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Preface

This book examines the application of basic statistical methods: primarily analysis of variance and
regression but with some discussion of count data. It is directed primarily towards Masters degree
students in statistics studying analysis of variance, design of experiments, and regression analy-
sis. I have found that the Masters level regression course is often popular with students outside of
statistics. These students are often weaker mathematically and the book caters to that fact while
continuing to give a complete matrix formulation of regression.

The book is complete enough to be used as a second course for upper division and beginning
graduate students in statistics and for graduate students in other disciplines. To do this, one must
be selective in the material covered, but the more theoretical material appropriate only for Statistics
Masters students is generally isolated in separate subsections and, less often, in separate sections.

For a Masters level course in analysis of variance and design, I have the students review Chap-
ter 2, I present Chapter 3 while simultaneously presenting the examples of Section 4.2, I present
Chapters 5 and 6, very briefly review the first five sections of Chapter 7, present Sections 7.11 and
7.12 in detail and then I cover Chapters 9, 10, 11, 12, and 17. Depending on time constraints, I will
delete material or add material from Chapter 16.

For a Masters level course in regression analysis, I again have the students review Chapter 2 and
I review Chapter 3 with examples from Section 4.2. I then present Chapters 7, 13, and 14, Appendix
A, Chapter 15, Sections 16.1.2, 16.3, 16.5 (along with analysis of covariance), Section 8.7 and
finally Chapter 18 . All of this is done in complete detail. If any time remains I like to supplement
the course with discussion of response surface methods.

As a second course for upper division and beginning graduate students in statistics and graduate
students in other disciplines, I cover the first eight chapters with omission of the more technical
material. A follow up course covers the less technical aspects of Chapters 9 through 15 and Ap-
pendix A.

I think the book is reasonably encyclopedic. It really contains everything I would like my stu-
dents to know about applied statistics prior to them taking courses in linear model theory or log-
linear models.

I believe that beginning students (even Statistics Masters students) often find statistical proce-
dures to be a morass of vaguely related special techniques. As a result, this book focuses on four
connecting themes.

1. Most inferential procedures are based on identifying a (scalar) parameter of interest, estimat-
ing that parameter, obtaining the standard error of the estimate, and identifying the appropriate
reference distribution. Given these items, the inferential procedures are identical for various pa-
rameters.

2. Balanced one-way analysis of variance has a simple, intuitive interpretation in terms of com-
paring the sample variance of the group means with the mean of the sample variances for each
group. All balanced analysis of variance problems are considered in terms of computing sample
variances for various group means.

3. Comparing different models provides a structure for examining both balanced and unbalanced
analysis of variance problems and for examining regression problems. In some problems the
most reasonable analysis is simply to find a succinct model that fits the data well.

4. Checking assumptions is a crucial part of every statistical analysis.

xiii
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The object of statistical data analysis is to reveal useful structure within the data. In a model-
based setting, I know of two ways to do this. One way is to find a succinct model for the data. In
such a case, the structure revealed is simply the model. The model selection approach is particu-
larly appropriate when the ultimate goal of the analysis is making predictions. This book uses the
model selection approach for multiple regression and for general unbalanced multifactor analysis
of variance. The other approach to revealing structure is to start with a general model, identify in-
teresting one-dimensional parameters, and perform statistical inferences on these parameters. This
parametric approach requires that the general model involve parameters that are easily interpretable.
We use the parametric approach for one-way analysis of variance, balanced multifactor analysis of
variance, and simple linear regression. In particular, the parametric approach to analysis of variance
presented here involves a strong emphasis on examining contrasts, including interaction contrasts.
In analyzing two-way tables of counts, we use a partitioning method that is analogous to looking at
contrasts.

All statistical models involve assumptions. Checking the validity of these assumptions is crucial
because the models we use are never correct. We hope that our models are good approximations
to the true condition of the data and experience indicates that our models often work very well.
Nonetheless, to have faith in our analyses, we need to check the modeling assumptions as best we
can. Some assumptions are very difficult to evaluate, e.g., the assumption that observations are statis-
tically independent. For checking other assumptions, a variety of standard tools has been developed.
Using these tools is as integral to a proper statistical analysis as is performing an appropriate confi-
dence interval or test. For the most part, using model-checking tools without the aid of a computer
is more trouble than most people are willing to tolerate.

My experience indicates that students gain a great deal of insight into balanced analysis of
variance by actually doing the computations. The computation of the mean square for treatments in
a balanced one-way analysis of variance is trivial on any hand calculator with a variance or standard
deviation key. More importantly, the calculation reinforces the fundamental and intuitive idea behind
the balanced analysis of variance test, i.e., that a mean square for treatments is just a multiple of
the sample variance of the corresponding treatment means. I believe that as long as students find
the balanced analysis of variance computations challenging, they should continue to do them by
hand (calculator). I think that automated computation should be motivated by boredom rather than
bafflement.

In addition to the four primary themes discussed above, there are several other characteristics
that I have tried to incorporate into this book.

I have tried to use examples to motivate theory rather than to illustrate theory. Most chapters
begin with data and an initial analysis of that data. After illustrating results for the particular data,
we go back and examine general models and procedures. I have done this to make the book more
palatable to two groups of people: those who only care about theory after seeing that it is useful and
those unfortunates who can never bring themselves to care about theory. (The older I get, the more I
identify with the first group. As for the other group, I find myself agreeing with W. Edwards Deming
that experience without theory teaches nothing.) As mentioned earlier, the theoretical material is
generally confined to separate subsections or, less often, separate sections, so it is easy to ignore.

I believe that the ultimate goal of all statistical analysis is prediction of observable quantities. I
have incorporated predictive inferential procedures where they seemed natural.

The object of most statistics books is to illustrate techniques rather than to analyze data; this
book is no exception. Nonetheless, I think we do students a disservice by not showing them a
substantial portion of the work necessary to analyze even ‘nice’ data. To this end, I have tried to
consistently examine residual plots, to present alternative analyses using different transformations
and case deletions, and to give some final answers in plain English. I have also tried to introduce
such material as early as possible. I have included reasonably detailed examinations of a three-factor
analysis of variance and of a split plot design with four factors. I have included some examples in
which, like real life, the final answers are not ‘neat.’ While I have tried to introduce statistical ideas
as soon as possible, I have tried to keep the mathematics as simple as possible for as long as possible.
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For example, matrix formulations are postponed to the last chapter on multiple regression and the
last section on unbalanced analysis of variance.

I never use side conditions or normal equations in analysis of variance.

In multiple comparison methods, (weakly) controlling the experimentwise error rate is discussed
in terms of first performing an omnibus test for no treatment effects and then choosing a criterion for
evaluating individual hypotheses. Most methods considered divide into those that use the omnibus
F test, those that use the Studentized range test, and the Bonferroni method, which does not use any
omnibus test.

I have tried to be very clear about the fact that experimental designs are set up for arbitrary
groups of treatments and that factorial treatment structures are simply an efficient way of defining
the treatments in some problems. Thus, the nature of a randomized complete block design does not
depend on how the treatments happen to be defined. The analysis always begins with a breakdown
of the sum of squares into treatments, blocks, and error. Further analysis of the treatments then
focuses on whatever structure happens to be present.

The analysis of covariance chapter includes an extensive discussion of how the covariates must
be chosen to maintain a valid experiment. Tukey’s one degree of freedom test for nonadditivity is
presented as an analysis of covariance test for the need to perform a power transformation rather
than as a test for a particular type of interaction.

The chapter on confounding and fractional replication has more discussion of analyzing such
data than many other books contain.

Minitab commands are presented for most analyses. Minitab was chosen because I find it the
easiest of the common packages to use. However, the real point of including computer commands is
to illustrate the kinds of things that one needs to specify for any computer program and the various
auxiliary computations that may be necessary for the analysis. The other statistical packages used
in creating the book were BMDP, GLIM, and MSUSTAT.
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Chapter 1

Introduction

In this chapter we introduce basic ideas of probability and some related mathematical concepts that
are used in statistics. Values to be analyzed statistically are generally thought of as random variables;
these are numbers that result from random events. The mean (average) value of a population is
defined in terms of the expected value of a random variable. The variance is introduced as a measure
of the variability in a random variable (population). We also introduce some special distributions
(populations) that are useful in modeling statistical data. The purpose of this chapter is to introduce
these ideas, so they can be used in analyzing data and in discussing statistical models.

In writing statistical models, we often use symbols from the Greek alphabet. A table of these
symbols is provided in Appendix B.6.

Rumor has it that there are some students studying statistics who have an aversion to mathemat-
ics. Such people might be wise to focus on the concepts of this chapter and not let themselves get
bogged down in the details. The details are given to provide a more complete introduction for those
students who are not math averse.

1.1 Probability

Probabilities are numbers between zero and one that are used to explain random phenomena. We are
all familiar with simple probability models. Flip a standard coin; the probability of heads is 1/2. Roll
a die; the probability of getting a three is 1/6. Select a card from a well-shuffled deck; the probability
of getting the queen of spades is 1/52 (assuming there are no jokers). One way to view probability
models that many people find intuitive is in terms of random sampling from a fixed population.
For example, the 52 cards form a fixed population and picking a card from a well-shuffled deck is
a means of randomly selecting one element of the population. While we will exploit this idea of
sampling from fixed populations, we should also note its limitations. For example, blood pressure is
a very useful medical indicator, but even with a fixed population of people it would be very difficult
to define a useful population of blood pressures. Blood pressure depends on the time of day, recent
diet, current emotional state, the technique of the person taking the reading, and many other factors.
Thinking about populations is very useful, but the concept can be very limiting both practically and
mathematically. For measurements such as blood pressures and heights, there are difficulties in even
specifying populations mathematically.

For mathematical reasons, probabilities are defined not on particular outcomes but on sets of
outcomes (events). This is done so that continuous measurements can be dealt with. It seems much
more natural to define probabilities on outcomes as we did in the previous paragraph, but consider
some of the problems with doing that. For example, consider the problem of measuring the height of
a corpse being kept in a morgue under controlled conditions. The only reason for getting morbid here
is to have some hope of defining what the height is. Living people, to some extent, stretch and con-
tract, so a height is a nebulous thing. But even given that someone has a fixed height, we can never
know what it is. When someone’s height is measured as 177.8 centimeters (5 feet 10 inches), their
height is not really 177.8 centimeters, but (hopefully) somewhere between 177.75 and 177.85 cen-
timeters. There is really no chance that anyone’s height is exactly 177.8 cm, or exactly 177.8001 cm,

1



2 1. INTRODUCTION

or exactly 177.800000001 cm, or exactly 56.5955π cm, or exactly (76
√

5+ 4.5
√

3) cm. In any
neighborhood of 177.8, there are more numerical values than one could even imagine counting. The
height should be somewhere in the neighborhood, but it won’t be the particular value 177.8. The
point is simply that trying to specify all the possible heights and their probabilities is a hopeless
exercise. It simply cannot be done.

Even though individual heights cannot be measured exactly, when looking at a population of
heights they follow certain patterns. There are not too many people over 8 feet (244 cm) tall. There
are lots of males between 175.3 cm and 177.8 cm (5′9′′ and 5′10′′). With continuous values, each
possible outcome has no chance of occurring, but outcomes do occur and occur with regularity. If
probabilities are defined for sets instead of outcomes, these regularities can be reproduced mathe-
matically. Nonetheless, initially the best way to learn about probabilities is to think about outcomes
and their probabilities.

There are five key facts about probabilities:

1. Probabilities are between 0 and 1.
2. Something that happens with probability 1 is a sure thing.
3. If something has no chance of occurring, it has probability 0.
4. If something occurs with probability, say, .25, the probability that it will not occur is 1− .25 =

.75.
5. If two events are mutually exclusive, i.e., if they cannot possibly happen at the same time, then

the probability that either of them occurs is just the sum of their individual probabilities.

Individual outcomes are always mutually exclusive, e.g., you cannot flip a coin and get both heads
and tails, so probabilities for outcomes can always be added together. Just to be totally correct, I
should mention one other point. It may sound silly, but we need to assume that something occurring
is always a sure thing. If we flip a coin, we must get either heads or tails with probability 1. We
could even allow for the coin landing on its edge as long as the probabilities for all the outcomes
add up to 1.

EXAMPLE 1.1.1. Consider the nine outcomes that are all combinations of three heights, tall (T),
medium (M), short (S) and three eye colors, blue (Bl), brown (Br) and green (G). The combinations
are displayed below.

Height–eye color combinations
Eye color

Blue Brown Green
Tall T,Bl T,Br T,G

Height Medium M,Bl M,Br M,G
Short S,Bl S,Br S,G

The set of all outcomes is

{(T,Bl),(T,Br),(T,G),(M,Bl),(M,Br),(M,G),(S,Bl),(S,Br),(S,G)} .

The event that someone is tall consists of the three pairs in the first row of the table, i.e.,

{T}= {(T,Bl),(T,Br),(T,G)} .

This is the union of the three outcomes (T,Bl), (T,Br), and (T,G). Similarly, the set of people with
blue eyes is obtained from the first column of the table; it is the union of (T,Bl), (M,Bl), and (S,Bl)
and can be written

{Bl}= {(T,Bl),(M,Bl),(S,Bl)} .

If we know that {T} and {Bl} both occur, there is only one possible outcome, (T, Bl).
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Table 1.1: Height–eye color probabilities

Eye color
Blue Brown Green

Tall .12 .15 .03
Height Medium .22 .34 .04

Short .06 .01 .03

The event that {T} or {Bl} occurs consists of all outcomes in either the first row or the first
column of the table, i.e.,

{(T,Bl),(T,Br),(T,G),(M,Bl),(S,Bl)} . 2

EXAMPLE 1.1.2. Table 1.1 contains probabilities for the nine outcomes that are combinations of
height and eye color from Example 1.1.1.

Note that each of the nine numbers is between 0 and 1 and that the sum of all nine equals 1. The
probability of blue eyes is

Pr(Bl) = Pr[(T,Bl),(M,Bl),(S,Bl)]
= Pr(T,Bl)+Pr(M,Bl)+Pr(S,Bl)
= .12+ .22+ .06
= .4 .

Similarly, Pr(Br) = .5 and Pr(G) = .1. The probability of not having blue eyes is

Pr(not Bl) = 1−Pr(Bl)
= 1− .4
= .6 .

Note also that Pr(not Bl) = Pr(Br)+Pr(G).
The (marginal) probabilities for the various heights are:

Pr(T) = .3, Pr(M) = .6, Pr(S) = .1 . 2

Even if there are a countable (but infinite) number of possible outcomes, one can still define a
probability by defining the probabilities for each outcome. It is only for measurement data that one
really needs to define probabilities on sets.

Two random events are said to be independent if knowing that one of them occurs provides no
information about the probability that the other event will occur. Formally, two events A and B are
independent if

Pr(A and B) = Pr(A)Pr(B).

Thus the probability that both events A and B occur is just the product of the individual probabilities
that A occurs and that B occurs. As we will begin to see in the next section, independence plays an
important role is statistics.

EXAMPLE 1.1.3. Using the probabilities of Table 1.1 and the computations of Example 1.1.2,
the events tall and brown eyes are independent because

Pr(tall and brown) = Pr(T,Br) = .15 = (.3)(.5) = Pr(T)×Pr(Br).

On the other hand, medium height and blue eyes are not independent because

Pr(medium and blue) = Pr(M,Bl) = .22 6= (.6)(.4) = Pr(M)×Pr(Bl). 2
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1.2 Random variables and expectations

A random variable is simply a function that relates outcomes with numbers. The key point is that
any probability associated with the outcomes induces a probability on the numbers. The numbers
and their associated probabilities can then be manipulated mathematically. Perhaps the most
common and intuitive example of a random variable is rolling a die. The outcome is that a face of
the die with a certain number of spots ends up on top. These can be pictured as

s s s s s s

ss ss ss sss ss ss ss

Without even thinking about it, we define a random variable that transforms these six faces into the
numbers 1, 2, 3, 4, 5, 6.

In statistics we think of observations as random variables. These are often some number asso-
ciated with a randomly selected member of a population. For example, one random variable is the
height of a person who is to be randomly selected from among University of New Mexico students.
(A random selection gives the same probability to every individual in the population. This random
variable presumes that we have well-defined methods for measuring height and defining UNM stu-
dents.) Rather than measuring height, we could define a different random variable by giving the
person a score of 1 if that person is female and 0 if the person is male. We can also perform math-
ematical operations on random variables to yield new random variables. Suppose we plan to select
a random sample of 10 students, then we would have 10 random variables with female and male
scores. The sum of these random variables is another random variable that tells us the (random)
number of females in the sample. Similarly, we would have 10 random variables for heights and
we can define a new random variable consisting of the average of the 10 individual height random
variables. Some random variables are related in obvious ways. In our example we measure both a
height and a sex score on each person. If the sex score variable is a 1 (telling us that the person is fe-
male), it suggests that the height may be smaller than we would otherwise suspect. Obviously some
female students are taller than some male students, but knowing a person’s sex definitely changes
our knowledge about their probable height.

We do similar things in tossing a coin.

EXAMPLE 1.2.1. Consider tossing a coin twice. The four outcomes are ordered pairs of heads
(H) and tails (T ). The outcomes can be denoted as

(H,H) (H,T ) (T,H) (T,T )

where the outcome of the first toss is the first element of the ordered pair.
The standard probability model has the four outcomes equally probable, i.e., 1/4 = Pr(H,H) =

Pr(H,T ) = Pr(T,H) = Pr(T,T ). Equivalently
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Second toss
Heads Tails Total

First toss Heads 1/4 1/4 1/2
Tails 1/4 1/4 1/2
Total 1/2 1/2 1

The probability of heads on each toss is 1/2. The probability of tails is 1/2. We will define two
random variables:

y1(r,s) =
{1 if r = H

0 if r = T

y2(r,s) =
{1 if s = H

0 if s = T
.

Thus, y1 is 1 if the first toss is heads and 0 otherwise. Similarly, y2 is 1 if the second toss is heads
and 0 otherwise.

The event y1 = 1 occurs if and only if we get heads on the first toss. We get heads on the first toss
by getting either of the outcome pairs (H,H) or (H,T ). In other words, the event y1 = 1 is equivalent
to the event {(H,H),(H,T )}. The probability of y1 = 1 is just the sum of the probabilities of the
outcomes in {(H,H),(H,T )}.

Pr(y1 = 1) = Pr(H,H)+Pr(H,T )

= 1/4+1/4 = 1/2.

Similarly,

Pr(y1 = 0) = Pr(T,H)+Pr(T,T )
= 1/2

Pr(y2 = 1) = 1/2
Pr(y2 = 0) = 1/2 .

Now define another random variable,

W (r,s) = y1(r,s)+ y2(r,s) .

The random variable W is the total number of heads in two tosses:

W (H,H) = 2
W (H,T ) = W (T,H) = 1
W (T,T ) = 0 .

Moreover,

Pr(W = 2) = Pr(H,H) = 1/4
Pr(W = 1) = Pr(H,T )+Pr(T,H) = 1/2
Pr(W = 0) = Pr(T,T ) = 1/4 .

These three equalities define a probability on the outcomes 0, 1, 2. In working with W , we can
ignore the original outcomes of head-tail pairs and work only with the new outcomes 0, 1, 2 and
their associated probabilities. We can do the same thing for y1 and y2. The probability table given
earlier can be rewritten in terms of y1 and y2.
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y2
1 0 y1 totals

y1 1 1/4 1/4 1/2
0 1/4 1/4 1/2

y2 totals 1/2 1/2 1

Note that, for example, Pr [(y1,y2) = (1,0)] = 1/4 and Pr(y1 = 1) = 1/2. This table shows the
distribution of the probabilities for y1 and y2 both separately (marginally) and jointly.

2

For any random variable, a statement of the possible outcomes and their associated probabilities
is referred to as the (marginal) probability distribution of the random variable. For two or more
random variables, a table or other statement of the possible joint outcomes and their associated
probabilities is referred to as the joint probability distribution of the random variables.

All of the entries in the center of the distribution table given above for y1 and y2 are independent.
For example,

Pr[(y1,y2) = (1,0)]≡ Pr(y1 = 1 and y2 = 0) = Pr(y1 = 1)Pr(y2 = 0).

We therefore say that y1 and y2 are independent. In general, two random variables y1 and y2 are
independent if any event involving only y1 is independent of any event involving only y2.

Independence is an extremely important concept in statistics. Observations to be analyzed are
commonly assumed to be independent. This means that the random aspect of one observation con-
tains no information about the random aspect of any other observation. (However, every observation
tells us about fixed aspects of the underlying population such as the population center.) For most
purposes in applied statistics, just this intuitive understanding of independence is sufficient.

1.2.1 Expected values and variances

The expected value (population mean) of a random variable is a number characterizing the middle
of the distribution. For a random variable y with a discrete distribution (i.e., one having a finite or
countable number of outcomes), the expected value is

E(y)≡ ∑
all r

rPr(y = r) .

EXAMPLE 1.2.2. Let y be the result of picking one of the numbers 2, 4, 6, 8 at random. Because
the numbers are chosen at random,

1/4 = Pr(y = 2) = Pr(y = 4) = Pr(y = 6) = Pr(y = 8) .

The expected value in this simple example is just the mean (average) of the four possible outcomes.

E(y) = 2
(

1
4

)
+4
(

1
4

)
+6
(

1
4

)
+8
(

1
4

)
= (2+4+6+8)/4
= 5 . 2

EXAMPLE 1.2.3. Five pieces of paper are placed in a hat. The papers have the numbers 2, 4, 6,
6, and 8 written on them. A piece of paper is picked at random. The expected value of the number
drawn is the mean of the numbers on the five pieces of paper. Let y be the random variable that
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relates a piece of paper to the number on that paper. Each piece of paper has the same probability of
being chosen, so, because the number 6 appears twice, the distribution of the random variable y is

1
5

= Pr(y = 2) = Pr(y = 4) = Pr(y = 8)

2
5

= Pr(y = 6) .

The expected value is

E(y) = 2
(

1
5

)
+4
(

1
5

)
+6
(

2
5

)
+8
(

1
5

)
= (2+4+6+6+8)/5
= 5.2 . 2

EXAMPLE 1.2.4. Consider the coin tossing random variables y1, y2, and W from Example 1.2.1.
Recalling that y1 and y2 have the same distribution,

E(y1) = 1
(

1
2

)
+0
(

1
2

)
=

1
2

E(y2) =
1
2

E(W ) = 2
(

1
4

)
+1
(

1
2

)
+0
(

1
4

)
= 1 .

The variable y1 is the number of heads in the first toss of the coin. The two possible values 0 and
1 are equally probable, so the middle of the distribution is 1/2. W is the number of heads in two
tosses; the expected number of heads in two tosses is 1. 2

The expected value indicates the middle of a distribution, but does not indicate how spread out
(dispersed) a distribution is.

EXAMPLE 1.2.5. Consider three gambles that I will allow you to take. In game z1 you have equal
chances of winning 12, 14, 16, or 18 dollars. In game z2 you can again win 12, 14, 16, or 18 dollars,
but now the probabilities are .1 that you will win either $14 or $16 and .4 that you will win $12 or
$18. The third game I call z3 and you can win 5, 10, 20, or 25 dollars with equal chances. Being no
fool, I require you to pay me $16 for the privilege of playing any of these games. We can write each
game as a random variable.

z1 outcome 12 14 16 18
probability .25 .25 .25 .25

z2 outcome 12 14 16 18
probability .4 .1 .1 .4

z3 outcome 5 10 20 25
probability .25 .25 .25 .25

I try to be a good casino operator, so none of these games is fair. You have to pay $16 to play, but
you only expect to win $15. It is easy to see that

E(z1) = E(z2) = E(z3) = 15 .
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But don’t forget that I’m taking a loss on the ice-water I serve to players and I also have to pay for
the pictures of my extended family that I’ve decorated my office with.

Although the games z1, z2, and z3 have the same expected value, the games (random variables)
are very different. Game z2 has the same outcomes as z1, but much more of its probability is placed
farther from the middle value 15. The extreme observations 12 and 18 are much more probable
under z2 than z1. If you currently have $16, need $18 for your grandmother’s bunion removal, and
anything less than $18 has no value to you, then z2 is obviously a better game for you than z1.

Both z1 and z2 are much more tightly packed around 15 than is z3. If you needed $25 for the
bunion removal, z3 is the game to play because you can win it all in one play with probability .25.
In either of the other games you would have to win at least five times to get $25, a much less likely
occurrence. Of course you should realize that the most probable result is that Grandma will have
to live with her bunion. You are unlikely to win either $18 or $25. While the ethical moral of this
example is that a fool and his money are soon parted, the statistical point is that there is more to a
random variable than its mean. The variability of random variables is also important. 2

The (population) variance is a measure of how spread out a distribution is from its expected
value. Let y be a random variable having a discrete distribution with E(y) = µ , then the variance of
y is

Var(y)≡ ∑
all r

(r−µ)2Pr(y = r) .

This is the average squared distance of the outcomes from the center of the population. More tech-
nically, it is the expected squared distance between the outcomes and the mean of the distribution.

EXAMPLE 1.2.6. Using the random variables of Example 1.2.5,

Var(z1) = (12−15)2(.25)+(14−15)2(.25)
+(16−15)2(.25)+(18−15)2(.25)

= 5
Var(z2) = (12−15)2(.4)+(14−15)2(.1)

+(16−15)2(.1)+(18−15)2(.4)
= 7.4

Var(z3) = (5−15)2(.25)+(10−15)2(.25)
+(20−15)2(.25)+(25−15)2(.25)

= 62.5

The increasing variances from z1 through z3 indicate that the random variables are increasingly
spread out. However, the value Var(z3) = 62.5 seems too large to measure the relative variabilities
of the three random variables. More on this later. 2

EXAMPLE 1.2.7. Consider the coin tossing random variables of Examples 1.2.1 and 1.2.4.

Var(y1) =

(
1− 1

2

)2 1
2
+

(
0− 1

2

)2 1
2
=

1
4

Var(y2) =
1
4

Var(W ) = (2−1)2
(

1
4

)
+(1−1)2

(
1
2

)
+(0−1)2

(
1
4

)
=

1
2
. 2

A problem with the variance is that it is measured on the wrong scale. If y is measured in meters,
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Var(y) involves the terms (r− µ)2; hence it is measured in meters squared. To get things back on
the original scale, we consider the standard deviation of y

Std. dev. (y)≡
√

Var(y) .

EXAMPLE 1.2.8. Consider the random variables of Examples 1.2.5 and 1.2.6.

Std. dev. (z1) =
√

5 .
= 2.236

Std. dev. (z2) =
√

7.4 .
= 2.720

Std. dev. (z3) ≡
√

62.5 .
= 7.906

The standard deviation of z3 is 3 to 4 times larger than the others. From examining the distribu-
tions, the standard deviations seem to be more intuitive measures of relative variability than the
variances. The variance of z3 is 8.5 to 12.5 times larger than the other variances; these values seem
unreasonably inflated. 2

Standard deviations and variances are useful as measures of the relative dispersions of different
random variables. The actual numbers themselves do not mean much. Moreover, there are other
equally good measures of dispersion that can give results that are somewhat inconsistent with these.
One reason standard deviations and variances are so widely used is because they are convenient
mathematically. In addition, normal (Gaussian) distributions are widely used in applied statistics
and are completely characterized by their expected values (means) and variances (or standard devi-
ations). Knowing these two numbers, the mean and variance, one knows everything about a normal
distribution.

1.2.2 Chebyshev’s inequality

Another place in which the numerical values of standard deviations are useful is in applications
of Chebyshev’s inequality. Chebyshev’s inequality gives a lower bound on the probability that a
random variable is within an interval. Chebyshev’s inequality is important in quality control work
(control charts) and in evaluating prediction intervals.

Let y be a random variable with E(y) = µ and Var(y) = σ2. Chebyshev’s inequality states that
for any number k > 1,

Pr[µ− kσ < y < µ + kσ ]≥ 1− 1
k2 .

Thus the probability that y will fall within k standard deviations of µ is at least 1− (1/k2).
The beauty of Chebyshev’s inequality is that it holds for absolutely any random variable y. Thus

we can always make some statement about the probability that y is in a symmetric interval about
µ . In many cases, for particular choices of y, the probability of being in the interval can be much
greater than 1− k−2. For example, if k = 3 and y has a normal distribution as discussed in the next
section, the probability of being in the interval is actually .997, whereas Chebyshev’s inequality
only assures us that the probability is no less than 1− 3−2 = .889. However, we know the lower
bound of .889 applies regardless of whether y has a normal distribution.

1.2.3 Covariances and correlations

Often we take two (or more) observations on the same member of a population. We might observe
the height and weight of a person. We might observe the IQs of a wife and husband. (Here the
population consists of married couples.) In such cases we may want a numerical measure of the
relationship between the pairs of observations. Data analysis related to these concepts is known as
regression analysis and is discussed in Chapters 7, 13, 14, and 15. These ideas are also briefly used
for testing normality in Section 2.4.
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The covariance is a measure of the linear relationship between two random variables. Suppose
y1 and y2 are discrete random variables. Let E(y1) = µ1 and E(y2) = µ2. The covariance between y1
and y2 is

Cov(y1,y2)≡ ∑
all (r,s)

(r−µ1)(s−µ2)Pr(y1 = r,y2 = s) .

Positive covariances arise when relatively large values of y1 tend to occur with relatively large
values y2 and small values of y1 tend to occur with small values of y2. On the other hand, negative
covariances arise when relatively large values of y1 tend to occur with relatively small values y2 and
small values of y1 tend to occur with large values of y2. It is simple to see from the definition that,
for example,

Var(y1) = Cov(y1,y1) .

In an attempt to get a handle on what the numerical value of the covariance means, it is often
rescaled into a correlation coefficient.

Corr(y1,y2)≡ Cov(y1,y2)
/√

Var(y1)Var(y2) .

Positive values of the correlation have the same qualitative meaning as positive values of the covari-
ance, but now a perfect increasing linear relationship is indicated by a correlation of 1. Similarly,
negative correlations and covariances mean similar things, but a perfect decreasing linear relation-
ship gives a correlation of −1. The absence of any linear relationship is indicated by a value of
0.

A perfect linear relationship between y1 and y2 means that an increase of one unit in, say, y1
dictates an exactly proportional change in y2. For example, if we make a series of very accurate
temperature measurements on something and simultaneously use one device calibrated in Fahren-
heit and one calibrated in Celsius, the pairs of numbers should have an essentially perfect linear
relationship.

EXAMPLE 1.2.9. Let z1 and z2 be two random variables defined by the following probability
table:

z2
0 1 2 z1 totals

6 0 1/3 0 1/3
z1 4 1/3 0 0 1/3

2 0 0 1/3 1/3
z2 totals 1/3 1/3 1/3 1

Then

E(z1) = 6
(

1
3

)
+4
(

1
3

)
+2
(

1
3

)
= 4,

E(z2) = 0
(

1
3

)
+1
(

1
3

)
+2
(

1
3

)
= 1,

Var(z1) = (2−4)2
(

1
3

)
+(4−4)2

(
1
3

)
+(6−4)2

(
1
3

)
= 8/3,

Var(z2) = (0−1)2
(

1
3

)
+(1−1)2

(
1
3

)
+(2−1)2

(
1
3

)
= 2/3,
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Cov(z1,z2) = (2−4)(0−1)(0)+(2−4)(1−1)(0)+(2−4)(2−1)
(

1
3

)
+(4−4)(0−1)

(
1
3

)
+(4−4)(1−1)(0)+(4−4)(2−1)(0)

+(6−4)(0−1)(0)+(6−4)(1−1)
(

1
3

)
+(6−4)(2−1)(0)

= −2/3,

Corr(z1,z2) = (−2/3)
/√

(8/3)(2/3)

= −1/2.

This correlation indicates that relatively large z1 values tend to occur with relatively small z2 values.
However, the correlation is considerably greater than −1, so the linear relationship is less than
perfect. Moreover, the correlation measures the linear relationship and fails to identify the perfect
nonlinear relationship between z1 and z2. If z1 = 2, then z2 = 2. If z1 = 4, then z2 = 0. If z1 = 6,
then z2 = 1. If you know one random variable, you know the other, but because the relationship is
nonlinear, the correlation is not ±1. 2

EXAMPLE 1.2.10. Consider the coin toss random variables y1 and y2 from Example 1.2.1. We
earlier observed that these two random variables are independent. If so, there should be no relation-
ship between them (linear or otherwise). We now show that their covariance is 0.

Cov(y1,y2) =

(
0− 1

2

)(
0− 1

2

)
1
4
+

(
0− 1

2

)(
1− 1

2

)
1
4

+

(
1− 1

2

)(
0− 1

2

)
1
4
+

(
1− 1

2

)(
1− 1

2

)
1
4

=
1
16
− 1

16
− 1

16
+

1
16

= 0. 2

In general, whenever two random variables are independent, their covariance (and thus their
correlation) is 0. However, just because two random variables have 0 covariance does not imply that
they are independent. Independence has to do with not having any kind of relationship; covariance
examines only linear relationships. Random variables with nonlinear relationships can have zero
covariance but not be independent.

1.2.4 Rules for expected values and variances

We now present some extremely useful results that allow us to show that statistical estimates are
reasonable and to establish the variability associated with statistical estimates. These results relate to
the expected values, variances, and covariances of linear combinations of random variables. A linear
combination of random variables is something that only involves multiplying random variables by
fixed constants, adding such terms together, and adding a constant.

Proposition 1.2.11. Let y1, y2, y3, and y4 be random variables and let a1, a2, a3, and a4 be real
numbers.

1. E(a1y1 +a2y2 +a3) = a1E(y1)+a2E(y2)+a3.
2. If y1 and y2 are independent, Var(a1y1 +a2y2 +a3) = a2

1Var(y1)+a2
2Var(y2).

3. Var(a1y1 +a2y2 +a3) = a2
1Var(y1)+2a1a2Cov(y1,y2)+a2

2Var(y2).
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4. Cov(a1y1 + a2y2,a3y3 + a4y4) = a1a3Cov(y1,y3) + a1a4Cov(y1,y4) + a2a3Cov(y2,y3) +
a2a4Cov(y2,y4).

All of these results generalize to linear combinations involving more than two random variables.

EXAMPLE 1.2.12. Recall that when independently tossing a coin twice, the total number of
heads, W , is the sum of y1 and y2, the number of heads on the first and second tosses respectively.
We have already seen that E(y1) = E(y2) = .5 and that E(W ) = 1. We now illustrate item 1 of the
proposition by finding E(W ) again. Since W = y1 + y2,

E(W ) = E(y1 + y2) = E(y1)+E(y2) = .5+ .5 = 1.

We have also seen that Var(y1) = Var(y2) = .25 and that Var(W ) = .5. Since the coin tosses are
independent, item 2 above gives

Var(W ) = Var(y1 + y2) = Var(y1)+Var(y2) = .25+ .25 = .5 .

The key point is that this is an easier way of finding the expected value and variance of W than using
the original definitions. 2

We now illustrate the generalizations referred to in Proposition 1.2.11. We begin by looking at
the problem of estimating the mean of a population.

EXAMPLE 1.2.13. Let y1, y2, y3, and y4 be four random variables each with the same (population)
mean µ , i.e., E(yi) = µ for i = 1,2,3,4. We can compute the sample mean (average) of these,
defining

ȳ· ≡
y1 + y2 + y3 + y4

4

=
1
4

y1 +
1
4

y2 +
1
4

y3 +
1
4

y4.

The · in the subscript of ȳ· indicates that the sample mean is obtained by summing over the subscripts
of the yis. The · notation is not necessary for this problem but becomes useful in dealing with the
analysis of variance problems treated later in the book.

Using item 1 of Proposition 1.2.11 we find that

E(ȳ·) = E
(

1
4

y1 +
1
4

y2 +
1
4

y3 +
1
4

y4

)
=

1
4

E(y1)+
1
4

E(y2)+
1
4

E(y3)+
1
4

E(y4)

=
1
4

µ +
1
4

µ +
1
4

µ +
1
4

µ

= µ.

Thus one observation on ȳ· would make a reasonable estimate of µ .
If we also assume that the yis are independent with the same variance, say, σ2, then from item 2

of Proposition 1.2.11

Var(ȳ·) = Var
(

1
4

y1 +
1
4

y2 +
1
4

y3 +
1
4

y4

)
=

(
1
4

)2

Var(y1)+

(
1
4

)2

Var(y2)

+

(
1
4

)2

Var(y3)+

(
1
4

)2

Var(y4)
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=

(
1
4

)2

σ
2 +

(
1
4

)2

σ
2 +

(
1
4

)2

σ
2 +

(
1
4

)2

σ
2

=
σ2

4
.

The variance of ȳ· is only one fourth of the variance of an individual observation. Thus the ȳ·
observations are more tightly packed around their mean µ than the yis are. This indicates that one
observation on ȳ· is more likely to be close to µ than an individual yi. 2

These results for ȳ· hold quite generally; they are not restricted to the average of four random
variables. If ȳ· = (1/n)(y1 + · · ·+ yn) = ∑

n
i=1 yi/n is the sample mean of n independent random

variables all with the same population mean µ and population variance σ2,

E(ȳ·) = µ

and

Var(ȳ·) =
σ2

n
.

In fact, proving these general results uses exactly the same ideas as the proofs for a sample of size
4.

As with a sample of size 4, the general results on ȳ· are very important in statistical inference. If
we are interested in determining the population mean µ from future data, the obvious estimate is the
average of the individual observations, ȳ·. The observations are random, so the estimate ȳ· is also a
random variable and the middle of its distribution is E(ȳ·) = µ , the original population mean. Thus
ȳ· is a reasonable estimate of µ . Moreover, ȳ· is a better estimate than any particular observation
yi because ȳ· has a smaller variance, σ2/n as opposed to σ2 for yi. With less variability in the
estimate, any one observation of ȳ· is more likely to be near its mean µ than a single observation
yi. In practice, we obtain data and compute a sample mean. This constitutes one observation on the
random variable ȳ·. If our sample mean is to be a good estimate of µ , our one look at ȳ· had better
have a good chance of being close to µ . This occurs when the variance of ȳ· is small. Note that the
larger the sample size n, the smaller is σ2/n, the variance of ȳ·. We will return to these ideas later.

Generally, we will use item 1 of Proposition 1.2.11 to show that estimates are unbiased. In other
words, we will show that the expected value of an estimate is what we are trying to estimate. In
estimating µ , we have E(ȳ·) = µ , so ȳ· is an unbiased estimate of µ . All this really does is show that
ȳ· is a reasonable estimate of µ . More important than showing unbiasedness is using item 2 to find
variances of estimates. Statistical inference depends crucially on having some idea of the variability
of an estimate. Item 2 is the primary tool in finding the appropriate variance for different estimates.

1.3 Continuous distributions

As discussed in Section 1.1, many things that we would like to measure are, in the strictest sense, not
measurable. We cannot find a building’s exact height even though we can approximate it extremely
accurately. This theoretical inability to measure things exactly has little impact on our practical
world, but it has a substantial impact on the theory of statistics.

The data in most statistical applications can be viewed as counts of how often some event has
occurred or as measurements. Probabilities associated with count data are easy to describe. We dis-
cuss some probability models for count data in Sections 1.4 and 1.5. With measurement data, we can
never obtain an exact value, so we don’t even try. With measurement data, we assign probabilities to
intervals. Thus we do not discuss the probability that a person has the height 177.8 cm or 177.8001
cm or 56.5955π cm, but we do discuss the probability that someone has a height between 177.75
cm and 177.85 cm. Typically, we think of doing this in terms of pictures. We associate probabilities
with areas under curves. (Mathematically, this involves integral calculus and is discussed in a brief
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K(1 − α)0

0

1 − α α

Figure 1.1: A continuous probability density.

appendix at the end of the chapter.) Figure 1.1 contains a picture of a continuous probability distri-
bution (a density). Probabilities must be between 0 and 1, so the curve must always be nonnegative
(to make all areas nonnegative) and the area under the entire curve must be 1.

Figure 1.1 also shows a point K(1−α). This point divides the area under the curve into two
parts. The probability of obtaining a number less than K(1−α) is 1−α , i.e., the area under the
curve to the left of K(1−α) is 1−α . The probability of obtaining a number greater than K(1−α)
is α , i.e., the area under the curve to the right of K(1−α). K(1−α) is a particular number, so the
probability is 0 that K(1−α) will actually occur. There is no area under a curve associated with any
particular point.

Pictures such as Figure 1.1 are often used as models for populations of measurements. With a
fixed population of measurements, it is natural to form a histogram, i.e., a bar chart that plots in-
tervals for the measurement against the proportion of individuals that fall into a particular interval.
Pictures such as Figure 1.1 can be viewed as approximations to such histograms. The probabilities
described by pictures such as Figure 1.1 are those associated with randomly picking an individ-
ual from the population. Thus, randomly picking an individual from the population modeled by
Figure 1.1 yields a measurement less than K(1−α) with probability 1−α .

Ideas similar to those discussed in Section 1.2 can be used to define expected values, variances,
and covariances for continuous distributions. These extensions involve integral calculus and are
discussed in the appendix. In any case, Proposition 1.2.11 continues to apply.

The most commonly used distributional model for measurement data is the normal distribution
(also called the Gaussian distribution). The bell shaped curve in Figure 1.1 is referred to as the
standard normal curve. The formula for writing the curve is not too ugly, it is

f (x) =
1√
2π

e−x2/2.

Here e is the base of natural logarithms. Unfortunately, even with calculus it is very difficult to
compute areas under this curve. Finding standard normal probabilities requires a table.

By itself, the standard normal curve has little value in modeling measurements. For one thing,
the curve is centered about 0. I don’t take many measurements where I think the central value should
be 0. To make the normal distribution a useful model, we need to expand the standard normal into
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a family of distributions with different centers (expected values) µ and different spreads (standard
deviations) σ . By appropriate recentering and rescaling of the plot, all of these curves will have the
same shape as Figure 1.1.

The standard normal distribution is the special case of a normal with µ = 0 and σ = 1. The
standard normal plays an important role because it is the only normal distribution that we need
tabled. (Obviously, we could not table normal distributions for every possible value of µ and σ .)
Suppose a measurement y has a normal distribution with mean µ , standard deviation σ , and variance
σ2. We write this as

y∼ N(µ,σ2).

Normal distributions have the property that

y−µ

σ
∼ N(0,1),

cf. Exercise 1.6.2. This standardization process allows us to get by with only the standard normal
table for finding probabilities for all normal distributions.

The standard normal distribution is sometimes used in constructing statistical inferences but
more often a similar distribution is used. When data are normally distributed, statistical inferences
often require something called Student’s t distribution. (Student was the pen name of W. S. Gosset.)
The t distribution is a family of distributions all of which look roughly like Figure 1.1. They are all
symmetric about 0, but they have slightly different amounts of dispersion (spread). The amount of
variability in each distribution is determined by a positive integer parameter called the degrees of
freedom. With only 1 degree of freedom, the mathematical properties of a t distribution are fairly
bizarre. (This special case is called a Cauchy distribution.) As the number of degrees of freedom
get larger, the t distributions get better behaved and have less variability. As the degrees of freedom
gets arbitrarily large, the t distribution approximates the standard normal distribution.

Two other distributions that come up later are the chi-squared distribution (χ2) and the F dis-
tribution. These arise naturally when drawing conclusions about the population variance from data
that are normally distributed. Both distributions differ from those just discussed in that both are
asymmetric and both are restricted to positive numbers. However, the basic idea of probabilities
being areas under curves remains unchanged.

In Section 1.2, we introduced Chebyshev’s inequality. Shewhart (1931, p. 177) discusses work
by Camp and Meidell that allows us to improve on Chebyshev’s inequality for continuous distri-
butions. Once again let E(y) = µ and Var(y) = σ2. If the density, i.e., the function that defines the
curve, is symmetric, unimodal (has only one peak), and always decreases as one moves farther away
from the mode, then the inequality can be sharpened to

Pr[µ− kσ < y < µ + kσ ]≥ 1− 1
(2.25)k2 .

As discussed in the previous section, with y normal and k = 3, the true probability is .997, Cheby-
shev’s inequality gives a lower bound of .889, and the new improved Chebyshev inequality gives
a lower bound of .951. By making some relatively innocuous assumptions, we get a substantial
improvement in the lower bound.

1.4 The binomial distribution

There are a few distributions that are used in the vast majority of statistical applications. The reason
for this is that they tend to occur naturally. The normal distribution is one. As discussed in the next
chapter, the normal distribution occurs in practice because a result called The central limit theorem
dictates that many distributions can be approximated by the normal. Two other distributions, the
binomial and the multinomial, occur in practice because they are very simple. In this section we
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discuss the binomial. The next section introduces the multinomial distribution. The results of this
section are only used in Chapter 8 and in discussions of transformations.

If you have independent identical random trials and count how often something (anything) oc-
curs, the appropriate distribution is the binomial. What could be simpler?

EXAMPLE 1.4.1. Being somewhat lonely in my misspent youth, I decided to go to a dating ser-
vice. The service was to provide me with five dates. Being a very open-minded soul, I convinced
myself that the results of one date would not influence my opinion about other dates. From my
limited experience with the opposite sex, I have found that I enjoy about 40% of such brief en-
counters. I decided that my money would be well spent if I enjoyed two or more of the five dates.
Unfortunately, my loan shark repossessed my 1954 Studebaker before I could indulge in this taste
of nirvana. Back in those days, we chauvinists believed: no wheels – no women. Nevertheless, let
us compute the probability that I would have been satisfied with the dating service. Let W be the
number of dates I would have enjoyed. The simplest way to find the probability of satisfaction is
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Pr(W ≥ 2) = 1−Pr(W < 2)
= 1−Pr(W = 0)−Pr(W = 1) ,

but that is much too easy. Let’s compute

Pr(W ≥ 2) = Pr(W = 2)+Pr(W = 3)+Pr(W = 4)+Pr(W = 5) .

In particular, we compute each term on the right-hand side.
Write the outcome of the five dates as an ordered collection of Ls and Ds. For example, (L, D,

L, D, D) indicates that I like the first and third dates, but dislike the second, fourth, and fifth.
To like five dates, I must like everyone of them.

Pr(W = 5) = Pr(L,L,L,L,L) .

Remember, I assumed that the dates were independent and that the probability of my liking any one
is .4. Thus,

Pr(W = 5) = Pr(L)Pr(L)Pr(L)Pr(L)Pr(L)
= (.4)5 .

The probability of liking four dates is a bit more complicated. I could only dislike one date, but
there are five different choices for the date that I could dislike. It could be the fifth, the fourth, the
third, the second, or the first. Any pattern of 4 Ls and a D excludes the other patterns from occurring,
e.g., if the only date I dislike is the fourth, then the only date I dislike cannot be the second. Since
the patterns are mutually exclusive (disjoint), the probability of disliking one date is the sum of the
probabilities of the individual patterns.

Pr(W = 4) = Pr(L,L,L,L,D) (1.4.1)
+Pr(L,L,L,D,L)

+Pr(L,L,D,L,L)

+Pr(L,D,L,L,L)

+Pr(D,L,L,L,L) .

By assumption Pr(L) = .4, so Pr(D) = 1−Pr(L) = 1− .4 = .6. The dates are independent, so

Pr(L,L,L,L,D) = Pr(L)Pr(L)Pr(L)Pr(L)Pr(D)

= (.4)4.6 .

Similarly,

Pr(L,L,L,D,L) = Pr(L,L,D,L,L)

= Pr(L,D,L,L,L)

= Pr(D,L,L,L,L)

= (.4)4.6 .

Summing up the values in equation (1.4.1),

Pr(W = 4) = 5(.4)4(.6) .
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Computing the probability of liking three dates is even worse.

Pr(W = 3) = Pr(L,L,L,D,D)

+Pr(L,L,D,L,D)

+Pr(L,D,L,L,D)

+Pr(D,L,L,L,D)

+Pr(L,L,D,D,L)

+Pr(L,D,L,D,L)

+Pr(D,L,L,D,L)

+Pr(L,D,D,L,L)

+Pr(D,L,D,L,L)

+Pr(D,D,L,L,L)

Again all of these patterns have exactly the same probability. For example, using independence

Pr(D,L,D,L,L) = (.4)3(.6)2 .

Adding up all of the patterns
Pr(W = 3) = 10(.4)3(.6)2 .

By now it should be clear that

Pr(W = 2) = (no. of patterns with 2 Ls and 3 Ds)(.4)2(.6)3 .

The number of patterns can be computed as(
5
2

)
≡ 5!

2!(5−2)!
≡ 5 ·4 ·3 ·2 ·1

(2 ·1)(3 ·2 ·1)
= 10 .

The probability that I would be satisfied with the dating service is

Pr(W ≥ 2) = 10(.4)2(.6)3 +10(.4)3(.6)2 +5(.4)4.6+(.4)5

= .663 . 2

Binomial random variables can also be generated by sampling from a fixed population. If we
were going to make 20 random selections from the UNM student body, the number of females would
have a binomial distribution. Given a set of procedures for defining and sampling the student body,
there would be some fixed number of students of which a given number would be females. Under
random sampling, the probability of selecting a female on any of the 20 trials would be simply the
proportion of females in the population. Although it is very unlikely to occur in this example, the
sampling scheme must allow the possibility of students being selected more than once in the sample.
If people were not allowed to be chosen more than once, each successive selection would change the
proportion of females available for the subsequent selection. Of course, when making 20 selections
out of a population of over 20,000 UNM students, even if you did not allow people to be reselected,
the changes in the proportions of females are insubstantial and the binomial distribution makes a
good approximation to the true distribution. On the other hand, if the entire student population was
40 rather than 20,000+, it might not be wise to use the binomial approximation when people are
not allowed to be reselected.

Typically, the outcome of interest in a binomial is referred to as a success. If the probability
of a success is p for each of N independent identical trials, then the number of successes y has a
binomial distribution with parameters N and p. Write

y∼ Bin(N, p) .
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The distribution of y is

Pr(y = r) =
(

N
r

)
pr(1− p)N−r

for r = 0,1, . . . ,N. Here (
N
r

)
≡ N!

r!(N− r)!

where for any positive integer m, m! ≡ m(m− 1)(m− 2) · · ·(2)(1) and 0! ≡ 1. The notation
(N

r

)
is read “N choose r” because it is the number of distinct ways of choosing r individuals out of a
collection containing N individuals.

EXAMPLE 1.4.2. The random variables in Example 1.2.1 were y1, the number of heads on the
first toss of a coin, y2, the number of heads on the second toss of a coin, and W , the combined
number of heads from the two tosses. These have the following distributions:

y1 ∼ Bin
(

1,
1
2

)
y2 ∼ Bin

(
1,

1
2

)
W ∼ Bin

(
2,

1
2

)
.

Note that W , the Bin
(
2, 1

2

)
, was obtained by adding together the two independent Bin

(
1, 1

2

)
random

variables y1 and y2. This result is quite general. Any Bin(N, p) random variable can be written as
the sum of N independent Bin(1, p) random variables. 2

Given the probability distribution of a binomial, we can find the mean (expected value) and
variance. By definition, if y∼ Bin(N, p), the mean is

E(y) =
N

∑
r=0

r
(

N
r

)
pr(1− p)N−r .

This is difficult to evaluate directly, but by writing y as the sum of N independent Bin(1, p) random
variables and using Exercise 1.6.1 and Proposition 1.2.11, it is easily seen that

E(y) = N p .

Similarly, the variance of y is

Var(y) =
N

∑
r=0

(r−N p)2
(

N
r

)
pr(1− p)N−r

but by again writing y as the sum of N independent Bin(1, p) random variables and using Exer-
cise 1.6.1 and Proposition 1.2.11, it is easily seen that

Var(y) = N p(1− p) .

Exercise 1.6.8 consists of proving these mean and variance formulae.
On occasion we will need to look at both the number of successes from a group of N trials and

the number of failures at the same time. If the number of successes is y1 and the number of failures
is y2, then

y2 = N− y1

y1 ∼ Bin(N, p)
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and
y2 ∼ Bin(N,1− p) .

The last result holds because, with independent identical trials, the number of outcomes that we call
failures must also have a binomial distribution. If p is the probability of success, the probability of
failure is 1− p. Of course,

E(y2) = N(1− p)

Var(y2) = N(1− p)p .

Note that Var(y1) = Var(y2) regardless of the value of p. Finally,

Cov(y1,y2) =−N p(1− p)

and
Corr(y1,y2) =−1 .

There is a perfect linear relationship between y1 and y2. If y1 goes up one count, y2 goes down one
count. When we look at both successes and failures write

(y1,y2)∼ Bin
(
N, p,(1− p)

)
.

This is the simplest case of the multinomial distribution discussed in the next section.

1.5 The multinomial distribution

The multinomial distribution is a generalization of the binomial allowing more than two categories.
The results in this section are only used in Chapter 8.

EXAMPLE 1.5.1. Consider the probabilities for the nine height and eye color categories given in
Example 1.1.2. The probabilities are repeated below.

Height–eye color probabilities
Eye color

Blue Brown Green
Tall .12 .15 .03

Height Medium .22 .34 .04
Short .06 .01 .03

Suppose a random sample of 50 individuals was obtained with these probabilities. For example,
one might have a population of 100 people in which 12 were tall with blue eyes, 15 were tall with
brown eyes, 3 were short with green eyes, etc. We could randomly select one of the 100 people
as the first individual in the sample. Then, returning that individual to the population, take another
random selection from the 100 to be the second individual. We are to proceed in this way until 50
people are selected. Note that with a population of 100 and a sample of 50 there is a substantial
chance that some people would be selected more than once. The numbers of selections falling into
each of the nine categories has a multinomial distribution with N = 50 and these probabilities.

It is unlikely that one would actually perform sampling from a population of 100 people as
described above. Typically, one would not allow the same person to be chosen more than once.
However, if we had a population of 10,000 people where 1200 were tall with blue eyes, 1500 were
tall with brown eyes, 300 were short with green eyes, etc., with a sample size of 50 we might be
willing to allow the possibility of selecting the same person more than once simply because it is
extremely unlikely to happen. Technically, to obtain the multinomial distribution with N = 50 and
these probabilities, when sampling from a fixed population we need to allow individuals to appear
more than once. However, when taking a small sample from a large population, it does not matter
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much whether or not you allow people to be chosen more than once, so the multinomial often
provides a good approximation even when individuals are excluded from reappearing in the sample.
2

Consider a group of N independent identical trials in which each trial results in the occurrence
of one of q events. Let yi, i = 1, . . . ,q be the number of times that the ith event occurs and let pi be
the probability that the ith event occurs on any trial. The pis must satisfy p1 + p2 + · · ·+ pq = 1. We
say that (y1, . . . ,yq) has a multinomial distribution with parameters N, p1, . . . , pq. Write

(y1, . . . ,yq)∼Mult(N, p1, . . . , pq) .

The distribution is given by the probabilities

Pr(y1 = r1, . . . ,yq = rq) =
N!

r1! · · ·rq!
pr1

1 · · · p
rq
q

=

(
N!
/ q

∏
i=1

ri!

)
q

∏
i=1

pri
i .

Here the ris are allowed to be any whole numbers with each ri ≥ 0 and r1+ · · ·+rq = N. Note that if
q = 2, this is just a binomial distribution. In general, each individual component yi of a multinomial
consists of N trials in which category i either occurs or does not occur, so individual components
have the marginal distributions

yi ∼ Bin(N, pi).

It follows that
E(yi) = N pi

and
Var(yi) = N pi(1− pi) .

It can also be shown that

Cov(yi,y j) =−N pi p j for i 6= j .

EXAMPLE 1.5.2. Suppose that the 50 individuals from Example 1.5.1 fall into the categories as
listed below.

Height–eye color observations
Eye color

Blue Brown Green
Tall 5 8 2

Height Medium 10 18 2
Short 3 1 1

The probability of getting this particular table is

50!
5!8!2!10!18!2!3!1!1!

(.12)5(.15)8(.03)2(.22)10(.34)18(.04)2(.06)3(.01)1(.03)1.

This number is zero to over 5 decimal places. The fact that this is a very small number is not
surprising. There are a lot of possible tables, so the probability of getting any particular table is very
small. In fact, many of the possible tables are much less likely to occur than this table.

Let’s return to thinking about the observations as random. The expected number of observations
for each category is given by N pi. It is easily seen that the expected counts for the cells are as given
below.
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Height–eye color expected values
Eye color

Blue Brown Green
Tall 6.0 7.5 1.5

Height Medium 11.0 17.0 2.0
Short 3.0 0.5 1.5

Note that the expected counts need not be integers.
The variance for, say, the number of tall blue-eyed people in this population is 50(.12)(1−

.12) = 5.28. The variance of the number of short green-eyed people is 50(.03)(1− .03) = 1.455.
The covariance between the number of tall blue-eyed people and the number of short green-eyed
people is −50(.12)(.03) =−.18. The correlation between the numbers of tall blue-eyed people and
short green-eyed people is −.18/

√
(5.28)(1.455) =−0.065. 2

Appendix: probability for continuous distributions

As stated in Section 1.3, probabilities are sometimes defined as areas under a curve. The curve,
called a probability density function or just a density, must be defined by some nonnegative func-
tion f (·). (Nonnegative to ensure that probabilities are always positive.) Thus the probability that a
random observation y is between two numbers, say a and b, is the area under the curve measured
between a and b. Using calculus, this is

Pr[a < y < b] =
∫ b

a
f (y)dy.

Because we are measuring areas under curves, there is no area associated with any one point, so
Pr[a < y < b] = Pr[a≤ y < b] = Pr[a < y≤ b] = Pr[a≤ y≤ b]. The area under the entire curve must
be 1, i.e.,

1 = Pr[−∞< y <∞] =
∫ ∞
−∞

f (y)dy.

Figure 1.1 indicates that the probability below K(1−α) is 1−α , i.e.,

1−α = Pr[y < K(1−α)] =
∫ K(1−α)

−∞
f (y)dy

and that the probability above K(1−α) is α , i.e.,

α = Pr[y > K(1−α)] =
∫ ∞

K(1−α)
f (y)dy.

The expected value of y is defined as

E(y) =
∫ ∞
−∞

y f (y)dy.

For any function g(y), the expected value is

E[g(y)] =
∫ ∞
−∞

g(y) f (y)dy.

In particular, if we let E(y) = µ and g(y) = (y−µ)2, we define the variance as

Var(y) = E[(y−µ)2] =
∫ ∞
−∞

(y−µ)2 f (y)dy.



1.6 EXERCISES 23

To define the covariance between two random variables, say y1 and y2, we need a joint density
f (y1,y2). We can find the density for y1 alone as

f1(y1) =
∫ ∞
−∞

f (y1,y2)dy2

and we can write E(y1) in two equivalent ways

E(y1) =
∫ ∞
−∞

∫ ∞
−∞

y1 f (y1,y2)dy1 dy2 =
∫ ∞
−∞

y1 f1(y1)dy1.

Writing E(y1) = µ1 and E(y2) = µ2 we can now define the covariance between y1 and y2 as

Cov(y1,y2) =
∫ ∞
−∞

∫ ∞
−∞

(y1−µ1)(y2−µ2) f (y1,y2)dy1 dy2.

1.6 Exercises

EXERCISE 1.6.1. Use the definitions to find the expected value and variance of a Bin(1, p) dis-
tribution.

EXERCISE 1.6.2. Let y be a random variable with E(y) = µ and Var(y) = σ2. Show that

E
(

y−µ

σ

)
= 0

and

Var
(

y−µ

σ

)
= 1.

Let ȳ· be the sample mean of n independent observations yi with E(yi) = µ and Var(yi) = σ2.
What is the expected value and variance of

ȳ·−µ

σ/
√

n
?

Hint: For the first part, write
y−µ

σ
as

1
σ

y− µ

σ

and use Proposition 1.2.11.

EXERCISE 1.6.3. Let y be the random variable consisting of the number of spots that face up upon
rolling a die. Give the distribution of y. Find the expected value, variance, and standard deviation of
y.

EXERCISE 1.6.4. Consider your letter grade for this course. Obviously, it is a random phe-
nomenon. Define the ‘grade point’ random variable: y(A) = 4, y(B) = 3, y(C) = 2, y(D) = 1,
y(F) = 0. If you were lucky enough to be taking the course from me, you would find that I am
an easy grader. I give 5% As, 10% Bs, 35% Cs, 30% Ds, and 20% Fs. I also assign grades at ran-
dom, that is to say, my tests generate random scores. Give the distribution of y. Find the expected
value, variance, and standard deviation of the grade points a student would earn in my class. (Just
in case you hadn’t noticed, I’m being sarcastic.)

EXERCISE 1.6.5. Referring to Exercise 1.6.4, suppose I have a class of 40 students, what is the
joint distribution for the numbers of students who get each of the five grades? Note that we are no
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longer looking at how many grade points an individual student might get, we are now counting how
many occurrences we observe of various events. What is the distribution for the number of students
who get Bs? What is the expected value of the number of students who get Cs? What is the variance
and standard deviation of the number of students who get Cs? What is the probability that in a class
of 5 students, 1 gets an A, 2 get Cs, 1 gets a D, and 1 fails?

EXERCISE 1.6.6. Graph the function f (x) = 1 if 0< x< 1 and f (x) = 0 otherwise. This is known
as the uniform density on (0,1). If we use this curve to define a probability function, what is the
probability of getting an observation larger than 1/4? Smaller than 2/3? Between 1/3 and 7/9?

EXERCISE 1.6.7. Arthritic ex-football players prefer their laudanum made with Old Pain-Killer
Scotch by two to one. If we take a random sample of 5 arthritic ex-football players, what is the
distribution of the number who will prefer Old Pain-Killer? What is the probability that only 2 of
the ex-players will prefer Old Pain-Killer? What is the expected number who will prefer Old Pain-
Killer? What are the variance and standard deviation of the number who will prefer Old Pain-Killer?

EXERCISE 1.6.8. Let W ∼ Bin(N, p) and for i = 1, . . . ,N take independent yis that are Bin(1, p).
Argue that W has the same distribution as y1 + · · ·+yN . Use this fact, along with Exercise 1.6.1 and
Proposition 1.2.11, to find E(W ) and Var(W ).

EXERCISE 1.6.9. Appendix B.1 gives probabilities for a family of distributions that all look
roughly like Figure 1.1. All members of the family are symmetric about zero and the members are
distinguished by having different numbers of degrees of freedom (d f ). They are called t distribu-
tions. For 0 ≤ α ≤ 1, the α percentile of a t distribution with d f degrees of freedom is the point x
such that Pr[t(d f ) ≤ x] = α . For example, from Table B.1 the row corresponding to d f = 10 and
the column for the .90 percentile tells us that Pr[t(10)≤ 1.372] = .90.

(a) Find the .99 percentile of a t(7) distribution.
(b) Find the .975 percentile of a t(50) distribution.
(c) Find the probability that a t(25) is less than or equal to 3.450.
(d) Find the probability that a t(100) is less than or equal to 2.626.
(e) Find the probability that a t(16) is greater than 2.92.
(f) Find the probability that a t(40) is greater than 1.684.
(g) Recalling that t distributions are symmetric about zero, what is the probability that a t(40) dis-

tribution is less than −1.684?
(h) What is the probability that a t(40) distribution is between −1.684 and 1.684?
(i) What is the probability that a t(25) distribution is less than −3.450?
(j) What is the probability that a t(25) distribution is between −3.450 and 3.450?

EXERCISE 1.6.10. Consider a random variable that takes on the values 25, 30, 45, and 50 with
probabilities .15, .25, .35, and .25, respectively. Find the expected value, variance, and standard
deviation of this random variable.

EXERCISE 1.6.11. Consider three independent random variables X , Y , and Z. Suppose E(X) =
25, E(Y ) = 40, and E(Z) = 55 with Var(X) = 4, Var(Y ) = 9, and Var(Z) = 25.

(a) Find E(2X +3Y +10) and Var(2X +3Y +10).
(b) Find E(2X +3Y +Z +10) and Var(2X +3Y +Z +10).



1.6 EXERCISES 25

EXERCISE 1.6.12. As of 1994, Duke University had been in the final four of the NCAA’s national
basketball championship tournament seven times in nine years. Suppose their appearances were
independent and that they had a probability of .25 for winning the tournament in each of those
years.

(a) What is the probability that Duke would win two national championships in those seven appear-
ances?

(b) What is the probability that Duke would win three national championships in those seven ap-
pearances?

(c) What is the expected number of Duke championships in those seven appearances?
(d) What is the variance of the number of Duke championships in those seven appearances?

EXERCISE 1.6.13. Graph the function f (x) = 2x if 0 < x < 1 and f (x) = 0 otherwise. If we use
this curve to define a probability function, what is the probability of getting an observation larger
than 1/4? Smaller than 2/3? Between 1/3 and 7/9?

EXERCISE 1.6.14. A pizza parlor makes small, medium, and large pizzas. Over the years they
make 20% small pizzas, 35% medium pizzas, and 45% large pizzas. On a given Tuesday night they
were asked to make only 10 pizzas. If the orders were independent and representative of the long-
term percentages, what is the probability that the orders would be for four small, three medium, and
three large pizzas. On such a night, what is the expected number of large pizzas to be ordered and
what is the expected number of small pizzas to be ordered? What is the variance of the number of
large pizzas to be ordered and what is the variance of the number of medium pizzas to be ordered?

EXERCISE 1.6.15. When I order a limo, 65% of the time the driver is male. Assuming indepen-
dence, what is the probability that 6 of my next 8 drivers are male? What is the expected number of
male drivers among my next eight? What is the variance of the number of male drivers among my
next eight?

EXERCISE 1.6.16. When I order a limo, 65% of the time the driver is clearly male, 30% of
the time the driver is clearly female, and 5% of the time the gender of the driver is indeterminant.
Assuming independence, what is the probability that among my next 8 drivers 5 are clearly male
and 3 are clearly female? What is the expected number of indeterminant drivers among my next
eight? What is the variance of the number of clearly female drivers among my next eight?





Chapter 2

One sample

In this chapter we examine the analysis of a single random sample consisting of n independent
observations from some population.

2.1 Example and introduction

EXAMPLE 2.1.1. Consider the dropout rate from a sample of math classes at the University of
New Mexico in the 1984–85 school year as reported by Koopmans (1987). The data are

5,22,10,12,8,17,2,25,10,10,7,7,40,7,9,17,12,12,1,

13,10,13,16,3,14,17,10,10,13,59,11,13,5,12,14,3,14,15.

This list of n = 38 observations is not very illuminating. A graphical display of the numbers is
more informative. Figure 2.1 plots the data above a single axis. This is often called a dot plot. From
Figure 2.1, we see that most of the observations are between 0 and 18. There are two conspicuously
large observations. Going back to the original data we identify these as the values 40 and 59. In
particular, these two outlying values strongly suggest that the data do not follow a bell shaped curve
and thus that the data do not follow a normal distribution.

2

Typically, for one sample of data we assume that the n observations are

Data Distribution
y1,y2, . . . ,yn independent N(µ,σ2)

The key assumptions are that the observations are independent and have the same distribution. In
particular, we assume they have the same (unknown) mean µ and the same (unknown) variance σ2.

These assumptions of independence and a constant distribution should be viewed as only useful
approximations to actual conditions. Often the most valuable approach to evaluating these assump-
tions is simply to think hard about whether they are reasonable. In any case, the conclusions we
reach are only as good as the assumptions we have made. The only way to be positive that these
assumptions are true is if we arrange for them to be true. If we have a fixed finite population and take
a random sample from the population allowing elements of the population to be observed more than

:
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0 12 24 36 48 60

Figure 2.1: Dot plot for drop rate percentage data.
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once, then the assumptions (other than normality) are true. In Example 2.1.1, if we had the dropout
rates for all math classes in the year and randomly selected these 38 while allowing for classes to
appear more than once in the sample, the assumptions of independence with the same distribution
are satisfied.

The ideal conditions of independent sampling from a fixed population are difficult to achieve.
Many populations refuse to hold still while we sample them. For example, the population of students
at a large university changes almost continuously (during working hours). To my way of thinking,
the populations associated with most interesting data are virtually impossible to define unambigu-
ously. Who really cares about the dropout rates for 1984–85? As such, they can only be used to
fix blame. Our real interest is in what the data can tell us about current and future dropout rates.
If the data are representative of current or future conditions, the data can be used to fix problems.
For example, one might find out whether certain instructors generate huge dropout rates and avoid
taking classes from them. It is difficult to decide whether these or any data are representative of
current or future conditions because we cannot possibly know the future population and we cannot
practically know the current population. As mentioned earlier, often our best hope is to think hard
about whether these data approximate independent observations from the population of interest.

Even when sampling from a fixed population, we use approximations. In practice we rarely
allow elements of a fixed population to be observed more than once in a sample. This invalidates
the assumptions. If the first sampled element is eliminated, the second element is actually being
sampled from a different population than the first. (One element has been eliminated.) Fortunately,
when the sample contains a small proportion of the fixed population, the standard assumptions make
a good approximation. Moreover, the normal distribution is never more than an approximation to a
fixed population. The normal distribution has an infinite number of possible outcomes, while fixed
populations are finite. Often, the normal distribution makes a good approximation, especially if we
do our best to validate it. In addition, the assumption of a normal distribution is only used when
drawing conclusions from small samples. For large samples we can get by without the assumption
of normality.

Our primary objective is to draw conclusions about the mean µ . We condense the data into sum-
mary statistics. These are the sample mean, the sample variance, and the sample standard deviation.
The sample mean has the algebraic formula

ȳ· ≡
1
n

n

∑
i=1

yi =
1
n
[y1 + y2 + · · ·+ yn]

where the · in ȳ· indicates that the mean is obtained by averaging the yis over the subscript i. The
sample mean ȳ· estimates the population mean µ . The sample variance is an estimate of the popula-
tion variance σ2. The sample variance is essentially the average squared distance of the observations
from the sample mean,

s2 ≡ 1
n−1

n

∑
i=1

(yi− ȳ·)
2 (2.1.1)

=
1

n−1

[
(y1− ȳ·)

2
+(y2− ȳ·)

2
+ · · ·+(yn− ȳ·)

2
]
.

The sample standard deviation is just the square root of the sample variance,

s≡
√

s2.

EXAMPLE 2.1.2. The sample mean of the dropout rate data is

ȳ· =
5+22+10+12+8+ · · ·+3+14+15

38
= 13.11.
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If we think of these data as a sample from the fixed population of math dropout rates in 1984–
85, ȳ· is obviously an estimate of the simple average of all the dropout rates of all the classes in
that academic year. Equivalently, ȳ· is an estimate of the expected value for the random variable
defined as the dropout rate obtained when we randomly select one class from the fixed population.
Alternatively, we may interpret ȳ· as an estimate of the mean of some population that is more
interesting but less well defined than the fixed population of math dropout rates for 1984–85.

The sample variance is

s2 =

[
(5−13.11)2 +(22−13.11)2 + · · ·+(14−13.11)2 +(15−13.11)2

]
38−1

= 106.5.

This estimates the variance of the random variable obtained when randomly selecting one class from
the fixed population. The sample standard deviation is

s =
√

106.5 = 10.32 . 2

The only reason s2 is not the average squared distance of the observations from the sample
mean is that the denominator in (2.1.1) is n− 1 instead of n. If µ were known, a better estimate
of the population variance σ2 would be σ̂2 ≡ ∑

n
i=1 (yi−µ)

2
/n. In s2, we have used ȳ· to estimate

µ . Not knowing µ , we know less about the population, so s2 cannot be as good an estimate as
σ̂2. The quality of a variance estimate can be measured by the number of observations on which
it is based; σ̂2 makes full use of all n observations for estimating σ2. In using s2, we lose the
functional equivalent of one observation for having estimated the parameter µ . Thus s2 has n− 1
in the denominator of (2.1.1) and is said to have n− 1 degrees of freedom. In nearly all problems
that we will discuss, there is one degree of freedom available for every observation. The degrees of
freedom are assigned to various estimates and we will need to keep track of them.

The statistics ȳ· and s2 are estimates of µ and σ2 respectively. The law of large numbers is a
mathematical result implying that for large sample sizes n, ȳ· gets arbitrarily close to µ and s2 gets
arbitrarily close to σ2.

Both ȳ· and s2 are computed from the random observations yi. The summary statistics are func-
tions of random variables, so they must also be random. Each has a distribution and to draw conclu-
sions about the unknown parameters µ and σ2 we need to know the distributions. In particular, if
the original data are normally distributed, the sample mean has the distribution

ȳ· ∼ N
(

µ,
σ2

n

)
or equivalently,

ȳ·−µ√
σ2/n

∼ N(0,1) , (2.1.2)

see Exercise 1.6.2. In Subsection 1.2.4 we established that E(ȳ·)= µ and Var(ȳ·)=σ2/n, so the only
new claim made here is that the sample mean computed from independent, identically distributed
(iid) normal random variables is again normally distributed. Moreover, the central limit theorem is
a mathematical result stating that these distributions are approximately true for ‘large’ samples n,
regardless of whether the original data are normally distributed.

As we will see below, the distributions given above are only useful in drawing conclusions
about data when σ2 is known. Generally, we will need to estimate σ2 with s2 and proceed as best
we can. By the law of large numbers, s2 becomes arbitrarily close to σ2, so for large samples we can
substitute s2 for σ2 in the distributions above. In other words, for large samples the approximation

ȳ·−µ√
s2/n

∼ N(0,1) (2.1.3)
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Figure 2.2: Three distributions: solid, N(0,1); long dashes, t(1); short dashes, t(3).

holds regardless of whether the data were originally normal.
For small samples we cannot rely on s2 being close to σ2, so we fall back on the assumption that

the original data are normally distributed. For normally distributed data, the appropriate distribution
is called a t distribution with n−1 degrees of freedom. In particular,

ȳ·−µ√
s2/n

∼ t(n−1). (2.1.4)

The t distribution is similar to the standard normal but more spread out, see Figure 2.2. It only makes
sense that if we need to estimate σ2 rather than knowing it, our conclusions will be less exact. This
is reflected in the fact that the t distribution is more spread out than the N(0,1). In the previous
paragraph we argued that for large n the appropriate distribution is

ȳ·−µ√
s2/n

∼ N (0,1) .

We are now arguing that for normal data the appropriate distribution is t(n−1). It better be the case
(and is) that for large n the N(0,1) distribution is approximately the same as the t(n−1) distribution.
In fact, we define t(∞) to be a N(0,1) distribution where∞ indicates an infinitely large number.

Formal distribution theory

By definition, the t distribution is obtained as the ratio of two things related to the sample mean and
variance. We now present this general definition.

First, for normally distributed data, the sample variance s2 has a known distribution that depends
on σ2. It is related to a distribution called the chi-squared (χ2) distribution with n− 1 degrees of
freedom. In particular,

(n−1)s2

σ2 ∼ χ
2(n−1). (2.1.5)

Moreover, for normal data, ȳ· and s2 are independent.
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Definition 2.1.3. A t distribution is the distribution obtained when a random variable with a
N(0,1) distribution is divided by an independent random variable that is the square root of a χ2

random variable over its degrees of freedom. The t distribution has the same degrees of freedom as
the chi-square.

In particular, [ȳ·−µ]/
√

σ2/n is N(0,1),
√

[(n−1)s2/σ2]/(n−1) is the square root of a chi-
squared random variable over its degrees of freedom, and the two are independent because ȳ· and
s2 are independent, so

ȳ·−µ√
s2/n

=
[ȳ·−µ]/

√
σ2/n√

[(n−1)s2/σ2]/(n−1)
∼ t(n−1).

The t distribution has the same degrees of freedom as the estimate of σ2; this is typically the case
in other applications.

2.2 Inference about µ

Most statistical tests and confidence intervals are applications of a single theory. (Tests and confi-
dence intervals for variances are exceptions.) To use this theory we need to know four things. In the
one-sample problem the four things are
1. the parameter of interest, µ ,
2. the estimate of the parameter, ȳ·,
3. the standard error of the estimate, SE(ȳ·)≡

√
s2/n = s

/√
n, and

4. the appropriate distribution for [ȳ·−µ]
/√

s2/n .

Specifically, we need a known (tabled) distribution for [ȳ·−µ]
/√

s2/n that is symmetric about zero
and continuous. The standard error, SE(ȳ·), is the estimated standard deviation of ȳ·. Recall that the
variance of ȳ· is σ2/n, so its standard deviation is

√
σ2/n and estimating σ2 by s2 gives the standard

error
√

s2/n.
The appropriate distribution for [ȳ·−µ]

/√
s2/n when the data are normally distributed is the

t(n− 1) as in (2.1.4). For large samples, the appropriate distribution is the N(0,1) as in (2.1.3).
Recall that for large samples from a normal population, it is irrelevant whether we use the standard
normal or the t distribution because they are essentially the same. In the unrealistic case where σ2

is known we do not need to estimate it, so we use
√

σ2/n instead of
√

s2/n for the standard error.
In this case, the appropriate distribution is (2.1.2) if either the original data are normal or the sample
size is large.

We need notation for the percentage points of the known distribution and we need a name for
the point that cuts off the top α of the distribution. Typically, we need to find points that cut off the
top 5%, 2.5%, 1%, or 0.5% of the distribution, so α is .05, .025, .01, or .005. As discussed in the
previous paragraph, the appropriate distribution depends on various circumstances of the problem,
so we begin by discussing percentage points with a generic notation. We use the notation K(1−α)
for the point that cuts off the top α of the distribution. Figure 2.3 displays this idea graphically for
a value of α between 0 and .5. The distribution is described by the curve, which is symmetric about
0. K(1−α) is indicated along with the fact that the area under the curve to the right of K(1−α) is
α . Formally the point that cuts off the top α of the distribution is K(1−α) where

Pr
[

ȳ·−µ

SE(ȳ·)
> K(1−α)

]
= α.

Note that the same point K(1−α) also cuts off the bottom 1−α of the distribution, i.e.,

Pr
[

ȳ·−µ

SE(ȳ·)
< K(1−α)

]
= 1−α.
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Figure 2.3: 1−α percentile of the distribution of [ȳ·−µ]/SE(ȳ·).

This is illustrated in Figure 2.3 by the fact that the area under the curve to the left of K(1−α)
is 1−α . The reason the point is labeled K(1−α) is because it cuts off the bottom 1−α of the
distribution. The labeling depends on the percentage to the left even though our interest is in the
percentage to the right.

There are at least three different ways to label these percentage points; I have simply used the
one I feel is most consistent with general usage in probability and statistics. The key point however
is to be familiar with Figure 2.3. We need to find points that cut off a fixed percentage of the area
under the curve. As long as we can find such points, what we call them is irrelevant. Ultimately,
anyone doing statistics will need to be familiar with all three methods of labeling. One method of
labeling is in terms of the area to the left of the point; this is the one we will use. A second method
is labeling in terms of the area to the right of the point; thus the point we call K(1−α) could be
labeled, say, Q(α). The third method is to call this number, say, W (2α), where the area to the right
of the point is doubled in the label. For example, if the distribution is a N(0,1), the point that cuts
off the bottom 97.5% of the distribution is 1.96. This point also cuts off the top 2.5% of the area. It
makes no difference if we refer to 1.96 as the number that cuts off the bottom 97.5%, K(.975), or as
the number that cuts off the top 2.5%, Q(.025), or as the number W (.05) where the label involves
2× .025; the important point is being able to identify 1.96 as the appropriate number. Henceforth,
we will always refer to points in terms of K(1−α), the point that cuts off the bottom 1−α of
the distributions. No further reference to the alternative labelings will be made but all three labels
are used in Appendix B.1. There K(1−α)s are labeled as percentiles and, for reasons related to
statistical tests, Q(α)s and W (2α)s are labeled as one-sided and two-sided α levels respectively.

A fundamental assumption in inference about µ is that the distribution of [ȳ·− µ]/SE(ȳ·) is
symmetric about 0. By the symmetry around zero, if K(1−α) cuts off the top α of the distribution,
−K(1−α) must cut off the bottom α of the distribution. Thus for distributions that are symmetric
about 0 we have K(α), the point that cuts off the bottom α of the distribution, equal to −K(1−α).
This fact is illustrated in Figure 2.4. Algebraically, we write

Pr
[

ȳ·−µ

SE(ȳ·)
<−K(1−α)

]
= Pr

[
ȳ·−µ

SE(ȳ·)
< K(α)

]
= α.

Frequently, we want to create a central interval that contains a specified probability, say 1−α .
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t(1 − α, df)− t(1 − α, df) 0

0

1 − 2α αα

Figure 2.4: Symmetry about 0 in the distribution of [ȳ·−µ]/SE(ȳ·).

Figure 2.5 illustrates the construction of such an interval. Algebraically, the middle interval with
probability 1−α is obtained by

Pr
[
−K
(

1− α

2

)
<

ȳ·−µ

SE(ȳ·)
< K

(
1− α

2

)]
= 1−α.

The probability of getting something outside of this interval is

α =
α

2
+

α

2
= Pr

[
ȳ·−µ

SE(ȳ·)
<−K

(
1− α

2

)]
+Pr

[
ȳ·−µ

SE(ȳ·)
> K

(
1− α

2

)]
.

In practice, the values K(1−α) are found from either a normal table or a t table. For normal
percentage points, we use the notation

z(1−α) = K(1−α) .

For percentage points of a t with d f degrees of freedom, use

t(1−α,d f ) = K(1−α) .

Recall that as d f gets large, the t(d f ) distribution converges to a N(0,1), so

z(1−α) = t(1−α,∞).

Percentiles of the t distribution are given in Appendix B.1 with the∞ row giving percentiles of the
N(0,1) distribution.

2.2.1 Confidence intervals

A confidence interval is an interval of possible µ values in which we are ‘confident’ that the true
value of µ lies. Moreover, a numerical level of confidence is specified for the interval. Confidence
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Figure 2.5: 1−α central interval for the distribution of [ȳ·−µ]/SE(ȳ·).

intervals are commonly viewed as the most useful single procedure in statistical inference. A 95%
confidence interval for µ is based on the following probability statements:

.95 = Pr
[
−K(.975)<

ȳ·−µ

SE(ȳ·)
< K(.975)

]
= Pr[ȳ·−K(.975)SE(ȳ·)< µ < ȳ·+K(.975)SE(ȳ·)]

The first equality given above holds simply by the definition of K(.975) and the symmetry of the
distribution; it expresses Figure 2.5 algebraically for α = .05. The second equality follows from
the fact that the statements within the two sets of square brackets can be shown to be algebraically
equivalent.

More generally, a (1−α)100% confidence interval for µ is based on the following probability
statements:

1−α = Pr
[
−K
(

1− α

2

)
<

ȳ·−µ

SE(ȳ·)
< K

(
1− α

2

)]
= Pr

[
ȳ·−K

(
1− α

2

)
SE(ȳ·)< µ < ȳ·+K

(
1− α

2

)
SE(ȳ·)

]
The first equality given above holds simply by the definition of K

(
1− α

2

)
and the symmetry of the

distribution. Again, it is just an algebraic statement of Figure 2.5. The second equality follows from
the fact that the statements within the square brackets are algebraically equivalent. A proof of the
equivalence is given in the appendix to the next chapter.

The probability statement

1−α = Pr
[
ȳ·−K

(
1− α

2

)
SE(ȳ·)< µ < ȳ·+K

(
1− α

2

)
SE(ȳ·)

]
is the basis of the confidence interval for µ . The (1−α)100% confidence interval for µ is sim-
ply the interval within the square brackets, i.e., the points between ȳ· − K

(
1− α

2

)
SE(ȳ·) and

ȳ· + K
(
1− α

2

)
SE(ȳ·) with observed values substituted for ȳ· and SE(ȳ·). The endpoints can be

written
ȳ·±K

(
1− α

2

)
SE(ȳ·),
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or, substituting the form of the standard error,

ȳ·±K
(

1− α

2

) s√
n
.

Note that increasing the sample size n decreases the standard error and thus makes the confidence
interval narrower. Narrower confidence intervals give more precise information about µ . In fact, by
taking n large enough, we can make the confidence interval arbitrarily narrow.

EXAMPLE 2.2.1. For the dropout rate data presented at the beginning of the chapter, the param-
eter is the mean dropout rate for math classes, the estimate is ȳ· = 13.11, and the standard error is
s/
√

n = 10.32/
√

38 = 1.67. As seen in the dot plot, the original data are not normally distributed.
The plot looks nothing at all like the bell shaped curve in Figure 1.1, which is a picture of a normal
distribution. Thus we hope that a sample of size 38 is sufficiently large to justify use of the N(0,1)
distribution via the central limit theorem and the law of large numbers. For a 95% confidence in-
terval, 95 = (1−α)100, .95 = (1−α), α = 1− .95 = .05, and 1−α/2 = .975, so the number we
need from the t table is z(.975) = t(.975,∞) = 1.96. The endpoints of the confidence interval are

13.11±1.96(1.67)

giving an interval of
(9.8,16.4).

Rounding to simple numbers, we are 95% confident that the true dropout rate is between 10% and
16.5% 2

The confidence interval has probability 1−α that we are going to get a confidence interval that
covers what we are trying to estimate, i.e., µ . However, once the data are observed and the interval
computed, this is no longer true. The particular interval that we get either covers µ or it does not.
There is no probability associated with the coverage; nothing is random, neither µ nor the endpoints
of the interval. For this reason we say that, ‘We are (1−α)100% confident that the true value of µ

is in the interval.’ I doubt that anybody has a good definition of what the word ‘confident’ means
in that sentence. Having done my duty to explain the correct meaning of confidence intervals, you
can (and will) go back to thinking that the probability is 1−α that your interval covers µ . It does
not do any real harm and it can be justified using arguments from Bayesian statistics. This issue of
interpretation is discussed in much more detail in the next chapter.

2.2.2 Hypothesis tests

An hypothesis test is a procedure for checking the validity of a claim. Someone makes a claim which
becomes the null hypothesis. We wish to test whether or not the claim is true. If relevant data are
available, we can test the claim, but we cannot really test whether it is true or false, we can merely
test whether the data are consistent or inconsistent with the claim. Data that are inconsistent with the
claim suggest that the claim is false. Data that are consistent with the claim are just that, consistent
with the claim; they do not imply that the claim is true because other circumstances could equally
well have generated the data.

In a one sample problem, for some fixed known number m we may want to test the null hypoth-
esis

H0 : µ = m

versus the alternative hypothesis
HA : µ 6= m.

The number m must be known; it is some number that is of interest for the specific data being
analyzed. It is not just an unspecified symbol.
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EXAMPLE 2.2.2. For the dropout rate data, we might be interested in the hypothesis that the
true dropout rate is 10%. Thus the null hypothesis is H0 : µ = 10 and the alternative hypothesis is
HA : µ 6= 10. 2

The test is based on the assumption that H0 is true and we check to see if the data are inconsistent
with that assumption. The idea is much like the idea of a proof by contradiction. We make an
assumption H0. If the data contradict that assumption, we can conclude that the assumption H0 is
false. If the data do not contradict H0, we can only conclude that the data are consistent with the
assumption; we cannot conclude that the assumption is true.

Unfortunately, there are two complicating factors in a statistical test. First, data almost never
yield an absolute contradiction to the assumption. We need to quantify the extent to which the data
are inconsistent with the assumption. Second, while we wish to test a specific assumption H0, there
are other assumptions involved in any statistical procedure. A contradiction only invalidates H0 if the
other assumptions are valid. These other assumptions were discussed at the beginning of the chapter.
They include such things as independence, normality, and all observations having the same mean
and variance. While we can never confirm that these other assumptions are absolutely valid, it is a
key aspect of modern statistical practice to validate the assumptions as far as is reasonably possible.
When we are convinced that the other assumptions are reasonably valid, data that contradict the
assumptions can be reasonably interpreted as contradicting the specific assumption H0.

We need to be able to identify data that are inconsistent with the assumption that µ = m. Note
that, regardless of any hypotheses, ȳ· is an estimate µ . For example, suppose m = 10. If ȳ· = 10.1, ȳ·
is an estimate of µ , so the data seem to be consistent with the idea that µ = 10. On the other hand,
if ȳ· = 10,000, we expect that µ will be near 10,000 and the observed ȳ· seems to be inconsistent
with H0 : µ = 10. The trick is in determining which values of ȳ· are far enough away from 10 for
us to be reasonably sure that µ 6= 10. As a matter of fact, in the absence of information about the
variability of ȳ·, we cannot really say that ȳ· = 10.1 is consistent with µ = 10 or that ȳ· = 10,000 is
inconsistent with µ = 10. If the variability associated with ȳ· is extremely small, ȳ· = 10.1 may be
highly inconsistent with µ = 10. On the other hand, if the variability associated with ȳ· is extremely
large, ȳ· = 10,000 may be perfectly consistent with µ = 10. Obviously, the standard error of ȳ·,
which is our measure of variability, must play a major role in the analysis.

Generally, since ȳ· estimates µ , if µ > m, then ȳ· tends to be greater than m so that ȳ·−m and
thus [ȳ·−m]/SE(ȳ·) tend to be large positive numbers (larger than they would be if H0 : µ = m were
true). On the other hand, if µ < m, then ȳ·−m and [ȳ·−m]/SE(ȳ·) will tend to be a large negative
numbers. Data that are inconsistent with the null hypothesis µ = m are large positive and large
negative values of the test statistic [ȳ·−m]/SE(ȳ·). The problem is in specifying what we mean by
‘large’.

We reject the null hypothesis (disbelieve µ = m) if the test statistic

ȳ·−m
SE(ȳ·)

is greater than some positive cutoff value or less than some negative cutoff value. Very large and
very small (large negative) values of the test statistic are those that are most inconsistent with
µ = m. The problem is in specifying the cutoff values. For example, we do not want to reject
µ = 10 if the data are consistent with µ = 10. One of our basic assumptions is that we know
the distribution of [ȳ·−µ]/SE(ȳ·). Thus if H0 : µ = 10 is true, we know the distribution of the
test statistic [ȳ·−10]/SE(ȳ·), so we know what kind of data are consistent with µ = 10. For in-
stance, when µ = 10, 95% of the possible values of [ȳ·−10]/SE(ȳ·) are between −K(.975) and
K(.975). Any values of [ȳ·−10]/SE(ȳ·) that fall between these numbers are reasonably consistent
with µ = 10 and values outside the interval are defined as being inconsistent with µ = 10. Thus
values of [ȳ·−10]/SE(ȳ·) greater than K(.975) or less than −K(.975) cause us to reject the null
hypothesis. Note that we arbitrarily specified the central 95% of the distribution as being consistent
with µ = 10. That leaves a 5% chance of getting outside the central interval, so a 5% chance that



2.2 INFERENCE ABOUT µ 37

we will reject µ = 10 even when it is true. In other words, even when µ = 10, 5% of the time
[ȳ·−10]/SE(ȳ·) will be outside the limits. We could reduce this chance of error by specifying the
central 99% of the distribution as consistent with µ = 10. This reduces the chance of error to 1%,
but then if µ 6= 10, we are less likely to reject µ = 10. Thus there are two types of possible errors
that we need to play off against each other. Type I error is rejecting H0 when it is true. Type II error
is not rejecting H0 when it is not true. The probability of type I error is known as the α level of the
test.

EXAMPLE 2.2.3. For the dropout rate data, consider the null hypothesis H0 : µ = 10, i.e., that the
mean dropout rate is 10%. The alternative hypothesis is HA : µ 6= 10. As discussed in the example on
confidence intervals, these data are not normal, so we must hope that the sample size is large enough
to justify use of the N(0,1) distribution. If we choose a central 90% interval and thus a type I error
rate of α = .10, the upper cutoff value is K

(
1− α

2

)
= z
(
1− α

2

)
= z(1− .05) = t(.95,∞) = 1.645.

The α = .10 level test for H0 : µ = 10 versus HA : µ 6= 10 is to reject H0 if

ȳ·−10
s/
√

38
> 1.645.

or if
ȳ·−10
s/
√

38
<−1.645.

The estimate of µ is ȳ· = 13.11 and the observed standard error is s/
√

n = 10.32/
√

38 = 1.67, so
the observed value of the test statistic is

13.11−10
1.67

= 1.86 .

Comparing this to the cutoff value of 1.645 we have 1.86 > 1.645, so the null hypothesis is rejected.
There is evidence at the α = .10 level that the mean dropout rate is not 10%. In fact, since ȳ· =
13.11 > 10 there is the suggestion that the dropout rate is greater than 10%.

This conclusion depends on the choice of the α level. If we choose α = .05, then the appropriate
cutoff value is z(.975) = 1.96. Since the observed value of the test statistic is 1.86, which is neither
greater than 1.96 nor less than −1.96, we do not reject the null hypothesis. When we do not reject
H0, we cannot say that the true mean dropout rate is 10%, but we can say that, at the α = .05 level,
the data are consistent with the (null) hypothesis that the true mean dropout rate is 10%. 2

Generally, a test of hypothesis is based on controlling the probability of making an error when
the null hypothesis is true. The α level of the test (the probability a type I error) is the probability
of rejecting the null hypothesis (saying that it is false) when the null hypothesis is in fact true. The
α level test for H0 : µ = m versus HA : µ 6= m is to reject H0 if

ȳ·−m
SE(ȳ·)

> K
(

1− α

2

)
or if

ȳ·−m
SE(ȳ·)

<−K
(

1− α

2

)
.

This is equivalent to saying, reject H0 if

|ȳ·−m|
SE(ȳ·)

> K
(

1− α

2

)
.

Note that if H0 is true, the probability that we will reject H0 is

Pr
[

ȳ·−m
SE(ȳ·)

> K
(

1− α

2

)]
+Pr

[
ȳ·−m
SE(ȳ·)

<−K
(

1− α

2

)]
= α/2+α/2 = α.
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Also note that we are rejecting H0 for those values of [ȳ·−m]/SE(ȳ·) that are most inconsistent with
H0, these being the values of the test statistic with large absolute values.

A null hypothesis should never be accepted; it is either rejected or not rejected. A better way to
think of a test is that one concludes that the data are either consistent or inconsistent with the null
hypothesis. The statement that the data are inconsistent with H0 is a strong statement. It disproves H0
in some specified degree. The statement that the data are consistent with H0 is not a strong statement;
it does not prove H0. For example, the dropout data happen to be consistent with H0 : µ = 12; the
test statistic

ȳ·−12
SE(ȳ·)

=
13.11−12

1.67
= .66

is very small. However, the data are equally consistent with µ = 12.00001. These data cannot possi-
bly indicate that µ = 12 rather than µ = 12.00001. However, when the null hypothesis is H0 : µ = 12,
the value µ = 12.00001 is part of the alternative hypothesis HA : µ 6= 12, so clearly data that are
consistent with H0 are also consistent with some elements of the alternative. In fact, we established
earlier that based on an α = .05 test, these data are even consistent with µ = 10. Data that are
consistent with H0 do not imply that the alternative is false.

With these data there is very little hope of distinguishing between µ = 12 and µ = 12.00001. The
probability of getting data that lead to rejecting H0 : µ = 12 when µ = 12.00001 is only just slightly
more than the probability of getting data that lead to rejecting H0 when µ = 12. The probability of
getting data that lead to rejecting H0 : µ = 12 when µ = 12.00001 is called the power of the test
when µ = 12.00001. The power is the probability of appropriately rejecting H0 and depends on the
particular value of µ (6= 12). The fact that the power is very small for detecting µ = 12.00001 is not
much of a problem because no one would really care about the difference between a dropout rate of
12 and a dropout rate of 12.00001. However, a small power for a difference that one cares about is a
major concern. The power is directly related to the standard error and can be increased by reducing
the standard error. One natural way to reduce the standard error s/

√
n is by increasing the sample

size n.
One of the difficulties in a general discussion of hypothesis testing is that the actual null hypoth-

esis is always context specific. You cannot give general rules for what to use as a null hypothesis
because the null hypothesis needs to be some interesting claim about the population mean µ . When
you sample different populations, the population mean differs, and interesting claims about the pop-
ulation mean depend on the exact nature of the population. The best practice for setting up null
hypotheses is simply to look at lots of problems and ask yourself what claims about the population
mean are of interest to you. As we examine more sophisticated data structures, some interesting hy-
potheses will arise from the structures themselves. For example, if we have two samples of similar
measurements we might be interested in testing the null hypothesis that they have the same popula-
tion means. Note that there are lots of ways in which the means could be different, but only one way
in which they can be the same. Of course if the specific context suggests that one mean should be,
say, 25 units greater than the other, we can use that as the null hypothesis. Similarly, if we have a
sample of objects and two different measurements on each object, we might be interested in whether
or not the measurements are related. In that case, an interesting null hypothesis is that the measure-
ments are not related. Again, there is only one way in which measurements can be unrelated, but
there are many ways for measurements to display a relationship.

We will see in the next chapter that there is a duality between testing and confidence intervals.
Tests are used to examine whether a difference can be shown to exist between the hypothesized
mean and the mean of the population being sampled. Confidence intervals are used to quantify what
is known about the population mean. In particular, confidence intervals can be used to quantify
how much difference exists between some hypothesized mean and the sampled population’s mean.
Of course, one must consider not only how much of a difference exists but also whether such a
difference is meaningful in the context of the problem.
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One-sided tests

Unless math classes were intentionally being used to weed out students (something I do not believe
was true) high dropout rates are typically considered unfortunate. Math instructors might claim that
dropout rates are 10% or less and students may want to test that claim. In such a case the claim is
only contradicted by dropout rates greater than 10%

We can do one-sided tests in a similar manner to the two-sided testing discussed previously. The
α level test for H0 : µ ≤ m versus HA : µ > m is to reject H0 if

ȳ·−m
SE(ȳ·)

> K(1−α) .

Again, the value m must be known; either someone tells it to you or you determine it from the
subject being investigated. The alternative hypothesis is that µ is greater than something and the
null hypothesis is rejected when the test statistic is greater than some cutoff value. We reject the null
hypothesis for those values of the test statistic that are most inconsistent with the null hypothesis
and most consistent with the alternative hypothesis. If the alternative is true, ȳ· should be near µ ,
which is greater than m, so large positive values of ȳ·−m or, equivalently, large positive values of
[ȳ·−m]

/
SE(ȳ·) are consistent with the alternative and inconsistent with the null hypothesis. Note

that if µ = m is true, the probability of rejecting the test is

Pr
[

ȳ·−m
SE(ȳ·)

> K(1−α)

]
= α.

Moreover, it is easily seen that if µ < m,

Pr
[

ȳ·−m
SE(ȳ·)

> K(1−α)

]
< α.

Thus when H0 is true, i.e., when µ ≤ m, the probability of rejecting the null hypothesis is at most
α . As with the two-sided tests, we have controlled the probability of making an error when the null
hypothesis is true.

EXAMPLE 2.2.4. The null hypothesis is that the dropout rate is 10% or less, i.e., H0 : µ ≤ 10.
The alternative is that the dropout rate is greater than 10%, i.e., HA : µ > 10. The α = .05 level test
rejects H0 if

ȳ·−10
SE(ȳ·)

> z(1− .05) = 1.645 .

As seen earlier, the observed value of the test statistic is 1.86 > 1.645, so the null hypothesis is
rejected. Based on a one-sided α = .05 test, we have evidence to reject the (null) hypothesis that the
true dropout rate is 10% or less. In other words, we have evidence that the dropout rate is greater
than 10%.

Students who are math averse might be interested in the claim that the dropout rate is at least
10%, i.e., µ ≥ 10. Setting this up as the null hypothesis is much less informative than the approach
just demonstrated. In this case, the value of ȳ· = 13.11 is obviously consistent with µ being at least
10%. The question is whether ȳ· is also inconsistent with µ ≤ 10. For H0 : µ ≥ 10 a test will not be
rejected. If you do not reject a test, α means very little. However, when you reject a test, α measures
your chance of making an error. Setting up the test as we did allowed us to reject H0 : µ ≤ 10 at
α = .05, which quantifies our chance for error. Accepting H0 : µ ≥ 10 tells us nothing about the
chance for error, so it is less informative. 2

As we argued earlier, with a two-sided test you can never be sure that your H0 claim is true.
With a one-sided test, this is not the case. If the data are extreme enough, one hypothesis or the
other is clearly indicated. In the dropout rate data example, with a standard error of 1.67, it is pretty
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clear that ȳ· = 4 indicates µ ≤ 10 and ȳ· = 16 indicates µ ≥ 10, assuming that all other assumptions
are valid. The problem occurs with ȳ· values close to 10, say ȳ· = 9 or ȳ· = 11. If ȳ· = 9, we cannot
be sure that µ ≤ 10 because µ could be 10 or a little larger and we would still have a reasonable
chance of observing ȳ· = 9. Similarly, ȳ· = 11 is reasonably consistent with µ values of 10 or a little
smaller. The only really hard problem is whether we are sure µ 6= 10. If µ is different from 10, it
is obvious whether µ < 10 or µ > 10. And if you are bothering to run this test at all, µ = 10 must
have some special significance and it should be of interest to establish which way µ might differ
from 10. This is one of several reasons I have for preferring two-sided tests.

The α level test for H0 : µ ≥ m versus HA : µ < m is to reject H0 if

ȳ·−m
SE(ȳ·)

<−K(1−α) .

The alternative hypothesis is that µ is less than something and the null hypothesis is rejected when
the test statistic is less than some cutoff value. Note that the form of the alternative determines the
form of the rejection region. In all cases we reject H0 for the data that are most inconsistent with
H0.

The one-sided null hypotheses involve inequalities, but µ = m is always part of the null hypoth-
esis. The tests are set up assuming that µ = m and this needs to be part of the null hypothesis. In all
cases, the test is set up so that if µ = m, then the probability of making a mistake is α .

P values

Rather than having formal rules for when to reject the null hypothesis, one can report the evidence
against the null hypothesis. This is done by reporting the significance level of the test, also known
as the P value. The P value is computed under the assumption that µ = m and is the probability of
seeing data that are as extreme or more extreme than those that were actually observed. In other
words, it is the α level at which the test would just barely be rejected.

EXAMPLE 2.2.5. For H0 : µ = 10 versus HA : µ 6= 10 the observed value of the test statistic is
1.86. Clearly, data that give values of the test statistic that are greater than 1.86 are more extreme
than the actual data. Also, by symmetry, data that give a test statistic of−1.86 are just as extreme as
data that yield a 1.86. Finally, data that give values smaller than −1.86 are more extreme than data
yielding a 1.86. As before, we use the standard normal distribution z. From a standard normal table
or an appropriate computer program,

P = Pr [z≥ 1.86]+Pr [z≤−1.86]
= .0314+ .0314
= .0628.

Thus the approximate P value is .06. The P value is approximate because the use of the standard
normal distribution is an approximation based on large samples. Note that

P = Pr [z≥ 1.86]+Pr [z≤−1.86] = Pr [|z| ≥ |1.86|] .

In the t tables of Appendix B.1, the standard normal distribution corresponds to t(∞). Compar-
ing |1.86| to the tables, we see that

t(.95,∞) = 1.645 < |1.86|< 1.96 = t(.975,∞),

so for a two-sided test the P value satisfies

2(1− .95) = .10 > P > .05 = 2(1− .975).
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In other words, t(.95,∞) is the cutoff value for an α = .10 test and t(.975,∞) is the cutoff value
for an α = .05 test; |1.86| falls between these values, so the P value is between .10 and .05. When
only a t table is available, P values are most simply specified in terms of bounds such as these. 2

The P value is a measure of the evidence against the null hypothesis in which the smaller the P
value the more evidence against H0. The P value can be used to perform various α level tests. In
the example, the P value is .06. This is less than .10, so an α = .10 level test of H0 : µ = 10 versus
HA : µ 6= 10 will reject H0. On the other hand, .06 is greater than .05, so an α = .05 test does not
reject H0 : µ = 10. Note that these are exactly the conclusions we reached in the earlier example on
testing H0 : µ = 10 versus HA : µ 6= 10.

The P value for a one-sided test, say, H0 : µ ≥ m versus HA : µ < m, is one half of the P value
from the test of H0 : µ = m versus HA : µ 6= m provided that ȳ· < m. If ȳ· ≥m, the P value is at least
.5.

2.3 Prediction intervals

In many situations, rather than trying to learn about µ , it is more important to obtain information
about future observations from the same process. With independent observations, the natural point
prediction for a future observation is just the estimate of µ , but a prediction interval with, say, 99%
confidence of containing a future observation differs from a 99% confidence interval for µ . Our
ideas about where future observations will lie involves two sources of variability. First, there is
the variability that a new observation y displays about its mean value µ . Second, we need to deal
with the fact that we do not know µ , so there is variability associated with ȳ·, our estimate of µ .
In the dropout rate example, ȳ· = 13.11 and s2 = 106.5. If we could assume that the observations
are normally distributed (which is a poor assumption), we could create a 99% prediction interval,
i.e., an interval that contains a future observation with 99% confidence. The interval for the new
observation is centered about ȳ·, our best point predictor, and is similar to a confidence interval but
uses a standard error that is appropriate for prediction. The actual interval has endpoints

ȳ·± t(.995,n−1)

√
s2 +

s2

n
.

In our example, n = 38 and t(.995,37) = 2.71, so this becomes

13.11±2.71

√
106.5+

106.5
38

or
13.11±28.33

for an interval of (−15.22,41.44). In practice, dropout percentages cannot be less than 0, so a
more practical interval is (0,41.44). To the limits of our assumptions, we can be 99% confident
that the dropout rate for a new, similar math class will be between 0 and 41.5%. It is impossible to
validate assumptions about future observations (as long as they remain in the future), thus the exact
confidence levels of prediction intervals are always suspect.

The key difference between the 99% prediction interval and a 99% confidence interval is the
standard error. In a confidence interval, the standard error is

√
s2/n. In a prediction interval, we

mentioned the need to account for two sources of variability and the corresponding standard error
is
√

s2 + s2/n. The first term in the square root estimates the variance of the new observation, while
the second term in the square root estimates the variance of ȳ·, the point predictor.

As mentioned earlier and as will be shown in the next section, the assumption of normality is
pretty poor for the 38 observations on dropout rates. Even without the assumption of normality we
can get an approximate evaluation of the interval. The interval uses the value t(.995,37) = 2.71, and
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we will see below that even without the assumption of normality, the approximate confidence level
of this prediction interval is at least

100
(

1− 1
(2.71)2

)
% = 86%.

Theory

In this chapter we assume that the observations yi are independent from a population with mean
µ and variance σ2. We have assumed that all our previous observations on the process have been
independent, so it is reasonable to assume that the future observation y is independent of the previous
observations with the same mean and variance. The prediction interval is actually based on the
difference y− ȳ·, i.e., we examine how far a new observation may reasonably be from our point
predictor. Note that

E(y− ȳ·) = µ−µ = 0.

To proceed we need a standard error for y− ȳ· and a distribution that is symmetric about 0. The
standard error of y− ȳ· is just the standard deviation of y− ȳ· when available or, more often, an
estimate of the standard deviation. First we need to find the variance. As ȳ· is computed from the
previous observations, it is independent of y and, using Proposition 1.2.11,

Var(y− ȳ·) = Var(y)+Var(ȳ·) = σ
2 +

σ2

n
= σ

2
[

1+
1
n

]
.

The standard deviation is the square root of the variance. Typically, σ2 is unknown, so we estimate
it with s2 and our standard error becomes

SE(y− ȳ·) =

√
s2 +

s2

n
=

√
s2

[
1+

1
n

]
= s

√
1+

1
n
.

To get an appropriate distribution, we assume that all the observations are normally distributed.
In this case,

y− ȳ·
SE(y− ȳ·)

∼ t(n−1).

The validity of the t(n− 1) distribution is established in Exercise 2.7.10. When the observations
are not normally distributed, if we have a large sample we can use the law of large numbers and
Chebyshev’s inequality to approximate the worst case scenario.

Using the distribution based on normal observations, a 99% prediction interval is obtained from
the following probability equalities:

.99 = Pr
[
−t(.995,n−1)<

y− ȳ·
SE(y− ȳ·)

< t(.995,n−1)
]

= Pr[ȳ·− t(.995,n−1)SE(y− ȳ·)< y < ȳ·+ t(.995,n−1)SE(y− ȳ·)] .

The key point is that the two sets of inequalities within the square brackets are algebraically equiv-
alent. Based on the last equality, the 99% prediction interval consists of all y values between
ȳ·− t(.995,n− 1)SE(y− ȳ·) and ȳ·+ t(.995,n− 1)SE(y− ȳ·). In other words, the 99% prediction
interval has endpoints

ȳ·± t(.995,n−1)SE(y− ȳ·).

This looks similar to a 99% confidence interval for µ but the standard error is very different. In the
prediction interval, the endpoints are actually

ȳ·± t(.995,n−1)s

√[
1+

1
n

]
,
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Figure 2.6: Dot plot for drop rate percentage data: outliers deleted.

while in a confidence interval the endpoints are

ȳ·± t(.995,n−1)s

√
1
n
.

The standard error for the prediction interval is typically much larger than the standard error for
the confidence interval. Moreover, unlike the confidence interval, the prediction interval cannot be
made arbitrarily small by taking larger and larger sample sizes n. Of course to compute an arbitrary
(1−α)100% prediction interval, simply replace the value t(.995,n−1) with t(1−α/2,n−1).

