take
a simple random sample of components from each of the plants and to combine the results appro-
priately. In this context, each of the plants is referred to as a strata and taking random samples from
each strata is referred to as stratified random sampling.

EXAMPLE 8.3.1 In addition to the Blue Asp DVDs obtained in Example 8.2.1, two other ship-
ments of DVDs were obtained at a later time, each of which included 30 DVDs. We want to estimate
the population mean of all 100 DVDs. We begin by taking simple random samples without replace-
ment from each of the three shipments (strata). For illustrative purposes, the sample from the first
shipment is as in Example 8.3.1 and the samples from the other two shipments are of sizes 4 and 6,
respectively. The samples are

Stratum Ni Sample
1 40 34.610, 34.743, 34.480, 34.239, 33.939
2 30 34.506, 34.734, 34.350, 34.509
3 30 34.016, 34.347, 34.084, 34.932, 34.605, 34.437

Summary statistics are given below. Subscripts are used to indicate the stratum associated with
a stratum size, a sample size, a sample mean, or a sample variance. For example, N1 = 40, n1 = 5,
x̄1 = 34.4022, and s2

1 = .1016417 are all from stratum 1.

Stratum Ni ni x̄i s2
i

1 40 5 34.4022 0.1016417
2 30 4 34.52475 0.02497425
3 30 6 34.4035 0.1152931

The estimate of the mean of the entire population is a weighted average of the stratum sample
means. The weights are relative to the size of the strata Ni. Let

N = N1 +N2 +N3 = 40+30+30 = 100

µ̂ =
3

∑
i=1

Ni

N
x̄i

=
40

100
34.4022+

30
100

34.52475+
30
100

34.4035

= 34.439355

The variance of the estimate is

Var(µ̂) =
3

∑
i=1

(
Ni

N

)2

Var(x̄i)

so, using the results on simple random sampling for each strata (which includes incorporating the
finite population corrections for sampling within each strata), the standard error is,

SE(µ̂)

=

√√√√ 3

∑
i=1

(
Ni

N

)2(
1− ni

Ni

)
s2

i
ni

=

[(
40

100

)2(
1− 5

40

)
0.1016417

5
+

(
30

100

)2(
1− 4

30

)
0.02497425

4

+

(
30

100

)2(
1− 6

30

)
0.1152931

6

]1/2

= 0.068676653
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A 95% confidence interval for the mean has endpoints µ̂±2SE(µ̂), which is

34.439355±2(0.068676653)

giving the interval (34.302, 34.577).

8.3.1 Allocation

One question about stratified samples is how do you decide how many samples to take in each
stratum. One relative safe way, is to use proportional allocation of the samples. In proportional
allocation, for an over all sample size of n, you choose ni observations from stratum i where ni is
chosen to satisfy

ni

n
=

Ni

N
Note that the total number of units in the ith stratum, Ni, and the total number of units in the
population, N, are both assumed to be known.

If you have some idea about how much it costs to collect an observation in each stratum and
if you also have some idea of the variance in each stratum, one can find an optimal allocation. In
optimal allocation, you will want to take more observations in strata with more variability and fewer
observations in strata for which the cost per observation is more. These issues are discussed in more
detail in any good book on sampling, e.g., Lohr (1999).

8.4 Cluster Sampling

Suppose again that the automobile components have been crated and put on a palette, but that now
these are small components and that there are 20 components in each crate. To simplify life, lets
assume that they all come from the same plant. The obvious way to sample is to make a list of crates
and take a simple random sample of crates. Once the crates have been selected, either we can inspect
all 20 of the components in each crate, or for each crate we can take a further random sample of the
20 components and inspect only those components chosen in the second stage of sampling. The first
of these procedures is referred to as one-stage cluster sampling, the second procedure is referred to
as two-stage cluster sampling.

EXAMPLE 8.4.1 One-stage cluster sampling.
Suppose Blue Asp DVDs are boxed in cartons of 20 to 25 and a wholesaler gets a shipment of 100
cartons. Suppose the wholesaler wants to estimate the population mean running length of a DVD
based on taking a sample of 3 cartons. This is a very small sample but it will illustrate the ideas. This
involves sampling 3 cartons and measuring the running time for each DVD in the carton. Implicitly
we are assuming that DVDs in a carton are probably more alike that DVDs in different cartons.

Carton Ni x̄i
1 20 34.413
2 23 34.535
3 25 34.414

Note that both the carton sizes and the carton means are random variables but only because we have
a random selection of cartons. 2

In general let c denote the number of clusters (cartons) in the population. Let the pair (Nk,Tk)
denote the number of items in the kth cluster and the total of all the measurements made on the
items in the kth cluster. (The total might be the total number of defectives in the cluster.) Note
Tk = Nkx̄k where x̄k is computed from the xk js involving the jth observation from the kth cluster.
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The population mean of the xk j population is the sum of all the cluster totals Tk divided by the sum
of all the cluster sizes Nk, i.e.,

µ =
∑

c
k=1 Tk

∑
c
k=1 Nk

=
∑

c
k=1 Nkx̄k

∑
c
k=1 Nk

=
∑

c
k=1 ∑

Nk
j=1 xk j

∑
c
k=1 Nk

. (8.4.1)

The odd thing about cluster sampling is that we are not directly sampling from our population
of interest, the xk js. And, unlike our previous problems, we do not even know the size of the xk j
population. We know the number of clusters c but we do not know the size of every cluster. This
means that, unlike our previous scenarios, we need to estimate both the numerator and denominator
of equation (8.4.1).

Take a random sample of n clusters giving us random pairs (Ni,Ti), i= 1, . . . ,n. The mean cluster
size is

N̄ =
∑

n
i=1 Ni

n
,

so the estimated xk j population size is cN̄. The estimated mean cluster total is T̄ so the estimated xk j
total is cT̄ . The estimated xk j population mean is

µ̂ =
cT̄
cN̄

=
T̄
N̄

=
∑

n
i=1 Ti/n

∑
n
i=1 Ni/n

=
∑

n
i=1 Ti

∑
n
i=1 Ni

=
∑

n
i=1 Nix̄i

∑
n
i=1 Ni

. (8.4.2)

The usual standard error is approximated by treating the Nis as fixed so that all the randomness
is associated with T̄ ,

SE(µ̂) = SE
(

T̄
N̄

)
.
=

1
N̄

SE(T̄ ) =
1
N̄

√(
1− n

c

) s2
T
n

where, again treating Ni as fixed so that E(Ti) = Niµ ,

s2
T =

1
n−1

n

∑
i=1

(Ti−Niµ̂)
2 =

1
n−1

n

∑
i=1

(Nix̄i−Niµ̂)
2 =

1
n−1

n

∑
i=1

N2
i (x̄i− µ̂)2.

EXAMPLE 8.4.1 CONTINUED. One-stage cluster sampling.
Applying the formulae to our DVD example gives.

µ̂ =
20(34.413)+23(34.535)+25(34.414)

20+23+25
= 34.45463.

s2
T =

[202(34.413− µ̂)2]+ [232(34.535− µ̂)2]+ [252(34.414− µ̂)2)]

2
= 2.570979,

SE(µ̂) =
1

22.6666666

√(
1− 3

100

)
s2

T
3

= 0.04022415.

A 95% confidence interval is
34.45463±2(0.04022415).

or (34.37418, 34.53508).
The variance and standard error are ugly arithmetic so I wrote R code:

muhat=((20 *34.413) + (23 * 34.535) + (25 *34.414))/68

muhat

sT2=( (20^2 * (34.413-muhat)^2) + (23^2 * (34.535-muhat)^2) +

(25^2 *(34.414-muhat)^2))/2
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sT2

se=sqrt( (1-(3/100))*sT2/3 )/22.6666666

se

muhat+(2*se)

muhat-(2*se)

2

EXAMPLE 8.4.2 Two-stage cluster sampling.
Measuring the running length of each DVD in a carton of 20 seems excessive. It might be more
reasonable to randomly select a smaller number of DVDs out of each carton and measure the running
length on just those DVDs.

In our example we have c = 100 clusters from which a sample of n = 3 is taken. The size of each
cluster in the sample is Ni and the size of the sample within each cluster is ni. Summary statistics
for our example of DVD lengths are:

Carton Ni ni x̄i s2
i

1 40 5 34.4022 0.1016417
2 30 4 34.52475 0.02497425
3 30 6 34.4035 0.1152931

In one-stage cluster sampling we looked at every DVD in the carton, so we did not need to consider
s2

i , the variance associated with sampling from (within) the carton 2

In a technical sense, two-stage cluster sampling is very similar to stratified sampling in which
each cluster is thought of as a stratum. The key difference is that in stratified sampling, we collect
a sample from every stratum (cluster) and in two stage cluster sampling we only take a sample of
the clusters (strata). As a result, the formulae for two-stage cluster sampling include both stratified
sampling and one-stage cluster sampling as special cases. Stratified sampling is where we take a
complete sample of all the clusters (strata) and one-stage cluster sampling is where the sample
within the clusters contains all of the units within the cluster. Ideally, we would perform stratified
sampling when there is a lot of variability between clusters and not much variability within them,
and we would perform one-stage cluster sampling when there is little variability between clusters
and a lot of variability within them, but, in practice, what we perform is usually determined by
physical characteristics of the population.

Our population of interest is the xkhs, k = 1, . . . ,c, h = 1, . . . ,Nk. Again, Tk = ∑
Nk
h=1 xkh is the total

from the kth cluster and just as in equation (8.4.1),

µ =
∑

c
k=1 Tk

∑
c
k=1 Nk

.

Again, we need to estimate both the numerator and the denominator.
In two-stage cluster sampling we take a first-stage sample of n clusters from the population of

c clusters The second-stage sample from the ith cluster involves determining Ni as well as taking a
sample of size ni, say xi j, j = 1, , . . . ,ni. To estimate the total in the ith cluster, we use T̂i = Nix̄i. The
estimated xk j population mean is a minor modification of (8.4.2),

µ̂ =
∑

n
i=1 T̂i

∑
n
i=1 Ni

=
∑

n
i=1 Nix̄i

∑
n
i=1 Ni

.

The estimated population mean can also be written as,

µ̂ =
1
N̄

∑
n
i=1 Nix̄i

n
. (8.4.3)

The standard error now has to incorporate not only the variability due to looking at only n of
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c clusters but also the variability of estimating the total Ti from the sampled clusters. The former
involves a version of s2

T and the latter involves the within cluster sample variances s2
i .

SE(µ̂) =
1
N̄

√(
1− n

c

) s2
T
n
+

1
nc

n

∑
i=1

(
1− ni

Ni

)
N2

i
s2

i
ni
. (8.4.4)

The formula

s2
T =

1
n−1

n

∑
i=1

(Nix̄i−Niµ̂)
2

looks the same as for one-stage cluster sampling but the components x̄i and µ̂ are computed differ-
ently in two-stage cluster sampling.

Sometimes the size is known for every cluster in the population. In that case, N̄ should be
replaced in (8.4.3) and (8.4.4) by Ñ ≡ (N1 + · · ·+Nc)/c, the population mean of the cluster sizes.

Note that if n = c, we get the formulae for stratified sampling and, if ni = Ni for all i, we get the
formulae for one-stage cluster sampling. So these two-stage formula are really the only ones you
need to know from this chapter!

EXAMPLE 8.4.2 CONTINUED. Two-stage cluster sampling.
Applying the formulae to the two-stage DVD data,

µ̂ =
40(34.4022)+30(34.52475)+30(34.4035)

40+30+30
= 34.43935,

s2
T =

[402(34.4022− µ̂)2]+ [302(34.52475− µ̂)2]+ [302(34.4035− µ̂)2]

2
= 5.414398,

n

∑
i=1

(
1− ni

Ni

)
N2

i
s2

i
ni

=

(
1− 5

40

)
402 0.1016417

5
+

(
1− 4

30

)
302 0.02497425

4
+

(
1− 6

30

)
302 0.1152931

6
= 47.16483.

SE(µ̂) =
(

1
33.3333333

)√(
1− 3

100

)
s2

T
3
+

1
3(100)

[47.16483] = 0.04143772.

The 95% confidence interval is

34.43935±2(0.04143772)

or (34.35648, 34.52223). The estimate of the population size N is cN̄ = 100(33.3333333) = 3333.
Again I wrote R code:

muhat=((40 *34.4022) + (30 * 34.52475) + (30 *34.4035))/100

muhat

sT2=( (40^2 * (34.4022-muhat)^2) + (30^2 * (34.52475-muhat)^2) +

(40^2 *(34.4035-muhat)^2))/2

sT2

sisum=( 1 - (5/40) )*40^2 *(0.1016417/5) +

( 1 - (4/30) )*30^2 *(0.02497425/4) + ( 1 - (6/30) )*30^2 *(0.1152931/6)

sisum

se=(1/33.3333333) * sqrt( (1-(3/100))*sT2/3 + (1/(3*100)) * sisum)

se

muhat+(2*se)

muhat-(2*se) 2
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8.5 Final Comment.

There are many reasons for collecting accurate information about a body of material (population).
The methods presented here are useful for these purposes. However, the worst reason for conducting
a sample survey of a population is to determine the percentage of defective units in that population.
The only acceptable proportion of defective units should be 0. Attention should be focused on prod-
uct improvement, not the bean counting of how often things have gone wrong. Fixing the blame for
defects does not fix the problem that created the defects. The blame properly belongs to a manage-
ment system that allows things to go wrong. Quantifying the extent of the problem can only help
when determining which problems are most important to fix first. Quantifying the problem also
gives no help in identifying how to fix the problem. Other statistical procedures can help with that.





Chapter 9

Experimental Design

To find out the effect of changing a process, it is generally necessary to change the process. To
find out if a chemical reaction works better at 200 degrees than it does at 190 degrees, you need
to set the process up to work at 200 degrees and see what happens. Seeing what happens when the
process strays up to 200 degrees may be a good reason to investigate behavior at 200 degrees, but
there is no assurance that the process will work the same when set to 200 degrees as it did when
it strayed to 200 degrees. There was some reason for the process straying to 200 degrees, and any
number of factors other than the temperature could be responsible for the observed improvement.
To be sure that the cause of the improvement is the change in temperature, an experiment must
be run. In an experiment, material is usually selected with as little variability as possible (while
still characteristic of typical operating conditions) and the treatments (temperatures) are randomly
assigned to the material.

The quality of fiberglass shingles is tested using an Elmendorf tear test. TAMKO Roofing Prod-
ucts of Joplin, MO was interested in evaluating the testing procedure. For their purposes, they
needed a material to test with very little intrinsic variability so that the observed variability would
be due to the variability of the measurements rather than the variability of the material. It was even-
tually decided to test the tear strength of vinyl floor covering under specified conditions. Two 1 foot
by 6 foot pieces were purchased and cut into five 1 foot squares. The squares were cut into 3-in
by 2.5-in specimens. Four trained Elmendorf operators were each given a stack of 10 randomized
specimens and instructed to test them in order. The experiment is well suited for identifying any
differences in performance due to the four operators and estimating the variability associated with
the measurements. In reality, this is a brief synopsis of a data collection regime presented in Phillips
et al. (1998) for evaluating the variability of the tear testers.

Experimental data are the only data that can be reliably used to determine cause and effect.
Observational data can be used to establish that groups are different but observational data cannot be
used to establish why groups are different. For example, if one has data on the ages at which native
americans, hispanics, and non-hispanic caucasians commit suicide, one may be able to establish
that these groups differ in the average ages at which they commit suicide, cf. Koopmans (1987)
and Christensen (1996, Chapter 5). However, knowing that there are differences in the groups does
nothing to explain why there are differences in the groups. It does nothing to establish cause and
effect. Statistical data analysis is incapable of establishing cause and effect. Other ideas beyond data
analysis are necessary for establishing this.

Statistical experiments are characterized by using random numbers to assign experimental treat-
ments to experimental material. It is this use of random numbers that logically allows one to infer
cause and effect from statistical experiments. Using random numbers to assign treatments to ma-
terial eliminates any systematic biases among the groups of material associated with a treatment.
Since there can be no systematic differences between the groups of material to which the treatments
were applied, any differences observed between the treatment groups must be caused by the treat-
ments. Note that the data analysis only establishes that the groups are different, it is the experimental
procedure that allows one to infer that the differences are caused by the treatments.

For example, suppose one were to study the effect of giving young school children a cup of

125
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milk each day. In each of several classrooms, half the children are given a cup of milk and half the
children are not. At the end of the school year, measures of student performance are taken. Left
to their own devices, the classroom teachers may well give the milk to the half of their class that
seem to “need” the milk most. In other words, they may give the milk to those students with the
lowest socio-economic status. Most measures of student performance are highly correlated with
socio-economic status, and a cup of milk each day is unlikely to overcome those differences. Thus,
by giving the milk to the most needy students, the teachers are assuring that, as a group, students
who are given a cup of milk each day will perform worse than students who do not receive milk. To
accurately measure the effect of giving out a cup of milk each day, those receiving the milk must be
chosen randomly, so that there are no systematic differences between the experimental groups other
than the experimental treatments. Similar phenomena can easily occur in industrial experiments. In
the tear testing example, the experimental material (pieces of vinyl floor covering) were prepared
first and then randomly assigned to the operators. When assigning treatments in an experiment,
most definitely, the squeaky wheel does not necessarily get the grease. A true experiment requires
randomly assigning treatments to experimental units. Anything else is an observational study.

Great care must be used in setting up an experiment so that the treatments are actually what
they were designed to be. Once the experimental material has been randomly assigned to treatment
groups, a treatment becomes everything that systematically happens to that experimental group.
Suppose you randomly assign rats to two groups and give one a drug and the other a placebo. If
the rats in the “drug” group develop cancer at a much higher rate than the placebo group, does that
imply that the drug caused the additional cancers? Not if you were storing the drug rats in an area
contaminated by asbestos (and the placebo rats someplace else)! The “treatments” can logically be
said to be causing the extra cancer, but the “drug” treatment is actually the combination of the drug
and the asbestos and anything else that was systematically different for the “drug” group than for
the “placebo” group. It is important not to confuse the treatment with the label for the treatment.
Even more importantly, one needs to set up experiments so that the treatment is as close as possible
to being what was originally meant by the treatment label.

Some conditions that one would like to study cannot be random assigned to experimental ma-
terial, e.g., sex cannot be randomly assigned to people. So it is impossible to conduct a statistical
experiment with sex as a treatment. Moreover, sexes are labels for such broad collections of traits
that differ between two populations that it would be difficult to ever think of describing sex as the
immediate cause of anything that would require an experiment to establish. Sex groups may be dif-
ferent, but what is it about being female that makes them behave or respond differently than males?

One final word needs to be said about randomization as the basis for concluding that treatments
cause observed effects. Randomization really only applies over the long run. It is possible, though
unlikely, that systematic differences will occur in the treatment groups as the result of randomiza-
tion. It is possible, unlikely but possible, that all of the “good” experimental material will randomly
get assigned to one treatment group. If you see that that has happened, then you should do some-
thing about it. Unfortunately, if you don’t know what constitutes “good” material, you cannot be
cognizant of this happening. In the long run, over many replications of the experiment, such things
can only occur with a very low frequency. So in the long run, randomization gives a firm basis for
cause and effect conclusions. But one still needs to be careful in each particular case.

In medicine, specifically in epidemiology, people take another approach to establishing cause
and effect. In statistical experiments, the idea is to create a pool of experimental material and then
randomly assign treatments to the experimental material. The only systematic differences in the
experimental material are the treatment differences, hence treatments cause observed effects. The
epidemiologic approach is to try to adjust for every systematic difference in the treatment groups.
If one properly adjusts for every systematic difference in the treatment groups, and differences
between the treatment groups remain after all of this adjustment, the differences must be due to the
treatments. This is a reasonable idea. The difficulty is in the execution. How does one appropriately
adjust for every (important?) systematic difference in the treatment groups? In a medical example
a variety of factors immediately present themselves as candidates for adjustment: height, weight,
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Table 9.1: Summary Statistics, Vinyl Covers

Vinyl
Cover N ȳi· s2

i
A 10 2273.6 16466.5
B 10 2412.8 39867.7
C 10 2222.4 11517.2

blood pressure, cholesterol, etc. But how does one ever know that all the important factors have
been taken into account? That presumes one knows all of the important factors. Moreover, how
does one ever know whether the form of these adjustments has been appropriate?

