
Thoughts on Interaction

Ronald Christensen

Department of Mathematics and Statistics

University of New Mexico

November 16, 2016

Abstract

KEY WORDS:

0



The first section examines interactions in an unbalanced two-way ANOVA. The second

section uses the first to establish that the two-way ANOVA displays orthogonality if and

only if the unbalanced numbers are proportional. The third section looks at Boik’s work on

interaction testing for proportional numbers.

1. Characterizing the Interaction Space

In a two-way ANOVA with interaction and unbalanced numbers, the cell-means parameter-

ization is

yijk = µij + εijk, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , Nij,

which is really just a one-way ANOVA with unequal numbers and the pair of subscripts ij

identifying the ab different groups. The traditional parameterization is µij = µ+αi+ηj+γij.

Write the cell-means model in matrix form as Y = Xµ + e. X has ab columns and the i′j′

column has the form

Xi′j′ = [tijk], with tijk = δ(i,j)(i′,j′)

where for any two symbols a and b, the kronecker delta has

δab =


1 if a = b

0 if a ̸= b.

Note that

C(X) = {v|v = [vijk], with vijk = µij for some µij} .

Similar to the balanced case, we will see that the interaction space is the set of vectors

T = [tijk], with tijk = qij/Nij where qi· = 0 = q·j, for all i, j.

An interaction contrast is T ′Xµ =
∑

ij qijµij =
∑

ij qijγij. Clearly, T ∈ C(X), so T ′MY =

T ′Y where M is the perpendicular projection operator (ppo) onto C(X). It follows that the
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least squares estimate of T ′Xµ is T ′Y =
∑

ij qij ȳij·. These are essentially the same results

as for balanced ANOVA.

To see that vectors T characterize the interaction space, write the corresponding main

effects model

Y = Jµ+Xαα +Xηη + e.

The matrix Xα has columns

Xi′ = [tijk], tijk = δii′ i′ = 1, . . . , a

The matrix Xη has columns

Xa+j′ = [tijk], tijk = δjj′ j′ = 1, . . . , b

By definition, the interaction space is C(J,Xα, Xη)
⊥
C(X). Thus, the characterization of the

interaction space results from vectors of the form T spanning a space of sufficient rank

[(a − 1)(b − 1) when Nij > 0 for all ij], having T ∈ C(X), and X ′
hT = 0, h = 1, . . . , a + b

[which follows from the definitions and arithmetic]. Note that to have orthogonal interaction

contrasts we need the T vectors corresponding to the interaction contrasts to be orthogonal.

Note also that all interaction contrasts are contrasts in the µij one-way model, but not

all µij contrasts are interaction contrasts. As in PA Chapter 4, an arbitrary element of the

µij contrast space is

S = [sijk], with sijk = sij/Nij where s·· = 0.

In addition to the interaction space being a subset of the contrast space, there is an a − 1

dimensional subspace of the contrast space consisting of vectors

Tα = [tijk], with tijk = ci/bNij where c· = 0

and a b− 1 dimensional subspace of vectors

Tη = [tijk], with tijk = dj/aNij where d· = 0.
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These define contrasts in the interaction model of

T ′
αXµ =

∑
ij

ciµij/b =
∑
ij

ciµ̄i· =
∑
i

ci(αi + γ̄i·)

with estimate T ′
αY =

∑
i ciȳi· and

T ′
ηXµ =

∑
ij

djµij/a =
∑
ij

djµ̄·j =
∑
j

dj(ηj + γ̄·j)

with estimate Tη′Y =
∑

j dj ȳ·j. Under proportional numbers, these three spaces are orthog-

onal but in general they intersect in the zero vector.

For the main effects model, the vectors Tα and Tη typically are not in C(J,Xα, Xη), so

although, for example, T ′
α[Jµ+Xαα+Xηη] =

∑
i ciαi, the estimate is not T ′

αY , it is T ′
αM0Y

where M0 is the ppo onto C(J,Xα, Xη).

2. Orthogonal Main Effects iff Proportional Numbers

An interesting sidelight from writing the unbalanced model this way is that correcting for

the grand mean gives

[I − (1/n)JJ ′]Xi′ = [tijk], tijk = δii′ −
Ni′·

n

and

[I − (1/n)JJ ′]Xa+j′ = [tijk], tijk = δjj′ −
N·j′

n

which implies that main effects are orthogonal iff the data have proportional numbers. To

see this,

X ′
i′ [I−(1/n)JJ ′]Xa+j′ = 0 ⇐⇒ 0 = Ni′j′−

Ni′·N·j′

n
=

∑
i

∑
j

∑
k

(
δii′ −

Ni′·

n

)(
δjj′ −

N·j′

n

)
I don’t remember if orthogonality implies proportional numbers is proven in the PA Chap

7. The reverse certainly is proven.
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3. Thoughts on Testing Interaction

This requires some knowledge of Multivariate Analysis. We know how to test interaction,

just test the µij model against the additive model. As discussed above and in PA (Chap.

7), in the balanced case and now in the unbalanced case, we can characterize the interaction

space. The interaction space involves contrasts
∑

i

∑
j qijµij with qijs defined as above. But

the most interpretable interaction contrasts have a special form (product interactions), built

by combining a contrast in the αis with a contrast in the ηj, see below. Boik developed a test

for interactions of this specific form. However, it seems that the distribution theory was ugly.

(Admittedly, I think that all distribution theory is ugly.) At least in some special cases, one

can rewrite Boik’s approach so that standard results from multivariate ANOVA equate to

Boik’s results. Boik’s results apply when one has proportional numbers. The results below

are more restrictive than proportional numbers.

1. Boik, R. J. (1986), Testing the Rank of a Matrix with Applications to the Analysis of

Interaction in ANOVA, Journal of the American Statistical Association, 81, 243-248.

2. Boik, R. J. (1993), The Analysis of Two-Factor Interactions in Fixed Effects Linear

Models, Journal of Educational and Behavioral Statistics, 18, 1-40.

Boik’s is a test of product interactions, i.e., qij ≡ cidj where c· = 0 = d·. Note that these

provide a basis for the interaction space by picking a − 1 linearly independent α contrasts

and b− 1 linearly independent η contrasts. But vectors T with this form generate the entire

interaction space, not just vectors of product form. Product form is not closed under vector

addition.

Write

yijk = µ+ αi + ηj + γij + εijk, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , Nij.

Fix j and write a series of one-way ANOVA models

yijk = (µ+ ηj) + (αi + γij) + εijk, i = 1, . . . , a, k = 1, . . . , Nij.
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When Nij = Nij′ = Ni·/b for all i, j, j
′, we can treat this as a multivariate one-way model

[Y1, · · · , Yb] = XB + e.

The condition on the Nij is a special case of proportional numbers. Note that X has n ≡ N··

rows, whereas X has N··/b rows.

Let Z be a matrix whose columns are b − 1 linearly independent sets of contrast coeffi-

cients. Think of fitting the model

Y Z = X(BZ) + eZ.

Our test for product interactions is based on the test for group (“α”) effects in this one-way

model. The test statistic is

H = Z ′Y ′MαY Z

where Mα is the ppo for group effects in the one-way. We could just use a standard multivari-

ate linear model test, like Roy’s, or we could try to incorporate the fact that the columns in

this multivariate linear model are independent and homoscedastic to develop an even better

test. Roy’s maximum F test should be very similar to what is in Boik, especially the ’93

paper. Boik showed that his results hold for arbitrary sets of proportional numbers, not just

the special case considered here. Incidentally, if we reverse the roles of i and j we should get

the same results provided Nij = N·j/a, giving us two ways to achieve the needed balance.
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