As mentioned above, even when the data are not normally distributed, we can obtain an ap-
proximate worst case result for large samples. The approximation comes from using the law of
large numbers to justify treating s as if it were the actual population standard deviation σ . With this
approximation, Chebyshev’s inequality states that

1− 1
t(.995,n−1)2

≤ Pr
[
−t(.995,n−1)<

y− ȳ·
SE(y− ȳ·)

< t(.995,n−1)
]

= Pr[ȳ·− t(.995,n−1)SE(y− ȳ·)< y < ȳ·+ t(.995,n−1)SE(y− ȳ·)] ,

cf. Subsection 1.2.2. As mentioned above, the 99% prediction interval based on 38 normal observa-
tions has a confidence level of at least(

1− 1
(2.71)2

)
100% = 86%.

This assumes that the past observations and the future observation form a random sample from
the same population and assumes that 38 observations is large enough to justify using the law of
large numbers. Similarly, if we can apply the improved version of Chebyshev’s inequality from
Section 1.3, we get a lower bound of 1− [1/2.25(2.71)2] = 93.9% on the confidence coefficient.

Throughout, we have assumed that the process of generating the data yields independent obser-
vations from some population. In quality control circles this is referred to as having a process that
is under statistical control.

2.4 Checking normality

From Figure 2.1, we identified two outliers in the dropout rate data, the 40% and the 59% dropout
rates. If we delete these two points from the data, the remaining data may have a more nearly normal
distribution. The dot plot with the two cases deleted is given in Figure 2.6. This is much more nearly
normally distributed, i.e., looks much more like a bell shaped curve, than the complete data.

Dot plots and other versions of histograms are not effective in evaluating normality. Very large
amounts of data are needed before one can evaluate normality from a histogram. A more useful
technique for evaluating the normality of small and moderate size samples is the construction of
a normal probability plot, also known as a normal plot or a rankit plot. The idea is to order the
data from smallest to largest and then to compare the ordered values to what one would expect the
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Figure 2.7: Normal plot for drop rate percentage data: full data.

ordered values to be if they were truly a random sample from a normal distribution. These pairs of
values should be roughly equal, so if we plot the pairs we would expect to see a line with a slope of
about 1 that goes through the origin.

The problem with this procedure is that finding the expected ordered values requires us to know
the mean µ and standard deviation σ of the appropriate population. These are generally not avail-
able. To avoid this problem, the expectations of the ordered values are computed assuming µ = 0
and σ = 1. The expected ordered values from this standard normal distribution are called normal
scores or rankits. Computing the expected values this way, we no longer anticipate a line with slope
1 and intercept 0. We now anticipate a line with slope σ and intercept µ . While it is possible to
obtain estimates of the mean and standard deviation from a normal plot, our primary interest is in
whether the plot looks like a line. A linear plot is consistent with normal data; a nonlinear plot is
inconsistent with normal data. Christensen (1987, section XIII.2) gives a more detailed motivation
for normal plots.

The normal scores are difficult to compute, so we generally get a computer program to do the
work. In fact, just creating a plot is considerable work without a computer.

EXAMPLE 2.4.1. Consider the dropout rate data. Figure 2.7 contains the normal plot for the com-
plete data. The two outliers cause the plot to be severely nonlinear. Figure 2.8 contains the normal
plot for the dropout rate data with the two outliers deleted. It is certainly not horribly nonlinear.
There is a little shoulder at the bottom end and some wiggling in the middle.

We can eliminate the shoulder in this plot by transforming the original data. Figure 2.9 contains
a normal plot for the square roots of the data with the outliers deleted. While the plot no longer has
a shoulder on the lower end, it seems to be a bit less well behaved in the middle.

We might now repeat our tests and confidence intervals for the 36 observations left when the
outliers are deleted. We can do this for either the original data or the square roots of the original
data. In either case, it now seems reasonable to treat the data as normal, so we can use a t(36− 1)
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Figure 2.8: Normal plot for drop rate percentage data: outliers deleted.
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Figure 2.9: Normal plot for square roots of drop rate percentage data: outliers deleted.

distribution instead of hoping that the sample is large enough to justify use of the standard normal
distribution. We will consider these tests and confidence intervals in the next chapter.

It is important to remember that if outliers are deleted, the conclusions reached are not valid



46 2. ONE SAMPLE
y1

3.0+

- *

-

-

- *

1.5+ * * *

- *

- * *

- ** **

-

0.0+ **

- * *

- ** * **

- *

- * *

-1.5+

- *

--------+---------+---------+---------+---------+-----

-1.60 -0.80 0.00 0.80 1.60

Rankits

Figure 2.10: Normal plot.

for data containing outliers. For example, a confidence interval will be for the mean dropout rate
excluding the occasional classes with extremely large dropout rates. If we are confident that any
deleted outliers are not really part of the population of interest, this causes no problem. Thus, if
we were sure that the large dropout rates were the result of clerical errors and did not provide
any information about true dropout rates, our conclusions about the population should be based
on the data excluding the outliers. More often though, we do not know that outliers are simple
mistakes. Often, outliers are true observations and often they are the most interesting and useful
observations in the data. If the outliers are true observations, systematically deleting them changes
both the sample and the population of interest. In this case, the confidence interval is for the mean
of a population implicitly defined by the process of deleting outliers. Admittedly, the idea of the
mean dropout rate excluding the occasional outliers is not very clearly defined, but remember that
the real population of interest is not too clearly defined either. We do not really want to learn about
the clearly defined population of 1984–85 dropout rates, we really want to treat the dropout rate
data as a sample from a population that allows us to draw useful inferences about current and future
dropout rates. If we really cared about the fixed population, we could specify exactly what kinds of
observations we would exclude and what we meant by the population mean of the observations that
would be included. Given the nature of the true population of interest, I think that such technicalities
are more trouble than they are worth at this point. 2

Normal plots are subject to random variation because the data used in them are subject to random
variation. Typically, normal plots are not perfectly straight. Figures 2.10 through 2.15 present six
normal plots for which the data are in fact normally distributed. By comparison to these, Figures 2.8
and 2.9, the normal plots for the dropout rate data and the square root of the dropout rates both with
outliers deleted, look reasonably normal. Of course, if the dropout rate data are truly normal, the
square root of these data cannot be truly normal and vice versa. However, both are reasonably close
to normal distributions.

Figures 2.10 through 2.15 contain normal plots based on 25 observations each. Normal plots
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Figure 2.11: Normal plot.
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Figure 2.12: Normal plot.

based on larger normal samples tend to appear straighter than these. Normal plots based on smaller
normal samples can look much more crooked.
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Figure 2.13: Normal plot.
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Figure 2.14: Normal plot.

Testing normality

In an attempt to quantify the straightness of a normal plot, Shapiro and Francia (1972) proposed
the summary statistic W ′, which is the squared sample correlation between the pairs of points in
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Figure 2.15: Normal plot.

the plots. The population correlation coefficient was introduced in Subsection 1.2.3. The sample
correlation coefficient is introduced in Chapter 7. At this point, it is sufficient to know that sam-
ple correlation coefficients near 0 indicate very little linear relationship between two variables and
sample correlation coefficients near 1 or −1 indicate a very strong linear relationship. Since you
need a computer to get the normal scores (rankits) anyway, just rely on the computer to give you the
squared sample correlation coefficient.

A sample correlation coefficient near 1 indicates a strong tendency of one variable to increase
(linearly) as the other variable increases and sample correlation coefficients near −1 indicate a
strong tendency for one variable to decrease (linearly) as the other variable increases. In normal
plots we are looking for a strong tendency for one variable, the ordered data, to increase as the
other variable, the rankits, increases, so normal data should display a sample correlation coefficient
near 1 and thus the square of the sample correlation, W ′, should be near 1. If W ′ is too small,
it indicates that the data are inconsistent with the assumption of normality. If W ′ is smaller than,
say, 95% of the values one would see from normally distributed data, it is substantial evidence
that the data are not normally distributed. If W ′ is smaller than, say, 99% of the values one would
see from normally distributed data, it is strong evidence that the data are not normally distributed.
Appendix B.3 presents tables of the values W ′(.05,n) and W ′(.01,n). These are the points above
which fall, respectively, 95% and 99% of the W ′ values one would see from normally distributed
data. Of course the W ′ percentiles are computed using not only the assumption of normality, but also
the assumptions that the observations are independent with the same mean and variance. Note also
that the values of these percentiles depend on the sample size n. The tabled values are consistent
with our earlier observation that the plots are more crooked for smaller numbers of observations
and straighter for larger numbers of observations in that the tabled values get larger with n. For
comparison, we give the observed W ′ values for the data used in Figures 2.10 through 2.15.
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Shapiro–Francia statistics
Figure W ′

2.10 0.966
2.11 0.974
2.12 0.937
2.13 0.956
2.14 0.958
2.15 0.978

These should be compared to W ′(.05,25) .
= .918 and W ′(.01,25) .

= .88 from Appendix B.3. None
of these six values is below the 5% point.
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EXAMPLE 2.4.2. For the dropout rate data we have three normal plots. The complete, untrans-
formed data yield a W ′ value of .697. This value is inconsistent with the assumption that the dropout
rate data has a normal distribution. Deleting the two outliers, W ′ is .978 for the untransformed
data and .960 for the square roots of the data. The tabled percentiles are W ′(.05,36) = .940 and
W ′(.01,36) = .91, so the untransformed data and the square root data look alright. In addition, W ′

was computed for the square roots of the complete data. Its value, .887, is still significantly low, but
is a vast improvement over the untransformed complete data. The outliers are not nearly as strange
when the square roots of the data are considered. Sometimes it is possible to find a transformation
that eliminates outliers. 2

Minitab commands

A computer program is necessary for finding the normal scores and convenient for plotting the data
and computing W ′. The following Minitab commands provide a normal plot and the W ′ statistic for
a variable in c1.

MTB > name c1 ’y’

MTB > nscores c1 c2

MTB > plot c1 c2

MTB > corr c1 c2

MTB > note The correlation is printed out, e.g., .987.

MTB > note This correlation is used in the next command.

MTB > let k1=.987**2

MTB > note k1 is W’

MTB > print k1

2.5 Transformations

In analyzing a collection of numbers, we assume that the observations are a random sample from
some population. Often, the population from which the observations come is not as well defined as
we might like. For example, if our observations are the yields of corn on 30 one acre plots of ground
grown in the summer of 1990, what is the larger population from which this is a sample? Typically,
we do not have a large number of one acre plots from which we randomly select 30. Even if we
had a large collection of plots, these plots are subject to different weather conditions, have different
fertilities, etc. Most importantly, we are rarely interested in corn grown in 1990 for its own sake. If
we are studying corn grown in 1990, we are probably interested in predicting how that same type
of corn would behave if we planted it at some time in the future. No population that currently exists
could be completely appropriate for drawing conclusions about plant growths in a future year. Thus
the assumption that the observations are a random sample from some population is often only a
useful approximation.

When making approximations, it is often necessary to adjust things to make the approximations
more accurate. In statistics, two approximations we frequently make are that all the data have the
same variance and that the data are normally distributed. Making numerical transformations of
the data is a primary tool for improving the accuracy of these approximations. When sampling
from a fixed population, we are typically interested in transformations that improve the normality
assumption because having different variances is not a problem associated with sampling from a
fixed population. With a fixed population, the variance of an object is the variance of randomly
choosing an object from the population. This is a constant regardless of which object we end up
choosing. But data are rarely as simple as random samples from a fixed population. Once we have
an object from the population, we have to obtain an observation (measurement or count) from the
object. These observations on a given object are also subject to random error and the error may well
depend on the specific object being observed.
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We now examine the fact that observations often have different variances, depending on the
object being observed. First consider taking length measurements using a 30 centimeter ruler that
has millimeters marked on it. For measuring objects that are less than 30 centimeters long, like this
book, we can make very accurate measurements. We should be able to measure things within half a
millimeter. Now consider trying to measure the height of a dog house that is approximately 3.5 feet
tall. Using the 30 cm ruler, we measure up from the base, mark 30 cm, measure from the mark up
another 30 cm, make another mark, measure from the new mark up another 30 cm, mark again, and
finally we measure from the last mark to the top of the house. With all the marking and moving of the
ruler, we have much more opportunity for error than we have in measuring the length of the book.
Obviously, if we try to measure the height of a house containing two floors, we will have much more
error. If we try to measure the height of the Sears tower in Chicago using a 30 cm ruler, we will not
only have a lot of error, but large psychiatric expenses as well. The moral of this tale is that, when
making measurements, larger objects tend to have more variability. If the objects are about the same
size, this causes little or no problem. One can probably measure female heights with approximately
the same accuracy for all women in a sample. One probably cannot measure the weights of a large
sample of marine animals with constant variability, especially if the sample includes both shrimp
and blue whales. When the observations are the measured amounts of something, often the standard
deviation of an observation is proportional to its mean. When the standard deviation is proportional
to the mean, analyzing the logarithms of the observations is more appropriate than analyzing the
original data.

Now consider the problem of counting up the net financial worth of a sample of people. For
simplicity, let’s think of just three people, me, my 10 year old son (at least he was 10 when I started
writing this), and my rich uncle, Scrooge. In fact, let’s just think of having a stack of one dollar
bills in front of each person. My pile is of a decent size, my son’s is small, and my uncle’s is huge.
When I count my pile, it is large enough that I could miscount somewhere and make a significant,
but not major, error. When I count my son’s pile, it is small enough that I should get it about
right. When I count my uncle’s pile, it is large enough that I will, almost inevitably, make several
significant errors. As with measuring amounts of things, the larger the observation, the larger the
potential error. However, the process of making these errors is very different than that described
for measuring amounts. In such cases, the variance of the observations is often proportional to the
mean of the observations. The standard corrective measure for counts is different from the standard
corrective measure for amounts. When the observations are counts of something, often the variance
of the count is proportional to its mean. In this case, analyzing the square roots of the observations
is more appropriate than analyzing the original data.

Suppose we are looking at yearly sales for a sample of corporations. The sample may include
both the corner gas (petrol) station and Exxon. It is difficult to argue that one can really count sales
for a huge company such as Exxon. In fact, it may be difficult to count even yearly sales for a gas
station. Although in theory one should be able to count sales, it may be better to think of yearly
sales as measured amounts. It is not clear how to transform such data. Another example is age. We
usually think of counting the years a person has been alive, but one could also argue that we are
measuring the amount of time a person has been alive. In practice, we often try both logarithmic
and square root transformations and use the transformation that seems to work best, even when the
type of observation (count or amount) seems clear.

Finally, consider the proportion of times people drink a particular brand of soda pop, say, Dr.
Pepper. The idea is simply that we ask a group of people what proportion of the time they drink
Dr. Pepper. People who always drink Dr. Pepper are aware of that fact and should give a quite
accurate proportion. Similarly, people who never drink Dr. Pepper should be able to give an accurate
proportion. Moreover, people who drink Dr. Pepper about 90% of the time or about 10% of the time,
can probably give a fairly accurate proportion. The people who will have a lot of variability in their
replies are those who drink Dr. Pepper about half the time. They will have little idea whether they
drink it 50% of the time, or 60%, or 40%, or just what. With observations that are counts or amounts,
larger observations have larger variances. With observations that are proportions, observations near
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0 and 1 have small variability and observations near .5 have large variability. Proportion data call for
a completely different type of transformation. The standard transformation for proportion data is the
inverse sine (arcsine) of the square root of the proportion. When the observations are proportions,
often the variance of the proportion is a constant times µ(1− µ)/N, where µ is the mean and N
is the number of trials. In this case, analyzing the inverse sine (arcsine) of the square root of the
proportion is more appropriate than analyzing the original data.

In practice, the square root transformation is sometimes used with proportion data. After all,
many proportions are obtained as a count divided by the total number of trials. For example, the
best data we could get in the Dr. Pepper drinking example would be the count of the number of Dr.
Peppers consumed divided by the total number of sodas devoured.

There is a subtle but important point that was glossed over in the previous paragraphs. If we take
multiple measurements on a house, the variance depends on the true height, but the true height is
the same for all observations. Such a dependence of the variance on the mean causes no problems.
The problem arises when we measure a random sample of buildings each with a variance depending
on its true height.

EXAMPLE 2.5.1. For the dropout rate data, we earlier considered the complete, untransformed
data and after deleting two outliers, we looked at the untransformed data and the square roots of the
data. In Examples 2.4.1 and 2.4.2 we saw that the untransformed data with the outliers deleted and
the square roots of the data with the outliers deleted had approximate normal distributions. Based on
the W ′ statistic, the untransformed data seemed to be more nearly normal. The data are proportions
of people who drop from a class, so our discussion in this section suggests transforming by the
inverse sine of the square roots of the proportions. Recall that proportions are values between 0 and
1, while the dropout rates were reported as values between 0 and 100, so the reported rates need
to be divided by 100. For the complete data, this transformation yields a W ′ value of .85, which
is much better than the untransformed value of .70, but worse than the value .89 obtained with the
square root transformation. With the two outliers deleted, the inverse sine of the square roots of
the proportions yields the respectable value W ′ = .96, but the square root transformation is simpler
and gives almost the same value, while the untransformed data give a much better value of .98.
Examination of the six normal plots (only three of which have been presented here) reinforce the
conclusions given above.

With the outliers deleted, it seems reasonable to analyze the untransformed data and, to a lesser
extent, the data after either transformation. Other things being equal, we prefer using the simplest
transformation that seems to work. Simple transformations are easier to explain, justify, and inter-
pret. The square root transformation is simpler, and thus better, than the inverse sine of the square
roots of the proportions. Of course, not making a transformation seems to work best and not trans-
forming is always the simplest transformation. Actually some people would point out, and it is
undeniably true, that the act of deleting outliers is really a transformation of the data. However, we
will not refer to it as such. 2

Minitab commands

Minitab commands for the three transformations discussed here and for the cubed root power trans-
formation are given below. The cubed root is just to illustrate a general power transformation.

MTB > name c1 ’y’

MTB > let c2 = loge(c1)

MTB > let c3 = sqrt(c1)

MTB > let c4 = asin(sqrt(c1))

MTB > let c5 = c1**(1/3)
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Theory

The standard transformations given above are referred to as variance stabilizing transformations.
The idea is that each observation is a look at something with a different mean and variance, where
the variance depends on the mean. For example, when we measure the height of a house, the house
has some ‘true’ height and we simply take a measurement of it. The variability of the measurement
depends on the true height of the house. Variance stabilizing transformations are designed to elimi-
nate the dependence of the variance on the mean. Although variance stabilizing transformations are
used quite generally for counts, amounts, and proportions, they are derived for certain assumptions
about the relationship between the mean and the variance. These relationships are tied to theoretical
distributions that are appropriate for some counts, amounts, and proportions. Rao (1973, section 6g)
gives a nice discussion of the mathematical theory behind variance stabilizing transformations.

Proportions are related to the binomial distribution for the numbers of successes. We have a
fixed number of trials; the proportion is the number of successes divided by the number of trials.
The mean of a Bin(N, p) distribution is N p and the variance is N p(1− p). This relationship between
the mean and variance of a binomial leads to the inverse sine of the square root transformation.

Counts are related to the Poisson distribution. The Poisson distribution is an approximation used
for binomials with a very large number of trials, each having a very small probability of success.
Poisson data has the property that the variance equals the mean of the observation. This relationship
leads to the square root as the variance stabilizing transformation.

For amounts, the log transformation comes from having the standard deviation proportional
to the mean. The standard deviation divided by the mean is called the coefficient of variation, so
the log transformation is appropriate for observations that have a constant coefficient of variation.
(The square root transformation comes from having the variance, rather than the standard deviation,
proportional to the mean.) A family of continuous distributions called the gamma distributions has
constant coefficient of variation.

The variance stabilizing transformations are given below. In each case we assume E(yi) = µi
and Var(yi) = σ2

i . The symbol ∝ means ‘proportional to.’

Variance stabilizing transformations
Mean, variance

Data Distribution relationship Transformation
Count Poisson µi ∝ σ2

i
√

yi
Amount Gamma µi ∝ σi log(yi)

Proportion Binomial/N µi(1−µi)
N ∝ σ2

i sin−1(√yi
)

I cannot honestly recommend using variance stabilizing transformations to analyze either bino-
mial or Poisson data. In the past 20 years, a large body of statistical techniques has been developed
specifically for analyzing binomial and Poisson data, see, for example, Christensen (1990b). I would
recommend using these alternative methods. Many people would make a similar recommendation
for gamma distributed data citing the applicability of generalized linear model theory, cf. McCul-
lagh and Nelder (1989) or Christensen (1990b, chapter X). When applied to binomial, Poisson, or
gamma distributed data, variance stabilizing transformations provide a way to force the methods
developed for normally distributed data into giving a reasonable analysis for data that are not nor-
mally distributed. If you have a clear idea about the true distribution of the data, you should use
methods developed specifically for that distribution. The problem is that we often have little idea of
the appropriate distribution for a set of data. For example, if we simply ask people the proportion
of times they drink Dr. Pepper, we have proportion data that is not binomial. In such cases, we
seek a transformation that will make a normal theory analysis approximately correct. We often pick
transformations by trial and error. The variance stabilizing transformations provide little more than
a place to start when considering transformations.

At the beginning of this section, we mentioned two key approximations that we frequently make.
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These are that all the data have the same variance and that the data are normally distributed. While
the rationale given above for picking transformations was based on stabilizing variances, in prac-
tice we typically choose a transformation for a single sample to attain approximate normality. To
evaluate whether a transformation really stabilizes the variance, we need more information than is
contained in a single sample. Control chart methods can be used to evaluate variance stabilization
for a single sample, cf. Shewhart (1931). Those methods require formation of rational subgroups
and that requires additional information. We could also plot the sample against appropriately chosen
variables to check variance stabilization, but finding appropriate variables can be quite difficult and
would depend on properties of the particular sampling process. Variance stabilizing transformations
are probably best suited to problems that compare samples from several populations, where the
variance in each population depends on the mean of the population.

On the other hand, we already have examined methods for evaluating the normality of a single
sample. Thus, since we cannot (actually, do not) evaluate variance stabilization in a single sample, if
we think that the variance of observations should increase with their mean, we might try both the log
and square root transformations and pick the one for which the transformed data best approximate
normality.

2.6 Inference about σ2

If the data are normally distributed, we can also perform confidence intervals and tests for the
population variance σ2. While these are not typically of primary importance, they can be useful.
They also tend to be sensitive to the assumption of normality. The procedures do not follow the
same pattern used for most inferences that involve 1) a parameter of interest, 2) an estimate of the
parameter, 3) the standard error of the estimate, and 4) a known distribution symmetric about zero;
however, there are similarities. Procedures for variances typically require a parameter, an estimate,
and a known distribution.

The procedures discussed in this section actually apply to all the problems in this book that
involve a single variance parameter σ2. One need only substitute the relevant estimate of σ2 and
use its degrees of freedom. Applications to the data and models considered in Chapter 12 are not
quite as straightforward because there the models involve more than one variance.

In the one-sample problem, the parameter is σ2, the estimate is s2, and the distribution, as
discussed in equation (2.1.5), is

(n−1)s2

σ2 ∼ χ
2(n−1).

The notation χ2(1−α,n− 1) is used to denote the point that cuts off the bottom 1−α (top α) of
the χ2 distribution with n− 1 degrees of freedom. Note that (n− 1)s2/σ2 is nonnegative, so the
curve in Figure 2.16 illustrating the χ2 distribution is also nonnegative. Figure 2.16 shows a central
interval with probability 1−α for a χ2 distribution.

A (1−α)100% confidence interval for σ2 is based on the following equality:

1−α = Pr
[

χ
2
(

α

2
,n−1

)
<

(n−1)s2

σ2 < χ
2
(

1− α

2
,n−1

)]
(2.6.1)

= Pr

[
(n−1)s2

χ2
(
1− α

2 ,n−1
) < σ

2 <
(n−1)s2

χ2
(

α

2 ,n−1
)] .

The first equality corresponds to Figure 2.16 and is just the definition of the percentage points
χ2
(

α

2 ,n−1
)

and χ2
(
1− α

2 ,n−1
)
. These are defined to be the points that cut out the middle 1−α

of the chi-squared distribution and are tabled in Appendix B.2. The second equality in (2.6.1) is
based on algebraic manipulation of the terms in the square brackets. The actual derivation is given
later in this section. The second equality gives an interval that contains σ2. There is a probability of
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χ2(α 2,df) χ2(1 − α 2,df)7

0

1 − αα 2 α 2

Figure 2.16: Central χ
2 interval with probability 1−α .

1−α that σ2 is going to be in the interval(
(n−1)s2

χ2
(
1− α

2 ,n−1
) , (n−1)s2

χ2
(

α

2 ,n−1
)) . (2.6.2)

The derivation of the confidence interval for σ2 requires the data to be normally distributed. This
assumption is more vital for inferences about σ2 than it is for inferences about µ . For inferences
about µ , the central limit theorem indicates that the sample means are approximately normal even
when the data are not normal. There is no similar result indicating that the sample variance is
approximately χ2 even when the data are not normal.

EXAMPLE 2.6.1. Consider again the dropout rate data. We have seen that the complete data are
not normal, but that after deleting the two outliers, the remaining data are reasonably normal. We
find a 95% confidence interval for σ2 from the deleted data. The deleted data contain 36 observa-
tions and s2 for the deleted data is 27.45. The percentage points for the χ2(36−1) distribution are
χ2(.025,35) = 20.57 and χ2(.975,35) = 53.20. Applying (2.6.2), the 95% confidence interval is(

35(27.45)
53.20

,
35(27.45)

20.57
,

)
or equivalently (18.1,46.7). We are 95% confident that the true variance is between 18.1 and 46.7,
but remember that this is the true variance after the deletion of outliers. Again, when we delete
outliers we are a little fuzzy about the exact definition of our parameter, but we are also being fuzzy
about the exact population of interest. The exception to this is when we believe that the only outliers
that exist are observations that are not really part of the population. 2

It is the endpoints of the interval (2.6.2) that are random. To use the interval, we replace the
random variable s2 with the observed value of s2 and replace the term ‘probability (1−α)’ with
‘(1−α)100% confidence.’ Once the observed value of s2 is substituted into the interval, nothing
about the interval is random any longer, the fixed unknown value of σ2 is either in the interval or it
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is not; there is no probability associated with it. The probability statement about random variables
is mystically transformed into a ‘confidence’ statement. This is not unreasonable, but the rationale
is, to say the least, murky.

The α level test of H0 : σ2 = σ2
0 versus HA : σ2 6= σ2

0 is again based on the first equality in
equation (2.6.1). To actually perform a test, σ2

0 must be a known value. As usual, we assume that
the null hypothesis is true, i.e., σ2 = σ2

0 , so under this assumption

1−α = Pr
[

χ
2
(

α

2
,n−1

)
<

(n−1)s2

σ2
0

< χ
2
(

1− α

2
,n−1

)]
.

If we observe data yielding an s2 such that (n− 1)s2
/

σ2
0 is between the values χ2

(
α

2 ,n−1
)

and
χ2
(
1− α

2 ,n−1
)
, the data are consistent with the assumption that σ2 = σ2

0 at level α . Conversely,
we reject H0 : σ2 = σ2

0 with a two-sided α level test if

(n−1)s2

σ2
0

> χ
2
(
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2
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)
or if

(n−1)s2

σ2
0

< χ
2
(

α

2
,n−1

)
.

A clear definition of ‘confidence’ can be given in terms of testing the hypothesis H0 : σ2 = σ2
0

versus the alternative HA : σ2 6= σ2
0 . The same algebraic manipulations that lead to equation (2.6.1)

can be used to show that the (1−α)100% confidence interval contains precisely those values of σ2
0

that are consistent with the data when testing H0 : σ2 = σ2
0 at level α . This idea is discussed in more

detail in Section 3.4.

EXAMPLE 2.6.2. For the dropout rate data consider testing H0 : σ2 = 50 versus HA : σ2 6= 50
with α = .01. Again, we use the data with the two outliers deleted, so our concept of the population
variance σ2 must account for our deletion of weird cases. The test statistic is

(n−1)s2

σ2
0

=
35(27.45)

50
= 19.215.

The critical region, the region for which we reject H0, contains all values greater than χ2(.995,35)=
60.275 and all values less than χ2(.005,35) = 17.19. The test statistic is certainly not greater than
60.275 and it is also not less than 17.19, so we have no basis for rejecting the null hypothesis at the
α = .01 level. At the .01 level, the data are consistent with the claim that σ2 = 50.

The 95% confidence interval (18.1,46.7) from Example 2.6.1 contains all values of σ2 that
are consistent with the data as determined by a two-sided α = .05 level test. The interval does not
contain 50, so we do have evidence against H0 : σ2 = 50 at the α = .05 level. 2

While methods for drawing inferences about variances do not fit our standard pattern based on
1) a parameter of interest, 2) an estimate of the parameter, 3) the standard error of the estimate, and
4) a known distribution symmetric about zero, it should be noted that the basic logic behind these
confidence intervals and tests is the same. Confidence intervals are based on a random interval that
contains the parameter of interest with some specified probability. The unusable random interval is
changed into a usable nonrandom interval by substituting the observed value of the random variable
into the endpoints of the interval. The probability is then miraculously, if intuitively, turned into
‘confidence.’ Tests of hypotheses are based on evaluating whether the data are consistent with the
null hypothesis. Consistency is defined in terms of a known distribution that applies when the null
hypothesis is true. If the data are inconsistent with the null hypothesis, the null hypothesis is rejected
as being inconsistent with the observed data.
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Table 2.1: Weights of rats

59 54 56 59 57 52 52 61 59
53 59 51 51 56 58 46 53 57
60 52 49 56 46 51 63 49 57

Below is a series of equalities that justify equation (2.6.1).

1−α = Pr
[

χ
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α
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)
<
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2.7 Exercises

EXERCISE 2.7.1. Mulrow et al. (1988) presented data on the melting temperature of biphenyl as
measured on a differential scanning calorimeter. The data are given below; they are the observed
melting temperatures in Kelvin less 340.

3.02,2.36,3.35,3.13,3.33,3.67,3.54,3.11,3.31,3.41,3.84,3.27,3.28,3.30

Compute the sample mean, variance, and standard deviation. Give a 99% confidence interval for the
population mean melting temperature of biphenyl as measured by this machine. (Note that we don’t
know whether the calorimeter is accurately calibrated.)

EXERCISE 2.7.2. Box (1950) gave data on the weights of rats that were about to be used in an
experiment. The data are repeated in Table 2.1. Assuming that these are a random sample from a
broader population of rats, give a 95% confidence interval for the population mean weight. Test the
null hypothesis that the population mean weight is 60 using a .01 level test.

EXERCISE 2.7.3. Fuchs and Kenett (1987) presented data on citrus juice for fruits grown during
a specific season at a specific location. The sample size was 80 but many variables were measured
on each sample. Sample statistics for some of these variables are given below

Variable BX AC SUG K FORM PECT
Mean 10.4 1.3 7.7 1180.0 22.2 451.0
Variance 0.38 0.036 0.260 43590.364 6.529 16553.996

The variables are BX – total soluble solids produced at 20oC, AC – acidity as citric acid unhydrons,
SUG – total sugars after inversion, K – potassium, FORM – formol number, PECT – total pectin.
Give a 99% confidence interval for the population mean of each variable. Give a 99% prediction
interval for each variable. Test whether the mean of BX equals 10. Test whether the mean of SUG
is less than or equal to 7.5. Use α = .01 for each test.

EXERCISE 2.7.4. Jolicoeur and Mosimann (1960) gave data on female painted turtle shell
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Table 2.2: Female painted turtle shell lengths

98 138 123 155 105 147 133 159
103 138 133 155 109 149 134 162
103 141 133 158 123 153 136 177

Table 2.3: Percentage of fathers with white collar jobs

28.87 20.10 69.05 65.40 29.59
44.82 77.37 24.67 65.01 9.99
12.20 22.55 14.30 31.79 11.60
68.47 42.64 16.70 86.27 76.73

lengths. The data are presented in Table 2.2. Give a 95% confidence interval for the population
mean length. Give a 99% prediction interval for the shell length of a new female.

EXERCISE 2.7.5. Mosteller and Tukey (1977) extracted data from the Coleman Report. Among
the variables considered was the percentage of sixth-graders who’s fathers were employed in white
collar jobs. Data for 20 New England schools are given in Table 2.3. Are the data reasonably nor-
mal? Do any of the standard transformations improve the normality? After finding an appropriate
transformation (if necessary), test the null hypothesis that the percentage of white collar fathers is
50%. Use a .05 level test. Give a 99% confidence interval for the percentage of fathers with white
collar jobs. If a transformation was needed, relate your conclusions back to the original measure-
ment scale.

EXERCISE 2.7.6. Give a 95% confidence interval for the population variance associated with
the data of Exercise 2.7.5. Remember that inferences about variances require the assumption of
normality. Could the variance reasonably be 10?

EXERCISE 2.7.7. Give a 95% confidence interval for the population variance associated with
the data of Exercise 2.7.4. Remember that the inferences about variances require the assumption of
normality.

EXERCISE 2.7.8. Give 99% confidence intervals for the population variances of all the variables
in Exercise 2.7.3. Assume that the original data were normally distributed. Using α = .01, test
whether the potassium variance could reasonably be 45000. Could the formol number variance be
8?

EXERCISE 2.7.9. Shewhart (1931, p. 62) reproduces Millikan’s data on the charge of an election.
These are repeated in Table 2.4. Check for outliers and nonnormality. Adjust the data appropriately
if there are any problems. Give a 98% confidence interval for the population mean value. Give
a 98% prediction interval for a new measurement. (Millikan argued that some adjustments were
needed before these data could be used in an optimal fashion but we will ignore his suggestions.)

EXERCISE 2.7.10. Show that if y,y1, . . . ,yn are independent N
(
µ,σ2

)
random variables, (y−

ȳ·)/
√

σ2 +σ2/n ∼ N(0,1). Recalling that y, ȳ·, and s2 are independent and that (n− 1)s2/σ2 ∼
χ2(n−1), use Definition 2.1.3 to show that (y− ȳ·)/

√
s2 + s2/n∼ t(n−1).
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Table 2.4: Observations on the charge of an electron

4.781 4.764 4.777 4.809 4.761 4.769 4.795 4.776
4.765 4.790 4.792 4.806 4.769 4.771 4.785 4.779
4.758 4.779 4.792 4.789 4.805 4.788 4.764 4.785
4.779 4.772 4.768 4.772 4.810 4.790 4.775 4.789
4.801 4.791 4.799 4.777 4.772 4.764 4.785 4.788
4.779 4.749 4.791 4.774 4.783 4.783 4.797 4.781
4.782 4.778 4.808 4.740 4.790 4.767 4.791 4.771
4.775 4.747



Chapter 3

A general theory for testing and confidence
intervals

The most commonly used statistical tests and confidence intervals derive from a single theory. (Tests
and confidence intervals about variances are an exception.) The basic ideas of this theory were
illustrated in Chapter 2. The point of the current chapter is to present the theory in its general form
and to reemphasize fundamental techniques. The general theory will then be used throughout the
book. Because the theory is stated in quite general terms, some prior familiarity with the ideas, e.g.,
reading Sections 2.2 and 2.3, is highly recommended.

To use the general theory you need to know four things:

1. the parameter of interest, Par,
2. the estimate of the parameter, Est,
3. the standard error of the estimate, SE(Est), and
4. the appropriate reference distribution.

Specifically, what you need to know about the distribution is that

Est−Par
SE(Est)

has a known (tabled) distribution that is symmetric about zero. The estimate Est is taken to be a
random variable. The standard error, SE(Est), is the standard deviation of the estimate if that is
known, but more commonly it is an estimate of the standard deviation. If the SE(Est) is estimated,
the known distribution is usually the t distribution with some known number of degrees of freedom.
If the SE(Est) is known, then the distribution is usually the standard normal distribution, i.e., mean
0, variance 1. In some problems, e.g., problems involving the binomial distribution, the central limit
theorem is used to get an approximate distribution and inferences proceed as if that distribution is
correct. When appealing to the central limit theorem, the known distribution is the standard normal.

Identifying a parameter of interest and an estimate of that parameter is relatively easy. The more
complicated part of the procedure is obtaining the standard error. To do this, one typically derives
the variance, estimates it (if necessary), and takes the square root. Obviously, rules for deriving
variances play an important role in the process.

We need notation for the percentage points of the known reference distribution. In particular, we
need a name for the point that cuts off the top α of the distribution. The point that cuts off the top
α of the distribution also cuts off the bottom 1−α of the distribution. These ideas are illustrated in
Figure 3.1. The notation K(1−α) is used for the point that cuts off the top α .

The illustration in Figure 3.1 is written formally as

Pr
[

Est−Par
SE(Est)

> K(1−α)

]
= α.

61
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t(1 − α, df)0

0

1 − α α

Figure 3.1: Percentiles of t(df ) distributions.

By the symmetry about zero we also have

Pr
[

Est−Par
SE(Est)

<−K(1−α)

]
= α.

The value K(1−α) is called a percentile or percentage point; it is most often found from either a
standard normal table or a t table. For t percentage points with d f degrees of freedom, we use the
notation

t(1−α,d f ) = K(1−α)

and for standard normal percentage points we use

z(1−α) = K(1−α) .

As the degrees of freedom get arbitrarily large, the t distribution approximates the standard normal
distribution. Thus we write

z(1−α) = t(1−α,∞).

One can get a feeling for the quality of this approximation simply by examining the t tables in
Appendix B.1 and noting how quickly the t percentiles approach the values given for infinite degrees
of freedom.

3.1 Theory for confidence intervals

Confidence intervals are interval estimates of the parameter of interest. We have a specified ‘con-
fidence’ that the parameter is in the interval. Confidence intervals are more valuable than simply
reporting the estimate Est because confidence intervals provide an idea of the amount of error asso-
ciated with the estimate.

A (1−α)100% confidence interval for Par is based on the following probability equalities

1−α = Pr
[
−K
(

1− α

2

)
<

Est−Par
SE(Est)

< K
(

1− α

2

)]
(3.1.1)

= Pr
[
Est−K

(
1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est)

]
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t(1 − α, df)− t(1 − α, df) 0

0

1 − 2α αα

Figure 3.2: Symmetry about 0 in the distribution of [Est −Par]/SE(Est).

The first equality in (3.1.1) is simply a statement of the picture illustrated in Figure 3.2. It follows
from the definition of K

(
1− α

2

)
and the symmetry of the distribution. The second equality follows

from the fact that the statements within the two sets of square brackets are algebraically equivalent.
A proof of the equivalence is given in the appendix at the end of the chapter.

The probability statement

1−α = Pr
[
Est−K

(
1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est)

]
.

is the basis for the confidence interval for Par. The (1−α)100% confidence interval for Par is
simply the interval within the square brackets, i.e., the points between Est−K

(
1− α

2

)
SE(Est) and

Est+K
(
1− α

2

)
SE(Est). However, the confidence interval is obtained by substituting observed val-

ues for Est and SE(Est). We are (1−α)100% ‘confident’ that Par is in this interval. The endpoints
of the interval can be written succinctly as

Est±K
(

1− α

2

)
SE(Est).

I think everyone would agree with the statement ‘The probability is 1−α that you are going
to get a confidence interval that covers what you are trying to estimate, Par.’ I did not indicate that
the probability that your actual interval covers Par is 1−α . The particular interval that you get
uses the observed values of Est and SE(Est), so it is a fixed interval and either covers Par or does
not. There is no probability associated with Par being in the interval. For this reason the result of a
confidence interval is described as, ‘We are (1−α)100% confident that the true value of Par is in
the interval.’ I have no idea what this is supposed to mean, even though I find it intuitively appealing.
I do, however, know of two acceptable interpretations for confidence intervals. As we will see in
Section 3.4, a confidence interval contains all those parameter values that are consistent with the
data. Consistency is measured by performing a statistical test with a specified error level α . The
α in the test plays the same role as the α in a confidence interval. Since I think I understand the
philosophical basis of hypothesis tests, I am comfortable with this interpretation.

The confidence intervals obtained from the theory presented in this chapter can frequently be
obtained by another approach using ‘Bayesian’ arguments. In the Bayesian justification, the correct
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interpretation of a 95% confidence interval is that the probability is 95% that the parameter is in
the interval. This is precisely the interpretation that most statistics students wish to adopt and that
many statisticians strive so hard and so unsuccessfully to make their students reject. We will return
to the issue of interpreting confidence intervals later in this section.

EXAMPLE 3.1.1. Years ago, 10 people were independently abducted by S.P.E.C.T.R.E after a
Van Holland concert and forced to submit to psychological testing. Among the tests was a measure
of audio acuity. From many past abductions in other circumstances, S.P.E.C.T.R.E knows that such
observations form a normal population with variance 6. In this case, they found that ȳ· was 17. They
seek a 95% confidence interval for µ , the mean of the population.

1) Par = µ ,
2) Est = ȳ·,
3) SE(Est) =

√
6/10, in this case SE(Est) is known and not estimated.

4) [Est−Par]
/

SE(Est) = [ȳ·−µ]
/√

6/10 has a standard normal distribution.

To find the appropriate tabled values, observe that (1−α)100 = 95, so 1−α = .95 and α = .05.
It follows that K

(
1− α

2

)
= K(.975) = z(.975) = 1.96.

The limits of the 95% confidence interval are

ȳ·±1.96
√

6/10

or, since ȳ· = 17,
17±1.96

√
6/10.

S.P.E.C.T.R.E. was 95% confident that the mean hearing score for people at this concert (or at least
for the population they were considering for abduction) was between 15.5 and 18.5. 2

EXAMPLE 3.1.2. In Chapter 2 we considered data on dropout rates for math classes. We found
that the 38 observations on dropout rates were not normally distributed; they contained two outliers.
Our parameter for these data is µ , the population mean dropout rate for math classes, the estimate is
the sample mean ȳ·, and the standard error is

√
s2/38 where s2 is the sample variance. Based on the

central limit theorem and the law of large numbers, we used the approximate reference distribution

ȳ·−µ√
s2/38

∼ N(0,1).

From the 38 observations, we computed ȳ· = 13.11 and s2 = 106.421 and found a 95% confidence
interval for the dropout rate of (9.8,16.4). The endpoints of the confidence interval are computed as

13.11±1.96(
√

106.421/38).

If we drop the two outliers, the remaining data seem to be normally distributed. Recomputing
the sample mean and sample variance with the outliers deleted we get ȳd = 11.083 and s2

d = 27.45.
Here the subscripts d are used as a reminder that the outliers have been deleted. Without the outliers,
we can use the reference distribution

ȳd−µd√
s2

d/36
∼ t(35).

The t distribution relies on the assumption of normality (which we have validated) rather than re-
lying on the unvalidated large sample approximations from the central limit theorem and law of
large numbers. The t distribution should give more accurate results. For a 95% confidence interval
based on the data without the outliers, we need to find the appropriate tabled values. Observe once
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again that (1−α)100 = 95, so 1−α = .95 and α = .05. It follows that K
(
1− α

2

)
= K(.975) =

t(.975,35) = 2.030 and the confidence interval has endpoints

11.083±2.030(
√

27.45/36).

The actual interval is (9.3,12.9). Excluding the extremely high values that occasionally occur, we
are 95% confident that the population mean dropout rate is between 9.3 and 12.9 percent. Remem-
ber, this is a confidence interval for the mean of math classes; it does not indicate that you can be
95% confident that your next math class will have a dropout rate between 9.3 and 12.9 percent. Such
an inference requires a prediction interval. The interval (9.3,12.9) is much narrower than the one
given in the previous paragraph, largely because our estimate of the variance is much smaller when
the outliers have been deleted. Note also that with the outliers deleted, we are drawing inferences
about a different parameter than when they are present. With the outliers deleted, our conclusions are
only valid for the bulk of the observations. While occasional weird observations can be eliminated
from our analysis, we cannot stop them from occurring.

In constructing the confidence interval we used the tabled value of 2.030 from the t distribution.
This is larger than the 1.96 we obtained earlier from the standard normal distribution. Using the
larger t value makes our confidence intervals wider. Other things being equal, we prefer narrower
confidence intervals because they make more precise statements about the location of the mean.
However, even though the value 1.96 is smaller than 2.030 and thus gives narrower intervals, we
prefer to use the t distribution. The t distribution incorporates the fact that we do not know σ2

and must estimate it. Thus an analysis using the N(0,1) distribution is much cruder in that it treats
the estimate of σ2 as if it were really σ2. Whenever we can establish that the data are reasonably
normal, we will use the t distribution because it should give more accurate results.

In the previous chapter we discussed the use of transformations. In particular, we looked at
the square roots of the dropout rate data. We now consider the effect on confidence intervals of
transforming the data. With the two outliers deleted and taking square roots of the observations, we
found earlier that the data are reasonably normal. The sample mean and variance of the transformed,
deleted data are ȳrd = 3.218 and s2

rd = .749574. Here the subscript r reminds us that square roots
have been taken and the subscript d reminds us that outliers have been deleted. Using the reference
distribution

ȳrd−µrd√
s2

rd/36
∼ t(35),

we obtain a 95% confidence interval with endpoints

3.218±2.030

(√
.749574

36

)
.

The confidence interval reduces to (2.925,3.511). This is a 95% confidence interval for the pop-
ulation mean of the square roots of the dropout rate percentages with ‘outliers’ removed from the
population.

The confidence interval (2.925,3.511) does not really address the issue that we set out to inves-
tigate. We wanted some idea of the value of the population mean dropout rate. We have obtained a
95% confidence interval for the population mean of the square roots of the dropout rate percentages
(with outliers removed from the population). There is no simple, direct relationship between the
population mean dropout rate and the population mean of the square roots of the dropout rate per-
centages, but a simple device can be used to draw conclusions about typical values for mean dropout
rates when the analysis is performed on the square roots of the dropout rates. Since (2.925,3.511)
provides a 95% confidence interval from the square roots of the dropout rate percentages, we simply
square all the values in the interval to draw conclusions about the dropout rate percentages. Squar-
ing the endpoints of the interval gives the new interval (2.9252,3.5112) = (8.6,12.3). We are now
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95% confident that the central value of the population of dropout rates is between 8.6 and 12.3. The
central value referred to here is really the square of the population mean of the square roots of the
dropout rate percentages. We are using this central value as a surrogate for the population mean of
the (outlier deleted) dropout rate percentages; generally this central value will not equal the mean
of the (deleted) dropout rates. For the most part we ignore the difference between the surrogate and
the parameter that we set out to investigate. Interestingly, we will see in Section 3.5 that prediction
intervals do not share these difficulties associated with transforming the data.

Note that the retransformed interval (8.6,12.3) obtained from the transformed, deleted data is
similar to the interval (9.3,12.9) obtained earlier from the untransformed data with the outliers
deleted. When, as in this case, two distinct analyses both seem reasonably valid, I would be very
hesitant about drawing practical conclusions that could not be justified from both analyses. 2

Interpreting confidence intervals

The interpretation of confidence intervals is actually a quite profound issue that statisticians have
been arguing about for decades. This subsection presents the author’s point of view in the context
of some relatively simple problems. Although the problems are simple, the issues being discussed
are not.

The disquieting thing about confidence intervals is the logic (or lack thereof) behind the leap
from the probability of 1−α that a future interval will contain the parameter into a ‘(1−α)100%
confidence’ that the parameter is in a particular observed interval. The problem is in defining the
meaning of confidence.

The standard interpretation of (1−α)100% confidence intervals is that if you repeatedly per-
formed many similar independent confidence intervals, about (1−α)100% would contain the true
parameter. The repeated sampling interpretation is exactly the same idea as saying that since a fu-
ture coin toss has probability .5 of turning up heads, if you actually make many independent tosses
of a coin, about 50% will be heads. This interpretation is not really saying anything new nor does
it solve any problems because it still only relates to things that may be observed in the future. The
fundamental problem of inverting probabilities for future observables into confidence about param-
eters remains. Moreover, the repeated sampling interpretation rarely applies to interesting problems.
If you are obtaining a confidence interval for the height of corn plants grown outdoors, there is no
way to perform independent replications of the experiment because there is no way to reproduce
the exact growing conditions. In such cases, not only will the data behave differently but even the
parameter of interest is likely to have a different meaning and value.

An alternative interpretation of confidence intervals based on statistical tests of hypotheses is
presented in Section 3.4. I feel comfortable with the logic behind testing, so I like this interpretation.
However, this interpretation makes no appeal whatsoever to the intuitive idea that 95% confidence
means something similar to 95% probability.

I personally do not think it is possible to define confidence as anything other than probability.
Two simple examples illustrate my point. I am going to flip a coin; we agree that the probability is
.5 that it will land heads up. I flip the coin, look at it, but refuse to show it to you. Undoubtedly, you
would feel comfortable saying that you are 50% confident that the coin is heads. I cannot imagine
what that would mean except that you believe the probability is .5 that the coin is heads. Note
that the 50% confidence is a statement about your beliefs and not a statement about the coin. The
outcome of the coin toss is fixed (and known by someone other than you). This example has neither
a fixed parameter nor any observable data but we can modify the example to make it more like a
confidence interval problem. I place a coin either heads up or tails up and hide it from you, this is
the parameter. You are going to flip a coin but I exercise my well known psychic powers. When I
do this, the probability is .75 that the coin face I chose will be the face on your coin. When you toss
your coin it lands either heads or tails and you observe this datum. The observed outcome of your
toss is no longer random and it either matches mine or does not. Intuitively, you may reasonably
feel that the probability is still .75 that the coins match, regardless of how I set my coin. But now
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the probability is no longer about what the outcome of your flip will be because you have seen your
datum. The probability must now be about how you believe I set my coin. Such a probability can
only exist in your head. (Of course, I have other ideas and probabilities because, having seen both
coins, I know whether they match.) While the intuition behind this probability is appealing, the logic
escapes me. Glossing over the problem by saying that you have confidence, but not probability, of
.75 for matching my coin does nothing to clear up the real issue.

R. A. Fisher made an attempt to build a theory of inverting probabilities from future observables
into probabilities for parameters using this sort of intuition that we all find appealing. While it was a
noble effort, I do not know of anyone who thinks Fisher succeeded or anyone who thinks that such
a theory can succeed. (Of course, I have a limited sphere of acquaintance.) For more information,
see the discussion of fiducial probability in Fisher (1956).

Another method of inverting probabilities about future data into probabilities about parameters is
the theory of Bayesian statistics. Let me briefly mention how a Bayesian could arrive at a probability
of .75 for the second coin tossing example. The computations are illustrated in Exercise 3.7.1. I place
my coin any way I want. To arrive at a probability, you need to decide on your beliefs about how I
placed my coin. If you believe that I am equally likely to place it heads up or tails up, those are your
prior beliefs. Your prior beliefs are then modified by any data. In this example, if your initial beliefs
are that I was equally likely to place the coin heads up or tails up, using a result known as Bayes
theorem the probability that your coin agrees with mine becomes .75, regardless of what face of the
coin I chose to place upwards and regardless of what you actually saw on your flip.

Notice that there is a lot more structure here than the mere intuition referred to earlier. In the
intuitive discussion, your personal probability of a 75 : 25 chance of matching exists regardless of
how I set my coin. In this discussion, you need to specify your beliefs about how I set my coin and
the final 75 : 25 chance is a result of your having chosen an initial 50 : 50 chance for how I set my
coin. For example, if you thought I was four times more likely to select heads, the probability of
matching would be 12/13 if your coin turned up heads but only 3/7 if it turned up tails. Note that
these beliefs do not depend on how I actually set my coin because you cannot know that. These
beliefs do depend on your knowledge of how the data relate to how I set my coin, i.e., what data are
likely when I choose heads and what are likely when I choose tails.

Bayesian methods are often criticized for requiring you to specify your initial beliefs in terms
of a probability distribution on the possible parameter values. The result of a Bayesian data analysis
is then an updated version of your beliefs. Berger (1985), among many others, responds to such
criticisms. Many of us think that Bayesian methods provide the only logically consistent (though I
would not say the only useful) method for doing statistics.

As I see it, a person has three choices: one can ignore the problem of what confidence means,
one can use the hypothesis testing interpretation of confidence intervals to be given later, or one can
rely on Bayesian methods. As it turns out, the confidence intervals and prediction intervals used in
this book can be obtained by reasonable Bayesian methods. In the Bayesian interpretation of these
intervals, confidence simply means probability, as the data modify a particular set of prior beliefs
that are chosen to have a minimum of influence on the results of the data analysis.

3.2 Theory for hypothesis tests

Hypothesis tests are used to check whether Par has some specified value. For some fixed known
number m, we may want to test the null hypothesis

H0 : Par = m

versus the alternative hypothesis
HA : Par 6= m.

The number m must be known; it is some number that is of interest for the specific data being
analyzed. It is impossible to give general rules for picking m because the choice must depend on



68 3. A GENERAL THEORY FOR TESTING AND CONFIDENCE INTERVALS

the context of the data. As mentioned in the previous chapter, the structure of the data (but not the
actual values of the data) sometimes suggests interesting hypotheses such as testing whether two
populations have the same mean or testing whether there is a relationship between two variables,
but ultimately the researcher must determine what hypotheses are of interest and these hypotheses
determine m. In any case, m is never just an unspecified symbol; it must have meaning within the
context of the problem. The test of H0 : Par = m versus HA : Par 6= m is based on the assumption that
H0 is true and consists of checking to see whether the data are inconsistent with that assumption.

To identify data that are inconsistent with the assumption that Par = m, we examine what hap-
pens when Par 6= m. Note that Est is always an estimate of Par; this has nothing to do with any
hypothesis. With Est estimating Par, it follows that if Par > m then Est tends to be larger than m.
Equivalently, Est−m, and thus [Est−m]/SE(Est), tend to be large positive numbers when Par > m
(larger than they would be if H0 : Par = m is true). On the other hand if Par < m, then Est−m and
[Est−m]/SE(Est) tend to be large negative numbers. Data that are inconsistent with the null hy-
pothesis Par = m are large positive and large negative values of the test statistic [Est−m]/SE(Est).
The problem is in specifying what we mean by ‘large.’ In practice we conclude that the data con-
tradict the null hypothesis Par = m if we observe a value of [Est−m]/SE(Est) that is further from
0 than some cutoff values. The problem is to make an intelligent choice for the cutoff values. The
solution is based on the fact that if H0 is true, the test statistic

Est−m
SE(Est)

has the known reference distribution that is symmetric about 0.
When we substitute the observed values of Est and SE(Est) into the test statistic we get one

observation on the random test statistic. When H0 is true, this observation comes from the refer-
ence distribution. The question is whether it is reasonable to believe that this one observation came
from the reference distribution. If so, the data are consistent with H0. If the observation could not
reasonably have come from the reference distribution, the data contradict H0. Contradicting H0 is a
strong inference; it implies that H0 is false. On the other hand, inferring that the data are consistent
with H0 does not suggest that H0 is true. Such data can also be consistent with some aspects of the
alternative.

Before we can state the test formally, i.e., give intelligent cutoff values to determine the test,
we need to consider the concept of error. Even if H0 is true, it is usually possible (not probable but
possible) to get any value at all for [Est−m]/SE(Est). For that reason, no matter what we conclude
about the null hypothesis, there is a possibility of error. A test of hypothesis is based on controlling
the probability of making an error when the null hypothesis is true. We define the α level of the test
as the probability of rejecting the null hypothesis (saying that it is false) when the null hypothesis is
in fact true. The α level is also called the probability of a type I error, with a type I error being the
rejection of a true null hypothesis.

The α level determines the cutoff values for testing. The α level test for H0 : Par = m versus
HA : Par 6= m is to reject H0 if

Est−m
SE(Est)

> K
(

1− α

2

)
or if

Est−m
SE(Est)

<−K
(

1− α

2

)
.

This is equivalent to saying, reject H0 if

|Est−m|
SE(Est)

> K
(

1− α

2

)
.

To see that using K
(
1− α

2

)
and−K

(
1− α

2

)
as cutoff values gives an α level test, observe that if H0
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is true, the probability that we will reject H0 is

Pr
[

Est−m
SE(Est)

> K
(

1− α

2

)]
+Pr

[
Est−m
SE(Est)

<−K
(

1− α

2

)]
= α/2+α/2 = α,

see Figure 3.2. Also note that we are rejecting H0 for those values of [Est−m]/SE(Est) that are
most inconsistent with H0, these being the values far from zero.

Actually, this test could be developed without any reference to the alternative hypothesis what-
soever. (In fact, I much prefer such a development since I believe that if you are willing to specify
an alternative you should probably do a Bayesian analysis.) The only place where we used the al-
ternative hypothesis was in determining which values of the test statistic were inconsistent with H0.
A different approach simply uses Figure 3.2 to decide which values of the test statistic are inconsis-
tent. We can define the values that are most inconsistent as those that are the least likely to occur.
The values that are least likely to occur are those where the density (i.e., the curve) is lowest. In
Figure 3.2, the lowest values of the density are those corresponding to values of the test statistic
that are far from 0. The density is symmetric, so our test should be symmetric. Thus an α level
test has exactly the form given above. Of course this analysis relies on Figure 3.2 being an accurate
portrayal of the distribution under H0, but for all of our applications it is.

EXAMPLE 3.2.1. In Example 3.1.1 we considered past data on audio acuity in a post-rock envi-
ronment. Those data were collected on fans of the group Van Holland in their Lee David Rothschild
days. The nefarious organization responsible for this study found it necessary to update their findings
after Rothschild was replaced by Slammy Hagar-Slacks. This time they abducted for themselves 16
independent observations and they were positive that the data would continue to follow a normal
distribution. (Such arrogance is probably responsible for the failure of S.P.E.C.T.R.E.’s plans of
world domination. In any case, their resident statistician was in no position to question this assump-
tion.) The observed values of ȳ· and s2 were 22 and .25 respectively for the audio acuity scores.
Now the purpose of all this is that S.P.E.C.T.R.E. had a long standing plot that required the use of
a loud rock band. They had been planning to use the group Audially Disadvantaged Leopard but
Van Holland’s fans offered certain properties they preferred, provided that those fans audio acuity
scores were satisfactory. From extremely long experience with abducting Audially Disadvantaged
Leopard fans, S.P.E.C.T.R.E. knows that they have a population mean of 20 on the audio acuity
test. S.P.E.C.T.R.E. wishes to know whether Van Holland fans differ from this value. Naturally, they
tested H0 : µ = 20 versus HA : µ 6= 20 and they chose an α level of .01.

1) Par = µ

2) Est = ȳ·
3) SE(Est) = s/

√
16. In this case the SE(Est) is estimated.

4) [Est−Par]
/

SE(Est) = [ȳ·−µ]
/
[s/
√

16] has a t(15) distribution. This follows because the data
are normally distributed and the standard error is estimated using s.

The α = .01 test is to reject H0 if

|ȳ·−20|
s/
√

16
> 2.947 = t(.995,15).

Note that the sample size is n = 16 and K(1−α/2) = K(1− .005) = t(.995,15). Since ȳ· = 22
and s2 = .25 we reject H0 if

|22−20|√
.25/16

> 2.947.

Since |22− 20|
/√

.25/16 = 16 is greater than 2.947, we reject the null hypothesis at the α = .01
level. There is clear (indeed, overwhelming) evidence that the Van Holland fans have higher scores.
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(Unfortunately, my masters will not let me inform you whether high scores mean better hearing or
worse.) 2

EXAMPLE 3.2.2. The National Association for the Abuse of Student Yahoos (also known as
NAASTY) has established guidelines indicating that university dropout rates for math classes should
be 15%. Based on an α = .05 test, we wish to know if the University of New Mexico (UNM) meets
these guidelines when treating the 1984–85 academic year data as a random sample. As is typical in
such cases, NAASTY has specified that the central value of the distribution of dropout rates should
be 15% but it has not stated a specific definition of the central value. We interpret the central value
to be the population mean of the dropout rates and test the null hypothesis H0 : µ = 15% against the
two-sided alternative HA : µ 6= 15%.

The complete data consist of 38 observations from which we compute ȳ· = 13.11 and s2 =
106.421. The data are nonnormal, so we have little choice but to hope that 38 observations constitute
a sufficiently large sample to justify the use of

ȳ·−µ√
s2/38

∼ N(0,1)

as an approximate reference distribution. With an α level of .05 and the standard normal distribution,
the two-sided test rejects H0 if

ȳ·−15√
s2/38

> 1.96 = z(.975) = z
(

1− α

2

)
or if

ȳ·−15√
s2/38

<−1.96.

Substituting the observed values for ȳ· and s2 gives the observed value of the test statistic

13.11−15√
106.421/38

=−1.13.

The value of −1.13 is neither greater than 1.96 nor less than −1.96, so the null hypothesis cannot
be rejected at the .05 level. The 1984–85 data provide no evidence that UNM violates the NAASTY
guidelines.

If we delete the two outliers, the analysis changes somewhat. Without the outliers, the data are
approximately normal and we can use the reference distribution

ȳd−µd√
s2

d/36
∼ t(35).

For this reference distribution the two-sided α = .05 test rejects H0 : µd = 15 if

ȳd−15√
s2

d/36
> 2.030 = t(.975,35)

or if
ȳd−15√

s2
d/36

<−2.030 =−t(.975,35).

With ȳd = 11.083 and s2
d = 27.45 from the data without the outliers, the observed value of the test

statistic is
11.083−15√

27.45/36
=−4.49.
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The absolute value of −4.49 is greater than 2.030, i.e., −4.49 < −2.030, so we reject the null
hypothesis of H0 : µd = 15% at the .05 level. When we exclude the two extremely high observations,
we have evidence that the typical dropout rate was different from 15%. In particular, since the test
statistic is negative, we have evidence that the population mean dropout rate with outliers deleted
was actually less than 15%. Obviously, most of the UNM math faculty during 1984–85 were not
sufficiently nasty.

Finally, we consider the role of transformations in testing. We again consider the square roots
of the dropout rates with the two outliers deleted. As discussed earlier, NAASTY has specified that
the central value of the distribution of dropout rates should be 15% but has not stated a specific
definition of the central value. We are reasonably free to interpret their guideline and we now inter-
pret it as though the population mean of the square roots of the dropout rates should be

√
15. This

interpretation leads us to the null hypothesis H0 : µrd =
√

15 and the alternative HA : µrd 6=
√

15. As
discussed earlier, a reasonably appropriate reference distribution is

ȳrd−µrd√
s2

rd/36
∼ t(35),

so the test rejects H0 if
|ȳrd−

√
15|√

s2
rd/36

> 2.030 = t(.975,35).

The sample mean and variance of the transformed, deleted data are ȳrd = 3.218 and s2
rd = .749574,

so the observed value of the test statistic is

3.218−3.873√
.749574/36

=−4.54.

The test statistic is similar to that in the previous paragraph. The null hypothesis is again rejected
and all conclusions drawn from the rejection are essentially the same. As stated earlier, I believe that
when two analyses both appear to be valid, either the practical conclusions agree or neither analysis
should be trusted. 2

One-sided tests

We can do one-sided tests in a similar manner. The α level test for H0 : Par≤m versus HA : Par > m
is to reject H0 if

Est−m
SE(Est)

> K(1−α) .

The alternative hypothesis is that Par is greater than something and the null hypothesis is rejected
when the test statistic is greater than some cutoff value. We reject the null hypothesis for the values
of the test statistic that are most inconsistent with the null hypothesis and thus most consistent with
the alternative hypothesis. If the alternative is true, Est should be near Par, which is greater than m,
so large positive values of Est−m or, equivalently, large positive values of [Est−m]

/
SE(Est) are

consistent with the alternative and inconsistent with the null hypothesis.
The α level test for H0 : Par ≥ m versus HA : Par < m is to reject H0 if

Est−m
SE(Est)

<−K(1−α) .

The alternative hypothesis is that Par is less than something and the null hypothesis is rejected when
the test statistic is less than some cutoff value. The form of the alternative determines the form of
the rejection region. In both cases we reject H0 for the data that are most inconsistent with H0
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The null hypotheses involve inequalities but Par = m is always part of the null hypotheses. The
tests are set up assuming that Par = m and this needs to be part of any null hypothesis. In both
cases, if Par = m then the probability of making a mistake is α and, more generally, if H0 is true,
the probability of making a mistake is no greater than α .

EXAMPLE 3.2.3. Again consider the Slammy Hagar-Slacks era Van Holland audio data. Recall
that there are 16 independent observations taken from a normal population with observed statistics
of ȳ· = 22 and s2 = .25. This time I have been required to perform a one-sided test to see whether I
can prove that the Van Holland mean audio acuity scores are lower than the Audially Disadvantaged
Leopard mean. I now test H0 : µ ≥ 20 versus HA : µ < 20 with α = .01. Here I am claiming that
the scores are not lower and check to see whether the data contradict this. If they do, then my claim
must be false and I have proven that the scores must be lower. If I initially claimed that the scores
were lower, I would not be able to prove it; I could only establish that the data were consistent with
my claim. As before,

1) Par = µ

2) Est = ȳ·
3) SE(Est) = s/

√
16. In this case the SE(Est) is estimated.

4) [Est−Par]
/

SE(Est) = [ȳ·−µ]
/
[s/
√

16] has a t(15) distribution.

The α = .01 test is to reject H0 : µ ≥ 20 if

ȳ·−20
s/
√

16
<−2.602 =−t(.99,15).

Note that with a sample size of n = 16 we get K(1−α) = K(1− .01) = t(.99,15). With ȳ· = 22 and
s2 = .25, we reject if

22−20√
.25/16

<−2.602

Since (22− 20)
/√

.25/16 = 16 is greater than −2.602 we do not reject the null hypothesis at
the α = .01 level. There is no evidence that the Van Holland mean is lower than the Audially
Disadvantaged Leopard mean. Observe that with the alternative µ < 20, i.e., µ less than something,
H0 is only rejected when the test statistic is less than some cutoff value.

If you stop and think about it, we really did not have to go to all this trouble to discover the
conclusion of this test. The null hypothesis is that µ ≥ 20. The observed ȳ· value of 22 is obviously
consistent with the hypothesis that the mean is greater than or equal to 20. Only ȳ· values that
are less than 20 could possibly contradict the null hypothesis. The only point at issue is how far
ȳ· must be below 20 before we can claim that ȳ· contradicts the null hypothesis. As discussed in
Example 2.2.4, given a choice it would be more informative to reverse the inequalities in H0 and HA
for this problem. 2

EXAMPLE 3.2.4. A colleague of mine claims that, excluding classes with outrageous dropout
rates, the math dropout rate at UNM was never more than 9% in any year during the 1980s. We
now test this claim using the only data we have, that from the 1984–85 school year. My colleague
excluded classes with outrageous dropout rates, so we use only the data with the outliers deleted.
We again use α = .05.

Based on the untransformed data, the null hypothesis is simply my colleague’s claim, i.e., H0 :
µ ≤ 9. The alternative is HA : µ > 9. With α = .05, the test is rejected if

ȳd−9√
s2

d/36
> 1.690 = t(.95,35).
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With ȳd = 11.083 and s2
d = 27.45, the observed test statistic is

11.083−9√
27.45/36

= 2.39,

so the test is easily, but not overwhelmingly, rejected.
Using the square roots of the data, the null hypothesis becomes H0 : µrd ≤

√
9. The alternative

is HA : µrd >
√

9. With α = .05, the test is rejected if

ȳrd−
√

9√
s2

rd/36
> 1.690 = t(.95,35).

The sample mean and variance of the transformed, deleted data are ȳrd = 3.218 and s2
rd = .749574,

so the observed value of the test statistic is

3.218−3√
.749574/36

= 1.51.

The observed value is not greater than 1.690, so the test cannot be rejected at the .05 level.
In this case the two tests disagree. The untransformed data rejects the .05 level test easily. The

transformed data does not quite achieve significance at the .05 level. To me, the data seem inconclu-
sive. There is certainly some reason to suspect that the true dropout rate during 1984–85 was greater
than 9%; one test rejected the null hypothesis and the other came somewhat close to being rejected.
However, both analyses seem reasonable, so I cannot place great confidence in the rejection ob-
tained using the untransformed data when the result is not fully corroborated by the transformed
data. 2

P values

Rather than having formal rules for when to reject the null hypothesis, one can report the evidence
against the null hypothesis. This is done by reporting the P value. The P value is computed under
the assumption that Par = m. It is the probability of seeing data that are as extreme or more extreme
than those that were actually observed. Formally, we write tobs for the observed value of the test
statistic, computed from the observed values of Est and SE(Est). Thus tobs is our summary of the
data that were actually observed. Recalling our earlier discussion of which values of Est would be
most inconsistent with Par = m, the probability of seeing something as or more extreme than we
actually saw is

P = Pr
[∣∣∣ Est−m

SE(Est)

∣∣∣≥ |tobs|
]

where Est (and usually SE(Est)) are viewed as random and it is assumed that Par = m. Under these
conditions (Est −m)/SE(Est) has the known reference distribution and tobs is a known number,
so we can actually compute P. The basic idea is that for, say, tobs positive, any value of (Est −
m)/SE(Est) greater than tobs is more extreme than tobs. Any data that yield (Est−m)/SE(Est) =
−tobs are just as extreme as tobs and values of (Est−m)/SE(Est) less than −tobs are more extreme
than observing tobs.

EXAMPLE 3.2.5. Again consider the Slammy Hagar-Slacks era Van Holland data. We have 16
observations taken from a normal population and we wish to test H0 : µ = 20 versus HA : µ 6= 20.
As before, 1) Par = µ , 2) Est = ȳ·, 3) SE(Est) = s/

√
16, and 4) [Est − Par]

/
SE(Est) = [ȳ· −

µ]
/
[s/
√

16] has a t(15) distribution. This time we take ȳ· = 19.78 and s2 = .25, so the observed test
statistic is

tobs =
19.78−20√

.25/16
=−1.76.
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From a t table, t(.95,15) = 1.75, so

P = Pr [|t(15)| ≥ |−1.76|] .= Pr [|t(15)| ≥ 1.75] = .10.

Alternatively, t(.95,15) .
= |1.76|, so P .

= 2(1− .95). 2

Equivalently, the P value is the smallest α level for which the test would be rejected. With
this definition, if we perform an α level test where α is less than the P value, we can conclude
immediately that the null hypothesis is not rejected. If we perform an α level test where α is greater
than the P value, we know immediately that the null hypothesis is rejected. Thus computing a P
value eliminates the need to go through the formal testing procedures described above. Knowing
the P value immediately gives the test results for any choice of α . The P value is a measure of how
consistent the data are with H0. Large values (near 1) indicate great consistency. Small values (near
0) indicate data that are inconsistent with H0.

EXAMPLE 3.2.6. In Example 3.2.2 we considered two-sided tests for the drop rate data. Using
the complete untransformed data, the null hypothesis H0 : µ = 15, and the alternative HA : µ 6= 15,
we observed the test statistic

tobs =
13.11−15√
106.421/38

=−1.13.

Using a standard normal table or a computer program, we can compute

P = Pr [|z| ≥ |−1.13|] = .26.

An α = .26 test would be just barely rejected by these data. Any test with an α level smaller than
.26 is more stringent (the cutoff values are farther from 0 than 1.13) and would not be rejected.
Thus the standard α = .05 and α = .01 tests would not be rejected. Similarly, any test with an α

level greater than .26 is less stringent and would be rejected. Of course, it is extremely rare that one
would use a test with an α level greater than .26.

Using the untransformed data with outliers deleted, the null hypothesis H0 : µd = 15, and the
alternative HA : µd 6= 15, we observed the test statistic

11.083−15√
27.45/36

=−4.49.

We compute
P = Pr [|t(35)| ≥ |−4.49|] = .000.

This P value is not really zero; it is a number that is so small that when we round it off to three
decimal places the number is zero. In any case, the test is rejected for any reasonable choice of α .
In other words, the test is rejected for any choice of α that is greater than .000. (Actually for any α

greater than .0005 because of the round off problem.)
Using the square roots of the data with outliers deleted, the null hypothesis H0 : µrd =

√
15, and

the alternative HA : µrd 6=
√

15, the observed value of the test statistic is

3.218−3.873√
.749574/36

=−4.54.

We compute
P = Pr [|t(35)| ≥ |−4.54|] = .000.

Once again, the test result is highly significant. 2

EXAMPLE 3.2.7. In Example 3.2.4 we considered one-sided tests for the drop rate data. Using
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the deleted untransformed data, the null hypothesis H0 : µd ≤ 9, and the alternative HA : µd > 9, we
observed the test statistic

11.083−9√
27.45/36

= 2.39.

Using Minitab, we compute
P = Pr [t(35)≥ 2.39] = .011.

The probability is only for large positive values because negative values of the test statistic are
consistent with H0. The P value of .011 is just greater than .01, so we would not be able to reject an
α = .01 test. We can of course reject any test with α greater than .011. The P value for the one-sided
test is exactly half of what the P value would be for testing H0 : µd = 9 versus HA : µd 6= 9.

Using the square roots of the data, the null hypothesis became H0 : µrd ≤
√

9 with the alternative
HA : µrd >

√
9. The observed value of the test statistic was

3.218−3√
.749574/36

= 1.51.

We compute
P = Pr [t(35)≥ 1.51] = .07.

The P value here is small, .07, but not small enough to reject an α = .05 test. There is some in-
dication that the null hypothesis is not true but the indication is not very strong. To be precise, if
we repeated this test procedure many times when the null hypothesis is true, 7% of the time we
would expect to get results that are at least this suggestive of the incorrect conclusion that the null
hypothesis is false. 2

Minitab commands

To find a P value using Minitab when the reference distribution is a t, start with the number −|tobs|,
where tobs is the observed value of the test statistic. In other words, find the observed test statistic
and make it a negative number. Then simply use this number with the ‘cdf’ command, specifying
the t distribution and the degrees of freedom in the subcommand. The procedure for tobs = 1.51 is
illustrated below. The probability given by the cdf command is the appropriate P value for one-sided
tests but must be doubled if the test is two-sided.

MTB > cdf -1.51;

SUBC> t 35.

Conclusion

To keep this discussion as simple as possible, the examples have been restricted to one-sample nor-
mal theory. However, the results of this section and Section 3.1 apply to more complicated problems
such as two-sample problems, testing contrasts in analysis of variance, and testing coefficients in
regression. All of these applications will be considered in later chapters.

3.3 Validity of tests and confidence intervals

In testing an hypothesis, we make an assumption, namely the null hypothesis, and check to see
whether the data are consistent with the assumption or inconsistent with it. If the data are consistent
with the null hypothesis, that is all that we can say. If the data are inconsistent with the null hypoth-
esis, it suggests that our assumption was wrong. (This is very similar to the mathematical idea of a
proof by contradiction.)

One of the problems with testing hypotheses is that we are really making a series of assumptions.
The null hypothesis is one of these, but there are many others. Typically we assume that observations
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are independent. In most tests that we will consider, we assume that the data have normal distribu-
tions. As we consider more complicated data structures, we will need to make more assumptions.
The proper conclusion from a test of hypothesis is that either the data are consistent with our as-
sumptions or the data are inconsistent with our assumptions. If the data are inconsistent with the
assumptions, it suggests that at least one of them is invalid. In particular, if the data are inconsistent
with the assumptions, it does not necessarily imply that the particular assumption embodied in the
null hypothesis is the one that is invalid. Before we can reasonably conclude that the null hypothesis
is untrue, we need to ensure that the other assumptions are reasonable. Thus it is crucial to check
our assumptions as fully as we can. Plotting the data plays a vital role in checking assumptions.
Plots are used throughout the book, but special emphasis on plotting is given in Chapter 7.

Typically, it is quite easy to define parameters Par and estimates Est. The role of the assumptions
is crucial in obtaining a valid SE(Est) and an appropriate reference distribution. If our assumptions
are reasonably valid, our SE(Est) and reference distribution will be reasonably valid and the proce-
dures outlined here for performing statistical inferences will be reasonably valid. This applies not
only to testing but to confidence intervals as well. Of course the assumptions that need to be checked
depend on the precise nature of the analysis being performed.

3.4 The relationship between confidence intervals and tests

The two most commonly used tools in statistical inference are tests and confidence intervals. Tests
determine whether a difference can be established between an hypothesized parameter value and
the true parameter for the data. Typically, one must consider not only whether a difference exists,
but how much difference exists, and whether such a difference is important within the context of
the problem. Confidence intervals are used to quantify what is known about the true parameter and
thus can be used to quantify how much of a difference may exist. In particular, confidence intervals
give all the possible parameter values that seem to be consistent with the data. Tests and confidence
intervals are very closely related inferential tools and in this section we explore their relationship.

As discussed earlier, the term ‘confidence’ as used in confidence intervals is rather nebulously
defined. Confidence intervals are based on the unusable probability statement

1−α = Pr
[
Est−K

(
1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est)

]
,

which is a statement about the unknown (unobserved) random variables Est and SE(Est). It is a
highly intuitive idea that this probability statement generates a usable interval for Par,

Est−K
(

1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est),

in which the observed values of Est and SE(Est) are used to define a known interval. However,
the logic behind this intuitive idea is not clear and so we are left with an unclear definition of
‘confidence.’

A clear definition of confidence can be made in terms of testing hypotheses. The (1−α)100%
confidence interval for Par,

Est−K
(

1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est),

consists of all the values m that would not be rejected by an α level test of H0 : Par = m versus
HA : Par 6= m. To see this recall that the α level test is rejected when

Est−m
SE(Est)

> K
(

1− α

2

)
or

Est−m
SE(Est)

<−K
(

1− α

2

)
.
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Conversely, the α level test is not rejected when

−K
(

1− α

2

)
≤ Est−m

SE(Est)
≤ K

(
1− α

2

)
.

Exactly the same algebraic manipulations that lead to equation (3.1.1) also lead to the conclusion
that the test is not rejected when

Est−K
(

1− α

2

)
SE(Est)< m < Est +K

(
1− α

2

)
SE(Est).

Thus the confidence interval consists of all values of m for which the α level test of H0 : Par = m
versus HA : Par 6= m is not rejected. In other words, a (1−α)100% confidence interval consists of
all parameter values that are consistent with the data as judged by an α level test.

We have now established that there is little point in performing the fixed α , fixed m testing
procedures discussed in Section 3.2. P values give the results of testing H0 : Par = m versus HA :
Par 6= m for a fixed m but every choice of α . Confidence intervals give the results of testing H0 :
Par = m versus HA : Par 6= m for a fixed α but every choice of m.

EXAMPLE 3.4.1. In Example 3.2.1 we considered audio acuity data for Van Holland fans and
tested whether their mean score differed from fans of Audially Disadvantaged Leopard. In this
example we test whether their mean score differs from that of Tangled Female Sibling fans. Recall
that the observed values of n, ȳ·, and s2 for Van Holland fans were 16, 22, and .25, respectively and
that the data were normal. Tangled Female Sibling fans have a population mean score of 22.325, so
we test H0 : µ = 22.325 versus HA : µ 6= 22.325. The test statistic is (22−22.325)/

√
.25/16=−2.6.

If we do an α = .05 test, |−2.6|> 2.13 = t(.975,15), so we reject H0, but if we do an α = .01 test,
|−2.6|< 2.95 = t(.995,15), so we do not reject H0. In fact, |−2.6| .= t(.99,15), so the P value is
essentially .02. The P value is larger than .01, so the .01 test does not reject H0; the P value is less
than .05, so the test rejects H0 at the .05 level.

If we consider confidence intervals, the 99% interval has endpoints 22± 2.95
√

.25/16 for an
interval of (21.631,22.369) and the 95% interval has endpoints 22± 2.13

√
.25/16 for an interval

of (21.734,22.266). Notice that the hypothesized value of 22.325 is inside the 99% interval, so
it is not rejected by a .01 level test, but 22.325 is outside the 95% interval, so a .05 two-sided
test rejects H0 : µ = 22.325. The 98% interval has endpoints 22± 2.60

√
.25/16 for an interval of

(21.675,22.325) and the hypothesized value is on the edge of the interval.
2

3.5 Theory of prediction intervals

Some slight modifications of the general theory allow us to construct prediction intervals. Many of
us would argue that the fundamental purpose of science is making accurate predictions of things
that could be observed in the future. As with estimation, predicting the occurrence of a particular
value (point prediction) is less valuable than interval prediction because a point prediction gives no
idea of the variability associated with the prediction.

In constructing prediction intervals for a new observation y, we make a number of assumptions.
The observations, including the new one, are assumed to be independent and normally distributed.
Moreover, we take as our parameter Par = E(y). E(y) would be a reasonable point prediction for
y but we do not know the value of E(y). Est depends only on the observations other than y and
it estimates E(y), so Est makes a reasonable point prediction of y. We also assume that Var(y) =
σ2, that σ2 has an estimate σ̂2, that SE(Est) = σ̂A for some known constant A, and that (Est −
Par)/SE(Est) has a t distribution with, say, r degrees of freedom. (Technically, we need Est to have
a normal distribution, r(σ̂2/σ2) to have a χ2(r) distribution, and independence of Est and σ̂2.) In
some applications, these methods are used with the approximation r .

=∞, i.e., we act as if we know
the variance and the appropriate distribution is taken to be a standard normal.



78 3. A GENERAL THEORY FOR TESTING AND CONFIDENCE INTERVALS

A prediction interval for y is based on the distribution of y−Est because we need to evaluate
how far y can reasonably be from our point prediction of y. The value of the future observation y is
independent of the past observations and thus of Est. It follows that the variance of y−Est is

Var(y−Est) = Var(y)+Var(Est) = σ
2 +Var(Est)

and that the standard error of y−Est is

SE(y−Est) =
√

σ̂2 +[SE(Est)]2. (3.5.1)

One can then show that
y−Est

SE(y−Est)
∼ t(r).

A (1−α)100% prediction interval is based on the probability equality,

1−α = Pr
[
−t
(

1− α

2
,r
)
<

y−Est
SE(y−Est)

< t
(

1− α

2
,r
)]

.

Rearranging the terms within the square brackets leads to the equality

1−α = Pr
[
Est− t

(
1− α

2
,r
)

SE(y−Est)< y < Est + t
(

1− α

2
,r
)

SE(y−Est)
]
.

The prediction interval consists of all y values that fall between the two observable limits in the
probability statement. The endpoints of the interval are generally written

Est± t
(

1− α

2
,r
)

SE(y−Est).

Of course, it is impossible to validate assumptions about observations to be taken in the future, so
the confidence levels of prediction intervals are always suspect.

From the form of SE(y−Est) given in (3.5.1), we see that

SE(y−Est) =
√

σ̂2 +[SE(Est)]2 ≥ SE(Est).

Typically, the prediction standard error is much larger than the standard error of the estimate, so
prediction intervals are much wider than confidence intervals. In particular, increasing the number
of observations typically decreases the standard error of the estimate but has a relatively minor effect
on the standard error of prediction. Increasing the sample size is not intended to make σ̂2 smaller,
it only makes σ̂2 a more accurate estimate of σ2.

EXAMPLE 3.5.1. As in Example 3.1.2, we eliminate the two outliers from the dropout rate data.
The 36 remaining observations are approximately normal. A 95% confidence interval for the mean
had endpoints

11.083±2.030
√

27.45/36.

A 95% prediction interval has endpoints

11.083±2.030

√
27.45+

27.45
36

or
11.083±10.782.

The prediction interval is (.301,21.865), which is much wider than the confidence interval of
(9.3,12.9). We are 95% confident that the dropout rate for a new math class would be between
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.3% and 21.9%. We are 95% confident that the population mean dropout rate for math classes is
between 9% and 13%. Of course the prediction interval assumes that the new class is from a pop-
ulation similar to the 1984–85 math classes with huge dropout rates deleted. Such assumptions are
almost impossible to validate. Moreover, there is some chance that the new observation will be one
with a huge dropout rate and this interval says nothing about such observations.

In Example 3.1.2 we also considered the square roots of the dropout rate data with the two
outliers eliminated. To predict the square root of a new observation, we use the 95% interval

3.218±2.030

(√
.749574+

.749574
36

)
,

which reduces to (1.436,5.000). This is a prediction interval for the square root of a new obser-
vation, so we are 95% confident that the actual value of the new observation will fall between
(1.4362,5.0002), i.e., (2.1,25). Retransforming a prediction interval back into the original scale
causes no problems of interpretation whatsoever. This prediction interval and the one in the pre-
vious paragraph are comparable. Both include values from near 0 up to the low to mid twenties.
2

We have criticized commonly used definitions of the word ‘confidence’ but to this point the
motivation for a prediction interval is exactly analogous to the motivation for confidence intervals.
The endpoints of a prediction interval are obtained by taking a probability statement about ran-
dom variables, substituting observed values for the random variables, and replacing ‘probability’ by
‘confidence’. For some reason, explicitly stating that a 95% prediction interval gives 95% confidence
that a future observation will fall within the interval seems to be a somewhat rare occurrence. Once
again, a solution to the problem of defining confidence can be obtained by testing. If we wanted to
test whether a new observation y was consistent with the old observations we could set up an α level
test that would reject if (y−Est)/SE(y−Est) was too far from zero, i.e., if its absolute value was
greater than K(1−α/2). Analogous to the relationship between tests of parameters and confidence
intervals, this test of a new observation will not be rejected precisely when y is within the prediction
interval. Thus the (1−α)100% prediction interval consists of all values of y that are consistent with
the other data as determined by an α level test. Moreover, the testing approach gives some insight
into why prediction intervals are based on the distribution of y−Est, i.e., because we are comparing
the new observation y to the old data as summarized by Est.

Lower bounds on prediction confidence

If the normal and χ2 distributional assumptions stated at the beginning of the section break down,
the prediction interval based on the t distribution is invalid. Relying primarily on the independence
assumptions and there being sufficient data to use σ̂2 as an approximation to σ2, we can find an
approximate lower bound for the confidence that a new observation is in the prediction interval.
Chebyshev’s inequality from Subsection 1.2.2 gives

1− t
(

1− α

2
,r
)−2
≤ Pr

[
−t
(

1− α

2
,r
)
<

y−Est
SE(y−Est)

< t
(

1− α

2
,r
)]

or equivalently

1− t
(

1− α

2
,r
)−2
≤ Pr

[
Est− t

(
1− α

2
,r
)

SE(y−Est)< y

< Est + t
(

1− α

2
,r
)

SE(y−Est)
]
.

This indicates that the confidence coefficient for the prediction interval given by

Est± t
(

1− α

2
,r
)

SE(y−Est)
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is (approximately) at least [
1− t

(
1− α

2
,r
)−2

]
100%.

If we can use the improved version of Chebyshev’s inequality from Section 1.3, we can raise the
confidence coefficient to [

1− (2.25)−1t
(

1− α

2
,r
)−2

]
100%.

EXAMPLE 3.5.2. Assuming that a sample of 36 observations is enough to ensure that s2 is es-
sentially equal to σ2, the nominal 95% prediction interval given in Example 3.5.1 for dropout rates
has a confidence level, regardless of the distribution of the data, that is at least(

1− 1
2.0302

)
= 76% or even

(
1− 1

2.25(2.030)2

)
= 89%.

3.6 Sample size determination and power

Suppose we wish to estimate the mean height of the men officially enrolled in statistics classes at the
University of New Mexico on Thursday, February 4, 1993 at 3 pm. How many observations should
we take? The answer to that question depends on how accurate our estimate needs to be and on our
having some idea of the variability in the population.

To get a rough indication of the variability we argue as follows. Generally, men have a mean
height of about 69 inches and I would guess that about 95% of them are between 63 inches and
75 inches. The probability that a N(µ,σ2) random variable is between µ ± 2σ is approximately
.95, which suggests that σ = [(µ +2σ)− (µ−2σ)]/4 may be about (75−63)/4 = 3 for a typical
population of men.

Before proceeding with sample size determination, observe that sample sizes have a real effect
on the usefulness of confidence intervals. Suppose ȳ· = 72 and n = 9, so the 95% confidence inter-
val for mean height has endpoints of roughly 72±2(3/

√
9), or 72±2, with an interval of (70,74).

Here we use 3 as a rough indication of σ in the standard error and 2 as a rough indication of the
tabled value for a 95% interval. If having an estimate that is off by 1 inch is a big deal, the confi-
dence interval is totally inadequate. There is little point in collecting the data, because regardless of
the value of ȳ·, we do not have enough accuracy to draw interesting conclusions. For example, if I
claimed that the true mean height for this population was 71 inches and I cared whether my claim
was off by an inch, the data are not only consistent with my claim but also with the claims that the
true mean height is 70 inches and 72 inches and even 74 inches. The data are inadequate for my pur-
poses. Now suppose ȳ· = 72 and n = 3600, the confidence interval has endpoints 72±2(3/

√
3600)

or 72± .1 with an interval of (71.9,72.1). We can tell that the population mean may be 72 inches
but we are quite confident that it is not 72.11 inches. Would anyone really care about the difference
between a mean height of 72 inches and a mean height of 72.11 inches? Three thousand six hundred
observations gives us more information that we really need. We would like to find a middle ground.

Now suppose we wish to learn the mean height to within 1 inch with 95% confidence. From
a sample of size n, a 95% confidence interval for the mean has endpoints that are roughly ȳ·±
2(3/
√

n). With 95% confidence, the mean height could be as high as ȳ·+ 2(3/
√

n) or as low as
ȳ· − 2(3/

√
n). We want the difference between these numbers to be no more than 1 inch. The

difference between the two numbers is 12/
√

n, so for the required difference of 1 inch set 1 =
12/
√

n, so that
√

n = 12/1 or n = 144.
The semantics of these problems can be a bit tricky. We asked for an interval that would tell us

the mean height to within 1 inch with 95% confidence. If instead we specified that we wanted our
estimate to be off by no more than 1 inch, the estimate is in the middle of the interval, so the distance
from the middle to the endpoint needs to be 1 inch. In other words, 1 = 2(3/

√
n), so

√
n = 6/1 or
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n = 36. Note that learning the parameter to within 1 inch is the same as having an estimate that is
off by no more than 1/2 inch.

The concepts illustrated above work quite generally. Typically an observation y has Var(y) = σ2

and Est has SE(Est) = σA. The constant A in SE(Est) is a known function of the sample size (or
sample sizes in situations involving more than one sample). In inference problems we replace σ in
the standard error with an estimate of σ obtained from the data. In determining sample sizes, the
data have not yet been observed, so σ has to be approximated from previous data or knowledge.
The length of a (1−α)100% confidence interval is

[Est +K(1−α/2)SE(Est)]− [Est−K(1−α/2)SE(Est)]

= 2K(1−α/2)SE(Est) = 2K(1−α/2)σA.

The tabled value K(1−α/2) can be approximated by t(1−α/2,∞). If we specify that the confi-
dence interval is to be w units wide, set

w = 2t(1−α/2,∞)σA (3.6.1)

and solve for the (approximate) appropriate sample size. In equation (3.6.1), w, t(1−α/2,∞), and
σ are all known and A is a known function of the sample size.

Unfortunately it is not possible to take equation (3.6.1) any further and show directly how it
determines the sample size. The discussion given here is general and thus the ultimate solution
depends on the type of data being examined. In the only case we have examined as yet, there is one-
sample, Par = µ , Est = ȳ·, and SE(Est) = σ/

√
n. Thus, A = 1/

√
n and equation (3.6.1) becomes

w = 2t(1−α/2,∞)σ/
√

n.

Rearranging this gives √
n = 2t(1−α/2,∞)σ/w

and
n = (2t(1−α/2,∞)σ/w)2

.

But this formula only applies to one sample problems. For other problems considered in this book,
e.g., comparing two independent samples, comparing more than two independent samples, and sim-
ple linear regression, equation (3.6.1) continues to apply but the constant A becomes more compli-
cated. In cases where there is more than one sample involved, the various sample sizes are typically
assumed to all be the same, and in general their relative sizes need to be specified, e.g., we could
specify that the first sample will have 10 more observations than the second or that the first sample
will have twice as many observations as the second.

Another approach to determining approximate sample sizes is based on the power of an α level
test. Tests are set up assuming that, say, H0 : Par = m0 is true. Power is computed assuming that
Par 6= m0. Suppose that Par = mA 6= m0, then the power when Par = mA is the probability that the
(1−α)100% confidence interval will not contain m0. Another way of saying that the confidence
interval does not contain m0 is saying that an α level two-sided test of H0 : Par = m0 rejects H0.
In determining sample sizes, you need to pick mA as some value you care about. You need to care
about it in the sense that if Par = mA rather than Par = m0, you would like to have a reasonably
good chance of rejecting H0 : Par = m0.

Cox (1958, p. 176) points out that it often works well to choose the sample size so that

|mA−m0|
.
= 3SE(Est). (3.6.2)

Cox shows that this procedure gives reasonable powers for common choices of α . Here mA and
m0 are known and SE(Est) = σA, where σ is known and A is a known function of sample size.
Also note that this suggestion does not depend on the α level of the test. As with equation (3.6.1),
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equation (3.6.2) can be solved to give n in particular cases, but a general solution for n is not possible
because it depends on the exact nature of the value A.

Consider again the problem of determining the mean height. If my null hypothesis is H0 : µ = 72
and I want a reasonable chance of rejecting H0 when µ = 73, Cox’s rule suggests that I should have
1 = |73−72| .= 3(3/

√
n) so that

√
n .
= 9 or n .

= 81.
It is important to remember that these are only rough guides for sample sizes. They involve

several approximations, the most important of which is approximating σ . If there is more than
one parameter of interest in a study, sample size computations can be performed for each and a
compromise sample size can be selected.

For the past ten years I’ve been amazed at my own lack of interest in teaching students about
statistical power. Cox (1958, p. 161) finally explained it for me. He points out that power is very
important in planning investigations but it is not very important in analyzing them. I might even go
so far as to say that once the data have been collected, a power analysis can at best tell you whether
you have been wasting your time. In other words, a power analysis will only tell you how likely you
were to find differences given the design of your experiment and the choice of test.

Appendix: derivation of confidence intervals

We wish to establish the validity of equation (3.1.1), i.e.,

1−α = Pr
[
−K
(

1− α

2

)
<

Est−Par
SE(Est)

< K
(

1− α

2

)]
= Pr

[
Est−K

(
1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est)

]
and in particular we wish to show that the expressions in the square brackets are equivalent. We do
this by establishing a series of equivalences. The justifications for the equivalences are given at the
end.

−K
(

1− α

2

)
<

Est−Par
SE(Est)

< K
(

1− α

2

)
(1)

if and only if

−K
(

1− α

2

)
SE(Est)< Est−Par < K

(
1− α

2

)
SE(Est) (2)

if and only if

K
(

1− α

2

)
SE(Est)>−Est +Par >−K

(
1− α

2

)
SE(Est) (3)

if and only if

Est +K
(

1− α

2

)
SE(Est)> Par > Est−K

(
1− α

2

)
SE(Est) (4)

if and only if

Est−K
(

1− α

2

)
SE(Est)< Par < Est +K

(
1− α

2

)
SE(Est). (5)

JUSTIFICATION OF STEPS.
For (1) iff (2): if c > 0, then a < b if and only if ac < bc.
For (2) iff (3): a < b if and only if −a >−b.
For (3) iff (4): a < b if and only if a+ c < b+ c.
For (4) iff (5): a > b if and only if b < a.



3.7 EXERCISES 83

3.7 Exercises

EXERCISE 3.7.1. This exercise illustrates the Bayesian computations discussed in the subsection
of 3.1 on interpreting confidence intervals. I place a coin either heads up or tails up and hide it from
you. Because of my psychic powers, when you subsequently flip a coin the probability is .75 that
your coin face will be the same as mine. The four things of interest here are the outcomes that I have
tails (IT ), I have heads (IH), you have tails (Y T ), and you have heads (Y H).

The computations involve ideas of conditional probability. For example, the probability that you
get tails given that my coin was placed tails up is defined to be Pr(Y T |IT )≡ Pr(Y T and IT )/Pr(IT )

Bayes’ theorem relates different conditional probabilities. It states that

Pr(IT |Y T ) =
Pr(Y T |IT )Pr(IT )

Pr(Y T |IT )Pr(IT )+Pr(Y T |IH)Pr(IH)
.

Similarly,

Pr(IH|Y H) =
Pr(Y H|IH)Pr(IH)

Pr(Y H|IH)Pr(IH)+Pr(Y H|IT )Pr(IT )
.

Clearly this problem is set up so that Pr(Y T |IT ) = Pr(Y H|IH) = .75. Show that if your prior prob-
ability is Pr(IT ) = Pr(IH) = .5, then Pr(IT |Y T ) = Pr(IH|Y H) = .75 as claimed in the earlier dis-
cussion.

The earlier discussion also mentioned prior probabilities that were four times greater for me
placing my coin heads up than tails up. In this case, Pr(IT ) = 1/5 and Pr(IH) = 4/5. Find
Pr(IT |Y T ) and Pr(IH|Y H) and check whether these agree with the values given in Section 3.1.

Obviously, you should show all of your work.

EXERCISE 3.7.2. Identify the parameter, estimate, standard error of the estimate, and reference
distribution for Exercise 2.7.1.

EXERCISE 3.7.3. Identify the parameter, estimate, standard error of the estimate, and reference
distribution for Exercise 2.7.2.

EXERCISE 3.7.4. Identify the parameter, estimate, standard error of the estimate, and reference
distribution for Exercise 2.7.4.

EXERCISE 3.7.5. Consider that I am collecting (normally distributed) data with a variance of 4
and I want to test a null hypothesis of H0 : µ = 10. What sample size should I take according to
Cox’s rule if I want a reasonable chance of rejecting H0 when µ = 13? What if I want a reasonable
chance of rejecting H0 when µ = 12? What sample size should I take if I want a 95% confidence
interval that is no more than 2 units long? What if I want a 99% confidence interval that is no more
than 2 units long?

EXERCISE 3.7.6. The turtle shell data of Jolicoeur and Mosimann (1960) given in Exercise 2.7.4
has a standard deviation of about 21.25. If we were to collect a new sample, how large should
the sample size be in order to have a 95% confidence interval with a length of (about) four units?
According to Cox’s rule, what sample size should I take if I want a reasonable chance of rejecting
H0 : µ = 130 when µ = 140?

EXERCISE 3.7.7. With reference to Exercise 2.7.3, give the approximate number of observations
necessary to estimate the mean of BX to within .01 units with 99% confidence. How large a sample
is needed to get a reasonable test of H0 : µ = 10 when µ = 11 using Cox’s rule?

EXERCISE 3.7.8. With reference to Exercise 2.7.3, give the approximate number of observations
necessary to get a 99% confidence for the mean of K that has a length of 60. How large a sample
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is needed to get a reasonable test of H0 : µ = 1200 when µ = 1190 using Cox’s rule? What is the
number when µ = 1150?

EXERCISE 3.7.9. With reference to Exercise 2.7.3, give the approximate number of observations
necessary to estimate the mean of FORM to within .5 units with 95% confidence. How large a
sample is needed to get a reasonable test of H0 : µ = 20 when µ = 20.2 using Cox’s rule?

EXERCISE 3.7.10. With reference to Exercise 2.7.2, give the approximate number of observa-
tions necessary to estimate the mean rat weight to within 1 unit with 95% confidence. How large a
sample is needed to get a reasonable test of H0 : µ = 55 when µ = 54 using Cox’s rule?



Chapter 4

Two sample problems

In this chapter we consider several situations where it is of interest to compare two samples. First
we consider two samples of correlated data. These are data that consist of pairs of observations
measuring comparable quantities. Next we consider two independent samples from populations
with the same variance. We then examine two independent samples from populations with different
variances. Finally we consider the problem of testing whether the variances of two populations are
equal.

4.1 Two correlated samples: paired comparisons

Paired comparisons involve pairs of observations on similar variables. Often these are two observa-
tions taken on the same object under different circumstances or two observations taken on related
objects. No new statistical methods are needed for analyzing such data.

EXAMPLE 4.1.1. Shewhart (1931, p. 324) presents data on the hardness of an item produced by
welding two parts together. Table 4.1 gives the hardness measurements for each of the two parts.
The hardness of part 1 is denoted y1 and the hardness of part 2 is denoted y2. For i = 1,2, the data for
part i are denoted yi j, j = 1, . . . ,27. The data are actually a subset of the data presented by Shewhart.

We are interested in the difference between µ1, the population mean for part one, and µ2, the
population mean for part two. In other words, the parameter of interest is Par = µ1 − µ2. Note
that if there is no difference between the population means, µ1− µ2 = 0. The natural estimate of
this parameter is the difference between the sample means, i.e., Est = ȳ1·− ȳ2·. Here we use the ·
subscript to indicate averaging over the second subscript in ȳi· = (yi1 + · · ·+ yi27)/27.

To perform statistical inferences, we need the standard error of the estimate, i.e., SE(ȳ1·− ȳ2·).

Table 4.1: Shewhart’s hardness data

d = d =
Case y1 y2 y1− y2 Case y1 y2 y1− y2

1 50.9 44.3 6.6 15 46.6 31.5 15.1
2 44.8 25.7 19.1 16 50.4 38.1 12.3
3 51.6 39.5 12.1 17 45.9 35.2 10.7
4 43.8 19.3 24.5 18 47.3 33.4 13.9
5 49.0 43.2 5.8 19 46.6 30.7 15.9
6 45.4 26.9 18.5 20 47.3 36.8 10.5
7 44.9 34.5 10.4 21 48.7 36.8 11.9
8 49.0 37.4 11.6 22 44.9 36.7 8.2
9 53.4 38.1 15.3 23 46.8 37.1 9.7

10 48.5 33.0 15.5 24 49.6 37.8 11.8
11 46.0 32.6 13.4 25 51.4 33.5 17.9
12 49.0 35.4 13.6 26 45.8 37.5 8.3
13 43.4 36.2 7.2 27 48.5 38.3 10.2
14 44.4 32.5 11.9

85
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Figure 4.1: Dot plot of differences.

As indicated earlier, finding an appropriate standard error is often the most difficult aspect of sta-
tistical inference. In problems such as this, where the data are paired, finding the standard error is
complicated by the fact that the two observations in each pair are not independent. In data such as
these, different pairs are often independent but observations within a pair are not.

In paired comparisons, we use a trick to reduce the problem to one sample. It is a sim-
ple algebraic fact that the difference of the sample means, ȳ1· − ȳ2· is the same as the sample
mean of the differences d j = y1 j − y2 j, i.e., d̄ = ȳ1· − ȳ2·. Thus d̄ is an estimate of the param-
eter of interest µ1 − µ2. The differences are given in Table 4.1 along with the data. Summary
statistics are listed below for each variable and the differences. Note that for the hardness data,
d̄ = 12.663 = 47.552−34.889 = ȳ1·− ȳ2·. In particular, if the positive value for d̄ means anything
(other than random variation), it indicates that part one is harder than part two.

Sample statistics
Variable Ni Mean Variance Std. dev.

y1 27 47.552 6.79028 2.606
y2 27 34.889 26.51641 5.149

d = y1− y2 27 12.663 17.77165 4.216

Given that d̄ is an estimate of µ1 − µ2, we can base the entire analysis on the differences. The
differences constitute a single sample of data, so the standard error of d̄ is simply the usual one-
sample standard error,

SE(d̄) = sd
/√

27,

where sd is the sample standard deviation as computed from the 27 differences. The differences are
plotted in Figure 4.1. Note that there is one potential outlier. We leave it as an exercise to reanalyze
the data with the possible outlier removed.

We now have Par, Est, and SE(Est); it remains to find the appropriate distribution. Figure 4.2
gives a normal plot for the differences. While there is an upward curve at the top due to the possible
outlier, the curve is otherwise reasonably straight. The Wilk–Francia statistic of W ′= 0.955 is above
the fifth percentile of the null distribution. With normal data we use the reference distribution

d̄− (µ1−µ2)

sd
/√

27
∼ t(27−1)

and we are now in a position to perform statistical inferences.
Our observed values of the mean and standard error are d̄ = 12.663 and SE(d̄) = 4.216

/√
27 =

0.811. From a t(26) distribution, we find t(.995,26) = 2.78. A 99% confidence interval for the
difference in hardness has endpoints

12.663±2.78(.811),

which gives an interval of, roughly, (10.41,14.92). We are 99% confident that the population mean
hardness for part 1 is between 10.41 and 14.92 units harder than that for part 2.

We can also get a 99% prediction interval for the difference in hardness to be observed on a new
welded piece. The prediction interval has endpoints of

12.663±2.78
√

4.2162 + .8112
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Figure 4.2: Normal plot of differences, W ′ = .955.

for an interval of (.73,24.60).
To test the hypothesis that the two parts have the same hardness, we set up the hypotheses

H0 : µ1 = µ2 versus HA : µ1 6= µ2, or equivalently, H0 : µ1− µ2 = 0 versus HA : µ1− µ2 6= 0. The
test statistic is

12.663−0
.811

= 15.61.

This is far from zero, so the data are inconsistent with the null hypothesis. In other words, there is
strong evidence that the hardness of part 1 is different than the hardness of part 2. Since the test
statistic is positive, we conclude that µ1−µ2 > 0 and that part 1 is harder than part 2. Note that this
is consistent with our 99% confidence interval (10.41,14.92), which contains only positive values
for µ1−µ2.

Inferences and predictions for an individual population are made ignoring the other population,
i.e., they are made using methods for one sample. For example, using the sample statistics for y1
gives a 99% confidence interval for µ1, the population mean hardness for part 1, with endpoints

47.552±2.78

√
6.79028

27

and a 99% prediction interval for the hardness of a new piece of part 1 has endpoints

47.552±2.78

√
6.79028+

6.79028
27

and interval (40.175,59.929). Of course, the use of the t(26) distribution requires that we validate
the assumption that the observations on part 1 are a random sample from a normal distribution.

When finding a prediction interval for y1, we can typically improve the interval if we know
the corresponding value of y2. As we saw earlier, the 99% prediction interval for a new difference
d = y1−y2 has .73 < y1−y2 < 24.60. If we happen to know that, say, y2 = 35, the interval becomes
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.73< y1−35< 24.60 or 35.73< y1 < 59.60. As it turns out, with these data the new 99% prediction
interval for y1 is not an improvement over the interval in the previous paragraph. The new interval
is noticeably wider. However, these data are somewhat atypical. Typically in paired data, the two
measurements are highly correlated, so that the sample variance of the differences is substantially
less than the sample variance of the individual measurements. In such situations, the new interval
will be substantially narrower. In these data, the sample variance for the differences is 17.77165 and
is actually much larger than the sample variance of 6.79028 for y1. 2

The trick of looking at differences between pairs is necessary because the two observations in a
pair are not independent. While different pairs of welded parts are assumed to behave independently,
it seems unreasonable to assume that two hardness measurements on a single item that has been
welded together would behave independently. This lack of independence makes it difficult to find a
standard error for comparing the sample means unless we look at the differences. In the remainder
of this chapter, we consider two-sample problems in which all of the observations are assumed to
be independent. The observations in each sample are independent of each other and independent of
all the observations in the other sample. Paired comparison problems almost fit those assumptions
but they break down at one key point. In a paired comparison, we assume that every observation is
independent of the other observations in the same sample and that each observation is independent
of all the observations in the other sample except for the observation in the other sample that it is
paired with. When analyzing two samples, if we can find any reason to identify individuals as being
part of a pair, that fact is sufficient to make us treat the data as a paired comparison.

The method of paired comparisons is also the name of a totally different statistical procedure.
Suppose one wishes to compare five brands of chocolate chip cookies: A, B, C, D, E. It would be
difficult to taste all five and order them appropriately. As an alternative, one can taste test pairs of
cookies, e.g., (A,B), (A,C), (A,D), (A,E), (B,C), (B,D), etc. and identify the better of the two. The
benefit of this procedure is that it is much easier to rate two cookies than to rate five. See David
(1988) for a survey and discussion of procedures developed to analyze such data.

4.2 Two independent samples with equal variances

The most commonly used two-sample technique consists of comparing independent samples from
two populations with the same variance. The sample sizes for the two groups are possibly different,
say, N1 and N2, and we write the common variance as σ2.

EXAMPLE 4.2.1. The data in Table 4.2 are final point totals for an introductory statistics class.
The data are divided by the sex of the student. We investigate whether the data display sex dif-
ferences. The data are plotted in Figure 4.3. Figures 4.4 and 4.5 contain normal plots for the two
sets of data. Figure 4.4 is quite straight but Figure 4.5 looks curved. Our analysis is not particularly
sensitive to nonnormality and the W ′ statistic for Figure 4.5 is .937, which is well above the fifth per-
centile, so we proceed under the assumption that both samples are normal. We also assume that all
of the observations are independent. This assumption may be questionable because some students
probably studied together, nonetheless, independence seems like a reasonable working assumption.
2

The methods in this section rely on the assumption that the two populations are normally dis-
tributed and have the same variance. In particular, we assume two independent samples

Sample Data Distribution
1 y11,y12, . . . ,y1N1 iid N(µ1,σ

2)
2 y21,y22, . . . ,y2N2 iid N(µ2,σ

2)

and compute summary statistics from the samples. The summary statistics are just the sample mean
and the sample variance for each individual sample.
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Table 4.2: Final point totals for an introductory statistics class

Females Males
140 125 90 105 145 165 175 135
135 155 170 140 85 175 160 165
150 115 125 95 170 115 150
135 145 110 135 150 85 130
110 120 140 145 90 95 125

. . .

. . . . : . . : : : : . . .