When studying ages of suicides for three racial groups, one might decide to adjust for various
socio-economic factors. Were there differences in the three racial groups? Yes. Were there differ-
ences in the three racial groups after adjusting for socio-economic factors? Whether “yes” or “no”,
it is merely the answer to a slightly different question. And in this case, if differences exist, that
will still never tell us what it is about the lives (social or genetic) of these groups that cause such
differences.

Two primary goals of experimental design are to reduce the variability that treatment com-
parisons are subject to and to provide for a valid estimate of the variability of observations and
estimates. There are several standard experimental design techniques for providing valid variance
estimates and reducing variability. The completely randomized design gives a valid variance esti-
mate. Variance reduction is generally attained by comparing treatments within blocks of relatively
homogeneous experimental material. Randomized complete block designs, Latin Square designs,
and incomplete block designs all use forms of blocking to reduce variability and all provide for
valid estimates of variances.

Two additional features of experimental design will be discussed. In Section 4 we discuss a very
efficient way of defining treatments for an experiment. This is called creating a factorial treatment
structure. In Chapter 10 we discuss fractional replications, which provide methods for obtaining
information on the main effects of many factors using relatively few observations.

9.1 One-way Anova

One-Way ANOVA is a method for evaluating whether different groups have the same mean value.
It may seem curious that a method for evaluating means would be called “analysis of variance” but
we will show why that is.

EXAMPLE 9.1.1 Vinyl Floor Covering Data.
Table 2.3 gives data on tear test values for three vinyl floor coverings. In Section 2.4 we used
box plots to compare the three coverings. Here we present a more formal approach to evaluating
whether the groups have different population mean tear levels. Table 9.1 gives summary statistics
for the three covers. The two numbers computed from each group are the sample mean, ȳi·, and the
sample variance, s2

i . Due to random variation in the three samples, the sample means for the three
covers are all different. Our quest is to find out whether the sample means are so different as to
suggest that the groups actually have different population means.

One-way ANOVA is a comparison of two variance estimates. One estimate is valid all of the
time, and one estimate is only valid if the groups have the same population mean value. Our under-
lying assumptions are that all the observations are independent, all the observations have the same
variance, say σ2, and the observations within each group all have the same mean value µi. We are
testing whether the µis are all equal.

From each group we get an estimate of the variance s2
i . Since the variance is supposed to be the

same in each group, averaging the s2
i s should give a better estimate of σ2 than any particular s2

i .
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Thus our estimate of σ2 that is valid all of the time is the average of the s2
i s. This is called the mean

squared error and written MSE. For the vinyl cover data, this pooled estimate of the variance is

MSE =
16466.5+39867.7+11517.2

3
= 22617.

The other estimate of the variance σ2 is a bit more complicated. Recall from Chapter 3 that if
y1, . . . ,yN are a random sample with E(yi) = µ and variance Var(yi) = σ2, the mean ȳ· has expected
value E(ȳ·) = µ and variance Var(ȳ·) = σ2/N. The trick is to apply these results to each of the
group sample means. If the µis are all the same, the ȳi·s all have the same expected value and they
all have the same variance, σ2/N. (In the floor covering example N = 10.). Moreover, since all the
observations are independent, the observations within each group are independent of observations
in different groups, so the ȳi·s are all independent. That means we can treat the ȳi·s as a random
sample. If the ȳi·s are a random sample, we can compute their sample variance and it will provide
an estimate of the variance of an individual ȳi·, i.e., σ2/N. To get an estimate of σ2, just multiply
the sample variance of the ȳi·s by N, the number of observations in each group. This is called the
mean squared groups and written MSGrps. For the vinyl cover data, if you plug the ȳi· numbers,
2273.6, 2412.8, and 2222.4, into a hand calculator or computer to get the sample variance, the value
is 9708.4 and

MSGrps = 10(9708.4) = 97084.

This variance estimate has built into it the assumption that the different vinyl covers have no mean
differences between them. If that is not the case, MSGrps will involve both the variability of an
observation, σ2, and the variability between the groups means, the µis. Thus, if the µis are not all
equal, MSGrps tends to be larger than σ2.

Finally, to evaluate whether the µis are different, we compare our two variance estimates. If there
are no differences, MSGrps and MSE should be about the same, i.e., their ratio F ≡MSGrps/MSE
should be close to 1. If the µis are different, MSGrps tends to be larger than MSE, so the ratio
F ≡MSGrps/MSE tends to be larger than 1. If MSGrps/MSE is much larger than 1, we conclude
that there must be differences between the µis. For the vinyl data, F = 97084/22617 = 4.29.

Question: “Is 4.29 much larger than 1?” In order to answer that question, we quantify the random
variability of such F values when there really are no differences among the µis. If our observed F
value is so much larger than 1 that it would rarely be observed when the µis are all equal, that
suggests that the µis are probably not all equal. When the µis are all equal (and the data all have
normal distributions), the F value is an observation from a distribution called an F distribution
with, for the vinyl data, 2 degrees of freedom in the numerator and 27 degrees of freedom in the
denominator. One can look up, say, the 95th percentile of an F(2,27) distribution, it is about 3.35. If
the µis are all equal, 95% of the time we would get an observed F value of 3.35 or less. We actually
saw F = 4.29, which is a strange thing to happen when the µis are all equal, but not necessarily
strange when they are different, so we conclude that the µis are not all equal.

The degrees of freedom for the F test were computed as follows. The estimate of the variance
in the numerator was based on computing the sample variance of the group means. This is just a
sample variance, based on 3 observations because there are three groups, so the sample variance has
3−1= 2 degrees of freedom. MSGrps also has 2 df . The estimate of the variance in the denominator
was based on averaging the sample variances from each group. Each group has N = 10 observations,
so each group sample variance has N−1 = 9 df . By averaging, we are pooling information from all
of the groups, so the mean squared error has degrees of freedom equal to the sum of the df for each
group variance, i.e., the degrees of freedom for error are dfE = 3(9) = 27, where 9 is the degrees of
freedom from each group and 3 is the number of groups.

The ANOVA calculations for the vinyl floor covers are summarized in the ANOVA table, Ta-
ble 9.2. The sources are Covers (groups), Error, and Total. The entries in the row for Total, where
they exist, are just the sum of the entries for Covers and Error. The computations in the df , MS, and
F columns have already been explained. The SS column contains sums of squares for Covers, Error,
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Table 9.2: Analysis of Variance for Vinyl Floor Coverings

Analysis of Variance
Source df SS MS F P
Covers 2 194167 97084 4.29 0.024
Error 27 610662 22617
Total 29 804830
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Figure 9.1: Vinyl Floor Covering: Residuals versus predicted values

and Total. The first two of these are just the product of the corresponding MS and the df . Finally, the
column labeled P is the probability of getting a value larger than the computed F value when the µis
are all equal. The row for Total can also be computed directly. Take all of the observations from the
experiment, regardless of group, and compute the sample variance. The degrees of freedom Total
are the degrees of freedom for this estimate, i.e., the total number of observations minus 1. The sum
of squares total is just this sample variance of all the observations times the degrees of freedom
total.

The ANOVA calculations are based on the assumption that the observations have equal variances
and normal distributions. To evaluate these assumptions we compute residuals as the difference be-
tween an observation and the sample mean for observations in its group. Thus from Table 9.1, ob-
servations from Cover A have 2273.6 subtracted to give the residual and observations from Cover B
have 2412.8 subtracted. We can plot the residuals against the group means to get an idea of whether
the variabilities change from group to group. Such a plot is given in Figure 9.1. An alternative
method for evaluating whether the variabilities are constant over the groups is too compare the s2

i s.
But remember, there is natural variability among the s2

i s, even when the variances of all observations
are the same. There is some hint that the group variance tends to increase as the group means get
larger. This is not an uncommon phenomenon. We might reanalyze the data by replacing each ob-
servation with its square root or, alternatively, replacing each observation with its logarithm. These
might eliminate the problem. However, in the current case, the evidence for increasing variances is
not so strong that a corrective measure really seems necessary.
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Figure 9.2: Vinyl Floor Covering: Residuals versus normal scores, W ′ = 0.992

We can also perform a residual plot to evaluate the normality of the data. Figure 9.2 is a normal
plot of the residuals. If the data are normal, the normal plot should be approximately straight. This
plot looks quite good. 2

9.1.1 ANOVA and Means Charts

The data required for a one-way ANOVA and the data required for a means chart have identical
structures. In both cases we have various groups and a collection of observations from each group.
In typical one-way ANOVA problems the number of groups tends to be rather small and the number
of observations in each group somewhat larger. In a typical means chart the number of groups is
large and the number of observations in each group is relatively small. But one-way ANOVA can
be applied any time there are groups and observations within groups. In this subsection we review
the one-way ANOVA procedures while introducing more terminology, mathematical notation, and
generalizations. We also relate ANOVA to means charts.

The basic idea of a means chart in statistical process control is to evaluate whether the data
appear to be a random sample from some population. If data form a random sample, we can use
them to predict future behavior of the process. In one-way ANOVA we exploit a formal statistical
test of this idea.

The blood pressure data given in Table 4.2 are repeated in Table 9.3. We have 19 groups of 4
observations. More generally, we will think about having a groups, each with N observations, say
yi j, i= 1, . . . ,a, j = 1, . . . ,N. (In means charts we called the number of groups n because that was the
number of points we were plotting. Now we use a.) We want to test the model that the observations
are iid which typically includes that they are (a) all independent, (b) all have the same mean value,
say, µ , (c) all have the same variance, say, σ2. Frequently we also assume that (d) they all have
normal distributions. Our test focuses on the possibility that observations in different groups have
different mean values, say, µi for group i. In the context of control charts, the groups are formed
from rational subgroups, i.e., observations that are taken under essentially identical conditions, so
observations should have the same mean within each group.
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Table 9.3: Nineteen Samples of Systolic Blood Pressures

Group Data N ȳi· si Range
1 105 92 98 98 4 98.25 5.32 13
2 95 96 84 93 4 92.00 5.48 12
3 90 97 97 90 4 93.50 4.04 7
4 90 88 86 90 4 88.50 1.915 4
5 100 92 92 90 4 93.50 4.43 10
6 78 82 82 84 4 81.50 2.52 6
7 90 83 83 87 4 85.75 3.40 7
8 95 85 88 90 4 89.50 4.20 10
9 92 90 87 85 4 88.50 3.11 7

10 84 85 83 92 4 86.00 4.08 9
11 90 87 84 90 4 87.75 2.87 6
12 93 88 90 88 4 89.75 2.36 5
13 92 94 87 88 4 90.25 3.30 7
14 86 87 91 88 4 88.00 2.16 5
15 90 94 94 82 4 90.00 5.66 12
16 95 95 87 90 4 91.75 3.95 8
17 96 88 90 84 4 89.50 5.00 12
18 91 90 90 88 4 89.75 1.258 3
19 84 82 90 86 4 85.50 3.42 8

Total 76 89.434 4.848 7.947

More mathematically, we assume (a) that the yi js are all independent, (b) that E(yi j) = µ , versus
the possibility that E(yi j) = µi, (c) that Var(yi j) = σ2, and the least important of the assumptions is
(d) yi j ∼N(µi,σ

2). Dropping only the normality assumption gives us a model with weaker assump-
tions that leads us to everything except the exact distribution of the F statistic. The weaker one-way
ANOVA model is

yi j = µi + εi j; εi js iid, E(εi j) = 0, Var(εi j) = σ
2,

with the F test focusing on the additional assumption [null hypothesis] µi = µ for all i.
As illustrated in Table 9.3, from each group of observations we compute two summary statistics,

the sample mean

ȳi· ≡
yi1 + yi2 + · · ·+ yiN

N
and the sample variance

s2
i ≡

(yi1− ȳi·)
2 +(yi2− ȳi·)

2 + · · ·+(yiN− ȳi·)
2

N−1
.

The ȳi·s estimate the mean value µi from each group. In particular, E(ȳi·) = µi, Var(ȳi·) = σ2/N,
and, if the data are normally distributed,

ȳi· ∼ N(µi,σ
2/N).

The s2
i s estimate the variance of the observations in the ith group which by assumption is σ2, i.e.,

E(s2
i ) =σ2. We are also assuming that all of the observations are independent, from which it follows

that each group of observations is independent of every other group of observations, which in turn
implies that the pairs (ȳ1·,s2

1),(ȳ2·,s2
2), . . . ,(ȳa·,s2

a) are all independent. In particular the ȳi·’s are
independent, with the same variance σ2/N, but possibly different mean values µi. These are almost
a random sample. In fact, the ȳi·s would be a random sample of size a if they had the same mean
value and that is exactly what we want to test. Similarly, the s2

i s are a random sample, so taking their
sample mean is appropriate.

We will combine the s2
i s into a relatively obvious estimate of σ2 and then we will use the ȳi·’s,

along with the assumption that µi = µ for all i, to get a less obvious estimate of σ2.



132 9. EXPERIMENTAL DESIGN

Getting right to the chase, compute the mean squared error

MSE ≡ s2
p ≡

s2
1 + s2

2 + ·+ s2
a

a
. (9.1.1)

Alternatively, s2
p is sometimes used to indicate that the variance estimates have been “pooled” into

one estimate, the subscript “p” indicating that it is a pooled estimate of the variance. For the blood
pressure data,

MSE ≡ s2
p =

275.1
19

= 14.48.

Combining the degrees of freedom for each estimate gives dfE = a(N − 1) which for the blood
pressure data is 19(4−1) = 57.

Also compute
MSGrps≡ Ns2

ȳ , (9.1.2)

where s2
ȳ is the sample variance computed from the ȳi·s, i.e.,

s2
ȳ ≡

(ȳ1·− ȳ··)2 +(ȳ2·− ȳ··)2 + · · ·+(ȳa·− ȳ··)2

a−1
=

∑
a
i=1(ȳi·− ȳ··)2

a−1
. (9.1.3)

Here ȳ·· is the sample mean of the ȳi·s. For the blood pressure data it is

ȳ·· = 89.434

and we get
s2

ȳ ≡ 13.025,

so
MSGrps = 4(13.025) = 52.1.

MSGrps has the same degrees of freedom as s2
ȳ , i.e., df Grps ≡ a− 1. For the blood pressure data

that is 19−1 = 18 degrees of freedom for the groups.
When the µis all equal µ , the ȳi·s are independent observations with E(ȳi·) = µ and Var(ȳi·) =

σ2/N, so s2
ȳ estimates σ2/N, i.e.,

E(s2
ȳ) = σ

2/N

and MSGrps estimates σ2, i.e.,

E(MSGrps) = N(σ2/N) = σ
2.

For the blood pressure data, the 19 values of ȳi· are each one observation from a population with
variance σ2/4.

The model is that all observations are independent, that the variances of all observations are the
same, and that the observations all have the same mean value. If this model is correct, MSGrps and
MSE should be estimating the same number, σ2. Their ratio, F ≡MSGrps/MSE, should be about
1. Of course there will be variability associated with the F statistic. In particular, when the data
have normal distributions, the F statistic will have an F distribution. Formally, the α = .05 level test
would be to reject the model if

MSGrps
MSE

> F(1−α,a−1,a(N−1)).

For the blood pressure data F = 3.60 and F(1−α,a−1,a(N−1)) = F(.95,18,19(4−1)) = 1.788,
so the model is rejected. The idea is that if MSGrps/MSE is too big to reasonably come from the F
distribution determined by the model, then something must be wrong with the model. The data are
not iid.
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One thing that could be wrong with the model is that µi 6= µ for all i. We now examine the F
statistic when this is true. In particular, this violation of the model assumptions tends to make the F
statistic larger than it would be if the assumptions were true. It turns out that in general,

E(MSGrps) = σ
2 +Ns2

µ

where s2
µ is the “sample variance” of the unobservable µis,

s2
µ ≡

(µ1− µ̄·)
2 + · · ·+(µa− µ̄·)

2

a−1
.

Of course s2
µ = 0 if the means are all equal and s2

µ > 0 if they are not. Having different µi’s does not
affect MSE, it still estimates σ2, i.e.,

E(MSE) = σ
2.

It follows that the F statistic is an estimate of

E(MSGrps)
E(MSE)

=
σ2 +Ns2

µ

σ2 = 1+
Ns2

µ

σ2 .

Thus if the means are not equal, F tends to be larger than 1. What makes F much larger than 1,
so that it is easy to tell that the data are not iid, involves some combination of having large group
sample sizes N, a small variance σ2 (which results from having homogeneous material), and large
differences (variability) among the µis. In process control we do not want to reject the iid assumption
unless we need to, so we have N fairly small, we are on a never ending quest to make σ2 smaller,
and we do not want to adjust the process until the changes in the µis are so substantial that we must.
(The smaller the variability σ2, the easier it will be to tell when the process goes off target.) In the
next subsection we discuss how lack of independence can also cause large F statistics.

In our model, we assume that the variances are all the same. (Of course, the sample variance
chart can be used to validate that assumption. The s and R charts are also germane.) Because the
variances are all the same, we can average them to get one overall estimate of the variance. In
situations like the blood pressure data in which every group has the same number of observations,
the simple average gives a good estimate of the variance. If we had 4 observations on one group and
40 observations on another group, the second group would give us a much better estimate of the
common variance σ2 than the first, so a simple average is no longer appropriate. We now generalize
the one-way ANOVA F test to handle unequal sample sizes.

If the different groups have different numbers of observations, say, Ni observations in group i, we
need to weight the estimates based on how much information they contain about σ2. For technical
reasons, each sample variance s2

i is essentially based on the equivalent of Ni−1 observations, so the
weighted average variance estimate becomes

MSE ≡ s2
p ≡

(N1−1)s2
1 +(N2−1)s2

2 + ·+(Na−1)s2
a

(N1−1)+(N2−1)+ ·+(Na−1)
.

Note that when the Nis are all the same, i.e., Ni = N for all i, this weighted average is just the same
as the simple average (9.1.1).

The ith group has Ni observations, so s2
i has Ni − 1 degrees of freedom. When pooling the

variance estimates, we get to add the degrees of freedom, so MSE has Error degrees of freedom,

dfE ≡ (N1−1)+ · · ·+(Na−1) = (N1 + · · ·+Na)−a.

Alas, the MSGrps is not nearly as intuitive when the sample sizes are different,

MSGrps≡ ∑
a
i=1 Ni(ȳi·− ȳ··)2

a−1
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Table 9.4: Analysis of Variance for the Blood Pressure Data of Table 9.3

Analysis of Variance
Source df SS MS F P
Groups 18 937.4 52.1 3.60 0.000

Error 57 825.3 14.5
Total 75 1762.7

where, if we now define n≡ N1 + · · ·+Na,

ȳ·· ≡
∑

a
i=1 Niȳi·

n
=

∑
a
i=1 ∑

Ni
j=1 yi j

n
.

Again, MSGrps reduces to the formulae (9.1.2) and (9.1.3) when the group sizes are equal. In
particular, the grand mean for equal Nis simplifies to

ȳ·· =
ȳ1·+ ȳ2· · · ·+ ȳa·

a
.

Again, if the model with equal means and normal distributions is correct, the F =MSGrps/MSE
statistic is one observation from an F distribution, i.e.,

MSGrps
MSE

∼ F(a−1,dfE).

A formal α level test is to reject the model if the observed F statistic is larger than (1−α)100% of
all observations from the F(a−1,dfE) distribution, i.e., if

MSGrps
MSE

> F(1−α,a−1,dfE).

Even without normal distributions the rationale that F should be about 1 for iid data remains valid.

EXAMPLE 9.1.2 Blood Pressure Data
From the summary statistics given in Tables 4.2 and 9.3, the ANOVA computations are made. The
analysis of variance table is given in Table 9.4. Although the F statistics of 3.60 is smaller than
the vinyl covers F of 4.29, this test more clearly shows differences between the groups because it
has a P value of 0.000. This test has 18 and 57 degrees of freedom, so the F distribution is more
concentrated near 1 than is the F(2,27) distribution appropriate for the vinyl covers. 2

We conclude this subsection with two additional examples of data for means charts that will be
revisited in Section 2.

EXAMPLE 9.1.3 Hopper Data
The data were presented in Table 4.13 and discussed in Exercise 4.8.16. Summary statistics were
given in Table 4.14. The ANOVA table is given in Table 9.1.5. A plot of residuals versus group
means is given in Figure 9.1.3. The control charts from Exercise 4.8.15 as well as the F test show
clearly that the process is out of control. Something is wrong. Perhaps a fishbone diagram could
help sort out possible causes. 2

EXAMPLE 9.1.4 Injection Data
Exercise 4.8.16 examined the outside diameters of injection molded bottles in which each sample
consisted of the bottles made from the four heads of the injection molding machine. The data are in
Table 4.15 with summary statistics in Table 4.16 and are plotted in Figure 9.4. The ANOVA table
is given in Table 9.6. A residual plot is given in Figure 9.5. Neither the charts from Exercise 4.8.16
nor the F test given here show a problem, unless you quite properly worry about the P value for
the F test being too big. P values near 0 indicate strong effects, but P values near 1 also indicate
something strange is going on, as we will see in Section 2. 2
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Table 9.5: Analysis of Variance for Hopper Data

Analysis of Variance
Source df SS MS F P
Days 19 296380 15599 18.25 0.000
Error 40 34196 855
Total 59 330576
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Figure 9.3: Residual Plot, Hopper data, one factor

9.1.2 Advanced Topic: ANOVA, Means Charts, and Independence

The most commonly used charts are probably the means charts. They are used to detect changes in
the mean of the process. Means charts are constructed based on the assumption that the variance in
each group is the same and then use some measure of average variance to determine the width of
the control limits. It is not hard to see that if a group has much greater variability than average, it
has an increased chance that the group sample mean will exceed the control limits, even if the group
population mean is the same as all the other means.

More subtly, means charts are also sensitive to a lack of independence, or at least they are sen-
sitive to positive correlations among the observations within the groups. Center lines and control
limits are based on estimates of µ and σ . Without independence, the estimates of µ are still reason-
able but lack of independence can cause major problems in the estimate of σ . For example, in the

Table 9.6: Analysis of Variance: Injection Data

Analysis of Variance
Source DF SS MS F P
Samples 19 0.021655 0.001140 0.45 0.970
Error 60 0.150300 0.002505
Total 79 0.171955
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Figure 9.5: Residual Plot, Injection Data

means chart, if groups of observations are independent but observations within groups have a con-
stant correlation ρ , then MSE is an unbiased estimate of σ2(1−ρ) rather than of σ2, see Christensen
(1996, p. 240). A similar computation for groups of size N gives Var(ȳi·) = (σ2/N)[1+(N−1)ρ]
rather than σ2/N. If the correlation is substantially greater than zero, the estimate of σ is much too
small while the true variance of the ȳi·s is much larger than the nominal value under independence.
Both of these features tend to show that the process is out of control. First, the estimated control
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limits are inappropriately close to the center line because the estimated control limits approximate
µ ± 3(σ/

√
N)
√

1−ρ rather than µ ± 3(σ/
√

N). Second, even if we knew the value of σ , the
µ ± 3(σ/

√
N) control limits are inappropriately close to the center line because the true standard

deviation of the ȳi·s is (σ/
√

N)
√

1+(N−1)ρ rather than the smaller nominal value of (σ/
√

N).
Thus, if the observations in the groups have a large positive correlation, we are more likely to obtain
observations exceeding the control limits than if the observations were independent. Additionally,
many of the other indicators discussed earlier for a process that is out of control are more likely to
occur when the data are not independent.

Note that the analysis in the previous paragraph also applies to the one-way ANOVA F test.
Even when the population means of the various groups are the same, if the observations within
groups have a correlation near 1, the F statistic tends to be large. MSGrps is N times the sample
variance of the ȳi·s so in this case MSGrps estimates σ2[1+(N−1)ρ]; MSE estimates σ2(1−ρ).
Thus the F statistic estimates

σ2[1+(N−1)ρ]
σ2(1−ρ)

=
[1+(N−1)ρ]

(1−ρ)
,

which is substantially greater than 1 when ρ is near one. It follows that observed F statistics tend
to be large when the observations within groups have a large positive correlation. The F test in Ta-
ble 9.3 is highly significant so the observations within groups may be correlated or the means of the
groups may differ. Without further analysis, one cannot really tell which is the correct conclusion.
In either case however, the process is out of control.

Note that the hopper car data of Example 9.1.3 may be a good example of this phenomenon.
The ANOVA table showed clear day to day differences. However, it is unlikely that the weight of
the car is changing substantially. A more likely explanation is that the three observations made each
day are highly correlated with one another.

9.2 Two-Way ANOVA

One-way ANOVA is a method for determining if there are statistically significant differences be-
tween groups of observations. Sometimes data are structured in a way that allows us to think of two
totally different grouping schemes applied to the same data.

EXAMPLE 9.2.1 Hopper Data
Exercise 4.8.16 and Example 9.1.3 discussed data on the weight of a railroad car measured three
times on each of 20 days. The data were given in Table 4.13. There are two ways to think about
grouping these data. Previously, we thought of each day being a group with 3 observations on each
group. However, we could also think in terms of having 3 groups, i.e., the group consisting of the
20 observations that were made first on the various days, another group of second weighings, and
a third group of 20 third weighings. With groups being Days, we compute the degrees of freedom
and mean square for days just as for a one-way ANOVA, i.e., just as we did in the previous section.
Similarly, with the first, second, and third weighings as groups, we can compute 3 sample means,
each based on 20 observations. The sample variance of these means times 20 is the mean square for
weighings. The total line can be computed as before from the sample variance of all the observations.
The error line is obtained by subtraction, i.e., the df s for Days, Weighings, and Error must add up
to the df for Total, and similarly for the SSs. The MSE is SSE/dfE. F tests for Days and Weighings
are obtained by dividing their mean squares by the MSE. The ANOVA table is given as Table 9.7.
There is no evidence of any systematic differences between the three weighings. As with the means
chart which ignored effects due to weighings and the one-way ANOVA that ignored weighing, the
two-way ANOVA gives clear evidence of day to day differences. A residual plot for the two-way
ANOVA is given as Figure 9.6.

For the hopper data, the order of weighings seemed to have no affect. However, we will see a
different story with the injection molding data.
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Table 9.7: Two-Way Analysis of Variance for Hopper Data

Analysis of Variance
Source DF SS MS F P
Days 19 296380 15599 18.44 0.000
Weighings 2 2049 1024 1.21 0.309
Error 38 32147 846
Total 59 330576
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- * * * *

- * * * * *

- 2 * * * 2 *
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Figure 9.6: Residual Plot, Hopper data, two factors

EXAMPLE 9.2.2 Injection Data
Exercise 4.8.16 and Example 9.1.4 examined the outside diameters of injection molded bottles in
which each sample consisted of the bottles made from the four heads of the injection molding
machine. The data are in Table 4.15. As in our previous example, there are two ways to group the
data. There are 20 samples each with four observations; the analysis we have used in the past. But
we can also think of each head providing a group of 20 observations. The 20 samples provide 19
degrees of freedom for samples and a mean square based on multiplying the variance of the 20
group means by 4. Similarly, the 4 heads provide 3 degrees of freedom for heads and a mean square
based on multiplying the sample variance of the 4 head means by the number of observations in
each group, 20. The Total line is obtained from the sample variance of all 80 observations. The
Error line is obtained by substraction as in the previous example. The ANOVA table is given in
Table 9.8. A residual plot is given as Figure 9.7. In Exercise 4.8.16 and Example 9.1.4 in which the
heads were ignored, there was no reason to suspect that the process was out of control. However, this
analysis gives clear evidence that the four heads are giving bottles with different outside diameters
(P value of 0.000). In this case, we originally thought that the four heads were providing rational
subgroups — observations that were being taken under essentially identical conditions. However,
the two-way ANOVA shows that the heads are making different kinds of bottles, so they do not
provide essentially identical conditions.

The P value due to Samples in Table 9.6 was a suspiciously high 0.970. The large P value was
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Table 9.8: Two-Way Analysis of Variance: Injection Data

Analysis of Variance
Source DF SS MS F P
Samples 19 0.0216550 0.0011397 1.34 0.194
Heads 3 0.1019248 0.0339749 40.03 0.000
Error 57 0.0483750 0.0008487
Total 79 0.1719548

ehat
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Figure 9.7: Residual Plot, Injection Data, two factors

caused by a problem with the iid model. The heads give different results and those differences were
incorporated into the Error of Table 9.6. In Table 9.7 we separated the previous Error into two parts,
one for Heads and a new Error. The new Error is substantially smaller than the old Error because
it no longer incorporates the Head differences. Missing an important factor like that caused the F
statistic in Table 9.6 to get unusually small (with an unusually large P value). 2

9.3 Basic Designs

9.3.1 Completely randomized designs

The basic idea of a completely randomized design is that a collection of experimental material is
prepared and then experimental treatments are randomly assigned to the material. (Equivalently, the
material can be randomly assigned to the treatments.) At the beginning of the chapter we discussed
an experiment reported by Phillips et al. (1998) that involved tearing pieces of vinyl floor covering.
The material to be tested was thoughtfully chosen, carefully prepared, and randomly assigned to
different machine operators.

The standard analysis for a completely randomized design is a one-way ANOVA with the treat-
ments defining the groups. In addition to the experiment discussed above that allows evaluation
of the four operators, Phillips et al. (1998) also reported the data of Example 9.1.1 on tear mea-
surements for three different types of vinyl floor covering. The background for these data was not
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reported as carefully as it was for the other data they report. (The data were not as important to
the goal of their article.) But we can presume that it was collected using a completely randomized
design, so Example 9.1.1 illustrates the beginning of an analysis for these data. A complete analysis
involves carefully evaluating the assumptions made in analyzing the data and adjusting the analysis
if any of the assumptions seem invalid. A complete analysis would also not end with establishing
that there are differences among the groups. A complete analysis should characterize the differences
among the groups. In this case, from looking at the group means it is pretty clear that the primary
source of differences between the floor coverings is that Cover B has larger tear values than the
other covers. However, statistical methods are often needed to distinguish between patterns in the
group means that are real and those that are spurious.

9.3.2 Randomized complete block designs

As discussed in the introduction to this chapter, a key method for reducing the variability associated
with comparing experimental treatments is by creating blocks of homogeneous experimental mate-
rial and assigning the treatments to these blocks. A complete block design involves having blocks
that have exactly as many experimental units as there are treatments in the experiment. A random-
ized complete block design randomly assigns the treatments to the units within each complete block.
(Any time the blocks are not large enough to accommodate all of the treatments, an incomplete block
design must be used.)

In the injection molding of Example 9.2.2, if each sample consists of a block of experimental
material and the material were randomly assigned to the four heads, the design would be a random-
ized complete block design.

The analysis for a randomized complete block design uses a two-way ANOVA. The treatments
form one set of groups and the blocks form the other set of groups. For the injection data, the treat-
ments are the four heads and blocks are the 20 samples. We saw in the previous section that there
are clear differences between heads but no significant differences between the samples. As in the
previous subsection, a complete analysis of these data involves carefully evaluating the assumptions
made in analyzing the data and adjusting the analysis if any of the assumptions seem invalid. A com-
plete analysis also involves characterizing any differences among the treatment groups. (Differences
among the blocks are usually of little interest.)

The fundamental idea of blocking is that experimental material within a block should be ho-
mogeneous, i.e., the differences in experimental material should be smaller within blocks than they
are between blocks. That is what reduces the error for treatment comparisons. With a random-
ized complete block design, the differences between blocks are isolated in the analysis, leaving (if
blocks were created well) a smaller means squared error than would otherwise be obtained. In Ex-
ample 9.2.2 we have done a poor job of blocking. The F test for Samples shows that the variability
between blocks is not substantially greater than the variability within blocks. So we have not con-
structed blocks that are going to substantially reduce the variability of our treatment comparisons.
In fairness to the original authors, we should point out that while the injection data may form a
reasonable approximation to a randomized complete block design, the data collection was not orig-
inally set up as a randomized complete block design, so the fact that samples make poor blocks is
not surprising.

9.3.3 Latin Squares and Greco-Latin Squares

Latin Squares take the idea of randomized complete blocks a step further. In a randomized complete
block, you assign each treatment to some experimental unit in each block. Thus if you pick any
block, you observe every treatment within it, but also if you pick any treatment, you have an ob-
servation with that treatment from every block. There are two ways of grouping the data: by blocks
and by treatments.

In a Latin Square design, there are three ways of grouping the data. These are generally referred
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Table 9.9: 3×3 Latin Square

Columns
1 2 3

Rows 1 A B C
2 B C A
3 C A B

Table 9.10: 3×3 Graeco-Latin Square

Columns
1 2 3

Rows 1 Aα Bβ Cγ

2 Bγ Cα Aβ

3 Cβ Aγ Bα

to as rows, columns, and treatments. In a Latin Square, the numbers of rows, columns and treatments
must be the same. The key aspect to a Latin Square is that for every row, you observe both every
treatment and every column. For every column, you observe both every treatment and every row.
For every treatment, you also observe both every row and every column.

Table 9.9 shows a Latin Square design with three rows and three columns. The treatments are
denoted by Latin letters. Note that each letter appears in each row and in each column.

A Greco-Latin Square involves four ways of grouping the data. These are denoted rows,
columns, Latin letters, and Greek letters. Table 9.10 gives a Greco-Latin Square with three rows
and three columns. Note that by ignoring the Greek letters you get a Latin Square in the Latin let-
ters. Also by ignoring the Latin letters, you get a Latin Square in the Greek letters. Finally, every
Greek letter appears exactly once with each Latin letter, and vice versa.

EXAMPLE 9.3.1 Byrne and Taguchi (1989) and Lucas (1994) give data on a Greco-Latin Square
design. The data are values y which measure the force in pounds needed to pull a plastic tube from
a connector. Large values are good. While the information is not of immediate relevance for our
purposes, the data were collected with a condition time of 24 hours, a condition temperature of
72◦F and a condition relative humidity of 25%. There are four grouping factors involved in the
design: rows (A), columns (B), Latin letters (C), and Greek Letters (D). The actual grouping factors
with their group identifications (levels) are listed below.

A : Interference (a0 =Low, a1 =Medium, a2 =High)
B : Wall Thickness (b0 =Thin, b1 =Medium, b2 =Thick)
C : Ins. Depth (c0 =Shallow, c1 =Medium, c2 =Deep)
D : Percent Adhesive (d0 =Low, d1 =Medium, d2 =High)
The actual data are given in Table 9.11.

A partial analysis of variance table is given in Table 9.12. The ANOVA table includes no F tests
because no MSE can be computed from this design. The sums of squares for factors A, B, C, and
D use up all of the Total degrees of freedom and sums of squares. This is a problem that we will

Table 9.11: 3×3 Graeco-Latin Square: Pipe Force Data

b0 b1 b2
a0 c0d0 (15.6) c1d1 (18.3) c2d2 (16.4)
a1 c1d2 (15.0) c2d0 (19.7) c0d1 (14.2)
a2 c2d1 (16.3) c0d2 (16.2) c1d0 (16.1)
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Table 9.12: Analysis of Variance for Pipe Force Data

Analysis of Variance
Source df SS MS
A 2 12.1756 6.0878
B 2 0.5489 0.2744
C 2 6.8356 3.4178
D 2 2.5156 1.2578
Error 0 0.0000 —
Total 8 22.0756

Table 9.13: L9 Orthogonal Array

Average
Run a b c d Thickness

1 0 0 0 0 15.6
4 0 1 1 2 18.3
7 0 2 2 1 16.4
3 1 0 1 1 15.0
2 1 1 2 0 19.7
5 1 2 0 2 14.2
8 2 0 2 2 16.3
6 2 1 0 1 16.2
9 2 2 1 0 16.1

encounter frequently in subsequent chapters. Despite the lack of an Error term and the consequent
inability to perform statistical tests, the 4 factors seem to display some substantial differences in
their sums of squares.

Again examining the ANOVA table, note that if there were no factor D, so that this was a 3×3
Latin Square with only factors A, B, and C, the ANOVA table line for factor D would actually be
an error term. So in a 3× 3 Latin Square we get 2 degrees of freedom for error. Two degrees of
freedom for error makes for a very bad estimate of variability, but it is better than nothing. More
importantly, two degrees of freedom for error suggest that we could run several similar 3×3 Latin
Squares and in the analysis pool the estimates of error, and thus obtain a good estimate of variability,
cf. Christensen (1996, Secs. 9.3 and 11.4).

In later chapters Greco-Latin Squares will rear their ugly heads in another guise. Table 9.11 can
be rewritten as Table 9.13. Note that the treatments and data are exactly the same in the two tables.
The method of writing a 3×3 Greco-Latin Square used in Table 9.13 is also referred to as a Taguchi
L9 orthogonal array.

Below is a further breakdown of the ANOVA table. The left side fits a regression model

yhi jk = β0 +βAh+βBi+βC j+βDk++βA2h2 +βB2i2 +βC2 j2 +βD2k2 + εhi jk.

Notice that adding the two sums of squares for each letter gives the sum of squares presented in
Table 9.12. The large sums of squares in Table 9.12 are largely due to one of the two pieces in this
table. If anything is going on in C, it is is pretty much a linear trend over the three levels. If anything
is going on in A it is largely because the middle level is not behaving like the average of the high
and low levels.
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Table 9.14: Aceves-Mijares et al. 3×3: Graeco-Latin Square.

Columns
1 2 3

Rows 1 Aα (0) Bβ (97.9) Cγ (112.8)
2 Bγ (3) Cα (208.6) Aβ (104.3)
3 Cβ (47.9) Aγ (55.6) Bα (438.7)

b0 b1 b2
a0 c0d0 (0) c1d1 (97.9) c2d2 (112.8)
a1 c1d2 (3) c2d0 (208.6) c0d1 (104.3)
a2 c2d1 (47.9) c0d2 (55.6) c1d0 (438.7)

Table 9.15: Aceves-Mijares et al. (1996): L9 Orthogonal Array.

Average
Run A B C D Thickness

1 0 0 0 0 0
4 1 0 1 2 3
7 2 0 2 1 47.9
3 0 2 2 2 112.8
2 0 1 1 1 97.9
5 1 1 2 0 208.6
8 2 1 0 2 55.6
6 1 2 0 1 104.3
9 2 2 1 0 438.7

Regression on y
Predictor Coef SEQ SS Predictor SEQ SS
βA 4.90000 0.00667 βA 0.007
βB −0.649999 0.48167 βB 0.482
βC 1.20000 6.82666 βC 6.827
βD −1.10000 2.40667 βD 2.407
βA2 −2.46667 12.16889 βAB 0.090
βB2 0.183333 0.06722 βBC 8.670
βC2 −0.0666664 0.00889 βCD 1.562
βD2 0.233334 0.10889 βDA 2.032
Constant (β0) 15.6000

The right side of the tabulation fits a model

yhi jk = β0 +βAh+βBi+βC j+βDk++βABhi+βBCi j+βCD jk+βDAki+ εhi jk.

For these data, it does not tell as clear a story but note that the sums of squares for A2, B2, C2, and
D2 sum to the same total as the sum of squares for AB, BC, CD, and DA and that the results for the
constant, A, B, C, andD are identical (up to roundoff).

9.3.3.1 Additional Example of a Graeco-Latin Square

Aceves-Mijares et al. (1996) give the data in Tables 9.14 and 9.15. The tables provides three alterna-
tive methods of denoting the treatments. Aceves-Mijares et al. make no distinction between α and
γ , or if you prefer, between d0 and d2.