-------+---------+---------+---------+---------+---------females

96 112 128 144 160 176

. . . . . . . : . : . :

---+---------+---------+---------+---------+---------+---males

80 100 120 140 160 180

Figure 4.3: Dot plots for final point totals.

females

-

- *

-

- *

150+ *

- 3

- 3 3

-

- 2

120+ *

- *

- * 2

-

- *

90+ *

- *

-

--------+---------+---------+---------+---------+--------

-1.40 -0.70 0.00 0.70 1.40

Rankits

Figure 4.4: Normal plot for females, W ′ = .974.
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males

180+

- 2

- 2 *

- *

-

150+ 2

-

- *

- *

- *

120+

- *

-

-

- *

90+ *

- *

+---------+---------+---------+---------+---------+------

-1.80 -1.20 -0.60 0.00 0.60 1.20

Rankits

Figure 4.5: Normal plot for males, W ′ = .937.

Sample statistics
Sample Size Mean Variance

1 N1 ȳ1· s2
1

2 N2 ȳ2· s2
2

Except for checking the validity of our assumptions, these summary statistics are more than suffi-
cient for the entire analysis. Algebraically, the sample mean for population i, i = 1,2, is

ȳi· ≡
1
Ni

Ni

∑
j=1

yi j =
1
Ni

[yi1 + yi2 + · · ·+ yiNi ]

where the · in ȳi· indicates that the mean is obtained by averaging over j, the second subscript in the
yi js. The sample means, ȳ1· and ȳ2·, are estimates of µ1 and µ2.

The sample variance for population i, i = 1,2, is

s2
i =

1
Ni−1

Ni

∑
j=1

(yi j− ȳi·)
2

=
1

Ni−1

[
(yi1− ȳi·)

2
+(yi2− ȳi·)

2
+ · · ·+(yiNi − ȳi·)

2
]
.

The s2
i s both estimate σ2. Combining the s2

i s can yield a better estimate of σ2 than either individual
estimate. We form a pooled estimate of the variance, say s2

p, by averaging s2
1 and s2

2. With unequal
sample sizes an efficient pooled estimate of σ2 must be a weighted average of the s2

i s. Obviously,
if we have N1 = 100000 observations in the first sample and only N2 = 10 observations in the
second sample, the variance estimate s2

1 is much better than s2
2 and we want to give it more weight.

The weights are the degrees of freedom associated with the estimates. The pooled estimate of the
variance is

s2
p ≡ (N1−1)s2

1 +(N2−1)s2
2

(N1−1)+(N2−1)
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=
1

N1 +N2−2

[
N1

∑
j=1

(ȳ1 j− ȳ1·)
2
+

N2

∑
j=1

(ȳ2 j− ȳ2·)
2

]

=
1

N1 +N2−2

2

∑
i=1

Ni

∑
j=1

(ȳi j− ȳi·)
2
.

The degrees of freedom for s2
p are N1+N2−2 = (N1−1)+(N2−1), i.e., the sum of the degrees

of freedom for the individual estimates s2
i .

EXAMPLE 4.2.2. For the data on final point totals, the sample statistics are given below.

Sample Statistics
Sample Ni ȳi· s2

i si
females 22 127.954545 487.2835498 22.07

males 15 139.000000 979.2857143 31.29

From these values, we obtain the pooled estimate of the variance,

s2
p =

(N1−1)s2
1 +(N2−1)s2

2
N1 +N2−2

=
(21)487.28+(14)979.29

35
= 684.08. 2

We are now in a position to draw statistical inferences about the µis. The main problem in
obtaining tests and confidence intervals is in finding appropriate standard errors. The crucial fact is
that the samples are independent so that the ȳi·s are independent.

For inferences about the difference between the two means, say, µ1−µ2, use the general proce-
dure of Chapter 3 with

Par = µ1−µ2

and
Est = ȳ1·− ȳ2·.

Note that ȳ1·− ȳ2· is unbiased for estimating µ1−µ2 because

E(ȳ1·− ȳ2·) = E(ȳ1·)−E(ȳ2·) = µ1−µ2 .

The two means are independent, so the variance of ȳ1·− ȳ2· is the variance of ȳ1· plus the variance
of ȳ2·, i.e.,

Var(ȳ1·− ȳ2·) = Var(ȳ1·)+Var(ȳ2·) =
σ2

N1
+

σ2

N2
= σ

2
[

1
N1

+
1

N2

]
.

The standard error of ȳ1·− ȳ2· is the estimated standard deviation of ȳ1·− ȳ2·,

SE(ȳ1·− ȳ2·) =

√
s2

p

[
1

N1
+

1
N2

]
.

Under our assumption that the original data are normal, the reference distribution is

(ȳ1·− ȳ2·)− (µ1−µ2)√
s2

p

[
1

N1
+ 1

N2

] ∼ t(N1 +N2−2).

The degrees of freedom for the t distribution are the degrees of freedom for s2
p. For nonnormal data

with large sample sizes, the reference distribution is N(0,1).
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Having identified the parameter, estimate, standard error, and distribution, inferences follow the
usual pattern. A 95% confidence interval for µ1−µ2 is

(ȳ1·− ȳ2·)± t(.975,N1 +N2−2)

√
s2

p

[
1

N1
+

1
N2

]
.

A test of hypothesis that the means are equal, say

H0 : µ1 = µ2 versus HA : µ1 6= µ2

can be converted into the equivalent hypothesis involving Par = µ1−µ2, namely

H0 : µ1−µ2 = 0 versus HA : µ1−µ2 6= 0.

The test is handled in the usual way. An α = .01 test rejects H0 if

|(ȳ1·− ȳ2·)−0|√
s2

p

[
1

N1
+ 1

N2

] > t(.995,N1 +N2−2).

In our discussion of comparing differences, we have defined the parameter as µ1−µ2. We could
just as well have defined the parameter as µ2− µ1. This would have given an entirely equivalent
analysis.

Inferences about a single mean, say, µ2, use the general procedures with Par = µ2 and Est = ȳ2·.
The variance of ȳ2· is σ2/N2, so SE(ȳ2·) =

√
s2

p/N2. Note the use of s2
p rather than s2

2. The reference

distribution is [ȳ2·−µ2]/SE(ȳ2·)∼ t(N1 +N2−2). A 95% confidence interval for µ2 is

ȳ2·± t(.975,N1 +N2−2)
√

s2
p/N2.

A 95% prediction interval for a new observation on variable y2 is

ȳ2·± t(.975,N1 +N2−2)

√
s2

p +
s2

p

N2
.

An α = .01 test of the hypothesis, say

H0 : µ2 = 5 versus HA : µ2 6= 5,

rejects H0 if
|ȳ2·−5|√

s2
p/N2

> t(.995,N1 +N2−2).

EXAMPLE 4.2.3. For comparing females and males on final point totals, the parameter of interest
is

Par = µ1−µ2

where µ1 indicates the population mean final point total for females and µ2 indicates the population
mean final point total for males. The estimate of the parameter is

Est = ȳ1·− ȳ2· = 127.95−139.00 =−11.05 .

The pooled estimate of the variance is s2
p = 684.08, so the standard error is

SE(ȳ1·− ȳ2·) =

√
s2

p

(
1

N1
+

1
N2

)
=

√
684.08

(
1
22

+
1
15

)
= 8.7578 .
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The data have reasonably normal distributions and the variances are not too different (more on this
later), so the reference distribution is taken as

(ȳ1·− ȳ2·)− (µ1−µ2)√
s2

p
( 1

22 +
1
15

) ∼ t(35)

where 35 = N1 +N2− 2. The tabled value for finding 95% confidence intervals and α = .05 two-
sided tests is

t(.975,35) = 2.030 .

A 95% confidence interval for µ1−µ2 has endpoints

−11.05± (2.030)8.7578

which yields an interval (−28.8,6.7). We are 95% confident that the population mean scores are
between, roughly, 29 points less for females and 7 points more for females.

An α = .05 two-sided test of H0 : µ1− µ2 = 0 versus HA : µ1− µ2 6= 0 is not rejected because
0, the hypothesized value of µ1− µ2, is contained in the 95% confidence interval for µ1− µ2. The
P value for the test is based on the observed value of the test statistic

tobs =
(ȳ1·− ȳ2·)−0√

s2
p
( 1

22 +
1
15

) = −11.05−0
8.7578

=−1.26 .

The probability of obtaining an observation from a t(35) distribution that is as extreme or more
extreme than | − 1.26| is 0.216. There is very little evidence that the population mean final point
total for females is different (smaller) than the population mean final point total for males. The P
value is greater than .2, so, as we established earlier, neither an α = .05 nor an α = .01 test is
rejected. If we were silly enough to do an α = .25 test, we would then reject the null hypothesis.

If one claimed that, for whatever reason, females tend to do worse than males in statistics classes,
a two-sided test would probably be inappropriate. To test H0 : µ1−µ2 ≤ 0 versus HA : µ1−µ2 > 0,
the test statistic is the same but the interpretation is very different. The negative value of the test
statistic is consistent with the null hypothesis. The P value is the very large value 1− .216/2 =
.892. Claiming that females do better would give the opposite one-sided test with a P value of
.216/2 = .108.

A 95% confidence interval for µ1, the mean of the females, has endpoints

127.95± (2.030)
√

684.08/22

which gives the interval (116.6,139.3). We are 95% confident that the mean of the final point totals
for females is between 117 and 139. A 95% prediction interval for a new observation on a female
has endpoints

127.95± (2.030)

√
684.08+

684.08
22

which gives the interval (73.7,182.2). We are 95% confident that a new observation on a female
will be between 74 and 182. This assumes that the new observation is randomly sampled from the
same population as the previous data.

A test of the assumption of equal variances is left for the final section but we will see in the next
section that the results for these data do not depend substantially on the equality of the variances.
2



94 4. TWO SAMPLE PROBLEMS

Table 4.3: Turtle shell heights

Female Male
51 38 63 46 39 42 37 43
51 38 60 51 39 45 35 41
53 42 62 51 38 45 35 41
57 42 63 51 40 45 39 41
55 44 61 48 40 46 38 40
56 50 67 49 40 47 37 44

.

:

: : . . .. . : . .. . . ..: .

----+---------+---------+---------+---------+---------+---Females

. : . .

: : : : : : . . . : . .

----+---------+---------+---------+---------+---------+---Males

3.60 3.72 3.84 3.96 4.08 4.20

Figure 4.6: Plot of turtle shell log heights.

4.3 Two independent samples with unequal variances

We now consider two independent samples with unequal variances σ2
1 and σ2

2 . In this section we
examine inferences about the means of the two populations. While inferences about means are im-
portant, some care is required when drawing practical conclusions about populations with unequal
variances. For example, if you want to produce gasoline with an octane of at least 87, you may have
a choice between two processes. One process y1 gives octanes distributed as N(89,4) and the other
y2 gives N(90,4). The two processes have the same variance, so the process with the higher mean
gives more gas with an octane of at least 87. On the other hand, if y1 gives N(89,4) and y2 gives
N(90,16), the y1 process with mean 89 has a higher probability of achieving an octane of 87 than
the y2 process with mean 90, see Exercise 4.5.10. This is a direct result of the y2 process having
more variability. Having given this warning, we proceed with our discussion on drawing statistical
inferences for the means.

EXAMPLE 4.3.1. Jolicoeur and Mosimann (1960) present data on the sizes of turtle shells (cara-
paces). Table 4.3 presents data on the shell heights for 24 females and 24 males. These data are not
paired; it is simply a caprice that 24 carapaces were measured for each sex. Our interest centers on
estimating the population means for female and male heights, estimating the difference between the
heights, and testing whether the difference is zero.

Following Christensen (1990a) and others, we take natural logarithms of the data, i.e.,

y1 = log(female height) y2 = log(male height).

(All logarithms in this book are natural logarithms.) The log data are plotted in Figure 4.6. The
female heights give the impression of being both larger and more spread out. Figures 4.7 and 4.8
contain normal plots for the females and males respectively. Neither is exceptionally straight but
they do not seem too bad. Summary statistics are given below; they are consistent with the visual
impressions given by Figure 4.6. The summary statistics will be used in later examples as the basis
for our statistical inferences.

Group Size Mean Variance Standard deviation
Females 24 3.9403 0.02493979 0.1579
Males 24 3.7032 0.00677276 0.0823 2
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Figure 4.7: Normal plot for female turtle shell log heights.
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Figure 4.8: Normal plot for male turtle shell log heights.
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In general we assume two independent samples

Sample Data Distribution
1 y11,y12, . . . ,y1N1 iid N(µ1,σ

2
1 )

2 y21,y22, . . . ,y2N2 iid N(µ2,σ
2
2 )

and compute summary statistics from the samples.

Sample Size Mean Variance
1 N1 ȳ1· s2

1
2 N2 ȳ2· s2

2

Again, the sample means, ȳ1· and ȳ2·, are estimates of µ1 and µ2, but now s2
1 and s2

2 estimate σ2
1

and σ2
2 . We have two different variances, so it is inappropriate to pool the variance estimates. Once

again, the crucial fact in obtaining a standard error is that the samples are independent.
For inferences about the difference between the two means, say, µ1−µ2, again use the general

procedure with
Par = µ1−µ2

and
Est = ȳ1·− ȳ2·.

Just as before, ȳ1·− ȳ2· is unbiased for estimating µ1−µ2. The two sample means are independent
so

Var(ȳ1·− ȳ2·) = Var(ȳ1·)+Var(ȳ2·) =
σ2

1
N1

+
σ2

2
N2

.

The standard error of ȳ1·− ȳ2· is

SE(ȳ1·− ȳ2·) =

√
s2

1
N1

+
s2

2
N2

.

Even when the original data are normal, the appropriate reference distribution is not a t distribution.
As a matter of fact, the appropriate reference distribution is not known. However, a good approxi-
mate distribution is

(ȳ1·− ȳ2·)− (µ1−µ2)√
s2

1/N1 + s2
2/N2

∼ t(ν)

where

ν ≡
(
s2

1/N1 + s2
2/N2

)2(
s2

1/N1
)2
/(N1−1)+

(
s2

2/N2
)2
/(N2−1)

(4.3.1)

is an approximate number of degrees of freedom. This approximate distribution was proposed by
Satterthwaite (1946) and is discussed by Snedecor and Cochran (1980).

For nonnormal data with large sample sizes, the reference distribution can be taken as N(0,1).
Having identified the parameter, estimate, standard error and reference distribution, inferences fol-
low the usual pattern.

EXAMPLE 4.3.2. Consider the turtle data. Recall that

Group Size Mean Variance Standard deviation
Females 24 3.9403 0.02493979 0.1579
Males 24 3.7032 0.00677276 0.0823
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We begin by considering a test of H0 : µ1 = µ2 versus HA : µ1 6= µ2 or equivalently H0 : µ1−µ2 = 0
versus HA : µ1−µ2 6= 0. As before, Par = µ1−µ2 and Est = 3.9403−3.7032= .2371. The standard
error is now

SE(ȳ1·− ȳ2·) =

√
0.02493979

24
+

0.00677276
24

= .03635.

Using s2
1/N1 = 0.02493979/24 = .001039158 and s2

2/N2 = 0.00677276/24 = .000282198 in equa-
tion (4.3.1), the approximate degrees of freedom are

ν =
(.001039158+ .000282198)2

(.001039158)2/23+(.000282198)2/23
= 34.6.

An α = .01 test is rejected if the observed value of the test statistic is farther from zero than the
cutoff value t(.995,34.6) .

= t(.995,35) = 2.72. The observed value of the test statistic is

tobs =
.2371−0
.03635

= 6.523

which is greater than the cutoff value, so the test is rejected. There is evidence at the .01 level
that the mean shell height for females is different from the mean shell height for males. Obviously,
since ȳ1·− ȳ2· = .2371 is positive, there is evidence that the females have shells of greater height.
Actually, the conclusion is that the means of the log(heights) are different, but if these are different
we conclude that the mean heights are different.

The 95% confidence interval for the difference between mean log shell heights for females and
males, i.e., µ1−µ2, uses t(.975,34.6) .

= t(.975,35) = 2.03. The endpoints are

.2371±2.03(.03635) ,

and the interval is (.163, .311). We took logs of the data, so if we transform back to the original
scale the interval is (e.163,e.311) or (1.18,1.36). We are 95% confident that the population center for
females is, roughly, between one and a sixth and one and a third times the shell heights for males.
Note that a difference between .163 and .311 on the log scale transforms into a multiplicative effect
between 1.18 and 1.36 on the original scale. This idea is discussed in more detail in Example 5.1.1.

It is inappropriate to pool the variance estimates, so inferences about µ1 and µ2 are performed
just as for one sample. The 95% confidence interval for the mean shell height for females, µ1, uses
the estimate ȳ1·, the standard error s1/

√
24, and the tabled value t(.975,24− 1) = 2.069. It has

endpoints
3.9403±2.069

(
0.1579

/√
24
)

which gives the interval (3.87,4.01). Transforming to the original scale gives the interval
(47.9,55.1). We are 95% confident that the ‘average’ height for females’ shells is between,
roughly, 48 and 55 millimeters. Males also have 24 observations, so the interval for µ2 also uses
t(.975,24−1), has endpoints

3.7032±2.069
(

0.0823
/√

24
)
,

and an interval (3.67,3.74). Transforming the interval back to the original scale gives (39.3,42.1).
We are 95% confident that the ‘average’ height for males’s shells is between, roughly, 39 and 42
millimeters. The 95% prediction interval for the transformed shell height of a future male has end-
points

3.7032±2.069

(
0.0823

√
1+

1
24

)
,

which gives the interval (3.529,3.877). Transforming the prediction interval back to the original
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scale gives (34.1,48.3). Transforming a prediction interval back to the original scale creates no
problems of interpretation. 2

EXAMPLE 4.3.3. Reconsider the final point totals data of Section 4.2. Without the assumption of
equal variances, the standard error is

SE(ȳ1·− ȳ2·) =

√
487.28

22
+

979.29
15

= 9.3507 .

From equation (4.3.1), the degrees of freedom for the approximate t distribution are 23. A 95%
confidence interval for the difference is (−30.4,8.3) and the observed value of the statistic for
testing equal means is tobs =−1.18. This gives a P value for a two-sided test of 0.22. These values
are all quite close to those obtained using the equal variance assumption.

2

It is an algebraic fact that if N1 = N2, the observed value of the test statistic for H0 : µ1 = µ2
based on unequal variances is the same as that based on equal variances. In the turtle example,
the sample sizes are both 24 and the test statistic of 6.523 is the same as the equal variances test
statistic. The algebraic equivalence occurs because with equal sample sizes, the standard errors from
the two procedures are the same. With equal sample sizes, the only practical difference between
the two procedures for examining Par = µ1− µ2 is in the choice of degrees of freedom for the t
distribution. In the turtle example above, the unequal variances procedure had approximately 35
degrees of freedom, while the equal variance procedure has 46 degrees of freedom. The degrees of
freedom are sufficiently close that the substantive results of the turtle analysis are essentially the
same, regardless of method. The other fact that should be recalled is that the reference distribution
associated with µ1− µ2 for the equal variance method is exactly correct for data that satisfy the
assumptions. Even for data that satisfy the unequal variance method assumptions, the reference
distribution is just an approximation.

4.4 Testing equality of the variances

Throughout this section we assume that the original data are normally distributed and that the two
samples are independent. Our goal is to test the hypothesis that the variances are equal, i.e.,

H0 : σ
2
2 = σ

2
1 versus HA : σ

2
2 6= σ

2
1 .

The hypotheses can be converted into equivalent hypotheses,

H0 :
σ2

2

σ2
1
= 1 versus HA :

σ2
2

σ2
1
6= 1.

An obvious test statistic is
s2

2

s2
1
.

We will reject the hypothesis of equal variances if the test statistic is too much greater than 1 or
too much less than 1. As always, the problem is in identifying a precise meaning for ‘too much’.
To do this, we need to know the distribution of the test statistic when the variances are equal. The
distribution is known as an F distribution, i.e., if H0 is true

s2
2

s2
1
∼ F(N2−1,N1−1).

The distribution depends on the degrees of freedom for the two estimates. The first parameter in
F(N2− 1,N1− 1) is N2− 1, the degrees of freedom for the variance estimate in the numerator of
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s2
2
/

s2
1, and the second parameter is N1− 1, the degrees of freedom for the variance estimate in the

denominator. The test statistic s2
2
/

s2
1 is nonnegative, so our reference distribution F(N2−1,N1−1)

is nonnegative. Tables are given in Appendix B.
In some sense, the F distribution is ‘centered’ around one and we reject H0 if s2

2
/

s2
1 is too large

or too small to have reasonably come from an F(N2−1,N1−1) distribution. An α = .01 level test
is rejected, i.e., we conclude that σ2

2 6= σ2
1 , if

s2
2

s2
1
> F(.995,N2−1,N1−1)

or if
s2

2

s2
1
< F(.005,N2−1,N1−1)

where F(.995,N2− 1,N1− 1) cuts off the top .005 of the distribution and F(.005,N2− 1,N1− 1)
cuts off the bottom .005 of the distribution. It is rare that one finds the bottom percentiles of an F
distribution tabled but they can be obtained from the top percentiles. In particular,

F(.005,N2−1,N1−1) =
1

F(.995,N1−1,N2−1)
.

Note that the degrees of freedom have been reversed in the right-hand side of the equality.
The procedure for this test does not fit within the general procedures outlined in Chapter 3. It

has been indicated all along that results for variances do not fit the general pattern. Although we
have a parameter, σ2

2
/

σ2
1 , and an estimate of the parameter, s2

2
/

s2
1, we do not have a standard error

or a reference distribution that is symmetric about zero. In fact, the F distribution is not symmetric
though we rely on it being ‘centered’ about 1.

EXAMPLE 4.4.1. We again consider the log turtle height data. The sample variance of log female
heights is s2

1 = 0.02493979 and the sample variance of log male heights is s2
2 = 0.00677276. An

α = .01 level test is rejected, i.e., we conclude that σ2
2 6= σ2

1 , if

.2716 =
0.00677276
0.02493979

=
s2

2

s2
1
> F(.995,23,23) = 3.04

or if
.2716 < F(.005,23,23) =

1
F(.995,23,23)

=
1

3.04
= .33.

The second of these inequalities is true, so the null hypothesis of equal variances is rejected at the
.01 level. We have evidence that σ2

2 6= σ2
1 and, since the statistic is less than one, evidence that

σ2
2 < σ2

1 . 2

EXAMPLE 4.4.2. Consider again the final point total data. The sample variance for females is
s2

1 = 487.28 and the sample variance for males is s2
2 = 979.29. The test statistic is

s2
1

s2
2
=

487.28
979.29

= 0.498 .

Naturally, it does not matter which variance estimate we put in the numerator as long as we keep the
degrees of freedom straight. The observed test statistic is not less than 1

/
F(.95,14,21)= 1

/
2.197=

.455 nor greater than F(.95,21,14) = 2.377, so the test cannot be rejected at the α = .10 level. 2

In practice, tests for the equality of variances are rarely performed. Typically, the main em-
phasis is on drawing conclusions about the µis; the motivation for testing equality of variances is
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frequently to justify the use of the pooled estimate of the variance. The test assumes that the null
hypothesis of equal variances is true and data that are inconsistent with the assumptions indicate
that the assumptions are false. We generally take this to indicate that the assumption about the null
hypothesis is false, but, in fact, unusual data may be obtained if any of the assumptions are invalid.
The equal variances test assumes that the data are independent and normal and that the variances
are equal. Minor deviations from normality may cause the test to be rejected. While procedures for
comparing µis based on the pooled estimate of the variance are sensitive to unequal variances, they
are not particularly sensitive to nonnormality. The test for equality of variances is so sensitive to
nonnormality that when rejecting this test one has little idea if the problem is really unequal vari-
ances or if it is nonnormality. Thus one has little idea whether there is a problem with the pooled
estimate procedures or not. Since the test is not very informative, it is rarely performed. However,
studying this test prepares one for examining the important analysis of variance F test that is treated
in the next chapter.

Minitab commands

Minitab can be used to get the F percentiles reported in Example 4.4.1.

MTB > invcdf .995

SUBC> f 23 23.

MTB > invcdf .005

SUBC> f 23 23.

Theory

The F distribution used here is related to the fact that for normal data

(Ni−1)s2
i

σ2
i

∼ χ
2(Ni−1).

Definition 4.4.3. An F distribution is the ratio of two independent chi-squared random variables
divided by their degrees of freedom. The numerator and denominator degrees of freedom for the F
distribution are the degrees of freedom for the respective chi-squares.

In this problem, the two chi-squared random variables divided by their degrees of freedom are

(Ni−1)s2
i /σ2

i
Ni−1

=
s2

i

σ2
i

i = 1,2. They are independent because they are taken from independent samples and their ratio is

s2
2

σ2
2

/ s2
1

σ2
1
=

s2
2

s2
1

σ2
1

σ2
2
.

When the null hypothesis is true, i.e., σ2
2 /σ2

1 = 1, by definition, we get

s2
2

s2
1
∼ F(N2−1,N1−1),

so the test statistic has an F distribution under the null hypothesis.
Note that we could equally well have reversed the roles of the two groups and set the test up as

H0 :
σ2

1

σ2
2
= 1 versus HA :

σ2
1

σ2
2
6= 1
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Table 4.4: Weights of rats on thiouracil

Rat Start Finish Rat Start Finish
1 61 129 6 51 119
2 59 122 7 56 108
3 53 133 8 58 138
4 59 122 9 46 107
5 51 140 10 53 122

Table 4.5: Weight gain comparison

Control Thyroxin
115 107 132 88
117 90 84 119
133 91 133
115 91 118
95 112 87

with the test statistic
s2

1

s2
2
.

An α level test is rejected if
s2

1

s2
2
> F

(
1− α

2
,N1−1,N2−1

)
or if

s2
1

s2
2
< F

(
α

2
,N1−1,N2−1

)
.

Using the fact that for any α between zero and one and any degrees of freedom r and s,

F(α,r,s) =
1

F(1−α,s,r)
, (4.4.1)

it is easily seen that this test is equivalent to the one we constructed. Relation (4.4.1) is a result of
the fact that with equal variances both s2

2/s2
1 and s2

1/s2
2 have F distributions. Clearly, the smallest,

say, 5% of values from s2
2/s2

1 are also the largest 5% of the values of s2
1/s2

2.

4.5 Exercises

EXERCISE 4.5.1. Box (1950) gave data on the weights of rats that were given the drug Thiouracil.
The rats were measured at the start of the experiment and at the end of the experiment. The data are
given in Table 4.4. Give a 99% confidence interval for the difference in weights between the finish
and the start. Test the null hypothesis that the population mean weight gain was less than or equal
to 50 with α = .02.

EXERCISE 4.5.2. Box (1950) also considered data on rats given Thyroxin and a control group of
rats. The weight gains are given in Table 4.5. Give a 95% confidence interval for the difference in
weight gains between the Thyroxin group and the control group. Give an α = .05 test of whether
the control group has weight gains no greater than the Thyroxin group.

EXERCISE 4.5.3. Conover (1971, p. 226) considered data on the physical fitness of male seniors
in a particular high school. The seniors were divided into two groups based on whether they lived
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Table 4.6: Physical fitness of male high school seniors

Town 12.7 16.9 7.6 2.4 6.2 9.9
Boys 14.2 7.9 11.3 6.4 6.1 10.6

12.6 16.0 8.3 9.1 15.3 14.8
2.1 10.6 6.7 6.7 10.6 5.0

17.7 5.6 3.6 18.6 1.8 2.6
11.8 5.6 1.0 3.2 5.9 4.0

Farm 14.8 7.3 5.6 6.3 9.0 4.2
Boys 10.6 12.5 12.9 16.1 11.4 2.7

Table 4.7: Turtle lengths

Females Males
98 138 123 155 121 104 116 93

103 138 133 155 125 106 117 94
103 141 133 158 127 107 117 96
105 147 133 159 128 112 119 101
109 149 134 162 131 113 120 102
123 153 136 177 135 114 120 103

on a farm or in town. The results in Table 4.6 are from a physical fitness test administered to the
students. High scores indicate that an individual is physically fit. Give a 95% confidence interval for
the difference in mean fitness scores between the town and farm students. Test the hypothesis of no
difference at the α = .10 level. Give a 99% confidence interval for the mean fitness of town boys.
Give a 99% prediction interval for a future fitness score for a farm boy.

EXERCISE 4.5.4. Use the data of Exercise 4.5.3 to test whether the fitness scores for farm boys
are more or less variable than fitness scores for town boys.

EXERCISE 4.5.5. Jolicoeur and Mosimann (1960) gave data on turtle shell lengths. The data for
females and males are given in Table 4.7. Explore the need for a transformation. Test whether there
is a difference in lengths using α = .01. Give a 95% confidence interval for the difference in lengths.

EXERCISE 4.5.6. Koopmans (1987) gave the data in Table 4.8 on verbal ability test scores for 8
year-olds and 10 year-olds. Test whether the two groups have the same mean with α = .01 and give
a 95% confidence interval for the difference in means. Give a 95% prediction interval for a new 10
year old. Check your assumptions.

EXERCISE 4.5.7. Burt (1966) and Weisberg (1985) presented data on IQ scores for identical
twins that were raised apart, one by foster parents and one by the genetic parents. Variable y1 is
the IQ score for a twin raised by foster parents, while y2 is the corresponding IQ score for the twin
raised by the genetic parents. The data are given in Table 4.9.

We are interested in the difference between µ1, the population mean for twins raised by foster

Table 4.8: Verbal ability test scores

8 yr. olds 10 yr. olds
324 344 448 428 399 414
366 390 372 366 412 396
322 434 364 386 436
398 350 404 452
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Table 4.9: Burt’s IQ data

Case y1 y2 Case y1 y2 Case y1 y2
1 82 82 10 93 82 19 97 87
2 80 90 11 95 97 20 87 93
3 88 91 12 88 100 21 94 94
4 108 115 13 111 107 22 96 95
5 116 115 14 63 68 23 112 97
6 117 129 15 77 73 24 113 97
7 132 131 16 86 81 25 106 103
8 71 78 17 83 85 26 107 106
9 75 79 18 93 87 27 98 111

Table 4.10: Atomic weights in 1931 and 1936

Compound 1931 1936 Compound 1931 1936
Arsenic 74.93 74.91 Lanthanum 138.90 138.92
Caesium 132.81 132.91 Osmium 190.8 191.5
Columbium 93.3 92.91 Potassium 39.10 39.096
Iodine 126.932 126.92 Radium 225.97 226.05
Krypton 82.9 83.7 Ytterbium 173.5 173.04

parents, and µ2, the population mean for twins raised by genetic parents. Analyze the data. Check
your assumptions.

EXERCISE 4.5.8. Table 4.10 presents data given by Shewhart (1939, p. 118) on various atomic
weights as reported in 1931 and again in 1936. Analyze the data. Check your assumptions.

EXERCISE 4.5.9. Reanalyze the data of Example 4.1.1 after deleting the one possible outlier.
Does the analysis change much? If so, how?

EXERCISE 4.5.10. Let y1 ∼ N(89,4) and y2 ∼ N(90,16). Show that Pr[y1 ≥ 87] > Pr[y2 ≥ 87],
so that the population with the lower mean has a higher probability of exceeding 87. Recall that
(y1− 89)/

√
4 ∼ N(0,1) with a similar result for y2 so that both probabilities can be rewritten in

terms of a N(0,1).

EXERCISE 4.5.11. Mandel (1972) reported stress test data on elongation for a certain type of
rubber. Four pieces of rubber sent to one laboratory yielded a sample mean and variance of 56.50
and 5.66, respectively. Four different pieces of rubber sent to another laboratory yielded a sample
mean and variance of 52.50 and 6.33, respectively. Are the data two independent samples or a paired
comparison? Is the assumption of equal variances reasonable? Give a 99% confidence interval for
the difference in population means and give an approximate P value for testing that there is no
difference between population means.

EXERCISE 4.5.12. Bethea et al. (1985) reported data on the peel-strengths of adhesives. Some of
the data are presented in Table 4.11. Give an approximate P value for testing no difference between
adhesives, a 95% confidence interval for the difference between mean peel-strengths, and a 95%
prediction interval for a new observation on Adhesive A.

EXERCISE 4.5.13. Garner (1956) presented data on the tensile strength of fabrics. Here we con-
sider a subset of the data. The complete data and a more extensive discussion of the experimental
procedure are given in Exercise 11.5.2. The experiment involved testing fabric strengths on different
machines. Eight homogeneous strips of cloth were divided into samples and each machine was used
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Table 4.11: Peel-strengths

Adhesive Observations
A 60 63 57 53 56 57
B 52 53 44 48 48 53

Table 4.12: Tensile strength

Strip 1 2 3 4 5 6 7 8
m1 18 9 7 6 10 7 13 1
m2 7 11 11 4 8 12 5 11

on a sample from each strip. The data are given in Table 4.12. Are the data two independent sam-
ples or a paired comparison? Give a 98% confidence interval for the difference in population means.
Give an approximate P value for testing that there is no difference between population means. What
is the result of an α = .05 test?

EXERCISE 4.5.14. Snedecor and Cochran (1967) presented data on the number of acres planted
in corn for two sizes of farms. Size was measured in acres. Some of the data are given in Table 4.13.
Are the data two independent samples or a paired comparison? Is the assumption of equal variances
reasonable? Test for differences between the farms of different sizes. Clearly state your α level.
Give a 98% confidence interval for the mean difference between different farms.

EXERCISE 4.5.15. Snedecor and Haber (1946) presented data on cutting dates of asparagus.
On two plots of land, asparagus was grown every year from 1929 to 1938. On the first plot the
asparagus was cut on June 1, while on the second plot the asparagus was cut on June 15. Note
that growing conditions will vary considerably from year to year. Also note that the data presented
have cutting dates confounded with the plots of land. If one plot of land is intrinsically better for
growing asparagus than the other, there will be no way of separating that effect from the effect of
cutting dates. Are the data two independent samples or a paired comparison? Give a 95% confidence
interval for the difference in population means and give an approximate P value for testing that there
is no difference between population means. Give a 95% prediction interval for the difference in a
new year. The data are given in Table 4.14.

EXERCISE 4.5.16. Snedecor (1945b) presented data on a pesticide spray. The treatments were
the number of units of active ingredient contained in the spray. Several different sources for breed-
ing mediums were used and each spray was applied on each distinct breeding medium. The data
consisted of numbers of dead adults flies found in cages that were set over the breeding medium

Table 4.13: Acreage in corn for different farm acreages

Size Corn acreage
240 65 80 65 85 30
400 75 35 140 90 110

Table 4.14: Cutting dates

Year 29 30 31 32 33 34 35 36 37 38
June 1 201 230 324 512 399 891 449 595 632 527
June 15 301 296 543 778 644 1147 585 807 804 749



4.5 EXERCISES 105

Table 4.15: Dead adult flies

Medium A B C D E F G
0 units 423 326 246 141 208 303 256
8 units 414 127 206 78 172 45 103

containers. Some of the data are presented in Table 4.15. Give a 95% confidence interval for the
difference in population means. Give an approximate P value for testing that there is no difference
between population means and an α = .05 test. Give a 95% prediction interval for a new obser-
vation with 8 units. Give a 95% prediction interval for a new observation with 8 units when the
corresponding 0 unit value is 300.

EXERCISE 4.5.17. Using the data of Example 4.2.1 give a 95% prediction interval for the dif-
ference in total points between a new female and a new male. This was not discussed earlier so it
requires a deeper understanding of Section 3.5.





Chapter 5

One-way analysis of variance

Analysis of variance (ANOVA) involves comparing random samples from several populations. Of-
ten the samples arise from observing experimental units with different treatments applied to them
and we refer to the populations as treatment groups. The sample sizes for the treatment groups are
possibly different, say, Ni and we assume that the samples are all independent. Moreover, we assume
that each population has the same variance and is normally distributed.

5.1 Introduction and examples

EXAMPLE 5.1.1. Table 5.1 gives data from Koopmans (1987, p. 409) on the ages at which sui-
cides were committed in Albuquerque during 1978. Ages are listed by ethnic group. The data are
plotted in Figure 5.1. The assumption is that the observations in each group are a random sam-
ple from some population. While it is not clear what these populations would be, we proceed to
examine the data. Note that there are fewer Native Americans in the study than either Hispanics
or non-Hispanic Caucasians; moreover the ages for Native Americans seem to be both lower and
less variable than for the other groups. The ages for Hispanics seem to be a bit lower than for
non-Hispanic Caucasians.

Summary statistics are given below for the three groups.

Sample statistics: suicide ages
Group Ni ȳi· s2

i si
Caucasians 44 41.66 282.9 16.82
Hispanics 34 35.06 268.3 16.38
Native Am. 15 25.07 74.4 8.51

The sample standard deviation for the Native Americans is about half the size of the others. To

Table 5.1: Suicide ages

Non-Hispanic Native
Caucasians Hispanics Americans

21 31 28 52 50 27 45 26 23
55 31 24 27 31 22 57 17 25
42 32 53 76 29 20 22 24 23
25 43 66 44 21 51 48 22 22
48 57 90 35 27 60 48 16
22 42 27 32 34 15 14 21
42 34 48 26 76 19 52 36
53 39 47 51 35 24 29 18
21 24 49 19 55 24 21 48
21 79 53 27 24 18 28 20
31 46 62 58 68 43 17 35

38

107
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Figure 5.1: Dot plots of suicide age data.
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Figure 5.2: Normal plot of suicide residuals, W ′ = .945.

evaluate the combined normality of the data, we subtracted the appropriate group mean from each
observation, i.e., we computed residuals

ε̂i j = yi j− ȳi·,

where yi j is the jth observation in the ith group and ȳi· is the sample mean from the ith group. We
then did a normal plot of the residuals. One normal plot for all of the yi js would not be appropriate
because they have different means, µi. The residuals adjust for the different means. Of course with
the reasonably large samples available here for each group, it would be permissible to do three
separate normal plots, but in other situations with small samples for each group, individual normal
plots would not contain enough observations to be of any value. The normal plot for the residuals is
given in Figure 5.2. The plot is based on n = 44+34+15 = 93 observations. This is quite a large
number, so if the data are normal the plot should be quite straight. In fact, the plot seems reasonably
curved.
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Figure 5.3: Dotplots of log suicide age data.

In order to improve the quality of the assumptions of equal variances and normality, we consider
transformations of the data. In particular, consider transforming to log(yi j). Figure 5.3 contains the
plot of the transformed data. The variability in the groups seems more nearly the same. This is
confirmed by the sample statistics given below.

Sample statistics: log of suicide ages
Group Ni ȳi· s2

i si
Caucasians 44 3.6521 0.1590 0.3987
Hispanics 34 3.4538 0.2127 0.4612
Native Am. 15 3.1770 0.0879 0.2965

The largest sample standard deviation is only about 1.5 times the smallest. The normal plot of
residuals for the transformed data is given in Figure 5.4; it seems considerably straighter than the
normal plot for the untransformed data.

All in all, the logs of the original data seem to satisfy the assumptions reasonably well and
considerably better than the untransformed data. The square roots of the data were also examined
as a possible transformation. While the square roots seem to be an improvement over the original
scale, they do not seem to satisfy the assumptions nearly as well as the log transformed data.

A basic assumption in analysis of variance is that the variance is the same for all populations. As
we did for two independent samples with the same variance, we can compute a pooled estimate of
the variance. Again, this is a weighted average of the variance estimates from the individual groups
with weights that are the individual degrees of freedom. In analysis of variance, the pooled estimate
of the variance is called the mean squared error (MSE). For the logs of the suicide age data, the
mean squared error is

MSE =
(44−1)(.1590)+(34−1)(.2127)+(15−1)(.0879)

(44−1)+(34−1)+(15−1)
= .168.

The degrees of freedom for this estimate are the sum of the degrees of freedom for the individual
estimates; the degrees of freedom for error (d fE) are

d fE = (44−1)+(34−1)+(15−1) = 44+34+15−3 = 90.

The data have an approximate normal distribution, so we can use t(90) as the reference distribution
for statistical inference.

We can now perform statistical inferences for a variety of parameters using our standard
procedure involving a Par, an Est, a SE(Est), and a known distribution symmetric about 0 for
[Est−Par]/SE(Est). In this example, perhaps the most useful things to look at are simply whether
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Figure 5.4: Normal plot of suicide residuals, log data, W ′ = .986.

there is evidence of any age differences in the three groups. Let µC, µH , and µN denote the popula-
tion means for the log ages of the non-Hispanic Caucasian, Hispanic, and Native American groups
respectively. Parameters of interest, with their estimates and the variances of the estimates, are given
below.

Par Est Var(Est)

µC−µH 3.6521−3.4538 σ2
( 1

44 +
1
34

)
µC−µN 3.6521−3.1770 σ2

( 1
44 +

1
15

)
µH −µN 3.4538−3.1770 σ2

( 1
34 +

1
15

)
The estimates and variances are obtained exactly as in Section 4.2. The standard errors of the esti-
mates are obtained by substituting MSE for σ2 in the variance formula and taking the square root.
Below are given the estimates, standard errors, the tobs values for testing H0 : Par = 0, the two-sided
test P values, and the 99% confidence intervals for Par. The confidence intervals require the value
t(.995,90) = 2.631. This t table value appears repeatedly in our discussion.

Par Est SE(Est) tobs P 99% CI
µC−µH .1983 .0936 2.12 .037 (−.04796, .44456)
µC−µN .4751 .1225 3.88 .000 (.15280, .79740)
µH −µN .2768 .1270 2.18 .032 (−.05734, .61094)

Note that while the estimated difference between Hispanics and Native Americans is half again as
large as the difference between non-Hispanic Caucasians and Hispanics, the tobs values, and thus
the significance levels of the differences, are almost identical. This occurs because the standard
errors are substantially different. The standard error for the estimate of µC− µH involves only the
reasonably large samples for non-Hispanic Caucasians and Hispanics; the standard error for the
estimate of µH − µN involves the comparatively small sample of Native Americans, which is why
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this standard error is larger. On the other hand, the standards errors for the estimates of µC−µN and
µH −µN are very similar. The difference in the standard error between having a sample of 34 or 44
is minor by comparison to the effect on the standard error of having a sample size of only 15.

The hypothesis H0 : µC− µH = 0, or equivalently H0 : µC = µH , is the only one rejected at the
.01 level. Summarizing the results of the tests at the .01 level, we have no strong evidence of a
difference between the ages at which non-Hispanic Caucasians and Hispanics commit suicide, we
have no strong evidence of a difference between the ages at which Hispanics and Native Americans
commit suicide, but we do have strong evidence that there is a difference in the ages at which
non-Hispanic Caucasians and Native Americans commit suicide.

Note that establishing a difference between non-Hispanic Caucasians and Native Americans
does little to explain why that difference exists. The reason that Native Americans committed suicide
at younger ages could be some complicated function of socio-economic factors or it could be simply
that there were many more young Native Americans than old ones in Albuquerque at the time. The
test only indicates that the two groups were different, it says nothing about why the groups were
different.

The confidence interval for the difference between non-Hispanic Caucasians and Native Amer-
icans was constructed on the log scale. Transforming the interval gives (e.1528,e.7974) or (1.2,2.2).
We are 99% confident that the average age of suicides is between 1.2 and 2.2 times higher for
non-Hispanic Caucasians than for Native Americans. Note that examining differences in log ages
transforms to the original scale as a multiplicative factor between groups. The parameters µC and
µN are means for the logs of the suicide ages. When we transform the interval (.1528, .7974) for
µC−µN into the interval (e.1528,e.7974), we obtain a confidence interval for eµC−µN or equivalently
for eµC/eµN . We can think of eµC and eµN as ‘average’ values for the age distributions of the non-
Hispanic Caucasians and Native Americans although they are not the expected values of the dis-
tributions. Obviously, eµC = (eµC/eµN )eµN , so eµC/eµN is the number of times greater the average
suicide age is for non-Hispanic Caucasians. That is the basis for the interpretation of the interval
(e.1528,e.7974).

With these data, the tests for differences in means do not depend crucially on the log trans-
formation but interpretations of the confidence intervals do. For the untransformed data, the mean
squared error is MSEu = 245 and the observed value of the test statistic for comparing non-Hispanic
Caucasians and Native Americans is

tu = 3.54 =
41.66−25.07√

245
( 1

44 +
1
15

) ,
which is not far from the transformed value 3.88. However, the untransformed 99% confidence inter-
val is (4.3,28.9), indicating a 4 to 29 year higher age for the mean non-Hispanic Caucasian suicide,
rather than the transformed interval (1.2,2.2), indicating that typical non-Hispanic Caucasian sui-
cide ages are 1.2 to 2.2 times greater than those for Native Americans.

The data do not strongly suggest that the means for Hispanics and Native Americans are dif-
ferent, so we might wish to compare the mean of the non-Hispanic Caucasians with the average of
these groups. Typically, averaging means will only be of interest if we feel comfortable treating the
means as the same. The parameter of interest is Par = µC− (µH +µN)/2 or

Par = µC−
1
2

µH −
1
2

µN

with

Est = ȳC−
1
2

ȳH −
1
2

ȳN = 3.6521− 1
2

3.4538− 1
2

3.1770 = .3367.

It is not appropriate to use our standard methods to test this contrast between the means because the
contrast was suggested by the data. Nonetheless, we will illustrate the standard methods. From the
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independence of the data in the three groups and Proposition 1.2.11, the variance of the estimate is

Var
(

ȳC−
1
2

ȳH −
1
2

ȳN

)
= Var(ȳC)+

(
−1
2

)2

Var(ȳH)+

(
−1
2

)2

Var(ȳN)

=
σ2

44
+

(
−1
2

)2
σ2

34
+

(
−1
2

)2
σ2

15

= σ
2

[
1

44
+

(
−1
2

)2 1
34

+

(
−1
2

)2 1
15

]
.

Substituting the MSE for σ2 and taking the square root, the standard error is

.0886 =

√√√√.168

[
1
44

+

(
−1
2

)2 1
34

+

(
−1
2

)2 1
15

]
.

Note that the standard error happens to be smaller than any of those we have considered when
comparing pairs of means. To test the null hypothesis that the mean for non-Hispanic Cau-
casians equals the average of the other groups, i.e., H0 : µC − 1

2 µH − 1
2 µN = 0, the test statistic

is [.3367− 0]/.0886 = 3.80, so the null hypothesis is easily rejected. This is an appropriate test
statistic for evaluating H0, but when letting the data suggest the contrast, the t(90) distribution is no
longer appropriate for quantifying the level of significance. Similarly, we could construct the 99%
confidence interval

.3367±2.631(.0886)

but again, the confidence coefficient 99% is not really appropriate for a contrast suggested by the
data.

While the parameter µC − 1
2 µH − 1

2 µN was suggested by the data, the theory of inference in
Chapter 3 assumes that the parameter of interest does not depend on the data. In particular, the
reference distributions we have used are invalid when the parameters depend on the data. Moreover,
performing numerous inferential procedures complicates the analysis. Our standard tests are set up
to check on one particular hypothesis. In the course of analyzing these data we have performed
several tests. Thus we have had multiple opportunities to commit errors. In fact, the reason we have
been discussing .01 level tests rather than .05 level tests is to help limit the number of errors made
when all of the null hypotheses are true. In Chapter 6, we discuss methods of dealing with the
problems that arise from making multiple comparisons among the means.

To this point, we have considered contrasts (comparisons) among the means. In constructing
confidence intervals, prediction intervals, or tests for an individual mean, we continue to use the
MSE and the t(d fE) distribution. For example, the endpoints of a 99% confidence interval for µH ,
the mean of the log suicide age for this Hispanic population, are

3.4538±2.631

√
.168
34

for an interval of (3.269,3.639). Transforming the interval back to the original scale gives
(26.3,38.1), i.e., we are 99% confident that the average age of suicides for this Hispanic popu-
lation is between 26.3 years old and 38.1 years old. The word ‘average’ is used because this is not
a confidence interval for the expected value of the suicide ages, it is a confidence interval for the
exponential transformation of the expected value of the log suicide age. A 99% prediction interval
for the age of a future suicide from this Hispanic population has endpoints

3.4538±2.631

√
.168+

.168
34
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for an interval of (2.360,4.548). Transforming the interval back to the original scale gives
(10.6,94.4), i.e., we are 99% confident that a future suicide from this Hispanic population would
be between 10.6 years old and 94.4 years old. This interval happens to include all of the observed
suicide ages for Hispanics in Table 5.1; that seems reasonable, if not terribly informative. 2

5.1.1 Theory

In analysis of variance, we assume that we have independent observations on, say, a different normal
populations with the same variance. In particular, we assume the following data structure.

Sample Data Distribution
1 y11,y12, . . . ,y1N1 iid N(µ1,σ

2)
2 y21,y22, . . . ,y2N2 iid N(µ2,σ

2)
...

...
...

...
a ya1,ya2, . . . ,yaNa iid N(µa,σ

2)

Here each sample is independent of the other samples. These assumptions can be written more
succinctly as the one-way analysis of variance model

yi j = µi + εi j, εi js independent N(0,σ2) (5.1.1)

i = 1, . . . ,a, j = 1, . . . ,Ni. The εi js are unobservable random errors. We are writing each observation
as its mean plus some random error. Alternatively, model (5.1.1) is often written as

yi j = µ +αi + εi j, εi js independent N(0,σ2) (5.1.2)

where µi = µ +αi. The parameter µ is viewed as a grand mean, while αi is an effect for the ith
treatment group. The µ and αi parameters are not well defined. In model (5.1.2) they only occur
as the sum µ +αi, so for any choice of µ and αi the choices, say, µ + 5 and αi− 5 are equally
valid. The 5 can be replaced by any number we choose. The parameters µ and αi are not completely
specified by the model. There would seem to be little point in messing around with model (5.1.2)
except that it has useful relationships with other models that will be considered later.

To analyze the data, we compute summary statistics from each sample. These are the sample
means and sample variances. For the ith group of observations, the sample mean is

ȳi· =
1
Ni

Ni

∑
j=1

yi j

and the sample variance is

s2
i =

1
Ni−1

Ni

∑
j=1

(yi j− ȳi·)
2
.

With independent normal errors having the same variance, all of the summary statistics are indepen-
dent of one another. Except for checking the validity of our assumptions, these summary statistics
are more than sufficient for the entire analysis. Typically, we present the summary statistics in tab-
ular form.

Sample statistics
Group Size Mean Variance

1 N1 ȳ1· s2
1

2 N2 ȳ2· s2
2

...
...

...
...

a Na ȳa· s2
a
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The sample means, the ȳi·s, are estimates of the corresponding µis and the s2
i s all estimate the

common population variance σ2. With unequal sample sizes an efficient pooled estimate of σ2 must
be a weighted average of the s2

i s. The weights are the degrees of freedom associated with the various
estimates. The pooled estimate of σ2 is called the mean squared error (MSE),

MSE ≡ s2
p ≡ (N1−1)s2

1 +(N2−1)s2
2 + · · ·+(Na−1)s2

a

∑
a
i=1(Ni−1)

=
1

(n−a)

a

∑
i=1

Ni

∑
j=1

(yi j− ȳi·)
2

where n = ∑
a
i=1 Ni is the total sample size. The degrees of freedom for the MSE are the degrees of

freedom for error,

d fE ≡ n−a =
a

∑
i=1

(Ni−1).

This is the sum of the degrees of freedom for the individual variance estimates. Note that the MSE
depends only on the sample variances, so, with independent normal errors having the same variance,
MSE is independent of the ȳi·s.

A simple average of the sample variances s2
i is not reasonable. If we had N1 = 1000000 observa-

tions in the first sample and only N2 = 5 observations in the second sample, obviously the variance
estimate from the first sample is much better than that from the second and we want to give it more
weight.

We need to check the validity of our assumptions. The errors in models (1) and (2) are assumed
to be independent normals with mean 0 and variance σ2, so we would like to use them to evaluate
the distributional assumptions, e.g., equal variances and normality. Unfortunately, the errors are
unobservable, we only see the yi js and we do not know the µis, so we cannot compute the εi js.
However, since εi j = yi j−µi and we can estimate µi, we can estimate the errors with the residuals,

ε̂i j = yi j− ȳi·.

The residuals yi j − ȳi· can be plotted against predicted values ȳi· to check whether the variance
depends in some way on the means µi. They can also be plotted against rankits (normal scores) to
check the normality assumption.

Using residuals to evaluate assumptions is a fundamental part of modern statistical data analysis.
However, complications can arise. In later chapters we will discuss reasons for using standardized
residuals rather than these raw residuals. Standardized residuals will be discussed in connection
with regression analysis. In balanced analysis of variance, i.e., situations with equal numbers of
observations on each group, the complications disappear. Thus, the unstandardized residuals are
adequate for evaluating the assumptions in a balanced analysis of variance. In other analysis of
variance situations, the problems are relatively minor.

If we are satisfied with the assumptions, we proceed to examine the parameters of interest. The
basic parameters of interest in analysis of variance are the µis, which have natural estimates, the ȳi·s.
We also have an estimate of σ2, so we are in a position to draw a variety of statistical inferences. The
main problem in obtaining tests and confidence intervals is in finding appropriate standard errors.
To do this we need to observe that each of the a samples are independent. The ȳi·s are computed
from different samples, so they are independent of each other. Moreover, ȳi· is the sample mean of
Ni observations, so

ȳi· ∼ N
(

µi,
σ2

Ni

)
.

For inferences about a single mean, say, µ2, use the general procedures with Par = µ2 and
Est = ȳ2·. The variance of ȳ2· is σ2/N2, so SE(ȳ2·) =

√
MSE/N2. The reference distribution is

[ȳ2·−µ2]/SE(ȳ2·)∼ t(d fE). Note that the degrees of freedom for the t distribution are precisely the
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degrees of freedom for the MSE. The general procedures also provide prediction intervals using the
MSE and t(d fE) distribution.

For inferences about the difference between two means, say, µ2−µ1, use the general procedures
with Par = µ2−µ1 and Est = ȳ2·− ȳ1·. The two means are independent, so the variance of ȳ2·− ȳ1·
is the variance of ȳ2· plus the variance of ȳ1·, i.e., σ2/N2 +σ2/N1. The standard error of ȳ2·− ȳ1· is

SE(ȳ2·− ȳ1·) =

√
MSE

N2
+

MSE
N1

=

√
MSE

[
1

N1
+

1
N2

]
.

The reference distribution is

(ȳ2·− ȳ1·)− (µ2−µ1)√
MSE

[
1

N1
+ 1

N2

] ∼ t(d fE).

We might wish to compare one mean, µ1, with the average of two other means, (µ2 +µ3)/2. In
this case, the parameter can be taken as Par = µ1− (µ2 +µ3)/2 = µ1− 1

2 µ2− 1
2 µ3. The estimate is

Est = ȳ1·− 1
2 ȳ2·− 1

2 ȳ3·. By the independence of the sample means, the variance of the estimate is

Var
(

ȳ1·−
1
2

ȳ2·−
1
2

ȳ3·

)
= Var(ȳ1·)+Var

(
−1
2

ȳ2·

)
+Var

(
−1
2

ȳ3·

)
=

σ2

N1
+

(
−1
2

)2
σ2

N2
+

(
−1
2

)2
σ2

N3

= σ
2
[

1
N1

+
1
4

1
N2

+
1
4

1
N3

]
.

The standard error is

SE
(

ȳ1·−
1
2

ȳ2·−
1
2

ȳ3·

)
=

√
MSE

[
1

N1
+

1
4N2

+
1

4N3

]
.

The reference distribution is(
ȳ1·− 1

2 ȳ2·− 1
2 ȳ3·

)
−
(
µ1− 1

2 µ2− 1
2 µ3
)√

MSE
[

1
N1

+ 1
4N2

+ 1
4N3

] ∼ t(d fE).

Typically, in analysis of variance we are concerned with parameters that are contrasts (compar-
isons) among the µis. For known coefficients λ1, . . . ,λa with ∑

a
i=1 λi = 0, a contrast is defined by

∑
a
i=1 λiµi. For example, µ2− µ1 has λ1 = −1, λ2 = 1, and all other λis equal to 0. The contrast

µ1− 1
2 µ2− 1

2 µ3 has λ1 = 1, λ2 = −1/2, λ3 = −1/2, and all other λis equal to 0. The natural esti-
mate of ∑

a
i=1 λiµi substitutes the sample means for the population means, i.e., the natural estimate

is ∑
a
i=1 λiȳi·. In fact, Proposition 1.2.11 gives

E

(
a

∑
i=1

λiȳi·

)
=

a

∑
i=1

λiE(ȳi·) =
a

∑
i=1

λiµi,

so by definition this is an unbiased estimate of the contrast. Using the independence of the sample
means and Proposition 1.2.11,

Var

(
a

∑
i=1

λiȳi·

)
=

a

∑
i=1

λ
2
i Var(ȳi·)
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=
a

∑
i=1

λ
2
i

σ2

Ni

= σ
2

a

∑
i=1

λ 2
i

Ni
.

The standard error is

SE

(
a

∑
i=1

λiȳi·

)
=

√
MSE

a

∑
i=1

λ 2
i

Ni

and the reference distribution is

(∑
a
i=1 λiȳi·)− (∑

a
i=1 λiµi)√

MSE ∑
a
i=1 λ 2

i /Ni

∼ t(d fE),

see Exercise 5.7.14. If the independence and equal variance assumptions hold, then the central
limit theorem and law of large numbers can be used to justify a N(0,1) reference distribution even
when the data are not normal. Moreover, in one-way ANOVA all of these results hold even when
∑i λi 6= 0, so they hold for linear combinations of the µis that are not contrasts. Nonetheless, our
primary interest is in contrasts.

Having identified a parameter, an estimate, a standard error, and an appropriate reference distri-
bution, inferences follow the usual pattern. A 95% confidence interval for ∑

a
i=1 λiµi has endpoints

a

∑
i=1

λiȳi·± t(.975,d fE)

√
MSE

a

∑
i=1

λ 2
i /Ni.

An α = .05 test of H0 : ∑
a
i=1 λiµi = 0 versus HA : ∑

a
i=1 λiµi 6= 0 rejects H0 if

|∑a
i=1 λiȳi·−0|√

MSE ∑
a
i=1 λ 2

i /Ni

> t(.975,d fE) (5.1.3)

An equivalent procedure to the test in (5.1.3) is often useful. If we square both sides of (5.1.3),
the test rejects if  |∑a

i=1 λiȳi·−0|√
MSE ∑

a
i=1 λ 2

i /Ni

2

> (t(.975,d fE))2
.

The square of the test statistic leads to another statistic that will be useful later, the sum of squares
for the contrast. Rewrite the test statistic as |∑a

i=1 λiȳi·−0|√
MSE ∑

a
i=1 λ 2

i /Ni

2

=
(∑

a
i=1 λiȳi·−0)2

MSE ∑
a
i=1 λ 2

i /Ni

=
(∑

a
i=1 λiȳi·)

2/
∑

a
i=1 λ 2

i /Ni

MSE

and define the sum of squares for the contrast as

SS

(
a

∑
i=1

λiµi

)
≡ (∑

a
i=1 λiȳi·)

2

∑
a
i=1 λ 2

i /Ni
. (5.1.4)

The α = .05 t test of H0 : ∑
a
i=1 λiµi = 0 versus HA : ∑

a
i=1 λiµi 6= 0 is equivalent to rejecting H0 if

SS (∑a
i=1 λiµi)

MSE
> [t(.975,d fE)]2 .
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It is a mathematical fact that for any α between 0 and 1 and any d fE,[
t
(

1− α

2
,d fE

)]2
= F(1−α,1,d fE) .

Thus the test based on the sum of squares for the contrast is an F test with 1 degree of freedom in
the numerator. Any contrast has 1 degree of freedom associated with it.

A notational matter needs to be mentioned. Contrasts, by definition, have ∑
a
i=1 λi = 0. If we use

model (5.1.2) rather than model (5.1.1) we get
a

∑
i=1

λiµi =
a

∑
i=1

λi (µ +αi) = µ

a

∑
i=1

λi +
a

∑
i=1

λiαi =
a

∑
i=1

λiαi.

Thus contrasts in model (5.1.2) involve only the treatment effects. This is of some importance later
when dealing with more complicated models.

In our first example we transformed the suicide age data so that they better satisfy the assump-
tions of equal variances and normal distributions. In fact, analysis of variance tests and confidence
intervals are frequently useful even when these assumptions are violated. Scheffé (1959, p. 345)
concludes that (a) nonnormality is not a serious problem for inferences about means but it is a se-
rious problem for inferences about variances, (b) unequal variances are not a serious problem for
inferences about means from samples of the same size but are a serious problem for inferences
about means from samples of unequal sizes, and (c) lack of independence can be a serious problem.
Of course any such rules depend on just how bad the nonnormality is, how unequal the variances
are, and how bad the lack of independence is. My own interpretation of these rules is that if you
check the assumptions and they do not look too bad, you can probably proceed with a fair amount
of assurance.

5.1.2 Balanced ANOVA: introductory example

We now consider an example of a balanced one-way ANOVA. A balanced one-way ANOVA has
equal numbers of observations in each group, say, N = N1 = · · ·= Na.

EXAMPLE 5.1.2. Ott (1949) presented data on an electrical characteristic associated with ceramic
components for a phonograph. Ott and Schilling (1990) and Ryan (1989) have also considered these
data. Ceramic pieces were cut from strips, each of which could provide 25 pieces. It was decided
to take 7 pieces from each strip, manufacture the 7 ceramic phonograph components, and measure
the electrical characteristic on each. The data from 4 strips are given below. (These are actually the
third through sixth of the strips reported by Ott.)

Strip Observations
1 17.3 15.8 16.8 17.2 16.2 16.9 14.9
2 16.9 15.8 16.9 16.8 16.6 16.0 16.6
3 15.5 16.6 15.9 16.5 16.1 16.2 15.7
4 13.5 14.5 16.0 15.9 13.7 15.2 15.9

In the current analysis, we act as if the four strips are of intrinsic interest and investigate whether
there are differences among them. In Subsection 13.4.2 we will consider an analysis in which we
assume that the strips are themselves a random sample from some wider population. The data are
displayed in Figure 5.5 and summary statistics follow.

Sample statistics: electrical characteristics
Strip N ȳi· s2

i si
1 7 16.4429 0.749524 0.866
2 7 16.5143 0.194762 0.441
3 7 16.0714 0.162381 0.403
4 7 14.9571 1.139524 1.067
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Figure 5.5: Plot of electrical characteristics data.

The electrical characteristic appears to be lowest for strip 4 and highest for strips 1 and 2, but we
need to use formal inferential procedures to establish whether the differences could be reasonably
ascribed to random variation. The sample standard deviations, and thus the sample variances, are
comparable. The ratio of the largest to the smallest standard deviation is just over 2.5, which is not
small but which is also not large enough to cause major concern. As in Section 4.4, we could do F
tests to determine whether any pairs of variances differ. The largest of these F tests is not significant
at the .02 level and, after considering that there are six pairs to test, we conclude that there is no
cause for major concern. Figure 5.5 is poorly suited to evaluate the variances visually because in
Figure 5.5 the plot involves any differences in means as well as differences in variance. A better
plot from which to evaluate the variances is given as Figure 5.6. Figure 5.6 is a plot of the residuals
ε̂i j ≡ yi j − ȳi· against the appropriate group. The residuals have been adjusted for their different
means, so residuals, and thus residual plots, are centered at 0. Figure 5.6 is not wonderful in that we
see differences in variability for the four groups, but it is also not outlandishly inconsistent with the
assumption of equal variances. (Note that if one group had many more observations than another, the
spread for that group would be greater even if the population variances were the same.) Figure 5.7
contains a normal plot of the residuals. The plot looks fairly reasonable, although it tails off at the
top. The W ′ statistic of .956 gives a P value for the hypothesis of normality that is larger than .05
and in any case, analysis of variance procedures are not particularly sensitive to nonnormality.

With equal sample sizes in each group, the MSE reduces to the simple average of the sample
variances.

MSE =
(7−1).74952+(7−1).19476+(7−1).16238+(7−1)1.13952

7+7+7+7−4

=
.74952+ .19476+ .16238+1.13952

4
= .56155
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Figure 5.6: Residual plot.
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Figure 5.7: Normal plot of residuals, W ′ = 0.956.
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and has error degrees of freedom d fE = 7+ 7+ 7+ 7− 4 = 24. Again, we compare all pairs of
means. The value t(.995,24) = 2.797 is required for constructing 99% confidence intervals. These
intervals and two-sided tests of H0 : Par = 0 are given below.

Par Est SE(Est) tobs P 99% CI
µ1−µ4 1.4858 0.4006 3.709 .001 (0.37,2.61)
µ2−µ4 1.5572 0.4006 3.887 .001 (0.44,2.68)
µ3−µ4 1.1143 0.4006 2.782 .010 (−0.01,2.23)
µ1−µ2 −0.0714 0.4006 −0.178 .860 (−1.19,1.05)
µ1−µ3 0.3715 0.4006 0.927 .363 (−0.75,1.49)
µ2−µ3 0.4429 0.4006 1.106 .280 (−0.68,1.56)

Note that with equal numbers of observations on each group, the standard errors are the same
for each comparison of two means. Based on α = .01 tests, the electrical characteristic for strip 4
differs significantly from those for strips 1 and 2, the decision for strip 3 is essentially a toss-up, and
no other differences are significant. Even for strips 1 and 2, the 99% confidence intervals indicate
that the data are consistent with differences from strip 4 as small as .37 and .44 respectively. Such
differences may or may not be of practical importance. Clearly, the main source of differences
among these data is that strip 4 tends to give smaller values than the other strips. In fact, the P
values for comparisons among the other three strips are all quite large.

Using formula (5.1.4), the sum of squares for µ1−µ4 is

SS(µ1−µ4) =
(1.4858)2

(1)2/7+(−1)2/7
= 7.7266 .

The table below gives the sums of squares and F tests for equality between all pairs of means.

Par SS Fobs P
µ1−µ4 7.727 13.76 .001
µ2−µ4 8.487 15.11 .001
µ3−µ4 4.346 7.74 .010
µ1−µ2 0.018 0.03 .860
µ1−µ3 0.483 0.86 .363
µ2−µ3 0.687 1.22 .280

Note that the F statistics are just the sums of squares divided by the MSE. They equal the squares
of the t statistics given earlier and the P values are identical. 2

5.1.3 Analytic and enumerative studies

In one-sample, two-sample, and one-way ANOVA problems, we assume that we have random sam-
ples from various populations. In the more sophisticated models treated later, we continue to assume
that at least the errors are a random sample from a N(0,σ2) population. The statistical inferences
we draw are valid for the populations that were sampled. Often it is not clear what the sampled
populations are. What are the populations from which the Albuquerque suicide ages were sampled?
Presumably, our data were all of the suicides reported in 1978 for these ethnic groups. The electrical
characteristic data has four ceramic strips divided into 25 pieces, of which seven pieces are taken.
Are the seven pieces a random sample from the 25? They could be. Is the collection of 25 pieces
the population that we really care about? Doubtful! What we really care about is whether the differ-
ences in ceramic strips are large enough to cause problems in the production of phonographs. (Not
that anyone makes phonographs anymore.)

When we analyze data, we assume that the measurements are subject to errors and that the
errors are consistent with our models. However, the populations from which these samples are taken
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may be nothing more than mental constructs. In such cases, it requires extrastatistical reasoning to
justify applying the statistical conclusions to whatever issues we really wish to address. Moreover,
the desire to predict the future underlies virtually all studies and, unfortunately, one can never be
sure that data collected now will apply to the conditions of the future. So what can you do? Only
your best. You can try to make your data as relevant as possible to your anticipation of future
conditions. You can try to collect data for which the assumptions will be reasonably true. You can
try to validate your assumptions. Studies in which it is not clear that the data are random samples
from the population of immediate interest are often called analytic studies.

About the only time one can be really sure that statistical conclusions apply directly to the
population of interest is when one has control of the population of interest. If we have a list of all
the elements in the population, we can choose a random sample from the population. Of course,
choosing a random sample is still very different from obtaining a random sample of observations.
Without control or total cooperation, we may not be able to take measurements on the sample.
(Even when you can find people that you want for a sample, many will not submit to a measurement
process.) Studies in which one can arrange to have the assumptions met are often called enumerative
studies. See Hahn and Meeker (1993) and Deming (1986) for additional discussion of these issues.

5.2 Balanced one-way analysis of variance: theory

We now examine in detail the important special case of one-way analysis of variance in which the
numbers of observations for each sample are the same, cf. Subsection 5.1.2. In this case, the analysis
of variance is referred to as balanced. Balanced one-way ANOVA is important because it is both
understandable and extendable. The logic behind analysis of variance is much clearer when dealing
with balanced samples and the standard methods for multifactor analysis of variance are extensions
of the techniques developed for balanced one-way ANOVA. The standard methods for multifactor
ANOVA also assume equal numbers of observations on all treatments.

For balanced analysis of variance, let N ≡ N1 = · · ·= Na be the number of observations in each
sample. In particular, we assume the data structure

Sample Data Distribution
1 y11,y12, . . . ,y1N iid N(µ1,σ

2)
2 y21,y22, . . . ,y2N iid N(µ2,σ

2)
...

...
...

...
a ya1,ya2, . . . ,yaN iid N(µa,σ

2)

with all samples independent. The data structure can be rewritten as the balanced one-way ANOVA
model

yi j = µi + εi j, εi js independent N(0,σ2)

i = 1, . . . ,a, j = 1, . . . ,N. Again, we have assumed the same variance σ2 for each sample.
In this section, we focus on testing the (null) hypothesis

H0 : µ1 = µ2 = · · ·= µa.

This is a test of whether there are any differences among the groups. If we use model (5.1.2), the null
hypothesis can be written as H0 : α1 = α2 = · · · = αa. To perform the test, first compute summary
statistics from the samples.

Sample statistics
Group Size Mean Variance

1 N ȳ1· s2
1

2 N ȳ2· s2
2

...
...

...
...

a N ȳa· s2
a
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As before, the sample means, the ȳi·s, are estimates of the µis and the s2
i s all estimate σ2.

The test of H0 is based on estimating σ2. We construct two estimates of the variance. The first
estimate is always valid, assuming of course that our initial assumptions were correct. The second
estimate is valid only when µ1 = µ2 = · · ·= µa. If the µis are all equal, we have two estimates of σ2,
so they should be about the same. If the µis are not all equal, the second estimate tends to be bigger
than σ2, so it should be larger than the first estimate. We conclude that the data are consistent with
µ1 = µ2 = · · · = µa when the two estimates seem to be about the same and conclude that the µis
are not all equal when the second estimate is substantially larger than the first. As usual, when the
estimates are about the same we conclude that the data are consistent with the µis all being equal;
we do not conclude that the µis are really all equal. If the µis are not quite equal but are very nearly
so, we cannot expect to be able to detect the differences. On the other hand, two widely different
variance estimates give substantial proof that the µis are not all the same.

The easy part of the process is creating the first estimate of the variance, the one that is always
valid. From each sample, regardless of the value of µi, we have an estimate of σ2, namely s2

i .
Obviously, the average of the s2

i s must also be an estimate of σ2. The average is the pooled estimate
of the variance, i.e., the mean squared error is

MSE ≡ s2
1 + s2

2 + · · ·+ s2
a

a

=
1

a(N−1)

a

∑
i=1

N

∑
j=1

(yi j− ȳi·)
2
.

As discussed earlier, a simple average such as this is not always appropriate. The simple average is
only reasonable because we have the same number of observations in each sample.

Recall that each s2
i has N − 1 degrees of freedom. Each s2

i is based on N observations but is
functionally based on N− 1 observations because of the need to estimate µi before estimating the
variance. By pooling together the variance estimates, we also get to pool the degrees of freedom.
We have combined a independent estimates of σ2, each with N − 1 degrees of freedom, so the
pooled estimate has a(N−1) degrees of freedom. In other words, the MSE is functionally based on
a(N−1) observations. The degrees of freedom associated with the MSE are the degrees of freedom
for error (d fE), so we have

d fE = a(N−1).

The data, the yi js, are random, so the MSE, which is computed from them, must also be random.
If we collected another set of similar data we would not expect to get exactly the same value for the
MSE. If we are to evaluate whether this estimate of σ2 is similar to another estimate, we need to
have some idea of the variability in the MSE. Under the assumptions we have made, the distribution
of the MSE depends only on d fE and σ2. The distribution is related to the χ2 family of distributions.
In particular,

d fE×MSE
σ2 ∼ χ

2(d fE)

where, on the right hand side, d fE indicates the particular member of the χ2 family that is appro-
priate. A commonly used terminology in analysis of variance is the sum of squares for error (SSE).
This is defined to be

SSE ≡ d fE×MSE =
a

∑
i=1

N

∑
j=1

(yi j− ȳi·)
2
. (5.2.1)

Note that SSE/σ2 ∼ χ2(d fE). Note also that the SSE is the sum of the squared residuals, the
residuals being

ε̂i j = yi j− ȳi· .

The second estimate of σ2 is to be valid only when µ1 = µ2 = · · · = µa. We have already used
the sample variances s2

i in constructing the MSE, so we use the rest of our summary statistics, the
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ȳi·s, in constructing the second estimate of σ2. In fact, the ȳi·s are estimates of the µis, so it is only
reasonable to use the ȳi·s when trying to draw conclusions about the µis. Consider the distributions
of the ȳi·s. Each is the sample mean of N observations, so each has the distribution of a sample
mean. In particular,

ȳ1· ∼ N
(

µ1,
σ2

N

)
ȳ2· ∼ N

(
µ2,

σ2

N

)
...

ȳa· ∼ N
(

µa,
σ2

N

)
The a different samples are independent of each other, so ȳ1·, ȳ2·, . . . , ȳa· are all independent. They
all have the same variance, σ2/N, and they all have normal distributions. In fact, the only thing
keeping them from having independent and identical distributions is that they have different means
µi. If we assume that µ1 = µ2 = · · ·= µa, they have independent and identical distributions and thus
form a random sample from a population. Balanced analysis of variance is based on the fact that if
the µis are the same, the ȳi·s can be treated as a random sample. If the ȳi·s are a random sample, we
can compute their sample variance to get an estimate of the variance of the ȳi·s. The variance of the
ȳi·s is σ2/N and the sample variance of the ȳi·s is

s2
ȳ =

1
a−1

a

∑
i=1

(ȳi·− ȳ··)
2

where

ȳ·· ≡
1
a

a

∑
i=1

ȳi·

is the sample mean of the ȳi·s. We have s2
ȳ as an estimate of σ2/N but we set out to find an estimate

of σ2. The obvious choice is

MSTrts≡ Ns2
ȳ =

N
a−1

a

∑
i=1

(ȳi·− ȳ··)
2

where MSTrts abbreviates the commonly used term mean squared treatments. The estimate s2
ȳ is

based on a sample of size a, so it, and thus MSTrts, has a−1 degrees of freedom. These are referred
to as the degrees of freedom for treatments (d f Trts). The sum of squares for treatments is defined
as

SSTrts≡ d f Trts×MSTrts = N
a

∑
i=1

(ȳi·− ȳ··)
2
. (5.2.2)

Just as the MSE is random, the MSTrts is also random. The estimate s2
ȳ is the sample variance of a

random sample of size a from a normal population with variance σ2/N, so

(a−1)s2
ȳ

σ2/N
=

(a−1)MSTrts
σ2 ∼ χ

2(a−1).

The discussion above is based on the assumption that µ1 = µ2 = · · ·= µa. If this is not true, the
ȳi·s do not form a random sample and s2

ȳ does not estimate σ2/N. Actually, it estimates σ2/N plus
the ‘variance’ of the µis. Algebraically, s2

ȳ estimates

E(s2
ȳ) =

σ2

N
+

1
a−1

a

∑
i=1

(µi− µ̄·)
2
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where µ̄· ≡ ∑
a
i=1 µi/a is the mean of the µis. Multiplying by N gives

E(MSTrts) = E(Ns2
ȳ) = σ

2 +
N

a−1

a

∑
i=1

(µi− µ̄·)
2
, (5.2.3)

so MSTrts is an estimate of σ2 plus something that is always nonnegative. If µ1 = µ2 = · · · = µa,
the µis are all equal to their average µ̄·, thus (µi− µ̄·)

2
= 0 for all i, and

N
a−1

a

∑
i=1

(µi− µ̄·)
2
= 0.

As advertised earlier, if µ1 = · · ·= µa, MSTrts is an estimate of σ2. If the µis are not all the same,
[N/(a− 1)]∑a

i=1 (µi− µ̄·)
2 is positive. The larger this term is, the easier it is to conclude that the

treatment means are different. The term increases when N, the number of observations in each
group, increases and when the variability of the µis increases, i.e., when ∑

a
i=1 (µi− µ̄·)

2
/(a− 1)

increases.
A decision regarding the validity of the claim µ1 = µ2 = · · ·= µa is based on comparing MSTrts

with MSE. If they are about the same, or equivalently if

F ≡ MSTrts
MSE

(5.2.4)

is about 1, the data are consistent with the idea that MSTrts and MSE both estimate the same
(unknown) quantity σ2 and thus are consistent with µ1 = µ2 = · · ·= µa. The alternative is that the
µis are not all equal, in which case MSTrts is estimating something larger than σ2, while MSE
continues to estimate σ2. In this case, the ratio F = MSTrts/MSE estimates something greater than
1. If F is much greater than 1, it provides clear evidence that the statistics are not estimating the
same thing and thus that the µis are not all equal.

The nature of this evidence is probabilistic and one cannot eliminate the possibility of error.
Although they are very unlikely to occur, F ratios much greater than 1 can arise even when the µis
are all equal. Assuming that model (5.1.1) is appropriate, when the data yield a very large F ratio,
the correct conclusion is either that the assumption of equal treatment means is violated or that the
means are equal and a very rare event has occurred. The rarer the event, the stronger the suggestion
of unequal treatment means. While we cannot directly quantify the strength of the suggestion of
unequal treatment means, we can quantify it indirectly by evaluating how rarely large F ratios occur
when the treatment means are equal. Under the assumption that µ1 = µ2 = · · · = µa, the F ratio is
random and has an F(a− 1,a(N− 1)) distribution. (This distribution is called an F distribution in
honor of the originator of analysis of variance, R. A. Fisher.)

The F distribution determines those values of the F ratio in (5.2.4) that commonly occur with
equal treatment means. If the observed F ratio is so large as to be an uncommon occurrence when
µ1 = µ2 = · · · = µa, we conclude that the µis are not all equal. To measure the strength of this
conclusion, compute the probability of obtaining an F ratio as large or larger than that actually
obtained from the data. This probability is called the P value or the significance level of the test.
The smaller the P value, the more inconsistent the observed F ratio is with the assumption that the
µis are all equal.

On occasion, it may be desired to have a fixed decision rule as to whether the data are inconsis-
tent with the (null) hypothesis of equal means. One may decide that, with equal treatment means,
common occurrences of the F ratio include 95% or 99% or more generally (1−α)100% of the pos-
sible F values. Thus uncommon occurrences constitute 5% or 1% or 100α% of the observations.
The hypothesis µ1 = µ2 = · · ·= µa is rejected at the α level if

MSTrts
MSE

≥ F(1−α,a−1,d fE).



5.2 BALANCED ONE-WAY ANALYSIS OF VARIANCE: THEORY 125

Table 5.2: Analysis of variance

Source d f SS MS F

Treatments a−1 N ∑
a
i=1 (ȳi·− ȳ··)2 SSTrts/(a−1) MSTrts

MSE

Error aN −a ∑
a
i=1 ∑

N
j=1
(
yi j − ȳi·

)2 SSE/(n−a)

Total−C aN −1 ∑
a
i=1 ∑

N
j=1
(
yi j − ȳ··

)2

Here F(1−α,a− 1,d fE) is the number below which fall (1−α)100% of the possible F ratios
when the µis are all equal. There is a possibility that our data would yield an F ratio at least this
large when the µis are all equal but it is pretty slim, α . We consider it more reasonable that the
assumption of equal µis is violated. The number F(1−α,a− 1,d fE) can be obtained from tables
of the F distribution, see Appendix B.7. The number depends not only on the choice of α but also
on the degrees of freedom for the estimate in the numerator of the ratio, a− 1, and the degrees of
freedom for the estimate in the denominator of the ratio, d fE. If we do not reject the hypothesis,
the data are consistent with the hypothesis. Again, just because the data are consistent with the
hypothesis does not mean that the hypothesis is true.

Fixed α level tests are easy to perform if the P value is available. To perform, say, an α = .05
test, just compare the P value with .05. If the P value is greater than .05, a .05 level test does not
reject the hypothesis of equal treatment means µi. If the P value is less than .05, a .05 test rejects
the hypothesis.

5.2.1 The analysis of variance table

The computations for the analysis of variance F test can be summarized in an analysis of variance
table. The columns of the table are sources, degrees of freedom (d f ), sums of squares (SS), mean
squares (MS), and F . There are rows for treatments, error, and total (corrected for the grand mean).
The commonly used form for the analysis of variance table is given in Table 5.2. The sums of squares
for error and treatments are just those given in equations (5.2.1) and (5.2.2). In each row, the mean
square is the sum of squares divided by the degrees of freedom. The degrees of freedom and sums
of squares for treatments and error can be added together to give the degrees of freedom and sum of
squares total (corrected for the grand mean) respectively. Note that the sum of squares total divided
by the degrees of freedom total is s2

y , the sample variance of all aN observations computed without
reference to any treatment groups. The degrees of freedom in the total line are just the degrees of
freedom associated with the sample variance based on all aN observations. Traditionally, the total
line does not include a mean square. The sample variance of all aN observations, and thus the total
line, involves adjusting each observation for the grand mean. This can be accomplished as indicated
in Table 5.2 or, alternatively, by the use of a correction factor. The correction factor is C ≡ aNȳ2

··,
so that SSTot−C = ∑

a
i=1 ∑

N
j=1 y2

i j−C, which is the sum of the squares of all the observations minus
the correction factor.

A less commonly used form for the analysis of variance table, but one I prefer, is presented in
Table 5.3. In this form, the total degrees of freedom consist of one degree of freedom for every
observation, the sum of squares total is the sum of all of the squared observations, and an extra row
has been added for the grand mean. The degrees of freedom and sums of squares for the grand mean,
treatments, and error can be added together to obtain the degrees of freedom and sums of square
total. In spite of my preference for Table 5.3, I will bow to tradition and generally use Table 5.2 with
the −C notation deleted from the Total line.

EXAMPLE 5.2.1. We now examine the analysis of variance table for the electrical characteristic
data of Example 5.1.2. The summary statistics for the four samples are repeated below.
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Table 5.3: Analysis of variance

Source d f SS MS F

Grand mean 1 aNȳ2
·· ≡C aNȳ2

··

Treatments a−1 N ∑
a
i=1 (ȳi·− ȳ··)2 SSTrts/(a−1) MSTrts

MSE

Error aN −a ∑
a
i=1 ∑

N
j=1
(
yi j − ȳi·

)2 SSE/(n−a)

Total aN ∑
a
i=1 ∑

N
j=1 y2

i j

Table 5.4: Analysis of variance table: electrical characteristic data

Source d f SS MS F P
Treatments 3 10.873 3.624 6.45 0.002
Error 24 13.477 0.562
Total 27 24.350

Sample statistics: electrical characteristics
Strip N ȳi· s2

i
1 7 16.4429 0.749524
2 7 16.5143 0.194762
3 7 16.0714 0.162381
4 7 14.9571 1.139524

The MSE for balanced data is the simple average of the s2
i s,

MSE =
.74952+ .19476+ .16238+1.13952

4
= .56155.

The sample mean of the ȳi·s is

ȳ·· =
16.4429+16.5143+16.0714+14.9571

4
= 15.996425

and the sample variance of the ȳi·s is

s2
ȳ =

1
4−1

[
(16.4429−15.996425)2 +(16.5143−15.996425)2

+(16.0714−15.996425)2 +(14.9571−15.996425)2]= .517784 .

The mean square treatments is the sample variance of the ȳi·s times the number of observations in
each ȳi·,

MSTrts = Ns2
ȳ = 7(.517784) = 3.6245.

The analysis of variance table is given as Table 5.4. As discussed earlier in this section, all of the
table entries are easily computed given the MSE and the MSTrts.

The F statistic for these data is substantial and the P value is quite small. There is strong evidence
that the treatments do not have the same mean. In other words, strips 1, 2, 3, and 4 do not have
the same mean value for the electrical characteristic. The analysis of variance F test tells us that
the means are not all equal but it does not tell us which particular means are unequal. Examining
individual contrasts is required to answer more specific questions about the means. 2
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Distribution theory

It has been stated that when there are no differences between the treatment means, the test statistic
F = MSTrts/MSE has an F(a−1,d fE) distribution. We now briefly expand on that statement. By
Definition 4.4.3, an F distribution is constructed from two independent χ2 distributions. If W1 ∼
χ2(r) and W2 ∼ χ2(s) with W1 and W2 independent, then by definition

W1/r
W2/s

∼ F(r,s).

In analysis of variance with the usual assumptions, the ȳi·s and s2
i s are all independent of each

other. The MSE is computed from the s2
i s and the MSTrts is computed from the ȳi·s, so the MSE is

independent of the MSTrts. We mentioned earlier that when the means are all equal

(a−1)MSTrts
σ2 ∼ χ

2(a−1)

and regardless of the mean structure

d fE×MSE
σ2 ∼ χ

2(d fE),

so it follows from the definition of the F distribution that, when the means are all equal,

MSTrts
MSE

=

[
(a−1)MSTrts/σ2

]
/(a−1)

[(d fE)MSE/σ2]/d fE
∼ F(a−1,d fE).

When the treatment means are not all equal, the distribution of MSTrts depends on the value of

N
(a−1)σ2

a

∑
i=1

(µi− µ̄·)
2
.

Note the similarity of this number to the expected value of MSTrts given in (5.2.3).

5.3 Unbalanced analysis of variance

In unbalanced analysis of variance we allow different numbers Ni of observations on the groups.
The analysis is slightly more difficult but it follows the same pattern as in Section 5.2. In particular,
we assume that

Sample Data Distribution
1 y11,y12, . . . ,y1N1 iid N(µ1,σ

2)
2 y21,y22, . . . ,y2N2 iid N(µ2,σ

2)
...

...
...

...
a ya1,ya2, . . . ,yaNa iid N(µa,σ

2)

with independent samples and the same variance σ2 for each sample. In other words, we assume

yi j = µi + εi j, εi js independent N(0,σ2)

i = 1, . . . ,a and j = 1, . . . ,Ni. The total number of observations is denoted n = ∑
a
i=1 Ni. We wish to

examine the (null) hypothesis
H0 : µ1 = µ2 = · · ·= µa.

Again we compute summary statistics from the samples.
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Sample statistics
Group Size Mean Variance

1 N1 ȳ1· s2
1

2 N2 ȳ2· s2
2

...
...

...
...

a Na ȳa· s2
a

As before, the sample means, the ȳi·s, are estimates of the corresponding µis and the s2
i s all estimate

σ2. As discussed earlier, with unequal sample sizes an efficient pooled estimate of σ2 must be
a weighted average of the s2

i s. The weights are the degrees of freedom associated with various
estimates.

MSE ≡ (N1−1)s2
1 +(N2−1)s2

2 + · · ·+(Na−1)s2
a

∑
a
i=1(Ni−1)

=
1

(n−a)

a

∑
i=1

Ni

∑
j=1

(yi j− ȳi·)
2
.

As before, d fE = n−a and SSE = (d fE)MSE.
The second estimate of σ2, the one based on the ȳi·s, is not particularly intuitive. The ȳi·s do not

all have the same variance, so even when the µis are all equal, the ȳi·s do not form a random sample.
To get a variance estimate, the ȳi·s must be weighted appropriately. It turns out that the appropriate
estimate of σ2 is

MSTrts =
1

a−1

a

∑
i=1

Ni (ȳi·− ȳ··)
2

where

ȳ·· =
1
n

a

∑
i=1

Niȳi· =
1
n

a

∑
i=1

Ni

∑
j=1

yi j.

Thus ȳ·· is the sample mean of all n observations, ignoring the treatment structure. As in the balanced
case, the degrees of freedom are a− 1 and SSTrts = (a− 1)MSTrts. In general, MSTrts is an
estimate of

E(MSTrts) = σ
2 +

1
a−1

a

∑
i=1

Ni (µi− µ̄·)
2

where

µ̄· ≡
1
n

a

∑
i=1

Niµi

is the weighted mean of the µis. Once again, if the µis are all equal, µi = µ̄· for every i and MSTrts
is an estimate of σ2. If the means are not all equal, MSTrts is an estimate of something larger than
σ2. Values of MSTrts/MSE that are much larger than 1 call in question the hypothesis of equal
population means. Note that the computations for balanced data are just a special, simpler case of
the computations for unbalanced data. In particular, the balanced case has Ni = N and n = aN.

The computations are again summarized in an analysis of variance table. The commonly used
form for the analysis of variance table is given below.

Analysis of variance
Source d f SS MS F

Treatments a−1 ∑
a
i=1 Ni (ȳi·− ȳ··)2 SSTrts/(a−1) MSTrts

MSE

Error n−a ∑
a
i=1 ∑

Ni
j=1
(
yi j − ȳi·

)2 SSE/(n−a)

Total n−1 ∑
a
i=1 ∑

Ni
j=1
(
yi j − ȳ··

)2
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Table 5.5: Analysis of variance, logs of suicide age data

Source d f SS MS F P
Groups 2 2.655 1.328 7.92 0.001
Error 90 15.088 0.168
Total 92 17.743

The degrees of freedom and sums of squares for treatments and error can be added together to give
the degrees of freedom and sum of squares total (corrected for the grand mean). Again,

SSE =
a

∑
i=1

Ni

∑
j=1

(yi j− ȳi·)
2
=

a

∑
i=1

Ni

∑
j=1

ε̂
2
i j,

establishing that the sum of squares error is the sum of the squared residuals. Moreover,
SSTot/d f Tot = s2

y , the sample variance of all n observations computed without reference to treat-
ment groups. The degrees of freedom in the total line are the degrees of freedom associated with
the sample variance based on all n observations. The total line is corrected for the grand mean, so
that SSTot = ∑

a
i=1 ∑

Ni
j=1 y2

i j−C, which is the sum of the squares of all the observations minus the
correction factor, C ≡ nȳ2

··.

EXAMPLE 5.3.1. We now consider construction of the analysis of variance table for the logs of
the suicide data. The sample statistics are repeated below.

Sample statistics: log of suicide ages
Group Ni ȳi· s2

i
Caucasians 44 3.6521 0.1590
Hispanics 34 3.4538 0.2127
Native Am. 15 3.1770 0.0879

The mean squared error was computed earlier as .168. The sum of squares error is just the degrees
of freedom error, 90, times the MSE. The sum of squares treatments is

SSTrts = 2.655 = 44(3.6521−3.5030)2 +34(3.4538−3.5030)2 +15(3.1770−3.5030)2

where

3.5030 = ȳ·· =
44(3.6521)+34(3.4538)+15(3.1770)

44+34+15
.

The ANOVA table is presented as Table 5.5.
The extremely small P value for the analysis of variance F test establishes a clear difference

between the mean log suicide ages. Again, more detailed comparisons are needed to identify which
particular groups are different. We established earlier that at the .01 level, only non-Hispanic Cau-
casians and Native Americans display a pairwise difference. 2

5.4 Choosing contrasts

You may be wondering why statisticians make a big fuss about analysis of variance. The procedures
discussed in Sections 5.2 and 5.3 are not really of much use. The analysis of variance test involves
only one hypothesis, that of equal treatment means µi. The more interesting issue of identifying
which means are different is handled with a pooled estimate of the variance and the usual techniques
involving a Par, an Est, a SE(Est), and a known distribution symmetric about zero for [Est −
Par]/SE(Est). Actually, ‘analysis of variance’ is used as a name for the entire package of techniques
used to compare more than two samples. The analysis of variance F test, from which the name
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devolves, is only one small part of the package. There are two reasons for examining the F test in
detail. In more complicated situations than one-way ANOVA, the analysis of variance table becomes
a very useful tool for identifying aspects of a complicated problem that deserve more attention. The
other reason is that it introduces the SSTrts as a measure of treatment differences.

The SSTrts can be broken into components corresponding to the sums of squares for individual
orthogonal contrasts. These components of SSTrts can then be used to explain the differences in
the means. Recall that a contrast is a parameter ∑

a
i=1 λiµi where the λis satisfy ∑

a
i=1 λi = 0. The

appropriate estimate and standard error were discussed earlier and the sum of squares for a contrast
was given in (5.1.4) as

SS

(
a

∑
i=1

λiµi

)
≡ (∑

a
i=1 λiȳi·)

2

∑
a
i=1 λ 2

i /Ni
.

In the balanced case with N = Ni for all i,

SS

(
a

∑
i=1

λiµi

)
=

(∑
a
i=1 λiȳi·)

2(
∑

a
i=1 λ 2

i

)/
N
.

The F test for H0 : ∑
a
i=1 λiµi = 0 versus HA : ∑

a
i=1 λiµi 6= 0 rejects H0 for large values of

SS (∑a
i=1 λiµi)/MSE.

Two contrasts ∑
a
i=1 λi1µi and ∑

a
i=1 λi2µi are defined to be orthogonal if

a

∑
i=1

λi1λi2

Ni
= 0.

In balanced problems, Ni = N for all i, so the condition of orthogonality becomes ∑
a
i=1 λi1λi2/N = 0

or equivalently
a

∑
i=1

λi1λi2 = 0.

Contrasts are only of interest when they define interesting functions of the µis. Orthogonal contrasts
are most useful in balanced problems because a set of orthogonal contrasts can retain interesting
interpretations. In unbalanced cases, orthogonality depends on the unequal Nis, so there is rarely
more than one interpretable contrast in a set of orthogonal contrasts.

EXAMPLE 5.4.1. Consider again the electrical characteristic data. The sample statistics are

Sample statistics: electrical characteristics
Strip N ȳi· s2

i
1 7 16.4429 0.749524
2 7 16.5143 0.194762
3 7 16.0714 0.162381
4 7 14.9571 1.139524

with MSE = .56155. We examine four contrasts

C1 ≡ (1)µ1 +(−1)µ2 +(0)µ3 +(0)µ4 = µ1−µ2,

C2 ≡ (1/2)µ1 +(1/2)µ2 +(−1)µ3 +(0)µ4 =
µ1 +µ2

2
−µ3,

C3 ≡ (1/3)µ1 +(1/3)µ2 +(1/3)µ3 +(−1)µ4 =
µ1 +µ2 +µ3

3
−µ4,

and
C4 ≡ (−1)µ1 +(−1)µ2 +(2)µ3 +(0)µ4.
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Contrasts C1 and C2 are orthogonal because

(1)(1/2)+(−1)(1/2)+(0)(−1)+(0)(0) = 0.

Similarly, C1 and C3 are orthogonal and C2 and C3 are orthogonal. We have previously examined
the contrast C1 and found the sum of squares to be

SS(C1) =
[(1)16.4429+(−1)16.5143+(0)16.0714+(0)14.9571]2

[12 +(−1)2 +02 +02]/7
= 0.0178 .

The sum of squares for C2 is

SS(C2) =
[(1/2)16.4429+(1/2)16.5143+(−1)16.0714+(0)14.9571]2

[(1/2)2 +(1/2)2 +(−1)2 +02]/7
= 0.7738.

The sum of squares for C3 is

SS(C3) =
[(1/3)16.4429+(1/3)16.5143+(1/3)16.0714+(−1)14.9571]2

[(1/3)2 +(1/3)2 +(1/3)2 +(−1)2]/7
= 10.0818.

The decomposition referred to earlier follows from the fact that

10.873 = SSTrts = SS(C1)+SS(C2)+SS(C3) = 0.0178+0.7738+10.0818 .

SSTrts is a measure of the evidence for differences between means. Almost all of the SSTrts is
accounted for by C3. Thus, almost all of the differences between the means can be accounted for
by the difference between µ4 and the average of µ1, µ2, and µ3. Almost none of the sum of squares
for treatments is due to the difference between µ1 and µ2. A small amount is due to the difference
between µ3 and the average of µ1 and µ2. The data are consistent with the idea that the means for
strips 1, 2, and 3 are the same.

The contrast C4 was introduced to illustrate the fact that multiplying a contrast by a constant has
no real effect on the contrast. Observe that

C4 =−2C2 .

In particular, C4 = 0 if and only if C2 = 0. Note that

SS(C4) =
[(−1)16.4429+(−1)16.5143+(2)16.0714+(0)14.9571]2

[(−1)2 +(−1)2 +22 +02]/7
= 0.7738,

so SS(C4) = SS(C2) and the F test for C2 = 0 is identical to the F test for C4 = 0. It is also easily
seen that a two-sided t test for H0 : C4 = 0 is identical to that for H0 : C2 = 0. The factor of −2 must
be accounted for in estimation and in tests of C2 and C4 other than testing that they are zero, but,
after suitable adjustment, estimation and testing are equivalent. The virtue of using C4 rather than
C2 is that the λis in C4 are all integers, so computations are simpler with C4.

There are many ways to pick a set of orthogonal contrasts. We established that the data are
consistent with the idea that ceramic strip 4 is different from the other strips and that there are no
differences between the other strips. The data are even more consistent with another set of orthog-
onal contrasts. Consider the claim that the value for strip 4 is the average of the values for strips 1
and 2, i.e., µ4 = (µ1 +µ2)/2 or equivalently

C5 ≡ (1)µ1 +(1)µ2 +(0)µ3 +(−2)µ4 = 0.
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A contrast orthogonal to C5 is C1, considered earlier. A contrast orthogonal to both C5 and C1 is

C6 ≡ (1)µ1 +(1)µ2 +(−3)µ3 +(1)µ4.

The sum of squares for C5 is

SS(C5) =
[(1)16.4429+(1)16.5143+(0)16.0714+(−2)14.9571]2

[12 +12 +02 +(−2)2]/7
= 10.803 .

The sum of squares for C1 was given earlier, SS(C1) = .018. The sum of squares for C6 is

SS(C6) =
[(1)16.4429+(1)16.5143+(−3)16.0714+(1)14.9571]2

[12 +12 +(−3)2 +12]/7
= .052 .

As before, with orthogonal contrasts

10.873 = SSTrts = SS(C5)+SS(C1)+SS(C6) = 10.803+ .018+ .052 .

For all practical purposes, these data are totally consistent with the claims C6 = 0 and C1 = 0 be-
cause SS(C6)

.
= 0 .

= SS(C1). Essentially, all the differences in means can be attributed to C5 because
SS(C5)

.
= SSTrts. 2

It is a mathematical fact that there is always one contrast that accounts for all of SSTrts, how-
ever, this contrast rarely has a simple interpretation because the coefficients of this contrast depend
on the sample means. In a balanced one-way analysis of variance with, say, four treatments, the
coefficients of the contrast that accounts for the entire SSTrts are λ1 = ȳ1· − ȳ··, λ2 = ȳ2· − ȳ··,
λ3 = ȳ3·− ȳ··, and λ4 = ȳ4·− ȳ··. Typically, a contrast with these coefficients will be difficult to in-
terpret. In Example 5.4.1, C5 was constructed in this way, but to simplify the discussion we rounded
the coefficients off. Rounding the coefficients helps to make the contrast more interpretable. In the
case of C5, the contrast became very simple. When rounding the coefficients, the contrast will not
contain quite all of the sum of squares for treatments.

One reasonable approach to analysis of variance is to identify the contrast that accounts for all
of the SSTrts and to try to interpret it. I prefer to look at the data and try to identify a contrast or
a few orthogonal contrasts that are interpretable and account for most of SSTrts. Either of these
approaches involves looking at the data to identify contrasts of interest. In such a situation, using
the standard F(1,d fE) or t(d fE) distributions for statistical inference is inappropriate. Appropriate
statistical methods are discussed in the next chapter.

In some situations, the structure of the treatments suggests orthogonal contrasts that are both
interesting and interpretable. When the structure of the treatments, rather than the data, suggests the
contrasts, standard methods of inference apply.

The key fact about orthogonal contrasts is that if C1, . . . ,Ca−1 is any set of contrasts with each
orthogonal to every other one, then

SSTrts = SS(C1)+ · · ·+SS(Ca−1).

In our example, a = 4, so there were sets of a− 1 = 3 orthogonal contrasts that decompose the
SSTrts. We gave two such sets of contrasts. There are an infinite number of other ways to choose
sets of orthogonal contrasts.

With a treatments, a set of orthogonal contrasts can contain no more than a−1 elements. There
can be at most a−1 orthogonal contrasts but one can also choose sets of orthogonal contrasts with,
say, q < a−1 elements. In such a case,

SSTrts≥ SS(C1)+ · · ·+SS(Cq).
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In particular, any one contrast C can be viewed as a set with q = 1, so

SSTrts≥ SS(C). (5.4.1)

Interesting contrasts are determined by the structure of the treatments. We now illustrate this
fact with an example.

EXAMPLE 5.4.2. Five diets were investigated to determine their effects on the growth of animals.
If the diets do not have any recognizable structure, about the only interesting set of contrasts is to
compare all pairs of population means. The collection of contrasts is µi− µi′ for i, i′ = 1,2,3,4,5
with i 6= i′. Note that µ1 = µ2 = µ3 = µ4 = µ5 if and only if all 10 of these contrast are zero, i.e.,
if µi− µi′ = 0 for all i 6= i′. These contrasts are not orthogonal. There can be at most 5− 1 = 4
members in a set of orthogonal contrasts; this collection of contrasts has 10 members. In fact, many
of these 10 contrasts are redundant. For example, if µ1− µ2 = 0 and µ2− µ3 = 0, then, of course,
µ1− µ3 = 0. More generally, if you know the value of µi− µ j and the value of µ j− µk, you also
know the value of µi−µk.

Although these 10 contrasts may be redundant, statistical inferences about them may not be. For
example, failing to reject H0 : µ1−µ2 = 0 and H0 : µ2−µ3 = 0 in no way implies the we will fail
to reject H0 : µ1−µ3 = 0. Similarly, rejecting H0 : µ1−µ2 = 0 and H0 : µ2−µ3 = 0 does not imply
that we will reject H0 : µ1−µ3 = 0.

Now suppose we are told that treatment 1 is the standard diet and that the other four treatments
are new, experimental diets. In this case, the structure of the treatments suggests that we might
examine only the contrasts µ1− µi for i = 2,3,4,5. These contrasts are not redundant. Knowing
two or three of them will never tell you the values of any others. For example, if µ1 − µ2 = 0,
µ1−µ3 = 0, and µ1−µ4 = 0, we still do not know the value of µ1−µ5. On the other hand, if all 4
of the contrasts equal 0, we must have µ1 = µ2 = µ3 = µ4 = µ5, and if the treatment means are all
equal, every contrast must be zero. These four contrasts are not orthogonal in any ANOVA.

Contrasts that are not redundant are said to be linearly independent. With a treatments, one can
have at most a− 1 linearly independent contrasts. Nontrivial orthogonal contrasts are always lin-
early independent. (The trivial contrast has λi = 0 for all i.) If any set of a−1 linearly independent
contrasts are all equal to 0, then µ1 = µ2 = · · ·= µa.

Additional structure on the treatments may suggest other contrasts. Suppose that the four new
diets are, in order, two based on beef, one based on pork, and one based on soybeans. In this case
contrasts with the following coefficients seem interesting.

Diet treatments
Control Beef Beef Pork Beans

Contrast λ1 λ2 λ3 λ4 λ5
Ctrl vs others 4 −1 −1 −1 −1
Beef vs beef 0 1 −1 0 0
Beef vs pork 0 1 1 −2 0
Meat vs beans 0 1 1 1 −3

The first contrast, Ctrl vs others, compares the control (standard diet) to the average of the other
four diets. This contrast would actually be

µ1−
µ2 +µ3 +µ4 +µ5

4

but multiplying the contrast by 4 gives the equivalent contrast

4µ1−µ2−µ3−µ4−µ5

which is the one tabled. The tabled contrast is simpler to work with because its contrast coefficients
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are all integers. The other three contrasts compare the two beef diets, the average of the beef diets
with the pork diet, and the average of the meat diets with the soybean diet. In a balanced ANOVA,
these four contrasts are all orthogonal to each other.

If the structure of the treatments was different, say, the first beef diet was instead a diet based on
lima beans, the interesting orthogonal contrasts change.

Diet treatments
Control Lima Beef Pork Soy

Contrast λ1 λ2 λ3 λ4 λ5
Ctrl vs others 4 −1 −1 −1 −1
Beef vs pork 0 0 1 −1 0
Lima vs soy 0 1 0 0 −1

Meat vs beans 0 −1 1 1 −1

These contrasts compare the control to the average of the other four diets, the two meat diets, the
two bean diets, and the average of the meat diets with the average of the bean diets. Again, the
contrasts are all orthogonal in a balanced ANOVA. 2

5.5 Comparing models

The hypothesis
H0 : µ1 = µ2 = · · ·= µa

can be viewed as imposing a change in the analysis of variance model

yi j = µi + εi j, (5.5.1)

i = 1, . . . ,a, j = 1, . . . ,Ni. If for some value µ , µ = µ1 = µ2 = · · · = µa the analysis of variance
model can be rewritten as

yi j = µ + εi j, (5.5.2)

which involves only a grand mean µ . This is just the special case of the analysis of variance model
in which the µis do not really depend on the value of i. In (5.1.2) we wrote the analysis of vari-
ance model as yi j = µ +αi + εi j. Model (5.5.2) is the special case obtained by dropping the αis.
For simplicity, in this section models (5.5.1) and (5.5.2) will be referred to as models (1) and (2),
respectively.

We wish to evaluate how well model (2) fits as compared to how well model (1) fits. A measure
of how well any model fits is the sum of squared errors; a poor fitting model has much larger errors
and thus a much larger SSE. In yi j = µi + εi j, the errors are εi j = yi j− µi and the estimated errors
(residuals) are ε̂i j = yi j− ȳi·. The sum of squares error in model (1) is the usual analysis of variance
sum of squares error,

SSE(1) =
a

∑
i=1

Ni

∑
j=1

ε̂
2
i j =

a

∑
i=1

Ni

∑
j=1

(yi j− ȳi·)
2
.

Recall that MSE(1) = SSE(1)/(n−a) is an estimate of σ2 and denote the error degrees of freedom

d fE(1) = n−a.

Model (2) treats all n observations as a random sample from one population with mean µ . Under
model (2), an estimate of σ2 is s2

y , the sample variance of all n observations, so

MSE(2)≡ s2
y =

1
n−1

a

∑
i=1

Ni

∑
j=1

(yi j− ȳ··)
2
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with error degrees of freedom
d fE(2) = n−1.

We define the sum of squares error from model (2) to be

SSE(2) = d fE(2)×MSE(2)

=
a

∑
i=1

Ni

∑
j=1

(yi j− ȳ··)
2
.

Since model (2) is a special case of model (1), the error from model (2) must be as large as
the error from model (1), i.e., SSE(2)≥ SSE(1). However, if SSE(2) is much greater than SSE(1),
it suggests that the special case, model (2), is an inadequate substitute for the full model (1). In
particular, large values of SSE(2)− SSE(1) suggest that the reduced model (2) is inadequate to
explain the data that, by assumption, were adequately explained using the full model (1). It can be
established that, if the reduced model is true, the statistic

MSTest ≡ SSE(2)−SSE(1)
d fE(2)−d fE(1)

is an estimate of σ2, which is independent of the estimate from the full model, MSE(1). If the
reduced model is not true, MSTest estimates σ2 plus a positive number. A test of whether model (2)
is an adequate substitute for model (1) is rejected if

F =
[SSE(2)−SSE(1)]

/
[d fE(2)−d fE(1)]

MSE(1)
(5.5.3)

is too much larger than 1. In particular, an α level test rejects the adequacy of model (2) when

[SSE(2)−SSE(1)]
/
[d fE(2)−d fE(1)]

MSE(1)
> F (1−α,d fE(2)−d fE(1),d fE(1)) . (5.5.4)

To see that the numerator in (5.5.3) is a reasonable estimate of σ2 when model (2) holds, write

MSE(2) =
1

d fE(2)
[SSE(2)−SSE(1)+SSE(1)]

=
d fE(2)−d fE(1)

d fE(2)

(
SSE(2)−SSE(1)
d fE(2)−d fE(1)

)
+

d fE(1)
d fE(2)

MSE(1).

MSE(2) is a weighted average of MSTest and MSE(1). MSE(1) is certainly a reasonable estimate
of σ2 and, if the means are all equal, MSE(2) is also a reasonable estimate of σ2. Thus, if the means
are all equal, [SSE(2)− SSE(1)]/[d fE(2)− d fE(1)] must be a reasonable estimate of σ2 because
if it were not, a weighted average of it and MSE(1) would not be a reasonable estimate of σ2.

The F statistic in (5.5.3) is exactly the analysis of variance table F statistic. This follows because,
relative to the analysis of variance table,

SSTot = SSE(2)
d f Tot = d fE(2)

SSE = SSE(1)
d fE = d fE(1)

MSE = SSE(1)
/

d fE(1)
SSTrts = SSE(2)−SSE(1)
d f Trts = d fE(2)−d fE(1)

MSTrts = [SSE(2)−SSE(1)]
/
[d fE(2)−d fE(1)]
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This technique of testing the adequacy of a reduced (special case) model by comparing the
error sum of squares for the full model and the reduced model is applicable very generally. In
more sophisticated unbalanced analysis of variance situations and in regression analysis, this is a
primary method used to test hypotheses. In particular, the test in (5.5.4) applies for any ANOVA or
regression model (2) that is a special case of any ANOVA or regression model (1) as long as the
errors are independent N(0,σ2).