9.4 Factorial treatment structures

Often, more than one factor is of interest in an experiment. For example, when making a fabric,
the wear can be effected by both the surface treatment of the fabric and the type of fill used. When
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Table 9.16: Surface finish from a lathe.

Speed Feed Finish Speed Feed Finish
−1 −1 7 −1 −1 9
−1 0 77 −1 0 77
−1 1 193 −1 1 190

0 −1 7 0 −1 9
0 0 75 0 0 80
0 1 191 0 1 191
1 −1 9 1 −1 18
1 0 79 1 0 80
1 1 192 1 1 190

Table 9.17: One-Way Analysis of Variance for Surface Finish Data.

Analysis of Variance
Source df SS MS F
Treatments 8 100718 1799 223
Error 9 64 7
Total 17 100782

evaluating waterproofing of a fabric, both the laundry washing the fabric and the laboratory test-
ing the fabric may effect results. In evaluating the results of a spectrometer, both the status of the
window and the status of the boron tip may be important. When more than one factor is of interest
in an experiment, there is an effective method for defining treatments, i.e., make the treatments all
combinations of the factors involved. For example, for a spectrometer, the boron tip may be new or
used and the window may be clean or soiled. The factorial treatment structure involves 4 treatments
obtained by crossing the two levels of the tip with the two levels of the window. Thus, the treat-
ments are: New-clean, New-soiled, Used-clean, Used-soiled. This is referred to as a 2×2 factorial
treatment structure, where 2×2 = 4 is the number of treatments.

There are two advantages to factorial treatment structures as opposed to running experiments
for each factor individually. First, running individual experiments may be misleading. If the effect
of the boron tip changes depending on whether the window is clean or soiled, you cannot find that
out by running an experiment only on the boron tip. Second, if the effect of the tip does not depend
on the window status (and conversely, the effect of the window status does not depend on the boron
tip), then one experiment using a factorial treatment structure gives as much information on both the
tip and the window as does an experiment on the windows and a separate experiment on the boron
tips.

EXAMPLE 9.4.1 3×3 Factorial.
Collins and Collins (1994) report data on the surface finish of a bar that has been lathed. The surface
finish is measured as the distance a probe moved vertically as it was drawn across the bar horizon-
tally. Higher readings indicate rougher surfaces. We can think of this as a completely randomized
design with 9 treatments, however the 9 treatments are defined as all combinations of two factors
each having three levels. The first factor is the speed of the lathe with three levels: 2500, 3500, or
4500 rpm. The second factor is the rate of feed for the tool with the three levels 0.001, 0.005, and
0.009 inches per revolution of the lathe. The data are given in Table 9.16. The one-way ANOVA
table is given as Table 9.17. The F statistic is huge, so there are some differences among the 9
treatments.

As discussed earlier in this chapter, examining the ANOVA table is really only the beginning of
a data analysis. A complete analysis involves evaluating assumptions and comparing the treatments.
While a detailed examination of such issues is beyond the scope of this book, we now take an
intermediate step – we break the line in the ANOVA table for treatments up into components for
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Table 9.18: Factorial Analysis of Variance for Surface Finish Data.

Analysis of Variance
Source DF SS MS F P
speed 2 25 13 1.76 0.227
feed 2 100670 50335 7078.38 0.000
speed*feed 4 23 6 0.80 0.556
Error 9 64 7
Total 17 100782

the different factors in the treatment structure. In this case, we have lines for speeds, the feeds,
and interactions between the speeds and feeds. Interaction, evaluates whether the effects of speeds
changes depending on what feed is being used, or equivalently, it evaluates whether the effects of
feeds changes depending on what speed is being used. Table 9.18 gives the expanded ANOVA table.

To compute the expanded ANOVA table, first ignore the feeds altogether. Pretend that this is
an experiment with only three treatments: the three speeds. Compute group means for the three
speeds, and perform the usual one-way ANOVA computation, i.e., find the sample variance of the
three speed means and multiply by the number of observations that went into each speed mean. This
process gives the mean square for speeds with 3− 1 = 2 degrees of freedom and a sum of squares
obtained by multiplying the the degrees of freedom and the mean square. A similar computation
gives the df , MS, and SS for feeds. Finally, the interaction is that part of the Treatments from
Table 9.17 that is left over after isolating the speed and feed effects. In other words, the interaction
sum of squares is obtained by subtracting the speed sum of squares and the feed sum of squares
from the sum of squares for treatments. The interaction degrees of freedom are found by a similar
subtraction. F tests in Table 9.18 are computed as the ratio of the means squares for speed, feed, and
interaction divided by the MSE. In evaluating Table 9.18, the first order of business is to examine
the interaction. A significant interaction means that the effects of speeds change depending on what
feed is used (and that the effect of feeds depend on what speed is used). If there is interaction, there
must be effects for both speeds and feeds. If the effects of speeds change depending on what feed
is used then there must be some effect for speeds and if they can change with feeds, the feeds are
obviously affecting the results also.

The line in the ANOVA table for speeds examines whether there are speed effects when averag-
ing over the feeds used in the experiment. If there is no interaction, the speed effects do not depend
on feeds, so this just measures the speed effects. If there is interaction, there really is nothing we can
call speed effects. When there is interaction, speed effects change depending on feeds. Therefore,
when there is interaction, looking at speed affects by averaging over the feeds is typically not a very
useful thing to do. For these data, there is no evidence of interaction so looking as speed effects is
reasonable. Similarly, looking at feed effects is only reasonable when there is no interaction. From
Table 9.18, we see no effect for speeds but a substantial effect for feeds. It would be appropriate
now to examine specific comparisons between the results of using the different feeds.

Finally, we should evaluate the assumptions. Figures 9.8 and 9.9 give residual plots for the
analysis. The normal plot looks fine, but the residual plot versus predicted values suggests that the
variances are decreasing with the size of the predicted values. Table 9.19 contains the data, residuals,
and fitted values. 2

To conclude we examine a much more challenging experimental design that involves 4 factors
each at 2 levels.

EXAMPLE 9.4.2 24 Factorial.
Collins and Collins (1994, qe94-559) also looked at surface finish in another experiment with four
factors each at two levels. This involved a computer controlled lathe that is fed a bar of stock a
certain number of inches per revolution while a tool cuts it. A collet holds the stock in place. The
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Figure 9.8: Normal Plot of Surface Finish Data
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Figure 9.9: Residual Plot of Surface Finish Data

four factors and their levels are given in Table 9.20. The data involve two replications of the 16
treatments and are given in Table 9.21. Examining the data, there is little need for a formal analysis.
y measures roughness and all of the smallest measures are associated with having Feed at 0.003 and
a tight Collet. Nonetheless we will use this example to illustrate some tools for analysis.

An ANOVA conducted on the raw data resulted in the residuals versus predicted values plot of
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Table 9.19: Residuals and Fitted Values: Surface Finish Data

Case Speed Feed y ê ŷ
1 −1 −1 7 −1.0 8.0
2 −1 0 77 0.0 77.0
3 −1 1 193 1.5 191.5
4 0 −1 7 −1.0 8.0
5 0 0 75 −2.5 77.5
6 0 1 191 0.0 191.0
7 1 −1 9 −4.5 13.5
8 1 0 79 −0.5 79.5
9 1 1 192 1.0 191.0

10 −1 −1 9 1.0 8.0
11 −1 0 77 0.0 77.0
12 −1 1 190 −1.5 191.5
13 0 −1 9 1.0 8.0
14 0 0 80 2.5 77.5
15 0 1 191 0.0 191.0
16 1 −1 18 4.5 13.5
17 1 0 80 0.5 79.5
18 1 1 190 −1.0 191.0

Table 9.20: Surface Finish Factors

Levels
Factor −1 1 Units
Speed 2500 4500 rpm
Feed 0.003 0.009 in./rev.

Collet Loose Tight
Tool Wear New After 250 parts

Figure 9.10. The plot looks like evidence that the variability increases with the mean values, al-
though the impression is almost entirely due to the large discrepancy between the two observations
273 and 691 corresponding to high speed, low feed, loose collet, and a new tool. As a corrective
measure we analyzed the reciprocals of the square roots of the data, i.e., 1/

√
y. Since y is a mea-

sure of roughness, 1/
√

y is a measure of smoothness. A one-way ANOVA for 24 = 16 treatments
on the transformed data results in the much more attractive residual – predicted value plot given

Table 9.21: Surface Finish

Speed Feed Collet Wear Finish Speed Feed Collet Wear Finish
1 1 1 1 216 1 1 1 1 217
−1 1 1 1 212 −1 1 1 1 221

1 −1 1 1 48 1 −1 1 1 39
−1 −1 1 1 40 −1 −1 1 1 31

1 1 −1 1 232 1 1 −1 1 235
−1 1 −1 1 248 −1 1 −1 1 238

1 −1 −1 1 514 1 −1 −1 1 437
−1 −1 −1 1 298 −1 −1 −1 1 87

1 1 1 −1 238 1 1 1 −1 245
−1 1 1 −1 219 −1 1 1 −1 226

1 −1 1 −1 40 1 −1 1 −1 51
−1 −1 1 −1 33 −1 −1 1 −1 33

1 1 −1 −1 230 1 1 −1 −1 226
−1 1 −1 −1 253 −1 1 −1 −1 214

1 −1 −1 −1 273 1 −1 −1 −1 691
−1 −1 −1 −1 101 −1 −1 −1 −1 130
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Figure 9.10: Residual Plot for ANOVA on y.

Figure 9.11: Residual Plot for ANOVA on 1/sqrt(y).

in Figure 9.11. (We tried several transformations and 1/
√

y had the nicest residual plot.) The cor-
responding normal plot in Figure 9.12 looks tolerable. It includes too many residuals too close to
0.

In the ANOVA of Table 9.22, the 15 degrees of freedom for the 16 treatments have been divided
into 15 terms. Four are for the average effects of Speed, Feed, Collet, and (Tool) Wear. Six are for
two factor interactions. For example the Speed*Feed interaction looks at whether the average effect
of Speed changed depending on what Feed we are looking at. Another four terms are three fac-
tor interactions. For example the Speed*Feed*Collet interaction looks at whether the Speed*Feed
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Figure 9.12: Normal Plot for ANOVA on 1/sqrt(y).

Table 9.22: Analysis of Variance for 1/
√

y.

Source DF SS MS F P
Speed 1 .0019022 .0019022 14.63 .001
Feed 1 .0187102 .0187102 143.86 .000
Collet 1 .0179270 .0179270 137.83 .000
Wear 1 .0000249 .0000249 0.19 .668
Speed*Feed 1 .0018528 .0018528 14.25 .002
Speed*Collet 1 .0001504 .0001504 1.16 .298
Speed*Wear 1 .0000473 .0000473 0.36 .555
Feed*Collet 1 .0168288 .0168288 129.39 .000
Feed*Wear 1 .0000437 .0000437 0.34 .570
Collet*Wear 1 .0000454 .0000454 0.35 .563
Speed*Feed*Collet 1 .0002408 .0002408 1.85 .193
Speed*Feed*Wear 1 .0000203 .0000203 0.16 .698
Speed*Collet*Wear 1 .0000009 .0000009 0.01 .935
Feed*Collet*Wear 1 .0000038 .0000038 0.03 .866
Speed*Feed*Collet*Wear 1 .0000002 .0000002 0.00 .967
Error 16 .0020810 .0001301
Total 31 .0598798

interaction changes between a loose and a tight Collet. Finally, the Speed*Feed*Collet*Wear inter-
action looks at whether the Speed*Feed*Collet changes between having a new tool and having a
used tool. All of these interaction descriptions remain valid when changing the factors. For example,
Speed*Feed is also how the Feed effect changes with Speed, the Speed*Feed*Collet interaction is
also how the Speed*Collet interaction changes depending on the Feed rate, etc. If the four-factor
interaction is important, it means that the three factor interactions must exist and be changing, so
there is no point in looking at average three-factor interaction. If the Speed*Feed*Collet interaction
is important then all of the Speed*Feed, Speed*Collet, and Feed*Collet interactions must exist and
be changing. We always investigate the largest interactions first and work our way down. (Down to
lower order interactions but physically up the table.)

In these data the primary interaction that looks important is the Feed*Collet interaction but the
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Speed*Feed interaction also looks significant. With the important interactions being exactly 2 two-
factor interactions that share one common term, the simplest method for interpreting the results is to
fix the level of the common factor Feed and look at the separate effects of Speed and Collet for each
level of Feed. With no missing data we need only look at the Feed-Collet means and the Feed-Speed
means.

Collet Speed
Feed Loose Tight Feed 2500 4500
0.003 0.06786 0.16106 0.003 0.12978 0.09914
0.009 0.06536 0.06683 0.009 0.06620 0.06600

Looking at the Feed-Collet means, it jumps out that the smoothness scores are highest for Feed
0.003 and a tight Collet. The other three scores are all comparable so this is the source of the huge
Feed*Collet interaction. Somewhat less obvious is that we can do better at low Speed. From the
Feed-Speed means there is little Speed effect at the high Feed rate, but for low Feed, smoothness is
higher at Speed 2500 than at Speed 4500. So our formal analysis found us a worthwhile conclusion
about Speed that was not obvious from the raw data. Although if you go back to the raw data you
can see that among the 8 roughness scores with low Feed and tight Collet, the low Speed scores are
always a little lower than the high Speed scores.

The only effect not involved in the important interactions is Wear and Wear has no obvious
effect. 2

9.5 Exercises

Reanalyze all of the rational subgroup data from the Chapter 4 exercises using one-way ANOVA.

EXERCISE 9.5.1. Reanalyze the hopper car data of Table 4.14 as a two-way ANOVA.

EXERCISE 9.5.2. Reanalyze the injection molding data of Table 4.16 as a two-way ANOVA.

EXERCISE 9.5.3. Schneider and Pruett (1994, qe94-348.dat) look at carbon black DBP values
over 12 days with 6 readings per day at 3, 7, and 11, both AM and PM (days start at 3PM). The data
are in Table 6.3. Do a time series analysis. Look for day effects and for time within day effects.

EXERCISE 9.5.4. Watch Stuart Hunter’s introduction to Experimental Design: Part 1 and Part 2.

https://www.youtube.com/watch?v=NoVlRAq0Uxs&t=6s
https://www.youtube.com/watch?v=hTviHGsl5ag&t=5s


Chapter 10

2n factorials

10.1 Introduction

Often in industrial experimentation there are many factors that need to be explored, accompanied
by high costs for obtaining data and limited budgets. When many factors are involved, the number
of treatments becomes large, so it may be impractical to obtain data on all combinations of the
factors. Even worse, with many treatments it will be impractical to obtain appropriate replications
on the treatments so that a truly valid estimate of the error can be obtained. In such cases, we need
methods for defining appropriate subsets of the treatments so that observations on these treatment
subsets will provide the information necessary to proceed.

We begin with a number of examples of such problems.

EXAMPLE 10.1.1. Taguchi (1987, qe94-319) and Box and Bisgaard (1994) discuss a study to
find factors that increase the viscosity of sodium silicate. Nine factors were considered.

Level
Label Factor 0 1
A Silica sand type #5 #6
B Reaction time 4 hr 5 hr
C Agitation 100 150
D Reaction temperature 190±3◦C 180±3◦C
E Rate of temperature increase 30−35◦C/min 15−20◦C/min
F Relative excess of silica sand 20% 10%
G Active carbon type T3 3A
H Quantity of active carbon 0.13% 0.06%
J Evacuated water temperature 80±5◦C 40±5◦C

A factorial experiment would involve 29 = 512 treatments. This is a completely unwieldy number.
Instead, it was decided to examine only 16 treatments. With 16 observations, and thus 16 degrees
of freedom, 1 df is associated with the grand mean (intercept) and 9 are associated with the main
effects. That leaves 6 degrees of freedom for doing other things. If there is no interaction, the 6
degrees of freedom would constitute error. 2

EXAMPLE 10.1.2. Shina (1991) and Lawson and Helps (1996) [q96-467.dat] consider a study
on eight factors that affect a wave-soldering process for printed circuit boards. The factors are A:
Preheat Temperature; B: Wave Height; C: Wave Temperature; D: Conv. Angle; E: Flux; F: Direction;
G: Wave width. Each factor had two levels being considered so a full factorial involves 28 = 256
treatments. Instead, only 32 treatments were examined. 2

EXAMPLE 10.1.3. Sarkar (1997) [qe97-529.dat] examined cleaning efficiencies. The experiment
involved five factors: feed rate, setting angle, setting distance, feed setting, and opener setting. A
full factorial would involve 25 = 32 treatments. Only 16 treatments were actually run. 2

EXAMPLE 10.1.4. Ferrer and Romero (1995) [qe95-750.dat] examined an experiment designed

151
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Table 10.1: Hare’s 1/2 rep. from a 25

Batch Treatment Batch Treatment
1 a0b0c0d1e1 9 a0b1c1d1e1
2 a1b0c1d1e1 10 a1b1c0d1e1
3 a1b1c0d0e0 11 a0b0c1d1e0
4 a1b0c1d0e0 12 a0b0c0d0e0
5 a0b1c0d0e1 13 a1b0c0d0e1
6 a0b0c1d0e1 14 a1b1c1d0e1
7 a0b1c0d1e0 15 a1b0c0d1e0
8 a1b1c1d1e0 16 a0b1c1d0e0

to improve the adhesive force between polyurethane sheets used in inner linings of various equip-
ment. The factors involved are A: amount of glue; B: predrying temperature; C: tunnel temperature;
D: pressure. Reducing the amount of glue or tunnel temperature can save the manufacturer big
bucks. In this case the full factorial of 24 = 16 treatments were run, but no replication was per-
formed. 2

Our primary example follows.

EXAMPLE 10.1.5. Hare (1988) examined data on excessive variability in the taste of a dry soup
mix. The source of variability was identified as the ‘intermix’, a component of the overall mixture
that contained flavorful ingredients such as vegetable oil and salt. Five factors were thought to be of
potential importance. Factor A was the number of ports for adding vegetable oil to the large mixer in
which intermix is made. This could be either 1 (a0) or 3 (a1). Factor B was the temperature at which
the mixture was produced. The mixer could be cooled by circulating water through the mixer jacket
(b0) or the mixer could be used at room temperature (b1). Factor C was the mixing time: either 60
seconds (c0) or 80 seconds (c1). Factor D was the size of the intermix batch: 1500 pounds (d0) or
2000 pounds (d1). Factor E was the delay between making the intermix and using it in the final soup
mix. The delay could be either 1 day (e0) or 7 days (e1). With 5 factors each at two levels, there are
25 = 32 different treatments. For example, one of the treatments is the combination of factor levels
a0b1c0d1e0, i.e., one port, mixing at room temperature, 60 seconds of mixing, 2000 pounds of mix,
and using the intermix immediately. In fact, these happen to be the standard operating conditions for
making intermix. Because the experiment is concerned with variability, several observations were
needed for each treatment so that the variance could be estimated reasonably. As a result, it was
decided that only 16 of the possible 32 treatments could be considered. Table 10.1 contains a list
of the treatments that were actually run. (Standard operating conditions were run in batch 7. The
treatments were randomly assigned to the batches.) 2

When only 16 of 32 possible treatments are examined, it is referred to as a 1/2 replicate of a 25

design. (25× (1/2) = 16 treatments.) If only 8 of the 32 treatments are examined, the design would
be a 1/4 replicate. (25× (1/4) = 8 treatments.) Sometimes these are referred to as 25−1 and 25−2

designs, respectively.
In this chapter we present a brief introduction to methods for defining and analyzing appropriate

fractional replications of experiments in which there are f factors each at 2 levels, i.e., 2 f experi-
ments. Most of our efforts will be devoted to examining fractional replications that involve n = 2 f−r

observations for some r. Frequently in a 2 f experiment, we will be interested only in estimating the
f main effects. To do this one could get by with as little as f + 1 observations. The number of
observations is the number of degrees of freedom available. One degree of freedom is always asso-
ciated with the grand mean (intercept), and there is one degree of freedom necessary for estimating
each of the main effects. Plackett and Burman (1946) presented designs based on Hadamard matri-
ces that allow efficient estimation of main effects. For a Placett-Burman/Hadamard design to exist,
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Table 10.2: Two groups obtained from a 25 based on ABCDE

Even Odd
a0b0c0d0e0 a0b0c0d0e1
a0b0c0d1e1 a0b0c0d1e0
a0b0c1d0e1 a0b0c1d0e0
a0b0c1d1e0 a0b0c1d1e1
a0b1c0d0e1 a0b1c0d0e0
a0b1c0d1e0 a0b1c0d1e1
a0b1c1d0e0 a0b1c1d0e1
a0b1c1d1e1 a0b1c1d1e0
a1b0c0d0e1 a1b0c0d0e0
a1b0c0d1e0 a1b0c0d1e1
a1b0c1d0e0 a1b0c1d0e1
a1b0c1d1e1 a1b0c1d1e0
a1b1c0d0e0 a1b1c0d0e1
a1b1c0d1e1 a1b1c0d1e0
a1b1c1d0e1 a1b1c1d0e0
a1b1c1d1e0 a1b1c1d1e1

the number of observations must be a multiple of 4 but does not need to be a power of 2. Most
Plackett-Burman designs are not very good for exploring interactions whereas 2 f−r designs make
it relatively easy to determine what interaction information is available. We will spend consider-
able time exploring interactions. A more detailed discussion of these topics is given in Christensen
(2017) which includes a modified version of material available in Christensen (1996, Chapter 17).

10.2 Fractional replication

The essence of fractional replication is dividing the 2 f different treatments into equal sized sub-
groups (whose sizes are also powers of 2). For a 1/2 replication, we need two groups. The 1/2
replication involves obtaining data on only one of the two groups. For a 1/4 replication, we need
four groups. The 1/4 replication involves obtaining data on only one of the four groups. For a 1/8
replication, we need eight groups and obtain data on only one of the eight groups. After dividing
the treatments into groups, it does not matter at all which of the groups you actually use, although
some authors like Taguchi, for simplicity, have publicized designs based on one particular group.

Of course if we are only looking at half the treatments, we cannot expect to get as much infor-
mation as we would if we looked at all of the treatments. Some of the information is going to be lost
by using fractional replication. We need to keep track of what things we can and cannot learn from
a particular fractional replication. It turns out that many of the effects that we would normally look
at in an analysis of variance are “aliased” with each other. When effects are aliased, you cannot tell
them apart. They are two names for the same thing. So, for example, we might estimate the main
effect for some factor but in a fractional replication it may be impossible to distinguish between that
main effect and some three factor interaction effect. If we determine that this effect is important,
we have no statistical way of determining if it is the main effect that is important or the three factor
interaction that is important. In such a case, the fractional replication will only be useful if we are
prepared to assume that the three factor effect cannot be important.

EXAMPLE 10.2.1. Hare (1988) used the standard method for breaking a 25 into two groups. The
two groups are given in Table 10.2. Hare used the group on the left. The treatments are listed in a
different order than in Table 10.1 because in Table 10.1 the treatments are listed in the random order
in which they were actually run.

At this point the simplest way to tell the two groups in Table 10.2 apart is simply by adding all
the subscripts for the treatments. In other words, for the treatment a0b1c0d1e0 we add the numbers



154 10. 2N FACTORIALS

0+ 1+ 0+ 1+ 0 = 2. For all the treatments on the left hand side, the sum is even. For all the
treatments on the right hand side the sum is odd. 2

Different ways of breaking treatments into groups correspond to different patterns of summing
subscripts. The different patterns of summing the subscripts in turn determine different patterns of
lost information.

In the Hare example, we created the groups using the sum of all of the subscripts for the treat-
ments. By doing so, we lose information on the five factor interaction effect ABCDE. We are using
all of the subscripts so this effect involves all of the factors. The effect ABCDE also determines
what other information we lose, i.e., it determines the pattern of aliasing. That will be discussed
later in the section on aliasing.

EXAMPLE 10.2.2. Groups for in a 24 experiment
Consider now a 24 experiment with factors A, B, C, D each at two levels. We can use the ABCD
effect to break the treatments into two groups.

ABCD Fractions
ABCD even ABCD odd
a0b0c0d0 a0b0c0d1
a0b0c1d1 a0b0c1d0
a0b1c0d1 a0b1c0d0
a0b1c1d0 a0b1c1d1
a1b0c0d1 a1b0c0d0
a1b0c1d0 a1b0c1d1
a1b1c0d0 a1b1c0d1
a1b1c1d1 a1b1c1d0

On the left the sum of the subscripts for all of the treatments are even, e.g., the sum for treatment
a0b1c1d0 is 0+1+1+0 = 2 which is even. On the right, the sum of the subscripts is always odd.

We can use effects other than ABCD to break the treatments into two groups. If we only wanted
two groups, it is unlikely that we would use any other effect, but to break things down into more
than two groups it is important to understand this concept. For example, we can use the ABC effect
to break the treatments into two groups. In this case, the groups will be determined by the sum of
the subscripts on only the A, B, and C factors. The groups are

ABC Fractions
ABC even ABC odd
a0b0c0d0 a0b0c1d1
a0b1c1d0 a0b1c0d1
a1b0c1d1 a1b0c0d0
a1b1c0d1 a1b1c1d0
a0b0c0d1 a0b0c1d0
a0b1c1d1 a0b1c0d0
a1b0c1d0 a1b0c0d1
a1b1c0d0 a1b1c1d1

On the left we have treatments like a0b1c1d0 with 0+1+1 = 2 and on the right we have a0b1c0d1
with 0+1+0 = 1. In both cases we have ignored the subscript on d when calculating the sum. Note
that since we are ignoring the d subscript, if we have a0b1c1d0 on the left hand side, we also better
have a0b1c1d1 on the left.

A final example uses BCD to break up the treatments. The groups are
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BCD Fractions
BCD even BCD odd
a0b0c0d0 a0b0c0d1
a0b1c1d0 a0b1c1d1
a1b0c1d1 a1b0c1d0
a1b1c0d1 a1b1c0d0
a0b0c1d1 a0b0c1d0
a0b1c0d1 a0b1c0d0
a1b0c0d0 a1b0c0d1
a1b1c1d0 a1b1c1d1

If we want to break the treatments up into four groups, we need to use two defining effects. For
example, we can cross the groupings for ABC and the groupings for BCD. The table below gives
four groups. Any one of the groups can be used as a 1/4 replicate of a 24 experiment.

ABC, BCD Fractions
ABC even ABC odd

BCD even BCD odd BCD even BCD odd
a0b0c0d0 a0b0c0d1 a0b0c1d1 a0b0c1d0
a0b1c1d0 a0b1c1d1 a0b1c0d1 a0b1c0d0
a1b0c1d1 a1b0c1d0 a1b0c0d0 a1b0c0d1
a1b1c0d1 a1b1c0d0 a1b1c1d0 a1b1c1d1

In the first column, the a, b, c subscripts add to an even number and the b, c, d subscripts also
add to an even number. In the second column, the a, b, c subscripts add to an even number but the
b, c, d subscripts add to an odd number. In the third column, the a, b, c subscripts sum to an odd,
and the b, c, d subscripts sum to an even. In the last column, the a, b, c subscripts sum to odd and
the b, c, d subscripts also sum to odd. 2

10.3 Aliasing

As mentioned in the previous section, when we only look at some of the treatment combinations,
we loose the ability to tell various treatment effects apart. We can tell which treatments are aliased
with each other by performing a type of multiplication.

Consider a 1/2 replicate of a 24 in which the groups are determined by the ABCD effect. To
find aliases for an effect, we multiply the effect by ABCD and drop out any factors that get raised
to an even power. Any factors that get raised to an odd power are just left in the product. For
example, the effect A is aliased with A×ABCD = A2BCD = BCD. The effect BC is aliased with
BC× ABCD = AB2C2D = AD. The effect BCD is aliased with BCD× ABCD = AB2C2D2 = A.
Oops, we already knew that!

The entire aliasing structure is given below.
Effect ×ABCD Alias
A = BCD
B = ACD
C = ABD
D = ABC
AB = CD
AC = BD
BC = AD
AD = BC
BD = AC
CD = AB
ABC = D
ABD = C
ACD = B
BCD = A
ABCD —
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Table 10.3: Aliases for a 1/2 rep. from a 25 based on ABCDE

Effect ×ABCDE Alias
A = BCDE
B = ACDE
C = ABDE
D = ABCE
E = ABCD

AB = CDE
AC = BDE
AD = BCE
AE = BCD
BC = ADE
BD = ACE
BE = ACD
CD = ABE
CE = ABD
DE = ABC

If we consider the 1/2 replicate of a 24 with groups determined by BCD, the aliasing structure
is given below.

Effect ×BCD Alias
A = ABCD
B = CD
C = BD
D = BC
AB = ACD
AC = ABD
BC = AD
AD = ABC
BD = C
CD = B
ABC = AD
ABD = AC
ACD = AB
BCD —
ABCD = A

For example ABC×BCD = AB2C2D = AD.
Table 10.3 gives the aliases that apply to Hare’s experiment.
When we create more than two groups in order to get something smaller than a 1/2 replicate,

the aliasing structure becomes more involved. Consider again the groups formed by ABC and BCD
in a 24. The aliases involve both of these defining effects as well as another effect. For a 1/4th
replicate, we need 4 groups so there is going to be 4− 1 = 3 effects involved in aliasing. If we do
a 1/8 replication, this involves creating 8 groups, so there would be 8− 1 = 7 effects involved in
aliasing. We need to be able to identify these other effects. With ABC and BCD defining groups, the
other effect is ABC×BCD = AB2C2D = AD. To see that this makes some sense, observe that we
would get the same four groups if we used, say, ABC and AD to define the groups rather than ABC
and BCD. As illustrated earlier, with ABC and BCD defining groups, the groups of treatments are
as given below.

ABC even ABC odd
BCD even BCD odd BCD even BCD odd
a0b0c0d0 a0b0c0d1 a0b0c1d1 a0b0c1d0
a0b1c1d0 a0b1c1d1 a0b1c0d1 a0b1c0d0
a1b0c1d1 a1b0c1d0 a1b0c0d0 a1b0c0d1
a1b1c0d1 a1b1c0d0 a1b1c1d0 a1b1c1d1
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With ABC and AD defining the groups we get the same four groups.

ABC even ABC odd
AD even AD odd AD odd AD even
a0b0c0d0 a0b0c0d1 a0b0c1d1 a0b0c1d0
a0b1c1d0 a0b1c1d1 a0b1c0d1 a0b1c0d0
a1b0c1d1 a1b0c1d0 a1b0c0d0 a1b0c0d1
a1b1c0d1 a1b1c0d0 a1b1c1d0 a1b1c1d1

We would also get the same four groups if we used AD and BCD to define the groups.
In terms of finding the aliases, the 1/4 replication of a 24 involves collecting data on only four

treatments, so there are only 4− 1 = 3 effects that can really be estimated. To find these, multiply
each effect by all three of the defining effects, ABC, BCD, and AD.

A × ABC = A2BC = BC,

A × BCD = ABCD,

A × AD = A2D = D,

so
A = BC = ABCD = D.

Similarly,
B = AC =CD = ABD

and
C = AB = BD = ACD.

EXAMPLE 10.3.3. 1/8 replication of a 28 experiment
The 28 experiment involves eight factors, call them A through H. A 1/8th replication of the 28 = 256
treatments involves only 32 treatments. The 1/8 = 2−3 replication involves specifying 3 defining
effects, say ABCD, EFGH, and CDEF but with 8 groups there are really 8−1 = 7 effects involved
in aliasing. Multiplying pairs of these defining effects and also multiplying all three of the effects
together give the 4 other effects that implicitly define the 1/8 replication. These other implicit
defining effects are ABEF , CDGH, ABCDEFGH, and ABGH. For example,

ABCD×EFGH = ABCDEFGH.

To find the alias of an effect, multiply the effect by all 7 of these aliasing effects. For A the
aliases are

A = A(ABCD) = A(EFGH) = A(CDEF) = A(ABED)

= A(CDGH) = A(ABCDEFGH) = A(ABGH).

Simplifying gives

A = BCD = AEFGH = ACDEF = BED = ACDGH = BCDEFGH = BGH.

The two-factor effect AB has aliases

AB = AB(ABCD) = AB(EFGH) = AB(CDEF) = AB(ABED)

= AB(CDGH) = AB(ABCDEFGH) = AB(ABGH)

which upon simplification become

AB =CD = ABEFGH = ABCDEF = ED = ABCDGH =CDEFGH = GH.
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Table 10.4: Hare’s 1/2 rep. from a 25 based on ABCDE

Batch Treatment sc sp
1 a0b0c0d1e1 0.43 0.78
2 a1b0c1d1e1 0.52 1.10
3 a1b1c0d0e0 0.58 1.70
4 a1b0c1d0e0 0.55 1.28
5 a0b1c0d0e1 0.58 0.97
6 a0b0c1d0e1 0.60 1.47
7 a0b1c0d1e0 1.04 1.85
8 a1b1c1d1e0 0.53 2.10
9 a0b1c1d1e1 0.38 0.76

10 a1b1c0d1e1 0.41 0.62
11 a0b0c1d1e0 0.66 1.09
12 a0b0c0d0e0 0.55 1.13
13 a1b0c0d0e1 0.65 1.25
14 a1b1c1d0e1 0.72 0.98
15 a1b0c0d1e0 0.48 1.36
16 a0b1c1d0e0 0.68 1.18

10.4 Analysis Methods

One new problem we have when fitting ANOVA or other models to fractional replications is that
there is no natural estimate of error because there is no replication. We don’t even have observations
on every factor combination, much less multiple observations on treatments. We present two ways
to proceed. One is to assume that higher-order interactions do not exist and use them to estimate the
error. The other is based on a graphical display of the effects that is similar in spirit to a normal plot.

EXAMPLE 10.4.1. Consider again the 1/2 rep. of a 25 from Hare (1988). The experimental
background was discussed in Example 10.1.5. The two 1/2 rep. treatment groups were given in
Table 10.2 and the aliasing structure was given in Table 10.3. The issue is excessive variability in
the taste of a dry soup mix due to the ‘intermix’ containing flavorful ingredients such as salt and
vegetable oil. For each intermix batch (treatment combination), the original data are groups of 5
samples taken every 15 minutes throughout a day of processing. Thus each batch yields data for
a balanced one-way analysis of variance with N = 5. The data actually analyzed are derived from
the ANOVAs on different batches. There are two sources of variability in the original observations,
the variability within a group of 5 samples and variability that occurs between 15 minute intervals.
From the analysis of variance data, the within group variability is estimated with the MSE and
summarized as the estimated ‘capability’ standard deviation

sc =
√

MSE.

The ‘process’ standard deviation was defined as the standard deviation of an individual observation.
The standard deviation of an observation incorporates both the between group and the within group
sources of variability. Based on a one-way ANOVA model in which the group means are considered
random, the estimated process standard deviation is taken as

sp =

√
MSE +

MSGrps−MSE
5

,

where the 5 is the number of samples taken at each time. These two statistics, sc and sp, are available
from every batch of soup mix prepared and provide the data for analyzing batches. The 1/2 rep. of
a 25 specifies different ways of making batches of soup mix. The design and the standard deviations
are given in Table 10.4. For now, we analyze only the data on sp.

This is a “resolution V” (V is a Roman numeral) design because the only defining effect for
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Table 10.5: ANOVA for Hare’s sp

Source Source df SS Rank
A A 1 0.0841 10
B B 1 0.0306 7
C C 1 0.0056 4
D D 1 0.0056 3
AB AB 1 0.0009 1
AC AC 1 0.0361 8
AD AD 1 0.0036 2
BC BC 1 0.0182 5
BD BD 1 0.1056 12
CD CD 1 0.0210 6
ABC DE 1 0.3969 13
ABD CE 1 0.0729 9
ACD BE 1 0.6561 14
BCD AE 1 0.0930 11
ABCD E 1 0.8836 15
Total Total 15 2.4140

the fractional replication is a 5-factor interaction. Given our methods for finding aliases, all main
effects are confounded with four-factor interactions and all two-factor interactions are confounded
with three-factor interactions. If we are prepared to assume that there are no three- or four-factor in-
teractions, we have available estimates of all the main effects and two-factor interactions. Table 10.5
contains an ANOVA table with two columns labeled ‘Source.’ The first does not involve factor E and
the second replaces high-order interactions not involving E with their lower order aliases. Table 10.5
also contains a ranking of the sizes of the sums of squares from smallest to largest.

The reason for having two Source columns in Table 10.5 is that many ANOVA computer pro-
grams will not fit fractional factorials. If you are stuck with such a program, the simplest way to
obtain an analysis is to trick it into doing most of the work. If we could drop one of our factors,
our 1/2 rep. would become a full factorial (without replication) on the remaining factors. For exam-
ple, if we dropped factor E, and thus dropped the e terms from all the treatment combinations in
Table 10.4, we would have observations on all 16 of the treatment combinations in the 24 defined
by A, B, C, and D. It is easy to find computer programs that will analyze a full factorial. Table 10.5
gives the results of an analysis in which we ignored the presence of factor E. The first column of
Table 10.5 contains the sources from the full factorial on A, B, C, and D; the second column replaces
the higher order interactions from the full factorial with their lower order aliases. In computing the
full factorial one might also have to drop the four-factor interaction from the model so that the
program can relabel it as a one degree of freedom Error term.

The simpler, but more dangerous, method of analysis is to assume that no higher order inter-
actions exist and form an error term by pooling the estimable terms that involve only higher order
interactions. A particular term involves only higher order interactions if the term and all of its aliases
are high order interactions. What we mean by high order interactions is intentionally left ill defined
to maintain flexibility. In this design, unless you consider second-order interactions as higher order,
there are no terms involving only higher order interactions. Most often, higher order interactions are
taken to be interactions that only involve three or more factors, but in designs like this, one might
be willing to consider two-factor interactions as higher order to obtain an error term for testing
main effects. (I personally would not be willing to do it with these data.) Often terms that involve
only three and higher order interactions are pooled into an error, but in designs with more factors
and many high order interactions, one might wish to estimate three-factor interactions and use only
terms involving four or more factors in a pooled error.

If we assume away all two-factor and higher order interactions for the present data, the ANOVA
table becomes that displayed in Table 10.6. With this error term, only factor E appears to be impor-
tant. As we will see later, most of the important effects in these data seem to be interactions, so the
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Table 10.6: Analysis of variance on sp for Hare’s data

Source d f SS MS F
A 1 0.0841 0.0841 0.60
B 1 0.0306 0.0306 0.22
C 1 0.0056 0.0056 0.04
D 1 0.0056 0.0056 0.04
E 1 0.8836 0.8836 6.29
Error 10 1.4044 0.1404
Total 15 2.4140

error term based on no interactions is probably inappropriate. That is why we referred to this as the
simpler but more dangerous method. 2

Graphical methods of analysis are similar to normal plots and are based on plotting ordered
(ranked) sums of squares. In a normal plot, the data from a single sample are ordered from smallest
to largest and plotted against the expected order statistics from a standard normal distribution. In
other words, the smallest observation in a sample of size, say, 13 is plotted against the expected
value for the smallest observation in a sample of size 13 from a N(0,1) distribution. The second
smallest observation is plotted against the expected value for the second smallest observation in a
sample of size 13 from a N(0,1) distribution, and so on. This plot should approximate a straight line
if the data are truly normal, the slope of the plot estimates the standard deviation of the population,
and the intercept estimates the population mean.