5.6 The power of the analysis of variance F test

The power of a test is the probability of rejecting the null hypothesis when the null hypothesis is
false. Thus, the power of the analysis of variance F test is the probability of correctly concluding
that the µis are not all the same when they are in fact not all the same. In this section we give some
intuition for the power of the analysis of variance F test. For simplicity we discuss only balanced
analysis of variance.

As discussed in Section 5.2, whenever the analysis of variance model is correct, the MSE is an
unbiased estimate of

E(MSE) = σ
2 (5.6.1)

and MSTrts is an unbiased estimate of

E(MSTrts) = σ
2 +

N
a−1

a

∑
i=1

(µi− µ̄·)
2. (5.6.2)

Write

s2
µ =

1
a−1

a

∑
i=1

(µi− µ̄·)
2, (5.6.3)

so s2
µ is the ‘sample’ variance of the µis. The word sample is in quotation marks because we do not

really have a sample of µis, in fact we never get to observe the µis. s2
µ is a sample variance only in

the sense that the computational formula (5.6.3) is identical to that for a sample variance. With the
new notation, we can rewrite (5.6.2) as

E(MSTrts) = σ
2 +Ns2

µ . (5.6.4)

The analysis of variance F statistic is defined as

F =
MSTrts

MSE
.

Since the MSE and the MSTrts estimate (5.6.1) and (5.6.4) respectively, by substitution we see that
F is an estimate of

σ2 +Ns2
µ

σ2 = 1+
N
σ2 s2

µ . (5.6.5)

(F is not an unbiased estimate of this quantity but F is a reasonable estimate of it.)
The behavior of the F test depends crucially on the quantity that F estimates. First notice that if

the µis are all equal, they have no variability and s2
µ = 0. In fact the µis are all equal if and only if

s2
µ = 0. The statistic F always estimates the value in (5.6.5) and when s2

µ = 0 that value is 1. Thus
an F statistic that is too far above 1 suggests that s2

µ 6= 0. Alternatively, when the µis are not all
equal, they have positive variability and s2

µ > 0. In this case, F is estimating a value in (5.6.5) that
is greater than 1, so values of F substantially greater than 1 lead us to suspect that s2

µ > 0 and hence
that the µis are not all equal.

Remember that even when s2
µ = 0, F is only an estimate of 1; it has a natural variability about

1. To reject the idea that s2
µ = 0, an observed F value must be larger than would normally be

experienced when s2
µ = 0.
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When s2
µ = 0, the statistic F has an F(d f Trts,d fE) distribution. This distribution specifies

the values of F that would normally be experienced. Thus an α level test is rejected when the
observed F value is larger than all but 100α% of the observations that normally occur, i.e., larger
than F(1−α,d f Trts,d fE). When s2

µ = 0 there is only a probability of α that the observed F value
will exceed F(1−α,d f Trts,d fE).

Note that values of F that are much smaller than 1 do not suggest that s2
µ > 0. Within the present

discussion, values of F that are smaller than 1 are most consistent with s2
µ = 0 and will not be

considered further. It should be noted, however, that very small values of F are suggestive. In terms
of modeling, they are suggestive of something fairly complicated, cf. Christensen (1989, 1991).
Very small test statistics have also been known to occur when someone has manufactured data in
order to justify a null hypothesis. For example, some data reported by Mendel that supported his
theories of genetic inheritance were too good to be true.

We reject the hypothesis of equal µis for F values that are substantially greater than 1. It is
natural to ask what causes F to take on values that are substantially greater than 1. In other words,
what causes the test to have high power for detecting differences in the µis? Obviously, F will tend
to be substantially greater than 1 when it is estimating something that is substantially greater than
1, i.e., when

1+
N
σ2 s2

µ

is substantially greater than 1. There are three items involved. To make 1+Ns2
µ/σ2 much larger

than 1 we need some combination of N large, σ2 small, and s2
µ large. The first two items are some-

what controllable. To increase the power of the F test we can increase N, the size of the various
samples. The second item, σ2, is a parameter, so we will never know it exactly, but improving one’s
experimental methods can make it smaller. For example, measuring the height of a house with a
meter stick rather than a 30 centimeter ruler is likely to yield a much more accurate value for the
height. In later chapters we discuss some general methods for designing experiments that enable us
to reduce σ2. The third item above, s2

µ , we are simply stuck with. There is little we can do with
the µis to cause a test to be powerful. If the differences among the µis are small, the µis have little
variability and s2

µ is near zero. Other things being equal, it is unlikely that we will correctly reject
the F test when s2

µ is near zero. More accurately, it is unlikely that we will correctly reject the F
test when s2

µ is so small that Ns2
µ/σ2 is near zero. Even when s2

µ is small in absolute terms, if N is
large or σ2 is much smaller than s2

µ , we have a good chance of correctly identifying that there are
differences in the µis.

For specified values of Ns2
µ/σ2 it is possible to compute the probability of rejecting the F test.

To specify Ns2
µ/σ2 one needs to know N and some approximation for σ2; these are often available.

The most difficult part of computing the power of an F test is in specifying a reasonable value for
s2

µ . In specifying a value for s2
µ we need both to specify a pattern for the differences in the µis and to

quantify the extent of the differences. For example, our interest may be in detecting differences in
the µis when all of the µis are equal except one, which is, say, d units larger than the others. We can
compute the value for s2

µ by specifying d. Similarly, with an even number of treatments our interest
may be in detecting differences in the µis in which half the µis equal one value and the other half
equal a different value, with the two values d units apart. Again we can compute a value of s2

µ for
any difference d but the value of s2

µ depends on d in a very different manner than in the first case.

5.7 Exercises

EXERCISE 5.7.1. In a study of stress at 600% elongation for a certain type of rubber, Mandel
(1972) reported stress test data from five different laboratories. Summary statistics are given in
Table 5.6. Compute the analysis of variance table and test for differences in means between all pairs
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Table 5.6: Rubber stress at five laboratories

Sample Sample Sample
Lab. size mean variance
1 4 57.00 32.00
2 4 67.50 46.33
3 4 40.25 14.25
4 4 56.50 5.66
5 4 52.50 6.33

Table 5.7: Acreage in corn for different sized farms

Farm Sample Sample Sample
acres size mean std. dev.

80 5 2.9957 0.4333
160 5 3.6282 0.4056
240 5 4.1149 0.4169
320 5 4.0904 0.4688
400 5 4.4030 0.5277

of labs. Use α = .01. Is there any reason to worry about the assumptions of the analysis of variance
model?

EXERCISE 5.7.2. Snedecor and Cochran (1967, section 6.18) presented data obtained in 1942
from South Dakota on the relationship between the size of farms (in acres) and the number of
acres planted in corn. Summary statistics are presented in Table 5.7. Note that the sample standard
deviations rather than the sample variances are given. In addition, the pooled standard deviation is
0.4526.

(a) Give the one-way analysis of variance model with all of its assumptions. Can any problems with
the assumptions be identified?

(b) Give the analysis of variance table for these data. Test whether there are any differences in corn
acreages due to the different size farms. Use α = .01.

(c) Test for differences between all pairs of farm sizes using α = .01 tests.
(d) Find the sum of squares for the following contrast:

Farm 80 160 240 320 400
Coeff. −2 −1 0 1 2

What percentage is this of the treatment sum of squares?
e) Give 95% confidence and prediction intervals for the number of acres in corn for each farm

size.

EXERCISE 5.7.3. Table 5.8 gives data on heights and weights of people. Give the analysis of
variance table and test for differences among the four groups. Give a 99% confidence interval for
the mean weight of people in the 72 inch height group.

EXERCISE 5.7.4. Conover (1971, p. 326) presented data on the amount of iron found in the
livers of white rats. Fifty rats were randomly divided into five groups of ten and each group was
given a different diet. We analyze the logs of the original data. The total sample variance of the 50
observations is 0.521767 and the means for each diet are given below.
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Table 5.8: Weights (in pounds) for various heights (in inches)

Sample Sample Sample
Height size mean variance

63 3 121.66̄ 158.333̄
65 4 131.25 72.913̄
66 2 142.50 112.500
72 3 171.66̄ 158.333̄

Table 5.9: Peel-strength of various adhesive systems

Adhesive
system Observations

1 60 63 57 53 56 57
2 57 52 55 59 56 54
3 19.8 19.5 19.7 21.6 21.1 19.3
4 52 53 44 48 48 53

Diet A B C D E
Mean 1.6517 0.87413 0.89390 0.40557 0.025882

Compute the analysis of variance table and test whether there are differences due to diet.
If diets A and B emphasize beef and pork respectively, diet C emphasizes poultry, and diets D

and E are based on dried beans and oats, the following contrasts may be of interest.

Diet
Contrast A B C D E
Beef vs. pork 1 −1 0 0 0
Mammals vs. poultry 1 1 −2 0 0
Beans vs. oats 0 0 0 1 −1
Animal vs. vegetable 2 2 2 −3 −3

Show that the contrasts are orthogonal and compute sums of squares for each contrast. Interpret
your results and draw conclusions about the data.

EXERCISE 5.7.5. In addition to the data discussed earlier, Mandel (1972) reported data from one
laboratory on four different types of rubber. Four observations were taken on each type of rubber.
The means are given below.

Material A B C D
Mean 26.4425 26.0225 23.5325 29.9600

The sample variance of the 16 observations is 14.730793. Compute the analysis of variance table,
the overall F test, and test for differences between each pair of rubber types. Use α = .05.

EXERCISE 5.7.6. In Exercise 5.7.5 on the stress of four types of rubber, the observations on
material B were 22.96, 22.93, 22.49, and 35.71. Redo the analysis, eliminating the outlier. The
sample variance of the 15 remaining observations is 9.3052838.

EXERCISE 5.7.7. Bethea et al. (1985) reported data on an experiment to determine the effective-
ness of four adhesive systems for bonding insulation to a chamber. The data are a measure of the
peel-strength of the adhesives and are presented in Table 5.9. A disturbing aspect of these data is
that the values for adhesive system 3 are reported with an extra digit.
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Table 5.10: Weight gains of rats

Thyroxin Thiouracil Control
132 68 68 107 115
84 63 52 90 117

133 80 80 91 133
118 63 61 91 115

87 89 69 112 95
88

119

Table 5.11: Tetrahydrocortisone values for patients with Cushing’s syndrome

a b c
3.1 8.3 15.4 10.2
3.0 3.8 7.7 9.2
1.9 3.9 6.5 9.6
3.8 7.8 5.7 53.8
4.1 9.1 13.6 15.8
1.9

(a) Compute the sample means and variances for each group. Give the one-way analysis of variance
model with all of its assumptions. Are there problems with the assumptions? If so, does an
analysis on the square roots or logs of the data reduce these problems?

(b) Give the analysis of variance table for these (possibly transformed) data. Test whether there are
any differences in adhesive systems. Use α = .01.

(c) Test for differences between all pairs of adhesive systems using α = .01 tests.
(d) Find the sums of squares i) for comparing system 1 with system 4 and ii) for comparing system

2 with system 3.
(e) Perform a .01 level F test for whether the mean peel-strength of systems 1 and 4 differs from the

mean peel-strength of systems 2 and 3.
(f) What property is displayed by the sums of squares computed in (d) and (e)? Why do they have

this property?
(g) Give a 99% confidence interval for the mean of every adhesive system.
(h) Give a 99% prediction interval for every adhesive system.
(i) Give a 95% confidence interval for the difference between systems 1 and 2.

EXERCISE 5.7.8. Table 5.10 contains weight gains of rats from Box (1950). The rats were given
either Thyroxin or Thiouracil or were in a control group. Do a complete analysis of variance on the
data. Give the model, check assumptions, make residual plots, give the ANOVA table, and examine
appropriate contrasts.

EXERCISE 5.7.9. Aitchison and Dunsmore (1975) presented data on Cushing’s syndrome. Cush-
ing’s syndrome is a condition in which the adrenal cortex overproduces cortisol. Patients are divided
into one of three groups based on the cause of the syndrome: a – adenoma, b – bilateral hyperplasia,
and c – carcinoma. The data are amounts of tetrahydrocortisone in the urine of the patients. The
data are given in Table 5.11. Give a complete analysis.

EXERCISE 5.7.10. Draper and Smith (1966, p. 41) considered data on the relationship between
the age of truck tractors (in years) and the cost (in dollars) of maintaining them over a six month
period. The data are given in Table 5.12.
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Table 5.12: Age and costs of maintenance for truck tractors

Age Costs
0.5 163 182
1.0 978 466 549
4.0 495 723 681
4.5 619 1049 1033
5.0 890 1522 1194
5.5 987
6.0 764 1373

Note that there is only one observation at 5.5 years of age. This group does not yield an estimate
of the variance and can be ignored for the purpose of computing the mean squared error. In the
weighted average of variance estimates, the variance of this group is undefined but the variance gets
0 weight, so there is no problem.

Give the analysis of variance table for these data. Does cost differ with age? Is there a significant
difference between the cost at 0.5 years as opposed to 1.0 year? Use several contrasts to determine
whether there are any differences between costs at 4, 4.5, 5, 5.5, and 6 years. How much of the sum
of squares for treatments is due to the following contrast?

Age 0.5 1.0 4.0 4.5 5.0 5.5 6.0
Coeff. −5 −5 2 2 2 2 2

What is the sum of squares for the contrast that compares the average of 0.5 and 1.0 with the
averages of 4, 4.5, 5, 5.5, and 6?

EXERCISE 5.7.11. George Snedecor (1945a) asked for the appropriate variance estimate in the
following problem. One of six treatments was applied to the 10 hens contained in each of 12 cages.
Each treatment was randomly assigned to two cages. The data were the number of eggs laid by each
hen.

(a) What should you tell Snedecor? Were the treatments applied to the hens or to the cages? How
will the analysis differ depending on the answer to this question?

(b) The mean of the 12 sample variances computed from the 10 hens in each cage was 297.8. The
average of the 6 sample variances computed from the two cage means for each treatment was
57.59. The sample variance of the 6 treatment means was 53.725. How should you construct an
F test? Remember that the numbers reported above are not necessarily mean squares.

EXERCISE 5.7.12. Lehmann (1975), citing Heyl (1930) and Brownlee (1960), considered data
on determining the gravitational constant of three elements: gold, platinum, and glass. The data
Lehmann gives are the third and fourth decimal places in five determinations of the gravitational
constant. They are presented below. Analyze the data.

Gold Platinum Glass
83 61 78
81 61 71
76 67 75
79 67 72
76 64 74

EXERCISE 5.7.13. Shewhart (1939, p. 69) also presented the gravitational constant data of Heyl
(1930) that was considered in the previous problem, but Shewhart reports six observations for gold
instead of five. Shewhart’s data are given below. Analyze these data and compare your results to
those of the previous exercise.
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Gold Platinum Glass
83 61 78
81 61 71
76 67 75
79 67 72
78 64 74
72

EXERCISE 5.7.14. Recall that if Z ∼ N(0,1) and W ∼ χ2(r) with Z and W independent, then
by Definition 2.1.3 Z

/√
W/r has a t(r) distribution. Also recall that in a one-way ANOVA with

independent normal errors, a contrast has

a

∑
i=1

λiȳi· ∼ N

(
a

∑
i=1

λiµi,σ
2

a

∑
i=1

λ 2
i

Ni

)
,

SSE
σ2 ∼ χ

2(d fE),

and MSE independent of all the ȳi·s. Show that

∑
a
i=1 λiȳi·−∑

a
i=1 λiµi√

MSE ∑
a
i=1 λ 2

i /Ni

∼ t(d fE).



Chapter 6

Multiple comparison methods

As illustrated in Section 5.1, the most useful information from a one-way ANOVA is obtained
through examining contrasts. The trick is in picking interesting contrasts to consider. Interesting
contrasts are determined by the structure of the treatments or are suggested by the data.

The structure of the treatments often suggests a fixed group of contrasts that are of interest. For
example, if one of the treatments is a standard treatment or a control, it is of interest to compare
all of the other treatments to the standard. With a treatments, this leads to a− 1 contrasts. (These
will not be orthogonal.) In Chapter 11 we will consider factorial treatment structures. These include
cases such as four fertilizer treatments, say,

n0 p0 n0 p1 n1 p0 n1 p1

where n0 p0 is no fertilizer, n0 p1 consists of no nitrogen fertilizer but application of a phosphorous
fertilizer, n1 p0 consists of a nitrogen fertilizer but no phosphorous fertilizer, and n1 p1 indicates both
types of fertilizer. Again the treatment structure suggests a fixed group of contrasts to examine. One
interesting contrast compares the two treatments having nitrogen fertilizer against the two without
nitrogen fertilizer, another compares the two treatments having phosphorous fertilizer against the
two without phosphorous fertilizer, and a third contrast compares the effect of nitrogen fertilizer
when phosphorous is not applied with the effect of nitrogen fertilizer when phosphorous is applied.
Again, we have a treatments and a− 1 contrasts. In a balanced ANOVA, these a− 1 contrasts are
orthogonal. Even when there is an apparent lack of structure in the treatments, the very lack of
structure suggests a fixed group of contrasts. If there is no apparent structure, the obvious thing to
do is compare all of the treatments with all of the other treatments. With three treatments, there are
three distinct pairs of treatments to compare. With four treatments, there are six distinct pairs of
treatments to compare. With five treatments, there are ten pairs. With seven treatments, there are 21
pairs. With 13 treatments, there are 78 pairs.

One problem is that, with a moderate number of treatment groups, there are many contrasts to
look at. When we do tests or confidence intervals, there is a built in chance for error. The more
statistical inferences we perform, the more likely we are to commit an error. The purpose of the
multiple comparison methods examined in this chapter is to control the probability of making a
specific type of error. When testing many contrasts, we have many null hypotheses. This chapter
considers multiple comparison methods that control (i.e., limit) the probability of making an error
in any of the tests, when all of the null hypotheses are correct. Limiting this probability is referred to
as weak control of the experimentwise error rate. It is referred to as weak control because the control
only applies under the very stringent assumption that all null hypotheses are correct. Some authors
consider a different approach and define strong control of the experimentwise error rate as control
of the probability of falsely rejecting any null hypothesis. Thus strong control limits the probability
of false rejections even when some of the null hypotheses are false. Not everybody distinguishes
between weak and strong control, so the definition of experimentwise error rate depends on whose
work you are reading. One argument against weak control of the experimentwise error rate is that in
designed experiments, you choose treatments that you expect to have different effects. In such cases,

143
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Table 6.1: Mandel’s data on thirteen laboratories with summary statistics for the logs of the data

Lab Observations N ȳi· s2
i si

1 133 129 123 156 4 4.9031 0.01061315 0.1030
2 129 125 136 127 4 4.8612 0.00134015 0.0366
3 121 125 109 128 4 4.7919 0.00502248 0.0709
4 57 58 59 67 4 4.0964 0.00540738 0.0735
5 122 98 107 110 4 4.6906 0.00814531 0.0903
6 109 120 112 107 4 4.7175 0.00252643 0.0503
7 80 72 76 64 4 4.2871 0.00915446 0.0957
8 135 151 143 142 4 4.9603 0.00210031 0.0458
9 69 69 73 70 4 4.2518 0.00071054 0.0267

10 132 129 141 137 4 4.9028 0.00155179 0.0394
11 118 109 115 106 4 4.7176 0.00239586 0.0489
12 133 133 129 128 4 4.8731 0.00040518 0.0201
13 86 84 96 81 4 4.4610 0.00535505 0.0732

it makes little sense to concentrate on controlling the error under the assumption that all treatments
have the same effect. On the other hand, strong control is more difficult to establish.

Our discussion of multiple comparisons focuses on testing whether contrasts are equal to 0. In
all but one of the methods considered in this chapter, the experimentwise error rate is (weakly)
controlled by first doing a test of the hypothesis µ1 = µ2 = · · · = µa. If this test is not rejected, we
do not claim that any individual contrast is different from 0. In particular, if µ1 = µ2 = · · ·= µa, any
contrast among the means must equal 0, so all of the null hypotheses are correct. Since the error rate
for the test of µ1 = µ2 = · · ·= µa is controlled, the weak experimentwise error rate for the contrasts
is also controlled.

Many multiple testing procedures can be adjusted to provide multiple confidence intervals that
have a guaranteed simultaneous coverage. Several such methods will be presented in this chapter.

Besides the treatment structure suggesting contrasts, the other source of interesting contrasts is
having the data suggest them. If the data suggest a contrast, then the ‘parameter’ in our standard
theory for statistical inferences is a function of the data and not a parameter in the usual sense of
the word. When the data suggest the parameter, the standard theory for inferences does not apply.
To handle such situations we can often include the contrasts suggested by the data in a broader class
of contrasts and develop a procedure that applies to all contrasts in the class. In such cases we can
ignore the fact that the data suggested particular contrasts of interest because these are still contrasts
in the class and the method applies for all contrasts in the class. Of the methods considered in the
current chapter, only Scheffé’s method (discussed in Section 6.4) is generally considered appropriate
for this kind of data dredging.

Recently, a number of books have been published on multiple comparison methods, e.g.,
Hochberg and Tamhane (1987). A classic discussion is Miller (1981), who also focuses on weak
control of the experimentwise error rate, cf. Miller’s section 1.2.

We present multiple comparison methods in the context of the one-way ANOVA model (5.1.1)
but the methods extend easily to many other situations. We will use a single numerical example to
illustrate most of the methods discussed in this chapter. The data are introduced in Example 6.0.1.

EXAMPLE 6.0.1. Mandel (1972) presented data on the stress at 600% elongation for natural
rubber with a 40 minute cure at 140 oC. Stress was measured four times by each of 13 laboratories.
The units for the data are kilograms per centimeter squared (kg/cm2). The data are presented in
Table 6.1. While an analysis of these data on the original scale is not unreasonable, the assumptions
of equal variances and normality seem to be more nearly satisfied on the logarithmic scale. The
standard summary statistics for computing the analysis of variance on the natural logs of the data
are also given in Table 6.1.

This is a balanced one-way ANOVA, so the simple average of the 13 s2
i s gives the MSE. There
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Table 6.2: Analysis of variance table for logs of Mandel’s data

Source d f SS MS F P
Trts 12 3.92678 0.32723 77.73 0.000
Error 39 0.16418 0.00421
Total 51 4.09097
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Figure 6.1: Plot of residuals versus predicted values.

are three degrees of freedom for the variance estimate from each laboratory, so with 13 laboratories
there are a total of 13(3) = 39 degrees of freedom for error. The mean squared error times the
degrees of freedom for error gives the sum of squares for error. The sample variance of the 13
ȳi·s is s2

ȳ = .081806429. Multiplying this by the number of observations in each group, 4, gives
the MSTrts. The MSTrts times (13− 1) gives the SSTrts. The sum of squares total is the sample
variance of the logs of all 52 observations times (52−1). The degrees of freedom total are 52−1.
These calculations are summarized in the analysis of variance table given in Table 6.2.

Figures 6.1, 6.2, and 6.3 give residual plots. Figure 6.1 is a plot of the residuals versus the pre-
dicted values. The group mean ȳi· is the predicted value for an observation from group i. Figure 6.1
shows no particular trend in the variabilities. Figure 6.2 is a plot of the residuals versus indicators
of the 13 laboratories. Again, there are no obvious problems. Figure 6.3 gives a normal plot of the
residuals; the plot looks quite straight.

For pedagogical purposes, on some occasions we consider only the first seven of the 13 treatment
groups. We are not selecting these laboratories based on the data and we will continue to use the
MSE and d fE from the full data. 2

6.1 Fisher’s least significant difference method

The easiest way to adjust for multiple comparisons is to use R. A. Fisher’s least significant difference
method. To put it as simply as possible, with this method you first look at the analysis of variance
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Figure 6.2: Plot of residuals versus treatment number.
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Figure 6.3: Normal plot of residuals, W ′ = 0.976.
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F test for whether there are differences between the groups. If this test provides no evidence of
differences, you quit and go home. If the test is significant at, say, the α = .05 level, you just
ignore the multiple comparison problem and do all other tests in the usual way at the .05 level. This
method is generally considered inappropriate for use with contrasts suggested by the data. While
the theoretical basis for excluding contrasts suggested by the data is not clear (at least relative to
weak control of the experimentwise error rate), experience indicates that the method rejects far too
many individual null hypotheses if this exclusion is not applied. In addition, many people would not
apply the method unless the number of comparisons to be made was quite small.

The term ‘least significant difference’ comes from comparing pairs of means in a balanced
ANOVA. There is a number, the least significant difference (LSD), such that the difference between
two means must be greater than the LSD for the corresponding treatments to be considered signifi-
cantly different. Generally, we have a significant difference between µi and µ j if

|ȳi·− ȳ j·|√
MSE

[ 1
N + 1

N

] > t
(

1− α

2
,d fE

)
.

Multiplying both sides by the standard error leads to rejection if

|ȳi·− ȳ j·|> t
(

1− α

2
,d fE

)√
MSE

[
1
N
+

1
N

]
.

The number on the right is defined as the least significant difference,

LSD≡ t
(

1− α

2
,d fE

)√
MSE

2
N
.

Note that the LSD depends on the choice of α but does not depend on which means are being
examined. If the absolute difference between two sample means is greater than the LSD the popu-
lation means are declared significantly different. Recall, however, that these comparisons are never
attempted unless the analysis of variance F test is rejected at the α level. The reason that a single
number exists for comparing all pairs of means is that in a balanced ANOVA the standard error is
the same for any comparison between a pair of means.

EXAMPLE 6.1.1. For Mandel’s laboratory data, the analysis of variance F test is highly signifi-
cant, so we can proceed to make individual comparisons among pairs of means. With α = .05,

LSD = t(.975,39)

√
.00421

[
1
4
+

1
4

]
= 2.023(.0459) = .093

Means that are greater than .093 apart are significantly different. Means that are less than .093 apart
are not significantly different. We display the results visually. Order the sample means from smallest
to largest and indicate groups of means that are not significantly different by underlining the group.
Such a display is given below for comparing laboratories 1 through 7.

Lab. 4 7 5 6 3 2 1
Mean 4.0964 4.2871 4.6906 4.7175 4.7919 4.8612 4.9031

Laboratories 4 and 7 are distinct from all other laboratories. All the other consecutive pairs of labs
are insignificantly different. Thus labs 5 and 6 cannot be distinguished. Similarly, labs 6 and 3
cannot be distinguished, 3 and 2 cannot be distinguished, and labs 2 and 1 cannot be distinguished.
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However, lab 5 is significantly different from labs 3, 2, and 1. Lab 6 is significantly different from
labs 2 and 1. Also, lab 3 is different from lab 1.

To be completely correct, when comparing just the first 7 laboratories the LSD method should
be based on an F test for just those 7 laboratories rather than the F test from Table 6.2 which is
based on all 13 laboratories. This can be done by computing a MSTrts in the usual way from the
sample means of just the first 7 labs. The resulting F test has 6 degrees of freedom in the numerator
and is highly significant (F = 89.84). Unfortunately, this point is often ignored in practice.

We can also use the LSD to compare all 13 laboratories. Again, we use a visual display, but with
more means we list the ordered means vertically and use letters, rather than lines, to indicate groups
that are not significantly different.

Lab. Mean
4 4.0964 A
9 4.2518 B
7 4.2871 B

13 4.4610 C
5 4.6906 D
6 4.7175 D E

11 4.7176 D E
3 4.7919 F E
2 4.8612 F G

12 4.8731 F G H
10 4.9028 G H

1 4.9031 G H
8 4.9603 H

For example, labs 12, 10, 1, and 8 all share the letter H, so there are no significant differences
declared among those four labs. 2

For testing a group of contrasts that are 1) not just comparisons between pairs of means or 2)
not from a balanced ANOVA, first perform the analysis of variance F test at the α level and if it is
rejected, test H0 : ∑i λiµi = 0 by rejecting if

SS (∑i λiµi)

MSE
> F(1−α,1,d fE).

Alternatively, one can use the equivalent t tests for the contrasts.

EXAMPLE 6.1.2. Suppose that in Mandel’s data the first two laboratories are in San Francisco,
the second two are in Seattle, the fifth is in New York, and the sixth and seventh are in Boston.
This structure to the treatments suggests some interesting orthogonal contrasts. We can compare the
average of the labs on the West Coast with the average of the labs on the East Coast. On the West
Coast we can compare the average of the San Francisco labs with the average of the Seattle labs,
we can compare the San Francisco labs with each other and the Seattle labs with each other. On the
East Coast we can compare the New York lab with the average of the Boston labs and the Boston
labs with each other. The contrast coefficients along with estimates and sums of squares are given
in Table 6.3. The contrasts involving averages have been multiplied by appropriate constants to get
simple integer contrast coefficients.

Recalling that the overall F test is highly significant for the first 7 labs, to perform the α = .05
level LSD method on the contrasts of Table 6.3, just divide each sum of squares by MSE = .00421
to get an F statistic and compare the F statistics to F(.95,1,39) = 4.09. The F statistics are given
below.

Contrast C1 C2 C3 C4 C5 C6
F 15.68 182.28 0.83 229.76 22.45 88.03
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Table 6.3: Orthogonal contrasts for the first seven laboratories in Mandel’s data

Contrast coefficients
Lab. C1 C2 C3 C4 C5 C6

1 3 1 1 0 0 0
2 3 1 −1 0 0 0
3 3 −1 0 1 0 0
4 3 −1 0 −1 0 0
5 −4 0 0 0 2 0
6 −4 0 0 0 −1 1
7 −4 0 0 0 −1 −1

Est 1.177 .8760 .0418 .6954 .3765 .4305
SS .0660 .7674 .0035 .9673 .0945 .3706

All of the contrasts are significantly different from zero except C3, the comparison between the two
labs in San Francisco. 2

Apparently some people have taken to calling this method the Fisher significant difference
(FSD) method. One suspects that this is a reaction to another meaning commonly associated with
the letters LSD. I, for one, would never suggest that only people who are hallucinating would believe
all differences declared by LSD are real.

6.2 Bonferroni adjustments

The Bonferroni method is the one method we consider that does not stem from a test of µ1 = µ2 =
· · ·= µa. Rather, it controls the experimentwise error rate by employing a simple adjustment to the
significance level of each individual test. If you have planned to do s tests, you just perform each test
at the α/s level rather than at the α level. This method is absolutely not appropriate for contrasts
that are suggested by the data.

The justification for Bonferroni’s method relies on a very simple result from probability: for two
events, the probability that one or the other event occurs is no more than the sum of the probabilities
for the individual events. Thus with two tests, say A and B, the probability that we reject A or reject B
is less than or equal to the probability of rejecting A plus the probability of rejecting B. In particular,
if we fix the probability of rejecting A at α/2 and the probability of rejecting B at α/2, then the
probability of rejecting A or B is no more than α/2+α/2 = α . More generally, if we have s tests
and control the probability of type I error for each test at α/s, then the probability of rejecting any
of the tests when all s null hypotheses are true is no more than α/s+ · · ·+α/s = α .

To compare pairs of means in a balanced ANOVA, as with the least significant difference
method, there is a single number to which we can compare the differences in means. For a fixed
α , this number is called the Bonferroni significant difference and takes on the value

BSD≡ t
(

1− α

2s
,d fE

)√
MSE

[
1
N
+

1
N

]
.

Recall for comparison that with the least significant difference method, the necessary tabled value is
t(1−α/2,d fE), which is always smaller than the tabled value for the BSD. Thus the BSD is always
larger than the LSD and the BSD tends to display fewer differences among the means than the LSD.

When testing a group of contrasts that are not just comparisons between pairs of means in a
balanced ANOVA, reject a particular contrast hypothesis H0 : ∑i λiµi = 0 if

SS (∑i λiµi)

MSE
> F

(
1− α

s
,1,d fE

)
.

Equivalent adjustments can be made when performing t rather than F tests.
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Bonferroni adjustments can also be used to obtain confidence intervals that have a simultaneous
confidence of (1−α)100% for covering all of the contrasts. The endpoints of these intervals are

a

∑
i=1

λiȳi·± t
(

1− α

2s
,d fE

)
SE

(
a

∑
i=1

λiȳi·

)
.

Recall that for an unbalanced ANOVA,

SE

(
a

∑
i=1

λiȳi·

)
=

√
MSE

a

∑
i=1

λ 2
i

Ni
.

Only the tabled value distinguishes this interval from a standard confidence interval for ∑
a
i=1 λiµi.

In the special case of comparing pairs of means in a balanced ANOVA, the Bonferroni confidence
interval for, say, µi−µ j reduces to

(ȳi·− ȳ j·)±BSD.

For these intervals, we are (1−α)100% confident that the collection of all such intervals simulta-
neously contain all of the corresponding differences between pairs of population means.

EXAMPLE 6.2.1. In comparing the first 7 laboratories, we have
(7

2

)
= 21 pairs of laboratories to

contrast. The Bonferroni significant difference for α = .05 is

BSD = t
(

1− .025
21

,39
)√

.00421
[

1
4
+

1
4

]
= t(.99881,39).04588 = 3.2499(.04588) = .149 .

Means that are greater than .149 apart are significantly different. Means that are less than .149 apart
are not significantly different. Once again, we display the results visually. We order the sample
means from smallest to largest and indicate groups of means that are not significantly different by
underlining the group.

Lab. 4 7 5 6 3 2 1
Mean 4.0964 4.2871 4.6906 4.7175 4.7919 4.8612 4.9031

Laboratories 4 and 7 are distinct from all other laboratories. Labs 5, 6, and 3 cannot be distinguished.
Similarly, labs 6, 3, and 2 cannot be distinguished; however, lab 5 is significantly different from lab
2 and also lab 1. Labs 3, 2, and 1 cannot be distinguished, but lab 1 is significantly different from
lab 6.

The Bonferroni simultaneous 95% confidence interval for, say, µ2−µ5 has endpoints

(4.8612−4.6906)± .149

which gives the interval (.021,.320). Transforming back to the original scale from the logarithmic
scale, we are 95% confident that values for lab 2 average being between e.021 = 1.02 and e.320 =
1.38 times greater than the values for lab 5. Similar conclusions are drawn for the other twenty
comparisons between pairs of means.

If we examine all 13 means, we have
(13

2

)
= 78 comparisons to make. The Bonferroni significant

difference for α = .05 is

BSD = t
(

1− .025
78

,39
)√

.00421
[

1
4
+

1
4

]
= t(.9997,39).04588 = 3.7125(.04588) = .170.
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Unlike the LSD, with more means to consider the BSD is larger. Now, means that are greater than
.170 apart are significantly different. Means that are less than .170 apart are not significantly differ-
ent. Again, we use a visual display, but with more means we list the ordered means vertically and
use letters, rather than lines, to indicate groups that are not significantly different.

Lab. Mean
4 4.0964 A
9 4.2518 A B
7 4.2871 B

13 4.4610 C
5 4.6906 D
6 4.7175 D E

11 4.7176 D E
3 4.7919 D E F
2 4.8612 E F

12 4.8731 E F
10 4.9028 F

1 4.9031 F
8 4.9603 F

Here, for example, labs 4 and 9 are not significantly different, nor are labs 9 and 7 but 4 and 7 are
different. Lab 13 is significantly different from all other labs. 2

EXAMPLE 6.2.2. Consider again the six contrasts from Example 6.1.2 and Table 6.3. To per-
form the α = .05 level Bonferroni adjustments on these six contrasts, once again divide the
sums of squares in Table 6.3 by the MSE to get F statistics but now compare the F statistics to
F(.9916̄,1,39) = 7.73, where .9916̄ = 1− .05/6. As given in Example 6.1.2, the F statistics are

Contrast C1 C2 C3 C4 C5 C6
F 15.68 182.28 0.83 229.76 22.45 88.03

Comparing these to 7.73 shows that once again all of the contrasts are significantly different from
zero except C3, the comparison between the two labs in San Francisco. 2

Minitab commands

Minitab can be used to obtain the F and t percentage points needed for Bonferroni’s method. In this
section we have used t(.99881,39), t(.9997,39), and F(.9916̄,1,39). To obtain these, use Minitab’s
inverse cumulative distribution function command.

MTB > invcdf .99881;

SUBC> t 39.

MTB > invcdf .9997;

SUBC> t 39.

MTB > invcdf .9916666;

SUBC> f 1 39.

6.3 Studentized range methods

Studentized range methods are generally used only for comparing pairs of means in balanced anal-
ysis of variance problems. They are not based on the analysis of variance F test but on an alternative
test of µ1 = µ2 = · · ·= µa.

The range of a random sample is the difference between the largest observation and the smallest
observation. For a known variance σ2, the range of a random sample from a normal population has a
distribution that can be worked out. This distribution depends on σ2 and the number of observations
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in the sample. It is only reasonable that the distribution depend on the number of observations
because the difference between the largest and smallest observations ought to be larger in a sample
of 75 observations than in a sample of 3 observations. Just by chance, we would expect the extreme
observations to become more extreme in larger samples.

Knowing the distribution of the range is not very useful because the distribution depends on σ2,
which we do not know. To eliminate this problem, divide the range by an independent estimate of
the standard deviation, say, σ̂ having rσ̂2/σ2 ∼ χ2(r). The distribution of this studentized range no
longer depends on σ2 but rather it depends on the degrees of freedom for the variance estimate. For
a sample of n observations and a variance estimate with r degrees of freedom, the distribution of the
studentized range is written as

Q(n,r).

Tables are given in Appendix B.5. The α percentile is denoted Q(α,n,r).
As discussed in Section 5.2, if µ1 = µ2 = · · ·= µa in a balanced ANOVA, the ȳi·s form a random

sample of size a from a N(µ1,σ
2/N) population. Looking at the range of this sample and dividing

by the natural independent chi-squared estimate of the standard deviation leads to the statistic

Q =
max ȳi·−min ȳi·√

MSE/N
.

If the observed value of this studentized range statistic is consistent with its coming from a
Q(a,d fE) distribution, then the data are consistent with the null hypothesis of equal means µi.
If the µis are not all equal, the studentized range Q tends to be larger than if the means were all
equal; the difference between the largest and smallest observations will involve not only random
variation but also the differences in the µis. Thus, for an α = .05 level test, if the observed value of
Q is larger than Q(.95,a,d fE), we reject the claim that the means are all equal.

The studentized range multiple comparison methods discussed in this section begin with this
studentized range test.

6.3.1 Tukey’s honest significant difference

John Tukey’s honest significant difference method is to reject the equality of a pair of means, say,
µi and µ j at the α = .05 level, if

|ȳi·− ȳ j·|√
MSE/N

> Q(.95,a,d fE).

Obviously, this test cannot be rejected for any pair of means unless the test based on the maximum
and minimum sample means is also rejected. For an equivalent way of performing the test, reject
equality of µi and µ j if

|ȳi·− ȳ j·|> Q(.95,a,d fE)
√

MSE/N.

With a fixed α , the honest significant difference is

HSD≡ Q(1−α,a,d fE)
√

MSE
/

N.

For any pair of sample means with an absolute difference greater than the HSD, we conclude that the
corresponding population means are significantly different. The HSD is the number that an observed
difference must be greater than in order for the population means to have an ‘honestly’ significant
difference. The use of the word ‘honest’ is a reflection of the view that the LSD method allows ‘too
many’ rejections.

Tukey’s method can be extended to provide simultaneous (1−α)100% confidence intervals for
all differences between pairs of means. The interval for the difference µi−µ j has end points

ȳi·− ȳ j·±HSD
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where HSD depends on α . For α = .05, we are 95% confident that the collection of all such intervals
simultaneously contains all of the corresponding differences between pairs of population means.

EXAMPLE 6.3.1. For comparing the first 7 laboratories in Mandel’s data with α = .05, the honest
significant difference is approximately

HSD = Q(.95,7,40)
√

MSE/4 = 4.39
√
.00421/4 = .142.

Here we have used Q(.95,7,40) rather than the correct value Q(.95,7,39) because the correct value
was not available in the table used. Treatment means that are more than .142 apart are significantly
different. Means that are less than .142 apart are not significantly different. Note that the HSD value
is similar to the corresponding BSD value of .149; this frequently occurs. Once again, we display
the results visually.

Lab. 4 7 5 6 3 2 1
Mean 4.0964 4.2871 4.6906 4.7175 4.7919 4.8612 4.9031

These results are nearly the same as for the BSD except that labs 6 and 2 are significantly different
by the HSD criterion.

The HSD simultaneous 95% confidence interval for, say, µ2−µ5 has endpoints

(4.8612−4.6906)± .142

which gives the interval (.029, .313). Transforming back to the original scale from the logarithmic
scale, we are 95% confident that values for lab 2 average being between e.029 = 1.03 and e.313 = 1.37
times greater than values for lab 5. Again, there are 20 more intervals to examine.

If we consider all 13 means, the honest significant difference is approximately

HSD = Q(.95,13,40)
√

MSE/4 = 4.98
√

.00421/4 = .162

Unlike the LSD, but like the BSD, with more means to consider the HSD is larger. Now, means that
are greater than .162 apart are significantly different. Means that are less than .162 apart are not
significantly different. Again, we use a vertical display with letters to indicate groups that are not
significantly different.

Lab. Mean
4 4.0964 A
9 4.2518 A B
7 4.2871 B

13 4.4610 C
5 4.6906 D
6 4.7175 D E

11 4.7176 D E
3 4.7919 D E F
2 4.8612 G E F

12 4.8731 G E F
10 4.9028 G F

1 4.9031 G F
8 4.9603 G

The results are similar to those for the corresponding BSD of .170 except that labs 3 and 8 are now
different. 2
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Table 6.4: Comparison values for Newman–Keuls method as applied to Mandel’s data

r Q(.95, r,40) HSD r Q(.95, r,40) HSD
13 4.98 .162 7 4.39 .142
12 4.90 .159 6 4.23 .137
11 4.82 .156 5 4.04 .131
10 4.74 .154 4 3.79 .123

9 4.64 .151 3 3.44 .112
8 4.52 .147 2 2.86 .093

6.3.2 Newman–Keuls multiple range method

The Newman–Keuls multiple range method involves repeated use of the honest significant differ-
ence method with some minor adjustments. Multiple range methods are difficult to describe in
general, so we simply demonstrate how they work.

EXAMPLE 6.3.2. To use the Newman–Keuls method for comparing the first 7 laboratories in
Mandel’s data, we need the HSD value for comparing not only 7 laboratories, but also for comparing
6, 5, 4, 3, and 2 laboratories. Table 6.4 presents all the values needed, not only for comparing the first
7 labs, but also for comparing all 13 labs. Again, we approximate Q(.95,r,39) with Q(.95,r,40), so
HSD = Q(.95,r,40)

√
MSE/4 where

√
MSE/4 =

√
.00421/4 = .0324423.

As before, the seven means are ordered from smallest to largest. The smallest mean, 4.0964, and
the largest mean, 4.9031, are compared using the r = 7 value of HSD from Table 6.4. These means
are more than .142 apart so we go to the next stage.

At the second stage, the smallest mean, 4.0964, is compared with the second largest mean,
4.8612, and the second smallest mean, 4.2871, is compared to largest mean, 4.9031. These are
groups of means that are 6 apart, so they are compared using the HSD value for r = 6. Both differ-
ences in means are greater than .137, so we progress to the third stage.

In the third stage, the smallest mean, 4.0964, is compared to the third largest mean, 4.7919,
the second smallest mean, 4.2871, is compared to the second largest mean, 4.8612, and the third
smallest mean, 4.6906, is compared to the largest mean, 4.9031. These are groups of means that
are 5 apart, so they are compared using the HSD value for r = 5. All three differences in means are
greater than .131, so we progress to the fourth stage and so on.

At any particular stage, means that are r apart get compared using the HSD value for comparing
groups of r means. The only exception to this rule is that if at any given stage we conclude that
certain means are not significantly different, then at later stages we never reconsider the possibility
that they may contain significant differences. The standard visual display is given below.

Lab. 4 7 5 6 3 2 1
Mean 4.0964 4.2871 4.6906 4.7175 4.7919 4.8612 4.9031

All ordered means that were r = 4 apart were different. Of the means that were r = 3 apart, two
groups were not significantly different. One of these consists of labs 5, 6, and 3, while the other
group consists of labs 3, 2, and 1. For r = 2, we do not consider the possibility that there may be
differences between labs 5, 6, and 3 or between labs 3, 2, and 1. We do consider possible differences
between 4 and 7 and between 7 and 5.

If the mean for lab 6 was 4.7875, rather than its actual value 4.7175, the exception referred to
in the previous paragraph would have come into play. In examining labs 5, 6, and 3, the difference
between the largest and smallest of the three consecutive means 4.6906, 4.7875, and 4.7919 would
still be less than the HSD for r = 3 which is .112. Thus the three labs would still be considered not
significantly different. The rule is that, since the three are not significantly different, we no longer
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consider the possibility that any subset of the means could be different. If we allowed ourselves
to compare the consecutive means 4.6906 and 4.7875 with r = 2, the appropriate HSD value is
.093 and the means for labs 5 and 6 would be considered significantly different. However, because
the triple 4.6906, 4.7875, and 4.7919 are not significantly different, we never compare 4.6906 and
4.7875 directly.

The visual display for all 13 laboratories is given below.

Lab. Mean
4 4.0964 A
9 4.2518 B
7 4.2871 B

13 4.4610 C
5 4.6906 D
6 4.7175 D

11 4.7176 D
3 4.7919 D E
2 4.8612 F E

12 4.8731 F E
10 4.9028 F E

1 4.9031 F E
8 4.9603 F

2

6.4 Scheffé’s method

Scheffé’s method is valid for examining any and all contrasts simultaneously. This method is pri-
marily used with contrasts that were suggested by the data. Scheffé’s method should not be used for
comparing pairs of means in a balanced ANOVA because the HSD method has properties compara-
ble to Scheffé’s but is better for comparing pairs of means.

Scheffé’s method is closely related to the analysis of variance F test. Recalling the definition of
the MSTrts, the analysis of variance F test is rejected when

SSTrts/(a−1)
MSE

> F(1−α,a−1,d fE). (6.4.1)

Recall from Section 5.4 that for any contrast ∑i λiµi,

SS

(
∑

i
λiµi

)
≤ SSTrts. (6.4.2)

It follows immediately that

SS (∑i λiµi)/(a−1)
MSE

≤ SSTrts/(a−1)
MSE

.

Scheffé’s method is to replace SSTrts in (6.4.1) with SS (∑i λiµi) and to reject H0 : ∑i λiµi = 0 if

SS (∑i λiµi)/(a−1)
MSE

> F(1−α,a−1,d fE).

From (6.4.1) and (6.4.2), Scheffé’s test cannot possibly be rejected unless the ANOVA test is re-
jected. This controls the experimentwise error rate for multiple tests. However, there always exists
a contrast that contains all of the SSTrts, i.e., there is always a contrast that achieves equality in
relation (6.4.2), so if the ANOVA test is rejected, there is always some contrast that can be rejected
using Scheffé’s method. This contrast may not be interesting but it exists, cf. Section 5.4.
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Scheffé’s method can be adapted to provide simultaneous (1−α)100% confidence intervals for
contrasts. These have the endpoints

a

∑
i=1

λiȳi·±
√
(a−1)F(1−α,a−1,d fE) SE

(
a

∑
i=1

λiȳi·

)
.

EXAMPLE 6.4.1. Just for a change, we reexamine the electrical characteristic data of Chapter 5
rather than illustrating the methods with Mandel’s data. The electrical characteristic data has MSE =
.56155 with d fE = 24. We examined the orthogonal contrasts

C1 ≡ (1)µ1 +(−1)µ2 +(0)µ3 +(0)µ4 = µ1−µ2,

C2 ≡ (1/2)µ1 +(1/2)µ2 +(−1)µ3 +(0)µ4 =
µ1 +µ2

2
−µ3,

and
C3 ≡ (1/3)µ1 +(1/3)µ2 +(1/3)µ3 +(−1)µ4 =

µ1 +µ2 +µ3

3
−µ4.

The sums of squares for C1, C2, and C3 are

SS(C1) = 0.0178, SS(C2) = 0.7738, and SS(C3) = 10.0818 .

These orthogonal contrasts were constructed because C3 is easily interpretable and contains a large
proportion of the available sum of squares for treatments; SSTrts = 10.873. The vast bulk of the
treatment differences are due to the difference between sheet 4 and the average of the other sheets.
The data suggest these contrasts, so it is not appropriate to ignore the selection process when testing
whether the contrasts are 0. Scheffé’s method compares

SS (C3)/(a−1)
MSE

=
10.0818/3
.56155

= 5.98

to an F(3,24) distribution. F(.999,3,24) = 7.55 and F(.99,3,24) = 4.72, so there is very substan-
tial evidence that sheet 4 differs from the average of the other sheets as evaluated using Scheffé’s
method. The similar computation for C1 gives an F of 0.01 and for C2 an F of 0.46. Both are less
than 1, so neither is significant.

In our earlier consideration of these data, we also examined the orthogonal contrasts

C5 ≡ (1)µ1 +(1)µ2 +(0)µ3 +(−2)µ4,

C1, and
C6 ≡ (1)µ1 +(1)µ2 +(−3)µ3 +(1)µ4.

The sums of squares for C5, C1, and C6 are

SS(C5) = 10.803, SS(C1) = 0.018, and SS(C6) = 0.052 .

These contrasts were specifically constructed so that S(C5)
.
= SSTrts. The only way to test a contrast

that was constructed so as to contain all of the sums of squares treatments is to behave as if the
contrast were the entire contribution from the treatments. Scheffé’s method uses the test statistic

SS (C5)/(a−1)
MSE

=
10.803/3
.56155

= 6.41

and compares it to an F(3,24) distribution. This is essentially the analysis of variance F test.
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The 95% Scheffé confidence interval for C3 has endpoints

(1/3)16.4429+(1/3)16.5143+(1/3)16.0714+(−1)14.9571

±
√

3F(.95,3,24)

√
.56155

(1/3)2 +(1/3)2 +(1/3)2 +(−1)2

7
.

F(.95,3,24) = 3.01, so the endpoints reduce to 1.386± .983 and the interval is (0.40,2.37).
2

As with the LSD method, the overall F test and thus Scheffé’s method should be adapted to the
contrasts of interest. For example, if we are considering only the first seven labs in Mandel’s data,
we would use an overall F test with only six degrees of freedom in the numerator and Scheffé’s
method for examining contrasts among the seven labs uses 6 in place of a−1 = 13.

6.5 Other methods

Other multiple comparison methods have been developed that are similar in spirit to the studentized
range methods. Just as studentized range methods were developed for comparing pairs of means in
balanced analysis of variance problems, these other methods were developed for examining other
sets of contrasts in balanced ANOVA. Again, the methods are not based on the analysis of variance
F test but on alternative tests of µ1 = µ2 = · · ·= µa. We will briefly discuss two of these methods:
Ott’s analysis of means method (AOM) and Dunnett’s many-one t statistics. In addition, we mention
another studentized range method proposed by Duncan that can also be modified for application
with AOM and Dunnett’s method.

6.5.1 Ott’s analysis of means method

Ott (1967) introduced a graphical method called analysis of means for comparing each mean to the
average of all the means. It is most often used in quality control work and the graphical method is
closely related to control charts for means, cf. Shewhart (1931). Ott’s work was founded upon earlier
work that is referenced in his article. Nelson (1993) contains a brief, clear introduction, extensions,
some tables, and references to other tables.

Balanced one-way ANOVA methods are founded on the fact that if µ1 = µ2 = · · · = µa, the
ȳi·s form a random sample of size a from a N(µ1,σ

2/N) population. We have already seen that the
distribution of the studentized range is known when µ1 = µ2 = · · ·= µa, so comparing the observed
studentized range to the known distribution provides a test of H0 : µ1 = µ2 = · · ·= µa. This test was
then modified to provide multiple comparison methods.

The AOM method is based on knowing the distribution of

max
i

|ȳi·− ȳ··|
SE(ȳi·− ȳ··)

when the null hypothesis H0 : µ1 = µ2 = · · · = µa is true. The distribution depends on the number
of treatments a and the d fE. The 1−α percentile of this distribution is often denoted h(α,a,d fE).
An α level test of H0 is rejected if

max
i

|ȳi·− ȳ··|
SE(ȳi·− ȳ··)

> h(α,a,d fE).

When this test is rejected, we can do multiple comparisons to identify which individual means are
different from the overall average. A particular mean µi is considered different if

|ȳi·− ȳ··|
SE(ȳi·− ȳ··)

> h(α,a,d fE).
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Clearly, if the overall test is not rejected, none of the individual means will be considered different.
The test given above is easily seen to be equivalent to the following: µi is considered different

from the average of all the µs (or equivalently from the average of the other µs) if ȳi· is not between
the values

ȳ··±h(α,a,d fE)SE(ȳi·− ȳ··).

This leads to a simple graphical procedure. Plot the pairs (i, ȳi·). On this plot add horizontal lines
at ȳ··± h(α,a,d fE)SE(ȳi·− ȳ··). Any ȳi· that lies outside the horizontal lines indicates a µi that is
different from the others. While it is not crucial, traditionally the graphical display also includes a
center line at ȳ··. This graphical display is very similar to a control chart for means. The AOM is
focused on testing whether one particular mean is different from the rest of the means. This may be
particularly appropriate for quality control problems.

The primary detail that we have not yet covered is the exact formula for SE(ȳi·− ȳ··). To compute
this, first note that

ȳi·− ȳ·· = ȳi·−
ȳ1·+ · · ·+ ȳa·

a

=
a−1

a
ȳi·−

1
a ∑

k 6=i
ȳk·.

It follows that the standard error is

SE(ȳi·− ȳ··) =

√√√√MSE

[(
a−1

a

)2

+(a−1)
(

1
a

)2
]/

N

=

√
MSE

[
a−1
aN

]
.

In fact, this argument explicates exactly what AOM is examining. AOM is simultaneously testing
whether the contrasts [(a−1)/a]µi− (1/a)∑k 6=i µk, i = 1, . . . ,a are all equal to 0. Equivalently, we
can multiply the contrasts by a and think of the contrasts as being (a−1)µi−∑k 6=i µk, i = 1, . . . ,a.
It is not difficult to see that these contrasts all equal 0 if and only if the µis are all equal.

A modification similar to the Newman–Keuls procedure can be used with AOM. The modifica-
tion involves changing the value of a in h(α,a,d fE). Order the values of |ȳi·− ȳ··|. When examining
the largest value of |ȳi·− ȳ··| compare it to h(α,a,d fE)SE(ȳi·− ȳ··), when examining the second
largest value of |ȳi·− ȳ··|, compare it to h(α,a−1,d fE)SE(ȳi·− ȳ··), etc. To maintain consistency,
if, say, the second largest value of |ȳi·− ȳ··| is not greater than h(α,a− 1,d fE)SE(ȳi·− ȳ··), all of
the smaller values of |ȳi·− ȳ··| should also be considered nonsignificant. Note that h(α,1,d fE) = 0
for any α , so that if all the other means are declared different, the mean with the smallest deviation
from ȳ·· will also be declared different, assuming that the deviation is positive.

6.5.2 Dunnett’s many-one t statistic method

Dunnett’s method is designed for situations in which there is a standard treatment (or placebo or
control) and where interest lies in comparing each of the other treatments to the standard. Miller
(1981) contains a thorough discussion along with references to the early work by Dunnett and
Paulson.

Suppose that the standard treatment is i = 1. Dunnett’s method is based on knowing the distri-
bution of

max
i

|ȳi·− ȳ1·|
SE(ȳi·− ȳ1·)

when the null hypothesis H0 : µ1 = µ2 = · · · = µa is true. If we denote the 1−α percentile of the
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distribution as d(1−α,a,d fE), an α level test of H0 is rejected if

max
i

|ȳi·− ȳ1·|
SE(ȳi·− ȳ1·)

> d(1−α,a,d fE).

When the overall test is rejected, we can do multiple comparisons to identify which µis are different
from µ1. A particular mean µi is considered different if

|ȳi·− ȳ1·|
SE(ȳi·− ȳ1·)

> d(1−α,a,d fE).

Clearly, if the overall test is not rejected, none of the individual means will be considered different.
It is also clear that µ1 = µ2 = · · ·= µa if and only if µi−µ1 = 0 for all i > 1. The standard error is
that for comparing two means, so

SE(ȳi·− ȳ1·) =

√
MSE

[
1
N
+

1
N

]
.

Simultaneous (1−α)100% confidence intervals for the µi−µ1s have endpoints

ȳi·− ȳ1·±d(1−α,a,d fE)SE(ȳi·− ȳ1·).

A modification similar to Newman–Keuls can be used with Dunnett’s method. This modification
orders the values of |ȳi·− ȳ1·| and adjusts the value of the a parameter in d(1−α,a,d fE). When ex-
amining the largest value of |ȳi·− ȳ1·|, use d(1−α,a,d fE), when examining the second largest value
of |ȳi·− ȳ1·|, use d(1−α,a−1,d fE), etc. Of course to maintain consistency, when it is determined
that, say, the second largest value of |ȳi·− ȳ1·| is not greater than d(1−α,a−1,d fE)SE(ȳi·− ȳ1·),
all of the smaller values of |ȳi·− ȳ1·| should be considered as nonsignificant also.

6.5.3 Duncan’s multiple range method

Duncan has developed a multiple range procedure similar to that of Newman–Keuls. Newman–
Keuls uses a series of tabled values Q(1 − α,a,d fE), Q(1 − α,a − 1,d fE), . . ., Q(1 −
α,2,d fE). Duncan’s method simply changes the tabled values. Duncan uses Q

(
[1−α]a−1,a,d fE

)
,

Q
(
[1−α]a−2,a−1,d fE

)
, . . ., Q(1−α,2,d fE). See Miller (1981) for a discussion of the rationale

behind these choices.
Using Duncan’s value Q

(
[1−α]a−1,a,d fE

)
to compare the largest and smallest means does

not control the experimentwise error rate at α . (It controls it at 1− [1−α]a−1.) As a result, Duncan
suggests performing the analysis of variance F test first and proceeding only if the F test indicates
that there are differences among the means at level α . Duncan’s method is more likely to conclude
that a pair of means is different than the Newman–Keuls method and less likely to establish a
difference than the LSD method. Just as the Newman–Keuls approach can be used to modify the
AOM and Dunnett’s method, Duncan’s idea can also be applied to the AOM and Dunnett’s method.

6.6 Summary of multiple comparison procedures

In this section we review and compare the uses of the various multiple comparison procedures.
The most general procedures are the least significant difference, the Bonferroni, and the Scheffé

methods. These can be used for arbitrary sets of preplanned contrasts. They are listed in order from
least conservative (most likely to reject an individual null hypothesis) to most conservative (least
likely to reject). Scheffé’s method can also be used for examining contrasts suggested by the data.
Bonferroni’s method has the advantage that it can easily be applied to almost any multiple testing
problem.
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Table 6.5: Rubber stress at five laboratories

Sample Sample Sample
Lab. size mean variance
1 4 57.00 32.00
2 4 67.50 46.33
3 4 40.25 14.25
4 4 56.50 5.66
5 4 52.50 6.33

To compare all of the treatment groups in a balanced analysis of variance, we can use the least
significant difference, the Duncan, the Newman–Keuls, the Bonferroni, and the Tukey methods.
Again, these are (roughly) listed in the order from least conservative to most conservative. In some
cases, for example when comparing Bonferroni and Tukey, an exact statement of which is more
conservative is not possible.

To decide on a method, you need to decide on how conservative you want to be. If it is very
important not to claim differences when there are none, you should be very conservative. If it is
most important to identify differences that may exist, then you should choose less conservative
methods.

Finally, we discussed two specialized methods for balanced ANOVA. The analysis of means
provides for testing whether each group differs from all the other groups and Dunnett’s method
allows multiple testing of each group against a fixed standard group.

Many of the methods have corresponding methods for constructing multiple confidence in-
tervals. Various computer programs execute these procedures. For example, newer versions of
Minitab’s ‘oneway’ command compute these for Fisher’s LSD method, Tukey’s method, and Dun-
nett’s method.

6.7 Exercises

EXERCISE 6.7.1. Exercise 5.7.1 involved measurements from different laboratories on the stress
at 600% elongation for a certain type of rubber. The summary statistics are repeated in Table 6.5.
Ignoring any reservations you may have about the appropriateness of the analysis of variance model
for these data, compare all pairs of laboratories using α = .10 for the LSD, Bonferroni, Tukey,
and Newman–Keuls methods. Give joint 95% confidence intervals using Tukey’s method for all
differences between pairs of labs.

EXERCISE 6.7.2. Use Scheffé’s method with α = .01 to test whether the contrast in Exer-
cise 5.7.2d is zero.

EXERCISE 6.7.3. Use Bonferroni’s method with an α near .01 to give simultaneous confidence
intervals for the mean weight in each height group for Exercise 5.7.3.

EXERCISE 6.7.4. Use the LSD, Bonferroni, and Scheffé’s methods to test whether the four or-
thogonal contrasts in Exercise 5.7.4 are zero. Use α = .05.

EXERCISE 6.7.5. Exercise 5.7.5 contained data on stress measurements for four different types
of rubber. Four observations were taken on each type of rubber; the means are repeated below

Material A B C D
Mean 26.4425 26.0225 23.5325 29.9600
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and the sample variance of the 16 observations is 14.730793. Test for differences between all pairs
of materials using α = .05 for the LSD, Bonferroni, Tukey, and Newman–Keuls methods. Give 95%
confidence intervals for the differences between all pairs of materials using the BSD method.

EXERCISE 6.7.6. In Exercise 5.7.6 on the stress of four types of rubber an outlier was noted
in material B. Redo the multiple comparisons of the previous problem eliminating the outlier and
using only the methods that are still applicable.

EXERCISE 6.7.7. In Exercise 5.7.7 on the peel-strength of different adhesive systems, parts (b)
and (c) amount to doing LSD multiple comparisons for all pairs of systems. Compare the LSD
results with the results obtained using the Tukey and Newman–Keuls methods with α = .01.

EXERCISE 6.7.8. For the weight gain data of Exercise 5.7.8, use the LSD, Bonferroni, and
Scheffé methods to test whether the following contrasts are zero: 1) the contrast that compares
the two drugs and 2) the contrast that compares the control with the average of the two drugs. Pick
an α level but clearly state the level chosen.

EXERCISE 6.7.9. For the Cushing’s syndrome data of Exercise 5.7.9, use all appropriate methods
to compare all pairwise differences among the three treatments. Pick an α level but clearly state the
level chosen.

EXERCISE 6.7.10. Use Scheffé’s method with α = .05 and the data of Exercise 5.7.10 to test the
significance of the contrast

Age 0.5 1.0 4.0 4.5 5.0 5.5 6.0
Coeff. −5 −5 2 2 2 2 2





Chapter 7

Simple linear and polynomial regression

This chapter examines data that come as pairs of numbers, say (x,y), and the problem of fitting a
line to them. More generally, it examines the problem of predicting one variable (y) from values of
another variable (x). Consider for the moment the popular wisdom that people who read a lot tend
to have large vocabularies and poor eyes. Thus reading causes both conditions: large vocabularies
and poor eyes. If this is true, it may be possible to predict the size of someone’s vocabulary from the
condition of their eyes. Of course this does not mean that having poor eyes causes large vocabularies.
Quite the contrary, if anything poor eyes probably keep people from reading and thus cause small
vocabularies. Regression analysis is concerned with predictive ability, not with causation.

Section 7.1 of this chapter introduces an example along with many of the basic ideas and meth-
ods of simple linear regression. The next five sections go into the details of simple linear regression.
Sections 7.7 and 7.8 deal with an idea closely related to simple linear regression: the correlation be-
tween two variables. Section 7.9 deals with methods for checking the assumptions made in simple
linear regression. If the assumptions are violated, we need alternative methods of analysis. Sec-
tion 7.10 presents methods for transforming the original data so that the assumptions become rea-
sonable on the transformed data. Sections 7.9 and 7.10 apply quite generally to analysis of variance
and regression models. They are not restricted to simple linear regression. Section 7.11 treats an al-
ternative to transformations as a method for dealing with nonlinearity in the relationship between y
and x, namely fitting polynomials (parabolas, etc.) to the data. Section 7.12 explores the relationship
between one-way analysis of variance and fitting polynomials.

7.1 An example

Data from The Coleman Report were reproduced in Mosteller and Tukey (1977). The data were
collected from schools in the New England and Mid-Atlantic states of the USA. In this chapter we
consider only two variables: y – the mean verbal test score for sixth graders and x – a composite
measure of socioeconomic status. The data are presented in Table 7.1.

Figure 7.1 contains a scatter plot of the data. Note that there is a rough linear relationship. The

Table 7.1: Coleman Report data

School y x School y x
1 37.01 7.20 11 23.30 −12.86
2 26.51 −11.71 12 35.20 0.92
3 36.51 12.32 13 34.90 4.77
4 40.70 14.28 14 33.10 −0.96
5 37.10 6.31 15 22.70 −16.04
6 33.90 6.16 16 39.70 10.62
7 41.80 12.70 17 31.80 2.66
8 33.40 −0.17 18 31.70 −10.99
9 41.01 9.85 19 43.10 15.03

10 37.20 −0.05 20 41.01 12.77

163
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Figure 7.1: Plot of y versus x.

higher the composite socioeconomic status variable, the higher the mean verbal test score. However,
there is a considerable amount of error in the relationship. By no means do the points lie exactly on
a straight line.

We assume a basic linear relationship between the ys and xs, something like y = β0 +β1x. Here
β1 is the slope of the line and β0 is the intercept. Unfortunately, the observed y values do not fit
exactly on a line so y = β0 + β1x is only an approximation. We need to modify this equation to
allow for the variability of the observations about the line. We do this by building a random error
term into the linear relationship. Write the relationship as y = β0 +β1x+ ε , where ε indicates the
random error. In this model for the behavior of the data, ε accounts for the deviations between the
y values we actually observe and the line β0 + β1x where we expect to observe any y value that
corresponds to x. As we are interested in predicting y from known x values, we treat x as a known
(nonrandom) variable.

We assume that the relationship y = β0 +β1x+ ε applies to all of our observations. For the cur-
rent data, that means we assume this relationship holds for all of the 20 pairs of values in Table 7.1.
This assumption is stated as the simple linear regression model for these data,

yi = β0 +β1xi + εi, (7.1.1)

i = 1, . . . ,20. For this model to be useful, we need to make some assumptions about the errors, the
εis. The standard assumption is that the

εis are independent N(0,σ2).

Given data for which these assumptions are reasonable, we can estimate the unknown parameters.
Although we assume a linear relationship between the ys and xs, the model does not assume that
we know the slope β1 or the intercept β0. Together these unknown parameters would tell us the
exact nature of the linear relationship but both need to be estimated. We use the notation β̂1 and
β̂0 to denote estimates of β1 and β0, respectively. To perform statistical inferences we also need
to estimate the variance of the errors, σ2. Note that σ2 is also the variance of the y observations
because none of β0, β1, and x are random.
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Simple linear regression involves many assumptions. It assumes that the relationship between
y and x is linear, it assumes that the errors are normally distributed, it assumes that the errors all
have the same variance, it assumes that the errors are all independent, and it assumes that the errors
all have mean 0. This last assumption is redundant. It turns out that the errors all have mean 0 if
and only if the relationship between y and x is linear. As far as possible, we will want to verify
(validate) that these assumptions are reasonable before we put much faith in the estimates and
statistical inferences that can be obtained from simple linear regression. Section 7.9 deals with
checking these assumptions.

Before getting into a detailed discussion of simple linear regression, we illustrate some high-
lights using the Coleman Report data. We need to fit model (7.1.1) to the data. A computer program
typically yields parameter estimates, standard errors for the estimates, t ratios for testing whether
the parameters are zero, P values for the tests, and an analysis of variance table. These results are
often displayed in a fashion similar to that illustrated below.

Predictor β̂k SE(β̂k) t P
Constant 33.3228 0.5280 63.11 0.000
x 0.56033 0.05337 10.50 0.000

Analysis of Variance
Source d f SS MS F P
Regression 1 552.68 552.68 110.23 0.000
Error 18 90.25 5.01
Total 19 642.92

Much can be learned from these two tables of statistics. The estimated regression equation is

y = 33.3+0.560x.

This equation allows us to predict a value for y when the value of x is given. In particular, for these
data an increase of one unit in socioeconomic status tends to increase mean verbal test scores by
about .56 units. This is not to say that some program to increase socioeconomic statuses by one unit
will increase mean verbal test scores by about .56 unit. The .56 describes the current data, it does
not imply a causal relationship. If we want to predict the mean verbal test score for a school that
is very similar to the ones in this study, this equation should give good predictions. If we want to
predict the mean verbal test score for a school that is very different from the ones in this study, this
equation is likely to give poor predictions. In fact, if we collect new data from schools with very
different socioeconomic statuses, the data are not similar to these, so this fitted model would be
highly questionable if applied to the new situation. Nevertheless, a simple linear regression model
with a different intercept and slope might fit the new data well. Similarly, data collected after a
successful program to raise socioeconomic statuses are unlikely to be similar to the data collected
before such a program. The relationship between socioeconomic status and mean verbal test scores
may be changed by such a program. In particular, the things causing both socioeconomic status
and mean verbal test score may be changed in unknown ways by such a program. These are crucial
points and bear repeating. The regression equation describes an observed relationship between mean
verbal test scores and socioeconomic status. It can be used to predict mean verbal test scores from
socioeconomic status in similar situations. It does not imply that changing the socioeconomic status
a fixed amount will cause the mean verbal test scores to change by a proportional amount.

In simple linear regression, the reference distribution for statistical inferences is almost invari-
ably t(d fE) where d fE is the degrees of freedom for error from the analysis of variance table. For
these data, d fE = 18. We now consider some illustrations of statistical inferences.

From our standard theory of Chapter 3, the 95% confidence interval for β1 has endpoints

β̂1± t(.975,d fE)SE
(

β̂1

)
.



166 7. SIMPLE LINEAR AND POLYNOMIAL REGRESSION

From a t table, t(.975,18) = 2.101, so, using the tabled statistics, the endpoints are

.56033±2.101(.05337).

The confidence interval is (.448, .672), so we are 95% confident that the slope β1 is between .448
and .672.

The t statistics for testing H0 : βk = 0 versus HA : βk 6= 0 are reported in the first table. For
example, the test of H0 : β1 = 0 versus HA : β1 6= 0 has

tobs =
0.56033
.05337

= 10.50.

The significance level of the test is the P value,

P = Pr[|t|> 10.50] = .000.

The value .000 indicates a large amount of evidence that β1 6= 0. Note that if β1 = 0, the linear
relationship becomes y = β0 +ε , so there is no relationship between y and x, i.e., y does not depend
on x. The small P value indicates that the slope is not zero and thus the variable x helps to explain
the variable y.

The primary value of the analysis of variance table is that it gives the degrees of freedom, the
sum of squares, and the mean square for error. The mean squared error is the estimate of σ2 and the
sum of squares error and degrees of freedom for error are vital for comparing different regression
models that we may choose to consider. Note that the sums of squares for regression and error add
up to the sum of squares total and that the degrees of freedom for regression and error also add up
to the degrees of freedom total.

The analysis of variance table gives an alternative but equivalent test for whether the x variable
helps to explain y. The alternative test of

H0 : β1 = 0 versus HA : β1 6= 0

is based on
F =

MSReg
MSE

=
552.68

5.01
= 110.23.

Note that the value of this statistic is 110.23 = (10.50)2; the F statistic is just the square of the
corresponding t statistic for testing H0 : β1 = 0 versus HA : β1 6= 0. The F and t tests are equivalent.
In particular the P values are identical. In this case, both are infinitesimal, zero to three decimal
places. Our conclusion that β1 6= 0 means that the x variable helps to explain the variation in the
y variable. In other words, it is possible to predict the verbal test scores for a school’s sixth grade
class from the socioeconomic measure. Of course, the fact that some predictive ability exists does
not mean that the predictive ability is sufficient to be useful.

The coefficient of determination, R2, measures the percentage of the total variability in y that is
explained by the x variable. If this number is large, it suggests a substantial predictive ability. In our
example

R2 ≡ SSReg
SSTot

=
552.68
642.92

= 86.0%,

so 86.0% of the total variability is explained by the regression model. This is a large percentage, so
it appears that the x variable has substantial predictive power. However, a large R2 does not imply
that the model is good in absolute terms. It may be possible to show that this model does not fit
the data adequately. In other words, while this model is explaining much of the variability, we may
be able to establish that it is not explaining as much of the variability as it ought. (Example 7.9.2
involves a model with a high R2 that is demonstrably inadequate.) Conversely, a model with a low
R2 value may be the perfect model but the data may simply have a great deal of variability. For
example, if you have temperature measurements obtained by having someone walk outdoors and



7.1 AN EXAMPLE 167

guess the Celsius temperature and then use the true Fahrenheit temperatures as a predictor, the exact
linear relationship between Celsius and Fahrenheit temperatures may make a line the ideal model.
Nonetheless, the obvious inaccuracy involved in people guessing Celsius temperatures may cause a
low R2. Moreover, even a high R2 of 86% may provide inadequate predictions for the purposes of
the study, while in other situations an R2 of, say, 14% may be perfectly adequate. It depends on the
purpose of the study. Finally, it must be recognized that a large R2 may be an unrepeatable artifact
of a particular data set. The coefficient of determination is a useful tool but it must be used with care.
In particular, it is a much better measure of the predictive ability of a model than of the correctness
of a model.

Consider the problem of estimating the value of the line at x = −16.04. This value of x is the
minimum observed value for socioeconomic status, so it is somewhat dissimilar to the other x values
in the data. Its dissimilarity causes there to be substantial variability in estimating the regression line
(mean value of y) at this point. The point on the line is β0 +β1(−16.04) and the estimator is

β̂0 + β̂1x = 33.32+ .560(−16.04) = 24.34.

For constructing 95% t intervals, the percentile needed is t(.975,18) = 2.101. The standard error for
the estimate of the point on the line is usually available from computer programs; in this example it
is 1.140. The 95% confidence interval for the point on the line β0 +β1(−16.04) has endpoints

24.34±2.101(1.140)

which gives the interval (21.9,26.7). We are 95% confident that the population mean of the school-
wise mean verbal test scores for New England and Mid-Atlantic sixth graders with a school socioe-
conomic measure of −16.04 is between 21.9 and 26.7.

The prediction ŷ for a new observation with x = −16.04 is simply the estimated point on the
line

ŷ = β̂0 + β̂1(−16.04) = 24.34.

Prediction of a new observation is subject to more error than estimation of a point on the line. A new
observation has the same variance as all other observations, so the prediction interval must account
for this variance as well as for the variance of estimating the point on the line. The standard error
for the prediction interval is computed as

SE(Prediction) =
√

MSE +SE(Line)2. (7.1.2)

In this example,

SE(Prediction) =
√

5.01+(1.140)2 = 2.512.

The prediction interval endpoints are

24.34±2.101(2.512).

and the 95% prediction interval is (19.1,29.6). We are 95% confident that sixth graders’s mean
verbal test scores would be between 19.1 and 29.6 for a different New England or Mid-Atlantic
school with a socioeconomic measure of −16.04. Note that the prediction interval is considerably
wider than the corresponding confidence interval. Note also that this is just another special case of
the prediction theory in Section 3.5. As such, these results are analogous to those obtained for the
one sample, two sample, and one-way ANOVA data structures.

Minitab commands

The Minitab commands given below generate the table of estimates and the analysis of variance
table. Column c1 contains the test scores y and column c2 contains the composite socioeconomic
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statuses x. The primary command is to regress c1 on 1 predictor variable, c2. This same command
allows for more predictor variables and we will use that capability in this chapter as well as in the
chapters on multiple regression. In our example, the subcommand ‘predict −16.04’ was used; this
subcommand gives the estimate of the line (prediction) when x =−16.04, the standard error for the
estimate of the line, the 95% confidence interval for the value of the line at x = −16.04, and the
95% prediction interval when x =−16.04.

MTB > name c1 ’test’ c2 ’socio’

MTB > regress c1 on 1 c2;

SUBC> predict -16.04.

7.2 The simple linear regression model

In general, simple linear regression seeks to fit a line to pairs of numbers (x,y) that are subject to
error. These pairs of numbers may arise when there is a perfect linear relationship between x and a
variable y∗ but where y∗ cannot be measured without error. Our actual observations y are then the
sum of y∗ and the measurement error. Alternatively, we may sample a population of objects and
take two measurements on each object. In this case, both elements of the pair (x,y) are random. In
simple linear regression we think of using the x measurement to predict the y measurement. While
x is actually random in this scenario, we use it as if it were fixed because we cannot predict y until
we have actually observed the x value. We want to use the particular observed value of x to predict
y, so for our purposes x is a fixed number. In any case, the xs are always treated as fixed numbers in
simple linear regression.

The model for simple linear regression is a line with the addition of errors

yi = β0 +β1xi + εi, i = 1, . . . ,n

where y is the variable of primary interest and x is the predictor variable. Both the yis and the xis are
observable, the yis are assumed to be random and the xis are assumed to be known fixed constants.
The unknown constants (regression parameters) β0 and β1 are the intercept and the slope of the line,
respectively. The εis are unobservable errors that are assumed to be independent of each other with
mean zero and the same variance, i.e.,

E(εi) = 0, Var(εi) = σ
2.

Typically the errors are also assumed to have normal distributions, i.e.,

εis independent N(0,σ2).

Sometimes the assumption of independence is replaced by the assumption that Cov(εi,ε j) = 0 for
i 6= j.

Note that since β0, β1, and the xis are all assumed to be fixed constants,

E(yi) = E(β0 +β1xi + εi) = β0 +β1xi +E(εi) = β0 +β1xi,

Var(yi) = Var(εi) = σ
2,

and if the εis are independent, the yis are independent.

7.3 Estimation of parameters

The unknown parameters in the simple linear regression model are the slope, β1, the intercept, β0,
and the variance, σ2. All of the estimates β̂1, β̂0, and MSE, can be computed from just six summary
statistics

n, x̄·, s2
x , ȳ·, s2

y ,
n

∑
i=1

xiyi,
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i.e., the sample size, the sample mean and variance of the xis, the sample mean and variance of the
yis, and ∑

n
i=1 xiyi. The only one of these that is any real work to obtain on a decent hand calculator

is ∑
n
i=1 xiyi. The standard estimates of the parameters are, respectively,

β̂1 =
∑

n
i=1 (xi− x̄·)yi

∑
n
i=1 (xi− x̄·)

2

β̂0 = ȳ·− β̂1x̄·

and the mean squared error

MSE =
∑

n
i=1

(
yi− β̂0− β̂1xi

)2

n−2

=
1

n−2

[
n

∑
i=1

(yi− ȳ·)
2− β̂

2
1

n

∑
i=1

(xi− x̄·)
2

]

=
1

n−2

[
(n−1)s2

y− β̂
2
1 (n−1)s2

x

]
.

The slope estimate β̂1 given above is the form that is most convenient for deriving its statistical
properties. In this form it is just a linear combination of the yis. However, β̂1 is commonly written in
a variety of ways to simplify various computations and, unfortunately for students, they are expected
to recognize all of them. Observing that 0 = ∑

n
i=1 (xi− x̄·) so that 0 = ∑

n
i=1 (xi− x̄·) ȳ·, we can also

write

β̂1 =
∑

n
i=1 (xi− x̄·)(yi− ȳ·)

∑
n
i=1 (xi− x̄·)

2 =
sxy

s2
x
=

(∑
n
i=1 xiyi)−nx̄·ȳ·
(n−1)s2

x
. (7.3.1)

Here

sxy =
1

n−1

n

∑
i=1

(xi− x̄·)(yi− ȳ·)

is the sample covariance between x and y. The last equality on the right of equation (7.3.1) gives a
form suitable for computing β̂1 from the summary statistics.

EXAMPLE 7.3.1. For the Coleman Report data,

n = 20, x̄· = 3.1405, s2
x = 92.64798395,

ȳ· = 35.0825, s2
y = 33.838125,

n

∑
i=1

xiyi = 3189.8793 .

The estimates are

β̂1 =
3189.8793−20(3.1405)(35.0825)

(20−1)92.64798395
= .560325468,

β̂0 = 35.0825− .560325468(3.1405) = 33.32279787

and

MSE

=
1

20−2
[
(20−1)33.838125− (.560325468)2(20−1)92.64798395

]
=

1
18

[642.924375−552.6756109] (7.3.2)

=
90.2487641

18
= 5.01382.
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Up to round off error, these are the same results as tabled in Section 7.1. 2

It is not clear that these estimates of β0, β1, and σ2 are even reasonable. The estimate of the
slope β1 seems particularly unintuitive. However, from Proposition 7.3.2 below, the estimates are
unbiased, so they are at least estimating what we claim that they estimate.

Proposition 7.3.2. E
(

β̂1

)
= β1, E

(
β̂0

)
= β0, and E(MSE) = σ2.

Proofs of the unbiasedness of the slope and intercept are given in the appendix to this chapter.
The parameter estimates are unbiased but that alone does not ensure that they are good esti-

mates. These estimates are the best estimates available in several senses. We briefly mention these
optimality properties but for a detailed discussion see Christensen (1987, chapter II). Assuming that
the errors have independent normal distributions, all of the estimates have the smallest variance of
any unbiased estimates. The regression parameters are also maximum likelihood estimates. Max-
imum likelihood estimates are those values of the parameters that are most likely to generate the
data that were actually observed. Without assuming that the errors are normally distributed, the re-
gression parameters have the smallest variance of any unbiased estimates that are linear functions
of the y observations. (Linear functions allow multiplying the yis by constants and adding terms to-
gether. Remember, the xis are constants, as are any functions of the xis.) Note that with this weaker
assumption, i.e., giving up normality, we get a weaker result, minimum variance among only linear
unbiased estimates instead of all unbiased estimates. The regression parameter estimates are also
least squares estimates. Least squares estimates are choices of β0 and β1 that minimize

n

∑
i=1

(yi−β0−β1xi)
2
.

Under the standard assumptions, least squares estimates of the regression parameters are best (min-
imum variance) linear unbiased estimates (BLUEs), and for normally distributed data they are min-
imum variance unbiased estimates and maximum likelihood estimates.

To draw statistical inferences about the regression parameters, we need standard errors for the
estimates. To find the standard errors we need to know the variance of each estimate.

Proposition 7.3.3.

Var
(

β̂1

)
=

σ2

∑
n
i=1 (xi− x̄·)

2 =
σ2

(n−1)s2
x

and

Var
(

β̂0

)
= σ

2

[
1
n
+

x̄2
·

∑
n
i=1 (xi− x̄·)

2

]
= σ

2
[

1
n
+

x̄2
·

(n−1)s2
x

]
.

The proof of this proposition is given in the appendix at the end of the chapter. Note that, except
for the unknown parameter σ2, the variances can be computed using the same six numbers we used
to compute β̂0, β̂1, and MSE. Using MSE to estimate σ2 and taking square roots, we get the standard
errors.

SE
(

β̂1

)
=

√
MSE

(n−1)s2
x

and

SE
(

β̂0

)
=

√
MSE

[
1
n
+

x̄2
·

(n−1)s2
x

]
.
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Table 7.2: Analysis of variance

Source d f SS MS F

Intercept(β0) 1 nȳ2
· ≡C nȳ2

·

Regression(β1) 1 β̂
2
1 ∑

n
i=1 (xi − x̄·)2 SSReg MSReg

MSE

Error n−2 ∑
n
i=1

(
yi − β̂0 − β̂1xi

)2
SSE/(n−2)

Total n ∑
n
i=1 y2

i

EXAMPLE 7.3.4. For the Coleman Report data, using the numbers n, x̄·, and s2
x ,

Var
(

β̂1

)
=

σ2

(20−1)92.64798395
=

σ2

1760.311695

and

Var
(

β̂0

)
= σ

2
[

1
20

+
3.14052

(20−1)92.64798395

]
= σ

2 [.055602837] .

The MSE is 5.014, so the standard errors are

SE
(

β̂1

)
=

√
5.014

1760.311695
= .05337

and
SE
(

β̂0

)
=
√

5.014 [.055602837] = .5280.

2

We always like to have estimates with small variances. The forms of the variances show how
to achieve this. For example, the variance of β̂1 gets smaller when n or s2

x gets larger. Thus, more
observations (larger n) result in a smaller slope variance and more dispersed xi values (larger s2

x)
also result in a smaller slope variance. Of course all of this assumes that the simple linear regression
model is correct.

7.4 The analysis of variance table

A standard tool in regression analysis is the construction of an analysis of variance table. The best
form is given in Table 7.2. In this form there is one degree of freedom for every observation, cf. the
total line, and the sum of squares total is the sum of all of the squared observations. The degrees of
freedom and sums of squares for intercept, regression, and error can be added to obtain the degrees
of freedom and sums of squares total. We see that one degree of freedom is used to estimate the
intercept, one is used for the slope, and the rest are used to estimate the variance.

The more commonly used form for the analysis of variance table is given as Table 7.3. It elimi-
nates the line for the intercept and corrects the total line so that the degrees of freedom and sums of
squares still add up.

These two forms for the analysis of variance table are analogous to the two different forms
discussed in Section 5.2 for the one-way ANOVA analysis of variance table.

EXAMPLE 7.4.1. Consider again the Coleman Report data. The analysis of variance table was
given in Section 7.1; Table 7.4 illustrates the necessary computations. Most of the computations
were made earlier in equation (7.3.2) during the process of obtaining the MSE and all are based on
the usual six numbers, n, x̄·, s2

x , ȳ·, s2
y , and ∑xiyi. More directly, the computations depend on n, β̂1, s2

x ,
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Table 7.3: Analysis of variance

Source d f SS MS F

Regression(β1) 1 β̂
2
1 ∑

n
i=1 (xi − x̄·)2 SSReg MSReg

MSE

Error n−2 ∑
n
i=1

(
yi − β̂0 − β̂1xi

)2
SSE/(n−2)

Total n−1 ∑
n
i=1 (yi − ȳ·)2

Table 7.4: Analysis of variance

Source d f SS MS F

Regression(β1) 1 .5603252(20−1)92.64798 552.6756109 552.68
5.014

Error 20−2 90.2487641 90.2487641/18
Total 20−1 (20−1)33.838125

and s2
y . The corrected version of SSTot is (n−1)s2

y . Note that the SSE is obtained as SSTot−SSReg.
The correction factor C in Table 7.2 is 20(35.0825)2 but it is not used in these computations for
Table 7.4. 2

7.5 Inferential procedures

The general theory of Chapter 3 applies to inferences about regression parameters. The theory re-
quires 1) a parameter (Par), 2) an estimate (Est) of the parameter, 3) the standard error of the
estimate (SE(Est)) and 4) a known (tabled) distribution for

Est−Par
SE(Est)

that is symmetric about 0. The computations for most of the applications considered in this section
were illustrated in Section 7.1 for the Coleman Report data.

Consider inferences about the slope parameter β1. The estimate β̂1 and the standard error of β̂1
are as given in Section 7.3. The appropriate reference distribution is

β̂1−β1

SE
(

β̂1

) ∼ t(n−2).

Using standard methods, the 99% confidence interval for β1 has endpoints

β̂1± t(.995,n−2)SE
(

β̂1

)
.

An α = .05 test of, say, H0 : β1 = 0 versus HA : β1 6= 0 rejects H0 if

|β̂1−0|

SE
(

β̂1

) > t(.975,n−2).

An α = .05 test of H0 : β1 ≥ 1 versus HA : β1 < 1 rejects H0 if

β̂1−1

SE
(

β̂1

) <−t(.95,n−2).
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For inferences about the intercept parameter β0, the estimate β̂0, and the standard error of β̂0 are
as given in Section 7.3. The appropriate reference distribution is

β̂0−β0

SE
(

β̂0

) ∼ t(n−2).

A 95% confidence interval for β0 has endpoints

β̂0± t(.975,n−2)SE
(

β̂0

)
.

An α = .01 test of H0 : β0 = 0 versus HA : β0 6= 0 rejects H0 if

|β̂0−0|

SE
(

β̂0

) > t(.995,n−2).

An α = .05 test of H0 : β0 ≤ 0 versus HA : β0 > 0 rejects H0 if

β̂0−0

SE
(

β̂0

) > t(.95,n−2).

Typically inferences about β0 are not of substantial interest. β0 is the intercept, it is the value of
the line when x = 0. Typically, the line is only an approximation to the behavior of the (x,y) pairs
in the neighborhood of the observed data. This approximation is only valid in the neighborhood of
the observed data. If we have not collected data near x = 0, the intercept is describing behavior of
the line outside the range of valid approximation.

We can also draw inferences about a point on the line y = β0 + β1x. For any fixed point x,
β0 +β1x has an estimate

ŷ≡ β̂0 + β̂1x.

To get a standard error for ŷ, we first need its variance. As shown in the appendix to this chapter, the
variance of ŷ is

Var
(

β̂0 + β̂1x
)
= σ

2

[
1
n
+

(x− x̄·)
2

(n−1)s2
x

]
, (7.5.1)

so the standard error of ŷ is

SE
(

β̂0 + β̂1x
)
=

√√√√MSE

[
1
n
+

(x− x̄·)
2

(n−1)s2
x

]
. (7.5.2)

The appropriate distribution for inferences about the point β0 +β1x is(
β̂0 + β̂1x

)
− (β0 +β1x)

SE
(

β̂0 + β̂1x
) ∼ t(n−2).

Using standard methods, the 99% confidence interval for (β0 +β1x) has endpoints(
β̂0 + β̂1x

)
± t(.995,n−2)SE

(
β̂0 + β̂1x

)
.

We typically prefer to have small standard errors. Even when σ2, and thus MSE, is large, from
equation (7.5.2) we see that the standard error of ŷ will be small when the number of observations
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n is large, when the xi values are well spread out, i.e., s2
x is large, and when x is close to x̄·. In

other words, the line can be estimated efficiently in the neighborhood of x̄· by collecting a lot
of data. Unfortunately, if we try to estimate the line far from where we collected the data, the
standard error of the estimate gets large. The standard error gets larger as x gets farther away from
the center of the data, x̄·, because the term (x− x̄·)

2 gets larger. This effect is standardized by the
original observations; the term in question is (x− x̄·)

2/
(n−1)s2

x , so (x− x̄·)
2 must be large relative

to (n−1)s2
x before a problem develops. In other words, the distance between x and x̄· must be several

times the standard deviation sx before a problem develops. Nonetheless, large standard errors occur
when we try to estimate the line far from where we collected the data. Moreover, the regression
line is often just an approximation that holds in the neighborhood of where the data were collected.
This approximation may be invalid for data points far from the original data. So, in addition to the
problem of having large standard errors, estimates far from the neighborhood of the original data
may be totally invalid.

Estimating a point on the line is distinct from prediction of a new observation for a given x
value. Ideally, the prediction would be the true point on the line for the value x. However, the true
line is an unknown quantity, so our prediction is the estimated point on the line at x. The distinction
between prediction and estimating a point on the line arises because a new observation is subject
to variability about the line. In making a prediction we must account for the variability of the new
observation even when the line is known, as well as account for the variability associated with our
need to estimate the line. The new observation is assumed to be independent of the past data, so
the variance of the prediction is σ2 (the variance of the new observation) plus the variance of the
estimate of the line as given in (7.5.1). The standard error replaces σ2 with MSE and takes the
square root, i.e.,

SE(Prediction) =

√√√√MSE

[
1+

1
n
+

(x− x̄·)
2

(n−1)s2
x

]
.

Note that this is the same as the formula given in equation (7.1.2). Prediction intervals follow in the
usual way. For example, the 99% prediction interval associated with x has endpoints

(ŷ)± t(.995,n−2)SE(Prediction) .

As discussed earlier, estimation of points on the line should be restricted to x values in the
neighborhood of the original data. For similar reasons, predictions should also be made only in the
neighborhood of the original data. While it is possible, by collecting a lot of data, to estimate the line
well even when the variance σ2 is large, it is not always possible to get good prediction intervals.
Prediction intervals are subject to the variability of both the observations and the estimate of the
line. The variability of the observations cannot be eliminated or reduced. If this variability is too
large, we may get prediction intervals that are too large to be useful. If the simple linear regression
model is the ‘truth’, there is nothing to be done, i.e., no way to improve the prediction intervals. If
the simple linear regression model is only an approximation to the true process, a more sophisticated
model may give a better approximation and produce better prediction intervals.

7.6 An alternative model

For some purposes, it is more convenient to work with an alternative to the model yi = β0+β1xi+εi.
The alternative model is

yi = β∗0 +β1 (xi− x̄·)+ εi

where we have adjusted the predictor variable for its mean. The key difference between the param-
eters in the two models is that

β0 = β∗0−β1x̄·.
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In fact, this is the basis for our formula for estimating β0. The new parameter β∗0 has a very simple
estimate, β̂∗0 ≡ ȳ·. It then follows that

β̂0 = ȳ·− β̂1x̄·.

The reason that this model is useful is because the predictor variable xi− x̄· has the property
∑

n
i=1 (xi− x̄·) = 0. This property leads to the simple estimate of β∗0 but also to the fact that ȳ· and β̂1

are independent. Independence simplifies the computation of variances for regression line estimates.
We will not go further into these claims at this point but the results follow trivially from the matrix
approach to regression that will be treated in later chapters.

The key point about the alternative model is that it is equivalent to the original model. The
β1 parameters are the same, as are their estimates and standard errors. The models give the same
predictions, the same ANOVA table F test, and the same R2. Even the intercept parameters are
equivalent, i.e., they are related in a precise fashion so that knowing about the intercept in either
model yields equivalent information about the intercept in the other model.

7.7 Correlation

The correlation coefficient is a measure of the linear relationship between two variables. The popu-
lation correlation coefficient, usually denoted ρ , was discussed in Chapter 1. The sample correlation
is defined as

r =
sxy

sx sy
=

∑
n
i=1 (xi− x̄·)(yi− ȳ·)√

∑
n
i=1 (xi− x̄·)

2
∑

n
i=1 (yi− ȳ·)

2
.

The sample correlation coefficient is related to the estimated slope. From equation (7.3.1) it is easily
seen that

r = β̂1
sx

sy
.

EXAMPLE 7.7.1. Simulated data with various correlations
Figures 7.2 through 7.5 contain plots of 25 correlated observations. These are presented so the reader
can get some feeling for the meaning of various sample correlation values. The caption of each plot
gives the sample correlation r and also the population correlation ρ . The population correlation is
only useful in that it provides some feeling for the amount of sampling variation to be found in r
based on samples of 25 from (jointly) normally distributed data. 2

A commonly used statistic in regression analysis is the coefficient of determination,

R2 ≡ SSReg
SSTot

.

This is the percentage of the total variation in the dependent variable that is explained by the regres-
sion. For simple linear regression,

R2 =
β̂ 2

1 ∑
n
i=1 (xi− x̄·)

2

∑
n
i=1 (yi− ȳ·)

2 = β̂
2
1

s2
x

s2
y
= r2.

In later chapters we will consider regression problems with more than one predictor variable. For
such problems R2 does not equal r2. In fact, with more than one predictor, there are several r2s that
one could compute. It is not clear which of these one would want to compare to R2.
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y2
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Figure 7.2: Correlation plot, ρ = 0.000, r = 0.144.
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Figure 7.3: Correlation plot, ρ = 0.894, r = 0.929.
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y4
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Figure 7.4: Correlation plot, ρ =−0.894, r =−0.929.
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Figure 7.5: Correlation plot, ρ = 0.447, r = 0.593.
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7.8 Recognizing randomness: simulated data with zero correlation

Just as it is important to be able to look at a plot and tell when the x and y variables are related,
it is important to be able to look at a plot and tell that two variables are unrelated. In other words,
we need to be able to identify plots that only display random variation. This skill is of particular
importance in Section 7.9 where we use plots to evaluate the assumptions made in simple linear
regression. To check the assumptions of the regression model, we use plots that should display only
random variation when the assumptions are true. Any systematic pattern in the model checking plots
indicates a problem with our assumed regression model.

EXAMPLE 7.8.1. Simulated data with zero correlation
We now examine data on six uncorrelated variables, C10 through C15. Figures 7.6 through 7.14
contain various plots of the variables. Since all the variable pairs have zero correlation, i.e., ρ = 0,
any ‘patterns’ that are recognizable in these plots are due entirely to random variation. In particular,
note that there is no real pattern in Figure 7.13.

The point of this example is to familiarize the reader with the appearance of random plots. The
reader should try to identify systematic patterns in these plots, remembering that there are none.
This suggests that in the model checking plots that appear later, any systematic pattern of interest
should be more pronounced than anything that can be detected in Figures 7.6 through 7.15.

Below are the sample correlations r for each pair of variables. Although ρ = 0, none of the r
values is zero and some of them are quite far from 0.

Sample correlations
C10 C11 C12 C13 C14 C15

C10 1.000
C11 0.005 1.000
C12 −0.145 −0.209 1.000
C13 −0.162 −0.416 0.488 1.000
C14 −0.034 −0.038 −0.265 0.003 1.000
C15 −0.218 −0.202 0.310 0.114 0.134 1.000

2
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c10
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Figure 7.6: Plot of data with ρ = 0.
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Figure 7.7: Plot of data with ρ = 0.
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c12
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Figure 7.8: Plot of data with ρ = 0.
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Figure 7.9: Plot of data with ρ = 0.
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Figure 7.10: Plot of data with ρ = 0.
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Figure 7.11: Plot of data with ρ = 0.
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c14
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Figure 7.12: Plot of data with ρ = 0.
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Figure 7.13: Plot of data with ρ = 0.
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Figure 7.14: Plot of data with ρ = 0.

Minitab commands

The plots and sample correlations in this section were obtained with the Minitab commands given
below.

MTB > random 25 c10-c15;

SUBC> normal 0 1.

MTB > plot c10 c11

MTB > plot c11 c12

MTB > plot c12 c13

MTB > plot c13 c14

MTB > plot c14 c15

MTB > plot c15 c13

MTB > plot c14 c12

MTB > plot c13 c11

MTB > plot c12 c10

MTB > note OBTAIN SAMPLE CORRELATION MATRIX

MTB > corr c10-c15

7.9 Checking assumptions: residual analysis

The assumptions involved in regression can all be thought of in terms of the errors. The assumptions
are that

1. the εis are independent,
2. E(εi) = 0 for all i,
3. Var(εi) = σ2 for all i,
4. the εis are normally distributed.
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To have faith in our analysis, we need to validate these assumptions as far as possible. These are
assumptions and cannot be validated completely, but we can try to detect gross violations of the
assumptions.

The first assumption, that the εis are independent, is the most difficult to validate. If the obser-
vations are taken at regular time intervals, they may lack independence and standard time series
methods may be useful in the analysis. We will not consider this further, the interested reader can
consult the time series literature, e.g., Shumway (1988). In general, we rely on the data analyst to
think hard about whether there are reasons for the data to lack independence.

The second assumption is that E(εi) = 0. This is violated when we have the wrong regression
model. The simple linear regression model with E(εi) = 0 specifies that

E(yi) = β0 +β1xi.

If we fit this model when it is incorrect, we will not have errors with E(εi) = 0. Having the wrong
model is called lack of fit.

The last two assumptions are that the errors all have some common variance σ2 and that they
are normally distributed. The term homoscedasticity refers to having a constant (homogeneous)
variance. The term heteroscedasticity refers to having nonconstant (heterogeneous) variances.

In checking the error assumptions, we are hampered by the fact that the errors are not observable;
we must estimate them. The model involves

yi = β0 +β1xi + εi

or equivalently,
yi−β0−β1xi = εi.

We can estimate εi with the residual

ε̂i = yi− β̂0− β̂1xi.

Actually, I prefer to call this predicting the error rather than estimating it. One estimates fixed un-
known parameters and predicts unobserved random variables.

Previously, we used residuals to check assumptions in one-way analysis of variance. The discus-
sion here is similar but more extensive. The methods presented here also apply to ANOVA models,
but, especially in balanced ANOVA, many of the issues are not as crucial. Note also that, as in one-
way ANOVA, the SSE for simple linear regression is precisely the sum of the squared residuals.

Two of the error assumptions are independence and homoscedasticity of the variances. Unfor-
tunately, the residuals are neither independent nor do they have the same variance. The residuals
all involve the random variables β̂0 and β̂1, so they are not independent. Moreover, the ith residual
involves β̂0 + β̂1xi, the variance of which depends on (xi− x̄·). Thus the variance of ε̂i depends on
xi. There is little we can do about the lack of independence except hope that it does not cause se-
vere problems. On the other hand, we can adjust for the differences in variances. The variance of a
residual is

Var(ε̂i) = σ
2(1−hi)

where hi is the leverage of the ith case. Leverages are discussed a bit later in this section and more
extensively in relation to multiple regression.

Given the variance of a residual, we can obtain a standard error for it,

SE(ε̂i) =
√

MSE(1−hi).

We can now adjust the residuals so they all have a variance of about 1; these standardized residuals
are

ri =
ε̂i√

MSE(1−hi)
.
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The main tool used in checking assumptions is plotting the residuals or, more commonly, the
standardized residuals. If the assumptions are correct, plots of the standardized residuals versus any
variable should look random. If the variable plotted against the ris is continuous with no major
gaps, the plots should look similar to the plots given in the previous section. In analysis of variance
problems, we often plot the residuals against indicators of the treatment groups, so the discrete
nature of the number of groups keeps the plots from looking like those of the previous section. The
single most popular diagnostic plot is probably the plot of the standardized residuals against the
predicted values

ŷi = β̂0 + β̂1xi,

however the ris can be plotted against any variable that provides a value associated with each case.
Violations of the error assumptions are indicated by any systematic pattern in the residuals. This

could be, for example, a pattern of increased variability as the predicted values increase, or some
curved pattern in the residuals, or any change in the variability of the residuals.

A residual plot that displays an increasing variance looks roughly like a horn opening to the
right.
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A residual plot indicating a decreasing variance is a horn opening to the left.
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Plots that display curved shapes typically indicate lack of fit. One example of a curve is given below.

# ' $

EXAMPLE 7.9.1. Coleman Report data
Figures 7.15 through 7.17 contain standardized residual plots for the Coleman Report Data. Fig-
ure 7.15 is a plot against the predicted values; Figure 7.16 is a plot against the sole predictor vari-
able x. The shapes of these two plots are identical. This always occurs in simple linear regression
because the predictions ŷ are a linear function of the one predictor x. The one caveat to the claim
of identical shapes is that the plots may be reversed. If the estimated slope is negative, the largest
x values correspond to the smallest ŷ values. Figures 7.15 and 7.16 look like random patterns but
it should be noted that if the smallest standardized residual were dropped (the small one on the
right), the plot might suggest decreasing variability. The normal plot of the standardized residuals
in Figure 7.17 does not look too bad. 2
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Figure 7.15: Plot of the standardized residuals r versus ŷ, Coleman Report.
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Figure 7.16: Plot of the standardized residuals r versus x, Coleman Report.
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Figure 7.17: Normal plot, Coleman Report, W ′ = .966.

Minitab commands

We now illustrate the Minitab commands necessary for the analysis in Example 7.9.1. The subtlest
thing going on here is in the command ‘regress c1 on 1 c2 c11 c12’. The number 1 indicates that
there is one predictor variable x and the first column (c2) after the number 1 is taken to be that pre-
dictor. The command recognizes columns c11 and c12 as not being predictors; in fact, the command
puts the standardized residuals ri in the first column (c11) listed after the predictor and the predicted
values ŷi in the second column (c12) listed after
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Table 7.5: Hooker data

Case Temperature Pressure Case Temperature Pressure
1 180.6 15.376 17 191.1 19.490
2 181.0 15.919 18 191.4 19.758
3 181.9 16.106 19 193.4 20.480
4 181.9 15.928 20 193.6 20.212
5 182.4 16.235 21 195.6 21.605
6 183.2 16.385 22 196.3 21.654
7 184.1 16.959 23 196.4 21.928
8 184.1 16.817 24 197.0 21.892
9 184.6 16.881 25 199.5 23.030

10 185.6 17.062 26 200.1 23.369
11 185.7 17.267 27 200.6 23.726
12 186.0 17.221 28 202.5 24.697
13 188.5 18.507 29 208.4 27.972
14 188.8 18.356 30 210.2 28.559
15 189.5 18.869 31 210.8 29.211
16 190.6 19.386

the predictor variable. Actually, Minitab will let you write the command as ‘regress c1 on 1 c2 put
standardized resids in c11 put predicted values in c12’. Minitab just ignores all the words in this
command other than ‘regress’.

MTB > names c1 ’test’ c2 ’socio’

MTB > regress c1 on 1 c2 c11 c12

MTB > names c11 ’r’ c12 ’yhat’

MTB > note PLOT STD. RESIDS AGAINST PRED. VALUES

MTB > plot c11 c12

MTB > note PLOT STD. RESIDS AGAINST x

MTB > plot c11 c2

MTB > note COMPUTE NORMAL SCORES (RANKITS) FOR THE

MTB > note STANDARDIZED RESIDUALS

MTB > nscores c11 c10

MTB > note MAKE NORMAL PLOT

MTB > plot c11 c10

MTB > note COMPUTE W’ STATISTIC

MTB > corr c11 c10

MTB > note CORR PRINTS OUT A NUMBER LIKE .978

MTB > let k1=.978**2

MTB > print k1

Another example

EXAMPLE 7.9.2. Hooker data
Forbes (1857) reported data on the relationship between atmospheric pressure and the boiling point
of water that were collected in the Himalaya mountains by Joseph Hooker. Weisberg (1985, p. 28)
presented a subset of 31 observations that are reproduced in Table 7.5.

A scatter plot of the data is given in Figure 7.18. The data appear to fit a line very closely. The
usual summary tables are given below.

Predictor β̂k SE(β̂k) t P
Constant −64.413 1.429 −45.07 0.000
Temperature 0.440282 0.007444 59.14 0.000
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Figure 7.18: Scatter plot of Hooker data.

Analysis of variance
Source d f SS MS F P
Regression 1 444.17 444.17 3497.89 0.000
Error 29 3.68 0.13
Total 30 447.85

The coefficient of determination is an exceptionally large

R2 =
444.17
447.85

= 99.2%.

The plot of residuals versus predicted values is given in Figure 7.19. A pattern is very clear; the
residuals form something like a parabola. In spite of a very large R2 and a scatter plot that looks
very linear, the residual plot shows that a lack of fit obviously exists. After seeing the residual
plot, you can go back to the scatter plot and detect suggestions of nonlinearity. The simple linear
regression model is clearly inadequate, so we do not bother presenting a normal plot. In the next
two sections, we will examine ways of dealing with this lack of fit.

2

Outliers

Outliers are bizarre data points. They are points that do not seem to fit with the other observations
in a data set. We can characterize bizarre points as having either bizarre x values or bizarre y values.
There are two valuable tools for identifying outliers.

Leverages are values between 0 and 1 that measure how bizarre an x value is relative to the
other x values in the data. A leverage near 1 is a very bizarre point. Leverages that are small are
similar to the other data. The sum of all the leverages in a simple linear regression is always 2, thus
the average leverage is 2/n. Points with leverages larger that 4/n or 6/n are often considered high
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Figure 7.19: Standardized residuals versus predicted values for Hooker data.

leverage points. The concept of leverage will be discussed in more detail when we discuss multiple
regression.

Outliers in the y values can be detected from the standardized deleted residuals. Standardized
deleted residuals are just standardized residuals, but the residual for the ith case is computed from a
regression that does not include the ith case. For example, the third deleted residual is

ε̂[3] = y3− β̂0[3]− β̂1[3]x3

where the estimates β̂0[3] and β̂1[3] are computed from a regression in which case 3 has been dropped
from the data. The third standardized deleted residual is simply the third deleted residual divided
by its standard error. The standardized deleted residuals really contain the same information as the
standardized residuals; the largest standardized deleted residuals are also the largest standardized
residuals. The main virtue of the standardized deleted residuals is that they can be compared to a
t(n− 3) distribution to test whether they could reasonably have occurred when the model is true.
The degrees of freedom in the test are n− 3 because the simple linear regression model was fitted
without the ith case so there are only n−1 data points in the fit and (n−1)−2 degrees of freedom
for error.

If one compares the largest absolute standardized deleted residual to a t distribution, one is
essentially testing whether every case is an outlier. Thus a total of n tests are being performed and
the overall error rate from an individual α level test may be as high as nα . For n = 20 and α = .05,
nα = 1, so we can reasonably expect to ‘find an outlier’ in the Coleman Report data even when
none exists. Obviously, one needs a more stringent requirement for declaring a case to be an outlier.
The criterion for declaring a case to be an outlier should be something like significance at the .05/n
level rather than at the .05 level. This is just the Bonferroni adjustment discussed in the previous
chapter. Often the standardized deleted residuals are simply called t residuals and denoted ti.

EXAMPLE 7.9.3. The leverages and standardized deleted residuals are given in Table 7.6 for the
Coleman Report data with one predictor. Compared to the leverage rule of thumb 4/n = 4/20 = .2,
only case 15 has a noticeably large leverage. None of the cases is above the 6/n rule of thumb.
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Table 7.6: Outlier diagnostics for the Coleman Report data

Std. del. Std. del.
Case Leverages residuals Case Leverages residuals

1 0.059362 −0.15546 11 0.195438 −1.44426
2 0.175283 −0.12019 12 0.052801 0.61394
3 0.097868 −1.86339 13 0.051508 −0.49168
4 0.120492 −0.28961 14 0.059552 0.14111
5 0.055707 0.10792 15 0.258992 −0.84143
6 0.055179 −1.35054 16 0.081780 0.19341
7 0.101914 0.63059 17 0.050131 −1.41912
8 0.056226 0.07706 18 0.163429 2.52294
9 0.075574 1.00744 19 0.130304 0.63836

10 0.055783 1.92501 20 0.102677 0.24410

In simple linear regression, one does not really need to evaluate the leverages directly because
the necessary information about bizarre x values is readily available from the x,y plot. In multiple
regression with three or more predictor variables, leverages are vital because no one scatter plot can
give the information on bizarre x values. In the scatter plot of the Coleman Report data, Figure 7.1,
there are no outrageous x values, although there is a noticeable gap between the smallest four values
and the rest. From Table 7.1 we see that the cases with the smallest x values are 2, 11, 15, and 18.
These cases also have the highest leverages reported in Table 7.6. The next two highest leverages
are for cases 4 and 19; these have the largest x values.

For an overall α = .05 level test of the deleted residuals, the tabled value needed is

t
(

1− .05
2(20)

,17
)
= 3.54 .

None of the standardized deleted residuals approach this, so there is no evidence of any unaccount-
ably bizarre y values.

A handy way to identify cases with large leverages, residuals, standardized residuals, or stan-
dardized deleted residuals is with an index plot. This is simply a plot of the value against the case
number as in Figure 7.20 for leverages. In this version of the plot, the symbol plotted is the last digit
of the case number. 2

Minitab commands

We now illustrate the Minitab commands necessary for obtaining the leverages and standardized
deleted residuals for the Coleman Report data. Both sets of values are obtained by using subcom-
mands of the regress command. The ‘hi’ subcommand gives leverages, while the ‘tresid’ subcom-
mand gives standardized deleted residuals. The last command gives the index plot for leverages.
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Figure 7.20: Index plot of leverages for the Coleman Report data.

MTB > names c1 ’test’ c2 ’socio’

MTB > regress c1 on 1 c2;

SUBC> hi c13;

SUBC> tresid c14.

MTB > tsplot c13

Effects of high leverage

EXAMPLE 7.9.4. Figure 7.21 contains some data along with their least squares estimated line.
The four points on the left form a perfect line with slope 1 and intercept 0. There is one high leverage
point far away to the right. The actual data are given below along with their leverages.

Case 1 2 3 4 5
y 1 2 3 4 −3
x 1 2 3 4 20
Leverage .30 .26 .24 .22 .98

The case with x= 20 is an extremely high leverage point; it has a leverage of nearly 1. The estimated
regression line is forced to go very nearly through this high leverage point. In fact, this plot has two
clusters of points that are very far apart, so a rough approximation to the estimated line is the line
that goes through the mean x and y values for each of the two clusters. This example has one cluster
of four cases on the left of the plot and another cluster consisting solely of the one case on the right.
The average values for the four cases on the left give the point (x̄, ȳ) = (2.5,2.5). The one case on the
right is (20,−3). A little algebra shows the line through these two points to be ŷ = 3.286−0.314x.
The estimated line using least squares turns out to be ŷ = 3.128−0.288x, which is not too different.
The least squares line goes through the two points (2.5,2.408) and (20,−2.632), so the least squares
line is a little lower at x = 2.5 and a little higher at x = 20.

Obviously, the single point on the right of Figure 7.21 dominates the estimated straight line.
For example, if the point on the right was (20,15), the estimated line would go roughly through
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Figure 7.21: Plot of y versus x.

this point and (2.5,2.5). Substantially changing the y value at x = 20 always gives an extremely
different estimated line than the ones we just considered. Wherever the point on the right is, the
estimated line follows it. This happens regardless of the fact that the four cases on the left follow a
perfect straight line with slope 1 and intercept 0. The behavior of the four points on the left is almost
irrelevant to the fitted line when there is a high leverage point on the right. They have an effect on
the quality of the rough two-point approximation to the actual estimated line but their overall effect
is small.

To summarize what can be learned from Figure 7.21, we have a reasonable idea about what
happens to y for x values near the range 1 to 4 and we have some idea of what happens when x
is 20 but, barring outside information, we have not the slightest idea what happens to y when x is
between 4 and 20. Fitting a line to the complete data suggests that we know something about the
behavior of y for any value of x between 1 and 20. This is just silly! We would be better off to
analyze the two clusters of points separately and to admit that learning about y when x is between 4
and 20 requires us to obtain data on y when x is between 4 and 20. In this example, the two separate
statistical analyses are trivial. The cluster on the left follows a perfect line so we simply report that
line. The cluster on the right is a single point so we report the point. 2
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Figure 7.22: The circle of x,y transformations.

7.10 Transformations

If the residuals show a problem with lack of fit, heteroscedasticity, or nonnormality, one way to deal
with the problem is to try transforming the yis. Typically, this only works well when ymax/ymin is
reasonably large. The use of transformations is often a matter of trial and error. Various transforma-
tions are tried and the one that gives the best fitting model is used. In this context, the best fitting
model should have residual plots indicating that the model assumptions are reasonably valid. The
first approach to transforming the data should be to consider transformations that are suggested by
any theory associated with the data collection. Another approach to choosing a transformation is
to try a variance stabilizing transformation. These were discussed in Section 2.5 and are repeated
below for data yi with E(yi) = µi and Var(yi) = σ2

i .

Variance stabilizing transformations
Mean, variance

Data Distribution relationship Transformation
Count Poisson µi ∝ σ2

i
√

yi
Amount Gamma µi ∝ σi log(yi)

Proportion Binomial/N µi(1−µi)
N ∝ σ2

i sin−1(√yi
)

Whenever the data have the indicated mean, variance relationship, the corresponding variance sta-
bilizing transformation should work reasonably well.

The shape of an x,y plot can also suggest possible transformations to straighten it out. We con-
sider power transformations of both y and x, thus y is transformed into, say, yλ and x is transformed
into xγ . Note that λ = 1 and γ = 1 indicate no transformation. As we will justify later, we treat λ = 0
and γ = 0 as log transformations.

Figure 7.22 indicates the kinds of transformations appropriate for some different shapes of x,y
curves. For example, if the x,y curve is similar to that in quadrant I, i.e., the y values decrease as x
increases and the curve opens to the lower left, appropriate transformations involve increasing λ or
increasing γ or both. Here we refer to increasing λ and γ relative to the no transformation values of
λ = 1 and γ = 1. In particular, Figure 7.23 gives an x,y plot for part of a cosine curve that is shaped
like the curve in quadrant I. Figure 7.24 is a plot of the numbers after x has been transformed into
x1.5 and y has been transformed into y1.5. Note that the curve in Figure 7.24 is much straighter than
the curve in Figure 7.23. If the x,y curve increases and opens to the lower right such as those in
quadrant II, appropriate transformations involve increasing λ or decreasing γ or both. An x,y curve
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Figure 7.23: Curved x,y plot.
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Figure 7.24: Plot of x1.5,y1.5.

similar to that in quadrant III suggests decreasing λ or decreasing γ or both. The graph given in
Figure 7.22 is often referred to as the circle of x,y transformations.

We established in the previous section that the Hooker data does not fit a straight line and that
the scatter plot in Figure 7.18 increases with a slight tendency to open to the upper left. This is
the same shaped curve as in quadrant IV of Figure 7.22. The circle of x,y transformations suggests
that to straighten the curve, we should try transformations with decreased values of λ or increased
values of γ or both. Thus we might try transforming y into y1/2, y1/4, log(y), or y−1. Similarly, we
might try transforming x into x1.5 or x2.

To get a preliminary idea of how well various transformations work, we should do a series of
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plots. We might begin by examining the four plots in which y1/2, y1/4, log(y), and y−1 are plotted
against x. We might then plot y against both x1.5 and x2. We should also plot all possibilities involv-
ing one of y1/2, y1/4, log(y), and y−1 plotted against one of x1.5 and x2 and we may need to consider
other choices of λ and γ . For the Hooker data, looking at these plots would probably only allow us
to eliminate the worst transformations. Recall that Figure 7.18 looks remarkably straight and it is
only after fitting a simple linear regression model and examining residuals that the lack of fit (the
curvature of the x,y plot) becomes apparent. Evaluating the transformations would require fitting a
simple linear regression for every pair of transformed variables that has a plot that looks reasonably
straight.

Observe that many of the power transformations considered here break down with values of y
that are negative. For example, it is difficult to take square roots and logs of negative numbers. For-
tunately, data are often positive or at least nonnegative. Measured amounts, counts and proportions
are almost always nonnegative. When problems arise, a small constant is often added to all cases so
that they all become positive. Of course, it is unclear what constant should be added.

Obviously, the circle of transformations, just like the variance stabilizing transformations, pro-
vides only suggestions on how to transform the data. The process of choosing a particular transfor-
mation remains one of trial and error. We begin with reasonable candidates and examine how well
these transformations agree with the simple linear regression model. When we find a transformation
that agrees well with the assumptions of simple linear regression, we proceed to analyze the data.
Obviously, an alternative to transforming the data is to change the model. In the next section we
consider a new class of models that incorporate transformations of the x variable. In the remainder
of this section, we focus on a systematic method for choosing a transformation of y.

7.10.1 Box–Cox transformations

We now consider a systematic method, introduced by Box and Cox (1964), for choosing a power
transformation. Consider the family of power transformations, say, yλ

i . This includes the square
root transformation as the special case λ = 1/2 and other interesting transformations such as the
reciprocal transformation y−1

i . By making a minor adjustment, we can bring log transformations
into the power family. Consider the transformations

y(λ )i =

{(
yλ

i −1
)
/λ λ 6= 0

log(yi) λ = 0
.

For any fixed λ 6= 0, the transformation y(λ )i is equivalent to yλ
i , because the difference between the

two transformations consists of subtracting a constant and dividing by a constant. In other words,
fitting the model

yλ
i = β0 +β1xi + εi

is equivalent to fitting the model
y(λ )i = β0 +β1xi + εi,

although the regression parameters in the two models have slightly different meanings. While the
transformation

(
yλ

i −1
)
/λ is undefined for λ = 0, as λ approaches 0,

(
yλ

i −1
)
/λ approaches

log(yi), so the log transformation fits in naturally.
Unfortunately, the results of fitting models to y(λ )i with different values of λ are not directly

comparable. Thus it is difficult to decide which transformation in the family to use. This problem is
easily evaded (cf. Cook and Weisberg, 1982) by further modifying the family of transformations so
that the results of fitting with different λ s are comparable. Let ỹ be the geometric mean of the yis,
i.e.,

ỹ =

[
n

∏
i=1

yi

]1/n

= exp

[
1
n

n

∑
i=1

log(yi)

]



7.10 TRANSFORMATIONS 197

Table 7.7: Choice of power transformation

λ 1/2 1/3 1/4 0 −1/4 −1/2
SSE(λ ) 1.21 0.87 0.78 0.79 1.21 1.98

and define the family of transformations

z(λ )i =

{[
yλ

i −1
]/[

λ ỹλ−1
]

λ 6= 0
ỹ log(yi) λ = 0

.

The results of fitting the model
z(λ )i = β0 +β1xi + εi

can be summarized via SSE(λ ). These values are directly comparable for different values of λ . The
choice of λ that yields the smallest SSE(λ ) is the best fitting model. (It maximizes the likelihood
with respect to λ .) Actually, this method of choosing a transformation works for any ANOVA or
regression model.

Box and Draper (1987, p. 290) discuss finding a confidence interval for the transformation pa-
rameter λ . An approximate (1−α)100% confidence interval consists of all λ values that satisfy

logSSE(λ )− logSSE(λ̂ )≤ χ
2(1−α,1)/d fE

where λ̂ is the value of λ that minimizes SSE(λ ). When ymax/ymin is not large, the interval tends to
be wide.

EXAMPLE 7.10.1. Hooker data
In the previous section, we found that Hooker’s data on atmospheric pressure and boiling points
displayed a lack of fit when regressing pressure on temperature. We now consider using power
transformations to eliminate the lack of fit.

Table 7.7 contains SSE(λ ) values for some reasonable choices of λ . Assuming that SSE(λ ) is
a very smooth (convex) function of λ , the best λ value is probably between 0 and 1/4. If the curve
being minimized is very flat between 0 and 1/4, there is a possibility that the minimizing value is
between 1/4 and 1/3. One could pick more λ values and compute more SSE(λ )s but I have a bias
towards simple transformations. (They are easier to sell to clients.)

The log transformation of λ = 0 is simple (certainly simpler than the fourth root) and λ = 0 is
near the optimum, so we will consider it further. We now use the simple log transformation, rather
than adjusting for the geometric mean. The usual summary tables are given below.

Predictor β̂k SE(β̂k) t P
Constant −1.02214 0.03365 −30.38 0.000
Temp. 0.0208698 0.0001753 119.08 0.000

Analysis of variance: log Hooker data
Source d f SS MS F P
Regression 1 0.99798 0.99798 14180.91 0.000
Error 29 0.00204 0.00007
Total 30 1.00002

The coefficient of determination is again extremely high, R2 = 99.8%. The plot of the standardized
residuals versus the predicted values is given in Figure 7.25. There is no obvious lack of fit or
inconstancy of variances. Figure 7.26 contains a normal plot of the standardized residuals. The
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normal plot is not horrible but it is not wonderful either. There is a pronounced shoulder at the
bottom and perhaps even an S shape.

If we are interested in the mean value of log pressure for a temperature of 205◦F, the esti-
mate is 3.2562 = −1.02214+ .0208698(205) with a standard error of 0.00276 and a 95% con-
fidence interval of (3.2505,3.2618). In the original units, the estimate is e3.2562 = 25.95 and the
confidence interval becomes (e3.2505,e3.2618) or (25.80,26.10). The point prediction for a new log
observation at 205◦F has the same value as the point estimate and has a 95% prediction interval
of (3.2381,3.2742). In the original units, the prediction is again 25.95 and the prediction interval
becomes (e3.2381,e3.2742) or (25.49,26.42). 2

One way to test whether a transformation is needed is to use a constructed variable as introduced
by Atkinson (1973). Let

wi = yi [log(yi/ỹ)−1]

and fit the multiple regression model

yi = β0 +β1xi +β2wi + εi.

Multiple regression gives results similar to those for simple linear regression; typical output includes
estimates of the β s, standard errors, t statistics, and an ANOVA table. A test of H0 : β2 = 0 gives an
approximate test that no transformation is needed. The test is performed using the standard methods
of Chapter 3. Details are illustrated in the example below and discussed in the chapters on multiple
regression. In addition, the estimate β̂2 provides, indirectly, an estimate of λ ,

λ̂ = 1− β̂2.

Frequently, this is not a very good estimate of λ but it gives an idea of where to begin a search for
good λ s.

EXAMPLE 7.10.2. Hooker data
Performing the multiple regression of pressure on both temperature and the constructed variable w
gives the following results.

Predictor β̂k SE(β̂k) t P
Constant −43.426 2.074 −20.94 0.000
Temperature 0.411816 0.004301 95.75 0.000
w 0.80252 0.07534 10.65 0.000

The t statistic is 10.65 = .80252/.07534 for testing that the regression coefficient of the constructed
variable is 0. The P value is 0.000, which strongly indicates the need for a transformation. The
estimate of λ is

λ̂ = 1− β̂2 = 1−0.80 = .2,

which is consistent with what we learned from Table 7.7. From Table 7.7 we suspected that the best
transformation would be between 0 and .25. Of course this estimate of λ is quite crude, finding the
‘best’ transformation requires a more extensive version of Table 7.7. I limited the choices of λ in
Table 7.7 because I was unwilling to consider transformations that I did not consider simple. 2

Computational techniques

Below are given Minitab commands for performing the Box–Cox transformations and the con-
structed variable test. To perform multiple regression using the ‘regress’ command, you need to
specify the number of predictor variables, in this case 2.
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MTB > name c1 ’temp’ c2 ’press’

MTB > note CONSTRUCT THE GEOMETRIC MEAN

MTB > let c9 = loge(c2)

MTB > mean c9 k1

MEAN = 2.9804

MTB > let k2 = expo(k1)

MTB > note PRINT THE GEOMETRIC MEAN

MTB > print k2

K2 19.6960

MTB > note CONSTRUCT THE z VARIABLES

MTB > note FOR DIFFERENT LAMBDAS

MTB > let c20=(c2**.5-1)/(.5*k2**(.5-1))

MTB > let c21=(c2**.25-1)/(.25*k2**(.25-1))

MTB > let c22=(c2**.333333-1)/(.333333*k2**(.333333-1))

MTB > let c23=loge(c2)*k2

MTB > let c24=(c2**(-.5) - 1)/(-.5*k2**(-1.5))

MTB > let c25=(c2**(-.25) -1)/(-.25*k2**(-1.25))

MTB > note REGRESS z FOR LAMBDA = .5 ON c1

MTB > regress c20 on 1 c1

MTB > note 4 MORE REGRESSIONS ARE NECESSARY

MTB > note

MTB > note CONSTRUCT THE VARIABLE w

MTB > let c3=c2*(c9-k1-1)

MTB > note PERFORM THE MULTIPLE REGRESSION ON x AND THE

MTB > note CONSTRUCTED VARIABLE w

MTB > regress c2 on 2 c1 c3

Transforming the predictor variable

Weisberg (1985, p. 156) suggests applying a log transformation to the predictor variable x whenever
xmax/xmin is larger than 10 or so. There is also a procedure, originally due to Box and Tidwell (1962),
that is akin to the constructed variable test but that is used for checking the need to transform x. As
presented by Weisberg, this procedure consists of fitting the original model

yi = β0 +β1xi + εi

to obtain β̂1 and then fitting the model

yi = η0 +η1xi +η2xi log(xi)+ εi.

Here, xi log(xi) is just an additional predictor variable that we compute from the values of xi. The
test of H0 : η2 = 0 is a test for whether a transformation of x is needed. If η2 6= 0, transforming x
into xγ is suggested where a rough estimate of γ is

γ̂ =
η̂2

β̂1
+1

and γ = 0 is viewed as the log transformation. Typically, only γ values between about −2 and 2 are
considered useable. Of course none of this is going to make any sense if x takes on negative values,
and if xmax/xmin is not large, computational problems may occur when trying to fit a model that
contains both xi and xi log(xi).
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7.11 Polynomial regression

With Hooker’s data, the simple linear regression of pressure on temperature showed a lack of fit. In
the previous section, we used a power transformation in an attempt to eliminate the lack of fit. In this
section we introduce an alternative method, a special case of multiple regression called polynomial
regression. With a single predictor variable x, we can try to eliminate lack of fit by fitting larger
models. In particular, we can fit the quadratic (parabolic) model

yi = β0 +β1xi +β2x2
i + εi.

We could also try a cubic model

yi = β0 +β1xi +β2x2
i +β3x3

i + εi,

the quartic model
yi = β0 +β1xi +β2x2

i +β3x3
i +β4x4

i + εi,

or even higher degree polynomials. If we view our purpose as finding good, easily interpretable
approximate models for the data, high degree polynomials can behave poorly. As we will see later,
the process of fitting the observed data can cause high degree polynomials to give very erratic results
in areas very near the observed data. A good approximate model should work well, not only at the
observed data, but also near it. Thus, we should focus on low degree polynomials.

EXAMPLE 7.11.1. We again examine Hooker’s data. Computer programs give output for poly-
nomial regression that is very similar to that for simple linear regression. Typical summary tables
for fitting the quadratic model are given below.

Predictor β̂k SE(β̂k) t P
Constant 88.02 13.93 6.32 0.000
Temp. −1.1295 0.1434 −7.88 0.000
Temp squared 0.0040330 0.0003682 10.95 0.000

Analysis of variance
Source d f SS MS F P
Regression 2 447.15 223.58 8984.23 0.000
Error 28 0.70 0.02
Total 30 447.85

The MSE, regression parameter estimates, and standard errors are used in the usual way. The t
statistics and P values are for the two-sided tests of whether the corresponding β parameters are 0.
The t statistic for β2 is −7.88, which is highly significant, so the quadratic model accounts for a
significant amount of the lack of fit displayed by the simple linear regression model. (It is not clear
yet that the quadratic accounts for all of the lack of fit.)

Usually, the only interesting test for a regression coefficient is the one for the highest term in
the polynomial. In particular, it usually makes little sense to have a quadratic (second degree) model
that does not include a first degree term, so there is little point in testing β1 = 0. One reason for this
is that simple linear transformations of the predictor variable change the roles of lower order terms.
For example, the Hooker data uses temperature measured in Fahrenheit as a predictor variable.
While it is not actually the case, suppose the quadratic model for the Hooker data was consistent
with β1 = 0. If we then changed to measuring temperature in Celsius, we would be unlikely to have
a new quadratic model that is still consistent with β1 = 0. When there is a quadratic term in the
model, a linear term based on Fahrenheit measurements has a completely different meaning than a
linear term based on Celsius measurements. On the other hand, the Fahrenheit and Celsius quadratic
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Figure 7.27: Standardized residuals versus predicted values, quadratic model.

models that include linear terms and intercepts are equivalent, just as the simple linear regressions
based on Fahrenheit and Celsius are equivalent.

We will not discuss the ANOVA table in detail, but note that with two predictors, x and x2, there
are 2 degrees of freedom for regression. In general, if we fit a polynomial of degree a, there will be
a degrees of freedom for regression, one degree of freedom for every term other than the intercept.
Correspondingly, when fitting a polynomial of degree a, there are n−a−1 degrees of freedom for
error. The ANOVA table F statistic provides a test of whether the quadratic model explains the data
better than the model with only an intercept.

The coefficient of determination is computed and interpreted as before. It is the SSReg divided
by the SSTot, so it measures the amount of the total variability that is explained by the predictor
variables temperature and temperature squared. For these data, R2 = 99.8%, which is an increase
from 99.2% for the simple linear regression model. It is not appropriate to compare the R2 for this
model to the R2 from the log transformed model of the previous section because they are computed
from data that use different scales.

The standardized residual plots are given in Figures 7.27 and 7.28. The plot against the predicted
values looks good, just as it did for the transformed data examined in the previous section. The
normal plot for this model has a shoulder at the top but it looks much better than the normal plot for
the simple linear regression on the log transformed data.

If we are interested in the mean value of pressure for a temperature of 205◦F, the quadratic
model estimate is (up to a little of round off error)

ŷ = 25.95 = 88.02−1.1295(205)+ .004033(205)2.

The standard error (as reported by the computer program) is 0.0528 and a 95% confidence inter-
val is (25.84,26.06). This compares to a point estimate of 25.95 and a 95% confidence interval of
(25.80,26.10) obtained in the previous section from regressing the log of pressure on temperature.
The quadratic model prediction for a new observation at 205◦F is again 25.95 with a 95% predic-
tion interval of (25.61,26.29). The corresponding prediction interval from the log transformed data
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Figure 7.28: Normal plot for quadratic model, W ′ = 0.966.

is (25.49,26.42). In this example, the results of the two methods for dealing with lack of fit are
qualitatively very similar, at least at 205◦F.

Finally, we tried fitting a cubic model to these data. The cubic model suffers from substantial
numerical instability. (Some computer programs object to fitting it.) This may be related to the fact
that the R2 is so high. The β3 coefficient does not seem to be significantly different from 0, so
considering the good residual plots, the quadratic model seems adequate. (One easy way to improve
numerical stability is to adjust the predictor variables for their mean as in Section 7.6. In other
words, one builds a polynomial using powers of the predictor variable xi− x̄·.) 2

EXAMPLE 7.11.2. We now present a simple example that illustrates two points: that leverages
depend on the model and that high order polynomials can fit the data in very strange ways. The data
for the example are given below.

Case 1 2 3 4 5 6 7
y 0.445 1.206 0.100 −2.198 0.536 0.329 −0.689
x 0.0 0.5 1.0 10.0 19.0 19.5 20.0

I selected the x values. The y values are a sample of size 7 from a N(0,1) distribution. Note that
with seven distinct x values, we can fit a polynomial of degree 6.

The data are plotted in Figure 7.29. Just by chance (honest folks), I observed a very small y value
at x = 10, so the data appear to follow a parabola that opens up. The small y value at x = 10 totally
dominates the impression given by Figure 7.29 If the y value at x = 10 had been near 3 rather than
near −2, the data would appear to be a parabola that opens down. If the y value had been between 0
and 1, the data would appear to fit a line with a slightly negative slope. When thinking about fitting
a parabola, the case with x = 10 is an extremely high leverage point.

Depending on the y value at x = 10, the data suggest a parabola opening up, a parabola opening
down, or that we do not need a parabola to explain the data. Regardless of the y value observed at
x = 10, the fitted parabola must go nearly through the point (10,y). On the other hand, if we think
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Figure 7.29: Plot of y versus x.

Table 7.8: Leverages

Model
x Linear Quadratic Cubic Quartic Quintic Hexic

0.0 0.33 0.40 0.64 0.87 0.94 1.00
0.5 0.31 0.33 0.33 0.34 0.67 1.00
1.0 0.29 0.29 0.55 0.80 0.89 1.00

10.0 0.14 0.96 0.96 1.00 1.00 1.00
19.0 0.29 0.29 0.55 0.80 0.89 1.00
19.5 0.31 0.33 0.33 0.34 0.67 1.00
20.0 0.33 0.40 0.64 0.87 0.94 1.00

only about fitting a line to these data, the small y value at x = 10 has much less effect. In fitting
a line, the value y = −2.198 will look unusually small (it will have a very noticeable standardized
residual), but it will not force the fitted line to go nearly through the point (10,−2.198).

Table 7.8 gives the leverages for all of the polynomial models that can be fitted to these data.
Note that there are no large leverages for the simple linear regression model (the linear polynomial).
For the quadratic (parabolic) model, all of the leverages are reasonably small except the leverage
of .96 at x = 10 which very nearly equals 1. Thus, in the quadratic model, the value of y at x = 10
dominates the fitted polynomial. The cubic model has extremely high leverage at x = 10, but the
leverages are also beginning to get large at x = 0,1,19,20. For the quartic model, the leverage at
x = 10 is 1 to two decimal places; the leverages for x = 0,1,19,20 are also nearly 1. The same
pattern continues with the quintic model but the leverages at x = 0.5,19.5 are also becoming large.
Finally, with the sixth degree (hexic) polynomial, all of the leverages are exactly one. This indicates
that the sixth degree polynomial has to go through every data point exactly and thus every data point
is extremely influential on the estimate of the sixth degree polynomial.

As we fit larger polynomials, we get more high leverage cases (and more numerical instability).
The estimated polynomials must go very nearly through all high leverage cases. To accomplish this
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Figure 7.30: Plots of linear (solid), quadratic (long dashes), and cubic (short dashes) regression curves.

the estimated polynomials may get very strange. Below we give all of the fitted polynomials for
these data.

Model Estimated polynomial
Linear ŷ = 0.252−0.029x
Quadratic ŷ = 0.822−0.536x+0.0253x2

Cubic ŷ = 1.188−1.395x+0.1487x2−0.0041x3

Quartic ŷ = 0.713−0.141x−0.1540x2 +0.0199x3

−0.00060x4

Quintic ŷ = 0.623+1.144x−1.7196x2 +0.3011x3

−0.01778x4 +0.000344x5

Hexic ŷ = 0.445+3.936x−5.4316x2 +1.2626x3

−0.11735x4 +0.004876x5

−0.00007554x6

Figures 7.30 and 7.31 contain graphs of these estimated polynomials.
Figure 7.30 contains the estimated linear, quadratic, and cubic polynomials. The linear and

quadratic curves fit about as one would expect from looking at the scatter plot Figure 7.29. For
x values near the range 0 to 20, we could use these curves to predict y values and get reasonable, if
not necessarily good, results. One could not say the same for the estimated cubic polynomial. The
cubic curve takes on ŷ values near −3 for some x values that are near 6. The y values in the data are
between about −2 and 1.2; nothing in the data suggests that y values near −3 are likely to occur.
Such predicted values are entirely the product of fitting a cubic polynomial. If we really knew that a
cubic polynomial was correct for these data, the estimated polynomial would be perfectly appropri-
ate. But most often we use polynomials to approximate the behavior of the data and for these data
the cubic polynomial gives a poor approximation.

Figure 7.31 gives the estimated quartic, quintic, and hexic polynomials. Note that the scale on
the y axis has changed drastically from Figure 7.30. Qualitatively, the fitted polynomials behave like
the cubic except their behavior is even worse. These polynomials do very strange things everywhere
except near the observed data.
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Figure 7.31: Plots of quartic (solid), quintic (long dashes), and hexic (short dashes) regression curves.

Another phenomenon that sometimes occurs when fitting large models to data is that the mean
squared error gets unnaturally small. Table 7.9 gives the analysis of variance tables for all of the
polynomial models. Our original data were a sample from a N(0,1) distribution. The data were
constructed with no regression structure so the best estimate of the variance comes from the total
line and is 7.353/6 = 1.2255. This value is a reasonable estimate of the true value 1. The MSE from
the simple linear regression model also provides a reasonable estimate of σ2 = 1. The larger models
do not work as well. Most have variance estimates near .5, while the hexic model does not even
allow an estimate of σ2 because it fits every data point perfectly. By fitting models that are too large
one can often make the MSE artificially small. For example, the quartic model has a MSE of .306
and an F statistic of 5.51; if it were not for the small value of d fE, such an F value would be highly
significant. If you find a large model that has an unnaturally small MSE with a reasonable number
of degrees of freedom, everything can appear to be significant even though nothing you look at is
really significant.

Just as the mean squared error often gets unnaturally small when fitting large models, R2 gets
unnaturally large. As we have seen, there can be no possible reason to use a larger model than the
quadratic with its R2 of .71, but the cubic, quartic, quintic, and hexic models have R2s of .78, .92,
.93, and 1, respectively. 2
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Table 7.9: Analysis of variance tables

Simple linear regression
Source d f SS MS F P
Regression 1 0.457 0.457 0.33 0.59
Error 5 6.896 1.379
Total 6 7.353

Quadratic model
Source d f SS MS F P
Regression 2 5.185 2.593 4.78 0.09
Error 4 2.168 0.542
Total 6 7.353

Cubic model
Source d f SS MS F P
Regression 3 5.735 1.912 3.55 0.16
Error 3 1.618 0.539
Total 6 7.353

Quartic model
Source d f SS MS F P
Regression 4 6.741 1.685 5.51 0.16
Error 2 0.612 0.306
Total 6 7.353

Quintic model
Source d f SS MS F P
Regression 5 6.856 1.371 2.76 0.43
Error 1 0.497 0.497
Total 6 7.353

Hexic model
Source d f SS MS F P
Regression 6 7.353 1.2255 — —
Error 0 0.000 —
Total 6 7.353
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Minitab commands

Below we illustrate Minitab commands for fitting quadratic, cubic, and quartic models. These in-
clude the prediction subcommand used with the quadratic model for x = 205. Note that the pre-
diction subcommand requires us to enter both the value of x and the value of x2 when using the
quadratic model.

MTB > names c1 ’y’ c2 ’x’

MTB > note FIT QUADRATIC MODEL

MTB > let c22=c2**2

MTB > regress c2 on 2 c2 c22;

SUBC> pred 205 42025.

MTB > note FIT CUBIC MODEL

MTB > let c23=c2**3

MTB > regress c1 on 3 c2 c22 c23

MTB > note FIT QUARTIC MODEL

MTB > let c24=c2**4

MTB > regress c1 on 4 c2 c22-c24

7.12 Polynomial regression and one-way ANOVA

The main reason for introducing polynomial regression at this point is to exploit its relationships
with analysis of variance. In some analysis of variance problems, the treatment groups are deter-
mined by quantitative levels of a factor. For example, one might take observations on the depth of
hole made by a drill press in a given amount of time with 20, 30, or 40 pounds of downward thrust
applied. The groups are determined by the quantitative levels, 20, 30, and 40. In such a situation we
could fit a one-way analysis of variance with three groups, or we could fit a simple linear regres-
sion model. Simple linear regression is appropriate because all the data come as pairs. The pairs are
(xi,yi j), where xi is the numerical level of thrust and yi j is the depth of the hole on the jth trial with
xi pounds of downward thrust. Not only can we fit a simple linear regression, but we can fit poly-
nomials to the data. In this example, we could fit no polynomial above second degree (quadratic),
because three points determine a parabola and we only have three distinct x values. If we ran the ex-
periment with 20, 25, 30, 35, and 40 pounds of thrust, we could fit at most a fourth degree (quartic)
polynomial because five points determine a fourth degree polynomial and we would only have five
x values.

In general, some number a of distinct x values allows fitting of an a− 1 degree polynomial.
Moreover, fitting the a−1 degree polynomial is equivalent to fitting the one-way ANOVA with groups
defined by the a different x values. However, as discussed in the previous section, fitting high degree
polynomials is often a very questionable procedure. The problem is not with how the model fits
the observed data but with the suggestions that a high degree polynomial makes about the behavior
of the process for x values other than those observed. In the example with 20, 25, 30, 35, and 40
pounds of thrust, the quartic polynomial will fit as well as the one-way ANOVA model but the
quartic polynomial may have to do some very weird things in the areas between the observed x
values. Of course, the ANOVA model gives no indications of behavior for x values other than those
that were observed. When performing regression, we usually like to have some smooth fitting model
giving predictions that, in some sense, interpolate between the observed data points. High degree
polynomials often fail to achieve this goal.

EXAMPLE 7.12.1. Beineke and Suddarth (1979) and Devore (1991, p. 380) consider data on roof
supports involving trusses that use light gauge metal connector plates. Their dependent variable is
an axial stiffness index (ASI) measured in kips per inch. The predictor variable is the length of the
light gauge metal connector plates. The data are given in Table 7.10 in a format consistent with
performing a regression analysis on the data.
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Table 7.10: Axial stiffness index data

Plate ASI Plate ASI Plate ASI Plate ASI Plate ASI
4 309.2 6 402.1 8 392.4 10 346.7 12 407.4
4 409.5 6 347.2 8 366.2 10 452.9 12 441.8
4 311.0 6 361.0 8 351.0 10 461.4 12 419.9
4 326.5 6 404.5 8 357.1 10 433.1 12 410.7
4 316.8 6 331.0 8 409.9 10 410.6 12 473.4
4 349.8 6 348.9 8 367.3 10 384.2 12 441.2
4 309.7 6 381.7 8 382.0 10 362.6 12 465.8

Table 7.11: ASI summary statistics

Plate N ȳi· s2
i si

4 7 333.2143 1338.6981 36.59
6 7 368.0571 816.3629 28.57
8 7 375.1286 433.7990 20.83

10 7 407.3571 1981.1229 44.51
12 7 437.1714 675.8557 26.00

The data could also be considered as an analysis of variance with plate lengths being different
treatments and with seven observations on each treatment. Table 7.11 gives the usual summary
statistics for a one-way ANOVA.

Viewed as regression data, we might think of fitting a simple linear regression model

yh = β0 +β1xh + εh,

h= 1, . . . ,35. Note that while h varies from 1 to 35, there are only five distinct values of xh that occur
in the data. As an analysis of variance, we usually use two subscripts to identify an observation: one
to identify the treatment group and one to identify the observation within the group. The ANOVA
model would often be written as

yi j = µi + εi j (7.12.1)

where i = 1,2,3,4,5 and j = 1, . . . ,7. We can also rewrite the regression model using the two
subscripts i and j in place of h,

yi j = β0 +β1xi + εi j,

where i = 1,2,3,4,5 and j = 1, . . . ,7. Note that all of these models account for exactly 35 observa-
tions.

Figure 7.32 contains a scatter plot of the data. With multiple observations at each x value, the
regression is really only fitted to the mean of the y values at each x value. The means of the ys are
plotted against the x values in Figure 7.33. The overall trend of the data is easier to evaluate in this
plot than in the full scatter plot. We see an overall increasing trend which is very nearly linear except
for a slight anomaly with 6 inch plates. We need to establish if these visual effects are real or just
random variation. We would also like to establish whether there is a simple regression model that is
appropriate for any trend that may exist. With only five distinct x values, we can fit at most a quartic
(fourth degree) polynomial, say,

yi j = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i + εi j, (7.12.2)

so a simple model should be something smaller than a quartic, i.e., either a cubic, quadratic, or a
linear polynomial.

Table 7.12 contains ANOVA tables for fitting the linear, quadratic, cubic, and quartic polynomial
regressions and for fitting the one-way ANOVA model. From our earlier discussion, the F test in
the simple linear regression ANOVA table strongly suggests that there is an overall trend in the
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Table 7.12: Analysis of variance tables for ASI data

Analysis of variance: simple linear regression
Source d f SS MS F P
Regression 1 42780 42780 43.19 0.000
Error 33 32687 991
Total 34 75468

Analysis of variance: quadratic polynomial
Source d f SS MS F P
Regression 2 42894 21447 21.07 0.000
Error 32 32573 1018
Total 34 75468

Analysis of variance: cubic polynomial
Source d f SS MS F P
Regression 3 43345 14448 13.94 0.000
Error 31 32123 1036
Total 34 75468

Analysis of variance: quartic polynomial
Source d f SS MS F P
Regression 4 43993 10998 10.48 0.000
Error 30 31475 1049
Total 34 75468

Analysis of variance: one-way ANOVA
Source d f SS MS F P
Trts(plates) 4 43993 10998 10.48 0.000
Error 30 31475 1049
Total 34 75468

data. From Figure 7.33 we see that this trend must be increasing, i.e., as lengths go up, by and large
the ASI readings go up. ANOVA tables for higher degree polynomial models have been discussed
briefly in the previous section but for now the key point to recognize is that the ANOVA table for
the quartic polynomial is identical to the ANOVA table for the one-way analysis of variance. This
occurs because models (7.12.1) and (7.12.2) are equivalent.

The first question of interest is whether a quartic polynomial is needed or whether a cubic model
would be adequate. This is easily evaluated from the table of estimates and standard errors for the
quartic fit. For computational reasons, the results reported are for a polynomial involving powers of
x− x̄· rather than powers of x, cf. Section 7.6. This has no effect on our subsequent discussion, see
Exercise 7.13.15.

Predictor β̂k SE(β̂k) t P
Constant 375.13 12.24 30.64 0.000
(x− x̄·) 8.768 5.816 1.51 0.142
(x− x̄·)2 3.983 4.795 0.83 0.413
(x− x̄·)3 0.2641 0.4033 0.65 0.517
(x− x̄·)4 −0.2096 0.2667 −0.79 0.438

There is little evidence (P = .438) that β4 6= 0, so a cubic polynomial seems to be an adequate
explanation of the data.

The table of estimates given above is inappropriate for evaluating β3 in the cubic model (even
the cubic model based on x− x̄·). To evaluate β3, we need to fit the cubic model. If we then decide
that a parabola is an adequate model, evaluating β2 in the parabola requires one to fit the quadratic
model. In general, regression estimates are only valid for the model fitted. A new model requires
new estimates.
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In Section 5.5, we discussed comparing models as a way of arriving at the F test in a one-way
analysis of variance. Comparing a submodel against a larger model to determine the adequacy of the
submodel is a key method in regression analysis. Recall that model comparisons are based on the
difference between the sums of squares for error of the submodel and the sums of squares for error
of the larger model. Obviously, the simple linear regression model is a submodel of the quadratic
model which is a submodel of the cubic model, which is a submodel of the quartic model, and we
have seen that the quartic model is equivalent to the one-way ANOVA model. Given below are the
degrees of freedom and sums of squares for error for the four polynomial regression models and the
model with only an intercept β0 (grand mean). (See Section 5.5 for discussion of the grand mean
model.) The differences in sums of squares error for adjacent models are also given; the differences
in degrees of freedom error are just 1.

Model comparisons
Model d fE SSE Difference
Intercept 34 75468 —-
Linear 33 32687 42780
Quadratic 32 32573 114
Cubic 31 32123 450
Quartic 30 31475 648

Note that the d fE and SSE for the intercept model are those from the corrected Total lines in the
ANOVAs of Table 7.12. The d fEs and SSEs for the other models also come from Table 7.12.

To test the quartic model against the cubic model we take

F =
648/1

31475/30
= .62.

This is just the square of the t statistic for testing β4 = 0 in the quartic model. The reference distri-
bution for the F statistic is F(1,30) and the P value is .44, as it was for the t test.

If we decide that we do not need the quartic term, we can test whether we need the cubic term.
We can test the quadratic model against the cubic model with

F =
450/1

32123/31
= 0.434.

The reference distribution is F(1,31). This test is equivalent to the t test of β3 = 0 in the cubic
model. The t test of β3 = 0 in the quartic model is inappropriate. An alternative to this F test can
also be used. The denominator of this test is 32123/31, the mean squared error from the cubic
model. If we accepted the cubic model only after testing the quartic model, the result of the quartic
test is open to question and thus the estimate of σ2 from the cubic model, i.e., the MSE from the
cubic model, is open to question. It might be better just to use the estimate of σ2 from the quartic
model, which is the mean squared error from the one-way ANOVA. If we do this, the test statistic
for the cubic term becomes

F =
450/1

31475/30
= 0.429.

The reference distribution for the alternative test is F(1,30). In this example the two F tests give
essentially the same answers. This should, by definition, almost always be the case. If, for example,
one test were significant at .05 and the other were not, they are both likely to have P values near .05
and the fact that one is a bit larger than .05 and the other is a bit smaller than .05 should not be a
cause for concern.
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If we decide that neither the quartic nor the cubic terms are important, we can test whether we
need the quadratic term. Testing the quadratic model against the simple linear model gives

F =
114/1

32573/32
= 0.112

which is compared to an F(1,32) distribution. This test is equivalent to the t test of β2 = 0 in
the quadratic model. Again, an alternative test can also be used. The denominator of this test is
32573/32, the mean squared error from the quadratic model. If we accepted the quadratic model
only after testing the cubic and quartic models, this estimate of σ2 may be biased and it might be
better to use the estimate of σ2 from the quartic model, i.e., the one-way ANOVA model. If we do
this, the test statistic for the quadratic term becomes

F =
114/1

31475/30
= 0.109

and the reference distribution is F(1,30).
If we decide that we need none of the higher order terms, we can test whether we need the linear

term. Testing the intercept model against the simple linear model gives

F =
42780/1

32687/33
= 43.190.

This is just the test for zero slope in the simple linear model. Again, the alternative test can be
used. The denominator of this test is the mean squared error from the linear model, 32687/33. If
we accepted the linear model only after testing the higher order models, it may be better to use the
mean squared error from the one-way ANOVA model. The alternative F test for the linear term has

F =
42780/1

31475/30
= 40.775.

The model comparison tests just discussed can be reconstructed from contrasts in the one-way
ANOVA. Below are given some simple contrasts that correspond to the differences in sums of squares
error for the model comparisons.

Orthogonal
polynomial contrasts

Plate Linear Quadratic Cubic Quartic ȳi·
4 −2 2 −1 1 333.2143
6 −1 −1 2 −4 368.0571
8 0 −2 0 6 375.1286

10 1 −1 −2 −4 407.3571
12 2 2 1 1 437.1714
Est 247.2142 15.1000 25.3571 −80.4995
SS 42780.4 114.0 450.1 648.0

Recall that the estimate of, say, the linear contrast is

(−2)(333.2143)+(−1)(368.0571)+(0)(375.1286)+(1)(407.3571)
+(2)(437.1714) = 247.2142

and that with seven observations on each plate length, the sum of squares for the linear contrast is

SS(linear) =
(247.2142)2

[(−2)2 +(−1)2 +02 +12 +22]/7
= 42780.4.
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Table 7.13: Analysis of variance for ASI data

Source d f SS MS F P
Treatments 4 43993 10998 10.48 0.000
(linear) (1) (42780) (42780) (40.78)
(quadratic) (1) ( 114) ( 114) (0.11)
(cubic) (1) ( 450) ( 450) (0.43)
(quartic) (1) ( 648) ( 648) (0.62)
Error 30 31475 1049
Total 34 75468

This is precisely the difference in error sums of squares between the intercept and straight line
models. Similar results hold for the other contrasts.

These contrasts are called orthogonal polynomial contrasts because they are orthogonal in bal-
anced ANOVAs and reproduce the sums of squares for comparing different polynomial regression
models. We leave it to the reader to verify that the contrasts are orthogonal, cf. Section 5.4, but recall
that with orthogonal contrasts we have the identity

SSTrts = 43992.5 = 42780.4+114.0+450.1+648.0.

Table 7.13 contains an expanded analysis of variance table for the one-way ANOVA that incor-
porates the information from the contrasts. Using the orthogonal polynomial contrasts allows us to
make all of the model comparisons by using simple analysis of variance computations rather than
fitting polynomial regression models.

From Table 7.13, the P value of .000 indicates strong evidence that the five groups are different,
i.e., there is strong evidence for the quartic polynomial. The results from the contrasts are so clear
that we did not bother to report P values for them. There is a huge effect for the linear contrast. The
other three F statistics are all much less than 1, so there is no evidence of the need for a quartic,
cubic, or quadratic polynomial. As far as we can tell, a line fits the data just fine. For completeness,
some residual plots are presented as Figures 7.34 through 7.38. Note that the normal plot for the
simple linear regression in Figure 7.35 is less than admirable, while the normal plot for the one-way
ANOVA in Figure 7.38 is only slightly better. It appears that one should not put great faith in the
normality assumption. 2

The linear, quadratic, cubic, and quartic contrasts for the ASI data are simple only because the
ANOVA is balanced and the treatment groups are equally spaced. The treatments occur at 4, 6, 8, 10,
and 12 inches. Thus the treatments occur at intervals of 2 inches. If the treatments were at irregular
intervals or if the group sample sizes were unequal, orthogonal linear, quadratic, cubic, and quartic
contrasts still exist, but they are difficult to find. With either unequal spacings or unequal numbers,
it is easier just to do the appropriate regressions. With a balanced ANOVA and regularly spaced
intervals, the orthogonal polynomial contrasts can be determined from the number of treatment
groups and thus they can be tabled. Such a table is given in Appendix B.4 for linear, quadratic, and
cubic contrasts.

Comparing one of the reduced polynomial models against the one-way ANOVA model is often
referred to as a test of lack of fit. This is especially true when the reduced model is the simple linear
regression model. In these tests, the degrees of freedom, sums of squares, and mean squares used
in the numerator of the tests are all described as being for lack of fit. The denominator of the test
is based on the error from the one-way ANOVA. The mean square, sum of squares, and degrees of
freedom for error in the one-way ANOVA are often referred to as the mean square, sum of squares,
and degrees of freedom for pure error. This lack of fit test can be performed whenever the data
contain multiple observations at any x values. Often the appropriate unbalanced one-way ANOVA
includes treatments with only one observation on them. These treatments do not provide an estimate
of σ2, so they simply play no role in obtaining the mean square for pure error.
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Figure 7.38: ASI ANOVA residuals normal plot, W ′ = .966.

For testing lack of fit in the simple linear regression model with the ASI data, the numerator
sum of squares can be obtained either by differencing the sums of squares for error in the simple
linear regression model and the one-way ANOVA model or by adding up the sums of squares for the
quadratic, cubic, and quartic contrasts. Here the sum of squares for lack of fit is 32687− 31475 =
1212 = 114+450+648 and the degrees of freedom for lack of fit are 33−30 = 3. The mean square
for lack of fit is 1212/3 = 404. The pure error comes from the one-way ANOVA table. The lack of
fit test F statistic for the simple linear regression model is

F =
404
1049

= .39

which is less than 1, so there is no evidence of a lack of fit in the simple linear regression model. If
an α = .05 test were desired, the test statistic would be compared to F(.95,3,30).

Appendix: simple linear regression proofs

PROOF OF UNBIASEDNESS FOR THE REGRESSION ESTIMATES.
To begin, The β s and xis are all fixed numbers so

E(yi) = E(β0 +β1xi + εi) = β0 +β1xi +E(εi) = β0 +β1xi .

Also note that ∑
n
i=1 (xi− x̄·) = 0, so ∑

n
i=1 (xi− x̄·) x̄· = 0. It follows that

n

∑
i=1

(xi− x̄·)
2
=

n

∑
i=1

(xi− x̄·)xi−
n

∑
i=1

(xi− x̄·) x̄· =
n

∑
i=1

(xi− x̄·)xi .

Now consider the slope estimate.

E
(

β̂1

)
= E

(
∑

n
i=1 (xi− x̄·)yi

∑
n
i=1 (xi− x̄·)

2

)
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=
∑

n
i=1 (xi− x̄·)E(yi)

∑
n
i=1 (xi− x̄·)

2

=
∑

n
i=1 (xi− x̄·)(β0 +β1xi)

∑
n
i=1 (xi− x̄·)

2

= β0
∑

n
i=1 (xi− x̄·)

∑
n
i=1 (xi− x̄·)

2 +β1
∑

n
i=1 (xi− x̄·)xi

∑
n
i=1 (xi− x̄·)

2

= β0
0

∑
n
i=1 (xi− x̄·)

2 +β1
∑

n
i=1 (xi− x̄·)

2

∑
n
i=1 (xi− x̄·)

2

= β1

The proof for the intercept goes as follows:

E
(

β̂0

)
= E

(
ȳ·− β̂1x̄·

)
= E

(
1
n

n

∑
i=1

yi

)
−E
(

β̂1

)
x̄·

=
1
n

n

∑
i=1

E(yi)−β1x̄·

=
1
n

n

∑
i=1

(β0 +β1xi)−β1x̄·

= β0 +β1
1
n

n

∑
i=1

(xi)−β1x̄·

= β0 +β1x̄·−β1x̄·
= β0 .

PROOF OF VARIANCE FORMULAE.
To begin,

Var(yi) = Var(β0 +β1xi + εi) = Var(εi) = σ
2.

Now consider the slope estimate. Recall that the yis are independent.

Var
(

β̂1

)
= Var

(
∑

n
i=1 (xi− x̄·)yi

∑
n
i=1 (xi− x̄·)

2

)

=
1[

∑
n
i=1 (xi− x̄·)

2
]2 Var

(
n

∑
i=1

(xi− x̄·)yi

)

=
1[

∑
n
i=1 (xi− x̄·)

2
]2

n

∑
i=1

(xi− x̄·)
2 Var(yi)

=
1[

∑
n
i=1 (xi− x̄·)

2
]2

n

∑
i=1

(xi− x̄·)
2

σ
2

=
σ2

∑
n
i=1 (xi− x̄·)

2

=
σ2

(n−1)s2
x
.
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Rather than establishing the variance of β̂0 directly, we find Var(β̂0 + β̂1x) for an arbitrary value
x. The variance of β̂0 is the special case with x = 0. A key result is that ȳ· and β̂1 are independent.
This was discussed in relation to the alternative regression model of Section 7.6. The independence
of these estimates is based on the errors having independent normal distributions with the same
variance. More generally, if the errors have the same variance and zero covariance, we still get
Cov(ȳ·, β̂1) = 0, see Exercise 7.13.14.

Var
(

β̂0 + β̂1x
)

= Var
(

ȳ·− β̂1x̄·+ β̂1x
)

= Var
(

ȳ·+ β̂1(x− x̄·)
)

= Var(ȳ·)+Var
(

β̂1

)
(x− x̄·)2−2(x− x̄·)Cov

(
ȳ·, β̂1

)
=

1
n2

n

∑
i=1

Var(yi)+Var
(

β̂1

)
(x− x̄·)2

=
1
n2

n

∑
i=1

σ
2 +

σ2(x− x̄·)2

(n−1)s2
x

= σ
2
[

1
n
+

(x− x̄·)2

(n−1)s2
x

]
.

In particular, when x = 0 we get

Var
(

β̂0

)
= σ

2
[

1
n
+

x̄2
·

(n−1)s2
x

]
.
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Table 7.14: Age and maintenance costs of truck tractors

Age Cost Age Cost Age Cost
0.5 163 4.0 495 5.0 890
0.5 182 4.0 723 5.0 1522
1.0 978 4.0 681 5.0 1194
1.0 466 4.5 619 5.5 987
1.0 549 4.5 1049 6.0 764

4.5 1033 6.0 1373

Table 7.15: Angle between the plane of the equator and the plane of rotation about the sun

Year Angle Year Angle Year Angle Year Angle
−229 51.333̄ 880 35.000 1500 28.400 1600 31.000
−139 51.333̄ 1070 34.000 1500 29.266̄ 1656 29.033̄

140 51.166̄ 1300 32.000 1570 29.916̄ 1672 28.900
390 30.000 1460 30.000 1570 31.500 1738 28.333̄

7.13 Exercises

EXERCISE 7.13.1. Draper and Smith (1966, p. 41) considered data on the relationship between
the age of truck tractors (in years) and the cost (in dollars) of maintaining them over a six month
period. The data are given in Table 7.14. Plot cost versus age and fit a regression of cost on age.
Give 95% confidence intervals for the slope and intercept. Give a 99% confidence interval for the
mean cost of maintaining tractors that are 2.5 years old. Give a 99% prediction interval for the cost
of maintaining a particular tractor that is 2.5 years old.

Reviewing the plot of the data, how much faith should be placed in these estimates for tractors
that are 2.5 years old?

EXERCISE 7.13.2. Stigler (1986, p. 6) reported data from Cassini (1740) on the angle between
the plane of the equator and the plane of the earth’s revolution about the sun. The data are given in
Table 7.15. The years −229 and −139 indicate 230 B.C. and 140 B.C. respectively. The angles are
listed as the minutes above 23 degrees.

Plot the data. Are there any obvious outliers? If outliers exist, compare the fit of the line with
and without the outliers. In particular, compare the different 95% confidence intervals for the slope
and intercept.

EXERCISE 7.13.3. Mulrow et al. (1988) presented data on the calibration of a differential scan-
ning calorimeter. The melting temperatures of mercury and naphthalene are known to be 234.16
and 353.24 Kelvin, respectively. The data are given in Table 7.16. Plot the data. Fit a simple linear
regression y = β0 +β1x+ ε to the data. Under ideal conditions, the simple linear regression should
have β0 = 0 and β1 = 1; test whether these hypotheses are true using α = .05. Give a 95% confi-
dence interval for the population mean of observations taken on this calorimeter for which the true
melting point is 250. Give a 95% prediction interval for a new observation taken on this calorimeter
for which the true melting point is 250.

Is there any way to check whether it is appropriate to use a line in modeling the relationship
between x and y? If so, do so.

EXERCISE 7.13.4. Using the complete data of Exercise 7.13.2, test the need for a transformation
of the simple linear regression model. Repeat the test after eliminating any outliers. Compare the
results.
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Table 7.16: Melting temperatures

Chemical x y
Naphthalene 353.24 354.62

353.24 354.26
353.24 354.29
353.24 354.38

Mercury 234.16 234.45
234.16 234.06
234.16 234.61
234.16 234.48

Table 7.17: IQs and achievement scores

IQ Achiev. IQ Achiev. IQ Achiev. IQ Achiev. IQ Achiev.
100 49 105 50 134 78 107 43 122 66
117 47 89 72 125 39 121 75 130 63

98 69 96 45 140 66 90 40 116 43
87 47 105 47 137 69 132 80 101 44

106 45 95 46 142 68 116 55 92 50
134 55 126 67 130 71 137 73 120 60
77 72 111 66 92 31 113 48 80 31

107 59 121 59 125 53 110 41 117 55
125 27 106 49 120 64 114 29 93 50

EXERCISE 7.13.5. Dixon and Massey (1969) presented data on the relationship between IQ
scores and results on an achievement test in a general science course. Table 7.17 contains a subset
of the data. Fit the simple linear regression model of achievement on IQ and the quadratic model of
achievement on IQ and IQ squared. Evaluate both models and decide which is the best.

EXERCISE 7.13.6. Snedecor and Cochran (1967, Section 6.18) presented data obtained in 1942
from South Dakota on the relationship between the size of farms (in acres) and the number of acres
planted in corn. The data are given in Table 7.18.

Plot the data. Fit a simple linear regression to the data. Examine the residuals and discuss what
you find. Test the need for a power transformation. Is it reasonable to examine the square root or log
transformations? If so, do so.

EXERCISE 7.13.7. In Exercises 5.7.2 and 7.13.6 we considered data on the relationship between
farm sizes and the acreage in corn. Fit the linear, quadratic, cubic, and quartic polynomial models to
the logs of the acreages in corn. Find the model that fits best. Check the assumptions for this model.

Table 7.18: Acreage in corn for different farm acreages

Farm Corn Farm Corn Farm Corn
x y x y x y

80 25 160 45 320 110
80 10 160 40 320 30
80 20 240 65 320 55
80 32 240 80 320 60
80 20 240 65 400 75

160 60 240 85 400 35
160 35 240 30 400 140
160 20 320 70 400 90

400 110
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Table 7.19: Weights for various heights

Ht. Wt. Ht. Wt.
65 120 63 110
65 140 63 135
65 130 63 120
65 135 72 170
66 150 72 185
66 135 72 160

Compute the sums of squares for the following contrasts using the means of the logs of the corn
acreages:

Farm acreages
Contrast 80 160 240 320 400
Linear −2 −1 0 1 2
Quadratic 2 −1 −2 −1 2
Cubic −1 2 0 −2 1
Quartic 1 −4 6 −4 1
Means 2.9957 3.6282 4.1149 4.0904 4.4030

Compare the contrast sums of squares to the polynomial model fitting procedure.

EXERCISE 7.13.8. Repeat Exercise 7.13.6 but instead of using the number of acres of corn as
the dependent variable, use the proportion of acreage in corn as the dependent variable. Compare
the results to those given earlier.

EXERCISE 7.13.9. In Exercises 7.13.1 and 5.7.10, we performed a simple linear regression and
a one-way ANOVA on the data of Table 7.14. Test for lack of fit, i.e., whether the simple linear
regression is an adequate reduced model as compared to the one-way ANOVA model.

EXERCISE 7.13.10. The analysis of variance in Exercise 5.7.3 was based on the height and
weight data given in Table 7.19. Fit a simple linear regression of weight on height for these data
and check the assumptions. Give a 99% confidence interval for the mean weight of people with a
72 inch height and compare it to the interval from Exercise 5.7.3. Test the lack of fit of the simple
linear regression model compared to the larger one-way ANOVA model.

EXERCISE 7.13.11. Jensen (1977) and Weisberg (1985, p. 101) considered data on the outside
diameter of crank pins that were produced in an industrial process. The diameters of batches of
crank pins were measured on various days; if the industrial process is ‘under control’ the diameters
should not depend on the day they were measured. A subset of the data is given in Table 7.20 in a
format consistent with performing a regression analysis on the data. The diameters of the crank pins
are actually .742+ yi j10−5 inches, where the yi js are reported in Table 7.20. Perform an analysis
of variance and polynomial regressions on the data. Give the lack of fit test for the simple linear
regression.

EXERCISE 7.13.12. Exercise 7.13.3 involves the calibration of a measuring instrument. Often,
calibration curves are used in reverse, i.e., we would use the calorimeter to measure a melting point
y and use the regression equation to give a point estimate of x. If a new substance has a measured
melting point of 300 Kelvin, using the simple linear regression model what is the estimate of the true
melting point? Use a prediction interval to determine whether the measured melting point of y= 300
is consistent with the true melting point being x = 300. Is an observed value of 300 consistent with
a true value of 310?
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Table 7.20: Jensen’s crank pin data

Days Diameters Days Diameters Days Diameters Days Diameters
4 93 10 93 16 82 22 90
4 100 10 88 16 72 22 92
4 88 10 87 16 80 22 82
4 85 10 87 16 72 22 77
4 89 10 87 16 89 22 89

EXERCISE 7.13.13. Working-Hotelling confidence bands are a method for getting confidence
intervals for every point on a line with a guaranteed simultaneous coverage. The method is essen-
tially the same as Scheffé’s method for simultaneous confidence intervals discussed in Section 6.4.
For estimating the point on the line at a value x, the endpoints of the (1−α)100% simultaneous
confidence intervals are

(β̂0 + β̂1x)±
√

2F(1−α,2,d fE)SE(β̂0 + β̂1x).

Using the Coleman Report data of Table 7.1, find 95% simultaneous confidence intervals for the
values x = −17,−6,0,6,17. Plot the estimated regression line and sketch the Working-Hotelling
confidence bands. We are 95% confident that the entire line β0 +β1x lies between the confidence
bands. Compute the regular confidence intervals for x =−17,−6,0,6,17 and compare them to the
results of the Working-Hotelling procedure.

EXERCISE 7.13.14. Use part (4) of Proposition 1.2.11 to show that Cov(ȳ·, β̂1) = 0 whenever
Var(εi) = σ2 for all i and Cov(εi,ε j) = 0 for all i 6= j. Hint: write out ȳ· and β̂1 in terms of the yis.

EXERCISE 7.13.15. Using the axial stiffness index data of Table 7.10, fit linear, quadratic, cubic,
and quartic polynomial regression models using powers of x, the plate length, and using powers of
x− x̄·, the plate length minus the average plate length. Compare the results of the two procedures.
If your computer program will not fit some of the models, report on that in addition to comparing
results for the models you could fit.





Chapter 8

The analysis of count data

For the most part, this book concerns itself with measurement data and the corresponding analyses
based on normal distributions. In this chapter we consider data that consist of counts. We begin
in Section 8.1 by examining a set of data on the number of females admitted into graduate school
at the University of California, Berkeley. A key feature of these data is that only two outcomes
are possible: admittance or rejection. Data with only two outcomes are referred to as binary (or
dichotomous) data. Often the two outcomes are referred to generically as success and failure. In
Section 8.2, we expand our discussion by comparing two sets of dichotomous data; we compare
Berkeley graduate admission rates for females and males. Section 8.3 examines polytomous data,
i.e., count data in which there are more than two possible outcomes. For example, numbers of
Swedish females born in the various months of the year involve counts for 12 possible outcomes.
Section 8.4 examines comparisons between two samples of polytomous data, e.g., comparing the
numbers of females and males that are born in the different months of the year. Section 8.5 looks at
comparisons among more than two samples of polytomous data. The penultimate section considers
a method of reducing large tables of counts that involve several samples of polytomous data into
smaller more interpretable tables. The final section deals with a count data analogue of simple linear
regression.

Sections 8.1 and 8.2 involve analogues of Chapters 2 and 4 that are appropriate for dichotomous
data. The basic analyses in these sections simply involve new applications of the ideas in Chapter 3.
Analyzing polytomous data requires techniques that are different from the methods of Chapter 3.
Sections 8.3, 8.4, and 8.5 are polytomous data analogues of Chapters 2, 4, and 5. Everitt (1977)
and Fienberg (1980) give more detailed introductions to the analysis of count data. Sophisticated
analyses of count data frequently use analogues of ANOVA and regression called log-linear models.
Christensen (1990b) provides an intermediate level account of log-linear models.

8.1 One binomial sample

The few distributions that are most commonly used in statistics arise naturally. The normal distri-
bution arises for measurement data because the variability in the data often results from the mean
of a large number of small errors and the central limit theorem indicates that such means tend to be
normally distributed.

The binomial distribution arises naturally with count data because of its simplicity. Consider
a number of trials, say n, each a success or failure. If each trial is independent of the other trials
and if the probability of obtaining a success is the same for every trial, then the random number of
successes has a binomial distribution. The beauty of discrete data is that the probability models can
often be justified solely by how the data were collected. This does not happen with measurement
data. The binomial distribution depends on two parameters, n, the number of independent trials,
and the constant probability of success, say p. Typically, we know the value of n, while p is the
unknown parameter of interest. Binomial distributions were examined in Section 1.4.

Bickel et al. (1975) report data on admissions to graduate school at the University of California,
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Berkeley. The numbers of females that were admitted and rejected are given below along with the
total number of applicants.

Graduate admissions at Berkeley
Admitted Rejected Total

Female 557 1278 1835

It seems reasonable to view the 1835 females as a random sample from a population of potential
female applicants. We are interested in the probability p that a female applicant is admitted to
graduate school. A natural estimate of the parameter p is the proportion of females that were actually
admitted, thus our estimate of the parameter is

p̂ =
557
1835

= .30354.

We have a parameter of interest, p, and an estimate of that parameter, p̂. If we can identify a standard
error and an appropriate distribution, we can use the methods of Chapter 3 to perform statistical
inferences.

The key to finding a standard error is to find the variance of the estimate. As we will see later,

Var(p̂) =
p(1− p)

n
. (8.1.1)

To estimate the standard deviation of p̂, we simply use p̂ to estimate p in (8.1.1) and take the square
root. Thus the standard error is

SE(p̂) =

√
p̂(1− p̂)

n
=

√
.30354(1− .30354)

1835
= .01073.

The final requirement for using the results of Chapter 3 is to find an appropriate reference dis-
tribution for

p̂− p
SE(p̂)

.

We can think of each trial as scoring either a 1, if the trial is a success, or a 0, if the trial is a failure.
With this convention p̂, the proportion of successes, is really the average of the 0–1 scores and since
p̂ is an average we can apply the central limit theorem. (In fact, SE(p̂) is very nearly s/

√
n, where s

is computed from the 0–1 scores.) The central limit theorem simply states that for a large number of
trials n, the distribution of p̂ is approximately normal with a population mean that is the population
mean of p̂ and a population variance that is the population variance of p̂. We have already given the
variance of p̂ and we will see later that E(p̂) = p. Thus for large n we have the approximation

p̂∼ N
(

p,
p(1− p)

n

)
.

The variance is unknown but by the law of large numbers it is approximately equal to our estimate
of it, p̂(1− p̂)/n. Standardizing the normal distribution (cf. Exercise 1.6.2) gives the approximation

p̂− p
SE(p̂)

∼ N(0,1). (8.1.2)

This distribution requires a sample size that is large enough for both the central limit theorem ap-
proximation and the law of large numbers approximation to be reasonably valid. For values of p
that are not too close to 0 or 1, the approximation works reasonably well with sample sizes as small
as 20.

We now have Par = p, Est = p̂, SE(p̂) =
√

p̂(1− p̂)/n and the distribution in (8.1.2). As in
Chapter 3, a 95% confidence interval for p has limits

p̂±1.96

√
p̂(1− p̂)

n
.
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Here 1.96 = z(.975) = t(.975,∞). Recall that a (1−α)100% confidence interval requires the (1−
α/2) percentile of the distribution. For the female admissions data, the limits are

.30354±1.96(.01073)

which gives the interval (.28, .32). We are 95% confident that the population proportion of females
admitted to Berkeley’s graduate school is between .28 and .32. (As is often the case, it is not exactly
clear what population these data relate to.)

We can also perform, say, an α = .01 test of the null hypothesis H0 : p = 1/3 versus the alter-
native HA : p 6= 1/3. The test rejects H0 if

p̂−1/3
SE(p̂)

> 2.58

or if
p̂−1/3
SE(p̂)

<−2.58.

Here 2.58 = z(.995) = t(.975,∞). An α level two-sided test requires the (1− α

2 )100% point of the
distribution. The Berkeley data yield the test statistic

.30354− .33333
.01073

=−2.78

which is smaller than −2.58, so we reject the null hypothesis of p = 1/3 with α = .01. In other
words, we can reject, with strong assurance, the claim that one third of female applicants are ad-
mitted to graduate school at Berkeley. Since the test statistic is negative, we have evidence that the
true proportion is less than one third. The test as constructed here is equivalent to checking whether
p = 1/3 is within a 99% confidence interval.

There is an alternative, slightly different, way of performing tests such as H0 : p = 1/3 versus
HA : p 6= 1/3. The difference involves using a different standard error. The variance of the estimate
p̂ is p(1− p)/n. In obtaining a standard error, we estimated p with p̂ and took the square root of
the estimated variance. Recalling that tests are performed assuming that the null hypothesis is true,
it makes sense in the testing problem to use the assumption p = 1/3 in computing a standard error
for p̂. Thus an alternative standard error for p̂ in this testing problem is√

1
3

(
1− 1

3

)/
1835 = .01100.

The test statistic now becomes
.30354− .33333

.01100
=−2.71.

Obviously, since the test statistic is slightly different, one could get slightly different answers for
tests using the two different standard errors. Moreover, the results of this test will not always agree
with a corresponding confidence interval for p because this test uses a different standard error than
the confidence interval.

We should remember that the N(0,1) distribution being used for the test is only a large sample
approximation. (In fact, all of our results are only approximations.) The difference between the two
standard errors is often minor compared to the level of approximation inherent in using the standard
normal as a reference distribution. In any case, whether we ascribe the differences to the standard
errors or to the quality of the normal approximations, the exact behavior of the two test statistics
can be quite different when the sample size is small. Moreover, when p is near 0 or 1, the sample
sizes must be quite large to get a good normal approximation.

The main theoretical results for a single binomial sample are establishing that p̂ is a reasonable
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Table 8.1: Graduate admissions at Berkeley

Admitted Rejected Total
Females 557 1278 1835
Males 1198 1493 2691

estimate of p and that the variance formula given earlier is correct. The data are y ∼ Bin(n, p). As
seen in Section 1.4, E(y) = np and Var(y) = np(1− p). The estimate of p is p̂ = y/n. The estimate
is unbiased because

E(p̂) = E(y/n) = E(y)/n = np/n = p.

The variance of the estimate is

Var(p̂) = Var(y/n) = Var(y)/n2 = np(1− p)/n2 = p(1− p)/n.

8.1.1 The sign test

We now consider an alternative analysis for paired comparisons based on the binomial distribution.
Consider Burt’s data on IQs of identical twins raised apart from Exercise 4.5.7 and Table 4.9. The
earlier discussion of paired comparisons involved assuming and validating the normal distribution
for the differences in IQs between twins. In the current discussion, we make the same assumptions as
before except we replace the normality assumption with the weaker assumption that the distribution
of the differences is symmetric. In the earlier discussion, we would test H0 : µ1− µ2 = 0. In the
current discussion, we test whether there is a 50 : 50 chance that y1, the IQ for the foster parent
raised twin, is larger than y2, the IQ for the genetic parent raised twin. In other words, we test
whether Pr(y1− y2 > 0) = .5. We have a sample of n = 27 pairs of twins. If Pr(y1− y2 > 0) = .5,
the number of pairs with y1− y2 > 0 has a Bin(27, .5) distribution. From Table 4.9, 13 of the 27
pairs have larger IQs for the foster parent raised child. (These are the differences with a positive
sign, hence the name sign test.) The proportion is p̂ = 13/27 = .481. The test statistic is

.481− .5√
.5(1− .5)/27

=−.20

which is nowhere near significant.
A similar method could be used to test, say, whether there is a 50 : 50 chance that y1 is at least 3

IQ points greater than y2. This hypothesis translates into Pr(y1−y2 ≥ 3) = .5. The test is then based
on the number of differences that are 3 or more.

The point of the sign test is the weakening of the assumption of normality. If the normality
assumption is appropriate, the t test of Section 4.1 is more powerful. When the normality assumption
is not appropriate, some modification like the sign test should be used. In this book, the usual
approach is to check the normality assumption and, if necessary, to transform the data to make the
normality assumption reasonable. For a more detailed introduction to nonparametric methods such
as the sign test, see, for example, Conover (1971).

8.2 Two independent binomial samples

In this section we compare two independent binomial samples. Consider again the Berkeley admis-
sions data. Table 8.1 contains data on admissions and rejections for the 1835 females considered in
Section 8.1 along with data on 2691 males. We assume that the sample of females is independent
of the sample of males. Throughout, we refer to the females as the first sample and the males as the
second sample.

We consider being admitted to graduate school a ‘success’. Assuming that the females are a
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binomial sample, they have a sample size of n1 = 1835 and some probability of success, say, p1.
The observed proportion of female successes is

p̂1 =
557

1835
= .30354.

Treating the males as a binomial sample, the sample size is n2 = 2691 and the probability of success
is, say, p2. The observed proportion of male successes is

p̂2 =
1198
2691

= .44519.

Our interest is in comparing the success rate of females and males. The appropriate parameter
is the difference in proportions,

Par = p1− p2.

The natural estimate of this parameter is

Est = p̂1− p̂2 = .30354− .44519 =−.14165.

With independent samples, we can find the variance of the estimate and thus the standard error.
Since the females are independent of the males,

Var(p̂1− p̂2) = Var(p̂1)+Var(p̂2).

Using the variance formula in equation (8.1.1),

Var(p̂1− p̂2) =
p1(1− p1)

n1
+

p2(1− p2)

n2
. (8.2.1)

Estimating p1 and p2 and taking the square root gives the standard error,

SE(p̂1− p̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2

=

√
.30354(1− .30354)

1835
+

.44519(1− .44519)
2691

= .01439.

For large sample sizes n1 and n2, both p̂1 and p̂2 have approximate normal distributions and they
are independent, so p̂1− p̂2 has an approximate normal distribution and the appropriate reference
distribution is approximately

(p̂1− p̂2)− (p1− p2)

SE(p̂1− p̂2)
∼ N(0,1).

We now have all the requirements for applying the results of Chapter 3. A 95% confidence
interval for p1− p2 has endpoints

(p̂1− p̂2)±1.96

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
,

where the value 1.96 = z(.975) is obtained from the N(0,1) distribution. For comparing the female
and male admissions, the 95% confidence interval for the population difference in proportions has
endpoints

−.14165±1.96(.01439).
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The interval is (−.17,−.11). Thus we are 95% confident that the proportion of women being ad-
mitted to graduate school at Berkeley is between .11 and .17 less than that for men.

To test H0 : p1 = p2, or equivalently H0 : p1− p2 = 0, against HA : p1− p2 6= 0, reject an α = .10
test if

(p̂1− p̂2)−0
SE(p̂1− p̂2)

> 1.645

or if
(p̂1− p̂2)−0
SE(p̂1− p̂2)

<−1.645.

Again, the value 1.645 is obtained from the N(0,1)≡ t(∞) distribution. With the Berkeley data, the
observed value of the test statistic is

−.14165−0
.01439

=−9.84.

This is far smaller than −1.645, so the test rejects the null hypothesis of equal proportions at the
.10 level. The test statistic is negative, so there is evidence that the proportion of women admitted
to graduate school is lower than the proportion of men.

Once again, an alternative standard error is often used in testing problems. The test assumes that
the null hypothesis is true and under the null hypothesis p1 = p2, so in constructing a standard error
for the test statistic it makes sense to pool the data into one estimate of this common proportion.
The pooled estimate is a weighted average of the individual estimates,

p̂∗ =
n1 p̂1 +n2 p̂2

n1 +n2

=
1835(.30354)+2691(.44519)

1835+2691

=
557+1198

1835+2691
= .38776 .

Using p̂∗ to estimate both p1 and p2 in equation (8.2.1) and taking the square root gives the alterna-
tive standard error

SE(p̂1− p̂2) =

√
p̂∗(1− p̂∗)

n1
+

p̂∗(1− p̂∗)
n2

=

√
p̂∗(1− p̂∗)

[
1
n1

+
1
n2

]

=

√
.38776(1− .38776)

[
1

1835
+

1
2691

]
= .01475

The alternative test statistic is
−.14165−0

.01475
=−9.60.

Again, the two test statistics are slightly different but the difference should be minor compared to
the level of approximation involved in using the normal distribution.

A final note. Before you conclude that the data in Table 8.1 provide evidence of sex discrimina-
tion, you should realize that females tend to apply to different graduate programs than males. A more
careful examination of the complete Berkeley data shows that the difference observed here results
from females applying more frequently than males to highly restrictive programs, cf. Christensen
(1990b, p. 96).
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Table 8.2: Swedish female births by month

Month Females p̂ Probability E (O−E)/
√

E
January 3537 .083 1/12 3549.25 −0.20562
February 3407 .080 1/12 3549.25 −2.38772
March 3866 .091 1/12 3549.25 5.31678
April 3711 .087 1/12 3549.25 2.71504
May 3775 .087 1/12 3549.25 3.78930
June 3665 .086 1/12 3549.25 1.94291
July 3621 .085 1/12 3549.25 1.20435
August 3596 .084 1/12 3549.25 0.78472
September 3491 .082 1/12 3549.25 −0.97775
October 3391 .080 1/12 3549.25 −2.65629
November 3160 .074 1/12 3549.25 −6.53372
December 3371 .079 1/12 3549.25 −2.99200
Total 42591 1 1 42591.00

8.3 One multinomial sample

In this section we investigate the analysis a single polytomous variable, i.e., a count variable with
more than two possible outcomes. In particular, we assume that the data are a sample from a multi-
nomial distribution, cf. Section 1.5. The multinomial distribution is a generalization of the binomial
that allows more than two outcomes. We assume that each trial gives one of, say, q possible out-
comes. Each trial must be independent and the probability of each outcome must be the same for
every trial. The multinomial distribution gives probabilities for the number of trials that fall into each
of the possible outcome categories. The binomial distribution is a special case of the multinomial
distribution in which q = 2.

The first two columns of Table 8.2 give months and numbers of Swedish females born in each
month. The data are from Cramér (1946) who did not name the months. We assume that the data
begin in January.

With polytomous data such as those listed in Table 8.2, there is no one parameter of primary
interest. One might be concerned with the proportions of births in January, or December, or in any
of the twelve months. With no one parameter of interest, the methods of Chapter 3 do not apply.
Column 3 of Table 8.2 gives the observed proportions of births for each month. These are simply the
monthly births divided by the total births for the year. Note that the proportion of births in March
seems high and the proportion of births in November seems low.

A simplistic, yet interesting, hypothesis is that the proportion of births is the same for every
month. To test this null hypothesis, we compare the number of observed births to the number of
births we would expect to see if the hypothesis were true. The number of births we expect to see in
any month is just the probability of having a birth in that month times the total number of births. The
equal probabilities are given in column 4 of Table 8.2 and the expected values are given in column 5.
The entries in column 5 are labeled E for expected value and are computed as (1/12)42591 =
3549.25. It cannot be overemphasized that the expectations are computed under the assumption
that the null hypothesis is true.

Comparing observed values with expected values can be tricky. Suppose an observed value is
2145 and the expected value is 2149. The two numbers are off by 4; the observed value is pretty
close to the expected. Now suppose the observed value is 1 and the expected value is 5. Again
the two numbers are off by 4 but now the difference between observed and expected seems quite
substantial. A difference of 4 means something very different depending on how large both numbers
are. To account for this phenomenon, we standardized the difference between observed and expected
counts. We do this by dividing the difference by the square root of the expected count. Thus, when
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we compare observed counts with expected counts we look at

O−E√
E

(8.3.1)

where O stands for the observed count and E stands for the expected count. The values in (8.3.1)
are called Pearson residuals, after Karl Pearson.

The Pearson residuals for the Swedish female births are given in column 6 of Table 8.2. As
noted earlier, the two largest deviations from the assumption of equal probabilities occur for March
and November. Reasonably large deviations also occur for May and to a lesser extent December,
April, October, and February. In general, the Pearson residuals can be compared to observations
from a N(0,1) distribution to evaluate whether a residual is large. For example, the residuals for
March and November are 5.3 and−6.5. These are not values one is likely to observe from a N(0,1)
distribution; they provide strong evidence that birth rates in March are really larger than 1/12 and
that birth rates in November are really smaller than 1/12.

Births seem to peak in March and they, more or less, gradually decline until November. After
November, birth rates are still low but gradually increase until February. In March birth rates in-
crease markedly. Birth rates are low in the fall and lower in the winter; they jump in March and
remain relatively high, though decreasing, until September. This analysis could be performed using
the monthly proportions of column 2 but the results are clearer using the residuals.

A statistic for testing whether the null hypothesis of equal proportions is reasonable can be
obtained by squaring the residuals and adding them together. This statistic is known as Pearson’s
χ2 (chi-squared) statistic and is computed as

X2 = ∑
all cells

(O−E)2

E
.

For the female Swedish births,
X2 = 121.24.

Note that small values of X2 indicate observed values that are similar to the expected values, so
small values of X2 are consistent with the null hypothesis. Large values of X2 occur whenever one
or more observed values are far from the expected values. To perform a test, we need some idea
of how large X2 could reasonably be when the null hypothesis is true. It can be shown that for
a problem such as this with 1) a fixed number of cells q, here q = 12, with 2) a null hypothesis
consisting of known probabilities such as those given in column 4 of Table 8.2, and with 3) large
sample sizes for each cell, the null distribution of X2 is approximately

X2 ∼ χ
2(q−1).

The degrees of freedom are only q−1 because the p̂s must add up to 1. Thus, if we know q−1 = 11
of the proportions, we can figure out the last one. Only q−1 of the cells are really free to vary. From
Appendix B.2, the 99.5th percentile of a χ2(11) distribution is χ2(.995,11) = 26.76. The observed
X2 value of 121.24 is much larger than this, so the observed value of X2 could not reasonably come
from a χ2(11) distribution. In particular, an α = .005 test of the null hypothesis is rejected easily,
so the P value for the test is ‘much’ less than .005. It follows that there is overwhelming evidence
that the proportion of female Swedish births is not the same for all months.

In this example, our null hypothesis was that the probability of a female birth was the same
in every month. A more reasonable hypothesis might be that the probability of a female birth is
the same on every day. The months have different numbers of days so under this null hypothesis
they have different probabilities. For example, assuming a 365 day year, the probability of a female
birth in January is 31/365 which is somewhat larger than 1/12. Exercise 8.8.4 involves testing this
alternative null hypothesis.

We can use results from Section 8.1 to help in the analysis of multinomial data. If we consider
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Table 8.3: Swedish births: monthly observations (Oi js) and monthly proportions by sex

Observations Proportions
Month Female Male Total Female Male
January 3537 3743 7280 .083 .082
February 3407 3550 6957 .080 .078
March 3866 4017 7883 .091 .088
April 3711 4173 7884 .087 .091
May 3775 4117 7892 .089 .090
June 3665 3944 7609 .086 .086
July 3621 3964 7585 .085 .087
August 3596 3797 7393 .084 .083
September 3491 3712 7203 .082 .081
October 3391 3512 6903 .080 .077
November 3160 3392 6552 .074 .074
December 3371 3761 7132 .079 .082
Total 42591 45682 88273 1.000 1.000

only the month of December, we can view each trial as a success if the birth is in December and a
failure otherwise. Writing the probability of a birth in December as p12, from Table 8.2 the estimate
of p12 is

p̂12 =
3371

42591
= .07915

with standard error

SE(p̂12) =

√
.07915(1− .07915)

42591
= .00131

and a 95% confidence interval has endpoints

.07915±1.96(.00131).

The interval reduces to (.077, .082). Tests for monthly proportions can be performed in a similar
fashion. Bonferroni adjustments can be made to all tests and confidence intervals to control the
experimentwise error rate for multiple tests or intervals, cf. Section 6.2.

8.4 Two independent multinomial samples

Table 8.3 gives monthly births for Swedish females and males along with various marginal totals.
We wish to determine whether monthly birth rates differ for females and males. Denote the females
as population 1 and the males as population 2. Thus we have a sample of 42591 females and, by
assumption, an independent sample of 45682 males.

In fact, it is more likely that there is actually only one sample here, one consisting of 88273
births. It is more likely that the births have been divided into 24 categories depending on sex and
birth month. Such data can be treated as two independent samples with (virtually) no loss of gen-
erality. The interpretation of results for two independent samples is considerably simpler than the
interpretation necessary for one sample cross-classified by both sex and month. Thus we discuss
such data as though they are independent samples. The alternative interpretation involves a multi-
nomial sample with the probabilities for month and sex pairs all being independent.

The number of births in month i for sex j is denoted Oi j, where i = 1, . . . ,12 and j = 1,2. Thus,
for example, the number of males born in December is O12,2 = 3761. Let Oi· be the total for month
i, O· j be the total for sex j, and O·· be the total over all months and sexes. For example, May has
O5· = 7892, males have O·2 = 45682, and the grand total is O·· = 88273.

Our interest now is in whether the population proportion of births for each month is the same for
females as for males. We no longer make any assumption about what these proportions are, our null
hypothesis is simply that the proportions are the same in each month. Again, we wish to compare
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Table 8.4: Estimated expected Swedish births by month (Êi js) and pooled proportions

Expectations Pooled
Month Female Male Total proportions
January 3512.54 3767.46 7280 .082
February 3356.70 3600.30 6957 .079
March 3803.48 4079.52 7883 .089
April 3803.97 4080.03 7884 .089
May 3807.83 4084.17 7892 .089
June 3671.28 3937.72 7609 .086
July 3659.70 3925.30 7585 .086
August 3567.06 3825.94 7393 .084
September 3475.39 3727.61 7203 .082
October 3330.64 3572.36 6903 .078
November 3161.29 3390.71 6552 .074
December 3441.13 3690.87 7132 .081
Total 42591.00 45682.00 88273 1.000

the observed values, the Oi js with expected values, but now, since we do not have hypothesized
proportions for any month, we must estimate the expected values.

Under the null hypothesis that the proportions are the same for females and males, it makes
sense to pool the male and female data to get an estimate of the proportion of births in each month.
Using the column of monthly totals in Table 8.3, the estimated proportion for January is the January
total divided by the total for the year, i.e.,

p̂0
1 =

7280
88273

= .0824714.

In general, for month i we have

p̂0
i =

Oi·

O··
where the superscript of 0 is used to indicate that these proportions are estimated under the null
hypothesis of identical monthly rates for males and females. The estimate of the expected number of
females born in January is just the number of females born in the year times the estimated probability
of a birth in January,

Ê11 = 42591(.0824714) = 3512.54.

The expected number of males born in January is the number of males born in the year times the
estimated probability of a birth in January,

Ê12 = 45682(.0824714) = 3767.46.

In general,

Êi j = O· j p̂0
i = O· j

Oi·

O··
=

Oi·O· j
O··

.

Again, the estimated expected values are computed assuming that the proportions of births are the
same for females and males in every month, i.e., assuming that the null hypothesis is true. The
estimated expected values under the null hypothesis are given in Table 8.4. Note that the totals for
each month and for each sex remain unchanged.

The estimated expected values are compared to the observations using Pearson residuals, just as
in Section 8.3. The Pearson residuals are

r̃i j ≡
Oi j− Êi j√

Êi j

.
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Table 8.5: Pearson residuals for Swedish birth months, (r̃i js)

Month Female Male
January 0.41271 −0.39849
February 0.86826 −0.83837
March 1.01369 −0.97880
April −1.50731 1.45542
May −0.53195 0.51364
June −0.10365 0.10008
July −0.63972 0.61770
August 0.48452 −0.46785
September 0.26481 −0.25570
October 1.04587 −1.00987
November −0.02288 0.02209
December −1.19554 1.15438

A more apt name for the Pearson residuals in this context may be crude standardized residuals. It
is the standardization here that is crude and not the residuals. The standardization in the Pearson
residuals ignores the fact that Ê is itself an estimate. Better, but considerably more complicated,
standardized residuals can be defined for count data, cf. Christensen (1990b, Section IV.9). For the
Swedish birth data, the Pearson residuals are given in Table 8.5. Note that when compared to a
N(0,1) distribution, none of the residuals is very large; all are smaller than 1.51 in absolute value.

As in Section 8.3, the sum of the squared Pearson residuals gives Pearson’s χ2 statistic for
testing the null hypothesis of no differences between females and males. Pearson’s test statistic is

X2 = ∑
i j

(Oi j− Êi j)
2

Êi j
.

For the Swedish birth data, computing the statistic from the 24 cells in Table 8.5 gives

X2 = 14.9858.

For a formal test, X2 is compared to a χ2 distribution. The appropriate number of degrees of
freedom for the χ2 test is the number of cells in the table adjusted to account for all the parameters
we have estimated as well as the constraint that the sex totals sum to the grand total. There are
12×2 cells but only 12−1 free months and only 2−1 free sex totals. The appropriate distribution
is χ2((12−1)(2−1)) = χ2(11). The degrees of freedom are the number of data rows in Table 8.3
minus 1 times the number of data columns in Table 8.3 minus 1. The 90th percentile of a χ2(11)
distribution is χ2(.9,11) = 17.28, so the observed test statistic X2 = 14.9858 could reasonably
come from a χ2(11) distribution. In particular, the test is not significant at the .10 level. Moreover,
χ2(.75,11) = 13.70, so the test has a P value between .25 and .10. There is no evidence of any
differences in the monthly birth rates for males and females.

Another way to evaluate the null hypothesis is by comparing the observed monthly birth propor-
tions by sex. These observed proportions are given in Table 8.3. If the populations of females and
males have the same proportions of births in each month, the observed proportions of births in each
month should be similar (except for sampling variation). One can compare the numbers directly in
Table 8.3 or one can make a visual display of the observed proportions as in Figure 8.1.

The methods just discussed apply equally well to the binomial data of Table 8.1. Applying the
X2 test given here to the data of Table 8.1 gives

X2 = 92.2.

The statistic X2 is equivalent to the test statistic given in Section 8.2 using the pooled estimate p̂∗
to compute the standard error. The test statistic in Section 8.2 is −9.60, and if we square this we get

(−9.60)2 = 92.2 = X2.
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Figure 8.1: Monthly Swedish birth proportions by sex: solid line, female; dashed line, male.

The −9.60 is compared to a N(0,1), while the 92.2 is compared to a χ2(1) because Table 8.1 has 2
rows and 2 columns. A χ2(1) distribution is obtained by squaring a N(0,1) distribution, so P values
are identical and critical values are equivalent.

Minitab commands

Minitab commands for generating the analysis of Swedish birth rates are given below. Column c1
contains the observations, the Oi js. Column c2 contains indices from 1 to 12 indicating the month of
each observation and c3 contains indices for the two sexes. The subcommand ‘colpercents’ provides
the proportions discussed in the analysis. The subcommand ‘chisquare 3’ gives the observations,
estimated expected values, and Pearson residuals along with the Pearson test statistic.

MTB > read ’swede2.dat’ c1 c2 c3

MTB > table c2 c3;

SUBC> frequencies c1;

SUBC> colpercents;

SUBC> chisquare 3.

8.5 Several independent multinomial samples

The methods of Section 8.4 extend easily to dealing with more than two samples. Consider the data
in Table 8.6 that was extracted from Lazerwitz (1961). The data involve samples from three religious
groups and consist of numbers of people in various occupational groups. The occupations are labeled
A, professions; B, owners, managers, and officials; C, clerical and sales; and D, skilled. The three
religious groups are Protestant, Roman Catholic, and Jewish. This is a subset of a larger collection
of data that includes many more religious and occupational groups. The fact that we are restricting
ourselves to a subset of a larger data set has no effect on the analysis. As discussed in Section 8.4, the
analysis of these data is essentially identical regardless of whether the data come from one sample of
1926 individuals cross-classified by religion and occupation, or four independent samples of sizes
348, 477, 411, and 690 taken from the occupational groups, or three independent samples of sizes
1135, 648, and 143 taken from the religious groups. We choose to view the data as independent
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Table 8.6: Religion and occupations

Occupation
Religion A B C D Total
Protestant 210 277 254 394 1135
Roman Catholic 102 140 127 279 648
Jewish 36 60 30 17 143
Total 348 477 411 690 1926

samples from the three religious groups. The data in Table 8.6 constitutes a 3× 4 table because,
excluding the totals, the table has 3 rows and 4 columns.

We again test whether the populations are the same. In other words, the null hypothesis is that the
probability of falling into any occupational group is identical for members of the various religions.
Under this null hypothesis, it makes sense to pool the data from the three religions to obtain esti-
mates of the common probabilities. For example, under the null hypothesis of identical populations,
the estimate of the probability that a person is a professional is

p̂0
1 =

348
1926

= .180685.

For skilled workers the estimated probability is

p̂0
4 =

690
1926

= .358255.

Denote the observations as Oi j with i identifying a religious group and j indicating occupation.
We use a dot to signify summing over a subscript. Thus the total for religious group i is

Oi· = ∑
j

Oi j,

the total for occupational group j is
O· j = ∑

i
Oi j,

and
O·· = ∑

i j
Oi j

is the grand total. Recall that the null hypothesis is that the probability of being in an occupation
group is the same for each of the three populations. Pooling information over religions, we have

p̂0
j =

O· j
O··

as the estimate of the probability that someone in the study is in occupational group j. This estimate
is only appropriate when the null hypothesis is true.

The estimated expected count under the null hypothesis for a particular occupation and religion
is obtained by multiplying the number of people sampled in that religion by the probability of
the occupation. For example, the estimated expected count under the null hypothesis for Jewish
professionals is

Ê31 = 143(.180685) = 25.84.

Similarly, the estimated expected count for Roman Catholic skilled workers is

Ê24 = 648(.358255) = 232.15.
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Table 8.7: Estimated expected counts (Êi js)

Religion A B C D Total
Protestant 205.08 281.10 242.20 406.62 1135
Roman Catholic 117.08 160.49 138.28 232.15 648
Jewish 25.84 35.42 30.52 51.23 143
Total 348.00 477.00 411.00 690.00 1926

Table 8.8: Residuals (r̃i js)

Religion A B C D
Protestant 0.34 −0.24 0.76 −0.63
Roman Catholic −1.39 −1.62 −0.96 3.07
Jewish 2.00 4.13 −0.09 −4.78

In general,

Êi j = Oi· p̂0
j = Oi·

O· j
O··

=
Oi·O· j

O··
.

Again, the estimated expected values are computed assuming that the null hypothesis is true. The
expected values for all occupations and religions are given in Table 8.7.

The estimated expected values are compared to the observations using Pearson residuals. The
Pearson residuals are

r̃i j =
Oi j− Êi j√

Êi j

.

These crude standardized residuals are given in Table 8.8 for all occupations and religions. The
largest negative residual is −4.78 for Jewish people with occupation D. This indicates that Jew-
ish people were substantially underrepresented among skilled workers relative to the other two
religious groups. On the other hand, Roman Catholics were substantially overrepresented among
skilled workers, with a positive residual of 3.07. The other large residual in the table is 4.13 for
Jewish people in group B. Thus Jewish people were more highly represented among owners, man-
agers, and officials than the other religious groups. Only one other residual is even moderately large,
the 2.00 indicating a high level of Jewish people in the professions. The main feature of these data
seems to be that the Jewish group was different from the other two. A substantial difference appears
in every occupational group except clerical and sales.

As in Sections 8.3 and 8.4, the sum of the squared Pearson residuals gives Pearson’s χ2 statistic
for testing the null hypothesis that the three populations are the same. Pearson’s test statistic is

X2 = ∑
i j

(Oi j− Êi j)
2

Êi j
.

Summing the squares of the values in Table 8.8 gives

X2 = 60.0.

The appropriate number of degrees of freedom for the χ2 test is the number of data rows in Ta-
ble 8.6 minus 1 times the number of data columns in Table 8.6 minus 1. Thus the appropriate
reference distribution is χ2((3−1)(4−1)) = χ2(6). The 99.5th percentile of a χ2(6) distribution is
χ2(.995,6) = 18.55 so the observed statistic X2 = 60.0 could not reasonably come from a χ2(6) dis-
tribution. In particular, the test is significant at the .005 level, clearly indicating that the proportions
of people in the different occupation groups differ with religious group.

As in the previous section, we can informally evaluate the null hypothesis by examining the
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Table 8.9: Observed proportions by religion

Occupation
Religion A B C D Total
Protestant .185 .244 .224 .347 1.00
Roman Catholic .157 .216 .196 .431 1.00
Jewish .252 .420 .210 .119 1.00
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Figure 8.2 Occupational proportions by religion: solid – protestant, long dashes – catholic, short dashes –
jewish.

observed proportions for each religious group. The observed proportions are given in Table 8.9.
Under the null hypothesis, the observed proportions in each occupation category should be the
same for all the religions (up to sampling variability). Figure 8.2 displays the observed proportions
graphically. The Jewish group is obviously very different from the other two groups in occupations
B and D and is very similar in occupation C. The Jewish proportion seems somewhat different for
occupation A. The Protestant and Roman Catholic groups seem similar except that the Protestants
are a bit underrepresented in occupation D and therefore are overrepresented in the other three
categories. (Remember that the four proportions for each religion must add up to one, so being
underrepresented in one category forces an overrepresentation in one or more other categories.)

8.6 Lancaster–Irwin partitioning

Lancaster–Irwin partitioning is a method for breaking a table of count data into smaller tables.
When used to its maximum extent, partitioning is similar in spirit to looking at contrasts in analysis
of variance. The basic idea is that a table of counts can be broken into two component tables, a
reduced table and a collapsed table. Table 8.10 illustrates such a partition for the data of Table 8.6. In
the reduced table, the row for the Jewish group has been eliminated, leaving a subset of the original
table. In the collapsed table, the two rows in the reduced table, Protestant and Roman Catholic, have
been collapsed into a single row.

In Lancaster–Irwin partitioning, we pick a group of either rows or columns, say rows. The
reduced table involves all of the columns but only the chosen subgroup of rows. The collapsed table
involves all of the columns and all of the rows not in the chosen subgroup, along with a row that
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Table 8.10: A Lancaster–Irwin partition of Table 8.6

Reduced table
Religion A B C D Total
Protestant 210 277 254 394 1135
Roman Catholic 102 140 127 279 648
Total 312 417 381 673 1783

Collapsed table
Religion A B C D Total
Prot. & R.C. 312 417 381 673 1783
Jewish 36 60 30 17 143
Total 348 477 411 690 1926

combines (collapses) all of the subgroup rows into a single row. In Table 8.10 the chosen subgroup
of rows contains the Protestants and Roman Catholics. The reduced table involves all occupational
groups but only the Protestants and Roman Catholics. In the collapsed table the occupational groups
are unaffected but the Protestants and Roman Catholics are combined into a single row. The other
rows remain the same; in this case the other rows consist only of the Jewish row. As alluded to
above, rather than picking a group of rows to form the partitioning, we could select a group of
columns.

Lancaster–Irwin partitioning is by no means a unique process. There are as many ways to parti-
tion a table as there are ways to pick a group of rows or columns. In Table 8.10 we made a particular
selection based on the residual analysis of these data from the previous section. The main feature we
discovered in the residual analysis was that the Jewish group seemed to be different from the other
two groups. Thus it seemed to be of interest to compare the Jewish group with a combination of
the others and then to investigate what differences there might be among the other religious groups.
The partitioning of Table 8.10 addresses precisely these questions.

Tables 8.11 and 8.12 provide statistics for the analysis of the reduced table and collapsed table.
The reduced table simply reconfirms our previous conclusions. The X2 value of 12.3 indicates sub-
stantial evidence of a difference between Protestants and Roman Catholics. The percentage point
χ2(.995,3) = 12.84 indicates that the P value for the test is a bit greater than .005. The resid-
uals indicate that the difference was due almost entirely to the fact that Roman Catholics have
relatively higher representation among skilled workers. (Or equivalently, that Protestants have rela-
tively lower representation among skilled workers.) Overrepresentation of Roman Catholics among
skilled workers forces their underrepresentation among other occupational groups but the level of
underrepresentation in the other groups was approximately constant as indicated by the approxi-
mately equal residuals for Roman Catholics in the other three occupation groups. We will see later
that for Roman Catholics in the other three occupation groups, their distribution among those groups
was almost the same as those for Protestants. This reinforces the interpretation that the difference
was due almost entirely to the difference in the skilled group.

The conclusions that can be reached from the collapsed table are also similar to those drawn
in the previous section. The X2 value of 47.5 on 3 degrees of freedom indicates overwhelming
evidence that the Jewish group was different from the combined Protestant–Roman Catholic group.
The residuals can be used to isolate the sources of the differences. The two groups differed in
proportions of skilled workers and proportions of owners, managers, and officials. There was a
substantial difference in the proportions of professionals. There was almost no difference in the
proportion of clerical and sales workers between the Jewish group and the others.

The X2 value computed for Table 8.6 was 60.0. The X2 value for the collapsed table is 47.5 and
the X2 value for the reduced table is 12.3. Note that 60.0 .

= 59.8 = 47.5+12.3. It is not by chance
that the sum of the X2 values for the collapsed and reduced tables is approximately equal to the X2

value for the original table. In fact, this relationship is a primary reason for using the Lancaster–
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Table 8.11: Reduced table

Observations
Religion A B C D Total
Protestant 210 277 254 394 1135
Roman Catholic 102 140 127 279 648
Total 312 417 381 673 1783

Estimated expected counts
Religion A B C D Total
Protestant 198.61 265.45 242.53 428.41 1135
Roman Catholic 113.39 151.55 138.47 244.59 648
Total 312.00 417.00 381.00 673.00 1783

Pearson residuals
Religion A B C D
Protestant 0.81 0.71 0.74 −1.66
Roman Catholic −1.07 −0.94 −0.97 2.20

X2 = 12.3, d f = 3

Table 8.12: Collapsed table

Observations
Religion A B C D Total
Prot. & R.C. 312 417 381 673 1783
Jewish 36 60 30 17 143
Total 348 477 411 690 1926

Estimated expected counts
Religion A B C D Total
Prot. & R.C. 322.16 441.58 380.48 638.77 1783
Jewish 25.84 35.42 30.52 51.23 143
Total 348.00 477.00 411.00 690.00 1926

Pearson residuals
Religion A B C D
Prot. & R.C. −0.57 −1.17 0.03 1.35
Jewish 2.00 4.13 −0.09 −4.78

X2 = 47.5, d f = 3

Irwin partitioning method. The approximate equality 60.0 .
= 59.8 = 47.5+ 12.3 indicates that the

vast bulk of the differences between the three religious groups is due to the collapsed table, i.e., the
difference between the Jewish group and the other two. Roughly 80% (47.5/60) of the original X2

value is due to the difference between the Jewish group and the others. Of course the X2 value 12.2
for the reduced table is still large enough to strongly suggest differences between Protestants and
Roman Catholics.

Not all data will yield an approximation as close as 60.0 .
= 59.8 = 47.5+12.3 for the partition-

ing. The fact that we have an approximate equality rather than an exact equality is due to our choice
of the test statistic X2. Pearson’s statistic is simple and intuitive; it compares observed values with
expected values and standardizes by the size of the expected value. An alternative test statistic also
exists called the likelihood ratio test statistic. The motivation behind the likelihood ratio test statistic
is not as transparent as that behind Pearson’s statistic, so we will not discuss the likelihood ratio test
statistic in any detail. However, one advantage of the likelihood ratio test statistic is that the sum of
its values for the reduced table and collapsed table gives exactly the likelihood ratio test statistic for
the original table. For more discussion of the likelihood ratio test statistic, see Christensen (1990b,
chapter II).
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Table 8.13:

Observations
Religion A B C Total
Protestant 210 277 254 741
Roman Catholic 102 140 127 369
Total 312 417 381 1110

Estimated expected counts
Religion A B C Total
Protestant 208.28 278.38 254.34 741
Roman Catholic 103.72 138.62 126.66 369
Total 312.00 417.00 381.00 1110

Pearson residuals
Religion A B C
Protestant 0.12 −0.08 0.00
Roman Catholic −0.17 0.12 0.03

X2 = .065, d f = 2

Further partitioning

We began this section with the 3×4 data of Table 8.6 that has 6 degrees of freedom for its X2 test.
We partitioned the data into two 2× 4 tables, each with 3 degrees of freedom. We can continue to
use the Lancaster–Irwin method to partition the reduced and collapsed tables given in Table 8.10.
The process of partitioning previously partitioned tables can be continued until the original table
is broken into a collection of 2× 2 tables. Each 2× 2 table has one degree of freedom for its chi-
squared test, so partitioning provides a way of breaking a large table into one degree of freedom
components. This is similar in spirit to looking at contrasts in analysis of variance. Contrasts break
the sum of squares for treatments into one degree of freedom components.

What we have been calling the reduced table involves all four occupational groups along with
the two religious groups Protestant and Roman Catholic. The table was given in both Table 8.10 and
Table 8.11. We now consider this table further. It was discussed earlier that the difference between
Protestants and Roman Catholics can be ascribed almost entirely to the difference in the proportion
of skilled workers in the two groups. To explore this we choose a new partition based on a group of
columns that includes all occupations other than the skilled workers. Thus we get the ‘reduced’ table
in Table 8.13 with occupations A, B, and C and the ‘collapsed’ table in Table 8.14 with occupation
D compared to the accumulation of the other three.

Table 8.13 allows us to examine the proportions of Protestants and Catholics in the occupational
groups A, B, and C. We are not investigating whether Catholics were more or less likely than
Protestants to enter these occupational groups; we are examining their distribution within the groups.
The analysis is based only on those individuals that were in this collection of three occupational
groups. The X2 value is exceptionally small, only .065. There is no evidence of any difference
between Protestants and Catholics for these three occupational groups.

Table 8.13 is a 2× 3 table. We could partition it again into two 2× 2 tables but there is little
point in doing so. We have already established that there is no evidence of differences.

Table 8.14 has the three occupational groups A, B, and C collapsed into a single group. This
table allows us to investigate whether Catholics were more or less likely than Protestants to enter
this group of three occupations. The X2 value is a substantial 12.2 on one degree of freedom, so we
can tentatively conclude that there was a difference between Protestants and Catholics. From the
residuals, we see that among people in the four occupational groups, Catholics were more likely
than Protestants to be in the skilled group and less likely to be in the other three.

Table 8.14 is a 2×2 table so no further partitioning is possible. Note again that the X2 of 12.3
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Table 8.14:

Observations
Religion A & B & C D Total
Protestant 741 394 1135
Roman Catholic 369 279 648
Total 1110 673 1783

Estimated expected counts
Religion A & B & C D Total
Protestant 706.59 428.41 1135
Roman Catholic 403.41 244.59 648
Total 1110.00 673.00 1783

Pearson residuals
Religion A & B & C D
Protestant 1.29 −1.66
Roman Catholic −1.71 2.20

X2 = 12.2, d f = 1

Table 8.15:

Observations
Religion A & B & D C Total
Prot. & R.C. 1402 381 1783
Jewish 113 30 143
Total 1515 411 1926

Estimated expected counts
Religion A & B & D C Total
Prot. & R.C. 1402.52 380.48 1783
Jewish 112.48 30.52 143
Total 1515.00 411.00 1926

Pearson residuals
Religion A & B & D C
Prot. & R.C. −0.00 0.03
Jewish 0.04 −0.09

X2 = .01, d f = 1

from Table 8.11 is approximately equal to the sum of the .065 from Table 8.13 and the 12.2 from
Table 8.14.

Finally, we consider additional partitioning of the collapsed table given in Tables 8.10 and 8.12.
It was noticed earlier that the Jewish group seemed to differ from Protestants and Catholics in every
occupational group except C, clerical and sales. Thus we choose a partitioning that isolates group
C. Table 8.15 gives a collapsed table that compares C to the combination of groups A, B, and D.
Table 8.16 gives a reduced table that involves only occupational groups A, B, and D.

Table 8.15 demonstrates no difference between the Jewish group and the combined Protestant–
Catholic group. Thus the proportion of people in clerical and sales was the same for the Jewish group
as for the combined Protestant and Roman Catholic group. Any differences between the Jewish
and Protestant–Catholic groups must be in the proportions of people within the three occupational
groups A, B, and D.

Table 8.16 demonstrates major differences between occupations A, B, and D for the Jewish
group and the combined Protestant–Catholic group. As seen earlier and reconfirmed here, skilled
workers had much lower representation among the Jewish group, while professionals and especially
owners, managers, and officials had much higher representation among the Jewish group.
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Table 8.16:

Observations
Religion A B D Total
Prot. & R.C. 312 417 673 1402
Jewish 36 60 17 113
Total 348 477 690 1515

Estimated expected counts
Religion A B D Total
Prot. & R.C. 322.04 441.42 638.53 1402
Jewish 25.96 35.58 51.47 113
Total 348.00 477.00 690.00 1515

Pearson residuals
Religion A B D
Prot. & R.C. −0.59 −1.16 1.36
Jewish 1.97 4.09 −4.80

X2 = 47.2, d f = 2

Table 8.17:

Observations
Religion B D Total
Prot. & R.C. 417 673 1090
Jewish 60 17 77
Total 477 690 1167

Estimated expected counts
Religion B D Total
Prot. & R.C. 445.53 644.47 1090
Jewish 31.47 45.53 77
Total 477.00 690.00 1167

Pearson residuals
Religion B D
Prot. & R.C. −1.35 1.12
Jewish 5.08 −4.23

X2 = 46.8, d f = 1

Table 8.16 can be further partitioned into Tables 8.17 and 8.18. Table 8.17 is a reduced 2× 2
table that considers the difference between the Jewish group and others with respect to occupational
groups B and D. Table 8.18 is a 2×2 collapsed table that compares occupational group A with the
combination of groups B and D.

Table 8.17 shows a major difference between occupational groups B and D. Table 8.18 may or
may not show a difference between group A and the combination of groups B and D. The X2 values
are 46.8 and 5.45 respectively. The question is whether an X2 value of 5.45 is suggestive of a dif-
ference between religious groups when we have examined the data in order to choose the partitions
of Table 8.6. Note that the two X2 values sum to 52.25, whereas the X2 value for Table 8.16, from
which they were constructed, is only 47.2. The approximate equality is a very rough approximation.
Nonetheless, we see from the relative sizes of the two X2 values that the majority of the difference
between the Jewish group and the other religious groups was in the proportion of owners, managers,
and officials as compared to the proportion of skilled workers.