The graphical display presented here is a χ2(1) plot. In general, find the sums of squares for
the various factors in the 2 f−r experiment and denote them SS j. If there are no effects in the exper-
iment, every SS j should have a χ2(1) distribution multiplied by σ2. Any term that corresponds to
a substantial effect should be larger than a σ2 χ2(1) distribution. Order the sums of squares from
smallest to largest denoted SS( j). We are going to plot these order statistics against the expected
values of the order statistics from a χ2(1) distribution. If there are no effects in the experiment, this
should give a rough straight line (with slope σ2). Large effects should be visible in that they should
correspond to the largest order statistics and should jump up from the straight line created by the
plot of the smaller expected order statistics against the smaller observed order statistics. It is difficult
to find the expected order statistics but they are easy to approximate. If F is the the cdf for the χ2(1)
distribution, the expected value of the jth order statistic is approximately F−1[ j/(n+1)]. Thus we
plot the pairs

(
F−1[ j/(n+1)],SS( j)

)
, looking for a linear relationship for the smaller values and

with upward jumps from the linear relationship identifying important effects.
A more common method than to use χ2(1) plots is to use half-normal plots of the positive

square roots of the sums of squares. To construct half-normal plots requires the cdf for the half-
normal distribution which is p = 2Φ(x)− 1 for x > 0. Here Φ is the cdf of a standard normal
distribution. The inverse of the half-normal cdf is x = Φ−1

(
p+1

2

)
. The half normal plot is of the

pairs
(

Φ−1
[

p j+1
2

]
,
√

SS( j)

)
where, by analogy with the χ2(1) plot, we would use p j = j/(n+1),

but more commonly one takes p j = ( j− 0.5)/n. Again, this should be a rough straight line with
important effects jumping up from the line on the right side.

EXAMPLE 10.4.1 CONTINUED. From the ranked sums of squares in Table 10.5 and the formula
for computing approximate χ2(1) scores, we construct Table 10.7 containing the scores and the
ordered sums of squares necessary for the χ2(1) plot of the 15 effects from Hare’s data. Figure 10.1
contains the plot. Again, the χ2(1) scores in Table 10.13 are approximate expected order statistics.
They are computed by applying the inverse of the χ2(1) cumulative distribution function to the
values j/(n+1), where j goes from 1 to 15 and n = 15.

The key to the graphical analysis is that nonnegligible treatment effects cause the sums of
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Table 10.7: χ
2(1) scores and ordered sums of squares for Hare’s (1988) data.

χ2(1) Ordered
scores SS

0.00615 0.0009
0.02475 0.0036
0.07711 0.0056
0.07711 0.0056
0.16181 0.0182
0.23890 0.0210
0.33539 0.0306
0.45494 0.0361
0.60283 0.0729
0.78703 0.0841
1.02008 0.0930
1.32330 0.1056
1.73715 0.3969
2.35353 0.6561
3.46977 0.8836

SS

0.90+ *

-

-

-

- *

0.60+

-

-

- *

-

0.30+

-

-

- * *

- ** * *

0.00+ 22**

-

--+---------+---------+---------+---------+---------+----

0.00 0.70 1.40 2.10 2.80 3.50

Scores

Figure 10.1: χ
2(1) plot of sums of squares.

squares to estimate something larger than σ2. The sums of squares for nonnegligible effects should
show up in the plot as inappropriately large values. The lower 12 observations in Figure 10.1 seem
to fit roughly on a line, but the three largest observations seem to be inconsistent with the others.
These three observations correspond to the most important effects in the data. From the rankings in
Table 10.5, we see that the important effects are E, BE, and DE.

We need to evaluate the meaning of the important effects. The largest effect is due to E, the
delay in using the intermix. However, this effect is complicated by interactions involving the delay.
To evaluate the BE interaction we need the means for the four combinations of B and E.
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B
E b0 b1
e0 1.215 1.7075
e1 1.150 0.8325

The BE interaction is due to the fact that running the mixer at room temperature, b1, increases
variability if the intermix is used after one day, e0, but decreases variability if the intermix is used a
week later, e1. However, the variability under delay is smaller for both B levels than the variability
for immediate use with either B level. This suggests delaying use of the intermix.

To evaluate the DE interaction we need the means for the four combinations of D and E.

D
E d0 d1
e0 1.3225 1.6000
e1 1.1675 0.8150

A large batch weight, d1, causes increased variability when the intermix is used immediately but
decreased variability when use is delayed to 7 days. Again, it is uniformly better to delay.

Overall, the best combination of treatments involve e1, b1 and d1. Recalling that the current
process is batch 7 with one vegetable oil port, room temperature mixing, 60 seconds mixing time,
2000 pound batches, and a 1 day delay, we would recommend changing to a 7 day delay because
that minimizes process variability. As alluded to in the next chapter, if this change for the purpose
of reducing process variability puts the process off target, it might be possible to use factors A and
C to put it back on target, since A and C do not seem to affect process variability. 2

Christensen (1996, Sections 17.3 and 17.4) expands on this graphical analysis.

Minitab commands

Below are given Minitab commands for obtaining the analysis given. The data file had eight
columns, the first six were indicators for batch and factors A, B, C, D and E, respectively. Columns
7 and 8 contained the data on sc and sp.

names c8 ’y’ c2 ’a’ c3 ’b’ c4 ’c’ c5 ’d’ c6 ’e’

anova c8=c2|c3|c4|c5 - c2*c3*c4*c5

note AFTER SEEING THE ANOVA, ENTER THE SUMS

note OF SQUARES INTO c10.

set c10

841 306 56 56 9 361 36 182

1056 210 3969 729 6561 930 8836

end

let c10=c10/10000

note CONSTRUCT CHI-SQUARED SCORES AND PLOT.

rank c10 c11

let c11=c11/16

invcdf c11 c12;

chisquare 1.

plot c10 c12

Note that c6 was not used in the anova command. Factor E was dropped to deal with the fractional
nature of the factorial. Minitab’s ANOVA command requires an error term to exist in the model.
The command given above specifies a full factorial model (c2|c3|c4|c5) but subtracts out the ABCD
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Table 10.8: Alternative forms of identifying treatments: subscripts only and only letters with subscript 1.

Treatment Notation
Treatment Subscripts only Letters with 1. Yield

a0b0c0d0e0 f0g0h0 j0 000000000 −−− 17
a1b0c0d0e0 f1g1h1 j1 100001111 a f gh j 21
a0b1c0d0e1 f0g1h1 j1 010010111 begh j 41
a1b1c0d0e1 f1g0h0 j0 110011000 abe f 20
a0b0c1d0e1 f1g0h0 j1 001011001 ce f j 10
a1b0c1d0e1 f0g1h1 j0 101010110 acegh 42
a0b1c1d0e0 f1g1h1 j0 011001110 bc f gh 14
a1b1c1d0e0 f0g0h0 j1 111000001 abc j 58
a0b0c0d1e1 f1g0h1 j0 000111010 de f h 8
a1b0c0d1e1 f0g1h0 j1 100110101 adeg j 18
a0b1c0d1e0 f1g1h0 j1 010101101 bd f g j 7
a1b1c0d1e0 f0g0h1 j0 110100010 abdh 15
a0b0c1d1e0 f0g0h1 j1 001100011 cdh j 8
a1b0c1d1e0 f1g1h0 j0 101101100 acd f g 10
a0b1c1d1e1 f0g1h0 j0 011110100 bcdeg 12
a1b1c1d1e1 f1g0h1 j1 111111011 abcde f gh j 10

interaction (c2 ∗ c3 ∗ c4 ∗ c5) and sets it equal to the error. Thus, Minitab’s error term is actually
the ABCD interaction. The command ‘set c10’ is used to create a data column that contains the
sums of squares for the various effects. The commands involving c11 and c12 are used to get the
approximate expected order statistics from a χ2(1) and to plot the ordered sums of squares against
the expected order statistics. After identifying the important effects, the ANOVA command can be
repeated with various factors deleted to obtain the necessary means tables.

10.5 Alternative forms of identifying treatments

In this chapter we have used the subscripts 0 and 1 to indicate the levels of treatments. Alterna-
tive notations are extremely common and must be recognized. Tables 10.4 through 10.6 provide
some alternative notations for the 16 treatments actually used in the viscosity experiment of Exam-
ple 10.1.1. Table 10.4 provides two alternatives and the actual data. The first alternative relies on
the fact that if you know the order of the factors, all you really need are the subscript values. The
second alternative only reports the letters with the subscript 1. Table 10.5 replaces the subscript 0
with −1 and reports only the subscripts. Here we have explicitly written 1 as +1, but the + sign is
irrelevant! The notation using −1 and 1 is quite common, is particularly useful for response surface
designs, and is employed in Table 11.4. Table 9.21 also used the −1 and 1 notation and Tables 9.16
and 9.19 used −1, 0, 1 to denote three levels of a factor. Table 10.6 replaces −1 and +1 with − and
+.

10.6 Placket-Burman Designs

When looking at 2 f designs, a generalization of looking at 2 f−r fractional factorials is the use of
Placket-Burman designs. They are based on Hadamard matrices and exist for some run sizes that are
multiples of n = 4. These include n = 4,8,12,16,20. Designs with n = 12,20 are not powers of 2,
so they add flexibility to the choice of designs beyond the 2 f−r fractional designs. For example you
can estimate main effects for 9, 10, or 11 factors in 12 runs with a Placket-Burman design whereas
the smallest 2 f−r design involves 16 = 29−5 = 210−6 = 211−7 different runs. TiD contains more
information on Placket-Burman designs.
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Table 10.9: Alternative forms of identifying treatments: subscripts only, 1,0 replaced with ±1.

Treatment A B C D E F G H J
a0b0c0d0e0 f0g0h0 j0 −1 −1 −1 −1 −1 −1 −1 −1 −1
a1b0c0d0e0 f1g1h1 j1 +1 −1 −1 −1 −1 +1 +1 +1 +1
a0b1c0d0e1 f0g1h1 j1 −1 +1 −1 −1 +1 −1 +1 +1 +1
a1b1c0d0e1 f1g0h0 j0 +1 +1 −1 −1 +1 +1 −1 −1 −1
a0b0c1d0e1 f1g0h0 j1 −1 −1 +1 −1 +1 +1 −1 −1 +1
a1b0c1d0e1 f0g1h1 j0 +1 −1 +1 −1 +1 −1 +1 +1 −1
a0b1c1d0e0 f1g1h1 j0 −1 +1 +1 −1 −1 +1 +1 +1 −1
a1b1c1d0e0 f0g0h0 j1 +1 +1 +1 −1 −1 −1 −1 −1 +1
a0b0c0d1e1 f1g0h1 j0 −1 −1 −1 +1 +1 +1 −1 +1 −1
a1b0c0d1e1 f0g1h0 j1 +1 −1 −1 +1 +1 −1 +1 −1 +1
a0b1c0d1e0 f1g1h0 j1 −1 +1 −1 +1 −1 +1 +1 −1 +1
a1b1c0d1e0 f0g0h1 j0 +1 +1 −1 +1 −1 −1 −1 +1 −1
a0b0c1d1e0 f0g0h1 j1 −1 −1 +1 +1 −1 −1 −1 +1 +1
a1b0c1d1e0 f1g1h0 j0 +1 −1 +1 +1 −1 +1 +1 −1 −1
a0b1c1d1e1 f0g1h0 j0 −1 +1 +1 +1 +1 −1 +1 −1 −1
a1b1c1d1e1 f1g0h1 j1 +1 +1 +1 +1 +1 +1 −1 +1 +1

Table 10.10: Alternative forms of identifying treatments: subscripts only, 0,1 replaced with −, +.

Treatment A B C D E F G H J
a0b0c0d0e0 f0g0h0 j0 − − − − − − − − −
a1b0c0d0e0 f1g1h1 j1 + − − − − + + + +
a0b1c0d0e1 f0g1h1 j1 − + − − + − + + +
a1b1c0d0e1 f1g0h0 j0 + + − − + + − − −
a0b0c1d0e1 f1g0h0 j1 − − + − + + − − +
a1b0c1d0e1 f0g1h1 j0 + − + − + − + + −
a0b1c1d0e0 f1g1h1 j0 − + + − − + + + −
a1b1c1d0e0 f0g0h0 j1 + + + − − − − − +
a0b0c0d1e1 f1g0h1 j0 − − − + + + − + −
a1b0c0d1e1 f0g1h0 j1 + − − + + − + − +
a0b1c0d1e0 f1g1h0 j1 − + − + − + + − +
a1b1c0d1e0 f0g0h1 j0 + + − + − − − + −
a0b0c1d1e0 f0g0h1 j1 − − + + − − − + +
a1b0c1d1e0 f1g1h0 j0 + − + + − + + − −
a0b1c1d1e1 f0g1h0 j0 − + + + + − + − −
a1b1c1d1e1 f1g0h1 j1 + + + + + + − + +

10.7 Exercises

EXERCISE 10.7.1. In Example 10.1.1. we introduced the viscosity example of Taguchi (1987)
and Box and Bisgaard (1994). The 16 treatments were obtained by using the defining effects

BCDE, ABG, ABCJ, ABDH, ABEF.

(These are hard to guess but easy to check.) Note that with 9 factors and 5 defining effects, the
number of treatments being examined is 16 = 24 = 29/25 = 29−5. The aliasing structure here is
very complicated because in addition to the 5 defining effects, there are 26 other effects involved in
the aliasing. There are 5 =

(5
1

)
original defining effects, 10 =

(5
2

)
effects obtained by multiplying

pairs of the defining effects, 10 =
(5

3

)
obtained by multiplying triples of the defining effects, 5 =

(5
4

)
obtained by multiplying groups of 4 defining effects, and 1 =

(5
5

)
effect obtained by multiplying

together all five defining effects. The actual treatments and data are given in Table 10.4. After
evaluating a residual analysis on a reduced model for the untransformed data, Box and Bisgaard
(1994) suggest taking logs of the data.
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Table 10.11: Wave soldering.

treatment subscripts
Case a b c d e f g h Yellow

1 0 0 0 0 0 0 0 0 6.00
2 1 0 0 0 0 0 1 1 10.00
3 0 1 0 0 0 0 0 1 10.00
4 1 1 0 0 0 0 1 0 8.50
5 0 0 1 0 0 1 0 1 1.50
6 1 0 1 0 0 1 1 0 0.25
7 0 1 1 0 0 1 0 0 1.75
8 1 1 1 0 0 1 1 1 4.25
9 0 0 0 1 0 1 1 1 6.50

10 1 0 0 1 0 1 0 0 0.75
11 0 1 0 1 0 1 1 0 3.50
12 1 1 0 1 0 1 0 1 3.25
13 0 0 1 1 0 0 1 0 6.00
14 1 0 1 1 0 0 0 1 9.50
15 0 1 1 1 0 0 1 1 6.25
16 1 1 1 1 0 0 0 0 6.75
17 0 0 0 0 1 0 0 0 20.00
18 1 0 0 0 1 0 1 1 16.50
19 0 1 0 0 1 0 0 1 17.25
20 1 1 0 0 1 0 1 0 19.50
21 0 0 1 0 1 1 0 1 9.67
22 1 0 1 0 1 1 1 0 2.00
23 0 1 1 0 1 1 0 0 5.67
24 1 1 1 0 1 1 1 1 3.75
25 0 0 0 1 1 1 1 1 6.00
26 1 0 0 1 1 1 0 0 7.30
27 0 1 0 1 1 1 1 0 8.70
28 1 1 0 1 1 1 0 1 9.00
29 0 0 1 1 1 0 1 0 19.30
30 1 0 1 1 1 0 0 1 26.70
31 0 1 1 1 1 0 1 1 17.70
32 1 1 1 1 1 0 0 0 10.30

EXERCISE 10.7.2. In Example 10.1.2. we introduced the Shina (1991) and Lawson and Helps
(1996) [q96-467.dat] experiment on wave-soldering with 8 factors but only 32 = 28−3 observations.
The effects involved in aliasing are

ABFH, ACFG, ADG, BCGH, BDFGH, CDF, ABCDH.

The first three are defining effects. The actual design and data are given in Table 10.7. Yellow is the
dependent variable.

EXERCISE 10.7.3. In Example 10.1.3. we introduced Sarkar’s (1997) [qe97-529.dat] 25−1 ex-
periment on cleaning efficiencies with five factors but only 16 observations. Tables 10.8 and 10.9
give the design and the data, respectively.

Do you find the number of identical data values disturbing? Are there two dependent variables?
Why are there 4 replications? Are they studying variability?

EXERCISE 10.7.4. In Example 10.1.4 we considered an unreplicated 24 design given in Ferrer
and Romero (1995) [qe95-750.dat] for the improvement of adhesive force between polyurethane
sheets. The design and data are given in Table 10.10. Use these data to illustrate the method of
analysis for experiments that do not involve replications.

EXERCISE 10.7.5. Chapman (1996) data from qe96-35.dat in Table 10.11. Photographic color
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Table 10.12: Sarkar’s design.

ERM MCO MCO ERM ERM
Feed Setting Setting Feed Opener
Rate Angle Distance Setting Setting

Trial a b c d e
1 40 6 5 4.5 4
2 40 6 5 3 3
3 40 6 4 4.5 3
4 40 6 4 3 4
5 40 10 5 4.5 3
6 40 10 5 3 4
7 40 10 4 4.5 4
8 40 10 4 3 3
9 72 6 5 4.5 3

10 72 6 5 3 4
11 72 6 4 4.5 4
12 72 6 4 3 3
13 72 10 5 4.5 4
14 72 10 5 3 3
15 72 10 4 4.5 3
16 72 10 4 3 4

Table 10.13: Sarkar’s data.

Cleaning Efficiency
After ERM Opener Overall

Trial 1 2 3 4 1 2 3 4
1 35.99 38.33 38.72 39.89 51.20 51.20 52.38 51.99
2 38.33 39.11 39.89 38.72 50.81 50.42 51.20 50.81
3 39.89 39.42 39.11 38.72 51.20 50.81 50.81 50.42
4 38.72 38.72 39.11 39.42 51.20 50.81 50.81 50.42
5 39.89 39.89 39.11 39.42 51.20 50.81 50.81 50.42
6 39.42 39.42 39.11 38.72 51.20 50.20 50.81 50.42
7 40.28 39.11 39.11 38.72 51.20 50.81 50.81 50.42
8 39.11 39.11 39.42 39.21 51.20 51.20 50.81 50.81
9 55.06 55.06 50.30 52.30 56.35 58.08 57.64 56.78

10 55.06 54.19 53.76 52.46 57.22 57.22 56.78 56.78
11 55.92 55.49 55.49 53.76 57.64 57.64 57.22 56.78
12 54.19 53.76 53.76 53.33 57.22 56.35 56.68 55.92
13 55.92 55.06 54.62 54.19 58.08 57.64 57.22 56.35
14 55.06 54.62 54.62 54.19 57.64 57.64 57.22 57.78
15 54.62 54.62 54.19 54.19 57.22 57.78 57.78 55.92
16 54.62 54.19 54.19 53.76 56.78 56.35 56.35 55.92

slide development. Responses refer to levels of Red, Green, and Blue. Design variables are 6 devel-
oper constituents.