Ultimately, we have partitioned Table 8.6 into Tables 8.13, 8.14, 8.15, 8.17, and 8.18. These
are all 2× 2 tables except for Table 8.13. We could also have partitioned Table 8.13 into two 2×
2 tables but we chose to leave it because it showed so little evidence of any difference between
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Table 8.18:

Observations
Religion A B & D Total
Prot. & R.C. 312 1090 1402
Jewish 36 77 113
Total 348 1167 1515

Estimated expected counts
Religion A B & D Total
Prot. & R.C. 322.04 1079.96 1402
Jewish 25.96 87.04 113
Total 348.00 1167.00 1515

Pearson residuals
Religion A B & D
Prot. & R.C. −0.56 0.30
Jewish 1.97 −1.08

X2 = 5.45, d f = 1

Protestants and Roman Catholics for the three occupational groups considered. The X2 value of
60.0 for Table 8.6 was approximately partitioned into X2 values of .065, 12.2, .01, 46.8, and 5.45
respectively. Except for the .065 from Table 8.13, each of these values is computed from a 2× 2
table, so each has 1 degree of freedom. The .065 is computed from a 2×3 table, so it has 2 degrees
of freedom. The sum of the five X2 values is 64.5 which is roughly equal to the 60.0 from Table 8.6.

The five X2 values can all be used in testing. Not only does such testing involve the usual
problems associated with multiple testing but we even let the data suggest the partitions. It is inap-
propriate to compare these X2 values to their usual χ2 percentage points to obtain tests. A simple
way to adjust for both the multiple testing and the data dredging (letting the data suggest partitions)
is to compare all X2 values to the percentage points appropriate for Table 8.6. For example, the
α = .05 test for Table 8.6 uses the critical value χ2(.95,6)= 12.58. By this standard, Table 8.17 with
X2 = 46.8 shows a significant difference between religious groups and Table 8.14 with X2 = 12.2
nearly shows a significant difference between religious groups. The value of X2 = 5.45 for Ta-
ble 8.18 gives no evidence of a difference based on this criterion even though such a value would
be highly suggestive if we could compare it to a χ2(1) distribution. This method is similar in spirit
to Scheffé’s method from Section 6.4 and suffers from the same extreme conservatism.

8.7 Logistic regression

Logistic regression is a method of modeling the relationships between probabilities and predictor
variables. We begin with an example.

EXAMPLE 8.7.1. Woodward et al. (1941) reported data on 120 mice divided into 12 groups of
10. The mice in each group were exposed to a specific dose of chloracetic acid and the observations
consist of the number in each group that lived and died. Doses were measured in grams of acid per
kilogram of body weight. The data are given in Table 8.19, along with the proportions of mice who
died at each dose. We could analyze these data using the methods discussed earlier in this chapter;
we have samples from twelve populations and we could test to see if the populations are the same.
In addition though, we can try to model the relationship between dose level and the probability of
dying. If we can model the probability of dying as a function of dose, we can make predictions
about the probability of dying for any dose levels that are similar to those in the original data. 2

Logistic regression as applied to this example is somewhat like fitting a simple linear regression
to one-way ANOVA data as discussed in Section 7.12. In Section 7.12 we considered data on the
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Table 8.19: Lethality of chloracetic acid

Dose Group Died Survived Total p̂i
.0794 1 1 9 10 .1
.1000 2 2 8 10 .2
.1259 3 1 9 10 .1
.1413 4 0 10 10 .0
.1500 5 1 9 10 .1
.1588 6 2 8 10 .2
.1778 7 4 6 10 .4
.1995 8 6 4 10 .6
.2239 9 4 6 10 .4
.2512 10 5 5 10 .5
.2818 11 5 5 10 .5
.3162 12 8 2 10 .8

ASI indices given in Table 7.10. These data have seven observations on each of five plate lengths.
The data can be analyzed as either a one-way ANOVA or as a simple linear regression, and in
Section 7.12 we examined relationships between the two approaches. In particular, we mentioned
that the estimated regression line could be obtained by fitting a line to the sample means for the five
groups. The analysis of the lethality data takes a similar approach. Instead of fitting a line to sample
means, we perform a regression on the observed proportions. Unfortunately, a standard regression
is inappropriate because the observed proportions do not have constant variance. For i = 1, . . . ,q,
p̂i is the observed proportion from Ni binomial trials, so as discussed in Section 8.1, Var(p̂i) =
pi(1− pi)/Ni. One approach is to use the variance stabilizing transformation from Sections 2.3 and
7.10 on the p̂is and then apply standard regression methods. As alluded to in Section 2.3, there are
better methods available and this section briefly introduces some of them.

We begin with a reasonably simple analysis of the chloracetic acid data. This analysis involves
not only a transformation of the p̂is but incorporating weights into the simple linear regression
procedure. Weighted regression is a method for dealing with nonconstant variances in the observa-
tions. If the variances are not constant, observations with large variances should be given relatively
little weight, while observations with small variances are given increased weight. The details of
weighted regression are discussed in Section 15.7. The discussion given there requires one to know
the material in Chapter 13 and the first five sections of Chapter 15, but considerable insight can be
obtained from Examples 15.7.1 and 15.7.2. These examples merely require the background from
Section 7.12.

In weighted regression for binomial data we take the observations on the dependent variable as

log[p̂i/(1− p̂i)].

We then fit the model
log[p̂i/(1− p̂i)] = β0 +β1xi + εi

with weights
wi = Ni p̂i(1− p̂i).

The regression estimates from this method minimize the weighted sum of squares

q

∑
i=1

wi (log[p̂i/(1− p̂i)]−β0−β1xi)
2
.

There are a couple of serious drawbacks to this procedure. First, the weights are really only
appropriate if all the samples sizes Ni are large. The weights rely on large sample variance formulae
and the law of large numbers. Second, the values log[p̂i/(1− p̂i)] are not always defined. If we have
an observed proportion with p̂i = 0 or 1, log[p̂i/(1− p̂i)] is undefined. Either we are trying to take
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the log of zero or we are trying to divide by zero. With p̂i = yi/Ni, so that yi is the number of
‘successes,’ this problem occurs whenever yi equals 0 or Ni. The problem is often dealt with by
adding or subtracting a small number to yi. Generally, the size of the small number should be chosen
to be small in relation to the size of Ni. In many applications, all of the Nis are 1. In any case with
Ni = 1, p̂i is always either 0 or 1, so log[p̂i/(1− p̂i)] is always undefined. These drawbacks are not
as severe with another method of analysis that we will examine later.

EXAMPLE 8.7.1 CONTINUED. We now return to the chloracetic acid data. In this example Ni =
10 for all i, so the sample sizes are all reasonably large. For dose x = .1413, the number of deaths
was 0, so the observed proportion was zero. We handle this problem by treating the observed count
as .5, so the observed proportion is taken as .5/10 = .05. A computer program for regression analysis
will typically give output such as the following tables.

Raw parameter table
Predictor β̂k SE(β̂k) t P
Constant −3.1886 0.5914 −5.39 0.000
Dose 13.181 2.779 4.74 0.000

Analysis of variance: weighted simple linear regression
Source d f SS MS F P
Regression 1 15.282 15.282 22.50 0.000
Error 10 6.791 0.679
Total 11 22.074

The estimates of the regression parameters are appropriate but everything involving variances in
these tables is wrong! The problem is that with binomial data the variance depends solely on the
probability and we have already accounted for the variance in defining the weights. Thus there is no
separate parameter σ2 to deal with but standard regression output is designed to adjust for such a
parameter. To obtain appropriate standard errors, we need to divide the reported standard errors by√

MSE. The adjusted table is given below.

Adjusted parameter table
Predictor β̂k SE(β̂k) t P
Constant −3.1886 0.7177 −4.44 0.000
Dose 13.181 3.373 3.91 0.000

The table provides clear evidence of the need for both parameters. To predict the probability of
death for rats given a dose x, the predicted probability p̂ satisfies

log[p̂/(1− p̂)] = β̂0 + β̂1x =−3.1886+13.181x.

Solving for p̂ gives

p̂ =
exp(β̂0 + β̂1x)

1+ exp(β̂0 + β̂1x)
=

exp(−3.1886+13.181x)
1+ exp(−3.1886+13.181x)

.

For example, if x = .3, −3.1886+13.181(.3) = .7657 and p̂ = e.7657/(1+ e.7657) = .68.
The only interest in the ANOVA table is in the error line. As we have seen,

√
MSE is needed

to adjust the standard errors. In addition, the SSE provides a lack of fit test similar in spirit to that
discussed in Section 7.12. To test for lack of fit compare SSE to a χ2(d fE) distribution. Large values
of SSE indicate lack of fit. In this example SSE = 6.791, which is smaller than d fE = 10, so the χ2

test gives no evidence of lack of fit. A line seems to fit these data adequately. 2
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Minitab commands

In Minitab let c1 contain the doses, c2 contain the number of deaths, and c3 contain the number of
trials (10 in each case). The commands for this analysis are given below.

MTB > let c5=c2/c3

MTB > let c6=1-c5

MTB > let c7=loge(c5/c6)

MTB > let c8=c3*c5*c6

MTB > regress c7 on 1 c1;

SUBC> weights c8.

The logistic model and maximum likelihood

When we have a one-way ANOVA with treatments that are quantitative levels of some factor, we
can fit either the one-way ANOVA model

yi j = µi + εi j

or the simple linear regression model

yi j = β0 +β1xi + εi j.

We can think of the regression as a model for the µis, i.e.,

µi = β0 +β1xi.

Logistic regression uses a very similar idea. The binomial situation here has ‘observations’
p̂i = yi/Ni where yi ∼ Bin(Ni, pi), i = 1, . . . ,q. In logistic regression, we model the parameters pi.
In particular, the model is

log[pi/(1− pi)] = β0 +β1xi. (8.7.1)

The question is then how to fit this model. The weighted regression approach was discussed earlier.
The weighted regression estimates are the values of β0 and β1 that minimize the function

q

∑
i=1

wi (log[p̂i/(1− p̂i)]−β0−β1xi)
2
.

An alternative method for estimating the parameters is to maximize something called the likelihood
function.

Recall from Section 1.4 that the probability function for an individual binomial, say, yi ∼
Bin(Ni, pi) is

Pr(yi = ri) =

(
Ni

ri

)
pri

i (1− pi)
Ni−ri .

We are dealing with q independent binomials, so probabilities for the entire collection of random
variables are obtained by multiplying the probabilities for the individual events.

One of the things that students initially find confusing about statistical theory is that we often
use the same symbols for random variables and for observations from those random variables. I am
about to do the same thing. I want to write down the probability of the data that we actually saw. If
we saw yi, the probability of seeing that is(

Ni

yi

)
pyi

i (1− pi)
Ni−yi .
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If all together we saw y1, . . . ,yq, the probability of obtaining all those values is the product of the
individual probabilities, i.e.,

q

∏
i=1

(
Ni

yi

)
pyi

i (1− pi)
Ni−yi . (8.7.2)

This probability of getting the observed data is called the likelihood function. In the likelihood
function we know all of the Nis and yis but we do not know the pis. Thus the likelihood is a function
of the pis. It is not too difficult to show that the maximum value of the likelihood function is obtained
by taking pi = p̂i = yi/Ni for all i. The observed proportions p̂i are the values of the parameters
that maximize the probability of getting the observed data. We say that such values are maximum
likelihood estimates (mles) of the parameters pi.

The model (8.7.1) specifies the pis in terms of β0 and β1. We can solve (8.7.1) for pi by writing

pi =
exp(β0 +β1xi)

1+ exp(β0 +β1xi)
. (8.7.3)

If we now substitute this formula for pi into equation (8.7.2) we get the likelihood as a function
of β0 and β1. The maximum likelihood estimates of β0 and β1 are simply the values of β0 and β1
that maximize the likelihood function. Equations (8.7.1) and (8.7.3) are equivalent ways of writing
the model. Equation (8.7.3) is actually the logistic regression model and equation (8.7.1) is the
corresponding logit model.

Computer programs are available for finding maximum likelihood estimates. Such programs
typically give standard errors that are valid for large samples. If the large sample approximations
are appropriate, the parameters, estimates, and standard errors can be used as in Chapter 3 with a
N(0,1) reference distribution. For the approximations to be valid, it is typically enough that the total
number of trials in the entire data be large; the individual sample sizes Ni need not be large.

Maximum likelihood theory also provides a test of lack of fit similar to the weighted regression
χ2 test using the SSE. In maximum likelihood theory the test examines the value of the likelihood
(8.7.2) when using the mles of β0 and β1 in equation (8.7.3) to determine the pis, and compares
that value to the likelihood when using the observed proportions p̂i as the pis. Using the observed
proportions involves less structure so the likelihood value will be greater using them. The lack of fit
test statistic is−2 times the log of the ratio of the likelihood using the estimated βks to the likelihood
using the p̂is. This test statistic is properly called the (generalized) likelihood ratio test statistic but
is often simply called the deviance. (The likelihood ratio test was also mentioned in the previous
section.) The deviance is compared to a χ2(q−2) distribution where q is the number of independent
binomials and 2 is the number of regression parameters in the logistic model. Unlike the standard
errors for the βis, all the sample sizes Ni must be large for the lack of fit test to be valid!

EXAMPLE 8.7.2. Maximum likelihood for the chloracetic acid data gives the following results.

Predictor β̂k SE(β̂k) t P
Constant −3.570 0.7040 −5.07 0.000
Dose 14.64 3.326 4.40 0.000

These are similar to the weighted regression results. The deviance of the maximum likelihood fit
is 10.254 with 12− 2 = 10 degrees of freedom for the lack of fit test. The sample sizes are all
reasonably large, so a χ2 test is appropriate. The test statistic is approximately equal to the degrees
of freedom, so a test would not be rejected. A simple line seems to fit the data adequately. The
maximum likelihood results were obtained using the computer program GLIM. 2

We will not analyze more sophisticated count data in this book but we should mention that both
the maximum likelihood methods and the weighted regression methods extend to much more general
models, such as those treated in the remainder of the book. Both methods work when there are many
predictors, so we can perform multiple logistic regression which is similar in spirit to multiple
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Table 8.20: French convictions

Year Convictions Accusations
1825 4594 7234
1826 4348 6988
1827 4236 6929
1828 4551 7396
1829 4475 7373
1830 4130 6962

regression as treated in Chapters 13, 14, and 15. By modifying the matrix approach to ANOVA
problems discussed in Section 16.5, the methods introduced here can be applied to models that are
structured like analysis of variance and even analysis of covariance. Christensen (1990b) contains
a more complete discussion of logistic regression and logit models. It also contains references to
additional work.

8.8 Exercises

EXERCISE 8.8.1. Reiss et al. (1975) and Fienberg (1980) reported that 29 of 52 virgin female
undergraduate university students who used a birth control clinic thought that extramarital sex is not
always wrong. Give a 99% confidence interval for the population proportion of virgin undergraduate
university females who use a birth control clinic and think that extramarital sex is not always wrong.

In addition, 67 of 90 virgin females who did not use the clinic thought that extramarital sex is
not always wrong. Give a 99% confidence interval for the difference in proportions between the two
groups and give a .05 level test that there is no difference.

EXERCISE 8.8.2. Pauling (1971) reports data on the incidence of colds among French skiers
who where given either ascorbic acid or a placebo. Of 139 people given ascorbic acid, 17 devel-
oped colds. Of 140 people given the placebo, 31 developed colds. Do these data suggest that the
proportion of people who get colds differs depending on whether they are given ascorbic acid?

EXERCISE 8.8.3. Quetelet (1842) and Stigler (1986, p. 175) report data on conviction rates in
the French Courts of Assize (Law Courts) from 1825 to 1830. The data are given in Table 8.20. Test
whether the conviction rate is the same for each year. Use α = .05. (Hint: Table 8.20 is written in a
nonstandard form. You need to modify it before applying the methods of this chapter.) If there are
differences in conviction rates, use residuals to explore these differences.

EXERCISE 8.8.4. Use the data in Table 8.2 to test whether the probability of a birth in each month
is the number of days in the month divided by 365. Thus the null probability for January is 31/365
and the null probability for February is 28/365.

EXERCISE 8.8.5. Snedecor and Cochran (1967) report data from an unpublished report by E.
W. Lindstrom. The data concern the results of cross-breeding two types of corn (maize). In 1301
crosses of two types of plants, 773 green, 231 golden, 238 green-golden, and 59 golden-green-
striped plants were obtained. If the inheritance of these properties is particularly simple, Mendelian
genetics suggests that the probabilities for the four types of corn may be 9/16, 3/16, 3/16, and 1/16,
respectively. Test whether these probabilities are appropriate. If they are inappropriate, identify the
problem.

EXERCISE 8.8.6. In France in 1827, 6929 people were accused in the courts of assize and 4236
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Table 8.21: Occupation and religion

Religion A B C D E F G H
White Baptist 43 78 64 135 135 57 86 114
Black Baptist 9 2 9 23 47 77 18 41
Methodist 73 80 80 117 102 58 66 153
Lutheran 23 36 43 59 46 26 49 46
Presbyterian 35 54 38 46 19 22 11 46
Episcopalian 27 27 20 14 7 5 2 15

Table 8.22: Heights and chest circumferences

Heights
Chest 64–65 66–67 68–69 70–71 71–73 Total
39 142 442 341 117 20 1062
40 118 337 436 153 38 1082
Total 260 779 777 270 58 2144

were convicted. In 1828, 7396 people were accused and 4551 were convicted. Give a 95% confi-
dence interval for the proportion of people convicted in 1827. At the .01 level, test the null hypoth-
esis that the conviction rate in 1827 was greater than or equal to 2/3. Does the result of the test
depend on the choice of standard error? Give a 95% confidence interval for the difference in con-
viction rates between the two years. Test the hypothesis of no difference in conviction rates using
α = .05 and both standard errors.

EXERCISE 8.8.7. Table 8.21 contains additional data from Lazerwitz (1961). These consist of a
breakdown of the Protestants in Table 8.6 but with the addition of four more occupational categories.
The additional categories are E, semiskilled; F, unskilled; G, farmers; H, no occupation. Analyze
the data with an emphasis on partitioning the table.

EXERCISE 8.8.8. Stigler (1986, p. 208) reports data from the Edinburgh Medical and Surgical
Journal (1817) on the relationship between heights and chest circumferences for Scottish militia
men. Measurements were made in inches. We concern ourselves with two groups of men, those
with 39 inch chests and those with 40 inch chests. The data are given in Table 8.22. Test whether
the distribution of heights is the same for these two groups.

EXERCISE 8.8.9. Use weighted least squares to fit a logistic model to the data of Table 8.20 that
relates probability of conviction to year. Is there evidence of a trend in the conviction rates over
time? Is there evidence for a lack of fit?

EXERCISE 8.8.10. Is it reasonable to fit a logistic regression to the data of Table 8.22? Why
or why not? Explain what such a model would be doing. Whether reasonable or not, fitting such
a model can be done. Use weighted least squares to fit a logistic model and discuss the results. Is
there evidence for a lack of fit?





Chapter 9

Basic experimental designs

In this chapter we examine the three most basic experimental designs: completely randomized de-
signs (CRDs), randomized complete block (RCB) designs, and Latin square designs. Completely
randomized designs are the simplest of these and have been used previously without having been
named. Also, we have previously performed an analysis for a randomized complete block design.

The basic object of experimental design is to construct an experiment that allows for a valid
estimate of σ2, the variance of the observations. Obtaining a valid estimate of error requires appro-
priate replication of the experiment. Having one observation on each treatment is not sufficient. All
three of the basic designs considered in this chapter allow for a valid estimate of the variance.

A second important consideration is to construct a design that yields a small variance. A smaller
variance leads to sharper statistical inferences, i.e., narrower confidence intervals and more powerful
tests. A fundamental tool for reducing variability is blocking. The basic idea is to examine the
treatments on homogeneous experimental material. With four drug treatments and observations on
eight animals, a valid estimate of the error can be obtained by randomly assigning each of the
drugs to two animals. If the treatments are assigned completely at random to the experimental units
(animals), the design is a completely randomized design. Generally, a smaller variance for treatment
comparisons is obtained when the eight animals consist of two litters of four siblings and each
treatment is applied to one randomly selected animal from each litter. With each treatment applied
in every litter, all comparisons among treatments can be performed within each litter. Having at
least two litters is necessary to get a valid estimate of the variance of the comparisons. Randomized
complete block designs: 1) identify blocks of homogeneous experimental material (units) and 2)
randomly assign each treatment to an experimental unit within each block. The blocks are complete
in the sense that each block contains all of the treatments.

Latin squares use two forms of blocking at once. For example, if we suspect that birth order
within the litter might also have an important effect on our results, we continue to take observations
on each treatment within every litter, but we also want to have each treatment observed in every
birth order. This is accomplished by having four litters with treatments arranged in a Latin square
design.

Another fundamental concept in experimental design is the idea that the experimenter has the
ability to randomly assign the treatments to the experimental material available. This is not always
the case.

EXAMPLE 9.0.1. In Chapter 5, we considered two examples of one-way analysis of variance;
neither were designed experiments. For the suicide ages, a designed experiment would require that
we take a group of people who we know will commit suicide and randomly assign one of the ethnic
groups, non-Hispanic Caucasian, Hispanic, or Native American, to the people. Obviously a difficult
task. With the electrical characteristic data, rather than having ceramic sheets divided into strips, a
designed experiment would require starting with different pieces of ceramic material and randomly
assigning the pieces to have come from a particular ceramic strip. 2

Random assignment of treatments to experimental units allows one to infer causation from a

253
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designed experiment. If treatments are randomly assigned to experimental units, then the only sys-
tematic differences between the units are the treatments. Barring an unfortuitous randomization,
such differences must be caused by the treatments because they cannot be caused by anything else.
However, as discussed below, the ‘treatments’ may be more involved than the experimenter realizes.

Random assignment of treatments does not mean haphazard assignment. Haphazard assignment
is subject to the (unconscious) biases of the person making the assignments. Random assignment
uses a reliable table of random numbers or a reliable computer program to generate random num-
bers. It then uses these numbers to assign treatments. For example, suppose we have four experi-
mental units labeled u1, u2, u3, and u4 and four treatments labeled A, B, C, and D. Given a program
or table that provides random numbers between 0 and 1 (i.e., random samples from a uniform(0,1)
distribution), we associate numbers between 0 and .25 with treatment A, numbers between .25 and
.50 with treatment B, numbers between .50 and .75 with treatment C, and numbers between .75 and
1 with treatment D. The first random number selected determines the treatment for u1. If the first
number is .6321, treatment C is assigned to u1 because .50 < .6321 < .75. If the second random
number is .4279, u2 gets treatment B because .25 < .4279 < .50. If the third random number is
.2714, u3 would get treatment B, but we have already assigned treatment B to u2, so we throw out
the third number. If the fourth number is .9153, u3 is assigned treatment D. Only one unit and one
treatment are left, so u4 gets treatment A. Any reasonable rule (decided ahead of time) can be used
to make the assignment if a random number hits a boundary, e.g., if a random number comes up,
say, .2500.

In cases such as those discussed previously, i.e., in observational studies where the treatments
are not randomly assigned to experimental units, it is much more difficult to infer causation. If we
find differences, there are differences in the corresponding populations, but it does not follow that
the differences are caused by the labels given to the populations. If the average suicide age is lower
for Native Americans, we know only that the phenomenon exists, we do not know what aspects
of being Native American cause the phenomenon. Perhaps low socioeconomic status causes early
suicides and Native Americans are over represented in the low socioeconomic strata. We don’t know
and it will be difficult to ever know using the only possible data on such matters, data that come
from observational studies.

One also needs to realize that the treatments in an experiment may not be what the experimenter
thinks they are. Suppose you want to test whether artificial sweeteners made with a new chemical
cause cancer. You get some rats, randomly divide them into a treatment group and a control. You
inject the treatment rats with a solution of the sweetener combined with another (supposedly benign)
chemical. You leave the control rats alone. For simplicity you keep the treatment rats in one cage
and the control rats in another cage. Eventually, you find an increased risk of cancer among the
treatment rats as compared to the control rats. You can reasonably conclude that the treatments
caused the increased cancer rate. Unfortunately, you do not really know whether the sweetener or
the supposedly benign chemical or the combination of the two caused the cancer. In fact, you do
not really know that it was the chemicals that caused the cancer. Perhaps the process of injecting
the rats caused the cancer or perhaps something about the environment in the treatment rats’s cage
caused the cancer. A treatment consists of all the ways in which a group is treated differently from
other groups. It is crucially important to treat all experimental units as similarly as possible so that
(as nearly as possible) the only differences between the units are the agents that were meant to be
investigated.

Ideas of blocking can also be useful in observational studies. While one cannot really create
blocks in observational studies, one can adjust for important groupings.

EXAMPLE 9.0.2. If we wish to study whether cocaine users are more paranoid than other peo-
ple, we may decide that it is important to block on socioeconomic status. This is appropriate if the
underlying level of paranoia in the population differs by socioeconomic status. Conducting an ex-
periment in this setting is difficult. Given groups of people of various socioeconomic statuses, it is
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a rare researcher who has the luxury of deciding which subjects will ingest cocaine and which will
not. 2

The seminal work on experimental design was written by Fisher (1935). It is still well worth
reading. My favorite source on the ideas of experimentation is Cox (1958). The books by Cochran
and Cox (1957) and Kempthorne (1952) are classics. Cochran and Cox is more applied. Kempthorne
is more theoretical. There is a huge literature in both journal articles and books on the general subject
of designing experiments. The article by Coleman and Montgomery (1993) is interesting in that it
tries to formalize many aspects of planning experiments that are often poorly specified.

9.1 Completely randomized designs

In a completely randomized design, a group of experimental units are available and the experimenter
randomly assigns treatments to the experimental units. The data consist of a group of observations
on each treatment. These groups of observations are subjected to a one-way analysis of variance.

EXAMPLE 9.1.1. In Example 6.0.1, we considered data from Mandel (1972) on the elasticity
measurements of natural rubber made by 13 laboratories. While Mandel did not discuss how the data
were obtained, it could well have been the result of a completely randomized design. For a CRD,
we would need 52 pieces of the type of rubber involved. These should be randomly divided into
13 groups (using a table of random numbers or random numbers generated by a reliable computer
program). The first group of samples is then sent to the first lab, the second group to the second lab,
etc. For a CRD, it is important that a sample is not sent to a lab because the sample somehow seems
appropriate for that particular lab.

Personally, I would also be inclined to send the four samples to a given lab at different times. If
the four samples are sent at the same time, they might be analyzed by the same person, on the same
machines, at the same time. Samples sent at different times might be treated differently. If samples
are treated differently at different times, this additional source of variation should be included in
any predictive conclusions we wish to make about the labs.

When samples sent at different times are treated differently, sending a batch of four samples at
the same time constitutes subsampling. There are two sources of variation to deal with: variation
from time to time and variation within a given time. The values from four samples at a given time
help reduce the effect on treatment comparisons due to variability at a given time, but samples
analyzed at different times are still required to obtain a valid estimate of the error. In fact, with
subsampling, a perfectly valid analysis can be based on the means of the four subsamples. In our
example, such an analysis gives only one ‘observation’ at each time, so the need for sending samples
at more than one time is obvious. If the four samples were sent at the same time, there would be
no replication, hence no estimate of error. Subsection 12.4.1 and Christensen (1987, section XI.4)
discuss subsampling in more detail. 2

9.2 Randomized complete block designs

In a randomized complete block design the experimenter obtains (constructs) blocks of homoge-
neous material that contain as many experimental units as there are treatments. The experimenter
then randomly assigns a different treatment to each of the units in the block. The random assign-
ments are performed independently for each block. The advantage of this procedure is that treatment
comparisons are subject only to the variability within the blocks. Block to block variation is elimi-
nated in the analysis. In a completely randomized design applied to the same experimental material,
the treatment comparisons would be subject to both the within block and the between block vari-
ability.

The key to a good blocking design is in obtaining blocks that have little within block variability.
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Table 9.1: Spectrometer data

Block Trt.
Treatment 1 2 3 means
New-clean 0.9331 0.8664 0.8711 0.89020̄
New-soiled 0.9214 0.8729 0.8627 0.88566̄
Used-clean 0.8472 0.7948 0.7810 0.80766̄
Used-soiled 0.8417 0.8035 0.8099 0.81836̄
Block means 0.885850 0.834400 0.831175 0.850475

Often this requires that the blocks be relatively small. A difficulty with RCB designs is that the
blocks must be large enough to allow all the treatments to be applied within each block. This can be
a serious problem if there is a substantial number of treatments or if maintaining homogeneity within
blocks requires the blocks to be very small. If the treatments cannot all be fitted into each block, we
need some sort of incomplete block design. Such designs will be considered in Chapters 16 and 17.

The analysis of a randomized complete block design is a two-way ANOVA without replication
or interaction. The analysis is illustrated below and discussed in general in the following subsection.

EXAMPLE 9.2.1. Inman, Ledolter, Lenth, and Niemi (1992) studied the performance of an optical
emission spectrometer. Table 9.1 gives some of their data on the percentage of manganese (Mn) in
a sample. The data were collected using a sharp counterelectrode tip with the sample to be analyzed
partially covered by a boron nitride disk. Data were collected under three temperature conditions.
Upon fixing a temperature, the sample percentage of Mn was measured using 1) a new boron ni-
tride disk with light passing through a clean window (new-clean), 2) a new boron nitride disk with
light passing through a soiled window (new-soiled), 3) a used boron nitride disk with light passing
through a clean window (used-clean), and 4) a used boron nitride disk with light passing through
a soiled window (used-soiled). The four conditions, new-clean, new-soiled, used-clean, used-soiled
are the treatments. The temperature was then changed and data were again collected for each of
the four treatments. A block is always made up of experimental units that are homogeneous. The
temperature conditions were held constant while observations were taken on the four treatments so
the temperature levels identify blocks.

In analyzing a one-way ANOVA, the analysis of variance table is of little direct importance. For
a randomized complete block design the analysis of variance table is crucial. Before we can proceed
with any analysis of the treatments, we need an estimate of the variance σ2. In one-way ANOVA,
the MSE is simply a pooled estimate obtained from group sample variances. In a RCB design, the
replications of the experiment occur in different blocks and the effect of these blocks must be taken
into account. In particular, the three observations on each treatment do not form a random sample
from a population, so it is inappropriate to compute the sample variance within each treatment group
and it is totally inappropriate to pool such variance estimates. Instead, we expand the analysis of
variance table by accounting for both treatments and blocks and estimate σ2 with the leftover sum
of squares.

The sum of squares total (corrected for the grand mean) is computed just as in one-way ANOVA;
it is the sample variance of all 12 observations multiplied by the degrees of freedom 12−1, e.g.,

SSTot = (12−1)s2
y = (11).002277797 = .025055762.

The mean square and sum of squares for treatments are also computed as in one-way ANOVA.
Using Table 9.1, the treatment means are averages of 3 observations and the sample variance of the
treatment means is .001893343, so

MSTrts = 3(.001893343) = .005680028 .

There are 4 treatments, so the sum of squares is the mean square multiplied by the degrees of
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Table 9.2: Analysis of variance for spectrometer data

Source d f SS MS F P
Trts 3 0.0170401 0.0056800 70.05 0.000
Blocks 2 0.0075291 0.0037646 46.43 0.000
Error 6 0.0004865 0.0000811
Total 11 0.0250558

freedom (4−1),
SSTrts = (4−1).005680028 = .017040083 .

The mean square and sum of squares for blocks are also computed as if they were treatments in
a one-way ANOVA. The block means are averages of 4 observations and the sample variance of the
block means is .000941143, so

MSBlocks = 4(.000941143) = .003764572 .

There are 3 blocks, so the sum of squares is the mean square times the degrees of freedom (3−1),

SSBlocks = (3−1).003764572 = .007529145 .

The sum of squares error is obtained by subtraction,

SSE = SSTot−SSTrts−SSBlocks

= .025055762− .017040083− .007529145
= .000486534 .

Similarly,

d fE = d f Tot−d f Trts−d f Blocks

= 11−3−2
= 6 .

The estimate of σ2 is
MSE =

SSE
d fE

=
.000486534

6
= .000081089 .

Given the definitions of SSE and d fE, it is tautological that the sums of squares for treatments,
blocks, and error add up to the sum of squares total, and similarly for the degrees of freedom.

All of the calculations are summarized in the analysis of variance table, Table 9.2. Table 9.2 also
gives the analysis of variance F test for the null hypothesis that the effects are the same for each
treatment. By definition the F statistic is MSTrts/MSE and in this example it is huge, 70.05. The P
value is infinitesimal, so there is clear evidence that the 4 treatments do not behave the same.

Table 9.2 also contains an F test for blocks. In a true blocking experiment, there is not much
interest in testing whether block means are different. After all, one chooses the blocks so that they
have different means. Nonetheless, the F statistic MSBlks/MSE is of some interest because it in-
dicates how effective the blocking was, i.e., it indicates how much the variability was reduced by
blocking. For this example, MSBlks is 46 times larger than MSE, indicating that blocking was def-
initely worthwhile. In the model for RCB designs presented in the following subsection, there is
no reason not to test for blocks, but some models used for RCBs do not allow a test for blocks.
Regardless of the particular model, the analysis of treatments works in the same way.

Now that we have an estimate of the variance, we can proceed with the more interesting ques-
tions about how the treatments differ. We begin by examining pairwise differences. The multiple
comparison methods of Chapter 6 all apply in the usual way after adjusting for the difference in



258 9. BASIC EXPERIMENTAL DESIGNS

Table 9.3: Contrasts for the spectrometer data

Contrast labels Trt.
Treatment D W DW means
New-clean 1 1 1 0.89020̄
New-soiled 1 −1 −1 0.88566̄
Used-clean −1 1 −1 0.80766̄
Used-soiled −1 −1 1 0.81836̄
Est .149833 −.006167 .015233
SS .0168375 .0000285 .0001740

d fE. For example, there are 4 treatment means, each based on 3 observations, and the MSE is
0.0000811 with 6 degrees of freedom, so for α = .05 the honest significant difference is

HSD = Q(.95,4,6)
√

0.0000811/3 = 4.90(.00519936) = .02548 .

The differences between the treatments are illustrated below.

Treatment Used-clean Used-soiled New-soiled New-clean
Mean 0.80766̄ 0.81836̄ 0.88566̄ 0.89020̄

We have no evidence of an effect due to the condition of the window when considering used boron
nitride disks. The higher yields occur for soiled windows, but they are not significantly different. We
also have no evidence of an effect due to the condition of the window for new boron nitride disks.
The higher yields occur for clean windows but again the difference is not significant. Evidence does
exist that the two means for used disks are different (less than) the two means for new disks.

The structure of the treatments suggests particular orthogonal contrasts that are of interest. Con-
trast coefficients, estimated contrasts, and sums of squares for the contrasts are given in Table 9.3.

The contrast labeled D looks at the difference in disks by averaging over windows. This involves
averaging the two means for new disks, say, µNC and µNS, and contrasting this average with the
average of the two means for used disks, say, µUC and µUS. The contrast examining the difference
in disks averaging over windows is (µNC +µNS)/2− (µUC +µUS)/2 or

1
2

µNC +
1
2

µNS−
1
2

µUC−
1
2

µUS.

As discussed earlier, multiplying a contrast by a constant does not really change the contrast, so to
eliminate the fractional multiplications and make the contrast a bit easier to work with, we multiply
this contrast by 2 and make it

µNC +µNS−µUC−µUS.

This is the contrast D reported in Table 9.3. Recall that the estimate of the D contrast is computed
as

D̂ = (1)0.89020̄+(1)0.88566̄+(−1)0.80766̄+(−1)0.81836̄ = .149833

and the sum of squares is computed as

SS(D) =
(.149833)2

[12 +12 +(−1)2 +(−1)2]/3
= .0168375.

We define the contrast W similarly; it looks at the difference in windows by averaging over disks.
Again, we multiplied the averages by 2 to simplify the contrast.

Contrast DW looks at the interaction between disks and windows, i.e., how the difference be-
tween disks changes as we go from a clean window to a soiled window. The difference between new
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and used disks with a clean window is (µNC−µUC) and the difference between new and used disks
with a soiled window is (µNS− µUS). The change in the disk difference between clean and soiled
windows is (µNC−µUC)− (µNS−µUS), or equivalently

µNC−µNS−µUC +µUS.

This is the DW contrast. Note that the DW contrast coefficients in Table 9.3 can be obtained by
multiplying the corresponding D and W contrast coefficients. This procedure for obtaining interac-
tion contrast coefficients by multiplying main effect contrast coefficients works quite generally. Note
that the DW contrast can also be obtained by looking at (µNC− µNS)− (µUC− µUS), which is the
change in the difference between clean and soiled windows as we go from new disks to used disks.

The analysis of variance is balanced; there are three observations on each treatment and four
observations on each block. Thus, using the definition of orthogonality for a balanced one-way
ANOVA, the treatment contrasts are orthogonal. It follows, both numerically and theoretically, that

SS(D)+SS(W )+SS(DW ) = SSTrts.

From Table 9.3 we see that the vast majority of the sum of squares for treatments is due to the
difference between disks averaged over windows (the D contrast). In particular, SS(D)/SSTrts =
.0168375/.0170401, so 99% of the sum of squares for treatments is due to the D contrast. We also
see that there is relatively little effect due to windows averaged over disks (the W contrast) and little
effect due to the change in the disk differences due to windows (the DW contrast). In particular, the
unadjusted F statistic for testing whether the DW contrast is zero is

F =
SS(DW )

MSE
=

.0001740
0.0000811

= 2.15

which has a P value of .193. Recall that a contrast has one degree of freedom, so SS(DW ) =
MS(DW ) in constructing the F statistic. Similarly, the test for contrast W has F = .35 and P = .575.

While there is no statistical evidence for the existence of an interaction in the example, this
does not prove that interaction does not exist. For example, if MSE had turned out to be one-third
of its actual value, the F test for interaction would have been significant. When interactions exist,
it is important to explore their nature. We now discuss some methods and ideas for examining
interactions. This discussion is merely a precursor of the more extensive examination of interaction
in Chapter 11. The difference between clean and soiled windows for new disks is .004533 and the
difference for used disks is−.010700. These effects are actually in different directions! In one case,
clean windows give higher readings and in the other case clean windows give lower readings. This
seems to indicate that the effect of windows changes depending on the type of disk used, but in
this example the MSE is large enough that the difference can reasonably be ascribed to random
variation. In other words, this change in effect is not statistically significant because the interaction
contrast is not statistically significant.

The contrast examining the different windows averaged over disks (the W contrast) was in-
significant. However, if the DW interaction existed, the windows would still have a demonstrable
effect on yields. The windows would have an effect because the disks behave differently for clean
windows than for soiled windows. Additionally, the large effect for D would be of less interest if
interaction were present because D is obtained by averaging over windows even though we would
know that the disk effect depends on the window used.

Figure 9.1 contains a plot of the treatment means. There are two curves, one for new disks and
another for used disks. The differences between disks is indicated by the separation between the
two lines. The differences in the windows are indicated visually by the slopes of the new and used
disk lines. If the effect of windows was the same regardless of disk condition, these slopes would
be the same and the line segments would be parallel up to sampling error. With these data the lines
are reasonably parallel. When interaction exists, the plot indicates the nature of the interaction.
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Figure 9.1: Disk–window interaction plot for spectrometer data.
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Figure 9.2: Disk–window interaction plot for spectrometer data.

Rather than describing the interaction as a difference in how the windows react to disks, we
can describe the interaction in terms of how the effect of disk changes with type of window. As
mentioned earlier, the two approaches are equivalent. Figure 9.2 contains another plot of the treat-
ment means. There are two curves, one for clean windows and another for soiled windows. In this
plot, the slopes indicate the differences due to disks and the separation of the lines indicates the
differences due to windows. If there is no interaction, the curves should be parallel up to sampling
variation. In this example, the curves intersect, suggesting that the curves are not parallel. However,
after considering the level of sampling error, there is no evidence that the curves are not parallel.

Residual plots for the data are given in Figures 9.3 through 9.6. The residuals now must adjust
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Figure 9.3: Plot of residuals versus predicted values, spectrometer data.

for both the treatments and the blocks. The residual for an observation yi j with treatment i in block
j is defined as

ε̂i j = yi j− ȳi·− ȳ· j + ȳ··,

where ȳi· is the ith treatment mean, ȳ· j is the jth block mean, and ȳ·· is the grand mean of all 12
observations. By subtracting out both the treatment and block means, we have over adjusted for
the overall level of the numbers, so the grand mean must be added back in. In balanced analysis of
variance problems all the residuals have the same variance, so it is not necessary to standardize the
residuals.

Figure 9.3 is a plot of the residuals versus the predicted values. The predicted values are

ŷi j = ȳi·+ ȳ· j− ȳ·· .

Figure 9.4 plots the residuals versus indicators of the treatments. While the plot looks something
like a bow tie, I am not overly concerned. Figure 9.5 contains a plot of the residuals versus indicators
of blocks. The residuals look pretty good. From Figure 9.6, the residuals look reasonably normal.
In the normal plot there are 12 residuals but the analysis has only 6 degrees of freedom for error. If
you want to do a W ′ test for normality, you might use a sample size of 12 and compare the value
W ′ = .970 to W ′(α,12), but it may be appropriate to use the d fE as the sample size for the test and
use W ′(α,6). 2

Minitab commands

The following Minitab commands generate the analysis of variance. Column c1 contains the spec-
trometer data, while column c2 contains integers 1 through 4 indicating the appropriate treatment,
and c3 contains integers 1 through 3 that indicate the block. The predicted values are given by the
‘fits’ subcommand.

MTB > names c1 ’y’ c2 ’Trts’ c3 ’Blks’

MTB > anova c1 = c2 c3;
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Figure 9.4: Plot of residuals versus treatment groups, spectrometer data.
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Figure 9.5: Plot of residuals versus blocks, spectrometer data.
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Figure 9.6: Normal plot of residuals, spectrometer data, W ′ = 0.970.

SUBC> means c2 c3;

SUBC> resid c10;

SUBC> fits c11.

Balanced two-way analysis of variance

The model for a randomized complete block design is a two-way analysis of variance,

yi j = µ +αi +β j + εi j, εi js independent N(0,σ2), (9.2.1)

i = 1, . . . ,a, j = 1, . . . ,b. There are b blocks with a treatments observed within each block. The
parameter µ is viewed as a grand mean, αi is an unknown fixed effect for the ith treatment, and β j is
an unknown fixed effect for the jth block. The necessary summary statistics are the sample variance
of all ab observations and the means for each treatment and block. It is frequently convenient to
display the data as follows.

Block
Treatment j Trt.
i 1 2 · · · b means
1 y11 y12 · · · y1b ȳ1·
2 y21 y22 · · · y2b ȳ2·
...

...
...

. . .
...

...
a ya1 ya2 · · · yab ȳa·
Blk. means ȳ·1 ȳ·2 · · · ȳ·b ȳ··

The predicted values from this model are

ŷi j ≡ ȳi·+ ȳ· j− ȳ··
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Table 9.4: Analysis of variance

Source d f SS MS F

Trts(α) a−1 b∑
a
i=1 (ȳi·− ȳ··)2 SS(α)/(a−1) MS(α)

MSE

Blks(β ) b−1 a∑
b
j=1
(
ȳ· j − ȳ··

)2 SS(β )/(b−1) MS(β )
MSE

Error (a−1)(b−1) ∑i, j ε̂
2
i j SSE/d fE

Total ab−1 ∑
a
i=1 ∑

b
j=1
(
yi j − ȳ··

)2

and the residuals are
ε̂i j ≡ yi j− ŷi j = yi j− ȳi·− ȳ· j + ȳ·· .

The computations involved in estimating σ2 can be summarized in an analysis of variance table.
The commonly used form for the analysis of variance table is given in Table 9.4. The degrees of
freedom and sums of squares for treatments, blocks, and error add up to the degrees of freedom and
sums of squares total (corrected for the grand mean). Note that the mean square for treatments is
just the sample variance of the ȳi·s times b and that the mean square for blocks is just the sample
variance of the ȳ· js times a.

The F statistic MS(α)/MSE is the ratio of the mean square treatments to the mean square error.
It is used to test whether there are treatment effects, i.e., it is used to test

H0 : α1 = · · ·= αa.

Note that if all the αis are equal, we cannot distinguish between the effects of different treatments.
In other words, we cannot isolate anything that can be identified as the effect of a treatment. H0 does
not imply that the treatments have no effect, it implies that they have the same effect. Generally, the
effect of a treatment (an αi) is impossible to isolate (or estimate) because we cannot distinguish it
from the overall effect of running the experiment (µ) or indeed from any effect common to every
block. The same thing is true of the block effects β j; they cannot be isolated from µ or common
effects of the treatments. What we can isolate are comparative differences in the effects of treat-
ments (and blocks). The F statistic provides a test of whether there are differences in the treatment
effects and not whether any treatment effects exist. The only way you can test whether treatment
effects exist is to redefine what you mean by treatment effects, so that they only exist when they are
different.

The treatments are dealt with exactly as in a one-way ANOVA. For known λis that sum to zero,
a contrast in the treatment effects is

Par =
a

∑
i=1

λiαi

with

Est =
a

∑
i=1

λiȳi· .

Each treatment mean is the average of b observations, so

SE

(
a

∑
i=1

λiȳi·

)
=

√
MSE

a

∑
i=1

λ 2
i

/
b.

The reference distribution is t(d fE). The sum of squares for the contrast is

SS

(
a

∑
i=1

λiαi

)
=

[
a

∑
i=1

λiȳi·

]2/[ a

∑
i=1

λ
2
i
/

b

]
.
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If of interest, similar results hold for the block effects. For known ξ js that add to zero,

Par =
b

∑
j=1

ξ jβ j

with

Est =
b

∑
j=1

ξ j ȳ· j .

The block means are the average of a observations, so

SE

(
b

∑
j=1

ξ j ȳ· j

)
=

√√√√MSE
b

∑
j=1

ξ 2
j

/
a.

The reference distribution is t(d fE). The sum of squares for the contrast is

SS

(
b

∑
j=1

ξ jβ j

)
=

[
b

∑
j=1

ξ j ȳ· j

]2/[ b

∑
j=1

ξ
2
j
/

a

]
.

The F statistic MS(β )/MSE is the ratio of the mean square blocks to the mean square error. It is
used to test whether there are block effects, i.e., it is used to test

H0 : β1 = · · ·= βb.

Again, if all the βis are equal we cannot distinguish between the effects of different blocks, so the
F statistic provides a test of whether we can isolate comparative differences in the block effects. As
discussed earlier, some models for RCB designs do not allow testing for block effects, but in any
case, the ratio MS(β )/MSE is of interest in that large values indicate that blocking was a worthwhile
exercise.

The theoretical basis for this analysis of model (9.2.1) is precisely as in the balanced one-way
ANOVA. Consider the analysis of treatment effects. (The analysis for block effects is similar.) The
only thing random about a yi j is the corresponding εi j. The εi js are independent, so the yi js are in-
dependent. If follows that the ȳi·s are independent because they are computed from distinct groups
of observations. Since yi j = µ +αi + β j + εi j, obviously ȳi· = µ +αi + β̄· + ε̄i·. Using Proposi-
tion 1.2.11,

E(ȳi·) = µ +αi + β̄·+E(ε̄i·) = µ +αi + β̄·

and

Var(ȳi·) = Var(ε̄i·) =
σ2

b
.

More directly, the equalities follow because ε̄i· is the sample mean from a random sample of b vari-
ables each with population mean 0 and population variance σ2. If the errors are normally distributed,
the ȳi·s are independent N(µ +αi+ β̄·,σ

2/b) random variables. In any case, if b is reasonably large,
the normal distribution holds approximately because of the central limit theorem.

As in a balanced one-way ANOVA, the estimated contrast ∑
a
i=1 λiȳi· is an unbiased estimate of

the parameter

E

(
a

∑
i=1

λiȳi·

)
=

a

∑
i=1

λi(µ +αi + β̄·) =
a

∑
i=1

λiαi .

This follows because ∑
a
i=1 λi = 0. A derivation that is identical to the derivation used for a balanced

one-way ANOVA gives

Var

(
a

∑
i=1

λiȳi·

)
= σ

2 ∑
a
i=1 λ 2

i
b

,
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from which the standard error follows. The reference distribution for tests and confidence intervals
relies on the fact that for normal errors,

SSE
σ2 ∼ χ

2(d fE)

with MSE independent of the ȳi·s and the ȳ· js.
Also as in a balanced one-way ANOVA, the ȳi·s are a random sample from a normal population

with variance σ2/b if and only if the ȳi·s have the same means, i.e., if and only if all the αis are
equal. When the αis are all equal, the sample variance of the ȳi·s is an estimate of σ2/b and the
MSTrts is an estimate of σ2. In general, MSTrts estimates

E(MSTrts) = σ
2 +

b
a−1

a

∑
i−1

(αi− ᾱ·)
2

which is much larger than σ2 if the treatment effects are very different relative to the size of σ2 or
if the number of blocks b is large. Moreover, the structure of the treatment means implies that all of
the multiple comparison methods of Chapter 6 can continue to be applied.

Proposition 1.2.11 also shows that the predicted values have

E(ŷi j) = µ +αi +β j = E(yi j),

that the residuals have
E(ε̂i j) = 0,

and that the MSE is unbiased for σ2, i.e.,

E(MSE) = σ
2.

(Showing the last of these is much the most complicated.)

Paired comparisons

An interesting special case of complete block data is paired comparison data as discussed in Sec-
tion 4.1. In paired comparison data, there are two treatments to contrast and each pair constitutes a
complete block.

EXAMPLE 9.2.2. Shewhart’s hardness data
In Section 4.1, we examined Shewhart’s data on hardness of two items that were welded together. In
this case, it is impossible to group arbitrary formless pairs of parts and then randomly assign a part
to be either part 1 or part 2, so the data do not actually come from an RCB experiment. Nonetheless,
the two-way ANOVA model remains reasonable with pairs playing the role of blocks.

The data were given in Section 4.1 along with the means for each of the two parts. The two-way
ANOVA analysis also requires the mean for each pair of parts. The analysis of variance table for the
blocking analysis is given in Table 9.5. In comparing the blocking analysis to the paired comparison
analysis given earlier, allowance for round-off errors must be made. The MSE is exactly half the
value of s2

d = 17.77165 given in Section 4.1. The two-way ANOVA t test for differences between
the two parts has

tobs =
47.552−34.889√

8.8858 [(1/27)+(1/27)]
= 15.61 .

This is exactly the same t statistic as used in Section 4.1. The reference distribution is t(26), again
exactly the same. The analysis of variance F statistic is just the square of the tobs and gives equivalent
results for two-sided tests. Confidence intervals for the difference in means are also exactly the same
in the blocking analysis and the paired comparison analysis. The one real difference between this
analysis and the analysis of Section 4.1 is that this analysis provides an indication of whether pairing
was worthwhile. 2
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Table 9.5: Analysis of variance for hardness data

Source d f SS MS F P
Pairs(Blocks) 26 634.94 24.42 2.75 0.006
Parts(Trts) 1 2164.73 2164.73 243.62 0.000
Error 26 231.03 8.89
Total 53 3030.71

Table 9.6: Mangold root data

Columns Row
Rows 1 2 3 4 5 means
1 D(376) E(371) C(355) B(356) A(335) 358.6
2 B(316) D(338) E(336) A(356) C(332) 335.6
3 C(326) A(326) B(335) D(343) E(330) 332.0
4 E(317) B(343) A(330) C(327) D(336) 330.6
5 A(321) C(332) D(317) E(318) B(306) 318.8
Col. means 331.2 342.0 334.6 340.0 327.8 335.12

Treatments A B C D E
Trt. means 333.6 331.2 334.4 342.0 334.4

9.3 Latin square designs

Latin square designs involve two simultaneous but distinct definitions of blocks. The treatments are
arranged so that every treatment is observed in every block for both kinds of blocks.

EXAMPLE 9.3.1. Mercer and Hall (1911) and Fisher (1925, section 49) consider data on the
weights of mangold roots. They used a Latin square design with 5 rows, columns, and treatments.
The rectangular field on which the experiment was run was divided into five rows and five columns.
This created 25 plots, arranged in a square, on which to apply the treatments A, B, C, D, and E.
Each row of the square was viewed as a block, so every treatment was applied in every row. The
unique feature of Latin square designs is that there is a second set of blocks. Every column was
also considered a block, so every treatment was also applied in every column. The data are given
in Table 9.6, arranged by rows and columns with the treatment given in the appropriate place and
the observed root weight given in parentheses. The table also contains the means for rows, columns,
and treatments. In each case, the mean is the average of 5 observations.

The analysis of variance table is constructed like that for a randomized complete block design
except that now both rows and columns play roles similar to blocks. The sum of squares total
(corrected for the grand mean) is computed just as in one-way ANOVA, the sample variance of all
25 observations is computed and multiplied by 25−1, i.e.,

SSTot = (25−1)s2
y = (24)292.776̄ = 7026.6.

The mean square and sum of squares for treatments are also computed as in one-way ANOVA.
The treatment means are averages of 5 observations and the sample variance of the treatment means
is 16.512, so

MSTrts = 5(16.512) = 82.56 .

There are 5 treatments, so treatments have 5− 1 degrees of freedom and the sum of squares is the
mean square times (5−1) ,

SSTrts = (5−1)82.56 = 330.24 .

The mean square and sum of squares for columns are also computed as if they were treatments
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Table 9.7: Analysis of variance for mangold root data

Source d f SS MS F P
Trts 4 330.2 82.6 0.56 .696
Columns 4 701.8 175.5 1.20 .360
Rows 4 4240.2 1060.1 7.25 .003
Error 12 1754.3 146.2
Total 24 7026.6

in a one-way ANOVA. The column means are averages of 5 observations and the sample variance
of the column means is 35.092, so

MSCols = 5(35.092) = 175.46 .

There are 5 columns, so the sum of squares is the mean square times (5−1),

SSCols = (5−1)175.46 = 701.84 .

The mean square and sum of squares for rows are again computed as if they were treatments in
a one-way ANOVA. The row means are the average of 5 observations and the sample variance of
the row means is 212.012, so

MSRows = 5(212.012) = 1060.06 .

There are 5 rows, so the sum of squares is the mean square times (5−1),

SSRows = (5−1)1060.06 = 4240.24 .

The sum of squares error is obtained by subtraction,

SSE = SSTot−SSTrts−SSCols−SSRows

= 7026.6−330.2−701.8−4240.2
= 1754.3 .

Similarly,

d fE = d f Tot−d f Trts−d fCols−d f Rows

= 24−4−4−4
= 12 .

The estimate of σ2 is

MSE =
SSE
d fE

=
1754.3

12
= 146.2 .

All of the calculations are summarized in the analysis of variance table, Table 9.7. Table 9.7
also gives the analysis of variance F test for the null hypothesis that the effects are the same for
every treatment. The F statistic MSTrts/MSE is very small, 0.56, so there is no evidence that the
treatments behave differently. Blocking on columns was not very effective as evidenced by the F
statistic of 1.20, but blocking on rows was very effective, F = 7.25.

Many experimenters are less than thrilled when told that there is no evidence for their treatments
having any differential effects. Inspection of the treatment means given in Table 9.6 leads to the
obvious conclusion that most of the differences are due to the fact that treatment D is much larger
than the others, so we look at this a bit more. (Besides, this gives us an excuse to look at a contrast



9.3 LATIN SQUARE DESIGNS 269
resids

-

- *

- *

12+

- *

- * 2 2

- * *

- * *

0+ *

- 2 * *

- *

- * *

- *

-12+ 2 *

- *

-

-

---+-----------+------------+-----------+------------+---Row

1 2 3 4 5

Figure 9.7: Plot of residuals versus rows.

in a Latin square design.) If we construct the sum of squares for a contrast that compares D with the
other means, say,

µA +µB +µC− (4)µD +µE ,

we get a sum of squares that contains the vast majority of the treatment sum of squares, i.e.,

SS(D vs. others) =
[333.6+331.2+334.4− (4)342.0+334.40]2

[1+1+1+(−4)2 +1]/5
= 295.84 .

However, the F ratio for the contrast is quite small,

F =
295.84
146.2

= 2.02 .

This is too small to provide any evidence for a difference between D and the average of the other
treatments, even if we had not let the data suggest the contrast. If this F test cannot be rejected at
even the unadjusted .05 level, there is no point in examining any multiple comparison methods to
see if they will detect a difference, they will not.

Standard residual plots are given in Figures 9.7 through 9.10. They look quite good. 2

Computing techniques

The following Minitab commands will give the sums of squares, means, and residuals necessary
for the analysis. Here c1 is a column containing the mangold root yields, c2 has values from 1 to 5
indicating the row, c3 has values from 1 to 5 indicating the column, and c4 has values from 1 to 5
indicating the treatment.

MTB > names c1 ’y’ c2 ’Rows’ c3 ’Cols’ c4 ’Trts’

MTB > ancova c1 = c2 c3 c4;

SUBC> means c2 c3 c4;

SUBC> resid c11.
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Figure 9.8: Plot of residuals versus columns.
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Figure 9.9: Plot of residuals versus treatment groups.
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Figure 9.10: Normal plot of residuals for mangold root data, W ′ = 0.978.

The ‘glm’ command can also be used in place of the ‘ancova’ command but gives more complicated
output.

Computer programs for doing balanced analysis of variance are frequently incapable of dealing
with Latin squares. For example, Minitab’s ‘anova’ command will not give the analysis. In such
cases, a simple trick can obtain the necessary results but the analysis must be constructed out of
pieces of the output. The commands are given below. There are many simple ways to get the correct
ANOVA table but a key aspect of these commands is that they give the correct residuals.

MTB > names c1 ’y’ c2 ’Rows’ c3 ’Cols’ c4 ’Trts’

MTB > anova c1 = c2 c3;

SUBC> means c2 c3;

SUBC> resid c10.

MTB > anova c10 = c4;

SUBC> means c4;

SUBC> resid c11.

The degrees of freedom, sums of squares, and mean squares for rows, cols, and trts in the two
ANOVA tables will be correct. The degrees of freedom total and the sum of squares total from the
first ANOVA table (the one computed on c1) will be correct. The first ANOVA is a two-way with y
as the dependent variable and rows and columns as the effects. The SSE from the second ANOVA
table (on c10) will be correct but d fE and thus MSE will be incorrect. The second ANOVA is a
one-way using the treatments as groups and the residuals from the first ANOVA as the dependent
variable. From these pieces, a correct ANOVA table can be constructed. In particular, none of the F
tests reported by these commands are appropriate. The residuals from the second ANOVA are the
appropriate residuals for the Latin square analysis. These are in column c11. The means reported
for rows and cols in the first ANOVA will be correct. The means for Trts in the second ANOVA are
adjusted for the rows and columns, so they are not the actual treatment means. However, the means
for treatments reported in the second ANOVA can be used for treatment comparisons (contrasts)
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Table 9.8: Analysis of variance

Source d f SS MS F

Trts(α) r−1 r ∑
r
i=1 (ȳi··− ȳ···)2 SS(α)/(r−1) MS(α)

MSE

Columns(κ) r−1 r ∑
r
j=1
(
ȳ· j·− ȳ···

)2 SS(κ)/(r−1) MS(κ)
MSE

Rows(ρ) r−1 r ∑
r
k=1 (ȳ··k − ȳ···)2 SS(ρ)/(r−1) MS(ρ)

MSE

Error (r−1)(r−2) ∑i, j ε̂
2
i jk SSE/(d fE)

Total r2 −1 ∑i ∑ j
(
yi jk − ȳ···

)2

just as if they were the original treatment means because the row and column adjustments cancel
out when performing contrasts. Two additional points should be made. First, the residuals used as
the dependent variable in the second ANOVA must be raw residuals, they cannot be standardized.
Second, the roles played by rows, columns, and treatments can be interchanged.

Latin square models

The model for an r× r Latin square design is a three-way analysis of variance,

yi jk = µ +αi +κ j +ρk + εi jk, εi jks independent N(0,σ2). (9.3.1)

The parameter µ is viewed as a grand mean, αi is an effect for the ith treatment, κ j is an effect
for the jth column, and ρk is an effect for the kth row. The subscripting for this model is peculiar.
All of the subscripts run from 1 to r but not freely. If you specify a row and a column, the design
tells you the treatment. Thus, if you know k and j, the design tells you i. If you specify a row and
a treatment, the design tells you the column, so k and i dictate j. In fact, if you know any two of
the subscripts, the design tells you the third. The summary statistics necessary for the analysis are
the sample variance of all r2 observations and the means for each treatment, column, and row. The
predicted values are

ŷi jk ≡ ȳi··+ ȳ· j·+ ȳ··k−2ȳ···

and the residuals are
ε̂i jk ≡ yi jk− ŷi jk = yi jk− ȳi··− ȳ· j·− ȳ··k +2ȳ··· .

The computations for the MSE can be summarized in an analysis of variance table. The com-
monly used form for the analysis of variance table is given in Table 9.8. Notice that because of the
peculiarity in the subscripting, the sums for error and total are taken over only i and j. The choice of
these two subscripts is arbitrary; summing over any two subscripts sums over all of the observations
in the Latin square. The degrees of freedom and sums of squares for treatments, columns, rows, and
error add up to the degrees of freedom and sums of squares total (corrected for the grand mean).

The F statistic MS(α)/MSE is the ratio of the mean square treatments to the mean square error.
It is used to test whether there are treatment effects, i.e., it is used to test

H0 : α1 = · · ·= αr.

Again if all the αis are equal, we cannot distinguish between the effects of different treatments, so
the treatment F statistic provides a test of whether we can isolate comparative differences in the
treatment effects.

The F statistic MS(κ)/MSE is the ratio of the mean square columns to the mean square error.
It is used to test whether there are column effects, i.e., it is used to test

H0 : κ1 = · · ·= κr.
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The F statistic provides a test of whether we can isolate comparative differences in the column ef-
fects. The ratio of the mean square rows to the mean square error gives the F statistic MS(ρ)/MSE.
This is used to test

H0 : ρ1 = · · ·= ρr.

The F statistic provides a test of whether we can isolate comparative differences in the row effects.
Some models for Latin square designs do not allow testing for row and column effects but in any case
the ratios MS(ρ)/MSE and MS(κ)/MSE are of interest in that large values indicate, respectively,
that blocking on rows and columns was worthwhile.

The treatments are dealt with exactly as in a one-way ANOVA. A contrast in the treatment
effects is, for known λis that sum to zero,

Par =
r

∑
i=1

λiαi

with

Est =
r

∑
i=1

λiȳi·· .

The treatment means are the average of r observations, so

SE

(
r

∑
i=1

λiȳi··

)
=

√
MSE

r

∑
i=1

λ 2
i

/
r.

The reference distribution is t(d fE). The sum of squares for the contrast is

SS

(
r

∑
i=1

λiαi

)
=

[
r

∑
i=1

λiȳi··

]2/[ r

∑
i=1

λ
2
i
/

r

]
.

If of interest, similar results hold for the row and column effects. For known ξ js that add to zero,
inferences for, say, the column effects can be based on

Par =
r

∑
j=1

ξ jκ j

with

Est =
r

∑
j=1

ξ j ȳ· j· .

The column means are averages of r observations so

SE

(
r

∑
j=1

ξ j ȳ· j·

)
=

√
MSE

r

∑
j=1

ξ 2
j

/
r.

The reference distribution is t(d fE). The sum of squares for the contrast is

SS

(
r

∑
j=1

ξ jκ j

)
=

[
r

∑
j=1

ξ j ȳ· j·

]2/[ r

∑
j=1

ξ
2
j
/

r

]
.

The theoretical justification for the analysis is similar to that for a balanced one-way and a
balanced two-way.
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Discussion of Latin squares

The idea of simultaneously having two distinct sets of complete blocks is quite useful. For example,
suppose you wish to compare the performance of four machines in producing something. Produc-
tivity is notorious for depending on the day of the week, with Mondays and Fridays often having
low productivity; thus we may wish to block on days. The productivity of the machine is also likely
to depend on who is operating the machine, so we may wish to block on operators. Thus we may
decide to run the experiment on Monday through Thursday with four machine operators and using
each operator on a different machine each day. One possible design is

Operator
Day 1 2 3 4
Mon A B C D
Tue B C D A
Wed C D A B
Thu D A B C

where the numbers 1 through 4 are randomly assigned to the four people who will operate the
machines and the letters A through D are randomly assigned to the machines to be examined. More-
over, the days of the week should actually be randomly assigned to the rows of the Latin square. In
general, the rows, columns, and treatments should all be randomized in a Latin square.

Another distinct Latin square design for this situation is

Operator
Day 1 2 3 4
Mon A B C D
Tue B A D C
Wed C D B A
Thu D C A B

This square cannot be obtained from the first one by any interchange of rows, columns, and treat-
ments. Typically, one would randomly choose a possible Latin square design from a list of such
squares (see, for example, Cochran and Cox, 1957) in addition to randomly assigning the numbers,
letters, and rows to the operators, machines, and days.

The use of Latin square designs can be extended in numerous ways. One modification is the
incorporation of a third kind of block; such designs are called Graeco-Latin squares. The use of
Graeco-Latin squares is explored in the exercises for this chapter. A problem with Latin squares
is that small squares give poor variance estimates because they provide few degrees of freedom
for error, cf. Table 9.8. For example, a 3× 3 Latin square gives only 2 degrees of freedom for
error. In such cases, the Latin square experiment is often performed several times, giving additional
replications that provide improved variance estimation. Section 11.4 presents an example in which
several Latin squares are used.

9.4 Discussion of experimental design

Data are frequently collected with the intention of evaluating a change in the current system of
doing things. If you really want to know the effect of a change in the system, you have to execute
the change. It is not enough to look at conditions in the past that were similar to the proposed change
because, along with the past similarities, there were dissimilarities. For example, suppose you think
that instituting a good sex education program in schools will decrease teenage pregnancies. To
evaluate this, it is not enough to compare schools that currently have such programs with schools
that do not, because along with the differences in sex education programs there are other differences
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Table 9.9: Tensile strength of uniform twill

Fabric Machines
strips m1 m2 m3 m4
s1 18 7 5 9
s2 9 11 12 3
s3 7 11 11 1
s4 6 4 10 8
s5 10 8 6 10
s6 7 12 3 15
s7 13 5 15 16
s8 1 11 8 12

in the schools that affect teen pregnancy rates. Such differences may include parents’ average socio-
economic status and education. While adjustments can be made for any such differences that can
be identified, there is no assurance that all important differences can be found. Moreover, initiating
the proposed program involves making a change and the very act of change can affect the results.
For example, current programs may exist and be effective because of the enthusiasm of the school
staff that initiated them. Such enthusiasm is not likely to be duplicated when the new program is
mandated from above.

To establish the effect of instituting a sex education program in a population of schools, you
really need to (randomly) choose schools and actually institute the program. The schools at which
the program is instituted should be chosen randomly, so no (unconscious) bias creeps in due to
the selection of schools. For example, the people conducting the investigation are likely to favor
or oppose the project. They could (perhaps unconsciously) choose the schools in such a way that
makes the evaluation likely to reflect their prior attitudes. Unconscious bias occurs frequently and
should always be assumed. Other schools without the program should be monitored to establish a
base of comparison. These other schools should be treated as similarly as possible to the schools
with the new program. For example, if the district school administration or the news media pay a lot
of attention to the schools with the new program but ignore the other schools, we will be unable to
distinguish the effect of the program from the effect of the attention. In addition, blocking similar
schools together can improve the precision of the experimental results.

One of the great difficulties in learning about human populations is that obtaining the best data
often requires morally unacceptable behavior. We object to having our lives randomly changed for
the benefit of experimental science and typically the more important the issue under study, the more
we object to such changes. Thus we find that in studying humans, the best data available are often
historical. In our example we might have to accept that the best data available will be an historical
record of schools with and without sex education programs. We must then try to identify and adjust
for all differences in the schools that could potentially affect our conclusions. It is the extreme
difficulty of doing this that leads to the relative unreliability of many studies in the social sciences.
On the other hand, it would be foolish to give up the study of interesting and important phenomena
just because they are difficult to study.

9.5 Exercises

EXERCISE 9.5.1. Garner (1956) presented data on the tensile strength of fabrics. Here we con-
sider a subset of the data. The complete data and a more extensive discussion of the experimental
procedure are given in Exercise 11.5.2. The experiment involved testing fabric strengths on four
different machines. Eight homogeneous strips of cloth were divided into four samples. Each sample
was tested on one of four machines. The data are given in Table 9.9.

(a) Identify the design for this experiment and give an appropriate model. List all of the assumptions
made in the model.



276 9. BASIC EXPERIMENTAL DESIGNS

Table 9.10: Dead adult flies

Units of active
ingredient

Medium 0 4 8 16
A 423 445 414 247
B 326 113 127 147
C 246 122 206 138
D 141 227 78 148
E 208 132 172 356
F 303 31 45 29
G 256 177 103 63

(b) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts
using Tukey’s method with α = .05

(c) Check the assumptions of the model and adjust the analysis appropriately.

EXERCISE 9.5.2. Snedecor (1945b) presented data on a spray for killing adult flies as they
emerged from a breeding medium. The data were numbers of adults found in cages that were set
over the medium containers. The treatments were different levels of the spray’s active ingredient,
namely 0, 4, 8, and 16 units. (Actually, it is not clear whether a spray with 0 units was actually
applied or whether no spray was applied. The former might be preferable.) Seven different sources
for the breeding mediums were used and each spray was applied on each distinct breeding medium.
The data are presented in Table 9.10.

(a) Identify the design for this experiment and give an appropriate model. List all the assumptions
made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Examine a contrast that com-
pares the treatment with no active ingredient to the average of the three treatments that contain
the active ingredient. Ignoring the treatment with no active ingredient, the other three treatments
are quantitative levels of the active ingredient. On the log scale, these levels are equally spaced,
so the tabled polynomial contrasts can be used to examine the polynomial regression of numbers
killed on the log of the amount of active ingredient. The contrasts are given below.

Contrasts
Active vs. log(active) log(active)

Treatment inactive linear quadratic
0 3 0 0
4 −1 −1 1
8 −1 0 −2
16 −1 1 1

Examine these contrasts. Compare the results given by the LSD, Bonferroni, and Scheffé meth-
ods. Use α = .10 for LSD and Scheffé and something close to .05 for Bonferroni. Are the poly-
nomial contrasts orthogonal to the first contrast?

(c) Check the assumptions of the model and adjust the analysis appropriately.

EXERCISE 9.5.3. Cornell (1988) considered data on scaled thickness values for five formulations
of vinyl designed for use in automobile seat covers. Eight groups of material were prepared. The
production process was then set up and the five formulations run with the first group. The production
process was then reset and another group of five was run. In all, the production process was set
eight times and a group of five formulations was run with each setting. The data are displayed in
Table 9.11.
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Table 9.11: Cornell’s scaled vinyl thickness values

Production setting
Formulation 1 2 3 4 5 6 7 8
1 8 7 12 10 7 8 12 11
2 6 5 9 8 7 6 10 9
3 10 11 13 12 9 10 14 12
4 4 5 6 3 5 4 6 5
5 11 10 15 11 9 7 13 9

(a) From the information given, identify the design for this experiment and give an appropriate
model. List all the assumptions made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts
using the Bonferroni method with an α of about .05.

(c) Check the assumptions of the model and adjust the analysis appropriately.

EXERCISE 9.5.4. In data related to that of the previous problem, Cornell (1988) has scaled thick-
ness values for vinyl under four different process conditions. The process conditions were A, high
rate of extrusion, low drying temperature; B, low rate of extrusion, high drying temperature; C, low
rate of extrusion, low drying temperature; D, high rate of extrusion, high drying temperature. An
initial set of data with these conditions was collected and later a second set was obtained. The data
are given below.

Treatments
A B C D

Rep 1 7.8 11.0 7.4 11.0
Rep 2 7.6 8.8 7.0 9.2

Identify the design, give the model, check the assumptions, give the analysis of variance table and
interpret the F test for treatments.

The structure of the treatments suggest some interesting contrasts. These are given below.

Treatments
Contrast A B C D
Rate 1 −1 −1 1
Temp −1 1 −1 1
RT −1 −1 1 1

The rate contrast examines the difference between the two treatments with a high rate of ex-
trusion and those with a low rate. The temp contrast examines the difference between the two
treatments with a high drying temperature and those with a low temperature. The RT contrast is
an interaction contrast that examines whether the effect of extrusion rate is the same for high drying
temperatures as for low temperatures. Show that the contrasts are orthogonal and use the contrasts
to analyze the data.

EXERCISE 9.5.5. Johnson (1978) and Mandel and Lashof (1987) present data on measurements
of P2O5 (phosphorous pentoxide) in fertilizers. Table 9.12 presents data for five fertilizers, each
analyzed in five labs. Our interest is in differences among the labs. Analyze the data.

EXERCISE 9.5.6. Table 9.13 presents data on yields of cowpea hay. Four treatments are of in-
terest, variety I of hay was planted 4 inches apart (I4), variety I of hay was planted 8 inches apart
(I8), variety II of hay was planted 4 inches apart (II4), and variety II of hay was planted 8 inches
apart (II8). Three blocks of land were each divided into four plots and one of the four treatments
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Table 9.12: Phosphorous fertilizer data

Laboratory
Fertilizer 1 2 3 4 5
F 20.20 19.92 20.91 20.65 19.94
G 30.20 30.09 29.10 29.85 30.29
H 31.40 30.42 30.18 31.34 31.11
I 45.88 45.48 45.51 44.82 44.63
J 46.75 47.14 48.00 46.37 46.63

Table 9.13: Cowpea hay yields

Block Trt.
Treatment 1 2 3 means
I4 45 43 46 44.666̄
I8 50 45 48 47.666̄
II4 61 60 63 61.333̄
II8 58 56 60 58.000
Block means 53.50 51.00 54.25 52.916̄

was randomly applied to each plot. These data are actually a subset of a larger data set given by
Snedecor and Cochran (1980, p. 309) that involves three varieties and three spacings in four blocks.
Analyze the data. Check your assumptions. Examine appropriate contrasts.

EXERCISE 9.5.7. In the study of the optical emission spectrometer discussed in Example 9.2.1
and Table 9.1, the target value for readings was .89. Subtract .89 from each observation and repeat
the analysis. What new questions are of interest? Which aspects of the analysis have changed and
which have not?

EXERCISE 9.5.8. An experiment was conducted to examine differences among operators of Suter
hydrostatic testing machines. These machines are used to test the water repellency of squares of
fabric. One large square of fabric was available but its water repellency was thought to vary along
the length (warp) and width (fill) of the fabric. To adjust for this, the square was divided into four
equal parts along the length of the fabric and four equal parts along the width of the fabric, yielding
16 smaller pieces. These pieces were used in a Latin square design to investigate differences among
four operators: A, B, C, D. The data are given in Table 9.14. Construct an analysis of variance table.
What, if any, differences can be established among the operators? Compare the results of using the
Tukey, Newman–Keuls, and Bonferroni methods for comparing the operators.

EXERCISE 9.5.9. Table 9.15 contains data similar to that in the previous exercise except that in

Table 9.14: Hydrostatic pressure tests: operator, yield

A B C D
40.0 43.5 39.0 44.0

B A D C
40.0 42.0 40.5 38.0

C D A B
42.0 40.5 38.0 40.0

D C B A
40.0 36.5 39.0 38.5
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Table 9.15: Hydrostatic pressure tests: machine, yield

2 4 3 1
39.0 39.0 41.0 41.0

1 3 4 2
36.5 42.5 40.5 38.5

4 2 1 3
40.0 39.0 41.5 41.5

3 1 2 4
41.5 39.5 39.0 44.0

Table 9.16: Hydrostatic pressure tests: operator, machine

B,2 A,4 D,3 C,1
A,1 B,3 C,4 D,2
D,4 C,2 B,1 A,3
C,3 D,1 A,2 B,4

Operators are A, B, C, D.
Machines are 1, 2, 3, 4.

this Latin square differences among four machines: 1, 2, 3, 4, were investigated rather than differ-
ences among operators. Machines 1 and 2 were operated with a hand lever, while machines 3 and
4 were operated with a foot lever. Construct an analysis of variance table. What, if any, differences
can be established among the machines? To this end, construct appropriate orthogonal contrasts.

EXERCISE 9.5.10. Table 9.15 is incomplete. The data were actually obtained from a Graeco-
Latin square that incorporates four different operators as well as the four different machines. The
correct design is given in Table 9.16. Note that this is a Latin square for machines when we ignore the
operators and a Latin square for operators when we ignore the machines. Moreover, every operator
works once with every machine. Using the four operator means, compute a sum of squares for
operators and subtract this from the error computed in Exercise 9.5.9. Give the new analysis of
variance table. How do the results on machines change? What evidence is there for differences
among operators. Was the analysis for machines given earlier incorrect or merely inefficient?

EXERCISE 9.5.11. Table 9.17 presents data given by Nelson (1993) on disk drives from a Graeco-
Latin square design (see Exercise 9.5.10). The experiment was planned to investigate the effect of
four different substrates on the drives. The dependent variable is the amplitude of a signal read from
the disk where the signal written onto the disk had a fixed amplitude. Blocks were constructed from
machines, operators, and day of production. (In Table 9.17, Days are indicated by lower case Latin
letters.) The substrata consist of A, aluminum; B, nickel plated aluminum; and two types of glass, C
and D. Analyze the data. In particular, check for differences between aluminum and glass, between
the two types of glass, and between the two types of aluminum. Check your assumptions.

Table 9.17: Amplitudes of disk drives

Machine
Operator 1 2 3 4
I Aa 8 Cd 7 Db 3 Bc 4
II Cc 11 Ab 5 Bd 9 Da 5
III Dd 2 Ba 2 Ac 7 Cb 9
IV Bb 8 Dc 4 Ca 9 Ad 3





Chapter 10

Analysis of covariance

Analysis of covariance incorporates one or more regression variables into an analysis of variance.
The regression variables are referred to as covariates (relative to the dependent variable), hence the
name analysis of covariance. Covariates are also known as supplementary or concomitant obser-
vations. Cox (1958, chapter 4) gives a particularly nice discussion of the ideas behind analysis of
covariance and illustrates various useful plotting techniques. In 1957 and 1982, Biometrics devoted
entire issues to the analysis of covariance. In this chapter, we only examine the use of a single co-
variate. We begin our discussion with an example that involves one-way analysis of variance and a
covariate.

In Sections 1 and 4 of this chapter, we make extensive use of model comparisons. To simplify
the discussions within these sections, we will often refer to a model such as (10.1.1) as simply model
(1).

10.1 An example

Fisher (1947) gives data on the body weights (in kilograms) and heart weights (in grams) for domes-
tic cats of both sexes that were given digitalis. A subset of the data is presented in Table 10.1. Our
primary interest is to determine whether females’ heart weights differ from males’ heart weights
when both have received digitalis.

As a first step, we might fit a one-way ANOVA model,

yi j = µi + εi j (10.1.1)
= µ +αi + εi j,

where the yi js are the heart weights, i = 1,2, and j = 1, . . . ,24. This model yields the analysis of
variance given in Table 10.2. Note the overwhelming effect due to sexes.

Table 10.1: Fisher’s data on body weights (kg) and heart weights (g) of domestic cats given digitalis

Females Males
Body Heart Body Heart Body Heart Body Heart
2.3 9.6 2.0 7.4 2.8 10.0 2.9 9.4
3.0 10.6 2.3 7.3 3.1 12.1 2.4 9.3
2.9 9.9 2.2 7.1 3.0 13.8 2.2 7.2
2.4 8.7 2.3 9.0 2.7 12.0 2.9 11.3
2.3 10.1 2.1 7.6 2.8 12.0 2.5 8.8
2.0 7.0 2.0 9.5 2.1 10.1 3.1 9.9
2.2 11.0 2.9 10.1 3.3 11.5 3.0 13.3
2.1 8.2 2.7 10.2 3.4 12.2 2.5 12.7
2.3 9.0 2.6 10.1 2.8 13.5 3.4 14.4
2.1 7.3 2.3 9.5 2.7 10.4 3.0 10.0
2.1 8.5 2.6 8.7 3.2 11.6 2.6 10.5
2.2 9.7 2.1 7.2 3.0 10.6 2.5 8.6

281
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Table 10.2: One-way analysis of variance on heart weights

Source d f SS MS F P
Sex 1 56.117 56.117 23.44 .0000
Error 46 110.11 2.3936
Total 47 166.223

Table 10.3: Analysis of variance for heart weights based on model (2)

Source d f Adj. SS MS F P
Body weights 1 37.828 37.828 23.55 0.000
Sex 1 4.499 4.499 2.80 0.101
Error 45 72.279 1.606
Total 47 166.223

Fisher provided both heart weights and body weights, so we can ask a more complex question,
‘Is there a sex difference in the heart weights over and above the fact that male cats are naturally
larger than female cats?’ To examine this we add a regression term to model (1) and fit the traditional
analysis of covariance model,

yi j = µi + γzi j + εi j (10.1.2)
= µ +αi + γzi j + εi j.

Here the zi js are the body weights and γ is a slope parameter associated with body weights. Note
that model (2) is an extension of the simple linear regression between the ys and the zs in which we
allow a different intercept µi for each sex. An analysis of variance table for model (2) is given as
Table 10.3. The interpretation of this table is different from the ANOVA tables examined earlier. For
example, the sums of squares for body weights, sex, and error do not add up to the sum of squares
total. The sums of squares in Table 10.3 are referred to as adjusted sums of squares (Adj. SS) because
the body weight sum of squares is adjusted for sexes and the sex sum of squares is adjusted for body
weights. In this section, we focus on the interpretation of Table 10.3; in Section 10.3 we discuss its
computation.

The error line in Table 10.3 is simply the error from fitting model (2). The body weights line
comes from comparing model (2) with the reduced model (1). Note that the only difference between
models (1) and (2) is that (1) does not involve the regression on body weights, so by testing the two
models we are testing whether there is a significant effect due to the regression on body weights.
The standard way of comparing a full and a reduced model is by comparing their error terms. Model
(2) has one more parameter, γ , than model (1), so there is one more degree of freedom for error in
model (1) than in model (2), hence one degree of freedom for body weights. The adjusted sum of
squares for body weights is the difference between the sum of squares error in model (1) and the
sum of squares error in model (2). Given the sum of squares and the mean square, the F statistic for
body weights is constructed in the usual way, cf. Section 5.5. Examining Table 10.3, we see a major
effect due to the regression on body weights.

The sex line in Table 10.3 provides a test of whether there are differences in sexes after adjusting
for the regression on body weights. This comes from comparing model (2) to a similar model in
which sex differences have been eliminated. In model (2), the sex differences are incorporated as
µ1 and µ2 in the first version and as α1 and α2 in the second version. To eliminate sex differences
in model (2), we simply eliminate the distinctions between the µs (the αs). Such a model can be
written as

yi j = µ + γzi j + εi j.

In this example, the analysis of covariance model without treatment effects is just a simple linear
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regression of heart weight on body weight. We have reduced the two sex parameters to one overall
parameter, so the difference in degrees of freedom between this model and model (2) is 1. The
difference in the sums of squares error between this model and model (2) is the adjusted sum of
squares for sex. Examining Table 10.3 we see that the evidence for a sex effect over and above the
effect due to the regression on body weights is not great.

Our current data come from an observational study rather than a designed experiment. It is
difficult to take a group of cats and randomly assign them to sex groups. As discussed in the next
section, principles of experimental design focus attention on models such as (2). However, these
data are from an observational study, so yet another model is of interest. There is little reason to
assume that when regressing heart weight on body weight the relationships are the same for females
and males. Model (2) allows different intercepts for these regressions but uses the same slope γ .
We should test the assumption of a common slope by fitting the more general model that allows
different slopes for females and males, i.e.,

yi j = µi + γizi j + εi j (10.1.3)
= µ +αi + γizi j + εi j.

In model (3) the γs depend on i and thus the slopes are allowed to differ between the sexes. While
model (3) may look complicated, it consists of nothing more than fitting a simple linear regression to
each group: one to the female data and a separate simple linear regression to the male data. The sum
of squares error for model (3) comes from adding the error sums of squares for the two simple linear
regressions. It is easily seen that for females the simple linear regression has an error sum of squares
of 22.459 on 22 degrees of freedom and the males have an error sum of squares of 49.614 also on
22 degrees of freedom. Thus model (3) has an error sum of squares of 22.459+ 49.614 = 72.073
on 22+22 = 44 degrees of freedom. The mean squared error for model (3) is

MSE(3) =
72.073

44
= 1.638

and using results from Table 10.3, the test of model (3) against the reduced model (2) has

F =
[72.279−72.073]/ [45−44]

1.638
=

.206
1.638

= .126.

The F statistic is very small; there is no evidence that we need to fit different slopes for the two
sexes. We now return to the analysis of model (2).

Frequently, computer programs for fitting model (2) give information on the regression parame-
ter γ . Often, this is presented in the same way the program gives information on parameters in pure
regression problems, e.g.,

Covariate γ̂ SE(γ̂) t P
Body weight 2.7948 0.5759 4.853 0.000.

Note that the t statistic here is the square root of the F statistic for body weights in Table 10.3. The P
values are identical. Again, we find clear evidence for the effect of body weights. A 95% confidence
interval for γ has end points

2.7948±2.014(0.5759)

which yields the interval (1.6,4.0). We are 95% confident that, for data comparable to the data in
this study, an increase in body weight of one kilogram corresponds to a mean increase in heart
weight of between 1.6g and 4.0g.

In model (2), comparing treatments by comparing the treatment means ȳi· is inappropriate be-
cause of the complicating effect of the covariate. Adjusted means are often used to compare treat-
ments. The formula and the actual values for the adjusted means are given below along with the raw
means for body weights and heart rates.
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Figure 10.1: Residuals versus predicted values.

Adjusted means ≡ ȳi·− γ̂(z̄i·− z̄··)

Sex N Body Heart Adj. heart
Female 24 2.333 8.887 9.580
Male 24 2.829 11.050 10.357
Combined 48 2.581 9.969

We have seen previously that there is little evidence of a differential effect on heart weights due to
sexes after adjusting for body weights. Nonetheless, from the adjusted means what evidence exists
suggests that, even after adjusting for body weights, a typical heart weight for males, 10.357, is
larger than a typical heart weight for females, 9.580.

Figures 10.1 through 10.3 contain residual plots. The plot of residuals versus predicted values
looks exceptionally good. The plot of residuals versus sexes shows slightly less variability for fe-
males than for males. The difference is probably not enough to worry about. The normal plot of the
residuals is alright with W ′ above the appropriate percentile.

Minitab commands

The following Minitab commands were used to generate the analysis of these data. The means given
by the ‘ancova’ subcommand ‘means’ are the adjusted treatment means.

MTB > names c1 ’body’ c2 ’heart’ c3 ’sex’

MTB > note Fit model (1).

MTB > oneway c2 c3

MTB > note Fit model (2).

MTB > ancova c2 = c3;

SUBC> covar c1;

SUBC> resid c10;

SUBC> fits c11;

SUBC> means c3.



10.1 AN EXAMPLE 285

resids

- *

- * 2

-

- 2

1.5+ *

- 2 2

- * *

- 2

- 4 *

0.0+ * 2

- 3 2

- 3 2

- 4 3

- *

-1.5+ 2 2

- 2

- *

-----+------------------------------+---Sex

Female Male

Figure 10.2: Residuals versus sex.

resids

- *

- * * *

-

- **

1.5+ *

- *2 *

- **

- **

- 2***

0.0+ *2

- 2*2

- **2*

- 2*****

- *

-1.5+ * ***

- * *

- *

--------+---------+---------+---------+---------+--------

-1.60 -0.80 0.00 0.80 1.60

Rankits

Figure 10.3: Normal plot of residuals, W ′ = 0.968.
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MTB > plot c10 c11

MTB > plot c10 c3

MTB > note Split the data into females and males and

MTB > note perform two regressions to fit model (3).

MTB > copy c1 c2 to c11 c12;

SUBC> use c3=1.

MTB > regress c12 on 1 c11

MTB > copy c1 c2 to c21 c22;

SUBC> use c3=2.

MTB > regress c22 on 1 c21

10.2 Analysis of covariance in designed experiments

In designing an experiment to investigate a group of treatments, covariates are used to reduce the
error of treatment comparisons. One way to use the concomitant observations is to define blocks
based on them. For example, income, IQ, and heights can all be used to collect people into similar
groups for a randomized complete block design. In fact, any construction of blocks must be based on
information not otherwise incorporated into the ANOVA model, so any experiment with blocking
uses concomitant information. In analysis of covariance we use the concomitant observations more
directly, as regression variables in the statistical model.

Obviously, for a covariate to help our analysis it must be related to the dependent variable. Un-
fortunately, improper use of concomitant observations can invalidate, or at least alter, comparisons
among the treatments. In the example of Section 10.1, the original ANOVA demonstrated an effect
on heart weights due to sex but after adjusting for body weights, there was little evidence for a
sex difference. The very nature of what we were comparing changed when we adjusted for body
weights. Originally, we investigated whether heart weights were different for females and males.
The analysis of covariance examined whether there were differences between female heart weights
and male heart weights beyond what could be accounted for by the regression on body weights.
These are very different interpretations. In a designed experiment, we want to investigate the effects
of the treatments and not the treatments adjusted for some covariates. To this end, in a designed
experiment we require that the covariates be logically independent of the treatments. In particular,
we require that

the concomitant observations be made before assigning the treatments to the experimental units,
the concomitant observations be made after assigning treatments to experimental units but before
the effect of the treatments has developed, or
the concomitant observations be such that they are unaffected by treatment differences.

For example, suppose the treatments are five diets for cows and we wish to investigate milk
production. Milk production is related to the size of the cow, so we might pick height of the cow as
a covariate. For immature cows over a long period of time, diet may well affect both height and milk
production. Thus to use height as a covariate we should measure heights before treatments begin or
we could measure heights, say, two days after treatments begin. Two days on any reasonable diet
should not affect a cow’s height. Alternatively, if we use only mature cows their heights should be
unaffected by diet and thus the heights of mature cows could be measured at any time during the
experiment. Typically, one should be very careful when claiming that a covariate measured near
the end of an experiment is unaffected by treatments.

The requirements listed above on the nature of covariates in a designed experiment are imposed
so that the treatment effects do not depend on the presence or absence of covariates in the analysis.
The treatment effects are logically identical regardless of whether covariates are actually measured
or incorporated into the analysis. Recall that in the observational study of Section 10.1, the nature
of the treatment (sex) effects changed depending on whether covariates were incorporated in the
model. The role of the covariates in the analysis of a designed experiment is solely to reduce the
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error. In particular, using good covariates should reduce both the variance of the observations σ2

and its estimate, the MSE. On the other hand, we will see in the next section that one pays a price for
using covariates. Variances of treatment comparisons are σ2 times a constant. With covariates in the
model, the constant is larger than when they are not present. However, with well chosen covariates
the appropriate value of σ2 should be sufficiently smaller that the reduction in MSE overwhelms
the increase in the multiplier. Nonetheless, in designing an experiment we need to play off these
aspects against one another. We need covariates whose reduction in MSE more than makes up for
the increase in the constant.

The requirements imposed on the nature of the covariates in a designed experiment have lit-
tle affect on the analysis illustrated in the Section 10.1. The analysis focuses on a model such as
(10.1.2). In Section 10.1, we also considered model (10.1.3) that has different slope parameters for
the different treatments (sexes). The requirements on the covariates in a designed experiment imply
that the relationship between the dependent variable y and the covariate z cannot depend on the
treatments. Thus with covariates chosen for a designed experiment it is inappropriate to have slope
parameters that depend on the treatment. There is one slope that is valid for the entire analysis and
the treatment effects do not depend on the presence or absence of the covariates. If a model such as
(10.1.3) fits better than (10.1.2) when the covariate has been chosen appropriately, it suggests that
the effects of treatments may differ from experimental unit to experimental unit. In such cases a
treatment cannot really be said to have an effect, it has a variety of effects depending on which units
it is applied to. A suitable transformation of the dependent variable may alleviate the problem.

10.3 Computations and contrasts

Analysis of covariance begins with an analysis of variance model and adds a regressor to the model.
The original idea in computing an analysis of covariance was to use the simple computations avail-
able for one-way ANOVAs and balanced higher-way ANOVAs to expedite the computations for the
more complicated analysis of covariance model. With modern computing machines this is less cru-
cial, but the original computational methods deserve consideration. In particular, they are extremely
useful in statistical theory. To illustrate, consider a randomized complete block (RCB) experiment
with a covariate z. The model is

yi j = µ +αi +β j + γzi j + εi j (10.3.1)

with i = 1, . . . ,a indicating treatments, j = 1, . . . ,b indicating blocks, and independent N(0,σ2)
errors. The computational method involves performing RCB analyses on both the yi js and the zi js.
In addition to computing the usual sums of squares for the ys and the zs, we need to compute sums
of cross products. The formulae are given in Table 10.4. The entire analysis of covariance can be
computed from the sums of squares and cross products in Table 10.4 along with the mean values
needed to perform the two RCB analyses. In particular, the analysis focuses on the three error lines
in Table 10.4. For analysis of covariance models other than (10.3.1), similar methods applied to
the error lines yield the appropriate analysis. The analogous computations for model (10.1.2) are
illustrated at the end of the section.

From the error sums of squares and cross products in Table 10.4, compute the SSE for model
(10.3.1) as

SSE = SSEyy−
(SSEyz)

2

SSEzz
.

Model (10.3.1) has one more parameter (γ) than the corresponding RCB model, so

d fE = (a−1)(b−1)−1

and
MSE =

SSE
(a−1)(b−1)−1

.
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Table 10.4: RCB analysis of covariance, one covariate

Source d f SSyy

Trt a−1 b∑
a
i=1(ȳi·− ȳ··)2

Blocks b−1 a∑
b
j=1(ȳ· j − ȳ··)2

Error (a−1)(b−1) subtraction

Total ab−1 ∑
a
i=1 ∑

b
j=1(ȳi j − ȳ··)2

Source d f SSyz

Trt a−1 b∑
a
i=1(ȳi·− ȳ··)(z̄i·− z̄··)

Blocks b−1 a∑
b
j=1(ȳ· j − ȳ··)(z̄· j − z̄··)

Error (a−1)(b−1) subtraction

Total ab−1 ∑
a
i=1 ∑

b
j=1(ȳi j − ȳ··)(z̄i j − z̄··)

Source d f SSzz

Trt a−1 b∑
a
i=1(z̄i·− z̄··)2

Blocks b−1 a∑
b
j=1(z̄· j − z̄··)2

Error (a−1)(b−1) subtraction

Total ab−1 ∑
a
i=1 ∑

b
j=1(z̄i j − z̄··)2

The estimate of γ is computed as

γ̂ =
SSEyz

SSEzz

and the standard error is

SE(γ̂) =

√
MSE
SSEzz

.

The sum of squares for the covariate can be computed as

SS(γ̂) = γ̂
2SSEzz.

All of these formulae are very similar to formulae used in simple linear regression. In fact, if model
(10.3.1) had no treatment or block effects, it would be a simple linear regression model and these
formula would give the usual analysis for a simple linear regression.

The estimate of a contrast in the treatment effects, say ∑
a
i=1 λiαi, is

a

∑
i=1

λi (ȳi·− γ̂ z̄i·) .

The variance of the estimated contrast is

Var

(
a

∑
i=1

λi (ȳi·− z̄i·γ̂)

)
= σ

2

[
∑

a
i=1 λ 2

i
b

+
(∑

a
i=1 λiz̄i·)

2

SSEzz

]
.

Recall that in an RCB model without covariates, the variance of the estimate of ∑
a
i=1 λiαi is
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σ2
[
∑

a
i=1 λ 2

i /b
]

which is the variance given above without the term involving the zi js. The RCB
variance appears to be strictly smaller than the variance from model (10.3.1). This illusion occurs
because the variance parameters σ2 are not the same in the covariate model (10.3.1) and the RCB
model without covariates. With good covariates, the variance σ2 in the covariate model should be
much smaller than the corresponding variance in the model without covariates. In fact, the σ2 in the
covariate model should be sufficiently small to more than make up for the increase in the term that
is multiplying σ2.

The standard error of the estimated contrast is obtained immediately from the variance formula.
It is

SE

(
a

∑
i=1

λi (ȳi·− z̄i·γ̂)

)
=

√√√√MSE

[
∑

a
i=1 λ 2

i
b

+
(∑

a
i=1 λiz̄i·)

2

SSEzz

]
.

Because of the complications caused by having the regressor zi j in the model, orthogonal contrasts
are difficult to specify and of little interest.

For what they are worth, adjusted treatment means are often defined as

ȳi·− γ̂ (z̄i·− z̄··) .

These adjusted treatment means can be used in place of the values ȳi·− γ̂ z̄i· when estimating con-
trasts. Using adjusted treatment means has no affect on the standard error of the estimated contrast.

To test for the existence of treatment effects, we test model (10.3.1) against the reduced model

yi j = µ +β j + γzi j + ei j. (10.3.2)

In model (10.3.2) the treatment effects αi have been eliminated, so the sum of squares for treatments
is incorporated into the error term of model (10.3.2). To find the SSE for model (10.3.2) we combine
the treatment and error lines in Table 10.4 and use the standard formula.

SSE(2) =

[
(SSTrtyy +SSEyy)−

(SSTrtyz +SSEyz)
2

SSTrtzz +SSEzz

]
.

The sum of squares used in the numerator of the F statistic for testing treatments is

SSTrt = SSE(2)−SSE(1)

=

[
(SSTrtyy +SSEyy)−

(SSTrtyz +SSEyz)
2

SSTrtzz +SSEzz

]
−

[
SSEyy−

SSE2
yz

SSEzz

]
.

This has the standard number of degrees of freedom, a−1. The F statistic for treatments is

F =
SSTrt/(a−1)

MSE

with MSE coming from model (10.3.1).
If it is of interest to test for block effects or investigate block contrasts, the methods given above

apply with appropriate substitutions.
While the discussion in this section has been in terms of analyzing randomized complete block

designs, analogous procedures work for any analysis of covariance model in which the correspond-
ing analysis of variance computations are tractable. We illustrate the computations with the bal-
anced one-way ANOVA data of Section 10.1.

EXAMPLE 10.3.1. Table 10.1 gave Fisher’s heart and body weight data, Table 10.2 gave the one-
way analysis of variance for heart weights, and Table 10.3 gave an analysis of variance table for the
covariate model. Table 10.5 is analogous to Table 10.4; it gives the standard analysis of covariance
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Table 10.5: Analysis of covariance for heart weights, body weights

Heart Cross Body
Source d f SSyy SSyz SSzz
Sex 1 56.117 12.867 2.950
Error 46 110.106 13.535 4.843
Total 47 166.223 26.402 7.793

table used to compute Table 10.3. Table 10.5 has the same degrees of freedom and sums of squares
as given in Table 10.2 for heart weights along with a similar one-way ANOVA for body weights and
cross product terms.

Compute the SSE as

SSE = 110.106− (13.535)2

4.843
= 72.279 .

The model has one more parameter (γ) than the corresponding one-way ANOVA model, so

d fE = 46−1 = 45

and
MSE =

72.279
45

= 1.606.

The estimate of γ is computed as

γ̂ =
13.535
4.843

= 2.7948

and the standard error is

SE(γ̂) =

√
1.606
4.843

= 0.5759.

The information on γ can be summarized as in Section 10.1.

Covariate γ̂ SE(γ̂) t P
Body weight 2.7948 0.5759 4.853 0.000

The sum of squares for body weight reported in Table 10.3 is computed as

SS(γ̂) = (2.7948)24.843 = 37.828.

Consider the contrast between females and males, say, (1)α1 + (−1)α2. To estimate this we
need the body weight and heart weight means,

Sex N Body Heart
Female 24 2.333 8.887
Male 24 2.829 11.050
Combined 48 2.581 9.969

The estimated contrast is

[8.887−2.7948(2.333)]− [11.050−2.7948(2.829)] =−0.777.

The standard error is

SE(α̂1− α̂2) =

√√√√1.606

[
12 +(−1)2

24
+

(2.333−2.829)2

4.843

]
= .464.

With an estimate and a standard error, we can use the t(45) distribution to form tests and confidence
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intervals for the difference between females and males after adjusting for body weights. Note that
the t test is

tobs =
−.777
.464

=−1.6746

and squaring this gives (−1.6746)2 = 2.80, which is the F statistic for sexes in Table 10.3. Of course
if there were more than 1 degree of freedom for treatments, the sum of squares for treatments would
not typically equal the sum of squares for a contrast.

For what they are worth, the adjusted treatment mean for females is

8.887−2.7948(2.333−2.581) = 9.580

and for males is
11.050−2.7948(2.829−2.581) = 10.357.

These adjusted treatment means can be used in place of the values ȳi·− γ̂ z̄i· when estimating con-
trasts. For example,

9.580−10.357 =−0.777

just as in the estimated contrast.
To test for the existence of treatment effects, the sum of squares used in the numerator of the F

statistic is

SSTrt =

[
(56.117+110.106)− (12.867+13.535)2

2.950+4.843

]
−72.279

=

[
166.223− (26.402)2

7.793

]
−72.279

= 4.5

and the F statistic is

F =
4.5/1
1.606

= 2.80.

Note that, in general, computing the SSTrt involves SSTrtab + SSEab, but in the one-way ANOVA
application these equal SSTotab. 2

10.4 Power transformations and Tukey’s one degree of freedom

One application for analysis of covariance is in detecting nonadditivity in the results of a randomized
complete block design. The model for a RCB is

yi j = µ +αi +β j + εi j (10.4.1)

in which the grand mean µ and the effects of treatments α and of blocks β are added together. It is
possible that the effects could be something other than additive, say, multiplicative with a model

yi j = MAiB jεi j. (10.4.2)

The multiplicative model can be transformed into an additive model using logarithms. Taking logs
of both sides in equation (2) gives

log(yi j) = log(M)+ log(Ai)+ log(B j)+ log(εi j).

If we redefine the parameters as µ = log(M), αi = log(Ai), β j = log(B j), and εi j = log(εi j), we get
the additive model

log(yi j) = µ +αi +β j + εi j.
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Generally, when the additive model (1) is inappropriate, we want to find a transformation of the
yi js that makes the additive analysis useful. Thus, we seek a value λ for which

y(λ )i j = µ +αi +β j + εi j

where, as in our discussion of transformations for simple linear regression, we use the family of
modified power transformations

y(λ )i =

{(
yλ

i −1
)
/λ λ 6= 0

log(yi) λ = 0
.

In Section 7.10, we used a constructed variable to obtain an approximate test of whether a
power transformation was needed. Exactly the same method can be applied to the RCB model (1).
The constructed variable is

wi j = yi j
[
log
(
yi j
/

ỹ
)
−1
]
,

where ỹ is again the geometric mean of all of the observations. The only difference between this
variable and the constructed variable in Section 7.10 is the difference between having one subscript
and two on the ys. Incorporating the constructed variable into the RCB model (1) gives the analysis
of covariance model

yi j = µ +αi +β j + γwi j + εi j. (10.4.3)

As was mentioned above and in Section 7.10, fitting a model with a constructed variable and
performing the usual test of H0 : γ = 0 gives only an approximate test of whether a power transfor-
mation is needed. The usual t distribution is not really appropriate for this test. The problem is that
the constructed variable w involves the ys, so the ys appear on both sides of the equality in model (3).
This is enough to invalidate the theory behind the usual test. It turns out that this difficulty can be
avoided by using the predicted values from model (1). We write these as ŷi j(1)s, where the subscript
(1) is a reminder that the predicted values come from the additive model (1). We can now define a
new constructed variable,

w̃i j = ŷi j(1) log(ŷi j(1))

and fit the analysis of covariance model

yi j = µ +αi +β j + γw̃i j + εi j (10.4.4)

The new constructed variable w̃i j simply replaces yi j with ŷi j(1) in the definition of wi j and deletes
some terms made redundant by using the ŷi j(1)s. If model (1) is valid, the usual test of H0 : γ = 0
from model (4) has the standard t distribution in spite of the fact that the w̃i js depend on the yi js. By
basing the constructed variable on the ŷi j(1)s, we are able to get an exact t test for γ = 0 and restrict
the weird behavior of the test statistic to situations in which γ 6= 0.

Tukey’s (1949) one degree of freedom test for nonadditivity uses neither the constructed variable
wi j nor w̃i j but a third constructed variable that is an approximation to w̃i j. Using a method from
calculus known as Taylor’s approximation (expanding about ȳ··) and simplifying the approximation
by eliminating terms that have no effect on the test of H0 : γ = 0, we get ŷ2

i j(1) as a new constructed
variable. This leads to fitting the ACOVA model

yi j = µ +αi +β j + γ ŷ2
i j(1)+ εi j. (10.4.5)

and testing the need for a transformation by testing H0 : γ = 0. This is Tukey’s one degree of freedom
test for nonadditivity. Recall that t tests are equivalent to F tests with one degree of freedom in the
numerator, hence the reference to one degree of freedom in the name of Tukey’s test.

Models (3), (4), and (5) all provide rough estimates of the appropriate power transformation.
From models (3) and (4), the appropriate power is estimated by λ̂ = 1− γ̂ . In model (5), because of
the simplification employed after the approximation, the estimate is λ̂ = 1−2ȳ··γ̂ .
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Table 10.6: Spectrometer data

Block Trt.
Treatment 1 2 3 means
New-clean 0.9331 0.8664 0.8711 0.89020̄
New-soiled 0.9214 0.8729 0.8627 0.88566̄
Used-clean 0.8472 0.7948 0.7810 0.80766̄
Used-soiled 0.8417 0.8035 0.8099 0.81836̄
Block means 0.885850 0.834400 0.831175 0.850475

Table 10.7: Additive model predictions and constructed variables for the spectrometer data

Trt. Block ŷ(1) w w̃ ŷ2
(1)

1 1 0.925575 −0.845246 −0.071584 0.856689
1 2 0.874125 −0.849083 −0.117598 0.764095
1 3 0.870900 −0.848976 −0.120383 0.758467
2 1 0.921042 −0.846274 −0.075756 0.848318
2 2 0.869592 −0.848929 −0.121509 0.756190
2 3 0.866367 −0.849149 −0.124278 0.750591
3 1 0.843042 −0.849252 −0.143940 0.710719
3 2 0.791592 −0.847471 −0.185003 0.626617
3 3 0.788367 −0.846435 −0.187467 0.621522
4 1 0.853742 −0.849221 −0.134999 0.728875
4 2 0.802292 −0.848000 −0.176731 0.643672
4 3 0.799067 −0.848329 −0.179239 0.638508

Atkinson (1985, section 8.1) gives an extensive discussion of various constructed variables for
testing power transformations. In particular, he suggests (on p. 158) that while the tests based on w̃i j
and ŷ2

i j(1) have the advantage of giving exact t tests and being easier to compute, the test using wi j

may be more sensitive in detecting the need for a transformation, i.e., may be more powerful.

EXAMPLE 10.4.1. Consider the randomized complete block experiment of Example 9.2.1. The
data are reproduced in Table 10.6. The predicted values from model (1) and the three constructed
variables are given in Table 10.7. Note that the numerical values of the constructed variables are
very different.

The results of testing H0 : γ = 0 for models (3), (4), and (5) are given below.

Constructed
Model variable γ̂ SE(γ̂) t P

(3) w 1.505 2.24 0.6717 0.532
(4) w̃ 2.165 2.40 0.9022 0.408
(5) ŷ2

(1) 1.275 1.40 0.9128 0.403

Models (3) and (4) involve distinct methods of defining the constructed variable, but the tests from
the two methods are roughly similar for these data. Model (5) involves an approximation to and
simplification of model (4). While the estimates and standard errors are very different in models
(4) and (5), the t statistics are very similar. With these data, the t statistics for the constructed
variables are all small, so there is no suggestion of the need for a power transformation. This level
of agreement does not always occur. Atkinson (1985, p. 160) gives an example in which the various
t statistics are not all numerically similar, though all suggest the need for a transformation.

If a power transformation were needed, model (3) suggests examining λ values in the neigh-
borhood of 1− (1.505) = −.505. Model (4) suggests examining λ values in the neighborhood
of 1− (2.165) = −1.165. Model (5) suggests examination of λ values in the neighborhood of
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1− 2(0.850475)(1.275) = −1.169. Again, note the similarity between the results for models (4)
and (5). 2

So far, the methods discussed have made no use of the special structure of model (1). Indeed,
these methods can be used to test the need for a power transformation in any analysis of variance
or regression model with independent normal errors having mean zero and the same variance. In
particular, they can be used with any of the models we have discussed so far and with the factorial
treatment structure models of the next chapter and the multiple regression models examined later.
(They should not be used with models that have more than one error (random) term, cf. Chapter 12.)

Another look at Tukey’s test

Traditionally, Tukey’s test is presented in a different context, one that relies on the special structure
of model (1). To examine interaction in a RCB model, one might consider fitting the nonlinear
models

yi j = µ +αi +β j + γαiβ j + εi j

or

yi j = µ +αi +β j + γ
αiβ j

µ
+ εi j.

These differ from any other models that we have considered because they include parameters that
are multiplied together, e.g., αiβ j. Such models are much more difficult to fit. We can finesse the
fitting problem by fitting the models

yi j = µ +αi +β j + γα̂(1)iβ̂(1) j + εi j (10.4.6)

or

yi j = µ +αi +β j + γ
α̂(1)iβ̂(1) j

µ̂(1)
+ εi j (10.4.7)

where the models incorporate some estimates of parameters that are appropriate in model (1), i.e.,

µ̂(1) = ȳ·· α̂(1)i = ȳi·− ȳ·· β̂(1) j = ȳ· j− ȳ··.

Both models (6) and (7) give tests of H0 : γ = 0 that are identical to the test from model (5). Note
that the γ parameters in these three models are not the same. In particular, the estimate of γ in model
(6) equals µ̂(1) times the estimate in model (7). Model (7) has one advantage in that for this model,
just like model (3), 1− γ̂ provides a rough estimate of the appropriate power transformation.

EXAMPLE 10.4.2. Fitting model (7) gives

Constructed
Model variable γ̂ SE(γ̂) t P

(7) α̂(1)iβ̂(1) j/µ̂(1) 2.168 2.38 0.9128 0.403

As mentioned, the t test is identical to that given earlier for model (5). The suggested power trans-
formation from model (7) is λ̂ = 1− (2.168) =−1.168, which is identical (up to round off error) to
the value from model (5). With many computer programs, it is much easier to obtain the constructed
variable for model (5) than for either of models (6) or (7) yet the results from models (6) and (7) are
equivalent to the results for model (5). 2

The tests used with models (4), (5), (6), and (7) are special cases of a general procedure in-
troduced by Rao (1965) and Milliken and Graybill (1970). In addition, Atkinson (1985), Cook and
Weisberg (1982), and Emerson (1983) contain useful discussions of constructed variables and meth-
ods related to Tukey’s test.



10.5 EXERCISES 295

Table 10.8 Compressive strength of ten hoop pine trees (y) at different temperatures and with various moisture
contents (z)

Temperature
−20◦ C 0◦ C 20◦ C 40◦ C 60◦ C

Tree z y z y z y z y z y
1 42.1 13.14 41.1 12.46 43.1 9.43 41.4 7.63 39.1 6.34
2 41.0 15.90 39.4 14.11 40.3 11.30 38.6 9.56 36.7 7.27
3 41.1 13.39 40.2 12.32 40.6 9.65 41.7 7.90 39.7 6.41
4 41.0 15.51 39.8 13.68 40.4 10.33 39.8 8.27 39.3 7.06
5 41.0 15.53 41.2 13.16 39.7 10.29 39.0 8.67 39.0 6.68
6 42.0 15.26 40.0 13.64 40.3 10.35 40.9 8.67 41.2 6.62
7 40.4 15.06 39.0 13.25 34.9 10.56 40.1 8.10 41.4 6.15
8 39.3 15.21 38.8 13.54 37.5 10.46 40.6 8.30 41.8 6.09
9 39.2 16.90 38.5 15.23 38.5 11.94 39.4 9.34 41.7 6.26

10 37.7 15.45 35.7 14.06 36.7 10.74 38.9 7.75 38.2 6.29

Minitab commands

Minitab commands are given below for this analysis of the data.
MTB > names c1 ’y’ c2 ’Trts’ c3 ’Blk’ c4 ’yhat_{(1)}’

MTB > names c5 ’w’ c6 ’wtilde’ c8 ’yhat^2’

MTB > note FIT MODEL (10.4.1)

MTB > anova c1=c2 c3;

SUBC> fits c4.

MTB > note CONSTRUCT w AND FIT MODEL (10.4.3)

MTB > let c10=loge(c1)

MTB > mean c9 k1

MTB > let c5=c1*(c10-k1-1)

MTB > ancova c1=c2 c3;

SUBC> covar c5.

MTB > note CONSTRUCT wtilde AND FIT MODEL (10.4.4)

MTB > let c6=c4*loge(c4)

MTB > ancova c1=c2 c3;

SUBC> covar c6.

MTB > note FIT MODEL (10.4.5)

MTB > let c8=c4**2

MTB > ancova c1=c2 c3;

SUBC> cova c8.

10.5 Exercises

EXERCISE 10.5.1. Table 10.8 contains data from Sulzberger (1953) and Williams (1959) on y,
the maximum compressive strength parallel to the grain of wood from ten hoop pine trees. The data
also include the temperature of the evaluation and a covariate z, the moisture content of the wood.
Analyze the data. Examine (tabled) polynomial contrasts in the temperatures.

EXERCISE 10.5.2. Smith, Gnanadesikan, and Hughes (1962) gave data on urine characteristics
of young men. The men were divided into four categories based on obesity. The data contain a
covariate z that measures specific gravity. The dependent variable is y1; it measures pigment creati-
nine. These variables are included in Table 10.9. Perform an analysis of covariance on y1. How do
the conclusions about obesity effects change between the ACOVA and the results of the ANOVA
that ignores the covariate?
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Table 10.9: Excretory characteristics from Smith et al. (1962)

Group I Group II
z y1 y2 z y1 y2

24 17.6 5.15 31 18.1 9.00
32 13.4 5.75 23 19.7 5.30
17 20.3 4.35 32 16.9 9.85
30 22.3 7.55 20 23.7 3.60
30 20.5 8.50 18 19.2 4.05
27 18.5 10.25 23 18.0 4.40
25 12.1 5.95 31 14.8 7.15
30 12.0 6.30 28 15.6 7.25
28 10.1 5.45 21 16.2 5.30
24 14.7 3.75 20 14.1 3.10
26 14.8 5.10 15 17.5 2.40
27 14.4 4.05 26 14.1 4.25

24 19.1 5.80
16 22.5 1.55

Group III Group IV
z y1 y2 z y1 y2

18 17.0 4.55 32 12.5 2.90
10 12.5 2.65 25 8.7 3.00
33 21.5 6.50 28 9.4 3.40
25 22.2 4.85 27 15.0 5.40
35 13.0 8.75 23 12.9 4.45
33 13.0 5.20 25 12.1 4.30
31 10.9 4.75 26 13.2 5.00
34 12.0 5.85 34 11.5 3.40
16 22.8 2.85
31 16.5 6.55
28 18.4 6.60

EXERCISE 10.5.3. Smith, Gnanadesikan, and Hughes (1962) also give data on the variable y2
that measures chloride in the urine of young men. These data are also reported in Table 10.9. As
in the previous problem, the men were divided into four categories based on obesity. Perform an
analysis of covariance on y2 again using the specific gravity as the covariate z. Compare the results
of the ACOVA to the results of the ANOVA that ignores the covariate.

EXERCISE 10.5.4. Test the need for a power transformation in each of the following problems
from the previous chapter. Use all three constructed variables on each data set and compare results.

(a) Exercise 9.5.1.
(b) Exercise 9.5.2.
(c) Exercise 9.5.3.
(d) Exercise 9.5.4.
(e) Exercise 9.5.5.
(f) Exercise 9.5.6.
(g) Exercise 9.5.8.

EXERCISE 10.5.5. Consider the analysis of covariance for a completely randomized design with
one covariate. Find the form for a 99% prediction interval for an observation, say, from the first
treatment group with a given covariate value z.
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EXERCISE 10.5.6. Assuming that in model (10.3.1) Cov(ȳi·, γ̂) = 0, show that

Var

(
a

∑
i=1

λi (ȳi·− z̄i·γ̂)

)
= σ

2

[
∑

a
i=1 λ 2

i
b

+
(∑

a
i=1 λiz̄i·)

2

SSEzz

]
.





Chapter 11

Factorial treatment structures

Factorial treatment structures are simply an efficient way of defining the treatments used in an ex-
periment. They can be used with any of the standard experimental designs discussed in Chapter 9.
Factorial treatment structures have two great advantages, they give information that is not readily
available from other methods and they use experimental material very efficiently. Section 11.1 in-
troduces factorial treatment structures with an examination of treatments that involve two factors.
Section 11.2 gives general results for two-factor treatment structures. Section 11.3 presents an ex-
ample with three factors. Section 11.4 examines extensions of the Latin square designs that were
discussed in Section 9.3.

11.1 Two factors

The effect of alcohol and sleeping pills taken together is much greater than one would suspect
based on examining the effects of alcohol and sleeping pills separately. If we did one experiment
with 20 subjects to establish the effect of a ‘normal’ dose of alcohol and a second experiment with
20 subjects to establish the effect of a ‘normal’ dose of sleeping pills, the temptation would be to
conclude (incorrectly) that the effect of taking a normal dose of both alcohol and sleeping pills
would be just the sum of the individual effects. Unfortunately, the two separate experiments provide
no basis for either accepting or rejecting such a conclusion.

We can redesign the investigation to be both more efficient and more informative by using a
factorial treatment structure. The alcohol experiment would involve 10 people getting no alcohol
(a0) and 10 people getting a normal dose of alcohol (a1). Similarly, the sleeping pill experiment
would have 10 people given no sleeping pills (s0) and 10 people getting a normal dose of sleeping
pills (s1). The two factors in this investigation are alcohol (A) and sleeping pills (S). Each factor is at
two levels, no drug (a0 and s0, respectively) and a normal dose (a1 and s1, respectively). A factorial
treatment structure uses treatments that are all combinations of the different levels of the factors.
Thus a factorial experiment to investigate alcohol and sleeping pills might have 5 people given no
alcohol and no sleeping pills (a0s0), 5 people given no alcohol but a normal dose of sleeping pills
(a0s1), 5 people given alcohol but no sleeping pills (a1s0), and 5 people given both alcohol and
sleeping pills (a1s1).

Assigning the treatments in this way has two major advantages. First, it is more informative in
that it provides direct evidence about the effect of taking alcohol and sleeping pills together. If the
joint effect is different from the sum of the effect of alcohol plus the effect of sleeping pills, the
factors are said to interact. If the factors interact, there does not exist a single effect for alcohol, the
effect of alcohol depends on whether the person has taken sleeping pills or not. Similarly, there is
no one effect for sleeping pills, the effect depends on whether a person has taken alcohol or not.
Note that if the factors interact, the separate experiments described earlier have very limited value.

The second advantage of using factorial treatments is that if the factors do not interact, the fac-
torial experiment is more efficient than performing the two separate experiments. The two separate
experiments involve the use of 40 people, the factorial experiment involves the use of only 20 peo-
ple, yet the factorial experiment contains just as much information about both alcohol effects and

299
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Table 11.1: Spectrometer data

Block Trt.
Treatment 1 2 3 means
New-clean 0.9331 0.8664 0.8711 0.89020̄
New-soiled 0.9214 0.8729 0.8627 0.88566̄
Used-clean 0.8472 0.7948 0.7810 0.80766̄
Used-soiled 0.8417 0.8035 0.8099 0.81836̄
Block means 0.885850 0.834400 0.831175 0.850475

Table 11.2: Analysis of variance for spectrometer data

Source d f SS MS F P
Trts 3 0.0170401 0.0056800 70.05 0.000
Blocks 2 0.0075291 0.0037646 46.43 0.000
Error 6 0.0004865 0.0000811
Total 11 0.0250558

sleeping pill effects as the two separate experiments. The effect of alcohol can be studied by con-
trasting the 5 a0s0 people with the 5 a1s0 people and also by comparing the 5 a0s1 people with the
5 a1s1 people. Thus we have a total of 10 no alcohol people to compare with 10 alcohol people, just
as we had in the separate experiment for alcohol. Recall that with no interaction, the effect of factor
A is the same regardless of the dose of factor S, so we have 10 valid comparisons of the effect of
alcohol. A similar analysis shows that we have 10 no sleeping pill people to compare with 10 peo-
ple using sleeping pills, the same as in the separate experiment for sleeping pills. Thus, when there
is no interaction, the 20 people in the factorial experiment are as informative about the effects of
alcohol and sleeping pills as the 40 people in the two separate experiments. Moreover, the factorial
experiment provides information about possible interactions between the factors that is unavailable
from the separate experiments.

The factorial treatment concept involves only the definition of the treatments. Factorial treatment
structure can be used in completely randomized designs, randomized complete block designs, and
in Latin square designs. All of these designs allow for arbitrary treatments, so the treatments can be
chosen to have factorial structure if the experimenter wishes.

Experiments involving factorial treatment structures are often referred to as factorial experi-
ments or factorial designs. A useful notation for factorial experiments identifies the number of fac-
tors and the number of levels of each factor. For example, the alcohol–sleeping pill experiment has
4 treatments because there are 2 levels of alcohol times 2 levels of sleeping pills. This is described
as a 2× 2 factorial experiment. If we had 3 levels of alcohol and 4 doses (levels) of sleeping pills
we would have a 3×4 experiment involving 12 treatments.

EXAMPLE 11.1.1. A 2×2 factorial in 3 randomized complete blocks
Consider again the spectroscopy data of Example 9.2.1. The treatments were all combinations of two
disks (new, used) and two windows (clean, soiled), so the treatments have a 2×2 factorial structure.
The full data are repeated in Table 11.1 along with treatment and block means. The analysis of
variance table is given in Table 11.2.

We now decompose the treatments line in the ANOVA table to account for the effects of the two
factors, disks and windows, and the possible interaction between them. The four treatment means
can be rearranged to provide disk means and windows means.
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Treatment means
Window Disk

Disk Clean Soiled means
New .89020̄ .88566̄ .887933̄
Used .80766̄ .81836̄ .813016̄
Window means .848933̄ .852016̄ .850475

The main effect for disks comes from treating them as the treatments in a one-way ANOVA. The
disk means were reported above, so a mean square and sum of squares for disks can be computed as
in a one-way ANOVA. The treatment means are averages of 3 observations, so the disk means are
averages of 6 observations. The sample variance of the disk means is .002806253, so

MS(Disk) = 6(.002806253) = .0168375 .

With 2 disk types, the sum of squares is the mean square times (2−1),

SS(Disk) = (2−1).0168375 = .0168375 .

To examine the main effect for windows, the mean square and sum of squares for windows are
also computed as if they were treatments in a one-way ANOVA. The window means are the average
of 6 observations and the sample variance of the window means is .000004753, so

MS(Wind) = 6(.000004753) = .0000285 .

There are 2 windows, so the sum of squares is the mean square times (2−1),

SS(Wind) = (2−1).0000285 = .0000285 .

The sum of squares for interaction between disks and windows is simply what is left of the
SSTrts after explaining the main effects for disks and windows. It is obtained by subtraction from
the full sum of squares treatments,

SS(Disk ∗Wind) = SSTrts−SS(Disk)−SS(Wind)

= .0170401− .0168375− .0000285
= .0001741 .

This has some round off error in the last decimal place. Similarly,

d f (Disk ∗Wind) = d f Trts−d f (Disk)−d f (Wind)

= 3−1−1
= 1 .

Alternatively, the degrees of freedom can be computed as d f (Disk∗Wind)= [d f (Disk)][d f (Wind)].
The mean square for interaction is

MS(Disk ∗Wind) =
30.08

1
= 30.08 .

Having decomposed the treatments line, the analysis of variance table becomes

Analysis of variance for spectrometer data
Source d f SS MS F P
Disks 1 .0168375 .0168375 207.64 0.000
Windows 1 .0000285 .0000285 0.35 0.575
Disk∗Wind. 1 .0001740 .0001740 2.15 0.193
Blocks 2 .0075291 .0037646 46.43 0.000
Error 6 .0004865 .0000811
Total 11 .0250558
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Table 11.3: Contrasts for the spectrometer data

Contrast coefficients Trt.
Treatment D W DW means
New-clean 1 1 1 0.89020̄
New-soiled 1 −1 −1 0.88566̄
Used-clean −1 1 −1 0.80766̄
Used-soiled −1 −1 1 0.81836̄
Est .149833 −.006167 .015233
SS .0168375 .0000285 .0001740

The F statistic for disk–window interaction is not significant. This indicates a lack of evidence
that disks behave differently with clean windows than with soiled windows. In examining the four
disk–window means, the difference between clean and soiled windows differs in sign between new
and used disks, but the effect is not significantly different from 0. This is the same conclusion
we reached in Chapter 9 using an interaction contrast and interaction plots. The F statistic for
disks indicates that disk types have different effects when averaging over the two window types.
From the disk means, it is clear that new disks give greater yields than used disks. The F statistic
for windows shows no evidence that the window types affect yield when averaged over disks. If
interaction existed, this would be merely an artifact of averaging over disks, and the windows would
be important because the interaction would imply that disks behave differently with the different
types of windows. However, we possess no evidence of interaction.

Normally we would need to investigate contrasts in the interaction, disks, and windows, but for
these data each source has only one degree of freedom, hence only one contrast. Thus the anal-
ysis of variance table provides F statistics for all the interesting contrasts and the analysis given
in the previous paragraph is complete. When we considered this example earlier as a randomized
complete block with four treatments, we had three degrees of freedom for treatments and exam-
ined three orthogonal contrasts. The contrasts, estimates, and sums of squares are given again in
Table 11.3. Contrast D looks at the difference in disks averaging over windows. Contrast W looks at
the difference in windows averaging over disks. Contrast DW looks at how the difference between
disks changes from clean to soiled windows. Note that the sums of squares for the D, W, and DW
contrasts are exactly the same as the sums of squares for disks, windows, and interaction in the
ANOVA table. This is a phenomenon that occurs quite generally in factorial experiments. The sums
of squares for the individual factors (factorial main effects) and interactions can be constructed
from either orthogonal contrasts in the original treatments or one-way ANOVA computations.

The factorial treatment structure also suggests two residual plots that were not examined earlier.
These are plots of the residuals versus disk and the residuals versus window. The plots are given in
Figures 11.1 and 11.2. They give no particular cause for alarm. 2

Minitab commands

The following Minitab commands generate this analysis of variance. Here c1 is a column containing
the spectrometer data, c2 has values from 1 to 4 indicating the treatment, c3 has values from 1 to
3 indicating the block, c4 has values 1 and 2 indicating the disk type, and c5 has values 1 and 2
indicating the window type.

MTB > names c1 ’y’ c2 ’Trts’ c3 ’Blks’ c4 ’Disk’ c5 ’Window’

MTB > anova c1 = c4|c5 c3;

SUBC> means c3 c4 c5 c4*c5;

SUBC> resid c10.

In the ‘anova’ command, c4|c5 could be replaced by c4 c5 c4∗c5. The c4 and c5 terms indicate main
effects for disks and windows, respectively. Disk by window interaction is indicated by c4∗ c5.
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Figure 11.1: Plot of residuals versus disk, spectrometer data.

(100)resid

- *

-

.80+ *

-

- *

- * *

- *

.00+ * *

-

- *

-

-

-.80+ 2

-

-

- *

-

-------+---------------------------------+-----Window

Clean Soiled

Figure 11.2: Plot of residuals versus window, spectrometer data.
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Modeling factorials

The general model for a randomized complete block design is

yi j = µ +αi +β j + εi j, εi js independent N(0,σ2),

i = 1, . . . ,a, j = 1, . . . ,b, where i denotes the treatments and j denotes blocks. With factorial treat-
ment structure involving two factors, one factor with levels g = 1, . . . ,G and the other with levels
h = 1, . . . ,H, we must have a = GH and we can replace the single subscript i for treatments with the
pair of subscripts gh. For example, with G = 3 and H = 2 we might use the following correspon-
dence.

i 1 2 3 4 5 6
(g,h) (1,1) (1,2) (2,1) (2,2) (3,1) (3,2)

Moreover, we can rewrite the RCB model as

ygh j = µ +αgh +β j + εgh j, εgh js independent N(0,σ2), (11.1.1)

g = 1, . . . ,G, h = 1, . . . ,H, j = 1, . . . ,b, where αgh is the effect due to the treatment combination
having level g of the first factor and level h of the second. Changing the subscripts really does
nothing to the model; the subscripting is merely a convenience.

We can also rewrite the model to display factorial effects similar to those used in the analysis.
This is done by expanding the treatment effects into effects corresponding to the ANOVA table
lines. Write

ygh j = µ + γg +ξh +(γξ )gh +β j + εgh j, (11.1.2)

where the γgs are main effects for the first factor, the ξhs are main effects for the second factor, and
the (γξ )ghs are effects for the interaction between the factors.

Changing from model (11.1.1) to model (11.1.2) is accomplished by making the substitution

αgh ≡ γg +ξh +(γξ )gh.

There is less going on here than meets the eye. The only difference between the parameters αgh and
(γξ )gh is the choice of Greek letters and the presence of parentheses. They accomplish exactly the
same things for the two models. The parameters γg and ξh are completely redundant. Anything one
could explain with these parameters could be explained equally well with (γξ )ghs. As they stand,
models (11.1.1) and (11.1.2) are completely equivalent. The point of using model (11.1.2) is that it
lends itself nicely to an interesting reduced model. If we drop the αghs from model (11.1.1), we drop
all of the treatment effects. Testing model (11.1.1) against this reduced model is a test of whether
there are any treatment effects. If we drop the (γξ )ghs from model (11.1.2), we get

ygh j = µ + γg +ξh +β j + εgh j. (11.1.3)

This still has the γgs and the ξhs in the model. Thus, dropping the (γξ )ghs does not eliminate all of
the treatment effects, it only eliminates effects that cannot be explained as the sum of an effect for
the first factor plus an effect for the second factor. In other words, it only eliminates the interaction
effects. The reduced model (11.1.3) is the model without interaction and consists of additive factor
effects. The test for interaction is the test of model (11.1.3) against the larger model (11.1.2). By
definition, interaction is any effect that can be explained by model (11.1.2) but not by model (11.1.3).

As discussed, testing for interaction is a test of whether the (γξ )ghs can be dropped from model
(11.1.2). If there is no interaction, a test for main effects, say the γgs, examines whether the γgs
can be dropped from model (11.1.3), i.e., whether the factor has any effect or whether γ1 = γ2 =
· · · = γG. If interaction is present, the test for main effects is much more complicated. If model
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Table 11.4: Potato data

Columns Row
Row 1 2 3 4 5 6 means
1 E(633) B(527) F(652) A(390) C(504) D(416) 520.33̄
2 B(489) C(475) D(415) E(488) F(571) A(282) 453.33̄
3 A(384) E(481) C(483) B(422) D(334) F(646) 458.33̄
4 F(620) D(448) E(505) C(439) A(323) B(384) 453.16̄
5 D(452) A(432) B(411) F(617) E(594) C(466) 495.33̄
6 C(500) F(505) A(259) D(366) B(326) E(420) 396.00
Col. means 513.00 478.00 454.16̄ 453.66̄ 442.00 435.66̄ 462.75

Trts A B C D E F
Means 345.00 426.50 477.83̄ 405.16̄ 520.16̄ 601.83̄ 462.75

(11.1.2) is appropriate, the test for γ main effects examines whether there are differences in the
terms γg +(γξ )g· where we have averaged the interactions over the subscript for the second effect
in the model. The results of such a test are difficult to interpret, so it is common practice to begin the
analysis by evaluating whether there is evidence that we need to consider interactions. If interactions
are important, they must be dealt with. Either we give up on model (11.1.2), go back to model
(11.1.1), and simply examine the various treatments as best we can or we examine the nature of the
interaction directly. Note that we did not say that whenever interactions are significant they must
be dealt with. Whether an interaction is important or not depends on the particular application. For
example, if interactions are statistically significant but are an order of magnitude smaller than the
main effects, one might be able to draw useful conclusions while ignoring the interactions.

Examining interactions

We now present an example that involves examining interaction contrasts.

EXAMPLE 11.1.2. A 2×3 factorial in a 6×6 Latin square.
Fisher (1935, sections 36, 64) presented data on the pounds of potatoes harvested from a piece of
ground that was divided into a square consisting of 36 plots. Six treatments were randomly assigned
to the plots in such a way that each treatment occurred once in every row and once in every column
of the square. The treatments involved two factors, a nitrogen based fertilizer (N) and a phosphorous
based fertilizer (P). The nitrogen fertilizer had two levels, none (n0) and a standard dose (n1). The
phosphorous fertilizer had three levels, none (p0), a standard dose (p1), and double the standard
dose (p2). We identify the six treatments for this 2×3 experiment as follows:

A B C D E F
n0 p0 n0 p1 n0 p2 n1 p0 n1 p1 n1 p2

The data are presented in Table 11.4 along with row, column, and treatment means. The basic
ANOVA is presented in Table 11.5. It is computed from the sample variance of all 36 observations,
the row means, the column means, and the treatment means, as in Section 9.3. The ANOVA F test
indicates substantial differences between the treatments. Blocking on rows of the square was quite
effective with an F ratio of 7.10. Blocking on columns was considerably less effective with an F of
only 3.20, but it was still worthwhile.

Figures 11.3 through 11.6 contain residual plots. They show some interesting features but noth-
ing so outstanding that I, personally, would find them disturbing.

Table 11.6 rearranges the treatment means and gives means for nitrogen and phosphorous. Each
treatment mean is the average of 6 observations and the nitrogen means are averages over three
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Figure 11.3: Plot of residuals versus rows, potato data.
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Figure 11.4: Plot of residuals versus columns, potato data.
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Figure 11.5: Plot of residuals versus treatments, potato data.
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Table 11.5: Analysis of variance table for potato data

Source d f SS MS F P
Rows 5 54199 10840 7.10 .001
Columns 5 24467 4893 3.20 .028
Treatments 5 248180 49636 32.51 .000
Error 20 30541 1527
Total 35 357387

Table 11.6: Treatment means for potato data

Phosphorous Nit.
Nitrogen p0 p1 p2 means
n0 345.00 426.50 477.83̄ 416.44̄
n1 405.16̄ 520.16̄ 601.83̄ 509.05̄
Phos. means 375.083̄ 473.333̄ 539.833̄ 462.75

treatment means, so the nitrogen means are averages over 18 observations. The sample variance of
the nitrogen means is 4288.41. Multiplying by 18 gives

MS(N) = 18(4288.41) = 77191.38 .

There are 2 nitrogen means, so multiplying by (2−1) gives

SS(N) = (2−1)77191.38 = 77191.38 .

The phosphorous means are averages of two treatment means, so they are averages over 2×6 =
12 observations. The sample variance of the phosphorous means is 6869.65. Multiplying by 12 gives

MS(P) = 12(6869.65) = 82435.75 .

There are 3 phosphorous means, so multiplying by (3−1) gives

SS(P) = (3−1)82435.75 = 164871.50 .

The sum of squares for N ∗P interaction are

SS(N ∗P) = SSTrts−SS(N)−SS(P)

= 248179.92−77191.38−164871.50
= 6117.04 .

Similarly,

d f (N ∗P) = d f Trts−d f (N)−d f (P)

= 5−1−2
= 2

or, equivalently,
d f (N ∗P) = [d f (N)][d f (P)] = [1][2] = 2.

The mean square for interaction is

MS(N ∗P) =
6117

2
= 3058.5 .
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Table 11.7: Expanded ANOVA table for potato data

Source d f SS MS F P
Rows 5 54199 10840 7.10 .001
Columns 5 24467 4893 3.20 .028
Nitrogen 1 77191 77191 50.55 .000
Phosphorous 2 164871 82436 53.99 .000
N ∗P 2 6117 3059 2.00 .162
Error 20 30541 1527
Total 35 357387
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Figure 11.7: Interaction plot of nitrogen versus phosphorous, potato data.

The expanded ANOVA table is given in Table 11.7. The main effects for nitrogen and phospho-
rous are very significant. The interaction is not significant with a P value of .162 but P is not so large
that interaction can be safely ignored. The interaction test has two degrees of freedom so if one con-
trast with an interesting interpretation accounts for nearly all of the interaction sum of squares, that
information might be very useful. We proceed to examine the interaction. However, we also note
that the interaction F statistic is an order of magnitude less than the main effect Fs, so a decision
to ignore interaction might be based on substantive rather than statistical grounds. A subject matter
specialist might argue that even if we found an interpretable interaction, that interaction is so much
smaller than the main effects that it is simply not worth bothering about.

We now begin our discussion of the construction, interpretation, and evaluation of interaction
contrasts. We will use notation for contrasts that is analogous to notation used with one-way analysis
of variance. The precise definition of the notation is given at the end of the section. Intuitively,
interaction is best evaluated using an interaction plot such as that given in Figure 11.7. The figure has
one curve consisting of the three means for treatments that received n0 and another curve consisting
of the three means for treatments that received n1. If there is no interaction, these curves should
be parallel up to sampling variation. The deviations of the curves from being parallel suggest the
nature of any interaction.

There is only one contrast available for nitrogen,

µn0 −µn1



310 11. FACTORIAL TREATMENT STRUCTURES

which we display in tabular form as
N Contrast
n0 1
n1 −1

The phosphorous was applied at 0, 1, and 2 standard doses; these are quantitative factor levels so,
as in Section 7.12 and Appendix B.4, we use the linear and quadratic contrasts, i.e.,

−µp0 +µp2

and
µp0 −2µp1 +µp2 .

In tabular form we write
P

Contrast p0 p1 p2
Linear −1 0 1
Quadratic 1 −2 1

These two phosphorous contrasts are orthogonal.
We can construct two orthogonal interaction contrasts from the one nitrogen contrast and the

two orthogonal phosphorous contrasts. The interaction contrasts are contrasts in the original treat-
ments so we need six interaction contrast coefficients. The six interaction contrast coefficients are
obtained by multiplying the corresponding main effect contrast coefficients. The nitrogen–linear
phosphorous interaction contrast coefficients are constructed below from the nitrogen contrast and
linear phosphorous contrast.

N ∗P linear interaction contrast
P

p0 p1 p2
N Contrasts −1 0 1
n0 1 −1 0 1
n1 −1 1 0 −1

For example, the coefficient of 1 for the combination n1 and p0 is obtained by multiplying the
marginal coefficient for n1 (−1) by the marginal coefficient for p0 (−1). The coefficient of −1 for
the combination n1 and p2 is obtained by multiplying the marginal coefficient of −1 for n1 by the
marginal coefficient of 1 for p2. To interpret this contrast, observe that the P linear contrast has
been applied to the treatments with n0 and also to the treatments with n1. We have then taken the
difference between the P linear contrasts at n0 and at n1. Thus, this interaction contrast examines
whether the P linear contrast is the same at the two levels of nitrogen. In terms of Figure 11.7, we fit
two straight lines, one for n0 and one for n1. The P linear contrast looks at the slope of such lines,
so the N ∗P linear contrast examines whether the slopes for the two lines are different.

Note that the interaction contrast has coefficients for all six of the original treatments. This is
just a contrast in the original treatments but it is constructed in a particular way that insures that it
evaluates interaction. The parameter associated with the N ∗P linear interaction contrast is

Par = (−1)µn0 p0 +(1)µn1 p0 +(0)µn0 p1 +(0)µn1 p1 +(1)µn0 p2 +(−1)µn1 p2 .

The corresponding estimate uses the 6 treatment means,

Est = −345.00+405.16̄+(0)426.50+(0)520.16̄+477.83̄−601.83̄
= −63.83̄.

The treatment means are averages over 6 observations, so the standard error is

SE(Est) =
√

MSE [(−1)2 +(1)2 +(0)2 +(0)2 +(1)2 +(−1)2]/6 = 31.91.
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The reference distribution is t(20).
The sum of squares for the contrast is

SS(N ∗P Lin) =
(−63.83̄)2

[(−1)2 +(1)2 +(0)2 +(0)2 +(1)2 +(−1)2]/6
= 6112.

This yields an F statistic of 6112/1527 = 4.00 and an unadjusted P value of .059. There is some
suggestion of an interaction here. There are fairly clear trends in Figure 11.7 with yields increasing
as phosphate increases. This interaction contrast suggests that there may be a difference in the slopes
of these trends depending on the level of nitrogen fertilizer used; however the F statistic is not large
enough for us to be sure.

We can construct another interaction contrast from the nitrogen contrast and the quadratic con-
trast in phosphorous. Again, the interaction contrast is obtained by appropriate multiplication of the
nitrogen and phosphorous contrast coefficients.

N ∗P quadratic interaction contrast
P

p0 p1 p2
N Contrasts 1 −2 1
n0 1 1 −2 1
n1 −1 −1 2 −1

The parameter associated with this contrast is

Par = (1)µn0 p0 +(−1)µn1 p0 +(−2)µn0 p1 +(2)µn1 p1 +(1)µn0 p2 +(−1)µn1 p2 .

This contrast looks at whether the quadratic contrast is the same at nitrogen level n0 as at n1. In
terms of Figure 11.7, the quadratic contrast measures the curvature in a graph, so the N ∗P quadratic
interaction contrast examines whether the curvature of the n0 graph differs from the curvature in the
n1 graph. The estimate of the N ∗P quadratic contrast uses the 6 treatment means,

Est = 345.00−405.16̄− (2)426.50+(2)520.16̄+477.83̄−601.83̄
= 3.16̄.

The treatment means are averages over 6 observations, so the standard error is

SE(Est) =
√

MSE [(1)2 +(−1)2 +(−2)2 +(2)2 +(1)2 +(−1)2]/6

= 55.26 .

The reference distribution is t(20).
The sum of squares for the contrast is

SS(N ∗P Quad) =
(3.16̄)2

[(1)2 +(−1)2 +(−2)2 +(2)2 +(1)2 +(−1)2]/6
= 5.

This yields an F statistic of .003 and a P value of .955. The F statistic is almost disturbingly small
but perhaps not as small as first impressions indicate. If we were rejecting for small values of F , the
P value would be 1− .955 = .045, which is a small P value but not alarmingly small.

There is only one nitrogen contrast and the two phosphorous contrasts were chosen to be or-
thogonal, so the interaction contrasts are orthogonal and

SS(N ∗P) = 6117 = 6112+5 = SS(N ∗P Lin)+SS(N ∗P Quad).

The vast bulk of the interaction sum of squares is due to the N ∗P Lin contrast, but SS(N ∗P Lin)
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is not large enough for us to be sure that the slopes change depending on the level of nitrogen. In
balanced analysis of variance, the method illustrated here for constructing interaction contrasts
gives orthogonal interaction contrasts whenever both sets of main effect contrasts are orthogonal.

In the absence of evidence of interaction, it is necessary to examine contrasts in the main ef-
fects. There is one degree of freedom for nitrogen, hence only one contrast: the difference between
no nitrogen and the standard dose. From Table 11.7, the difference is highly significant and from
the means table we see that yields increase when nitrogen is applied. There are two degrees of free-
dom for phosphorous, so we must examine phosphorous contrasts explicitly. We use the linear and
quadratic contrasts that were used to examine possible interactions.

The quadratic contrast is
Par = µp0 −2µp1 +µp2 .

With only three treatments, it is probably better to think of this as a curvature contrast than as a
quadratic contrast. If this contrast is substantial, it indicates the lack of a simple linear relationship
between increasing phosphorous dose and yield, i.e., there is some curvature in the relationship. The
estimate for the quadratic contrast is

Est = (1)375.083̄+(−2)473.333̄+(1)539.833̄ =−31.75

The phosphorous means are averages over 12 observations, so the standard error is

SE(Est) =
√

MSE [(1)2 +(−2)2 +(1)2]/12 = 27.63 .

The reference distribution is t(20). The sum of squares is

SS(P Quad) =
(−31.75)2

[(1)2 +(−2)2 +(1)2]/12
= 2016 .

This yields an F statistic of 2016/1527 = 1.32, which is quite small. There is no evidence for
curvature in the relationship between yields and phosphorous dose.

The linear contrast is

Par = (−1)µp0 +(0)µp1 +(1)µp2

= −µp0 +µp2 .

The corresponding estimate uses the phosphorous means from Table 11.6,

Est = (−1)375.083̄+(0)473.333̄+(1)539.833̄ = 164.75 .

This indicates that the yields increase by 164.75 as we go from no phosphorous to a double dose.
Thus, if a line is appropriate for the relationship between phosphorous dose and yield, each dose
increases yields by an estimated 164.75/2= 82.375. As before, the phosphorous means are averages
over 12 observations, so the standard error of the contrast is

SE(Est) =
√

MSE [(−1)2 +(0)2 +(1)2]/12 = 15.95 .

The reference distribution is t(20). A 95% confidence interval has endpoints

164.75±2.086(15.95),

giving the interval (131.5,198.0). This is an interval for the mean increase from no dose to a double
dose, so if a line is appropriate we obtain the 95% confidence interval for the mean increase due to
a single dose of phosphorous by dividing the entries in this interval by 2, i.e., (65.7,99.0).
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Table 11.8: ANOVA table including contrasts for potato data

Source d f SS MS F P
Rows 5 54199 10840 7.10 .001
Columns 5 24467 4893 3.20 .028
Nitrogen 1 77191 77191 50.55 .000
Phosphorous 2 164871 82436 53.99 .000

(P lin) (1) (162855) (162855) (106.65) .000
(P quad) (1) (2016) (2016) (1.32) .264

N ∗P 2 6117 3059 2.00 .162
(N ∗P Lin) (1) (6112) (6112) (4.00) .059
(N ∗P Quad) (1) (5) (5) (.003) .955

Error 20 30541 1527
Total 35 357387

The sum of squares for the linear contrast in phosphorous is

SS(P Lin) =
(164.75)2

[(−1)2 +(0)2 +(1)2]/12
= 162855 .

This yields an F statistic of 162855/1527 = 106.65, which is huge. There is clearly a trend as phos-
phorous dose increases. As seen above, the trend is that yields increase as phosphorous increases.
This conclusion is only valid in the range of dosages used in the experiment. It is well known that
too much fertilizer can kill plants, so the increasing trend will not go on forever.

Sometimes the analysis of the contrasts is included in the ANOVA table. An example is given
in Table 11.8.

To summarize, the nitrogen effect is significant and has by an estimate of 509.05− 416.44 =
92.61. The 95% confidence interval for the nitrogen effect has endpoints

92.61±2.086
√

1527 [12 +(−1)2]/18,

giving the interval (65.4,119.8). The linear effect in phosphorous acts to increase yields for a single
dose an estimated 82.375 pounds with 95% interval (65.7,99.0). There is no evidence of curvature.
Thus the addition of a dose of nitrogen adds, on the average, between 65 and 120 pounds to the
yields and each addition of a dose of phosphorous adds, on the average, between 66 and 99 pounds
to the yields. There is a suggestion, but no firm evidence, of interaction. Any such interaction is
restricted to the linear trends in phosphorous. Such an interaction would indicate that the increase
due to a dose of phosphorous differs depending on whether nitrogen was applied.

The entire analysis of Table 11.8 could also be constructed by examining orthogonal contrasts
in the original six treatments. Table 11.9 gives the corresponding contrasts, estimates, and sums of
squares. Note that the interaction contrasts are precisely the same as those given earlier. For com-
putational convenience we use the main effect contrasts discussed earlier and simply apply them to
each level of the other factor rather than devising new main effect contrasts that average over levels
of the other factor. While these main effect contrasts give the same sums of squares as in Table 11.8,
the parameters and estimates for the phosphorous contrasts in Table 11.9 are twice as large as the
parameters and estimates given earlier (the standard errors are also twice as large). Similarly, the
parameter and estimate of the nitrogen main effect is three times as large as that computed from
the two nitrogen means. We leave the reader to verify that the contrasts are orthogonal. Note also
that the interaction contrast coefficients can be obtained by multiplying the coefficients from the
corresponding main effect contrasts. 2
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Table 11.9: Orthogonal contrasts in the original six nitrogen–phosphorous treatments

Contrasts Trt.
Treatment N P Lin P Quad N ∗P Lin N ∗P Quad means
n0 p0 1 −1 1 −1 1 345.00
n0 p1 1 0 −2 0 −2 426.50
n0 p2 1 1 1 1 1 477.83̄
n1 p0 −1 −1 1 1 −1 405.16̄
n1 p1 −1 0 −2 0 2 520.16̄
n1 p2 −1 1 1 −1 −1 601.83̄
Est −277.83̄ 329.50 −63.50 −63.83̄ 3.16̄
SS 77191 162855 2016 6112 5

Some additional theory

We now present additional theory to review the procedure for a Latin square and explicate our
notation. The basic Latin square model is

yi jk = µ +αi +κ j +ρk + εi jk, εi jks independent N(0,σ2),

where the subscripts i, j, and k indicate treatments, columns, and rows, respectively. With two
factors, we can again replace the treatment subscript i with the pair (g,h) and write

ygh jk = µ +αgh +κ j +ρk + εgh jk, εgh jks independent N(0,σ2).

Again, we can expand the treatment effects αgh to correspond to the factorial treatment structure as

ygh jk = µ + γg +ξh +(γξ )gh +κ j +ρk + εgh jk.

In constructing interaction contrasts, we discussed nitrogen main effect contrasts in terms of
the parameters µn0 and µn1 , phosphorous main effect contrasts in terms of the parameters µp0 , µp1 ,
and µp2 , and interaction contrasts in terms of the parameters µn0 p0 , µn1 p0 , µn0 p1 , µn1 p1 , µn0 p2 , and
µn1 p2 . None of these parameters were explicitly defined. Now that we have specified the model,
their definitions can be given.

For Fisher’s example, the nitrogen levels n0 and n1 are indicated by g = 1,2, respectively. The
phosphorous levels p0, p1, and p2 are indicated by h = 1,2,3, respectively. Columns and rows
are j = 1, . . . ,6 and k = 1, . . . ,6, but remember that in a Latin square specifying a treatment and
either a row or a column automatically specifies the value of the other index. The estimate of an
interaction contrast involves the means ȳgh··. The parameter µn0 p0 corresponding to g = 1, h = 1 is,
by definition,

µn0 p0 ≡ E(ȳ11··) = µ + γ1 +ξ1 +(γξ )11 + κ̄·+ ρ̄·.

This is just the mean of all the values E(y11 jk). Similar results hold for the other treatment combina-
tions. It is not difficult to see that in an interaction contrast all of these parameters cancel out except
the (γξ )gh parameters. Interaction contrasts depend only on the interaction parameters (γξ )gh.

Contrasts in the nitrogen main effects are estimated by contrasting the ȳg···s. By definition,

µn1 ≡ E(ȳ2···) = µ + γ2 + ξ̄·+(γξ )2·+ κ̄·+ ρ̄·.

This is just the mean of all the values E(y2h jk). It is easily seen that the contrast µn0 − µn1 reduces
to γ1 +(γξ )1·− γ2− (γξ )2· and if there are no interactions, it reduces further to γ1− γ2, which is a
function of only the nitrogen effects. Similarly,

µp2 ≡ E(ȳ·3··) = µ + γ̄·+ξ3 +(γξ )·3 + κ̄·+ ρ̄·,

so a contrast in the phosphorous main effects is a contrast in the ξh +(γξ )·h parameters and if no
interaction exists, it is a contrast in the ξhs.
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11.2 Two-way analysis of variance with replication

We have not discussed a two-factor experiment in a balanced completely randomized design (CRD)
but the pattern of analysis is the same. In the current section, we give some general formulae relating
to the analysis for a CRD, and in the next section, we examine a three-factor experiment in a CRD.
We also include some general formulae for RCBs.

The basic analysis of a completely randomized design is always a one-way ANOVA, say,

yhk = µh + εhk, εhks independent N(0,σ2)

or
yhk = µ + τh + εhk, εhks independent N(0,σ2),

where h = 1, . . . ,T , k = 1, . . . ,N, and the τhs indicate treatment effects. With a factorial treatment
structure based on two factors, the first having levels i = 1, . . . ,a and the second having levels
j = 1, . . . ,b, we must have T = ab and we can replace the subscript h with the pair i j to write

yi jk = µ + τi j + εi jk, εi jks independent N(0,σ2)

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,N. As shown earlier with the RCB and Latin square designs, the
treatment effects can be expanded to illustrate the effects used in the ANOVA table,

yi jk = µ +αi +η j +(αη)i j + εi jk, (11.2.1)

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,N. The parameter µ is viewed as a grand mean, αi is an effect for
the ith level of the first factor, η j is an effect for the jth level of the second factor, and the (αη)i js
are called the interaction effects.

Model (11.2.1) is grossly over parameterized. There are many more treatment effects than can
be clearly defined. The original treatment effects, the τi j terms, are clearly equivalent to the (αη)i j
terms, they have the same subscripts. For example, if τi j has any value, say 5, we can always recon-
struct it from the corresponding αi +η j +(αη)i j terms in (11.2.1) by taking αi = 0, η j = 0, and
(αη)i j = 5. In fact, we can always set the terms other than the (αη)i js to 0 and still reconstruct the
τi js. Conversely, anything obtained from model (11.2.1) can be obtained from the one-way ANOVA
model. If the terms in model (11.2.1) take on any values, say µ +αi +η j +(αη)i j = 1+2+3+4,
we can reconstruct this by simply taking µ = 0 and τi j = 10.

Model (11.2.1) is just an over parameterized version of the one-way ANOVA model. It is valu-
able because of what happens when we drop the ‘interaction’ terms, the (αη)i js. If we drop these
terms, we have a special structure in the factorial effects,

yi jk = µ +αi +η j + εi jk. (11.2.2)

In this model, the effect of the first factor and the effect of the second factor are additive. The
effect of factor 1 is the same, regardless of the level of factor 2, and the effect of factor 2 is the
same, regardless of the level of factor 1. This is what is meant when we say that two factors do
not interact. Actually, the test for interaction is really just a test of model (11.2.2) against model
(11.2.1). If model (11.2.2) gives an adequate fit to the data, then we do not need the interaction
terms to explain the data. If the (αη)i js are necessary to explain the data, we must have interaction.
The idea that interaction exists when the additive effect structure of model (11.2.2) is inadequate is
an idea that applies very generally and can be used to extend balanced analysis of variance modeling
ideas to situations that are unbalanced. Such models are treated in Chapter 16.

Returning to the analysis of model (11.2.1), compute the sample variance of all observations
and get SSTot; also compute the two way table of means
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Table 11.10: Analysis of variance (CRD)

Source d f SS

α a−1 bN ∑
a
i=1 (ȳi··− ȳ···)2

η b−1 aN ∑
b
j=1
(
ȳ· j·− ȳ···

)2

(αη) (a−1)(b−1) N ∑i, j
(
ȳi j·− ȳi··− ȳ· j·+ ȳ···

)2

Error ab(N −1) ∑i, j,k
(
yi jk − ȳi j·

)2

Total abN −1 ∑
a
i=1 ∑

b
j=1 ∑

N
k=1
(
yi jk − ȳ···

)2

j
i 1 2 · · · b α means
1 ȳ11· ȳ12· · · · ȳ1b· ȳ1··
2 ȳ21· ȳ22· · · · ȳ2b· ȳ2··
...

...
...

. . .
...

...
a ȳa1· ȳa2· · · · ȳab· ȳa··
η means ȳ·1· ȳ·2· · · · ȳ·b· ȳ···

The SSTrts is based on the sample variance of the ab means in the body of the table, these are
averages over N observations. The mean square for the first factor, MS(α), is computed from the
α means given in the right margin of the table. These means are averages over bN observations.
MS(α) is the sample variance of the α means times bN. The sum of squares is obtained from the
mean square after multiplying by a−1. The mean square for the second factor, MS(η), is computed
from the η means given along the bottom margin of the table. These means are averages over aN
observations. The sum of squares is obtained from the mean square after multiplying by b−1. The
sum of squares for interaction, SS(αη) is what is left of the SSTrts after subtracting out SS(α) and
SS(η). A closed form can be given for this computation. The formulae are given in Table 11.10.

Contrasts in the main effects work just as always but their interpretation is much simpler if there
is no interaction. For known λis that sum to zero, a contrast in, say the αis, is

Par =
a

∑
i=1

λiαi.

Such contrasts are only estimable, indeed are only well defined, if there is no interaction as in model
(11.2.2). If the interaction model (11.2.1) is necessary, the closest we can come to estimating a main
effect contrast in the αis is to consider

Par =
a

∑
i=1

λi

(
αi +(αη)i·

)
.

In either case, the estimate of the parameter is

Est =
a

∑
i=1

λiȳi·· .

The sample means in the estimate are averages of bN observations, so

SE

(
a

∑
i=1

λiȳi··

)
=

√
MSE

a

∑
i=1

λ 2
i

bN
.
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The reference distribution is t(d fE). The sum of squares for the contrast is

SS

(
a

∑
i=1

λiαi

)
=

[
a

∑
i=1

λiȳi··

]2/[ a

∑
i=1

λ 2
i

bN

]
.

Main effect contrasts for the other factor are dealt with in a similar fashion.
Interesting contrasts in the interactions are constructed from interesting contrasts in the αis

and η js. If ∑
a
i=1 λiαi and ∑

b
j=1 ξ jη j are interesting main effect contrasts, an interesting interaction

contrast can be constructed as

Par =
a

∑
i=1

b

∑
j=1

λiξ j (αη)i j.

The estimate of this interaction contrast is

Est =
a

∑
i=1

b

∑
j=1

λiξ j ȳi j· .

The sample means in the estimate are averages of N observations, so

SE

(
a

∑
i=1

b

∑
j=1

λiξ j ȳi j·

)
=

√√√√MSE
a

∑
i=1

b

∑
j=1

(λiξ j)2

N
.

The reference distribution is t(d fE). The sum of squares for the contrast is

SS

(
a

∑
i=1

b

∑
j=1

λiξ j (αη)i j

)
=

[
a

∑
i=1

b

∑
j=1

λiξ j ȳi j·

]2/[ a

∑
i=1

b

∑
j=1

(λiξ j)
2

N

]
.

If we are interested in a set of a− 1 orthogonal contrasts in the αis and a set of b− 1 orthogonal
contrasts in the η js, we can construct a set of (a−1)(b−1) orthogonal interaction contrasts by tak-
ing all combinations of an α contrast and an η contrast. As usual with a complete set of orthogonal
contrasts, the orthogonal interaction contrasts provide a decomposition of the sums of squares for
interaction. More generally, the interaction contrast coefficients λiξ j can be replaced in all of these
formulae by coefficients qi j having the property that the sum over j for any i equals 0 and the sum
over i for any j equals 0, i.e., qi· = 0 = q· j for any i and j. The problem with picking qi js in this
manner is that it is difficult to interpret the resulting interaction contrasts.

The modifications necessary for dealing with RCBs and Latin squares are very natural. The
basic model for a RCB is

yi jk = µ + τi j +βk + εi jk, εi jks independent N(0,σ2),

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,c, where the βks denote block effects and c is the number of
blocks. The model can be expanded to

yi jk = µ +αi +η j +(αη)i j +βk + εi jk.

The RCB ANOVA table is given as Table 11.11. With no interaction, the formulae for contrasts
in, say, the η js are

Par =
b

∑
j=1

λ jη j

with

Est =
b

∑
j=1

λ j ȳ· j· .
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Table 11.11: Analysis of variance (RCB)

Source d f SS

α a−1 bc∑
a
i=1 (ȳi··− ȳ···)2

η b−1 ac∑
b
j=1
(
ȳ· j·− ȳ···

)2

(αη) (a−1)(b−1) c∑i, j
(
ȳi j·− ȳi··− ȳ· j·+ ȳ···

)2

Blocks c−1 ab∑
c
j=1 (ȳ··c − ȳ···)2

Error (ab−1)(c−1) ∑i, j,k
(
yi jk − ȳi j·− ȳ··k + ȳ···

)2

Tot−C abc−1 ∑
a
i=1 ∑

b
j=1
(
yi jk − ȳ···

)2

The sample means in the estimate are the average of ac observations, so

SE

(
b

∑
j=1

λ j ȳ· j·

)
=

√√√√MSE
b

∑
j=1

λ 2
j

ac
.

The reference distribution is t(d fE). The sum of squares for the contrast is

SS

(
b

∑
j=1

λ jη j

)
=

[
b

∑
j=1

λ j ȳ· j·

]2/[ b

∑
j=1

λ 2
j

ac

]
.

When interaction exists, we can use this same estimate, standard error, reference distribution, and
sum of squares, but the parameter differs. In place of η j, the parameter has η j plus the average of
all the interaction terms with that value of j.

11.3 Multifactor structures

In this section we deal with factorial treatment structures that contain more than two factors. The
example involves three factors. In Example 12.2.1 we examine data that involve four factors.

EXAMPLE 11.3.1. Box (1950) considers data on the abrasion resistance of a fabric. The data are
weight loss of a fabric that occurs between 1000 and 2000 revolutions of a machine designed to test
abrasion resistance. A piece of fabric is put on the machine, it is weighed after 1000 revolutions
and again after 2000 revolutions; the measurement is the change in weight between 1000 and 2000
revolutions. Fabrics of several different types are compared. They differ by whether a surface treat-
ment was applied, the type of filler used, and the proportion of filler used. Two pieces of fabric of
each type are examined, giving two replications in the analysis of variance. The design is similar
to a completely randomized design, but it is not clear which aspects of the manufacturing process
could be subjected to randomization. The data are given in Table 11.12.

The three factors are referred to as ‘surf ’, ‘ f ill’, and ‘prop’, respectively. The factors have 2, 2,
and 3 levels, so this is a 2× 2× 3 factorial. It can also be viewed as just a one-way ANOVA with
12 treatments. Using the three subscripts hi j to indicate a treatment by indicating the levels of surf ,
f ill, and prop, respectively, the one-way ANOVA model is

yhi jk = µhi j + εhi jk (11.3.1)

h = 1,2, i = 1,2, j = 1,2,3, k = 1,2. Equivalently, we can break the treatment effects into main
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Table 11.12: Abrasion resistance data

Surface treatment
Yes No

Proportions 25% 50% 75% 25% 50% 75%
A 192 217 252 169 187 225
A 188 222 283 152 196 270

Fill
B 127 123 117 82 94 76
B 105 123 125 82 89 105

effects for each factor, interactions between each pair of factors, and an interaction between all
three factors, i.e.,

yhi jk = µ + sh + fi + p j +(s f )hi +(sp)h j +( f p)i j +(s f p)hi j + εhi jk. (11.3.2)

Here the s, f , and p effects indicate main effects for surf , f ill, and prop, respectively. The (s f )s
are effects for the two-factor interaction between surf and f ill; (sp) and ( f p) are defined similarly.
The (s f p)s are three-factor interaction effects. A three-factor interaction can be thought of as a two-
factor interaction that changes depending on the level of the third factor. The main effects, two-factor
interactions, and three-factor interaction simply provide the structure that allows us to proceed in a
systematic fashion.

We begin by considering the one-way analysis of variance. The means for the 12 treatments in
the one-way ANOVA are given below.

N = 2 surf
Yes No

f ill A B A B
25% 190.00 116.00 160.50 82.00

prop 50% 219.50 123.00 191.50 91.50
75% 267.50 121.00 247.50 90.50

In all means tables, the value of N given in the upper left is the number of observations that go
into each mean in the table. Finding the sample variance of the 12 means and multiplying by N = 2
gives

MSTrts = (2)4095.096591 = 8190.193182 .

The sum of squares is obtained from multiplying the mean square by the degrees of freedom based
on all 12 treatments,

SSTrts = (12−1)MSTrts

= (11)8190.193182
= 90092.125 .

The sum of squares total is (n− 1)s2
y = 92497.6, i.e., the sample variance of all 24 observations

times (24−1). The sum of squares error is most easily obtained as

SSE = SSTot−SSTrts = 92497.6−90092.1 = 2405.5

with
d fE = d f Tot−d f Trts = (24−1)− (12−1) = 12.

The mean squared error is

MSE =
2405.5

12
= 200.5 .

The analysis of variance table for the one-way ANOVA model (11.3.1) is given below.
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Figure 11.8: Plot of residuals versus predicted values, Box data.

Analysis of variance
Source d f SS MS F
Treatments 11 90092.1 8190.2 40.8
Error 12 2405.5 200.5
Total 23 92497.6

The F statistic is very large. If the standard one-way ANOVA assumptions are reasonably valid,
there is clear evidence that not all of the treatments have the same effect.

Now consider the standard residual checks for a one-way ANOVA. Figure 11.8 contains the
residuals plotted against the predicted values. It has a curious sideways mushroom shape. The vari-
ability seems to decrease as the predicted values increase until the last four residual values; these
four display more variability than the other residuals. From the means table, the two largest pre-
dicted values occur with fill A, prop 75%. The residual pattern is not one that clearly suggests
heteroscedastic variances. We simply note the pattern and would bring it to the attention of the
experimenter to see if it suggests something to her. In the absence of additional information, we
proceed with the analysis. Figure 11.9 contains a normal plot of the residuals. It does not look too
bad. Note that with 24 residuals and only 12 d fE, we may want to use d fE as the sample size should
we choose to perform a W ′ test.

The analysis of variance table for model (11.3.2) simply partitions the 11 degrees of freedom
for treatments and the SSTrts from the one-way table into various sources. The expanded table is
given in Table 11.13. We now consider the analysis of this table; computing the table will be dealt
with later. We start from the bottom of the table and work our way up. The three-factor interaction
has a very large P and only two degrees of freedom, so it is safe to ignore. If the P value were more
moderate or the degrees of freedom larger, it would be necessary to investigate the three-way inter-
action further. It is possible for important effects to be hidden when there are a substantial number
of degrees of freedom in the numerator of a test, so typically even nonsignificant interactions need
to be investigated. Even when the interaction is not significant, it would be of interest to identify, if
possible, one or two interaction contrasts having natural interpretations and mean squares substan-
tially larger than the MSE. Since no interaction contrast can have a mean square larger than the sum
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Figure 11.9: Normal plot of residuals, W ′ = 0.974, Box data.

Table 11.13: Analysis of variance

Source d f SS MS F P
surf 1 5017.0 5017.0 25.03 0.000
f ill 1 70959.4 70959.4 353.99 0.000
prop 2 7969.0 3984.5 19.88 0.000
surf ∗ f ill 1 57.0 57.0 0.28 0.603
surf ∗ prop 2 44.3 22.2 0.11 0.896
f ill ∗ prop 2 6031.0 3015.5 15.04 0.001
surf ∗ f ill ∗ prop 2 14.3 7.2 0.04 0.965
Error 12 2405.5 200.5
Total 23 92497.6

of squares for the interaction and since in this case 14.31 is much smaller than the MSE, we need
pursue the question of three-factor interaction no further.

The most worrisome aspect of the three-factor interaction is that the P value is too large, i.e.,
the F statistic is too small. If we were to reject for small F statistics, the P value would be 1−
.965 = .035, which is significantly small. This suggests that there may be a systematic pattern in
the replications that we may be overlooking, cf. Christensen (1989, 1991). This was precisely our
concern after looking at the residual–prediction plot, Figure 11.8. However, a P value of .035 is not
overwhelming evidence, so again we note the possible problem with the intention of discussing it
with the experimenter.

The two-factor interactions for surf ∗ f ill and surf ∗ prop both have very large P values and
small degrees of freedom. As with the three-factor interaction, we conclude that they can be ignored.
The two-factor interaction for f ill ∗ prop is highly significant with 2 degrees of freedom. This
suggests that the effects of the three different proportions are different for fill A than for fill B.
(Equivalently, it suggests that the effects of the two fills differ depending on which proportion of
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filler is used.) The interaction requires further investigation to identify the precise effect. We will
return to this after considering the main effects.

All of the main effects are highly significant, but in the face of a substantial f ill ∗ prop interac-
tion, the main effects for f ill and prop are not of direct interest. For example, the main effect for
f ill indicates only that the effects of fills A and B differ when averaged over the three proportions
and two surface treatments. However, we know that the effects of fills A and B differ with the three
proportions, so averaging over proportions is generally not a very enlightening thing to do. The main
effect for surface treatments is also highly significant. The means table is given below.

N = 12 Surface treatment means
surf Yes No

172.833̄ 143.916̄

We know that there is a significant difference between the means, so clearly the fabric with the
surface treatment has greater weight loss due to abrasion than the fabric with no surface treatment.
A 99% confidence interval for the mean difference in weight loss has endpoints

(172.83−143.92)± t(.995,12)

√
MSE

(
1
12

+
1
12

)
or 28.91± (3.055)5.781. The confidence interval is (11.25,46.57), thus we are 99% confident that
the mean abrasion weight loss between 1000 and 2000 rotations for surface treated fabric is between
eleven and a quarter and forty six and a half units larger than for untreated fabric. (This conclusion
is subject to our doubts about the assumptions underlying the ANOVA model, e.g., patterns in the
replications.)

We now return to the examination of the f ill ∗ prop interaction. The means table for fills and
proportions is given below.

N = 4 f ill
prop A B
25% 175.25 99.00
50% 205.50 107.25
75% 257.50 105.75

Interaction is best visualized using an interaction plot such as that given in Figure 11.10.
We now examine interaction contrasts. Interesting interaction contrasts are constructed from

interesting contrasts in the main effects. There is only one contrast available for the fills,

µA−µB.

The proportion levels are quantitative and equally spaced, so we use the linear and quadratic con-
trasts in the proportions as discussed in Section 7.12. The linear contrast is

−µ25 +µ75

and the quadratic contrast is
µ25−2µ50 +µ75.

With three levels, it is best to think of the linear contrast as a measure of overall trend (increases
or decreases in weight loss as proportions increase) and the quadratic contrast as a measure of
curvature.

The fill and proportion contrasts are used to construct f ill ∗ prop interaction contrasts. The two
proportion contrasts are orthogonal, so the two interaction contrasts will also be orthogonal. The
interaction contrast coefficients are obtained by multiplying corresponding elements of the main
effect contrasts. The f ill ∗ prop linear interaction contrast coefficients are given below.



11.3 MULTIFACTOR STRUCTURES 323

10
0

15
0

20
0

25
0

Proportion

me
an

 of
  y

2

1 2 3

   Fill

1
2

Figure 11.10: Interaction plot, proportions on horizontal axis.

Fill ∗ prop linear interaction contrast
f ill

A B
prop Contrasts 1 −1
25% −1 −1 1
50% 0 0 0
75% 1 1 −1

Recall that the coefficient of −1 for fill A and proportion 25% is the product of the fill A coefficient
1 and the proportion 25% coefficient −1. The f ill ∗ prop quadratic coefficients are

Fill ∗ prop quadratic interaction contrast
f ill

A B
prop Contrasts 1 −1
25% 1 1 −1
50% −2 −2 2
75% 1 1 −1

The sums of squares for these contrasts are computed from the f ill ∗ prop means,

SS( f ill ∗ prop lin)

=
[−175.25+99.00+0+0+257.50−105.75]2

[(−1)2 +12 +02 +02 +12 +(−1)2]/4

=
(75.5)2

4/4
= 5700.25

and

SS( f ill ∗ prop quad)
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=
[175.25−99.00− (2)205.50+(2)107.25+257.50−105.75]2

[12 +(−1)2 +(−2)2 +22 +12 +(−1)2]/4

=
(31.5)2

12/4
= 330.75 .

The MSE is 200.5, so the F ratios are 28.43 and 1.65, respectively. Based on the f ill ∗
prop quadratic contrast, there is no evidence that the curvatures are different for fills A and B.
However, from the f ill ∗ prop linear contrast we do have evidence that the slopes are different for
fills A and B. From Figure 11.10, the slope for the fill A line is much greater than the slope for fill
B. Thus, weight loss increases with proportion at a much faster rate when using fill A. Note also
that the overall level of weight loss is much greater for fill A. The f ill ∗ prop linear contrast ac-
counts for the vast majority of the f ill ∗ prop interaction sums of squares. Of course with orthogonal
interaction contrasts,

SS( f ill ∗ prop) = 6031 = 5700.25+330.75
= SS( f ill ∗ prop lin)+SS( f ill ∗ prop quad).

We have established that there is no significant difference in curvature between fills A and B but
we have not established whether curvature exists. To do this we apply the quadratic contrast to the
proportion means,

N = 8 Proportion means
prop 25% 50% 75%
Means 137.125 156.375 181.625
Quadratic 1 −2 1

The sum of squares for the contrast is

SS(prop quadratic) =
[137.125− (2)156.375+181.625]2

[12 +(−2)2 +12]/8
=

62

6/8
= 48.

The sum of squares is much smaller than the MSE, so there is no evidence of curvature averaged
over fills in the f ill–proportion plot. There is no evidence of average curvature and no evidence of
a difference in curvatures, so there is no evidence of curvature.

There is no evidence of curvature but there is more to be learned about the individual lines in
Figure 11.10. We can apply the linear contrast to the proportion means for fill A and again for fill
B. For fill A we get an estimated contrast of

−175.25+0+257.50 = 82.25

and a sum of squares

SS(prop lin; f ill A) =
[−175.25+0+257.50]2

[12 +02 +(−1)2]/4

=
(82.25)2

2/4
= 13530.125 .

Comparing the sum of squares to MSE = 200.5 we have a clear linear change in weight loss as
proportions change. The estimated contrast indicates that as we increase from 25% to 75% of fill A,
the weight loss increases by 82.25 units. If we have only a 25% increase, the weight loss increases
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only 82.25/2 = 41.125 units. Applying the linear contrast to the means for fill B gives an estimated
contrast of

−99.00+0+105.75 = 6.75

and a sum of squares

SS(prop lin; f ill B) =
(6.75)2

2/4
= 91.125 .

Comparing the sum of squares to the MSE we see no evidence of a linear trend for fill B. Thus the
interaction is due to the fact that fill A has a positive slope while fill B is consistent with a 0 slope.

To summarize, we found that the estimated effect of having a surface treatment is to increase the
weight loss occurring between 1000 and 2000 revolutions by 173−144 = 29 units. As we have just
seen, for fill A, increasing the proportion of fill by 25% increases the weight loss by an estimated
41 units. For fill B there is no evidence that changing the fill proportion changes the weight loss.
The fill means are 213 for fill A and 104 for fill B, so at the average proportion, i.e., at 50% fill,
the estimated weight loss is 213− 104 = 109 units larger for fill A. Of course, with the difference
in proportion slopes, the increased weight loss due to fill A will be less at 25% and greater at 75%.
Confidence intervals are readily available for all of these estimates.

Box (1950) reports data not only on fabric weight loss between 1000 and 2000 rotations, but
also after the first 1000 rotations and between 2000 and 3000 rotations. The results from the three
analysis of variance tables are similar except that there appears to be a surf ∗ f ill interaction after
1000 rotations. In the next chapter, we will examine models that incorporate not only surf , f ill,
and prop but also rotations. From the comment above, the surf ∗ f ill interaction changes with the
number of rotations, so we should find a significant three-factor surf ∗ f ill ∗rotation interaction. 2

Before going into the details of computing the analysis of variance table for this example, we
present some results for arbitrary three-factor models. In general, the model for a three-way ANOVA
in a balanced completely randomized design is

yhi jk = µhi j + εhi jk

= µ +αh +βi + γ j

+(αβ )hi +(αγ)h j +(βγ)i j +(αβγ)hi j + εhi jk

h = 1, . . . ,a, i = 1, . . . ,b, j = 1, . . . ,c, k = 1, . . . ,N. The corresponding analysis of variance table is
fully determined by the sums of squares that are given below.

Analysis of variance
Source d f SS

Treatments abc−1 N ∑hi j
(
ȳhi j·− ȳ····

)2

Error abc(N−1) ∑hi jk
(
yhi jk− ȳhi j·

)2

Total abcN−1 ∑hi jk
(
yhi jk− ȳ····

)2

The full factorial analysis of variance table is given in Table 11.14. It consists of a decomposition
of the treatment sums of squares and degrees of freedom. If we had a three-factor design in a RCB,
the error line above would be broken into blocks and error as in Chapter 9. The breakdown of the
treatments line would occur in exactly the same way.

Computing the ANOVA table

We used tables of means to evaluate the significant effects in the analysis of variance table. (In this
example we were able to argue that the insignificant effects could be ignored.) Tables of means are
also needed to illustrate the computations for the analysis of variance table. All of the computations



326 11. FACTORIAL TREATMENT STRUCTURES

Table 11.14: Analysis of variance

Source d f SS

α a−1 bcN ∑h (ȳh···− ȳ····)2

β b−1 acN ∑i (ȳ·i··− ȳ····)2

γ c−1 abN ∑ j
(
ȳ·· j·− ȳ····

)2

α ∗β (a−1)(b−1) cN ∑hi (ȳhi··− ȳh···− ȳ·i··+ ȳ····)2

α ∗ γ (a−1)(c−1) bN ∑h j
(
ȳh· j·− ȳh···− ȳ·· j·+ ȳ····

)2

β ∗ γ (b−1)(c−1) aN ∑i j
(
ȳ·i j·− ȳ·i··− ȳ·· j·+ ȳ····

)2

α ∗β ∗ γ (a−1)(b−1)(c−1) see below*
Error abc(N −1) ∑hi jk

(
yhi jk − ȳhi j·

)2

Total abcN −1 ∑hi jk
(
yhi jk − ȳ····

)2

*N ∑hi j
(
ȳhi j·− ȳhi··− ȳh· j·− ȳi j··+ ȳh···+ ȳ·i··+ ȳ·· j·− ȳ····

)2

can be carried out simply and accurately on hand calculators that have built-in mean and standard
deviation functions. The standard deviations are squared to obtain sample variances. After obtaining
the means tables, the calculator’s mean function is used simply to ensure accuracy. The mean of all
observations is

ȳ···· = 158.375 .

When any sample variance is computed, the mean should also be checked. The mean should be
158.375 for all computations; this is easy to check and helps to verify the computations. It is crucial
that numbers not be rounded off; numerical accuracy deteriorates rapidly with round off. However,
there should be no occasion to round numbers off and no occasion to write down any numbers other
than the final sums of squares and mean squares. Just use the accuracy built into the calculator.

Of course we do not recommend that a hand calculator always be used to do the computations,
they quickly become tedious. However, if the process of analysis of variance is well understood, the
computations should be recognized as simple and natural. Conversely, learning to do the compu-
tations with a hand calculator typically improves the understanding of the process. In constructing
tables of means it is best to start with the largest table and work down. In this case, the largest table
has twelve means, one for each combination of surf , f ill, and prop. These are means averaged over
the two replications. Given this three-way table, the two-way table for, say, surf − f ill means can
be obtained by averaging the three prop means for each level of surf and f ill. Other means tables
follow in similar ways. It is vital that the values in the means tables not be rounded off.

In computing sums of squares, we start with the smallest means tables and work up. Recall that
N in the upper left of the means tables denotes the number of observations being averaged to obtain
the means. We begin by computing the mean squares and sums of squares for main effects. Consider
the main effect for surface treatments. The means are given below.

N = 12 Surface treatment means
surf Yes No

172.833̄ 143.916̄

Finding the sample variance of the two means and multiplying by N = 12 gives

MS(surf ) = (12)418.0868067 = 5017.04168 .

N = 12 is the number of observations that went into each of the surface treatment means. The sum
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of squares is obtained by multiplying the mean square by the degrees of freedom,

SS(surf ) = (2−1)MS(surf ) = 5017.042 .

Now consider the fills.

N = 12 Fill means
f ill A B

212.75 104.00

Finding the sample variance of the two means and multiplying by N = 12 gives

MS( f ill) = (12)5913.28125 = 70959.375 .

The sum of squares is obtained by multiplying the mean square by the degrees of freedom,

SS( f ill) = (2−1)MS( f ill) = 70959.375 .

Finally, consider the proportions.

N = 8 Proportion means
prop 25% 50% 75%

137.125 156.375 181.625

Finding the sample variance of the three means and multiplying by N = 8 gives

MS(prop) = (8)498.0625 = 3984.500 .

The sum of squares is obtained by multiplying the mean square by the degrees of freedom,

SS(prop) = (3−1)MS(prop) = 7969.000

We now examine the two-factor effects. We begin with surf ∗ f ill. The means table is given
below. Note that N = 6 is the number of observations in each of the surf − f ill means.

N = 6 surf
f ill Yes No
A 225.66̄ 199.83̄
B 120.00 88.00

Finding the sample variance of the four means and multiplying by N = 6 gives

MS(surf − f ill trts) = (6)4224.081015 = 25344.48609 .

The sum of squares is obtained by multiplying the mean square by the degrees of freedom for
surf − f ill treatments,

SS(surf − f ill trts) = (4−1)MS(surf − f ill trts) = 76033.458 .

The two-factor interaction sum of squares is

SS(surf ∗ f ill) = SS(surf − f ill trts)−SS(surf )−SS( f ill)

= 76033.458−5017.042−70959.375
= 57.041

The interaction degrees of freedom are (2−1)(2−1) = 1, which is just the product of the degrees
of freedom for surf and for f ill. Finally,

MS(surf ∗ f ill) = SS(surf ∗ f ill)
/

1 = 57.04 .

Now consider the surf ∗ prop term.
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N = 4 surf
prop Yes No
25% 153.00 121.25
50% 171.25 141.50
75% 194.25 169.00

Finding the sample variance of the six means and multiplying by N = 4 gives

MS(surf − prop trts) = (4)651.51875 = 2606.075 .

The sum of squares is obtained by multiplying the mean square by the surf − prop treatments
degrees of freedom,

SS(surf − prop trts) = (6−1)MS(surf − prop trts) = 13030.375 .

The two-factor interaction sum of squares is

SS(surf ∗ prop) = SS(surf − prop trts)−SS(surf )−SS(prop)

= 13030.375−5017.042−7969.000
= 44.333

The interaction degrees of freedom are (2−1)(3−1) = 2, so

MS(surf ∗ prop) = SS(surf ∗ prop)
/

2 = 22.16 .

Finally, consider f ill ∗ prop.

N = 4 f ill
prop A B
25% 175.25 99.00
50% 205.50 107.25
75% 257.50 105.75

Finding the sample variance of the six means and multiplying by N = 4 gives

MS( f ill− prop trts) = (4)4247.96875 = 16991.875 .

The sum of squares is obtained by multiplying the mean square by the f ill− prop treatments degrees
of freedom,

SS( f ill− prop trts) = (6−1)MS( f ill− prop trts) = 84959.375 .

The two-factor interaction sum of squares is

SS( f ill ∗ prop) = SS( f ill− prop trts)−SS( f ill)−SS(prop)

= 84959.375−70959.375−7969.000
= 6031.000 .

The interaction degrees of freedom are (2−1)(3−1) = 2, so

MS( f ill ∗ prop) = SS( f ill ∗ prop)
/

2 = 3015.50 .

The last step in computing the ANOVA table involves the three-factor interaction. The necessary
three-way table of means is given below.
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N = 2 surf
Yes No

f ill A B A B
25% 190.00 116.00 160.50 82.00

prop 50% 219.50 123.00 191.50 91.50
75% 267.50 121.00 247.50 90.50

Finding the sample variance of the 12 means and multiplying by N = 2 gives

MS(surf − f ill− prop trts) = (2)4095.096591 = 8190.193182 .

The sum of squares is obtained by multiplying the mean square by the degrees of freedom based on
all 12 treatments,

SS(surf − f ill− prop trts) = (12−1)MS(surf − f ill− prop trts)

= (11)8190.193182
= 90092.125 .

Note that these are the mean square and sum of squares computed earlier for the one-way analysis of
variance based on 12 treatments. The sum of squares for the three-way interaction is simply what’s
left of the treatment sum of squares after accounting for all of the other terms, i.e., the main effects
and the two-factor interactions,

SS(surf ∗ f ill ∗ prop)

= SS(surf − f ill− prop trts)−SS(surf ∗ f ill)−SS(surf ∗ prop)−SS( f ill ∗ prop)

−SS(surf )−SS( f ill)−SS(prop)

= 90092.125−57.041−44.333−6031.000−5017.042−70959.375−7969.000
= 14.334 .

The degrees of freedom for three-way interaction are obtained by multiplying the degrees of free-
dom from the three main effects, i.e., (2−1)(2−1)(3−1) = 2. Finally,

MS(surf ∗ f ill ∗ prop) = SS(surf ∗ f ill ∗ prop)
/

2 = 7.17 .

The degrees of freedom for the three-factor interaction can also be computed as the degrees of
freedom for treatments minus the degrees of freedom for the other terms.

Minitab commands

Minitab commands for generating this analysis are given below. Column c2 contains the data;
columns c4, c5, and c6 indicate the levels of the surface, fill and proportion factors that correspond
to each observation.

MTB > names c4 ’surf’ c5 ’fill’ c6 ’prop’

MTB > anova c2 = c4|c5|c6;

SUBC> means c4 c5 c6 c4*c5 c4*c6 c5*c6 c4*c5*c6;

SUBC> resid c12;

SUBC> fits c22.

11.4 Extensions of Latin squares

Section 9.3 discussed Latin square designs and mentioned that an effective experimental design
often requires the use of several small Latin squares. We now present an example of such a design.
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Table 11.15: Milk production data

Cow Cow
Period 1 2 3 4 5 6
1 A 768 B 662 C 731 A 669 B 459 C 624
2 B 600 C 515 A 680 C 550 A 409 B 462
3 C 411 A 506 B 525 B 416 C 222 A 426

Cow Cow
Period 7 8 9 10 11 12
1 A 1091 B 1234 C 1300 A 1105 B 891 C 859
2 B 798 C 902 A 1297 C 712 A 830 B 617
3 C 534 A 869 B 962 B 453 C 629 A 597

Cow Cow
Period 12 14 15 16 17 18
1 A 941 B 794 C 779 A 933 B 724 C 749
2 B 718 C 603 A 718 C 658 A 649 B 594
3 C 548 A 613 B 515 B 576 C 496 A 612

Table 11.16: Analysis of variance

Source d f SS
Latin squares 5 1392534
Periods(squares) 12 872013
Cows(squares) 12 318241
Trts 2 121147
Error 22 52770
Total 53 2756704

The example does not actually involve factorial treatment structures but it uses many of the ideas
from this chapter.

EXAMPLE 11.4.1. Patterson (1950) and John (1971) considered the milk production of cows
that were given three different diets. The three feed regimens were A, good hay; B, poor hay; and
C, straw. Eighteen cows were used and milk production was measured during three time periods
for each cow. Each cow received a different diet during each time period. The data are given in
Table 11.15. The cows were divided into six groups of 3. A 3× 3 Latin square design was used
for each group of three cows along with the three periods and the three feed treatments. Having
eighteen cows, we get 6 Latin squares. The six squares are clearly marked in Table 11.15 by double
vertical and horizontal lines. We will not do a complete analysis of these data, rather we point out
salient features of the analysis.

The basic analysis of variance table for multiple Latin squares is presented in Table 11.16. We
go through the table line by line.

This example involves 6 Latin squares. Six squares give 5 degrees of freedom for comparisons
among squares. From each Latin square obtain the sample mean of the 9 observations in the square.
The mean square for Latin squares is 9 times the sample variance of these 6 means. Multiplying by
6−1 gives the sum of squares for Latin squares in the ANOVA table.

Within each individual Latin square, find the sum of squares for periods (rows) as if the other
Latin squares did not exist. Each Latin square is 3×3, so there are 2 degrees of freedom for periods
within each Latin square. Add together the sums of squares for periods from the six Latin squares to
obtain the sum of squares for periods within squares, i.e., periods(squares) in Table 11.16. Similarly,
add the degrees of freedom for periods from the six Latin squares to obtain the degrees of freedom
for periods within squares. Note that with two degrees of freedom for periods within each square
and six squares, we get the total of 12 degrees of freedom given in Table 11.16.
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Table 11.17: Analysis of variance

Source d f SS
Squares 5 1392534
Cows(squares) 12 318241
Periods 2 814222
Period∗square 10 57790
Trts 2 121147
Error 22 52770
Total 53 2756704

The cows within squares, i.e., cows(squares), line is computed similarly. Within each of the
Latin squares, we get 2 degrees of freedom and a sum of squares for cows. Adding these together
gives the cows within squares line.

So far we have acted as though the columns are different in every Latin square, as are the rows.
This is true for the columns, no cow is ever used in more than one square. It is less clear whether,
say, period 1 is the same in the first Latin square as it is in the second and other squares. We will
return to this issue later. It is clear, however, that the treatments are the same in every Latin square.
To compute the mean for, say, treatment B we average over all 18 observations with treatment B,
three from each of the six squares. The means for treatments A and C are computed similarly. The
mean square for treatments is 18 times the sample variance of these three numbers. Multiplying by
2 gives the sum of squares for treatments.

The Error line in Table 11.16 is obtained by subtraction. The total sum of squares is 53 times
the sample variance of the 54 observations in Table 11.15. From SSTot, subtract the other sums of
squares to arrive at the SSE. The d fE is computed similarly using 53 minus the other degrees of
freedom.

From Table 11.16, mean squares and F statistics are easily obtained. If this was a classic applica-
tion of multiple Latin squares, the only F test of real interest would be that for treatments, since the
other lines of Table 11.16 denote various forms of blocking. The F statistic for treatments is about
25, so, with 22 degrees of freedom for error, the test is highly significant. One should then compare
the three treatments using contrasts and check the validity of the assumptions using residual plots.

The basic analysis of Table 11.16 can be modified in many ways. We now present some of those
ways.

As a standard practice, John (1971, section 6.5) computes a square by treatment interaction to
examine whether the treatments behave the same in the various Latin squares. In our example with
6 squares and 3 treatments such a term would have (6−1)× (3−1) = 10 degrees of freedom and a
sum of squares that would be removed from the error term. Remember that the error term is simply
what is left after examining everything else; if we choose to examine an additional term, of necessity
it must be removed from the error.

We mentioned earlier that periods might be considered the same from square to square. If so,
we should compute three period means across the squares from the 18 observations on each period.
A sum of squares for periods can be computed from these three means. The three period means
leave us with 2 degrees of freedom for periods as opposed to the 12 degrees of freedom for periods
within squares. This 2 degrees of freedom is a subset of the 12. Subtracting the period degrees
of freedom and sum of squares from the period(squares) line we obtain a new term, a period by
squares interaction, period∗square. This new term examines whether the periods behave the same
from square to square. The analysis of variance table incorporating this change is presented as
Table 11.17.

If the Latin squares were constructed using the complete randomization discussed in Section 9.3,
one could argue that the period by squares interaction must really be error and that the 10 degrees of
freedom and corresponding sum of squares should be pooled with the current error. Such an analysis
is equivalent to simply thinking of the design as one large rectangle with three terms to consider: the
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Table 11.18: Analysis of variance

Source d f SS
Cows 17 1710775
Periods 2 814222
Trts 2 121147
Error 32 110560
Total 53 2756704

3 periods (rows), the 18 cows (columns), and the 3 treatments. For this design, we simply compute
sums of squares for periods, cows, and treatments and subtract them from the total to obtain the
error. Such an analysis is illustrated in Table 11.18. The sum of squares for cows in Table 11.18
equals the sum of squares for cows within squares plus the sum of squares for squares from the
earlier ANOVA tables. The 17 degrees of freedom for cows are also the 12 degrees of freedom for
cows within squares plus the 5 degrees of freedom for squares.

In this example, choosing between the analyses of Tables 11.17 and 11.18 is easy because of
additional structure in the design that we have not yet considered. This particular design was chosen
because consuming a particular diet during one period might have an effect that carries over into
the next time period. In the three Latin squares on the left of Table 11.15, treatment A is always
followed by treatment B, treatment B is always followed by treatment C, and treatment C is always
followed by treatment A. In the three Latin squares on the right of Table 11.15, treatment A is always
followed by treatment C, treatment B is followed by treatment A, and treatment C is followed by
treatment B. This is referred to as a cross-over or change-over design. Since there are systematic
changes in the squares, it is reasonable to investigate whether the period effects differ from square
to square and so we should use Table 11.17. In particular, we would like to isolate 2 degrees of
freedom from the period by square interaction to look at whether the period effects differ when
averaged over the three squares on the left as compared to when they are averaged over the three
squares on the right. These issues are addressed in Exercise 11.5.6. 2

11.5 Exercises

EXERCISE 11.5.1. The process condition treatments in Exercise 9.5.4 on vinyl thickness had
factorial treatment structure. Give the factorial analysis of variance table for the data. The data are
repeated below.

Rate High Low Low High
Temp Low High Low High
Rep. 1 7.8 11.0 7.4 11.0
Rep. 2 7.6 8.8 7.0 9.2

EXERCISE 11.5.2. Garner (1956) presented data on the tensile strength of fabrics as measured
with Scott testing machines. The experimental procedure involved selecting eight 4×100 inch strips
from available stocks of uniform twill, type I. Each strip was divided into sixteen 4×6 inch samples
(with some left over). Each of three operators selected four samples at random and, assigning each
sample to one of four machines, tested the samples. The four extra samples from each strip were
held in reserve in case difficulties arose in the examination of any of the original samples. It was
considered that each 4× 100 inch strip constituted a relatively homogeneous batch of material.
Effects due to operators include differences in the details of preparation of samples for testing and
mannerisms of testing. Machine differences include differences in component parts, calibration, and
speed. The data are presented in Table 11.19. Entries in Table 11.19 are values of the strengths in
excess of 180 pounds.
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Table 11.19: Tensile strength of uniform twill

o1 o2 o3
m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4

s1 18 7 5 9 12 16 15 9 18 13 10 22
s2 9 11 12 3 16 4 21 19 25 13 19 12
s3 7 11 11 1 7 14 12 6 17 20 19 20
s4 6 4 10 8 15 10 16 12 10 16 12 18
s5 10 8 6 10 17 12 12 22 18 16 21 22
s6 7 12 3 15 18 22 14 19 18 23 22 14
s7 13 5 15 16 14 18 18 9 16 16 10 15
s8 1 11 8 12 7 13 11 13 15 14 14 11

o = operator, m = machine, s = strip

(a) Identify the design for this experiment and give an appropriate model. List all the assumptions
made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts.
(c) Check the assumptions of the model and adjust the analysis appropriately.

EXERCISE 11.5.3. Smith (1988) and Holcomb (1992, p. 105) presented data on knowledge of
sexually transmitted diseases. Sixty individuals from each combination of three age groups and
gender were given a test measuring their knowledge. The table of mean test scores is given below.
In addition, MSE = 16.52 on d fE = 108. Give an analysis of variance table with sources for main
effects, interaction, and error. Analyze the data.

N = 60 Age
Sex 18–24 25–29 30–35
Male 13.40 13.10 14.95
Female 12.90 13.80 13.05

EXERCISE 11.5.4. Baten (1956) presented data on lengths of steel bars. An excessive number
of bars had recently failed to meet specifications and the experiment was conducted to identify the
causes of this problem. The bars were made with one of two heat treatments (W, L) and cut on one
of four screw machines (A, B, C, D) at one of three times of day (8 am, 11 am, 3 pm). The three
times were used to investigate the possibility of worker fatigue during the course of the day. The
bars were intended to be between 4.380 and 4.390 inches long. The data presented in Table 11.20 are
thousandths of an inch in excess of 4.380. Treating the data as a 2×3×4 factorial in a completely
randomized design, give an analysis of the data.

EXERCISE 11.5.5. Bethea et al. (1985) reported data on an experiment to determine the effec-
tiveness of four adhesive systems for bonding insulation to a chamber. The adhesives were applied
both with and without a primer. Tests of peel-strength were conducted on two different thicknesses
of rubber. Using two thicknesses of rubber was not part of the original experimental design. The
existence of this factor was only discovered by inquiring about a curious pattern of numbers in the
laboratory report. The data are presented in Table 11.21. Another disturbing aspect of these data is
that the values for adhesive system 3 are reported with an extra digit. Presumably, a large number of
rubber pieces were available and the treatments were randomly assigned to these pieces, but, given
the other disturbing elements in these data, I wouldn’t bet the house on it. A subset of these data
was examined earlier in Exercise 5.7.7.

(a) Identify the design for this experiment and give an appropriate model. List all the assumptions
made in the model.
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Table 11.20: Steel bar lengths

Heat treatment W Heat treatment L
Machine A B C D A B C D

6 7 1 6 4 6 −1 4
Time 1 9 9 2 6 6 5 0 5

1 5 0 7 0 3 0 5
3 5 4 3 1 4 1 4
6 8 3 7 3 6 2 9

Time 2 3 7 2 9 1 4 0 4
1 4 1 11 1 1 −1 6
−1 8 0 6 −2 3 1 3

5 10 −1 10 6 8 0 4
Time 3 4 11 2 5 0 7 −2 3

9 6 6 4 3 10 4 7
6 4 1 8 7 0 −4 0

Table 11.21: Peel-strength of various adhesive systems

Adhesive Adhesive
1 2 3 4 1 2 3 4
60 57 19.8 52 73 52 32.0 77
63 52 19.5 53 79 56 33.0 78

With 57 55 19.7 44 76 57 32.0 70
Primer 53 59 21.6 48 69 58 34.0 74

56 56 21.1 48 78 52 31.0 74
57 54 19.3 53 74 53 27.3 81
59 51 29.4 49 78 52 37.8 77
48 44 32.2 59 72 42 36.7 76

Without 51 42 37.1 55 72 51 35.4 79
Primer 49 54 31.5 54 75 47 40.2 78

45 47 31.3 49 71 57 40.7 79
48 56 33.0 58 72 45 42.6 79

Thickness A Thickness B

(b) Check the assumptions of the model and adjust the analysis appropriately.
(c) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts.

EXERCISE 11.5.6. Consider the milk production data in Table 11.15 and the corresponding anal-
ysis of variance in Table 11.17. Relative to the periods, the squares on the left of Table 11.15 always
have treatment A followed by B, B followed by C, and C followed by A. The squares on the right
always have treatment A followed by C, B followed by A, and C followed by B. Test whether there
is an average difference between the squares on the left and those on the right. Test whether there is
an interaction between periods and left–right square differences.

EXERCISE 11.5.7. In addition to the data provided in Exercise 11.5.3, Smith (1988) and Holcomb
(1992, p. 105) present data on knowledge of sexually transmitted diseases as cross-classified by sex
and ethnicity. Forty individuals from each of two ethnic groups and of each sex were given the
tests. The table of means is given below and once again use MSE = 16.52 with d fE = 108. Give an
analysis of variance table with sources for main effects, interaction, and error. Analyze the data.

N = 40 Ethnic group
Sex Black Hispanic
Male 15.23 12.40
Female 16.77 9.73
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Table 11.22: Hydrostatic pressure tests: operator, yield

Square I Square II

C D A B D C B A
41.0 38.5 39.0 43.0 43.0 40.5 43.5 39.5

D C B A C D A B
41.0 38.5 41.5 41.0 41.0 39.0 39.5 41.5

A B C D B A D C
39.5 42.0 41.5 42.0 42.0 41.0 40.5 37.5

B A D C A B C D
41.5 41.0 40.5 41.5 40.5 42.5 44.0 41.0

Operators are A, B, C, D.

EXERCISE 11.5.8. As in Exercise 9.5.8, we consider differences in hydrostatic pressure tests due
to operators. Table 11.22 contains two Latin squares. Analyzing these together, give an appropriate
analysis of variance table and report on any differences that can be established among the operators.

EXERCISE 11.5.9. Exercises 9.5.8, 9.5.9, 9.5.10, and the previous exercise used subsets of data
reported in Garner (1956). The experiment was designed to examine differences among operators
and machines when using Suter hydrostatic pressure testing machines. No interaction between ma-
chines and operators was expected.

A one foot square of cloth was placed in a machine. Water pressure was applied using a lever
until the operator observed three droplets of water penetrating the cloth. The pressure was then
relieved using the same lever. The observation was the amount of water pressure consumed and it
was measured as the number of inches that water rose up a cylindrical tube with radial area of 1
sq. in. Operator differences are due largely to differences in their ability to spot the droplets and
their reaction times in relieving the pressure. Machines 1 and 2 were operated with a hand lever.
Machines 3 and 4 were operated with at foot lever.

A 52× 200 inch strip of water repellant cotton Oxford was available for the experiment. From
this, four 48× 48 inch squares were cut successively along the warp (length) of the fabric. It was
decided to adjust for heterogeneity in the application of the water repellant along the warp and fill
(width) of the fabric, so each 48× 48 square was divided into four equal parts along the warp and
four equal parts along the fill, yielding 16 smaller squares. The design involves four replications
of a Graeco-Latin square. In each 48× 48 square, every operator worked once with every row and
column of the larger square and once with every machine. Similarly, every row and column of the
48×48 square was used only once on each machine. The data are given in Table 11.23.

Analyze the data. Give an appropriate analysis of variance table. Use the Newman–Keuls
method to determine differences among operators and use orthogonal contrasts to determine dif-
ferences among machines. Give a model and check your assumptions.

The cuts along the warp of the fabric were apparently the rows. Should the rows be considered
the same from square to square? How would doing this affect the analysis?

Look at the means for each square. Is there any evidence of a trend in the water repellency as
we move along the warp of the fabric? How should this be tested?

EXERCISE 11.5.10. For a balanced 3×4 with equally spaced quantitative factor levels, give the
linear by linear, linear by quadratic, linear by cubic, quadratic by linear, quadratic by quadratic, and
quadratic by cubic interaction contrasts. A table or several tables of contrast coefficients is sufficient.

EXERCISE 11.5.11. Consider a balanced design with a 4× 4 factorial treatment structure to
examine the effects of diet on animal growth. One factor consists of a control diet and three new
diets based on beef, pork, and beans. The other factor consists of equally spaced levels of protein
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Table 11.23: Hydrostatic pressure tests: operator, machine, yield

Square 1 Square 2

A,1 B,3 C,4 D,2 B,2 A,4 D,3 C,1
40.0 43.5 39.0 44.0 39.0 39.0 41.0 41.0

B,2 A,4 D,3 C,1 A,1 B,3 C,4 D,2
40.0 42.0 40.5 38.0 36.5 42.5 40.5 38.5

C,3 D,1 A,2 B,4 D,4 C,2 B,1 A,3
42.0 40.5 38.0 40.0 40.0 39.0 41.5 41.5

D,4 C,2 B,1 A,3 C,3 D,1 A,2 B,4
40.0 36.5 39.0 38.5 41.5 39.5 39.0 44.0

Square 3 Square 4

C,3 D,1 A,2 B,4 D,4 C,2 B,1 A,3
41.0 38.5 39.0 43.0 43.0 40.5 43.5 39.5

D,4 C,2 B,1 A,3 C,3 D,1 A,2 B,4
41.0 38.5 41.5 41.0 41.0 39.0 39.5 41.5

A,1 B,3 C,4 D,2 B,2 A,4 D,3 C,1
39.5 42.0 41.5 42.0 42.0 41.0 40.5 37.5

B,2 A,4 D,3 C,1 A,1 B,3 C,4 D,2
41.5 41.0 40.5 41.5 40.5 42.5 44.0 41.0

Operators are A, B, C, D.
Machines are 1, 2, 3, 4.

content in the diets. Give the following interaction contrasts: the interaction contrasts that examine
whether the linear, quadratic, and cubic contrasts in protein content change between the two meat
diets, the interaction contrast that examines whether the average linear contrast for the two meat
diets differs from the linear contrast for beans, the similar contrasts comparing meat and beans
for the quadratic and cubic contrasts, and those that compare how the linear, quadratic, and cubic
contrasts change between the control and the average of the other treatments. A table or several
tables of contrast coefficients is sufficient.



Chapter 12

Split plots, repeated measures, random effects,
and subsampling

In this chapter we examine methods for performing analysis of variance on data that are not com-
pletely independent. The first two methods considered are appropriate for similar data but they are
based on different assumptions. The data involved have independent groups of observations but
the observations within groups are not independent. The first method was developed for analyzing
the results of split plot designs. In these models, the lack of independence consists of a constant
correlation between observations within the groups. The second method is multivariate analysis
of variance. Multivariate ANOVA allows an arbitrary correlation structure among the observations
within groups. Section 12.1 introduces split plot models and illustrates the highlights of the anal-
ysis. Section 12.2 gives a detailed analysis for a complicated split plot. Section 12.3 introduces
multivariate analysis of variance. Section 12.4 considers some special cases of the model examined
in Sections 12.1 and 12.2; these are subsampling models and analysis of variance models in which
some of the effects are random.

12.1 The analysis of split plot designs

Split plot designs involve simultaneous use of different sized experimental units. They also involve
more than one error term.

Suppose we produce an agricultural commodity and are interested in the effects of two factors,
an insecticide and a fertilizer. The fertilizer is applied using a tractor and the insecticide is applied
via crop dusting. (Crop dusting involves using an airplane to spread the material. If you are of a
militaristic bent, you can think of the factors in the experiment as applying mortar fire and napalm
from a B-52.) Obviously, you need a fairly large piece of land to use crop dusting, so the number
of replications on the crop dusting treatments will be relatively small. On the other hand, different
fertilizers can be applied with a tractor to reasonably small pieces of land. If our primary interest is in
the main effects of the crop dusted insecticides, we are stuck. Accurate results require a substantial
number of large fields to obtain replications on the crop dusting treatments. However, if our primary
interest is in the fertilizers or the interaction between fertilizers and insecticides, we can design a
good experiment with only a few large fields.

To construct a split plot design, start with the large fields and design an experiment that is appro-
priate for examining just the insecticides. Depending on the information available about the fields,
this can be a CRD, a RCB design, or a Latin Square design. Suppose there are three levels of insec-
ticide to be investigated. If we have three fields in the Gallatin Valley of Montana, three fields near
Willmar, Minnesota, and three fields along the Rio Grande River in New Mexico, it is appropriate
to set up a block in each state so that we see each insecticide in each location. Alternatively, if we
have one field near Bozeman, MT, one near Cedar City, UT, one near Twin Peaks, WA, one near
Winters, CA, one near Fields, OR, and one near Grand Marais, MN, a CRD seems more appropri-
ate. We need a valid design for this experiment on insecticides, but often it will not have enough
replications to yield a very precise analysis. Each of the large fields used for insecticides is called a

337
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Table 12.1: Garner’s dynamic absorption data

Rep. 1 Rep. 2
Test Test

Laundry A B C D A B C D
1 7.20 11.70 15.12 8.10 9.06 11.79 14.38 8.12
2 2.40 7.76 6.13 2.64 2.14 7.76 6.89 3.17
3 2.19 4.92 5.34 2.47 2.69 1.86 4.88 1.86
4 1.22 2.62 5.50 2.74 2.43 3.90 5.27 2.31

whole plot. The insecticides are applied to the whole plots, so they are referred to as the whole plot
treatments.

Regardless of the design for the insecticides, the key to a split plot design is using each whole
plot (large field) as a block for examining the subplot treatments (fertilizers). If we have four fertil-
izer treatments, we divide each whole plot into four subplots. The fertilizers are randomly assigned
to the subplots. The analysis for the subplot treatments is just a modification of the RCB analysis
with each whole plot treated as a block.

We have a much more accurate experiment for fertilizers than for insecticides. If the insecticide
(whole plot) experiment was set up with 3 blocks each containing 3 whole plots, we have just 3
replications on the insecticides, but each of the 9 whole plots is a block for the fertilizers, so we
have 9 replications of the fertilizers. Moreover, fertilizers are compared within whole plots, so they
are not subject to the whole plot to whole plot variation.

Perhaps the most important aspect of the design is the interaction. It is easy to set up a mediocre
design for insecticides and a good experiment for fertilizers, the difficulty is in getting to look at
them together and the primary point in looking at them together is to investigate interaction. The
most important single fact in the analysis is that the interaction between insecticides and fertilizers
is subject to exactly the same variability as fertilizer comparisons. Thus we have eliminated a major
source of variation, the whole plot to whole plot variability. Interaction sums of squares and contrasts
are only subject to the subplot variability, i.e., the variability within whole plots.

The idea behind split plot designs is very general. The key idea is that an experimental unit
(whole plot, large field) is broken up to allow several distinct measurements on the unit. In an
example below, the weight loss due to abrasion of one piece of fabric is measured after 1000, 2000,
and 3000 revolutions of a machine designed to cause abrasion. Another possibility is giving drugs to
people and measuring their heart rates after 10, 20, and 30 minutes. When repeated measurements
are made on the same experimental unit, these measurements are more likely to be similar than
measurements taken on different experimental units. Thus the measurements on the same unit are
correlated. This correlation needs to be accounted for in the analysis. This section and the next two
discuss appropriate models.

We now consider an example of a very simple split plot design for which only the highlights
are discussed. In Section 12.2 a second example considers the detailed analysis of a study with four
factors.

EXAMPLE 12.1.1. Garner (1956) presents data on the amount of moisture absorbed by water-
repellant cotton Oxford material. Two 24 yard strips of cloth were obtained. Each strip was divided
into four 6 yard strips. The 6 yard strips were randomly assigned to one of four laundries. After
laundering and drying, the 6 yard strips were further divided into four 1.5 yard strips and randomly
assigned to one of four laboratories for determination of dynamic water absorption. The data pre-
sented in Table 12.1 are actually the means of two determinations of dynamic absorption made for
each 1.5 yard strip. The label ‘test’ is used to identify different laboratories.

First consider how the experimental design deals with laundries. There are two blocks of mate-
rial available, the 24 yard strips. These are subdivided into four sections and randomly assigned to
laundries. Thus we have a randomized complete block (RCB) design for laundries with two blocks
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and four treatments. After the 6 yard strips have been laundered, they are further subdivided into
1.5 yard strips and these are randomly assigned to laboratories for testing. Each experimental unit
in the RCB design for laundries is split into subunits for further treatment. The 6 yard strips are the
whole plot experimental units, laundries are whole plot treatments, and the 24 yard strips are whole
plot blocks. The whole plot experimental units (6 yard strips) also serve as blocks for the subplot
treatments. The 1.5 yard strips are subplot experimental units and the tests are subplot treatments.
Note that every laundry–test treatment combination is observed in every whole plot block (24 yard
strip). It is common practice to refer to whole plot blocks as replications or just reps.

The peculiar structure of the design leads us to analyze the data almost as two separate experi-
ments. There is a whole plot analysis focusing on laundries and a subplot analysis focusing on tests.
The subplot analysis also allows us to investigate interaction. As always, the analysis requires the
treatment means, which are given below.

N = 2 Laundry Test
Test 1 2 3 4 means
A 8.130 2.270 2.440 1.825 3.6662
B 11.745 7.760 3.390 3.260 6.5388
C 14.750 6.510 5.110 5.385 7.9388
D 8.110 2.905 2.165 2.525 3.9262
Laundry means 10.684 4.861 3.276 3.249

Consider the effects of the laundries. The analysis for laundries is called the whole plot anal-
ysis. We have an RCB design in laundries but an RCB analysis requires just one number for each
laundry observation (whole plot). The one number used for each whole plot is the mean absorption
averaged over the four subplots contained in the wholeplot. With one minor exception, the whole
plot analysis is just the RCB analysis of these data. The degrees of freedom are reps., 1; laundries,
3; and whole plot error, 3. The minor exception is that the sums of squares and mean squares are all
multiplied by the number of subplot treatments, four. Note that this multiplication has no effect on
significance tests, e.g., in an F test the numerator mean square and the denominator mean square are
both multiplied by the same number, so the multiplications cancel. Multiplying the mean squares
and sums of squares by the number of subplot treatments is done simply to maintain consistency
in the way we do computations. For example, the mean square for laundries is the sample variance
of the laundry means times the number of observations in each mean. The RCB analysis would
consider the number of observations in each mean to be the number of replications (2); the split plot
analysis considers the number of observations in each mean to be the number of replications times
the number of subplot treatments (2× 4). Thus the split plot computation is more consistent with
our usual methods for analyzing experiments with factorial treatment structure.

Now consider the analysis of the subplot treatments, i.e., the absorption tests. The subplot anal-
ysis is largely produced by treating each whole plot as a block. Note that we observe every subplot
treatment within each whole plot, so the blocks are complete. There will be, however, one notable
exception to treating the subplot analysis as an RCB analysis, i.e., the identification of interaction
effects.

In an RCB analysis with whole plots taken as subplot blocks there are 8 whole plots, so there
are 7 degrees of freedom for subplot blocks. In addition there are 3 degrees of freedom for tests, so
the standard RCB analysis would have 3×7 = 21 degrees of freedom for error. The subplot analysis
differs from the standard RCB analysis in the handling of the 21 degrees of freedom for error. A
standard RCB analysis takes the block by treatment interaction as error. This is appropriate because
the extent to which treatment effects vary from block to block is an appropriate measure of error for
treatment effects. However, in a split plot design the subplot blocks are not obtained haphazardly,
they have consistencies due to the whole plot treatments. We can identify structure within the subplot
block by subplot treatment interaction. Some of the block by treatment interaction can be ascribed
to whole plot treatment by subplot treatment interaction. In this experiment the laundry by test
interaction has 3×3 = 9 degrees of freedom. This is extracted from the 21 degrees of freedom for
error in the subplot RCB analysis to give a subplot error term with only 21− 9 = 12 degrees of
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Table 12.2: Analysis of variance for dynamic absorption data

Source d f SS MS F P
Reps 1 0.007 0.007 0.01 0.933
Laundry 3 298.330 99.443 124.30 0.001
Error 1 3 2.381 0.794
Test 3 102.917 34.306 60.08 0.000
Laundry ∗ test 9 26.870 2.986 5.23 0.005
Error 2 12 6.852 0.571
Total 31 437.356

freedom. Finally, it is of interest to note that the 7 degrees of freedom for subplot blocks correspond
to the 7 degrees of freedom in the whole plot analysis: 1 for reps., 3 for laundries, and 3 for whole
plot error. In addition, the sum of squares for subplot blocks is also the total of the sums of squares
for reps., laundries, and whole plot error.

Table 12.2 combines the whole plot analysis and the subplot analysis into a common analysis of
variance table. Error 1 indicates the whole plot error term and its mean square is used for inferences
about laundries and reps. (if you think it is appropriate to draw inferences about reps.). Error 2
indicates the subplot error term and its mean square is used for inferences about tests and laundry by
test interaction. A subplot blocks line does not appear in the table; the whole plot analysis replaces
it. The means table given earlier suffices for computing the sums of squares for laundries, tests,
and laundry ∗ test interaction. The computations are executed in the usual way. A similar two-way
means table for reps. and laundries is needed to compute the sums of squares for reps. and error 1.
Note that for the given whole plot design, error 1 is computationally equivalent to a rep ∗ laundry
interaction.

From Table 12.2 the laundry ∗ test interaction is clearly significant, so the analysis would typi-
cally focus there. On the other hand, while the interaction is statistically important, its F statistic is
an order of magnitude smaller than the F statistic for tests, so the person responsible for the exper-
iment might decide that interaction is not of practical importance. The analysis might then ignore
the interaction and focus on the tests. Since I am not responsible for the experiment (only for its
inclusion in this book), I will not presume to declare a highly significant interaction unimportant.
Figure 12.1 gives the interaction plot. Tests A and D behave very similarly and they behave quite
differently from tests B and C. Tests B and C also behave somewhat similarly. This suggests looking
at contrasts in the tests that involve A versus D, B versus C, and the sum of A and D versus the sum
of B and C. The contrasts’ coefficients are given below along with the estimated contrasts when the
coefficients are applied to a particular laundry.

N = 2 Test contrasts
Test A–D B–C A,D–B,C
A 1 0 1
B 0 1 −1
C 0 −1 −1
D −1 0 1
Laundry 1 .020 −3.005 −10.255
Laundry 2 −.635 1.250 −9.095
Laundry 3 .275 −1.720 −3.895
Laundry 4 −.700 −2.125 −4.295

For example, using the table of laundry–test means, the value in this table for the B–C contrast with
laundry 4 is

(0)1.825+(1)3.260+(−1)5.385+(0)2.525 =−2.125.

We can now examine such things as whether the difference between tests A and D is the same
for laundry 1 as it is for laundry 2. The estimated interaction contrast is .020− (−.635) = .655. The
contrast coefficients are actually
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Figure 12.1: Interaction plot for dynamic absorption data.

Laundry
Test 1 2 3 4
A 1 −1 0 0
B 0 0 0 0
C 0 0 0 0
D −1 1 0 0

and the laundry–test means are averages over 2 observations, so the sum of squares for the contrast
is

.6552

4/2
= .2145.

As this is an interaction contrast, the sum of squares would be compared to MSE(2), the mean
square from the error 2 line.

One option for analyzing an ordinary a× b two-factor experiment that displays interaction is
just to ignore the factorial treatment structure and perform the analysis by constructing contrasts
for the ab treatments directly. With a split plot design, that option is no longer available. To handle
the factorial as simply ab treatments, one essentially pools the main effects for the two factors and
the interaction. In a split plot design, the whole plot treatments are part of the whole plot analysis,
so they cannot be pooled with the subplot treatments and interaction which are part of the subplot
analysis. The closest we can come to this is pooling the subplot treatments with the interaction.
By pooling, we are allowed to look at contrasts having a fixed level of the whole plot treatments.
Inferences for these contrasts are made in reference to error 2. For example, we earlier applied the
test contrasts to each laundry. We can obtain valid F tests for all 12 of these contrasts. In particular,
the A,D–B,C contrast applied to laundry 1 has a sum of squares of

−10.2552

4/2
= 52.58.

Since MSE(2) is .571, the F ratio is huge. Even if we use Scheffé’s method to adjust for having
looked at the data to determine the contrasts, we reach the clear conclusion that on average tests
A and D give very different results from tests B and C for the material sent to laundry 1. This
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method works only for contrasts in the subplot treatments applied at a fixed level of the whole-plot
treatments. If we fixed a test (subplot treatment) and looked at a contrast in the laundries for that
test, we would not be able to compare the estimated contrast to either error 2 or error 1. Note also
that there are 12 of these orthogonal contrasts and, when pooled together, the tests and interaction
have 3+9 = 12 degrees of freedom.

2

We now examine the assumptions behind this analysis. The basic split plot model is

yi jk = µ + ri +w j +ηi j + sk +(ws) jk + εi jk

where i = 1, . . . ,a indicates the replication, j = 1, . . . ,b indicates the whole plot treatment, k =
1, . . . ,c indicates the subplot treatment, µ is a grand mean, ri, w j, and sk indicate rep., whole plot
treatment, and subplot treatment effects, and (ws) jk indicates a whole plot–subplot interaction effect.
The model has two sets of random error terms: the ηi js, which are errors specific to a given whole
plot, and the εi jks, which are errors specific to a given subplot. All of the errors are assumed to be
independent with the ηi js distributed N(0,σ2

w) and the εi jks distributed N(0,σ2
s ).