EXERCISE 10.7.7. Anand (1994) data from qe94-39.dat in Table 10.12.
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Table 10.14: Ferrer and Romero’s adhesive force data.

treatment subscripts Adhesive
Case a b c d Force

1 0 0 0 0 3.80
2 1 0 0 0 4.34
3 0 1 0 0 3.54
4 1 1 0 0 4.59
5 0 0 1 0 3.95
6 1 0 1 0 4.83
7 0 1 1 0 4.86
8 1 1 1 0 5.28
9 0 0 0 1 3.29

10 1 0 0 1 2.82
11 0 1 0 1 4.59
12 1 1 0 1 4.68
13 0 0 1 1 2.73
14 1 0 1 1 4.31
15 0 1 1 1 5.16
16 1 1 1 1 6.06

Table 10.15: Chapman’s screening experiment for 12 variables

D1 D2 D3 D4 D5 D6 Rmx Gmx Bmx Rhd Ghd Bhd
1.5 2.1 7 .2 6.8 9.75 4 −8 −5 −1 0 −3
7.0 2.1 7 .1 3.5 9.75 −4 −17 −21 −6 −10 −13
1.5 3.6 7 .1 6.8 9.55 11 2 7 11 11 8
7.0 3.6 7 .2 3.5 9.55 2 −9 −2 7 3 1
1.5 2.1 18 .2 3.5 9.55 3 −5 −1 7 7 3
7.0 2.1 18 .1 6.8 9.55 0 −12 −4 4 4 4
1.5 3.6 18 .1 3.5 9.75 −2 −13 −3 −3 −4 −4
7.0 3.6 18 .2 6.8 9.75 −5 −22 −12 −4 −8 −8
D1 D2 D3 D4 D5 D6 Rld Gld Bld Rmn Gmn Bmn
1.5 2.1 7 .2 6.8 9.75 5 7 5 5 4 7
7.0 2.1 7 .1 3.5 9.75 3 3 3 7 6 9
1.5 3.6 7 .1 6.8 9.55 13 16 14 7 6 9
7.0 3.6 7 .2 3.5 9.55 10 12 9 6 5 7
1.5 2.1 18 .2 3.5 9.55 11 16 13 7 6 8
7.0 2.1 18 .1 6.8 9.55 8 12 11 6 6 9
1.5 3.6 18 .1 3.5 9.75 3 5 4 6 4 7
7.0 3.6 18 .2 6.8 9.75 5 5 5 5 5 7
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Table 10.16: Anand’s design and yields of deoiled wax

Temp Slack Deoiled
Case A B C D E Wax Wax Yield 1 2

1 65 20 10 6 0 6.5 60.8 63.00 2.80 3.05
2 65 20 7 6 1 6.0 62.2 64.79 2.85 3.19
3 65 28 7 3 0 6.0 59.3 61.77 2.70 3.10
4 65 28 10 3 1 6.0 58.5 60.93 2.70 2.90
5 65 28 10 6 2 5.0 57.0 60.00 2.55 2.80
6 65 28 7 6 1 6.5 59.5 61.65 2.90 3.10
7 65 20 7 3 2 8.0 62.0 63.27 2.95 3.19
8 65 20 10 3 1 5.5 60.0 62.82 2.76 3.15
9 55 20 10 6 0 5.0 64.5 67.89 3.53 3.73

10 55 20 7 6 1 6.5 69.5 72.02 3.28 3.45
11 55 28 7 3 0 6.5 72.5 75.13 3.45 3.20
12 55 28 10 3 1 7.0 68.0 70.10 3.28 3.06
13 55 28 10 6 2 10.5 68.0 67.67 3.12 2.95
14 55 28 7 6 1 6.0 69.5 72.40 3.12 3.25
15 55 20 7 3 2 6.5 68.0 70.47 3.19 3.32
16 55 20 10 3 1 6.0 64.0 66.67 3.40 3.25



Chapter 11

Taguchi Methods

This chapter is still incomplete. Substantial parts are just copied from Christensen (2017,
Section 3.4) and substantial parts of Christensen (2017, Section 3.4) were copied from here.
Christensen (2017, Section 3.4) is far more complete, but at least some of the material there
requires more technical background than is provided here.

As discussed in Chapter 1, high quality is less about achieving high performance than it is about
maintaining consistency. One can usually improve performance with greater cost and associated
diminishing returns for that cost. Quality improvement is more concerned with achieving the same
(or better) performance with greater consistency and less cost. If someone doesn’t like a product
(the performance), they probably won’t buy it in the first place. High quality is more about customer
satisfaction, e.g., eliminating lemons.

For example, if you buy a car, you probably evaluate its rate of acceleration. When you pull out
to pass another vehicle, with a semi coming the other way, you want that known rate of acceleration.
You want it regardless of whether it is hot outside or cold; regardless of whether it is wet or dry. At
the other end of the acceleration spectrum, if you are driving near a police officer, once again you
probably don’t want any surprises about the rate at which your vehicle accelerates.

Another example is the warm idle speed of an automobile. If it is too fast, the engine races, pos-
sibly damaging the engine, and making it more difficult to stop a car with an automatic transmission.
On the other hand, if it idles too slowly, the engine dies. Again, you want an idle speed within certain
tolerances regardless of the weather and regardless of the altitude at which you are driving. Uncon-
trollable factors that can affect performance are called noise factors. We are interested in reducing
the ability of noise factors to affect performance.

How well a complicated machine performs will depend on how well individual parts conform
to specifications. We want products that both hit the target specification on average and do so with
as little variability as possible. This chapter is about methods of achieving that goal. In a famous
example, Taguchi and Wu (1980) illustrated that increasing from 1% to 5% the lime content of clay
used to make ceramic tiles, reduced the variability of tile sizes by a factor of 10.

Genichi Taguchi’s major contribution to quality improvement was his emphasis on the impor-
tance of producing products that have small variability. His efforts in this regard would not have
been successful without also providing usable methods for reducing variability. He placed empha-
sis on minimizing squared error losses from the target. He provided a very specific list of useful
experimental designs labeled Lq where q is the number of treatments that you want to use. And he
advocated the use of various signal to noise ratios in analyzing data. Christensen (2017), hereafter
referred to as TiD, in Section 3.4 discusses his list of designs and relates them to more traditional de-
velopments in statistical experimental design. It also defines his signal to noise ratios and discusses
their use, see Sections 2 and 3 below.

Taguchi’s methods have been subjected to criticism. Myers, Khuri, and Vining (1992) sum-
marize these criticisms as (a) inefficiency of the response measures used, (b) lack of flexibility in
modeling, (c) lack of economy in experimental design, (d) overemphasis on optimization relative to
understanding, and (e) overlooking the sequential nature of experimentation. Stephens (1995, 1996)

169
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Table 11.1: Taguchi L9 (3×3×3×3 Fractional Design). (qe94-X.dat)

Run a b c d Observations
1 0 0 0 0 15.6 9.5 16.9 19.9 19.6 19.6 20.0 19.1
4 0 1 1 1 15.0 16.2 19.4 19.6 19.7 19.8 24.2 21.9
7 0 2 2 2 16.3 16.7 19.1 15.6 22.6 18.2 23.3 20.4
3 1 0 1 2 18.3 17.4 18.9 18.6 21.0 18.9 23.2 24.7
2 1 1 2 0 19.7 18.6 19.4 25.1 25.6 21.4 27.5 25.3
5 1 2 0 1 16.2 16.3 20.0 19.8 14.7 19.6 22.5 24.7
8 2 0 2 1 16.4 19.1 18.4 23.6 16.8 18.6 24.3 21.6
6 2 1 0 2 14.2 15.6 15.1 16.8 17.8 19.6 23.2 24.4
9 2 2 1 0 16.1 19.9 19.3 17.3 23.1 22.7 22.6 28.6

and others have argued that the use of signal to noise ratios, as advocated by Taguchi, is an inferior
form of analysis than provided by classical analysis of variance. These criticisms seem to be well
founded, but it should not be forgotten that they are matters of secondary importance. Taguchi got
people to look at an important problem that had long been overlooked, variability. Improving on the
details of analysis is the easy part. And even this easy part is far from being completed.

One thing Taguchi emphasized was the idea that in producing items designed to meet some target
level, quality falls off as a function of the distance from the target. Thus, the goal of the process is,
not only to have a process that is on target on average, but to have a process that in addition has
as little variability as possible. The basic idea is that products should be designed so that they are
robust to the conditions under which they have to operate. The procedure is called robust parameter
design.

In Section 1 we will examine an experiment that focuses on variability. Note that the Hare data
of Section 10.1 was also focused on reducing variability. In Section 2 we present Taguchi’s signal
to noise ratios and in Section 3 we present his form of analysis. Section 4 examines the role of noise
factors, i.e., factors that contribute to the variability of the product but that can only be brought under
control in exceptional circumstances. For example, how well a printer feeds paper may depend on
the atmospheric humidity. With great effort, one can control the humidity in a room in order to
examine the effect of humidity in an experiment. However, in practice, the printer will be used in
rooms that do not have controlled humidity. The idea is to develop a printer that will be as insensitive
as possible to humidity. In order to do that, one sets the printer up using variables that can be easily
controlled, so as to make the printer robust to changes in humidity.

11.1 Experiment on Variability

Byrne and Taguchi (1989) and Lucas (1994) considered an experiment on the force y, measured in
pounds, needed to pull tubing from a connector. Large values of y are good. The controllable factors
in the experiment are as follows:

A: Interference (Low, Medium, High),
B: Wall Thickness (Thin, Medium, Thick),
C: Insertion Depth (Shallow, Medium, Deep),
D: Percent Adhesive (Low, Medium, High).

The treatment with, let’s say, low interference, medium wall thickness, shallow insertion depth,
and high percent adhesive will be denoted a0b1c0d2 where the letters identify the factors and the
subscripts identify the factor levels. (The theory of such designs makes it convenient to start the
subscripts at 0 but other authors use other methods for denoting treatments.) The data are given
in Table 11.1 with the treatment subscripts in columns 2 through 5. Because we are interested in
variability, similar to the Hare data, there are 8 observations on each of the observed treatments.

The choice of treatments is Taguchi’s L9 design. (The L9 is equivalent to a Greco-Latin square.)
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Taguchi refers to the observed treatment combinations as the inner array. Taguchi refers to the 8
observations on each treatment as observations on the outer array. Details of the outer array are
discussed in Section 4.

The L9 design is a fractional factorial involving four factors each at three levels. The experiment
involves 3× 3× 3× 3 = 34 = 81 factor combinations of which only 9 are observed. With 34 = 81
factor combinations and only 9 observed treatments, we have an 81/9 = 1/9th replication. Briefly,
it is a 1/9th rep of a 34 design, sometimes written as a 34−2 design. (Recall 1/9 = 3−2.) To de-
fine groups of treatments in the previous chapter for 2 f designs, we looked at adding some of the
subscripts that define treatments and evaluating whether those sums were even or odd. Similarly, to
define groups in this 34 design, we again add various subscripts to define treatment groups but now
things get more complicated, cf. TiD, Chapter 3. Nonetheless, looking at the treatment subscripts
given in the second through fifth columns of Table 11.1, we see that adding the b, c, and d subscripts
always gives a multiple of 3. Similarly, the sum of the a and b subscripts plus twice the c subscript
also is always a multiple of 3.

Fractional replications for 3 f factorials are discussed in TiD. For now it suffices to note that this
L9 design allows one to estimate all of the main effects. In fact, it only allows estimation of the
main effects and it assumes the absence of any interactions. This is characteristic of the Lq designs
suggested by Taguchi. He was only interested in main effects involving the control(able) factors.

11.2 Signal-to-Noise Ratios

Taguchi proposed the analysis of signal-to-noise ratios computed for each inner array treatment
combination from its outer array data.

There are eight observations for each inner array factor combination in Table 11.1. These ob-
servations constitute the outer array data and will be discussed in Section 4. In the Taguchi analysis
the outer array observations are treated as a random sample, even though, it turns out that they were
obtained in a systematic fashion. In his analysis, the multiple observations in the outer array are
summarized prior to analysis. The obvious summarization is the sample mean but additional com-
mon summary measures include the sample variance, sample standard deviation, or the logarithms
of those values.

One of Taguchi’s most controversial ideas was to summarize the outer array data using “signal-
to-noise ratios.” The idea is to maximize the appropriate signal-to-noise ratio. Let the observations
be yio with i — inner array and o — outer array, o = 1, . . . ,N. For minimizing a response y his
signal-to-noise ratio is defined as

SNmin,i ≡− log

(
N

∑
o=1

y2
io/N

)
=− log

(
ȳ2

i·+
N−1

N
s2

i

)
.

Because of the minus sign, to make this large you need both ȳ2
i· and s2

i to be small but of course
there are many other functions of ȳi· and s2

i that could accomplish the same thing. For maximizing
a response his signal-to-noise ratio is

SNmax,i ≡− log

(
N

∑
o=1

1/y2
ioN

)
,

apparently because maximizing y is the same as minimizing 1/y (for positive y). For minimizing
variability around a target his signal-to-noise ratio is

SNtar,i ≡ log
(

ȳ2
i·

s2
i

)
= log(ȳ2

i·)− log(s2
i ).

The apparent rationale is that if ȳi· always remains close to the target, you just want to minimize s2
i .



172 11. TAGUCHI METHODS

Table 11.2: Bryne-Taguchi 34−2 Design

Run Outer Array Summaries
i a b c d ȳi· s2

i SNmax,i
1 0 0 0 0 17.5250 13.050714 5.532040
4 0 1 1 1 19.4750 8.447857 5.876575
7 0 2 2 2 19.0250 8.313571 5.833544
3 1 0 1 2 20.1250 6.747857 5.964675
2 1 1 2 0 22.8250 11.747857 6.195688
5 1 2 0 1 19.2250 11.422143 5.831468
8 2 0 2 1 19.8500 8.908571 5.920132
6 2 1 0 2 18.3375 14.248393 5.717851
9 2 2 1 0 21.2000 15.585714 6.021715
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Figure 11.1: χ
2 plots for main effects: Means of outer array.

An apparently common approach is to divide the control factors into two groups. First identify
control factors that affect the signal-to-noise ratio and use them to maximize it. Then use the control
factors that do not have much affect on the SN ratio to try to put the process on target.

11.3 Taguchi Analysis

This section is just copied from TiD with corrections to table and figure numbers.

Table 11.2 contains three summary statistics to be used in a Taguchi analysis of the Byrne-
Taguchi data. We fit a main-effects model to each of ȳi·, log(si), and SNmax,i. For each dependent
variable we constructed two χ2 plots. The first is a χ2(2) plot for the main-effect sums of squares.
The second plot is a χ2(1) plot based on treating the factor subscripts (associated with ordered
levels) as regression variables and fitting quadratic polynomials in the main effects. (The quadratic
effects really just measure nonlinearity.) This gives sums of squares for a linear (e.g. a) and quadratic
(e.g. aa) contrast in each main effect. Figures 11.1, 11.2, and 11.3 contain the χ2 plots for the
different dependent variables.

I don’t see any clear evidence for the existence of main effects in either the mean or the log-
standard-deviation plot. But I can imagine someone else arguing that all or nearly all of the effects
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Figure 11.2: χ
2 plots for main effects: Log standard deviations of outer array.
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Figure 11.3: χ
2 plots for main effects: SNmax of outer array.

are important. For the signal-to-noise ratio I again see no clear evidence of effects but some evidence
for one or possibly two contrasts having effects. The two largest sums of squares are for the linear
effect in C and the quadratic effect in A.

To make sense of any important effects we would look at means plots. These are given in Fig-
ures 11.4, 11.5, and 11.6. We will not discuss the means plots for the means or log standard devia-
tions of the outer array data because they displayed no obvious main effects. For the signal-to-noise
ratio the two largest χ2(1) values were for the curvature in A and the linear effect in C. Since interest
is in maximizing the signal-to-noise ratio, the recommendation would be to pick the middle level
of A and, despite the importance of the linear effect in C (which really only looks at the difference
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Figure 11.4: Means plots for main effects: Means of Taguchi outer array.
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Figure 11.5: Means plots for main effects: Log standard deviations of Taguchi outer array.

between the low and high levels), it looks like either the high or middle level of C should work
reasonably well.

In practice you have to play off the experimental results against the production costs of various
techniques. For example, if two levels have roughly the same effects, obviously you would choose
the more inexpensive level. If two levels have radically different costs, it is harder to decide whether
improved performance is worth the cost.
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Figure 11.6: Means plots for main effects: SNmax of Taguchi outer array.

11.4 Outer Arrays

In Section 1 we examined a fractional replication on which several observations were taken for each
treatment combination that appeared in the experimental design. The several observations were
used to estimate variability as though they were from a random sample. Taguchi actually suggested
another approach rather than random sampling. In the tubing experiment, it was thought that most
of the variability would be due to three noise factors: the condition time, the condition temperature,
and the condition relative humidity. In the field or in a manufacturing plant, these are not conditions
that can readily be controlled. However, for the purposes of designing the product, we could go to
the trouble of controlling them. Rather than allowing these noise factors to vary randomly, the levels
of these noise factors were actually set by design. The idea is that there is some mean and standard
deviation for these noise factors and that the selected values are one standard deviation from the
mean.

The complete set of factors and levels are given below.

A: Interference (Low, Medium, High),
B: Wall Thickness (Thin, Medium, Thick),
C: Insertion Depth (Shallow, Medium, Deep),
D: Percent Adhesive (Low, Medium, High).
E: Condition Time (24hr, 120hr)
F: Condition Temperature (72◦F, 150◦F)
G: Condition Relative Humidity (25%, 75%)

The data with all of the factors identified are presented in Table 11.2. One approach to analyz-
ing this data is to ignore the information about the noise factors and just perform the analysis of
Section 3. While it would be interesting to see, the 7 factor ANOVA for these data is beyond the
introduction/survey ambitions of this book. Such an analysis would probably focus on low-order in-
teractions between the control factor main effects and outer array effects looking for control factor
levels for which the response changes little as the noise factors change.

In general, Taguchi divides the factors of interest into control factors, those that can be readily



176 11. TAGUCHI METHODS

Table 11.3: Taguchi 3×3×3×3×2×2×2 design.

Run a b c d e0 f0g0 e0 f0g1 e0 f1g0 e0 f1g1 e1 f0g0 e1 f0g1 e1 f1g0 e1 f1g1
1 0 0 0 0 15.6 9.5 16.9 19.9 19.6 19.6 20.0 19.1
4 0 1 1 1 15.0 16.2 19.4 19.6 19.7 19.8 24.2 21.9
7 0 2 2 2 16.3 16.7 19.1 15.6 22.6 18.2 23.3 20.4
3 1 0 1 2 18.3 17.4 18.9 18.6 21.0 18.9 23.2 24.7
2 1 1 2 0 19.7 18.6 19.4 25.1 25.6 21.4 27.5 25.3
5 1 2 0 1 16.2 16.3 20.0 19.8 14.7 19.6 22.5 24.7
8 2 0 2 1 16.4 19.1 18.4 23.6 16.8 18.6 24.3 21.6
6 2 1 0 2 14.2 15.6 15.1 16.8 17.8 19.6 23.2 24.4
9 2 2 1 0 16.1 19.9 19.3 17.3 23.1 22.7 22.6 28.6

controled, and noise factors, those that cannot readily be controlled (but can be controlled for the
purposes of the experiment). Taguchi assumes, or perhaps more properly defines, control factors
to have no interactions with each other. This has been a major source of criticism for Taguchi’s
methods. The overall idea is to use interactions between the control factors and the noise factors to
reduce variability in the end product.

The basic experimental designs suggested by Taguchi involve a highly fractionated design on
the control factors, one that allows estimation of all main effects (and usually only main effects),
a separate design on the noise factors, and then to observe every treatment from the control factor
design with every treatment from the noise factor design. In our example, we have a 1/9th rep of
a 34 design for the control factors and a full replication of a 23 for the noise factors. This process
of crossing individual designs is often wasteful of experimental material. Setting up an appropriate
fractional replication for the entire collection of factors is more economic, cf Shoemaker et al.
(1991). It is also often suggested that there is little need to look at three levels of the control factors,
two levels will usually be enough. (Taguchi used both 2 and 3 level designs.)

A correct analysis of the data depends crucially on how the outer array data are physically
collected. If you really wanted to get a random sample for the outer array you should list each of the
9 treatments 8 times to create a list of 72 treatments and run them in random order without trying
to control the noise factors. That would justify the analysis conducted in Section 3. With the control
factor – noise factor paradigm, there will be a real temptation to run the experiment as a split plot
experiment, cf. Christensen (1996, 2015). When the 8 observations on each inner array treatment
correspond to a different outer array treatment, to avoid a split plot experiment you would again
create a list of 72 total treatments and run them in random order. This seems like it might frequently
be inconvenient.

There are two other ways you could run the experiment that both result in a split plot experiment.
You could fix the outer array conditions (which are harder to fix) and then run each of the 9 inner
array treatments. (Relative to a split plot the outer array becomes the whole plot treatments and
the inner array becomes subplot treatments.) This is good for looking at inner array main effects
and their interactions with the outer array. The appropriate error is some work to find. The Taguchi
analysis of Section 3 that just ignores the outer array treatments is more consistent with a different
split plot design in which you fix an inner array treatment and then take 8 observations, one for each
outer array condition. If the outer array conditions are harder to fix, this seems much less attractive.
Of course the outer array conditions may be impossible to fix in manufacturing but may be easy to
fix in a pilot plant. It depends on individual circumstances. The proper analysis of split plot designs
is discussed in Christensen (1996, 2015).

The reader should be aware that seriously misleading results can be obtained when a split plot
design is not analyzed properly. However, that is largely due to the creation of inappropriate esti-
mates of error. In the Taguchi set-up, there typically are no estimates of error and χ2 plots look for
odd behavior among main effect terms that should behave similarly if there are no effects.

Taguchi seems to treat the outer array as a random sample of the noise conditions that one would
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encounter. In fact it is a systematic sample of noise conditions. Although it seems mathematically
unjustified, as a practical matter, it seems to me eminently reasonable to treat the outer array as
random (because it is designed to be representative of the noise conditions).

11.5 Discussion

It has been suggested that with a good design, the form a analysis may be of little importance.
Perhaps just pick the design point that has the best characteristics and use that. Our examination of
Hare’s experiment suggests that is not a good strategy. In Hare’s experiment, our suggested action
was to change to a 7 day delay. However, the current operating setup but with a change to a 7
day delay was NOT one of the design points in the 1/2 rep., so picking the best of the observed
treatments would lead to a different result.

Ultimately the goal of experiments is to better understand (model in the least technical sense)
the process. With better understanding may come leaps of improvement rather than evolutionary
improvements. The Shewhart cycle should be used in experimentation. Evolutionary Operation
(EVOP) is a formal version of such a process, cf. Box and Draper (1969).

11.6 Exercises

EXERCISE 11.6.1. Investigate the data in Table 11.4 from Luner (1994, qe94-698). With 3 ob-
servations the outer array can hardly be anything but either a random sample of observations or
three levels of one noise factor. The inner array is a nonstandard central composite design with
replications at the center point. The first 8 observations are are 23 full factorial without replica-
tions. With f = 3, the first 8 observations under this ±1 notation have (A,B,C) scores satisfying
f = 3 = (±1)2 + (±1)2 + (±1)2 which is their squared length from the origin (0,0,0) of three-
dimensional space. The next 6 observations are a star design that looks to be incorrectly constructed.
Normally, star points would be (±

√
f ,0,0), (0,±

√
f ,0), (0,0,±

√
f ) so that they have squared

length f = (±
√

f )2 +(0)2 +(0)2 etc., but here
√

3 6= 1.682. The last 6 design observations are true
replications at the center (origin) and provide an estimate of pure error. Central composite designs
are classically used for fitting quadratic response surfaces.

Does the pairing of the replications seem suspicious? Runs 14 and 15 occur as consecutive
design points as do 19 and 18, 6 and 5, and 3 and 2.

EXERCISE 11.6.2. Examine the data of Moen et al. (1991) and Bisgaard and Fuller (1996, qe96-
373) given in Table 11.5 on a Solenoid experiment. The factors and levels are:
A: length of armature (.595in or .605in),
S: spring load (70g or 100g),
B: bobbin depth (1.095in or 1.105in),
T: length of tube (.50in or .51in).
The existence of an “outer array” is implicit from the dependent variable.
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Table 11.4: Taguchi: qe94-698

Inner Array Outer Array
Run A B C 1 2 3

20 −1 −1 −1 39 34 42
9 −1 −1 1 80 71 91

11 −1 1 −1 52 44 45
14 −1 1 1 97 68 60
15 1 −1 −1 60 53 68
10 1 −1 1 113 104 127
13 1 1 −1 78 64 65
1 1 1 1 130 79 75
7 −1.682 0 0 59 51 60
4 1.682 0 0 115 102 117

19 0 −1.682 0 50 43 57
18 0 1.682 0 88 49 43
12 0 0 −1.682 54 50 60
8 0 0 1.682 122 109 119
6 0 0 0 87 78 89
5 0 0 0 86 79 85

17 0 0 0 88 81 87
3 0 0 0 89 82 87
2 0 0 0 86 79 88

16 0 0 0 88 79 90

Table 11.5: Solenoid Experiment: qe96-373

A S B T − log(s2)
0 0 0 0 6.44
1 0 0 0 3.67
0 1 0 0 7.82
1 1 0 0 4.61
0 0 1 0 7.82
1 0 1 0 9.21
0 1 1 0 5.99
1 1 1 0 9.21
0 0 0 1 6.44
1 0 0 1 3.79
0 1 0 1 5.32
1 1 0 1 5.63
0 0 1 1 7.82
1 0 1 1 7.82
0 1 1 1 7.82
1 1 1 1 9.21
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11.7 Ideas on Analysis

This section is obviously far from complete and may get eliminated.
plot si versus ȳi
if equal variances, analyze ȳis if unequal variances, analyze log(si) as well as transform data

before doing analysis of ȳis . Use Box-Cox.
x = (x1,x2)

yi = µ(xi)+ εi

σ2
h(y)

.
= [h′(µ(x))]2σ2

y (x)

minimize E(y−T )2 = σ2
y (x)+ [µ(x)−T ]2.

by choosing x1 appropriately, change to minimize

E(y−T )2 = σ
2
y (x1)+ [µ(x)−T ]2 .

= σ
2
h(y)/[h

′(µ(x))]2 +[µ(x)−T ]2

Pick x1 to minimize σ2
y (x1)

.
= σ2

h(y)/[h
′(µ(x))]2.

Pick x2 to achieve the target, i.e., minimize σ2
y (x1)

.
= σ2

h(y)/[h
′(µ(x))]2. The min occurs at µ

satisfying

µ =

{
T +

3
2
[h′(T )]−3h′′(T )σ2

h(y)

}
If h(y) = log(y), µ

.
= log(T )− 3

2 σ2
h(y).

If h(y) is a variance stabilizing transformation, σ2
h(y) does not depend on x, so all of x (not just

x2) can be used to minimize the function.

11.7.1 A modeling approach

Model
ŷ = f (x)+g1(x)z1 +g2(x)z2

To set target, use
Ê(y) = f (x)

To minimize variance use
σ̂

2
y = MSPE +[g1(x)]2 +[g2(x)]2

Suppose we can choose x1 so that

σ̂
2
y = MSPE +[g1(x1)]

2 +[g2(x1)]
2

Once again, pick x1 to minimize variance and then pick x2 to get on target (or to make response
large or small).

Assuming that noise factors are uncorrelated and variance 1 on scale used. (i.e., chosen at ±1
std dev from mean).





Appendix A: Multivariate Control Charts

Multivariate data involves taking several measurements y1, . . . ,yq on each item. With multivariate
data we can and should control chart the data on each variable but we can also combine all the
variables for each item into multivariate control charts. Sometimes these will catch things that are
not apparent in the univariate charts. Multivariate charts are based on squared Mahalanobis distances
for looking at means and generalized variances for looking at dispersions. Discussion of generalized
variances is deferred to Section 4.

EXAMPLE A.0.1. Table A.1 contains the Coleman Report data (Christensen, 2015, Chapter
6 or Christensen, 1996, Chapter 7) on some Northeastern US schools. The variables are x—
socioeconomic status, y—reading ability. Case 17 has been modified to be an outlier (special cause).
Despite the fact that the new values for case 17 are not unusual in either the x or y coordinates, the
scatter plot in Figure A.1 shows how weird the new case 17 looks relative to the other data. With
more that q = 2 variables there is no assurance that such points would be apparent from doing
two-dimensional scatterplots. 2

Using the matrix tools of Section 5.7 denote an arbitrary collection (vector) of measurements y=
(y1, . . . ,yq)

′, with the measurements on an ith individual denoted yi =(yi1, . . . ,yiq)
′. When collecting

data in rational subgroups, the jth individual in the ith group has measurements yi j =(yi j1, . . . ,yi jq)
′.

For q-dimensional vectors of multivariate observations y with E(y) = µ and Cov(y) = Σ, the
theoretical squared Mahalanobis distance from y to the center of the distribution is

D2 ≡ (y−µ)′Σ−1(y−µ).

Using Christensen (2020, Theorem 1.6.1) it is easy to see that

E(D2) = E[(y−µ)′Σ−1(y−µ)] = q,

so q could be the center of a D2 control chart. Computing the control limits requires computing
the variance and the variance computation assumes that the observations are (multivariate) normal.
Using a well-known variance formula, e.g. Christensen (2019, Theorem 4.6.1), it is also easy to see
that

Var(D2) = Var[(y−µ)′Σ−1(y−µ)] = 2q,

Table A.1: Modified Coleman Report data. Case 17 modified: New(True).

School y x School y x
1 37.01 7.20 11 23.30 −12.86
2 26.51 −11.71 12 35.20 0.92
3 36.51 12.32 13 34.90 4.77
4 40.70 14.28 14 33.10 −0.96
5 37.10 6.31 15 22.70 −16.04
6 33.90 6.16 16 39.70 10.62
7 41.80 12.70 17 25 (31.80) 11 (2.66)
8 33.40 −0.17 18 31.70 −10.99
9 41.01 9.85 19 43.10 15.03

10 37.20 −0.05 20 41.01 12.77
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Figure A.1: Scatter plot of Coleman report school data:. New case 17 in bottom right.

so the control limits on a D2 chart could be set at q±3
√

2q. The lower control limit can be ignored
(is not positive) unless q > 18. Of course this all requires us to know µ and Σ, assumptions we will
soon relax, and typically more sophisticated procedures are used.

A.1 Statistical Testing Background

Standard univariate charts for individuals or means are not directly based on corresponding statis-
tical tests. Standard multivariate charts for individuals and means, however, correspond closely to
multivariate statistical tests. Before discussing how multivariate charts are defined from multivari-
ate statistical tests, we illustrate the correspondence between univariate charts and statistical tests.
Multivariate tests are discussed generally in Christensen (1996, 2015, 2019 – from easiest to hardest
discussions).

For univariate grouped data yi j, i = 1, . . . ,n, j = 1, . . . ,N, a means chart is out of control if
ȳi· is outside the control limits ȳ··± 3

√
MSE/N. Equivalently, it is out of control if |ȳi·− ȳ··| >

3
√

MSE/N or if
|ȳi·− ȳ··|√

MSE/N
> 3. (A.1.1)

From the statistical theory of testing contrasts in a one-way analysis of variance with normal
distributions, one can show (see Christensen, 1996, particularly the discussions of contrasts and
Ott’s Analysis of Means) that an α level statistical test of whether the group i population mean is
different from the average of the other group means is rejected if

|ȳi·− ȳ··|√
MSE (n−1)/n

N

> t(1−α,n(N−1)) =
√

F(1−α,1,n(N−1)). (A.1.2)

Relative to inequality (A.1.1), the multiplier 3 from the control chart has been replaced by a per-
centile of a t distribution and there is an additional multiplier of

√
(n−1)/n in the denominator.

Evaluating inequality (A.1.2) is equivalent to rejecting when ȳi· is outside the test limits

ȳ··±
√

F(1−α,1,n(N−1))
√

MSE(n−1)/nN.
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Rather than using inequality (A.1.2) directly, multivariate means charts square both sides of the
inequality, so they evaluate whether

(ȳi·− ȳ··)2

MSE (n−1)/n
N

=

 |ȳi·− ȳ··|√
MSE (n−1)/n

N

2

> [t(1−α,n(N−1))]2 = F(1−α,1,n(N−1))

or whether
N(ȳi·− ȳ··)2

MSE
>

n−1
n

F(1−α,1,n(N−1)). (A.1.3)

In fact, when q = 1, the multivariate means chart, as typically used, reduces exactly to determining
whether inequality (A.1.3) is satisfied.

We discussed earlier why viewing control charts as statistical tests was inappropriate because
control charts are designed not as tests but as operational definitions.

A.2 Multivariate Individuals Charts

From a sample of n multivariate observations yi we can compute the sample mean vector ȳ· and the
sample covariance matrix

S≡ 1
n−1

n

∑
i=1

(yi− ȳ·)(yi− ȳ·)′.

Alternatively, one could (and perhaps should) use the covariance matrix estimate based on running
differences (moving ranges)

S̃≡ 1
2(n−1)

n−1

∑
i=1

(yi+1− yi)(yi+1− yi)
′

which, like S, can be shown to have
E
(
S̃
)
= Σ.

As with its univariate version discussed in Section 4.1, S̃ is subject to far less bias than is S when
the yi process is subjected to a mean shift at some time (or times).

Compute the estimated squared Mahalanobis distances for each observation as, say,

D̃2
i ≡ (yi− ȳ·)′S̃−1(yi− ȳ·).

Again an individuals chart can be constructed with control limits q± 3
√

2q. To test whether the
process is on target, i.e. H0 : µ = µ0, plot

D̃2
i0 ≡ (yi−µ0)

′S̃−1(yi−µ0)

with the same control limits.
The more commonly used multivariate individuals chart is based on statistical testing. Sullivan

and Woodhall (1996) review the relevant literature and suggest an upper control limit that uses
percentiles of an approximate Beta distribution.

UCL =
(n−1)2

n
Beta(1−α,q/2,( f −q−1)/2) where f =

1
2

(
2(n−1)2

3n−4

)
.

The distribution theory is somewhat more complex than it is for means charts. Minitab uses α =
0.00134989803156746. A center line can be defined using α = 0.5 and the lower control limit is 0.
When using the sample covariance S instead of S̃, an exact Beta distribution applies,

UCL =
(n−1)2

n
Beta(1−α,q/2,(n−q−1)/2).
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Figure A.2: Individuals “T 2” chart of school scores.

As a statistical testing procedure (as opposed to an operation definition) the issues are further com-
plicated by the fact that (nonindependent) tests are being executed for each 1 from 1 to n so the
overall error rate for finding a special cause when none exists is complicated.

EXAMPLE A.2.1. Figure A.2 shows an individuals chart for the Coleman Report data with the
new case 17 having by far the largest D̂i value. The index for School is used in place of time. This
is an mqcc plot using R and I think it uses S. I believe the Minitab default is to use S̃. 2

R code for Figures A.1 and A.2 follows. The code also produces an ellipse chart that puts an
ellipse around most of the data in Figure A.1 but excludes point 17.
# Read the data

coleman.slr <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab6-1.dat",

sep="",col.names=c("School","x","y"))

attach(coleman.slr)

coleman.slr

#summary(coleman.slr)

x[17]=11

y[17]=25

plot(x,y)

cole=data.frame(x,y)

cole

#install.packages("qcc")

library(qcc)

clr=mqcc(cole, type ="T2.single")

ellipseChart(clr)

# The following code is for the generalized variance chart but also shows

# alternatives to qcc’s mqcc program.

#install.packages("MSQC")
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library(MSQC)

gen.var(cole)

clr1=mult.chart(type = c("chi", "t2", "mewma", "mcusum", "mcusum2"))

A.3 Multivariate Means
(
T 2
)

Charts

Prior to the introduction of Mahalanobis distance, Hotelling had introduced an overall test for
whether a random sample of size n was on target at µ0. His test statistic was

T 2 = n(ȳ·−µ0)
′S−1(ȳ·−µ0),

which is the squared Mahalanobis distance from ȳ· to the hypothesized center of its distribution.
(Recall that [Cov(ȳ·)]−1 = nΣ−1.) Hotelling also related the distribution of T 2 to an F distribution
when the data yi are multivariate normal. Hotelling’s testing idea has been enlarged to find the usual
upper control limit for a multivariate means chart. Despite such charts being motivated by estimated
Mahalanobis distances rather than Hotelling’s T 2, the charts are often referred to as T 2 charts as
they are closely, but not immediately, related to Hotelling’s statistic.

When using n rational subgroups of size N to obtain control data yi j, i = 1, . . . ,n, j = 1, . . . ,N,
for each subgroup i we compute the subgroup mean vector ȳi· and the subgroup covariance matrix
Si. Compute the grand mean

ȳ·· = (ȳ1·+ · · ·+ ȳn·)/n,

the pooled covariance matrix
Sp = (S1 + · · ·+Sn)/n,

and the group-wise estimated squared Mahalanobis distances

D̂2
i = N(ȳi·− ȳ··)′S−1

p (ȳi·− ȳ··).

Again this could be related to the control limits q±3
√

2q but we can do something more statistically
precise because D̂2

i is closely related to the Lawley-Hotelling trace statistic T 2
i for testing whether

group i has the same mean as the (average of the) other groups. Similar to the computation in
Section 1, the test statistic reduces to

T 2
i =

n
n−1

D̂2
i .

When testing a single (rank 1, estimable, multivariate) linear hypothesis (like we are doing) it is
quite well known that

dfE−q+1
dfE q

T 2 ∼ F(q,dfE−q+1).

For our rational subgroup data structure dfE = n(N−1). Some simple algebra shows that

nN−n−q+1
n(N−1) q

n
n−1

D̂2
i ∼ F(q,nN−n−q+1)

or

D̂2
i ∼

(N−1)(n−1)q
nN−n−q+1

F(q,nN−n−q+1).

The upper contral limit on a D̂2
i chart can be, and typically is, taken as a multiple of a percentile of

an F distribution, namely,

UCL≡ (N−1)(n−1)q
nN−n−q+1

F(1−α,q,nN−n−q+1)

for a small α . Again, for q = 1 this reduces exactly to the procedure embodied in (A.1.3). Minitab
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uses α = 0.00134989803156746. The lower control limit is 0. A center line is often given at
(N−1)(n−1)q
nN−n−q+1 F(0.5,q,nN−n−q+1).

These procedures are for process analysis. Multivariate one-way ANOVA theory can provide a
predictive test for process control. One can also perform multivariate EWMA and CUSUM charts
by applying the procedures to the D̂2

i s.

A.4 Multivariate Dispersion Charts

One can chart each of the q individual variances (and the q(q−1)/2 covariances) but for multivariate
charting purposes, covariance matrices are typically summarized by the generalized variance of a
random vector. The generalized variance is just the determinant of the covariance matrix, say |Σ|.
In q = 1 dimension, the generalized variance becomes just the variance. We primarily concern
ourselves with data from rational subgroups. While constructing a generalized variance chart is
analogous to constructing an s2 chart, the actual construction is more in the spirit of constructing
s charts due to the numerous bias corrections that are involved. For individual data vectors yi, the
multivariate moving range chart is an individuals chart on the values (yi+1− yi)

′(yi+1− yi).
For multivariate normal rational subgroup data, it is known that for some constants b j,df (given

later),
E(|Si|) = b1,N−1|Σ|, E(|Sp|) = b1,n(N−1)|Σ|

and
Var(|Si|) = b2,N−1|Σ|2, Var(|Sp|) = b2,n(N−1)|Σ|2.

With no statistical testing involved, the theoretical control limits when plotting |Si| are

b1,N−1|Σ|±3
√

b2,N−1|Σ|2

or
|Σ|
[
b1,n(N−1)±3

√
b2,n(N−1)

]
.

If we estimate |Σ| using |Sp|/b2,n(N−1) we get estimated control limits of

|Sp|
b2,n(N−1)

[
b1,n(N−1)±3

√
b2,n(N−1)

]
.

Not that they are very interesting but

b1,df ≡
1

df q

q−1

∏
k=0

(df − k)

and

b2,df ≡
1

df 2q

q−1

∏
k=0

(df − k)

[
q−1

∏
k=0

(df − k+2)−
q−1

∏
k=0

(df − k)

]
.

When q = 1, the generalized variance chart reduces to the s2 chart presented in Section 4.2. In
particular, |Si|= s2

i , |Σ|= σ2, and b1,N−1 = 1, so

E(s2
i ) = E(|Si|) = b1,N−1|Σ|= σ

2.

Also, b2,N−1 = 2/(N−1), so

Var(s2
i ) = Var(|Si|) = b2,N−1|Σ|2 = 2σ

4/(N−1).
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Myers, Raymond H., Khuri, André I., and Carter, Walter H., Jr., (1989). Response Surface Methodology: 1966-
1988. Technometrics, 31, 137-157.
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