The model assumes normality and equal variances for each set of error terms. These assumptions
should be checked using residual plots. We can get error 2 residuals

ε̂i jk = yi jk− ȳi j·− ȳ· jk + ȳ· j·

by treating the ηi j error terms as a fixed rep. by whole plot interaction. We can also get error 1
residuals as

η̂i j = ȳi j·− ȳi··− ȳ· j·+ ȳ···.

It is something of an abuse of notation to write the error 1 residuals as η̂i js, since they are ac-
tually predictors of the ηi j + ε̄i j·s and not predictors of the ηi js. As usual, the basic analysis can
be performed quite easily with a hand calculator, but the residual analysis is a real pain without a
computer.

The MSE(1) is an estimate of

E[MSE(1)] = σ
2
s + cσ

2
w

and MSE(2) is an estimate of
E[MSE(2)] = σ

2
s

If there is no whole plot to whole plot variability over and above the variability due to the subplots
within the wholeplots, i.e., if σ2

w = 0, then the two error terms are estimating the same thing and
their ratio has an F distribution. In other words, we can test H0 : σ2

w = 0 by rejecting H0 when

MSE(1)/MSE(2)> F(1−α,d fE(1),d fE(2)).

In the laundries example we get .794/.571 = 1.39 on 3 and 12 degrees of freedom and a P value of
.293. This is rather like testing for blocks in a randomized complete block design. Both tests merely
tell you if you wasted your time. An insignificant test for blocks indicates that blocking was a waste
of time. Similarly, an insignificant test for whole plot variability indicates that forming a split plot
design was a waste of time. In each case, it is too late to do anything about it. The analysis should
follow the design that was actually used. However, the information may be of value in designing
future studies.

EXAMPLE 12.1.1 CONTINUED.
Figures 12.2 through 12.5 contain a series of error 1 residual plots. Figure 12.2 has the error 1

residuals versus predicted values. The predicted values are ȳi··+ ȳ· j·− ȳ···. Note the wider spread
for predicted values near 3. Figure 12.3 plots the error 1 residuals against reps. and shows nothing
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Figure 12.2: Whole plot residuals versus predicted values, absorption data.

startling. Figure 12.4 is a plot against laundries. In Figure 12.4 we see that the spread for laundry
3 is much wider than the spread for the other laundries. This seems to be worth discussing with
the experimenter. Figure 12.5 contains a normal plot for the error 1 residuals; it looks reasonably
straight. Of course there are only eight residuals (and only 3 degrees of freedom), so it is difficult to
draw any firm conclusions.

Figures 12.6 through 12.10 contain a series of error 2 residual plots. The predicted values in
Figure 12.6 are ȳi j·+ ȳ· jk− ȳ· j·. Figures 12.7, 12.8, and 12.9 are plots against reps., laundries, and
tests. There is nothing startling. There is more dispersion for laundry 3 than the others but the visual
effect is less startling than that in the error 1 plot. Apparently, the small (negative) residuals at
laundry 3 belong to one replication and the large residuals to the other. Figure 12.10 contains the
normal plot; it looks alright. 2

Minitab commands

The basic analysis can be obtained from Minitab as follows:

MTB > names c1 ’y’ c2 ’reps’ c3 ’laund’ c4 ’tests’

MTB > anova c1=c2|c3 c4 c4*c3;

SUBC> test c2 c3 / c2*c3.

SUBC> means c2*c3 c3 c4 c3*c4;

SUBC> resid c10;

SUBC> fits c11.

Minitab treats the c2∗c3 term generated by c2|c3 as a fixed rep. by laundry interaction rather than
the error 1 term. Minitab only recognizes one error, the error 2 term. Thus it uses the error 2 term
in all tests, giving an incorrect whole plot analysis. The ‘test’ subcommand provides the whole plot
analysis by testing reps. and laundries against the c2 ∗ c3 term. The ‘resid’ and ‘fits’ commands
give the error 2 residuals and the corresponding predicted values. To get the error 1 residuals and
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Figure 12.3: Whole plot residuals versus blocks, absorption data.
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Figure 12.4: Whole plot residuals versus laundries, absorption data.
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Figure 12.5: Normal plot of whole plot residuals, W ′ = 0.974, absorption data.
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Figure 12.7: Subplot residuals versus blocks, absorption data.
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Figure 12.8: Subplot residuals versus laundries, absorption data.
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Figure 12.9: Subplot residuals versus predicted values, absorption data.
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Table 12.3: Abrasion resistance data

Proportions
Surf. 25% 50% 75%
treat. Fill 1000 2000 3000 1000 2000 3000 1000 2000 3000

A 194 192 141 233 217 171 265 252 207
A 208 188 165 241 222 201 269 283 191

Yes
B 239 127 90 224 123 79 243 117 100
B 187 105 85 243 123 110 226 125 75
A 155 169 151 198 187 176 235 225 166
A 173 152 141 177 196 167 229 270 183

No
B 137 82 77 129 94 78 155 76 91
B 160 82 83 98 89 48 132 105 67

their predicted values one can use the rep.–laundry (c2 ∗ c3) means and repeat the whole plot RCB
analysis on them.

12.2 A four-factor split plot analysis

In this section we consider a split plot analysis involving four factors, detailed examination of three-
factor interactions, and a whole plot design that is a CRD.

EXAMPLE 12.2.1. Earlier we considered data from Box (1950) on fabric abrasion. The data
consisted of three factors: surface treatment (yes, no), filler (A, B), and proportion of filler (25%,
50%, 75%). These are referred to as surf , f ill, and prop. We earlier restricted our attention to the
weight loss that occurred between 1000 and 2000 revolutions of a machine designed for evaluating
abrasion resistance, but we mentioned that data are also available on each piece of cloth for weight
loss after 1000 rotations and weight loss occurring between 2000 and 3000 rotations. The full data
are given in Table 12.3. In analyzing the full data, many aspects are just simple extensions of the
analysis given earlier in Section 11.3. There are now four factors, surf , f ill, prop, and one for
rotations, say, rota. With four factors, there are many more effects to deal with. There is one more
main effect, rota, three more two-factor interactions, surf ∗ rota, f ill ∗ rota, and prop ∗ rota, three
more three-factor interactions, surf ∗ f ill ∗ rota, surf ∗ prop ∗ rota, and f ill ∗ prop ∗ rota, and a
four-factor interaction, surf ∗ f ill ∗ prop ∗ rota. Calculations of sums of squares for main effects,
two-factor interactions and three-factor interactions follow the same pattern as illustrated earlier.
The sum of squares for the four-factor interaction is just what is left after accounting for all of the
other main effects and interactions. It is found by computing the one-way ANOVA treatment sum
of squares from the means of all 2×2×3×3 = 36 treatment combinations and subtracting out the
other sums of squares. The computations will be discussed later.

What makes these data worthy of our further attention is the fact that not all of the observa-
tions are independent. Observations on different pieces of fabric may be independent, but the three
observations on the same piece of fabric, one after 1000, one after 2000, and one after 3000 revo-
lutions, should behave similarly as compared to observations on different pieces of fabric. In other
words, the three observations on one piece of fabric should display positive correlations. The anal-
ysis considered in this section assumes that the correlation is the same between any two of the three
observations on a piece of fabric. To achieve this, we consider a model that includes two error terms,

yhi jkm = µ + sh + fi + p j (12.2.1)
+(s f )hi +(sp)h j +( f p)i j +(s f p)hi j

+ηhi jk
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+ rm +(sr)hm +( f r)im +(pr) jm

+(s f r)him +(spr)h jm +( f pr)i jm +(s f pr)hi jm

+ εhi jkm.

h = 1,2, i = 1,2, j = 1,2,3, k = 1,2, m = 1,2,3. The error terms are the ηhi jks and the εhi jkms. These
are all assumed to be independent of each other with

ηhi jk ∼ N(0,σ2
w) and εhi jkm ∼ N(0,σ2

s ). (12.2.2)

The ηhi jks are error terms due to the use of a particular piece of fabric and the εhi jkms are error
terms due to taking the observations after 1000, 2000, and 3000 rotations. While we have two error
terms, and thus two variances, the variances are assumed to be constant for each error term, i.e.,
all observations have the same variance σ2

w + σ2
s . Observations on the same piece of fabric are

correlated because they all involve the same fabric error term ηhi jk.
Split plot terminology devolves from analyses on plots of ground. In this application, a whole

plot is a piece of fabric. The subplots correspond to the three observations on each piece of fabric.
The surf , f ill, and prop treatments are all applied to an entire piece of fabric, so they are referred
to as whole plot treatments. The three levels of rotation are applied ‘within’ a piece of fabric and
are called subplot treatments.

Model (12.2.1) assumes that measurements on different pieces of fabric are independent with
the same variance and that for every given piece of fabric, regardless of the treatments applied, the
three measurements are independent and have the same variance. For example, the model indicates
that given the piece of fabric, if the weight loss happens to be above the mean at 1000 rotations,
it is just as probable that the weight loss will be below the mean at 2000 rotations. The model
is inappropriate if a weight loss above the mean at 1000 rotations predisposes the fabric to have
weight loss above the mean at 2000 rotations. Of course, the mean weight losses are allowed to
depend on the number of rotations. If we were dealing with the total weight loss at 1000, 2000,
and 3000 rotations, it seems probable that, even after adjusting for the fixed effects of rotations, the
observations at 1000 and 2000 rotations would have greater correlation than the observations at 1000
and 3000. It also seems probable that the variance of the observations would increase as the number
of rotations increased. Both of these events would be violations of the split plot model. However, we
are working with the differences in weight loss. Our data are weight losses due to the first, second,
and third one thousand rotations. The split plot model seems at least plausible for the differences.
Another possible model, one that we will not address, uses an ‘autoregressive’ correlation structure,
cf. Diggle (1990). In the next section we will briefly consider a more general (multivariate) model
that can be applied and includes both the split plot model and the autoregressive structure as special
cases. Of course when the split plot model is appropriate, the split plot analysis is more powerful
than the general multivariate analysis.

We will concern ourselves with checking the assumptions of equal variances and normality later.
We now consider the analysis of variance given in Table 12.4. Just as there are two error terms in
model (12.2.1), there are two error terms in the analysis of variance table. Both are used for F tests
and it is crucial to understand which error term is used for which F tests. The mean square from
error 1 is the whole plot error term and is used for any inferences that exclusively involve whole plot
treatments and their interactions. Thus, in Table 12.4, the MSE(1) from the error 1 line is used for all
inferences relating exclusively to the whole plot treatment factors surf , f ill, and prop. This includes
examination of interactions and contrasts. The error 2 line is used for all inferences involving the
subplot treatments. This includes all main effects, interactions, and contrasts involving rota.

As always, the analysis focuses on the highest order terms involving the factors. The four-
factor interaction has a very large P value, .657. Even if all of the sum of squares was ascribed
to one contrast, an unadjusted F test would not be significant. There is no evidence of a four-factor
interaction.

There are 4 three-factor interaction terms to consider. The sums of squares for surf ∗ f ill ∗ prop
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Table 12.4: Analysis of variance

Source d f SS MS F P
surf 1 24494.2 24494.2 78.58 0.000
f ill 1 107802.7 107802.7 345.86 0.000
prop 2 13570.4 6785.2 21.77 0.000
surf ∗ f ill 1 1682.0 1682.0 5.40 0.039
surf ∗ prop 2 795.0 397.5 1.28 0.315
f ill ∗ prop 2 9884.7 4942.3 15.86 0.000
surf ∗ f ill ∗ prop 2 299.3 149.6 0.48 0.630
Error 1 12 3740.3 311.7
rota 2 60958.5 30479.3 160.68 0.000
surf ∗ rota 2 8248.0 4124.0 21.74 0.000
f ill ∗ rota 2 18287.7 9143.8 48.20 0.000
prop∗ rota 4 1762.8 440.7 2.32 0.086
surf ∗ f ill ∗ rota 2 2328.1 1164.0 6.14 0.007
surf ∗ prop∗ rota 4 686.0 171.5 0.90 0.477
f ill ∗ prop∗ rota 4 1415.6 353.9 1.87 0.149
surf ∗ f ill ∗ prop∗ rota 4 465.9 116.5 0.61 0.657
Error 2 24 4552.7 189.7
Total 71 260973.9

and surf ∗ prop ∗ rota are so small as to obviate further consideration. The P value for the three-
factor interaction surf ∗ f ill ∗ rota is sufficiently small to demand examination. In our analysis from
Section 11.3 of the 2000 rotation data, we found no surf ∗ f ill interaction and we alluded to the facts
that a similar analysis for 3000 rotations also showed no surf ∗ f ill interaction but the 1000 rotation
data did show an interaction. The ANOVA table confirms the existence of a three-factor interaction,
thus the surf ∗ f ill interaction depends on the number of rotations. The P value for f ill ∗ prop∗ rota
is small enough that it might be of interest if we could find a natural interpretation for it. Recall
that in our earlier analysis based on just the 2000 rotation data, we found a f ill ∗ prop interaction;
a f ill ∗ prop∗ rota interaction indicates that the f ill ∗ prop interaction changes with the number of
rotations. If we do not find an interesting f ill ∗ prop ∗ rota interaction, we need to consider two-
factor interactions involving prop. We need to focus on prop because it is the only factor that is not
included in the significant surf ∗ f ill ∗ rota interaction. The possible interactions are surf ∗ prop,
f ill ∗ prop, and prop ∗ rota. From Table 12.4, the surf ∗ prop interaction is clearly insubstantial.
We will not consider the surf ∗ prop interaction further.

We now begin looking at contrasts. To examine contrasts in the surf ∗ f ill ∗ rota interaction, we
need the appropriate means table.

N = 6 surf
Yes No

f ill A B A B
1000 235.00 227.00 194.50 135.16̄

rota 2000 225.66̄ 120.00 199.83̄ 88.00
3000 179.33̄ 89.83̄ 164.00 74.00

As in Section 11.3, the value of N in the upper left of the means table is the number of observations
the means are averaged over. The methods we will use to determine three-factor interaction con-
trasts are straight-forward generalizations of the methods used for two-factor interaction contrasts,
but it is simpler to discuss the process in parts rather than defining the process all at once. Again,
we determine interesting contrasts by combining main effect contrasts. Both surf and f ill have only
two levels, so the only contrast is the difference between the two levels. These contrasts define the
surf ∗ f ill interaction contrast given below.
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surf
Yes No

f ill A B A B
1 −1 −1 1

If we apply this contrast to the rota 1000 means, we get

E1 = 235.00−227.00−194.50+135.16̄ =−51.33̄ .

Applying the contrast to the rota 2000 means gives

E2 = 225.66̄−120.00−199.83̄+88.00 =−6.16̄

and applying the contrast to the rota 3000 means gives

E3 = 179.33̄−89.83̄−164.00+74.00 =−0.50 .

Normally, with rotations at equally spaced quantitative levels, we would use the linear and quadratic
contrasts in rotations. However, I previously analyzed the data from each number of rotations sepa-
rately and I discovered no surf ∗ f ill interaction at 2000 and 3000 rotations, so I will use a pair of
orthogonal contrasts, one that looks at 2000 versus 3000 rotations, and another that looks at 1000
versus the average of 2000 and 3000.

rota 1000 2000 3000
2000–3000 0 1 −1
1000 vs. others −2 1 1

To examine the three-factor interaction, we apply these contrasts to the E1, E2, and E3 values that
measure the surf ∗ f ill interaction at each level of rotation.

The contrast that examines whether the surf ∗ f ill interaction is the same at 2000 rotations as at
3000 rotations has estimate

E2−E3 = (−6.16̄)− (−0.50) =−5.66̄ .

To compute the sum of squares, we need the contrast coefficients as they are applied to each of the
means in the surf ∗ f ill ∗ rota means table. These are obtained by multiplying the coefficients of the
surf ∗ f ill interaction contrast by the coefficients of the rota contrast in the manner illustrated in
Chapter 11. The contrast coefficients are given below.

surf
Yes No

f ill A B A B
1000 0 0 0 0

rota 2000 1 −1 −1 1
3000 −1 1 1 −1

The sum of the squared coefficients is 8 and each mean is the average of 6 observations, so the sum
of squares for the contrast is

[−5.66̄]2

8/6
= 24.08 .

The contrast that examines whether the surf ∗ f ill interaction is the same at 1000 rotations as at
the average of 2000 and 3000 rotations has estimate

−2E1 +E2 +E3 = (−2)(−51.33̄)+(−6.16̄)+(−0.50) = 96.00 .

To compute the sum of squares, we need the contrast coefficients as they are applied to each of the
means in the surf ∗ f ill ∗ rota means table.
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surf
Yes No

f ill A B A B
1000 −2 2 2 −2

rota 2000 1 −1 −1 1
3000 1 −1 −1 1

The sum of the squared coefficients is 24 and each mean is the average of 6 observations, so the
sum of squares for the contrast is

[96.00]2

24/6
= 2304.00 .

Note that the two sums of squares add up to SS(surf ∗ f ill ∗ rota), i.e.,

2328.1 = 24.08+2304.00 .

The overwhelming majority of the sum of squares is due to the difference between the surf ∗ f ill
interaction at 1000 rotations and the average surf ∗ f ill interaction at 2000 and 3000 rotations. These
interaction contrasts involve rota, so to perform tests we compare the sums of squares to MSE(2),
which is 189.7. We let the data suggest the contrasts, so using Scheffé’s multiple comparison method
is appropriate. The test statistic for rota 1000 versus the others is

F =
2304/2
189.7

= 6.07,

which is significant at the .01 level because F(.99,2,24) = 5.61.
Re-examining the values E1 = −51.33̄, E2 = −6.16̄, E3 = −0.50, there appears to be a sub-

stantial surf ∗ f ill interaction at 1000 rotations. This can be ascribed to the fact that the difference
between the means for fills A and B is much smaller with the surface treatment (235.00−227.00 =
8.00) than without it (194.50− 135.16̄ = 59.3̄). It is also clear from E2 and E3 that there is very
little surf ∗ f ill interaction at either 2000 or 3000 rotations, i.e., the difference between A and B is
about the same for the two surface treatments. Unfortunately, tests for whether surf ∗ f ill interaction
exists at the various levels of rota are not readily available from the split plot model. The model does
not allow a simple test when we fix a subplot treatment level and examine a contrast in the whole
plot treatments for that subplot level. This is because the comparisons are being made across whole
plots, so there is no appropriate χ2 variance estimate. (The split plot model does let us fix a whole
plot treatment level and examine contrasts among the subplot treatments at that whole plot level
because the comparison in made entirely within a whole plot.) However, our test in Section 11.3
of the surf ∗ f ill interaction using just the 2000 rota data is perfectly appropriate and similar tests
using just the 3000 rota data and just the 1000 rota data would also be appropriate. ANOVA tables
for the separate analyses of the 1000, 2000, and 3000 rotation data are given in Section 12.3 as
Tables 12.8, 12.9, and 12.10. Note, though, that the separate analyses are not independent, because
the observations at 2000 rotations are not independent of the observations at 3000 rotations, etc.

On occasion, when examining contrasts for a fixed subplot treatment, rather than using the MSEs
from the separate analyses, the degrees of freedom and sums of squares for error 1 and error 2 are
pooled and these are used instead. This is precisely the error estimate obtained by pooling the
error estimates from the three separate ANOVAs. Such a pooled estimate should be better than
the estimates from the separate analyses but it is difficult to quantify the effect of pooling. The
three separate ANOVAs are not independent, so pooling the variance estimates does not have the
nice properties of the pooled estimate of the variance used in, say, one-way ANOVA. As alluded to
above, we cannot get an exact F test for a contrast based on the pooled variance estimate. If the three
ANOVA’s were independent, the pooled error would have 12+ 12+ 12 = 36 degrees of freedom,
but we do not have independence, so we do not even know an appropriate number of degrees of
freedom to use with the pooled estimate, much less the appropriate distribution.
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It is not clear that a f ill ∗ prop ∗ rota interaction exists but, to be safe, we will examine some
reasonable contrasts. If some interpretable contrast has a large sum of squares, it suggests that an
important interaction is being hidden within the 4 degrees of freedom test. To examine contrasts in
the f ill ∗ prop∗ rota interaction, we need the appropriate means table.

N = 4 f ill
A B

prop 25% 50% 75% 25% 50% 75%
1000 182.50 212.25 249.50 180.75 173.50 189.00

rota 2000 175.25 205.50 257.50 99.00 107.25 105.75
3000 149.50 178.75 186.75 83.75 78.75 83.25

The obvious contrast for the factor f ill is A versus B. There are equally spaced quantitative
levels for prop, so we use the linear and quadratic contrasts. Combining the contrasts into f ill∗ prop
interaction contrasts as described in Chapter 11 gives

f ill
A B

prop 25% 50% 75% 25% 50% 75%
f ∗ p lin 1 0 −1 −1 0 1
f ∗ p quad 1 −2 1 −1 2 −1

The contrast f ∗ p lin examines whether the proportion slope is the same for fill A as for fill B. The
contrast f ∗ p quad examines whether the proportion curvature is the same for fill A as for fill B.
Applying these contrasts to the f ill ∗ prop means at each level of rotations gives

E1l = 182.50−249.50−180.75+189.00 =−58.75,
E2l = 175.25−257.50−99.00+105.75 =−75.5,
E3l = 149.50−186.75−83.75+83.25 =−37.75,

E1q = 182.50− (2)212.25+249.50−180.75+(2)173.50−189.00
= −15.25,

E2q = 175.25− (2)205.50+257.50−99.00+(2)107.25−105.75
= 31.5,

E3q = 149.50− (2)178.75+186.75−83.75+(2)78.75−83.25
= −30.75 .

The rotations are also quantitative and equally spaced, so the linear and quadratic contrasts are

rota 1000 2000 3000
Linear −1 0 1
Quadratic 1 −2 1

We can apply each of these contrasts to the values E1l , E2l , E3l , and to the values E1q, E2q, E3q to
obtain 4 orthogonal f ill ∗ prop∗ rota interaction contrasts. Using, say, f ∗ pl ∗ rq to indicate the f ill
by prop lin by rota quad contrast, we get

SS( f ∗ pl ∗ rl) =
[21]2

8/4
= 220.50,

SS( f ∗ pl ∗ rq) =
[54.5]2

24/4
= 495.04,
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SS( f ∗ pq∗ rl) =
[−15.5]2

24/4
= 40.04,

SS( f ∗ pq∗ rq) =
[−109]2

72/4
= 660.06 .

For example, the numerator of SS( f ∗ pq∗ rq) comes from

E1q− (2)E2q +E3q =−109.

Actually, it comes from applying the 18 coefficients

f ill
A B

prop 25% 50% 75% 25% 50% 75%
Contrasts 1 −2 1 −1 2 −1

1000 1 1 −2 1 −1 2 −1
rota 2000 −2 −2 4 −2 2 −4 2

3000 1 1 −2 1 −1 2 −1

to the means table. The 72 in the denominator of SS( f ∗ pq∗ rq) comes from squaring all the coef-
ficients and adding them up. Note that

SS( f ill ∗ prop∗ rota) = 1415.6 = 220.50+495.04+40.04+660.06 .

These contrasts were not chosen by looking at the data, so less stringent multiple comparison meth-
ods than Scheffé’s can be used on them. On the other hand, the contrasts are not particularly in-
formative. None of these contrasts suggests a particularly strong source of interaction. F tests are
constructed by dividing each of the four sums of squares by MSE(2). None of the F ratios is signif-
icant when compared to F(.05,1,24) = 4.26. This analysis seems consistent with the hypothesis of
no f ill ∗ prop∗ rota interaction.

If we accept the working assumption of no f ill ∗ prop ∗ rota interaction, we need to examine
the two factor interactions that can be constructed from the three factors. These are f ill ∗ prop,
f ill ∗ rota, and prop ∗ rota. The f ill ∗ rota effects are, however, not worth further consideration
because they are subsumed within the surf ∗ f ill ∗ rota effects that have already been established as
important. Another way of looking at this is that in model (12.2.1), the ( f r)im effects are unnecessary
in a model that already has (s f r)him effects. Thus we focus our attention on f ill ∗ prop and prop∗
rota. From the ANOVA Table 12.4, the f ill ∗ prop interaction is highly significant; the prop∗ rota
interaction has a P value of .09. We examine the prop∗ rota interaction first and then the f ill ∗ prop
interaction.

The 4 degrees of freedom for prop ∗ rota in the interaction F test have the potential of hiding
one or two important, interpretable interaction contrasts. We explore this possibility by investigating
prop∗ rota interaction contrasts based on the linear and quadratic contrasts in both prop and rota.
The means table is

N = 8 prop
rota 25% 50% 75%
1000 181.625 192.875 219.250
2000 137.125 156.375 181.625
3000 116.625 128.750 135.000

and the sums of squares for the four orthogonal contrasts are

SS(pl ∗ rl) =
[−19.25]2

4/8
= 741.125,
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Figure 12.11 Interaction plot of proportions versus rotations, Box data. (Actually, Figure 19.5 from ANREG2)

SS(pl ∗ rq) =
[−33.00]2

12/8
= 726.000,

SS(pq∗ rl) =
[−21.00]2

12/8
= 294.000,

SS(pq∗ rq) =
[−2.75]2

36/8
= 1.681 .

Comparing these to MSE(2), we find that SS(pl ∗ rl) and SS(pl ∗ rq) are not small but neither are
they clearly significant. The interaction plot in Figure 12.11 seems to confirm that there is no obvious
interaction being overlooked by the four degrees of freedom test. We remain unconvinced that there
is any substantial prop∗ rota interaction.

Examination of the f ill ∗ prop interaction follows exactly the same pattern as used in Sec-
tion 11.3. The appropriate means table is given below.

N = 12 f ill
prop A B
25% 169.083̄ 121.166̄
50% 198.833̄ 119.833̄
75% 231.250 126.000

Note that the means are now based on 12 observations. There is one main effect contrast for the fills,

µA−µB.

The proportion levels are quantitative and equally spaced, so we use the linear and quadratic con-
trasts,

−µ25 +µ75

and
µ25−2µ50 +µ75.
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The fill and proportion contrasts are used to construct orthogonal f ill ∗ prop interaction contrasts.
The f ill ∗ prop linear interaction contrast coefficients are given below.

Fill ∗ prop linear interaction contrast
f ill

A B
prop Contrasts 1 −1
25% −1 −1 1
50% 0 0 0
75% 1 1 −1

The f ill ∗ prop quadratic coefficients are

Fill ∗ prop quadratic interaction contrast
f ill

A B
prop Contrasts 1 −1
25% 1 1 −1
50% −2 −2 2
75% 1 1 −1

The sums of squares for these contrasts are computed from the f ill− prop means,

SS( f ill ∗ prop lin) =

[
−169.083̄+121.166̄+0+0+231.250−126.000

]2
(1/12) [(−1)2 +12 +02 +02 +12 +(−1)2]

=
(57.3̄)2

4/12
= 9861.33

and

SS( f ill ∗ prop quad)

=

[
169.083̄−121.166̄− (2)198.833̄+(2)119.833̄+231.250−126.000

]2
(1/12) [12 +(−1)2 +(−2)2 +22 +12 +(−1)2]

=
(−4.83̄)2

12/12
= 23.36 .

The f ill ∗ prop interaction is a whole plot effect, so the appropriate error is MSE(1) = 311.7 and
the F ratios are 31.64 and 0.075, respectively. Based on the f ill ∗ prop quadratic contrast, there is
no evidence that the curvatures are different for fills A and B. However, from the f ill ∗ prop linear
contrast, there is evidence that the slopes are different for fills A and B. The slope for the fill A
line is much greater than the slope for fill B. The fill A means change from 169 to 231, while the
fill B means change from 121 to 126. As in Section 11.3, we could use the quadratic contrast on
proportion means to establish the lack of evidence for curvature but we take an alternative approach.

The slope for fill B is not significantly different from 0. The linear contrast applied to fill B alone
gives

SS(prop lin; f ill B) =
[−121.166̄+126.000]2

2/12
= 140.17 .

The quadratic contrast for f ill B shows no curvature,

SS(prop quad; f ill B) =
[121.166̄− (2)119.833̄+126.000]2

2/12
= 112.70 .
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As far as we can tell, the weight loss does not change as a function of proportion of filler when
using fill B. Note that both of these are contrasts in the whole plot treatments, so they are compared
to MSE(1).

A similar analysis for fill A shows that weight loss increases with proportion and there is again
no evidence of curvature. In particular, for fill A, the slope contrast has an estimate of

−169.083+231.250 = 62.167

with a sum of squares of 23188. From the estimated contrast, an increase from 25% fill to 75%
fill increases weight loss by 62 units. The relationship appears to be linear, so an increase of 25%
in proportion fill raises weight loss by 31 units. Confidence intervals corresponding to the point
estimates are easily obtained.

We have found two important interaction effects, surf ∗ f ill ∗ rota from the subplot analysis and
f ill ∗ prop from the whole plot analysis. These two interactions are the highest order terms that are
significant and include all four of the factors. The only factor contained in both interactions is f ill,
so the simplest overall explanation of the data can be arrived at by giving separate explanations for
the two fills. To do this, we need to re-evaluate the surf ∗ f ill ∗ rota interaction in terms of how the
surf ∗ rota interaction changes from f ill A to f ill B; previously, we focused on how the surf ∗ f ill
interaction changed with rotations. One benefit of this change in emphasis is that, as discussed
earlier, we can use MSE(2) for valid tests of contrasts in the surf ∗ rota interactions for a fixed level
of f ill because we are fixing a whole plot factor, not a subplot factor.

As before, we compare 2000 rotations with 3000 rotations and compare 1000 rotations with the
average of 2000 and 3000. The contrast coefficients for surf ∗ (2000 vs 3000)rota are

Surf ∗ (2000 vs 3000) rota interaction contrast
surf

Yes No
rota Contrasts 1 −1
1000 0 0 0
2000 −1 −1 1
3000 1 1 −1

and the surf ∗ (1000 vs others)rota coefficients are

Surf ∗ (1000 vs others) rota interaction contrast
surf

Yes No
rota Contrasts 1 −1
1000 −2 −2 2
2000 1 1 −1
3000 1 1 −1

Applying these contrasts to the means for f ill A in the surf ∗ f ill ∗ rota means table gives

SS(surf ∗ (2000 vs 3000)rota; f ill A) =
[−225.66̄+199.83̄+179.33̄−164.00]2

(4/6)
= 165.69

and

SS(surf ∗ (1000 vs others)rota; f ill A)

=
[(−2)235.00+(2)194.50+225.66̄−199.83̄+179.33̄−164.00]2

(12/6)
= 754.01 .
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Applying the contrasts to the means for f ill B in the surf ∗ f ill ∗ rota means table gives

SS(surf ∗ (2000 vs 3000)rota; f ill B) =
[−120.00+88.00+89.83̄−74.00]2

(4/6)
= 391.72

and

SS(surf ∗ (1000 vs others)rota; f ill B)

=
[(−2)227.00+(2)135.16̄+120.00−88.00+89.83̄−74.00]2

(12/6)
= 9225.35 .

All of these are compared to MSE(2) = 189.7. There is no evidence of interactions involving rota-
tions 2000 and 3000 with surface treatments, regardless of fill type. With fill A, there is marginal
evidence of an interaction in which the effect of surf is different at 1000 rotations than at 2000
and 3000 rotations. With fill B, there is clear evidence of an interaction where the effect of surf is
different at 1000 rotations than at 2000 and 3000 rotations.

Using contrasts applied to the surf ∗ f ill ∗ rota means table, we can summarize what we know
about the three-factor interaction. Recall that any comparisons among rotation levels are evaluated
with respect to MSE(2) but any contrast that fixes rotation levels requires an approximate test. The
estimated effect of no surface treatment with fill A and either 2000 or 3000 rotations is that the
weight loss drops

225.67−199.83
2

+
179.33−164.00

2
=

25.83+15.33
2

= 20.58

units. The estimate and interpretation are based on the lack of rota∗ surf interaction that we found
for fill A at 2000 and 3000 rotations. The effect is based on averaging over 2000 and 3000 rotations,
so the standard error is computed in the usual way except that the appropriate variance estimate
is obtained from the whole plot error of a split plot analysis that eliminates the 1000 rotation data.
MSE(1) overestimates the variance because it involves averaging over the 1000 rotation data as well
as the 2000 and 3000 rotation data. An underestimate of the variance is MSE(2). Either of the two
variance estimates shows a significant effect, so the appropriate variance estimate would also show
an effect. The estimated effect of no surface treatment with fill A at 1000 rotations is that the weight
loss drops by

235.00−194.5 = 40.5 .

This effect is for fixed rotations but an approximate test, based on pooling SSE(1) and SSE(2) to
obtain a variance estimate for use in the usual standard error formula, indicates that the effect is
clearly significant. The separate analysis on 1000 rotations would yield the same result.

We have no evidence of surf ∗ rota interaction for fill A at 2000 or 3000 rotations, so the esti-
mated effect of going from 2000 to 3000 rotations is a drop of

225.67−179.33
2

+
199.83−164.00

2
=

46.33+35.83
2

= 41.09

in weight loss, regardless of surface treatment. This is a comparison among rotation levels, so it can
be compared to MSE(2). The result is highly significant. The estimated effect of going from 1000
to 2000 rotations with the surface treatment is an insignificant drop of

235.00−225.67 = 9.33

in weight loss, while the estimated effect of going from 1000 to 2000 rotations without the surface
treatment is an increase of

199.83−194.5 = 5.33,
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but again the change in not significant.
For fill B the estimated effect of no surface treatment at either 2000 or 3000 rotations is a

decreased weight loss of

120.00−88.00
2

+
89.83−74.00

2
=

32.00+15.83
2

= 23.92 .

This is comparable to the effect seen with fill A. The estimated effect of no surface treatment with
fill B at 1000 rotations is that the weight loss drops by

227.00−135.17 = 91.83 .

This is a much larger effect than we saw with fill A. Not only is the drop significant but the difference
from fill A is significant. Of course, these are only approximate tests.

With fill B, the estimated effect of going from 2000 to 3000 rotations is a drop of

120.00−89.83
2

+
88.00−74.00

2
=

30.17+14.00
2

= 22.09 .

This is about half of the estimated effect seen with fill A. The effect is of marginal significance. The
estimated effect of going from 1000 to 2000 rotations with the surface treatment is a drop of

227.00−120.00 = 107.00

in weight loss. This is about 10 times larger than the effect that was seen with fill A and is highly
significant. The estimated effect of going from 1000 to 2000 rotations without the surface treatment
is a decrease of

135.17−88.00 = 47.17 .

The decrease is much smaller than with a surface treatment but it is highly significant.
In addition, from the f ill ∗ prop interaction, we have learned that for fill A an increase of 25%

fill raises weight loss by an estimated 31 units, while there is no evidence of a relationship between
proportion and fill B.

Figures 12.12 and 12.13 contain residual plots for the error 1 residuals. Figures 12.14 and 12.15
contain residual plots for the error 2 residuals. I see no serious problems in any of the plots.

With some computer programs, it may not be possible to obtain a split plot analysis but it may
be possible to obtain a full factorial analysis. In such cases, it is a simple matter to reconstruct the
split plot ANOVA table. A full factorial analysis for these data involves treating the replications as
another factor, say, rep. The full factorial ANOVA table is given in Table 12.5. The split plot error 1
term involves pooling all terms that involve rep but do not involve both rep and rota. The error 2
involves pooling all terms that involve both rep and rota. The computations are illustrated below. If
you add up the sums of squares in the tabulations given below, you will notice some round off error
after the decimal place.

Components of error 1
Source d f SS
rep 1 0.2
surf ∗ rep 1 53.4
f ill ∗ rep 1 800.0
prop∗ rep 2 49.4
surf ∗ f ill ∗ rep 1 84.5
surf ∗ prop∗ rep 2 1589.7
f ill ∗ prop∗ rep 2 166.6
surf ∗ f ill ∗ prop∗ rep 2 996.6
Error 1 12 3740.3
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Figure 12.12: Wholeplot residuals versus predicted values, Box data.
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Figure 12.13: Normal plot of wholeplot residuals, W ′ = 0.980, Box data.
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Error 2

resids

-

- *

-

12+ * ** * *

- *** * * *

- * * * * 2 **2

- ** * *

- * * * * * *

0+ ** * * * * * *

- * * * * * *

- * * * *

- * * * ** * ** 2

- * ** * * *

-12+ ** 2 *

-

- *

-

--------+---------+---------+---------+---------+--------

80 120 160 200 240 predictions

Figure 12.14: Subplot residuals versus predicted values, Box data.
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Figure 12.15: Normal plot of subplot residuals, W ′ = 0.980, Box data.
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Table 12.5: Full factorial analysis of variance

Source d f SS MS F P
surf 1 24494.2 24494.2 745.54 0.000
f ill 1 107802.7 107802.7 3281.25 0.000
prop 2 13570.4 6785.2 206.52 0.000
rep 1 0.2 0.2 0.01 0.938
rota 2 60958.5 30479.3 927.71 0.000
surf ∗ f ill 1 1682.0 1682.0 51.20 0.002
surf ∗ prop 2 795.0 397.5 12.10 0.020
surf ∗ rep 1 53.4 53.4 1.63 0.271
surf ∗ rota 2 8248.0 4124.0 125.52 0.000
f ill ∗ prop 2 9884.7 4942.3 150.43 0.000
f ill ∗ rep 1 800.0 800.0 24.35 0.008
f ill ∗ rota 2 18287.7 9143.8 278.32 0.000
prop∗ rep 2 49.4 24.7 0.75 0.528
prop∗ rota 4 1762.8 440.7 13.41 0.014
rep∗ rota 2 435.5 217.8 6.63 0.054
surf ∗ f ill ∗ prop 2 299.3 149.6 4.55 0.093
surf ∗ f ill ∗ rep 1 84.5 84.5 2.57 0.184
surf ∗ f ill ∗ rota 2 2328.1 1164.0 35.43 0.003
surf ∗ prop∗ rep 2 1589.7 794.8 24.19 0.006
surf ∗ prop∗ rota 4 686.0 171.5 5.22 0.069
surf ∗ rep∗ rota 2 364.4 182.2 5.55 0.070
f ill ∗ prop∗ rep 2 166.6 83.3 2.54 0.194
f ill ∗ prop∗ rota 4 1415.6 353.9 10.77 0.020
f ill ∗ rep∗ rota 2 32.2 16.1 0.49 0.645
prop∗ rep∗ rota 4 2028.6 507.2 15.44 0.011
surf ∗ f ill ∗ prop∗ rep 2 996.6 498.3 15.17 0.014
surf ∗ f ill ∗ prop∗ rota 4 465.9 116.5 3.55 0.124
surf ∗ f ill ∗ rep∗ rota 2 85.8 42.9 1.31 0.366
surf ∗ prop∗ rep∗ rota 4 1208.8 302.2 9.20 0.027
f ill ∗ prop∗ rep∗ rota 4 265.9 66.5 2.02 0.256
surf ∗ f ill ∗ prop∗ rep∗ rota 4 131.4 32.9
Total 71 260973.9

Components of error 2
Source d f SS
rep∗ rota 2 435.5
surf ∗ rep∗ rota 2 364.4
f ill ∗ rep∗ rota 2 32.2
prop∗ rep∗ rota 4 2028.6
surf ∗ f ill ∗ rep∗ rota 2 85.8
surf ∗ prop∗ rep∗ rota 4 1208.8
f ill ∗ prop∗ rep∗ rota 4 265.9
surf ∗ f ill ∗ prop∗ rep∗ rota 4 131.4
Error 2 24 4552.7

Any of the standard designs can be used for the whole plot treatments. If a RCB design had been
used in the whole plot treatments, the replication index would have indicated the whole plot blocks,
the rep line would be listed separately in the ANOVA, and the rep line would not be included in the
error 1 term. Otherwise, the analysis is the same. 2

Computing techniques

Minitab can be used to generate the split plot analysis. Let c1 be a column containing the weight
losses. The columns c2, c3, c4, c5, and c6 contain integers indicating the surface treatment, fill
type, fill proportion, replication, and number of rotations corresponding to the weight loss in c1. In
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Table 12.6: Whole plot means

surf : Yes
N = 3 f ill

A B
prop 25 50 75 25 50 75

rep 1 175.67 207.00 241.33 152.00 142.00 153.33
2 187.00 221.33 247.67 125.67 158.67 142.00

surf : No
f ill

A B
prop 25 50 75 25 50 75

rep 1 158.33 187.00 208.67 98.67 100.33 107.33
2 155.33 180.00 227.33 108.33 78.33 101.33

Table 12.7: Means table for whole plot treatments

N = 6 surf
Yes No

f ill A B A B
25% 181.33 138.83 156.83 103.50

prop 50% 214.17 150.33 183.50 89.33
75% 244.50 147.67 218.00 104.33

the ANOVA model given below c5(c2 c3 c4) is an effect ‘nested’ within all combinations of the
whole plot treatments. This term corresponds to the whole plot error term. The original ANOVA
table given by Minitab will use error 2 for all tests but a subcommand provides the appropriate
whole plot F tests. Columns c10 and c11 contain the subplot residuals and subplot predicted values,
respectively. Another analysis performed on the whole plot means is necessary to obtain the whole
plot residuals and predicted values. I was unable to get all of the means tables from one split plot
analysis; the example provides most of the means tables for the subplot analysis. The last command
given below provides the full factorial ANOVA table with the five-factor interaction listed as error.

MTB > names c1 ’y’ c2 ’surf’ c3 ’fill’ c4 ’prop’ c5 ’rep’ c6 ’rota’

MTB > anova c1= c2|c3|c4|c6 c5(c2 c3 c4);

SUBC> test c2 c3 c4 c2*c3 c2*c4 c3*c4 c2*c3*c4 / c5(c2 c3 c4);

SUBC> resid c10;

SUBC> fits c11;

SUBC> means c6*c2 c6*c3 c6*c4 c6*c2*c4 c6*c3*c4 c6*c2*c3*c4.

MTB > anova c1 = c2|c3|c4|c5|c6 - c2*c3*c4*c5*c6

Computation of the ANOVA table

We now consider the computation of the whole plot analysis. This corresponds to the error 1 line
and everything above it in Table 12.4. The whole plot analysis is based on averaging over the three
levels of rotations. Table 12.6 gives the means ȳhi jk· averaged over rotations. Once again, in all
means tables the value of N in the upper left indicates the number of observations over which the
table entries are averaged. The sum of squares total for whole plots is the sample variance of the 24
means in Table 12.6 multiplied by N = 3 and the degrees of freedom. The degrees of freedom are
the number of means minus one, so

SS(Whole Plot Total) = (24−1)(3)2351.71900 = 162268.611 .

Table 12.7 contains the whole plot treatment means. These are averages over the 2 replications in
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Table 12.6. The mean square for whole plot treatments is just the sample variance of the 12 whole
plot treatment means times N = 6,

MS(Whole Plot Treatments) = (6)2401.943606 = 14411.66163

and the sum of squares is the mean square times the degrees of freedom, i.e., the number of means
minus 1,

SS(Whole Plot Treatments) = (12−1)14411.66163 = 158528.278 .

The sum of squares for whole plot error is obtained by subtraction,

SSE(1) = SS(Whole Plot Total)−SS(Whole Plot Treatments)

= 162268.611−158528.278
= 3740.3 .

The degrees of freedom for error are also obtained by subtraction, 23− 11 = 12. An abbreviated
analysis of variance table is given below.

Whole plot analysis of variance
Source d f SS
Whole plot treatments 11 158528.3
Error 1 12 3740.3
Total 23 162268.6

The MSE(1) is an estimate of σ2
w+3σ2

s , where σ2
w and σ2

s are identified in (12.2.2) and the multiplier
3 comes from the fact that there are three levels of the subplot treatment, rotations. The whole plot
residuals

ȳhi jk·− ȳhi j··

can be used in plots to evaluate the assumptions of the whole plot analysis. The sum of squares of
these residuals multiplied by 3 yields SSE(1).

The sum of squares for whole plot treatments is decomposed into terms for surf , f ill, prop,
surf ∗ f ill, surf ∗ prop, f ill ∗ prop, and surf ∗ f ill ∗ prop. As mentioned earlier, the methods for
computing the ANOVA table entries for the whole plot effects are the same as usual. We simply
present the appropriate means tables and allow the reader to reconstruct the whole plot ANOVA
table. The means tables are given below.

N = 36 Surface treatment means
surf Yes No

179.47 142.58

N = 36 Fill means
f ill A B

199.72 122.33

N = 24 Proportion means
prop 25% 50% 75%

145.12 159.33 178.62

N = 18 surf
f ill Yes No
A 213.33 186.11
B 145.61 99.06
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N = 12 surf
prop Yes No
25% 160.08 130.17
50% 182.25 136.42
75% 196.08 161.17

N = 12 f ill
prop A B
25% 169.08 121.17
50% 198.83 119.83
75% 231.25 126.00

We now consider computation of the subplot analysis. The subplot analysis corresponds to ev-
erything below the error 1 line in Table 12.4 The sum of squares total is computed in the usual way;
it is the sample variance of all 72 observations times 71. The sum of squares and degrees of freedom
for error 2 are obtained by subtraction. The error 2 sum of squares is the sum of squares total minus
the sums of squares for everything above the error 2 line in Table 12.4. The degrees of freedom for
error 2 are obtained similarly by subtraction. The MSE(2) is an estimate of σ2

s , which is defined in
(12.2.2).

The sums of squares for rota, surf ∗ rota, f ill ∗ rota, prop∗ rota, surf ∗ f ill ∗ rota, surf ∗ prop∗
rota, f ill ∗ prop ∗ rota, and surf ∗ f ill ∗ prop ∗ rota are found in a manner similar to that used for
the whole plot effects but using the means tables given below.

N = 24 Rotation means
rota 1000 2000 3000

197.92 158.375 26.792

As usual, SS(rota) is found from the means table above. From the means table below SS(surf −
rota trts) can be found.

N = 12 surf
rota Yes No
1000 231.00 164.83
2000 172.83 143.92
3000 134.58 119.00

Then
SS(surf ∗ rota) = SS(surf − rota trts)−SS(surf )−SS(rota)

where SS(surf ) is from the whole plot analysis.
The analysis of variance table is completed by performing similar computations on the following

means tables.

N = 12 f ill
rota A B
1000 214.75 181.08
2000 212.75 104.00
3000 171.67 81.92
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N = 8 prop
rota 25% 50% 75%
1000 181.625 192.875 219.250
2000 137.125 156.375 181.625
3000 116.625 128.750 135.000

N = 6 surf
Yes No

f ill A B A B
1000 235.00 227.00 194.50 135.17

rota 2000 225.67 120.00 199.83 88.00
3000 179.33 89.83 164.00 74.00

N = 4 surf
Yes No

prop 25% 50% 75% 25% 50% 75%
1000 207.00 235.25 250.75 156.25 150.50 187.75

rota 2000 153.00 171.25 194.25 121.25 141.50 169.00
3000 120.25 140.25 143.25 113.00 117.25 126.75

N = 4 f ill
A B

prop 25% 50% 75% 25% 50% 75%
1000 182.50 212.25 249.50 180.75 173.50 189.00

rota 2000 175.25 205.50 257.50 99.00 107.25 105.75
3000 149.50 178.75 186.75 83.75 78.75 83.25

From the table below, the sum of squares for the 24 different treatment combinations can be
computed. The four-factor interaction is obtained from this sum of squares by subtracting out the
sums of squares for the 4 main effects, the 6 two-factor interactions, and the 4 three-factor interac-
tions.

surf : Yes
N = 2 f ill

A B
prop 25% 50% 75% 25% 50% 75%
1000 201.00 237.00 267.00 213.00 233.50 234.50

rota 2000 190.00 219.50 267.50 116.00 123.00 121.00
3000 153.00 186.00 199.00 87.50 94.50 87.50

surf : No
f ill

A B
prop 25% 50% 75% 25% 50% 75%
1000 164.00 187.50 232.00 148.50 113.50 143.50

rota 2000 160.50 191.50 247.50 82.00 91.50 90.50
3000 146.00 171.50 174.50 80.00 63.00 79.00
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12.3 Multivariate analysis of variance

The multivariate approach to analyzing data that contain repeated measurements on each subject in-
volves using the repeated measures as separate dependent variables in a collection of standard anal-
yses of variance. The method of analysis, known as multivariate analysis of variance (MANOVA),
then combines results from the several ANOVAs. A detailed discussion of MANOVA is beyond the
scope of this book, but we present a short introduction to some of the underlying ideas. In particu-
lar, we will not illustrate the important but somewhat sophisticated methods for examining contrasts
in MANOVA. The discussion in Christensen (1990a, section I.5) is quite relevant in that it makes
extensive comparisons to split plot analyses and makes detailed use of contrasts. Unfortunately, the
mathematical level of Christensen (1990a) is much higher than the level of this book. Almost all
statistics books on multivariate analysis deal with MANOVA. Johnson and Wichern (1988) is one
reasonable place to look for more information on the subject.

The discussion in this section makes some use of matrices. Matrices are reviewed in Ap-
pendix A.

EXAMPLE 12.3.1. Consider again the Box (1950) data on the abrasion resistance of a fabric. We
began in Section 11.3 by analyzing the weight losses obtained between 1000 and 2000 revolutions
of the testing machine. In the split plot analysis we combined these data for 2000 rotations with the
data for 1000 and 3000 rotations. In the multivariate approach, we revert to the earlier analysis and
fit separate ANOVA models for the data from 1000 rotations, 2000 rotations, and 3000 rotations.
Again, the three factors are referred to as ‘surf ’, ‘ f ill’, and ‘prop’, respectively. The variables
yhi jk,1, yhi jk,2, and yhi jk,3 denote the data from 1000, 2000, and 3000 rotations respectively. We fit
the models

yhi jk,1 = µhi jk,1 + εhi jk,1

= µ1 + sh,1 + fi,1 + p j,1

+(s f )hi,1 +(sp)h j,1 +( f p)i j,1 +(s f p)hi j,1 + εhi jk,1,

yhi jk,2 = µhi jk,2 + εhi jk,2

= µ2 + sh,2 + fi,2 + p j,2

+(s f )hi,2 +(sp)h j,2 +( f p)i j,2 +(s f p)hi j,2 + εhi jk,2,

and

yhi jk,3 = µhi jk,3 + εhi jk,3

= µ3 + sh,3 + fi,3 + p j,3

+(s f )hi,3 +(sp)h j,3 +( f p)i j,3 +(s f p)hi j,3 + εhi jk,3

h = 1,2, i = 1,2, j = 1,2,3, k = 1,2. As in standard ANOVA models, for fixed m = 1,2,3, the
εhi jk,ms are independent N(0,σmm) random variables. We are now using a double subscript in σmm
to denote a variance rather than writing σ2

m. As usual, the errors on a common dependent variable,
say εhi jk,m and εh′i′ j′k′,m, are independent when (h, i, j,k) 6= (h′, i′, j′,k′), but we also assume that the
errors on different dependent variables, say εhi jk,m and εh′i′ j′k′,m′ are independent when (h, i, j,k) 6=
(h′, i′, j′,k′). However, not all of the errors for all the variables are assumed independent. Two
observations (or errors) on the same experimental unit are not assumed to be independent. For fixed
h, i, j, k the errors for any two variables are possibly correlated with, say, Cov(εhi jk,m,εhi jk,m′) =
σmm′ .

The models for each variable are of the same form but the parameters differ for the different
dependent variables yhi jk,m. All the parameters have an additional subscript to indicate which de-
pendent variable they belong to. The essence of the procedure is simply to fit each of the models
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Table 12.8: Analysis of variance for y1

Source d f SS MS F P
surf 1 26268.2 26268.2 97.74 0.000
f ill 1 6800.7 6800.7 25.30 0.000
prop 2 5967.6 2983.8 11.10 0.002
surf ∗ f ill 1 3952.7 3952.7 14.71 0.002
surf ∗ prop 2 1186.1 593.0 2.21 0.153
f ill ∗ prop 2 3529.1 1764.5 6.57 0.012
surf ∗ f ill ∗ prop 2 478.6 239.3 0.89 0.436
Error 12 3225.0 268.8
Total 23 51407.8

Table 12.9: Analysis of variance for y2

Source d f SS MS F P
surf 1 5017.0 5017.0 25.03 0.000
f ill 1 70959.4 70959.4 353.99 0.000
prop 2 7969.0 3984.5 19.88 0.000
surf ∗ f ill 1 57.0 57.0 0.28 0.603
surf ∗ prop 2 44.3 22.2 0.11 0.896
f ill ∗ prop 2 6031.0 3015.5 15.04 0.001
surf ∗ f ill ∗ prop 2 14.3 7.2 0.04 0.965
Error 12 2405.5 200.5
Total 23 92497.6

individually and then to combine results. Fitting individually gives three separate sets of residuals,
ε̂hi jk,m = yhi jk,m− ȳhi j·,m m = 1,2,3, three separate sets of residual plots, and three separate ANOVA
tables. The three ANOVA tables are given as Tables 12.8, 12.9, and 12.10. All of the means tables
necessary for these analyses were given in Section 12.2 in the subsection on Computation of the
ANOVA Table. Each variable can be analyzed in detail using the ordinary methods for multifac-
tor designs illustrated in Section 11.3. Residual plots for the analyses on y1 and y3 are given in
Figures 12.16 through 12.19. Residual plots for y2 were given in Section 11.3 as Figures 11.8 and
11.9.

The key to multivariate analysis of variance is to combine results across the three variables y1,
y2, and y3. Recall that the mean squared errors are just the sums of the squared residuals divided by
the error degrees of freedom, e.g.,

MSEmm ≡ smm =
1

d fE ∑
hi jk

ε̂
2
hi jk,m.

Table 12.10: Analysis of variance for y3

Source d f SS MS F P
surf 1 1457.0 1457.0 6.57 0.025
f ill 1 48330.4 48330.4 217.83 0.000
prop 2 1396.6 698.3 3.15 0.080
surf ∗ f ill 1 0.4 0.4 0.00 0.968
surf ∗ prop 2 250.6 125.3 0.56 0.583
f ill ∗ prop 2 1740.3 870.1 3.92 0.049
surf ∗ f ill ∗ prop 2 272.2 136.1 0.61 0.558
Error 12 2662.5 221.9
Total 23 56110.0
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Figure 12.16: Residual–prediction plot for y1.
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Figure 12.17: Normal plot for y1, W ′ = 0.974.
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Figure 12.18: Residual–prediction plot for y3.
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Figure 12.19: Normal plot for y3, W ′ = 0.939.
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This provides an estimate of σmm. We can also use the residuals to estimate covariances between
the three variables. The estimate of σmm′ is

MSEmm′ ≡ smm′ =
1

d fE ∑
hi jk

ε̂hi jk,mε̂hi jk,m′ .

We now form the estimates into a matrix of estimated covariances

S =

s11 s12 s13
s21 s22 s23
s31 s32 s33

 .
Note that smm′ = sm′m, e.g., s12 = s21. The matrix S provides an estimate of the covariance matrix

Σ≡

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 .
The key difference between this analysis and the split plot analysis is that this analysis makes no
assumptions about the variances and covariances in Σ. The split plot analysis assumes that

σ11 = σ22 = σ33 = σ
2
w +σ

2
s

and that for m 6= m′,
σmm′ = σ

2
w.

Similarly, we can construct a matrix that contains sums of squares error and sums of cross
products error. Write

emm′ ≡ ∑
hi jk

ε̂hi jk,mε̂hi jk,m′

where emm = SSEmm and

E ≡

e11 e12 e13
e21 e22 e23
e31 e32 e33

 .
Obviously, E = (d fE)S. For Box’s fabric data

E =

3225.00 −80.50 1656.50
−80.50 2405.50 −112.00
1656.50 −112.00 2662.50

 .
The diagonal elements of this matrix are the error sums of squares from Tables 12.8, 12.9, and
12.10.

We can use similar methods for every line in the analysis of variance table. For example, each
variable m = 1,2,3 has a sum of squares for surf ∗ prop, say,

SS(s∗ p)mm ≡ h(s∗ p)mm = 4
2

∑
h=1

3

∑
j=1

(
ȳh· j·,m− ȳh···,m− ȳ·· j·,m + ȳ····,m

)2
.

Similar to ACOVA, we can include cross products using SS(s∗ p)mm′ ≡ h(s∗ p)mm′ , where

h(s∗ p)mm′ = 4
2

∑
h=1

3

∑
j=1

(
ȳh· j·,m− ȳh···,m− ȳ·· j·,m + ȳ····,m

)
×
(
ȳh· j·,m′ − ȳh···,m′ − ȳ·· j·,m′ + ȳ····,m′

)
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Table 12.11: MANOVA statistics

H(GRANDMEAN) =

940104.17 752281.25 602260.42
752281.25 601983.37 481935.13
602260.42 481935.13 385827.04



H(s) =

26268.167 11479.917 6186.5833
11479.917 5017.0417 2703.7083
6186.5833 2703.7083 1457.0417



H( f ) =

6800.6667 21967.500 18129.500
21967.500 70959.375 58561.875
18129.500 58561.875 48330.375



H(p) =

5967.5833 6818.2500 2646.9583
6818.2500 7969.0000 3223.7500
2646.9583 3223.7500 1396.5833



H(s∗ f ) =

3952.6667 474.83333 38.500000
474.83333 57.041667 4.6250000
38.500000 4.6250000 0.37500000



H(s∗ p) =

 1186.0833 −33.166667 526.79167
−33.166667 44.333333 −41.583333

526.79167 −41.583333 250.58333



H( f ∗ p) =

3529.0833 4275.5000 2374.1250
4275.5000 6031.0000 2527.2500
2374.1250 2527.2500 1740.2500



H(s∗ f ∗ p) =

478.58333 4.4166667 119.62500
4.4166667 14.333333 −57.750000
119.62500 −57.750000 272.25000



E =

3225.00 −80.50 1656.50
−80.50 2405.50 −112.00
1656.50 −112.00 2662.50



and create a matrix

H(s∗ p)≡

h(s∗ p)11 h(s∗ p)12 h(s∗ p)13
h(s∗ p)21 h(s∗ p)22 h(s∗ p)23
h(s∗ p)31 h(s∗ p)32 h(s∗ p)33

 .
For the fabric data

H(s∗ p) =

 1186.0833 −33.166667 526.79167
−33.166667 44.333333 −41.583333

526.79167 −41.583333 250.58333

 .
Note that the diagonal elements of H(s ∗ p) are the surf ∗ prop interaction sums of squares from
Tables 12.8, 12.9, and 12.10. Table 12.11 contains the H matrices for all of the sources in the
analysis of variance.

In the standard (univariate) analysis of y2 that was performed in Section 11.3, the test for surf ∗
prop interactions was based on

F =
MS(s∗ p)22

MSE22
=

SS(s∗ p)22

SSE22

1/d f (s∗ p)
1/d fE

=
h(s∗ p)22

e22

d fE
d f (s∗ p)

.
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The last two equalities are given to emphasize that the test depends on the yhi jk,2s only through
h(s∗ p)22 (e22)

−1. Similarly, a multivariate test of surf ∗ prop is a function of the matrices

H(s∗ p)E−1,

where E−1 is the matrix inverse of E. A major difference between the univariate and multivariate
procedures is that there is no uniform agreement on how to use H(s∗ p)E−1 to construct a test. The
‘generalized likelihood ratio’ test, also known as Wilks’ lambda is

Λ(s∗ p)≡ 1
|I +H(s∗ p)E−1|

where I indicates a 3× 3 identity matrix and |A| denotes the determinant of a matrix A. Roy’s
maximum root statistic is the maximum eigenvalue of H(s ∗ p)E−1, say, φmax(s ∗ p). On occasion,
Roy’s statistic is taken as

θmax(s∗ p)≡ φmax(s∗ p)
1+φmax(s∗ p)

.

A third statistic is the Lawley–Hotelling trace,

T 2(s∗ p)≡ d fE tr
[
H(s∗ p)E−1]

and a final statistic is Pillai’s trace,

V (s∗ p)≡ tr
[
H(s∗ p)(E +H(s∗ p))−1

]
.

Similar test statistics Λ, φ , θ , T 2 and V can be constructed for all of the other main effects and
interactions. It can be shown that for H terms with only one degree of freedom, these test statistics
are equivalent to each other and to an F statistic. In such cases, we only present T 2 and the F value.

Table 12.12 presents the test statistics for each term. When the F statistic is exactly correct, it is
given in the table. In other cases, the table presents F statistic approximations. The approximations
are commonly used and discussed; see, for example, Rao (1973, chapter 8) or Christensen (1990a,
section I.2). Degrees of freedom for the F approximations and P values are also given.

Each effect in Table 12.12 corresponds to a combination of a whole plot effect and a whole
plot by subplot interaction from the split plot analysis. For example, the multivariate effect surf
corresponds to combining the effects surf and surf ∗ rota from the univariate analysis. The highest
order terms in the table that are significant are the f ill ∗ prop and the surf ∗ f ill terms. Relative
to the split plot analysis, these suggest the presence of f ill ∗ prop interaction or f ill ∗ prop ∗ rota
interaction and surf ∗ f ill interaction or surf ∗ f ill ∗ rota interaction. In Section 12.2, we found the
merest suggestion of a f ill ∗ prop ∗ rota interaction but clear evidence of a f ill ∗ prop interaction;
we also found clear evidence of a surf ∗ f ill ∗ rota interaction. However, the split plot results were
obtained under different, and perhaps less appropriate, assumptions. To complete the multivariate
analysis, MANOVA contrasts are needed. The MANOVA assumptions also suggest some alternative
residual analysis. We will not discuss either of these subjects. 2

Minitab commands

Minitab commands for obtaining Tables 12.8 through 12.12 and the corresponding residuals and
predicted values are given below. The three columns c1, c2, and c3 contain y1, y2, and y3, respec-
tively. Columns c4, c5, and c6 contain indices for surf , f ill, and prop. Some older versions of
Minitab do not allow the last three subcommands that provide the multivariate analysis of variance.
Incidentally, Minitab uses T 2/d fE as its definition for the Lawley–Hotelling trace.
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Table 12.12: Multivariate statistics

Effect Statistics F d f P
GRAND MEAN T 2 = 6836.64 1899.07 3, 10 0.000
surf T 2 = 137.92488 38.31 3, 10 0.000
f ill T 2 = 612.96228 170.27 3, 10 0.000
prop Λ = 0.13732 5.66 6, 20 0.001

T 2 = 65.31504 8.16 6, 18 0.000
V = 0.97796 3.51 6, 22 0.014
φmax = 5.28405

surf ∗ f ill T 2 = 21.66648 6.02 3, 10 0.013
surf ∗ prop Λ = 0.71068 0.62 6, 20 0.712

T 2 = 4.76808 0.60 6, 18 0.730
V = 0.29626 0.64 6, 22 0.699
φmax = 0.37102

f ill ∗ prop Λ = 0.17843 4.56 6, 20 0.005
T 2 = 46.03092 5.75 6, 18 0.002
V = 0.95870 3.38 6, 22 0.016
φmax = 3.62383

surf ∗ f ill ∗ prop Λ = 0.75452 0.50 6, 20 0.798
T 2 = 3.65820 0.46 6, 18 0.831
V = 0.26095 0.55 6, 22 0.765
φmax = 0.20472

MTB > anova c1-c3 = c4|c5|c6;

SUBC> means c4 c5 c6 c4*c5 c4*c6 c5*c6 c4*c5*c6;

SUBC> resid c11 c12 c13;

SUBC> fits c21 c22 c23;

SUBC> manova c4 c5 c6 c4*c5 c4*c6 c5*c6 c4*c5*c6;

SUBC> sscp;

SUBC> eigen.

12.4 Random effects models

In this section we consider two special cases of split plot models. First we consider a model in
which several observations are taken on the same experimental unit. Repeat observations on a unit
involve some random errors but they do not involve the error associated with unit to unit variation.
Such models are called subsampling models. The second class of models are those in which some
treatment effects in an ANOVA can actually be considered as random. For simplicity, both discus-
sions are restricted to balanced models. Unbalanced models are much more difficult to deal with and
typically require a knowledge of linear model theory, cf. Christensen (1987, especially chapter XII).

12.4.1 Subsampling

It is my impression that many of the disasters that occur in planning and analyzing studies occur be-
cause people misunderstand subsampling. The following is both a true story and part of the folklore
of the statistics program at the University of Minnesota. A graduate student wanted to study the ef-
fects of two drugs on mice. The student collected 200 observations in the following way. Two mice
were randomly assigned to each drug. From each mouse, tissue samples were collected at 50 sites.
The experimental units were the mice because the drugs were applied to the mice, not to the tissue
sites. There are two sources of variation: mouse to mouse variation and within mouse variation. The
50 observations (subsamples) on each mouse are very useful in reducing the within mouse variation
but do nothing to reduce mouse to mouse variation. Relative to the mouse to mouse variation, which
is likely to be larger than the within mouse variation, there are only two observations that have the
same treatment. As a result, each of the two treatment groups provides only one degree of freedom
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for estimating the variance that applies to treatment comparisons. In other words, the experiment
provides two degrees of freedom for (the appropriate) error. Obviously a lot of work went into col-
lecting the 200 observations. The work was wasted! Moreover, the problem in the design of this
experiment could easily have been compounded by an analysis that ignored the subsampling prob-
lem. If subsampling is ignored in the analysis of such data, the MSE is inappropriately small and
effects look more significant than they really are. (Fortunately, none of the many statistics students
that were approached to analyze these data were willing to do it incorrectly.)

Another example comes from Montana State University. A Range science graduate student
wanted to compare two types of mountain meadows. He had located two such meadows and was
planning to take extensive measurements on each. It had not occurred to him that this procedure
would look only at within meadow variation and that there was variation between meadows that he
was ignoring.

Consider the subsampling model

yi jk = µi +ηi j + εi jk (12.4.1)

where i = 1, . . . ,a is the number of treatments, j = 1, . . . ,ni is the number of replications on dif-
ferent experimental units, and k = 1, . . . ,N is the number of subsamples on each experimental unit.
We assume that the εi jks are independent N(0,σ2

s ) random variables, that the ηi js are independent
N(0,σ2

w), and that the ηi js and εi jks are independent. The ηs indicate errors (variability) that occur
from experimental unit to experimental unit, whereas the εs indicate errors (variability) that occur
in measurements taken on a given experimental unit. Model (12.4.1) can be viewed as a special case
of a split plot model in which there are no subplot treatments. If there are no subplot treatments,
interest lies exclusively in the whole plot analysis. The whole plot analysis can be conducted in the
usual way by taking the data to be the averages over the subsamples (subplots).

We can be more formal by using model (12.4.1) to obtain

ȳi j· = µi + ei j (12.4.2)

where we define
ei j ≡ ηi j + ε̄i j·

and have i = 1, . . . ,a, j = 1, . . . ,ni. Using Proposition 1.2.11, it is not difficult to see that the ei js
are independent N(0,σ2

w +σ2
s /N), so that model (12.4.2) is just an unbalanced one-way ANOVA

model and can be analyzed as such. If desired, the methods of the next subsection can be used to
estimate the between unit (whole plot) variance σ2

w and the within unit (subplot) variance σ2
s . Note

that our analysis in Example 12.1.1 was actually on a model similar to (12.4.2). The data analyzed
were averages of two repeat measurements of dynamic absorption.

Model (12.4.2) also helps to formalize the benefits of subsampling. We have N subsamples
which lead to Var(ei j) = σ2

w+σ2
s /N. If we did not take subsamples, the variance would be σ2

w+σ2
s ,

so we have reduced one of the terms in the variance by subsampling. If the within unit variance
σ2

s is large relative to the between unit variance σ2
w, subsampling can be very beneficial. If the

between unit variance σ2
w is substantial when compared to the within unit variance σ2

s , subsampling
has very limited benefits. In this latter case, it is important to obtain a substantial number of true
replications involving the between unit variability with subsampling based on convenience (rather
than importance).

Model (12.4.1) was chosen to have unequal numbers of units on each treatment but a balanced
number of subsamples. This was done to suggest the generality of the procedure. Subsamples can
be incorporated into any balanced multifactor design and, as long as the number of subsamples
is constant for each unit, a simple analysis can be obtained by averaging the subsamples for each
unit and using the averages as data. Christensen (1987, section XI.4) provides a closely related
discussion that is not too mathematical.
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12.4.2 Random effects

In Chapter 5 we considered data on an electrical characteristic of ceramic assemblies used in man-
ufacturing phonographs. The analysis looked for differences between four specific ceramic strips.
An alternative approach to those data is to think of the four ceramic strips as being a random sample
from the population of ceramic strips that are involved in making the assemblies. If we do that, we
have two sources of variability, variability among the observations on a given strip and variabil-
ity between different ceramic strips. Our goal in this section is to estimate the variances and test
whether there is any variability between strips.

Consider a balanced one-way ANOVA model

yi j = µ +αi + εi j

where i = 1, . . . ,a and j = 1, . . . ,N. As usual, we assume that the εi js are independent N(0,σ2)
random variables, but now, rather than assuming that the αis are fixed treatment effects, we assume
that they are random treatment effects. In particular, assume that the αis are independent N(0,σ2

A)
random variables that are also independent of the εi js. This model can be viewed as a split plot
model in which there are no whole plot factors or subplot factors.

The analysis revolves around the analysis of variance table and the use of Proposition 1.2.11. As
usual, begin with the summary statistics ȳi· and s2

i , i= 1, . . . ,a. In comparing the observations within
a single strip, there is no strip to strip variability. The sample variances s2

i each involve comparisons
only within a given strip, so each provides an estimate of the within strip variance, σ2. In particular,
E
(
s2

i
)
= σ2. Clearly, if we pool these estimates we continue to get an estimate of σ2. In particular,

E(MSE) = σ
2.

We now examine MSTrts. Before proceeding note that by independence of the αis and the εi js,

Var(yi j) = Var(µ +αi + εi j)

= Var(αi)+Var(εi j)

= σ
2
A +σ

2.

Thus Var(yi j) is the sum of two variance components σ2
A and σ2. Moreover,

Var(ȳi·) = Var(µ +αi + ε̄i·)

= Var(αi)+Var(ε̄i·)

= σ
2
A +

σ2

N

because ε̄i· is the sample mean of N independent random variables that have variance σ2. It is easily
seen that E(ȳi·) = µ . As in the discussion of Chapter 5, the ȳi·s form a random sample of size a, but
now the population that they are sampled from is N

(
µ,σ2

A +σ2/N
)
. Note that, unlike Chapter 5,

this result holds all the time and does not require the validity of some null hypothesis. Clearly, the
sample variance of the ȳi·s provides an estimate of σ2

A +σ2/N. The MSTrts is N times the sample
variance of the ȳi·s, so MSTrts provides an unbiased estimate of Nσ2

A +σ2.
We already have an estimate of σ2. To obtain an estimate of σ2

A use the results of the previous
paragraph and take

σ̂
2
A =

MSTrts−MSE
N

.

It is a simple exercise to show that
E
(
σ̂

2
A
)
= σ

2
A.
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The usual F statistic is MSTrts/MSE. Clearly, it is a (biased) estimate of

Nσ2
A +σ2

σ2 = 1+
Nσ2

A
σ2 .

If H0 : σ2
A = 0 holds, the F statistic should be about 1. In general, if H0 holds,

MSTrts
MSE

∼ F(a−1,d fE)

and the usual F test can be interpreted as a test of H0 : σ2
A = 0.

EXAMPLE 12.4.1. For the electrical characteristic data of Chapter 5, the analysis of variance
table is given below.

Analysis of variance table: electrical characteristic data
Source d f SS MS F P
Treatments 3 10.873 3.624 6.45 0.002
Error 24 13.477 0.562
Total 27 24.350

The F statistic shows strong evidence that variability exists between ceramic strips. The estimate of
within strip variability is MSE = .562. With 7 observations on each ceramic strip, the estimate of
between strip variability is

σ̂
2
A =

MSTrts−MSE
N

=
3.624−0.562

7
= .437.

While in many ways this random effects analysis seems more appropriate for the relatively
undifferentiated strips being considered, this analysis also seems less informative for these data
than the analysis in Chapter 5. It was clear in Chapter 5 that most of the between strip ‘variation’
was due to a single strip, number 4. Are we to consider this strip an outlier in the population of
ceramic strips? Having three sample means that are quite close and one that is substantially different
certainly calls in question the assumption that the random treatment effects are normally distributed.
Most importantly, some kind of analysis that looks at individual sample means is necessary to have
any chance of identifying an odd strip. 2

The ideas behind the analysis of the balanced one-way ANOVA model generalize nicely to other
balanced models. Consider the balanced two-way with replication,

yi jk = µ +αi +β j + γi j + εi jk

where i = 1, . . . ,a, j = 1, . . . ,b, and k = 1, . . . ,N. Assume that the εi jks are independent N(0,σ2)
random variables, that the γi js are independent N(0,σ2

γ ), and that the εi jks and γi js are independent.
This model involves two variance components σ2

γ and σ2.
While we will not provide proofs, the following results hold. MSE still estimates σ2. MS(γ)

estimates
E[MS(γ)] = σ

2 +Nσ
2
γ .

The usual interaction test is a test of H0 : σ2
γ = 0. For main effects, MS(β ) estimates

E[MS(β )] = σ
2 +Nσ

2
γ +

aN
b−1

b

∑
j=1

(β j− β̄·)
2.

When the β js are all equal, MS(β ) estimates σ2 + Nσ2
γ . It follows that to obtain an F test for
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Table 12.13: Cornell’s scaled vinyl thickness values

Replication 1 Replication 2
Rate High Low Low High High Low Low High
Temp Low High Low High Low High Low High

1 8 12 7 12 7 10 8 11
2 6 9 7 10 5 8 6 9

Blend 3 10 13 9 14 11 12 10 12
4 4 6 5 6 5 3 4 5
5 11 15 9 13 10 11 7 9

equality of the β js, the test must reject when MS(β ) is much larger than MS(γ). In particular, an α

level test rejects if
MS(β )
MS(γ)

> F(1−α,a−1, [a−1][b−1]).

This is just the usual result except that the MSE has been replaced by the MS(γ). The analysis of
contrasts in the β js also follows the standard pattern with MS(γ) used in place of MSE. Similar
results hold for investigating the αis.

The moral of this analysis is that one needs to think very carefully about whether to model inter-
actions as fixed effects or random effects. It would seem that if you do not care about interactions,
if they are just an annoyance in evaluating the main effects, you probably should treat them as ran-
dom and use the interaction mean square as the appropriate estimate of variability. A related way
of thinking is to stipulate that you do not care about any main effects unless they are large enough
to show up above any interaction. In particular, this is essentially what is done in a randomized
complete block design. An RCB takes the block by treatment interaction as the error and only treat-
ment effects that are strong enough to show up above any block by treatment interaction are deemed
significant. On the other hand, if interactions are something of direct interest, they should typically
be treated as fixed effects.

12.5 Exercises

EXERCISE 12.5.1. In Exercises 9.5.3, 9.5.4, and 11.5.1 we considered data from Cornell (1988)
on scaled vinyl thicknesses. Exercise 9.5.3 involved five blends of vinyl and we discussed the fact
that the production process was set up eight times with a group of five blends run on each setting.
The eight production settings where those in Exercise 9.5.4. The complete data are displayed in
Table 12.13.

(a) Identify the design for this experiment and give an appropriate model. List all the assumptions
made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts
using the LSD method with an α of .05.

(c) Check the assumptions of the model and adjust the analysis appropriately.
(d) Discuss the relationship between the current analysis and those conducted earlier.

EXERCISE 12.5.2. Wilm (1945) presented data involving the effect of logging on soil moisture
deficits under a forest. Treatments consist of five intensities of logging. Treatments were identified
as the volume of the trees left standing after logging that were larger than 9.6 inches in diameter. The
logging treatments were uncut, 6000 board-feet, 4000 board-feet, 2000 board-feet, 0 board-feet. The
experiment was conducted by selecting four blocks (A,B,C,D) of forest. These were subdivided into
five plots. Within each block each of the treatments were randomly assigned to a plot. Soil moisture
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Table 12.14: Soil moisture deficits as affected by logging

Block
Treatment Year A B C D

41 2.40 0.98 1.38 1.37
Uncut 42 3.32 1.91 2.36 1.62

43 2.59 1.44 1.66 1.75
41 1.76 1.65 1.69 1.11

6000 42 2.78 2.07 2.98 2.50
43 2.27 2.28 2.16 2.06
41 1.43 1.30 0.18 1.66

4000 42 2.51 1.48 1.83 2.36
43 1.54 1.46 0.16 1.84
41 1.24 0.70 0.69 0.82

2000 42 3.29 2.00 1.38 1.98
43 2.67 1.44 1.75 1.56
41 0.79 0.21 0.01 0.16

None 42 1.70 1.44 2.65 2.15
43 1.62 1.26 1.36 1.87

Treatments are volumes of timber left standing
in trees with diameters greater than 9.6 inches.

Volumes are measured in board-feet.

deficits were measured in each of three consecutive years, 1941, 1942, and 1943. The data are
presented in Table 12.14.

(a) Identify the design for this experiment and give an appropriate model. List all the assumptions
made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts.
In particular, use the treatment contrast that compares the uncut plots to the average of the other
plots and use orthogonal polynomial contrasts to examine differences among the other four treat-
ments. Discuss the reasonableness of this procedure in which the ‘uncut’ treatment is excluded
when fitting the polynomial contrasts.

(c) Check the assumptions of the model and adjust the analysis appropriately. What assumptions are
difficult to check? Identify any such assumptions that are particularly suspicious.

EXERCISE 12.5.3. Day and del Priore (1953) report data from an experiment on the noise gen-
erated by various reduction gear designs. The data were collected because of the Navy’s interest in
building quiet submarines. Primary interest focused on the direction of lubricant application. Lubri-
cants were applied either inmesh (I) or tangent (T) and either at the top (T) or the bottom (B). Thus
the direction TB indicates tangent, bottom while IT is inmesh, top.

Four additional factors were considered. Load was 25%, 100%, or 125%. The temperature of
the input lubricant was 90, 120, or 160 degrees F. The volume of lubricant flow was .5 gpm, 1 gpm,
or 2 gpm. The speed was either 300 rpm or 1200 rpm. Temperature and volume were of less interest
than direction; speed and load were of even less interest. It was considered that load, temperature,
and volume would not interact but that speed might interact with the other factors. There was little
idea whether direction would interact with other factors. As a result, a split plot design with whole
plots in a 3× 3 Latin Square was used. The factors used in defining the whole plot Latin Square
were load, temperature, and volume. The subplot factors were speed and the direction factors.

The data are presented in Table 12.15. The four observations with 100% load, 90 degree temper-
ature, .5 gpm volume, and lubricant applied tangentially were not made. Substitutes for these values
were used. As an approximate analysis, treat the substitute values as real values but subtract four
degrees of freedom from the subplot error. Analyze the data.

EXERCISE 12.5.4. In Exercise 11.5.4 and Table 11.20 we presented Baten’s (1956) data on
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Table 12.15: Gear test data

Volume
Load Direction .5 gpm 1 gpm 2 gpm

Temp 120 Temp 90 Temp 160
TB 92.7 81.4 91.3 68.0 86.9 78.2

25% IT 95.9 79.2 87.7 77.7 90.7 97.9
IB 92.7 85.5 93.6 76.2 92.1 80.2
TT 92.2 81.4 92.9 72.2 90.6 85.8

Temp 90 Temp 160 Temp 120
TB 94.2* 80.2* 89.7 86.0 91.9 84.8

100% IT 88.6 83.7 87.8 86.6 85.4 79.5
IB 89.8 83.9 90.4 79.3 85.7 86.9
TT 89.8* 75.4* 90.4 85.0 82.6 79.0

Temp 160 Temp 120 Temp 90
TB 88.7 94.2 90.3 86.7 88.4 75.8

125% IT 92.1 91.1 90.3 83.5 86.3 71.2
IB 91.7 89.2 90.4 86.6 88.3 87.9
TT 93.4 86.2 89.7 83.0 88.6 84.5

300 1200 300 1200 300 1200
Speed Speed Speed

* indicates a replacement for missing data

lengths of steel bars. The bars were made with one of two heat treatments (W, L) and cut on one
of four screw machines (A, B, C, D) at one of three times of day (8 am, 11 am, 3 pm). There are
distressing aspects to Baten’s article. First, he never mentions what the heat treatments are. Second,
he does not discuss how the four screw machines differ or whether the same person operates the
same machine all the time. If the machines were largely the same and one specific person always
operates the same machine all the time, then machine differences would be due to operators rather
than machines. If the machines were different and one person operates the same machine all the
time, it becomes impossible to tell whether machine differences are due to machines or operators.
Most importantly, Baten does not discuss how the replications were obtained. In particular, consider
the role of day to day variation in the analysis.

If the 12 observations on a heat treatment–machine combination are all taken on the same day,
there is no replication in the experiment that accounts for day to day variation. In that case the av-
erage of the four numbers for each heat treatment–machine–time combination gives essentially one
observation and for each heat treatment–machine combination the three time means are correlated.
To obtain an analysis, the heat–machine interaction and the heat–machine–time interaction would
have to be used as the two error terms.

Suppose the 12 observations on a heat treatment–machine combination are taken on four differ-
ent days with one observation obtained on each day for each time period. Then the three observations
on a given day are correlated but the observations on different days are independent. This leads to a
traditional split plot analysis.

Finally, suppose that the 12 observations on a heat treatment–machine combination are all taken
on 12 different days. Yet another analysis is appropriate.

Compare the results of these three different methods of analyzing the experiment. If the day to
day variability is no larger than the within day variability, there should be little difference. When
considering the analysis that assumes 12 observations taken on four different days, treat the order
of the four heat treatment–machine–time observations as indicating the day. For example, with heat
treatment W and machine A, take 9, 3, and 4 as the three time observations on the second day.

EXERCISE 12.5.5. People who really want to test their skill may wish to examine the data pre-
sented in Snedecor and Haber (1946) and repeated in Table 12.16. The experiment was to examine
the effects of three cutting dates on asparagus. Six blocks were used. One plot was assigned a cut-
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Table 12.16:

Treatments
Year a b c a b c a b c
29 201 301 362 185 236 341 209 226 357
30 230 296 353 216 256 328 219 212 354
31 324 543 594 317 397 487 357 358 560
32 512 778 755 448 639 622 496 545 685
33 399 644 580 361 483 445 344 415 520
34 891 1147 961 783 998 802 841 833 871
35 449 585 535 409 525 478 418 451 538
36 595 807 548 566 843 510 622 719 578
37 632 804 565 629 841 576 636 735 634
38 527 749 353 527 823 299 530 731 413
29 219 330 427 225 307 382 219 342 464
30 222 301 391 239 297 321 216 287 364
31 348 521 599 347 463 502 356 557 584
32 487 742 802 512 711 684 508 768 819
33 372 534 573 405 577 467 377 529 612
34 773 1051 880 786 1066 763 780 969 1028
35 382 570 540 415 610 468 407 526 651
36 505 737 577 549 779 548 595 772 660
37 534 791 524 559 741 621 626 826 673
38 434 614 343 433 706 352 518 722 424

Blocks are indicated by vertical and horizontal lines.

ting date of June 1 (a), one a cutting date of June 15 (b), and the last a cutting date of July 1 (c).
Data were collected on these plots for 10 years.

Try to come up with an intelligible summary of the data that would be of use to someone growing
asparagus. In particular, the experiment was planned to run for the effective lifetime of the planting,
normally 20 years or longer. The experiment was cut short due to lack of labor but interest remained
in predicting behavior ten years after the termination of data collection. The linear and quadratic
contrast coefficients for ten groups are

Contrast Coefficients
Linear −9 −7 −5 −3 −1 1 3 5 7 9
Quadratic 6 2 −1 −3 −4 −4 −3 −1 2 6

As most effects seem to be significant, I would be inclined to focus on effects that seem relatively
large rather than on statistically significant effects.

EXERCISE 12.5.6. For a balanced 3× 4× 3 with equally spaced quantitative factor levels find
the contrast coefficients for the linear by linear by linear, the linear by quadratic by linear, and the
quadratic by cubic by linear three-way interaction contrasts.

EXERCISE 12.5.7. Reanalyze the data of Exercise 5.7.1 assuming that the five laboratories are a
random sample from a population of laboratories. Include estimates of both variance components.

EXERCISE 12.5.8. Reanalyze the data of Example 11.1.1 assuming that the disk by window
interaction is random effect. Include estimates of both variance components.





Chapter 13

Multiple regression: introduction

Multiple regression involves predicting values of a dependent variable from the values on a collec-
tion of other (predictor) variables. In particular, linear combinations of the predictor variables are
used in modeling the dependent variable.

13.1 Example of inferential procedures

In our discussion of simple linear regression, we considered data from The Coleman Report. The
data given were only two of six variables reported in Mosteller and Tukey (1977). We now consider
the entire collection of variables. Recall that the data are from schools in the New England and Mid-
Atlantic states. The variables are y, the mean verbal test score for sixth graders; x1, staff salaries per
pupil; x2, percentage of sixth graders whose fathers have white collar jobs; x3, a composite measure
of socioeconomic status; x4, the mean of verbal test scores given to the teachers; and x5,- the mean
educational level of the sixth grader’s mothers (one unit equals two school years). The dependent
variable y is the same as in the simple linear regression example and the variable x3 was used as the
sole predictor variable in the earlier example. The data are given in Table 13.1.

It is of interest to examine the correlations between y and the predictor variables.

x1 x2 x3 x4 x5
Correlation with y 0.192 0.753 0.927 0.334 0.733

Table 13.1: Coleman Report data

School y x1 x2 x3 x4 x5

1 37.01 3.83 28.87 7.20 26.60 6.19
2 26.51 2.89 20.10 −11.71 24.40 5.17
3 36.51 2.86 69.05 12.32 25.70 7.04
4 40.70 2.92 65.40 14.28 25.70 7.10
5 37.10 3.06 29.59 6.31 25.40 6.15
6 33.90 2.07 44.82 6.16 21.60 6.41
7 41.80 2.52 77.37 12.70 24.90 6.86
8 33.40 2.45 24.67 −0.17 25.01 5.78
9 41.01 3.13 65.01 9.85 26.60 6.51

10 37.20 2.44 9.99 −0.05 28.01 5.57
11 23.30 2.09 12.20 −12.86 23.51 5.62
12 35.20 2.52 22.55 0.92 23.60 5.34
13 34.90 2.22 14.30 4.77 24.51 5.80
14 33.10 2.67 31.79 −0.96 25.80 6.19
15 22.70 2.71 11.60 −16.04 25.20 5.62
16 39.70 3.14 68.47 10.62 25.01 6.94
17 31.80 3.54 42.64 2.66 25.01 6.33
18 31.70 2.52 16.70 −10.99 24.80 6.01
19 43.10 2.68 86.27 15.03 25.51 7.51
20 41.01 2.37 76.73 12.77 24.51 6.96

383
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Of the five variables, x3, the one used in the simple linear regression, has the highest correlation.
Thus it explains more of the y variability than any other single variable. Variables x2 and x5 also
have reasonably high correlations with y. Low correlations exist between y and both x1 and x4.
Interestingly, x1 and x4 turn out to be more important in explaining y than either x2 or x5. However,
the explanatory power of x1 and x4 only manifests itself after x3 has been fitted to the data.

We assume the data satisfy the model

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 + εi, (13.1.1)

i = 1, . . . ,20, where the εis are unobservable independent N(0,σ2) random variables and the β s
are fixed unknown parameters. Fitting model (13.1.1) with a computer program typically yields
parameter estimates, standard errors for the estimates, t ratios for testing whether the parameters are
zero, and an analysis of variance table.

Predictor β̂k SE(β̂k) t P
Constant 19.95 13.63 1.46 0.165
x1 −1.793 1.233 −1.45 0.168
x2 0.04360 0.05326 0.82 0.427
x3 0.55576 0.09296 5.98 0.000
x4 1.1102 0.4338 2.56 0.023
x5 −1.811 2.027 −0.89 0.387

Analysis of variance
Source d f SS MS F P
Regression 5 582.69 116.54 27.08 0.000
Error 14 60.24 4.30
Total 19 642.92

From just these two tables of statistics much can be learned. In particular, the estimated regression
equation is

ŷ = 19.9−1.79x1 +0.0436x2 +0.556x3 +1.11x4−1.81x5.

As discussed in simple linear regression, this equation describes the relationship between y and the
predictor variables for the current data; it does not imply a causal relationship. If we go out and
increase the percentage of sixth graders whose fathers have white collar jobs by 1%, i.e., increase x2
by one unit, we cannot infer that mean verbal test scores will tend to increase by .0436 units. In fact,
we cannot think about any of the variables in a vacuum. No variable has an effect in the equation
apart from the observed values of all the other variables. If we conclude that some variable can be
eliminated from the model, we cannot conclude that the variable has no effect on y, we can only
conclude that the variable is not necessary to explain these data. The same variable may be very
important in explaining other, rather different, data collected on the same variables. All too often,
people choose to interpret the estimated regression coefficients as if the predictor variables cause the
value of y; the estimated regression coefficients simply describe an observed relationship. Frankly,
since the coefficients do not describe a causal relationship, many people, including the author, find
regression coefficients to be remarkably uninteresting quantities. What this model is good at is
predicting values of y for new cases that are similar to those in the current data. In particular, such
new cases should have predictor variables with values similar to those in the current data.

The t statistics for testing H0 : βk = 0 versus HA : βk 6= 0 were reported previously. For example,
the test of H0 : β4 = 0 versus HA : β4 6= 0 has

t =
1.1102
.4338

= 2.56.

The significance level of the test is the P value,

P = Pr[|t(d fE)| ≥ 2.56] = .023.
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The value .023 indicates a reasonable amount of evidence that variable x4 is needed in the model. We
can be reasonably sure that dropping x4 from the model harms the explanatory (predictive) power of
the model. In particular, with a P value of .023, the test of H0 : β4 = 0 versus HA : β4 6= 0 is rejected
at the α = .05 level (because .05 > .023), but the test is not rejected at the α = .01 level (because
.023 > .01).

A 95% confidence interval for β3 has endpoints β̂3 ± t(.975,d fE)SE(β̂3). From a t table,
t(.975,14) = 2.145 and from the computer output the endpoints are

.55576±2.145(.09296).

The confidence interval is (.356, .755), so we are 95% ‘confident’ that the hypothetical parameter
β3 is between .356 and .755. (In using the word ‘hypothetical,’ I am letting my bias against param-
eters show.) As will be discussed later, simultaneous 95% confidence intervals for the regression
parameters can be obtained by changing the multiplier t(.975,d fE).

The primary value of the analysis of variance table is that it gives the degrees of freedom, the
sum of squares, and the mean square for error. The mean squared error is the estimate of σ2, and
the sum of squares error and degrees of freedom for error are vital for comparing various regression
models. The degrees of freedom for error are n−1− (the number of predictor variables). The minus
1 is an adjustment for fitting the intercept β0.

The analysis of variance table also gives the test for whether any of the x variables help to explain
y. This test is rarely of interest because it is almost always highly significant. It is a poor scholar
who cannot find any predictor variables that are related to the measurement of primary interest. (Ok,
I admit to being a little judgmental here.) The test of

H0 : β1 = · · ·= β5 = 0

versus
HA : not all βks equal to 0

is based on
F =

MSReg
MSE

=
116.5
4.303

= 27.08

and is rejected for large values of F . The numerator and denominator degrees of freedom come
from the ANOVA table. As implied, the corresponding P value in the ANOVA table is infinitesimal,
zero to three decimal places. Thus these x variables, as a group, help to explain the variation in the
y variable. In other words, it is possible to predict the mean verbal test scores for a school’s sixth
grade class from the five x variables measured. Of course, the fact that some predictive ability exists
does not mean that the predictive ability is sufficient to be useful.

The coefficient of determination, R2, measures the percentage of the total variability in y that is
explained by the x variables. If this number is large, it suggests a substantial predictive ability. In
this example

R2 ≡ SSReg
SSTot

=
582.69
642.92

= .906,

so 90.6% of the total variability is explained by the regression model. This is a large percentage, sug-
gesting that the five x variables have substantial predictive power. However, we saw in Section 7.1
that a large R2 does not imply that the model is good in absolute terms. It may be possible to show
that this model does not fit the data adequately. In other words, this model is explaining much of the
variability but we may be able to establish that it is not explaining as much of the variability as it
ought. Conversely, a model with a low R2 value may be the perfect model but the data may simply
have a great deal of variability. Moreover, even an R2 of .906 may be inadequate for the predictive
purposes of the researcher, while in some situations an R2 of .3 may be perfectly adequate. It de-
pends on the purpose of the research. Finally, it must be recognized that a large R2 may be just an
unrepeatable artifact of a particular data set. The coefficient of determination is a useful tool but it
must be used with care. Recall from Section 7.1 that the R2 was .86 when using just x3 to predict y.
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Minitab commands

To obtain the statistics in this section, use the Minitab command ‘regress.’ The form of the command
has regress, the y variable, the number of predictors (excluding the intercept), and a list of the
predictor variables.

MTB > names c1 ’x1’ c2 ’x2’ c3 ’x3’ c4 ’x4’ c5 ’x5’ c6 ’y’

MTB > regress c6 on 5 c1-c5

General statement of the multiple regression model

In general we consider a dependent variable y which is a random variable that we are interested in
examining. We also consider p−1 nonrandom predictor variables x1, . . . ,xp−1. The general multiple
(linear) regression model relates n observations on y to a linear combination of the corresponding
observations on the x js plus a random error ε . In particular, we assume

yi = β0 +β1xi1 + · · ·+βp−1xi,p−1 + εi,

where the subscript i = 1, . . . ,n indicates different observations and the εis are independent N(0,σ2)
random variables. The β js and σ2 are unknown constants and the fundamental parameters of the
regression model.

Estimates of the β js are obtained by the method of least squares. The least squares estimates are
those that minimize

n

∑
i=1

(yi−β0−β1xi1−β2xi2−·· ·−βp−1xi,p−1)
2
.

In this function the yis and the xi js are all known quantities. Least squares estimates have a number
of interesting statistical properties. If the errors are independent with mean zero, constant variance,
and are normally distributed, the least squares estimates are maximum likelihood estimates and
minimum variance unbiased estimates. If the errors are merely uncorrelated with mean zero and
constant variance, the least squares estimates are best (minimum variance) linear unbiased estimates.

In checking assumptions we often use the predictions ŷ corresponding to the observed values of
the predictor variables, i.e.,

ŷi = β̂0 + β̂1xi1 + · · ·+ β̂p−1xi,p−1,

i = 1, . . . ,n. An interesting fact about the coefficient of determination R2 is that it is the square of the
sample correlation between the data yi and the corresponding predicted values ŷi. As usual, residuals
are the values

ε̂i = yi− ŷi.

The other fundamental parameter to be estimated, besides the β js, is the variance σ2. The sum
of squares error is

SSE =
n

∑
i=1

ε̂
2
i

and the estimate of σ2 is
MSE = SSE/(n− p).

Details of the estimation procedures are given in Section 15.3.

13.2 Regression surfaces and prediction

One of the most valuable aspects of regression analysis is its ability to provide good predictions
of future observations. Of course, to obtain a prediction for a new value y we need to know the
corresponding values of the predictor variables, the x js. Moreover, to obtain good predictions, the
values of the x js need to be similar to those on which the regression model was fitted. Typically, a
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fitted regression model is only an approximation to the true relationship between y and the predictor
variables. These approximations can be very good, but, because they are only approximations, they
are not valid for predictor variables that are dissimilar to those on which the approximation was
based. Trying to predict for x j values that are far from the original data is always difficult. Even
if the regression model is true and not an approximation, the variance of such predictions is large.
When the model is only an approximation, the approximation is typically invalid for such predictor
variables and the predictions can be utter nonsense.

The regression surface is the set of all values z that satisfy

z = β0 +β1x1 +β2x2 +β3x3 +β4x4 +β5x5

for some values of the predictor variables. The estimated regression surface is

z = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + β̂4x4 + β̂5x5.

There are two problems of interest. The first is estimating the value z on the regression surface for
a fixed set of predictor variables. The second is predicting the value of a new observation to be
obtained with a fixed set of predictor variables. For any set of predictor variables, the estimate of the
regression surface and the prediction are identical. What differs are the standard errors associated
with the different problems.

Consider estimation and prediction at

(x1,x2,x3,x4,x5) = (2.07,9.99,−16.04,21.6,5.17).

These are the minimum values for each of the variables, so there will be substantial variability in
estimating the regression surface at this point. The estimator (predictor) is

ŷ = β̂0 +
5

∑
j=1

β̂ jx j = 19.9−1.79(2.07)+0.0436(9.99)

+0.556(−16.04)+1.11(21.6)−1.81(5.17) = 22.375.

For constructing 95% t intervals, the percentile needed is t(.975,14) = 2.145.
The 95% confidence interval for the point β0 +∑

5
j=1 β jx j on the regression surface uses the

standard error for the regression surface which is

SE(Sur f ace) = 1.577.

The standard error is obtained from the regression program and depends on the specific value of
(x1,x2,x3,x4,x5). The formula for the standard error is given in Section 15.4. This interval has
endpoints

22.375±2.145(1.577)

which gives the interval
(18.992,25.757).

The 95% prediction interval is
(16.785,27.964).

This is about 4 units wider than the confidence interval for the regression surface. The standard error
for the prediction interval can be computed from the standard error for the regression surface.

SE(Prediction) =
√

MSE +SE(Sur f ace)2.

In this example,

SE(Prediction) =
√

4.303+(1.577)2 = 2.606.



388 13. MULTIPLE REGRESSION: INTRODUCTION

and the prediction interval endpoints are

22.375±2.145(2.606).

We mentioned earlier that even if the regression model is true, the variance of predictions is
large when the x j values for the prediction are far from the original data. We can use this fact to
identify situations in which the predictions are unreliable because the locations are too far away. Let
p− 1 be the number of predictor variables so that, including the intercept, there are p regression
parameters. Let n be the number of observations. A sensible rule of thumb is that we should start
worrying about the validity of the prediction whenever

SE(Sur f ace)√
MSE

≥
√

2p
n

and we should be very concerned about the validity of the prediction whenever

SE(Sur f ace)√
MSE

≥
√

3p
n
.

Recall that for simple linear regression we suggested that leverages greater than 4/n cause concern
and those greater than 6/n cause considerable concern. In general, leverages greater than 2p/n and
3p/n cause these levels of concern. The simple linear regression guidelines are based on having p =
2. We are comparing SE(Sur f ace)/

√
MSE to the square roots of these guidelines. In our example,

p = 6 and n = 20, so

SE(Sur f ace)√
MSE

=
1.577√
4.303

= .760 < .775 =

√
2p
n
.

The location of this prediction is near the boundary of those locations for which we feel comfortable
making predictions.

Minitab commands

To obtain the predictions in this section, use the Minitab subcommand ‘predict.’

MTB > names c1 ’x1’ c2 ’x2’ c3 ’x3’ c4 ’x4’ c5 ’x5’ c6 ’y’

MTB > regress c6 on 5 c1-c5;

SUBC> predict 2.07 9.99 -16.04 21.6 5.17 .

13.3 Comparing regression models

A frequent goal in regression analysis is to find the simplest model that provides an adequate ex-
planation of the data. In examining the full model with all five x variables, there is little evidence
that any of x1, x2, or x5 are needed in the regression model. The t tests reported in Section 13.1 for
the corresponding regression parameters gave P values of .168, .427 and .387. We could drop any
one of the three variables without significantly harming the model. While this does not imply that
all three variables can be dropped without harming the model, dropping the three variables makes
an interesting point of departure.

Fitting the reduced model
yi = β0 +β3xi3 +β4xi4 + εi

gives

Predictor β̂k SE(β̂k) t P
Constant 14.583 9.175 1.59 0.130
x3 0.54156 0.05004 10.82 0.000
x4 0.7499 0.3666 2.05 0.057
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Analysis of Variance
Source d f SS MS F P
Regression 2 570.50 285.25 66.95 0.000
Error 17 72.43 4.26
Total 19 642.92

We can test whether this reduced model is an adequate explanation of the data as compared to
the full model. The sum of squares for error from the full model was reported in Section 13.1 as
SSE(F) = 60.24 with degrees of freedom d fE(F) = 14 and mean squared error MSE(F) = 4.30.
For the reduced model we have SSE(R)= 72.43 and d fE(R)= 17. The test statistic for the adequacy
of the reduced model is

F =
[SSE(R)−SSE(F)]

/
[d fE(R)−d fE(F)]

MSE(F)
=

[72.43−60.24]
/
[17−14]

4.30
= 0.94.

F has [d fE(R)− d fE(F)] and d fE(F) degrees of freedom in the numerator and denominator, re-
spectively. Here F is less than 1, so it is not significant. In particular, 0.94 is less than F(.95,3,14),
so a formal α = .05 level F test does not reject the adequacy of the reduced model. In other words,
the .05 level test of H0 : β1 = β2 = β5 = 0 is not rejected.

This test lumps the three variables x1, x2, and x5 together into one big test. It is possible that the
uselessness of two of these variables could hide the fact that one of them is (marginally) significant
when added to the model with x3 and x4. To fully examine this possibility, we need to fit three
additional models. Each variable should be added, in turn, to the model with x3 and x4. We consider
in detail only one of these three models, the model with x1, x3, and x4. From fitting this model, the
t statistic for testing whether x1 is needed in the model turns out to be −1.47. This has a P value of
.162, so there is little indication that x1 is useful. We could also construct an F statistic as illustrated
previously. The sum of squares for error in the model with x1, x3, and x4 is 63.84 on 16 degrees of
freedom, so

F =
[72.43−63.84]/[17−16]

63.84/16
= 2.16 .

Note that, up to round off error, F = t2. The tests are equivalent and the P value for the F statistic is
also .162. F tests are only equivalent to a corresponding t test when the numerator of the F statistic
has one degree of freedom. Methods similar to these establish that neither x2 nor x5 are important
when added to the model that contains x3 and x4.

In testing the reduced model with only x3 and x4 against the full five-variable model, we observed
that one might miss recognizing a variable that was (marginally) significant. In this case we did not
miss anything important. However, if we had taken the reduced model as containing only x3 and
tested it against the full five-variable model, we would have missed the importance of x4. The F
statistic for this test turns out to be only 1.74.

In the model with x1, x3, and x4, the t test for x4 turns out to have a P value of .021. As seen
in the table given previously, if we drop x1 and use the model with only x3, and x4, the P value for
x4 goes to .057. Thus dropping a weak variable, x1, can make a reasonably strong variable, x4, look
weaker. There is a certain logical inconsistency here. If x4 is important in the x1, x3, x4 model or
the full five-variable model (P value .023), it is illogical that dropping some of the other variables
could make it unimportant. Even though x1 is not particularly important by itself, it augments the
evidence that x4 is useful. The problem in these apparent inconsistencies is that the x variables are
all related to each other, this is known as the problem of collinearity.

Although a reduced model may be an adequate substitute for a full model on a particular set of
data, it does not follow that the reduced model will be an adequate substitute for the full model with
any data collected on the variables in the full model.
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General discussion

Suppose that we want to compare two regression models, say,

yi = β0 +β1xi1 + · · ·+βq−1xi,q−1 + · · ·+βp−1xi,p−1 + εi (13.3.1)

and
yi = β0 +β1xi1 + · · ·+βq−1xi,q−1 + εi. (13.3.2)

For convenience, in this subsection we refer to equations such as (13.3.1) and (13.3.2) simply as
(1) and (2). The key fact here is that all of the variables in model (2) are also in model (1). In
this comparison, we dropped the last variables xi,q, . . . ,xi,p−1 for notational convenience only; the
discussion applies to dropping any group of variables from model (1). Throughout, we assume that
model (1) gives an adequate fit to the data and then compare how well model (2) fits the data with
how well model (1) fits. Before applying the results of this subsection, the validity of the model (1)
assumptions should be evaluated.

We want to know if the variables xi,q, . . . ,xi,p−1 are needed in the model, i.e., whether they are
useful predictors. In other words, we want to know if model (2) is an adequate model, whether it
gives an adequate explanation of the data. The variables xq, . . . ,xp−1 are extraneous if and only if
βq = · · ·= βp−1 = 0. The test we develop can be considered as a test of

H0 : βq = · · ·= βp−1 = 0.

versus
HA : not all of βq, . . . ,βp−1 are 0.

Parameters are very tricky things; you never get to see the value of a parameter. I strongly prefer
the interpretation of testing one model against another model rather than the interpretation of testing
whether βq = · · · = βp−1 = 0. If the assumption that model (1) is true fails, interpretations based
on parameters have little meaning. In practice, useful regression models are rarely correct models,
although they can be very good approximations. Typically, we do not really care whether model (1)
is true, only whether it is useful, but dealing with parameters in an incorrect model becomes tricky.

In practice, we are looking for a (relatively) succinct way of summarizing the data. The smaller
the model the more succinct the summarization. However, we do not want to eliminate useful ex-
planatory variables, so we test the smaller (more succinct) model against the larger model to see
if the smaller model gives up significant explanatory power. Note that the larger model always has
at least as much explanatory power as the smaller model because the larger model includes all the
variables in the smaller model plus some more.

We want to compare how well models (1) and (2) fit the data. A natural measure of how well any
linear model fits a set of data is the sum of squared errors (SSE). Small values of the SSE indicate
a good fit. Referring to model (1) as the full (F) model and model (2) as the reduced (R) model,
we can compare how well they fit by the measure SSE(R)−SSE(F). As mentioned, the full model
contains the reduced model as a special case, so it has at least as much explanatory power as the
reduced model. It follows that SSE(R) is never less than SSE(F).

We can base a formal test on the comparison of SSEs. The full model is assumed to fit, so
MSE(F) estimates σ2. If the variables xq, . . . ,xp−1 do not add much explanatory power to the model,
the errors for the full and reduced models should be about the same. In other words, if the reduced
model holds, the MSE(R) is also an estimate of σ2. Break SSE(R) into two parts

SSE(R) = SSE(F)+ [SSE(R)−SSE(F)] . (13.3.3)

If the reduced model fits, then SSE(R)− SSE(F) divided by its degrees of freedom is also
an estimate of σ2. The degrees of freedom for SSE(R)− SSE(F) are d fE(R)− d fE(F), i.e.,
(n−q)− (n− p) = p−q. Conversely, if βq, . . . ,βp−1 are not all zero, SSE(R)−SSE(F) measures
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how much the variables xq, . . . ,xp−1 add to the model. In this case, the difference SSE(R)−SSE(F)
will be biased upward and [SSE(R)−SSE(F)]

/
(p−q) estimates something bigger than σ2.

To repeat, we assume throughout that model (1) holds so that MSE(F) is always an estimate of
σ2. If model (2) holds, MSE(R) is also an estimate of σ2. In any case, using equation (3) we can
write

MSE(R) = ξ MSE(F)+(1−ξ )

(
SSE(R)−SSE(F)

p−q

)
where ξ = (n− p)/(n− q) is between 0 and 1. The point is that when model (2) is correct, an
estimate of σ2, namely MSE(R), has been written as a weighted average of another estimate of σ2,
MSE(F), and the term [SSE(R)−SSE(F)]

/
(p−q). If MSE(R) and MSE(F) are estimates of σ2,

then [SSE(R)−SSE(F)]
/
(p− q) must also be a legitimate estimate of σ2. If model (2) does not

hold, MSE(R) estimates something larger than σ2 and so must [SSE(R)−SSE(F)]
/
(p−q). The F

ratio

F ≡
[SSE(R)−SSE(F)]

/
(p−q)

MSE(F)

estimates the number 1 if model (2) holds because it is the ratio of two estimates of σ2. The F ratio
estimates something larger than 1 if model (2) does not hold. If the observed value of F is much
larger than 1, it suggests that model (2) is not valid. An F ratio close to 1 suggests that model (2) is
adequate. (It does not suggest that model (2) is correct, only that it is adequate for explaining these
data.)

The problem remains to quantify what we mean by an F ratio much larger than 1. Even when
model (2) is absolutely correct, the variability in the data causes variability in the F ratio. By quan-
tifying the variability in the F ratio when model (2) is correct, we get an idea of what F ratios are
consistent with model (2) and what F values are so large as to be inconsistent with model (2). In
particular, if model (2) is correct with independent homoscedastic normally distributed errors, the
F statistic has an F distribution. The F distribution depends on two parameters, the degrees of free-
dom for the estimate of σ2 in the numerator of the F ratio, p−q, and the degrees of freedom for the
estimate of σ2 in the denominator, n− p.

Applying this discussion to the model comparison problem yields the following test: Reject the
hypothesis

H0 : βq = · · ·= βp−1 = 0

in favor of
HA : not all of βq, . . . ,βp−1 are 0

at the α level if

F ≡
[SSE(R)−SSE(F)]

/
(p−q)

MSE(F)
> F(1−α, p−q,n− p).

Note that we reject the adequacy of model (2) when the observed F ratio is larger than (1−α)100
percent of the F ratios that occur when model (2) holds.

The notation SSE(R)−SSE(F) focuses on the ideas of full and reduced models. Other notations
that focus on variables and parameters are also commonly used. One can view the model comparison
procedure as fitting model (2) first and then seeing how much better model (1) fits. The notation
based on this refers to the (extra) sum of squares for regressing on xq, . . . ,xp−1 after regressing on
x1, . . . ,xq−1 and is written

SSR(xq, . . . ,xp−1|x1, . . . ,xq−1)≡ SSE(R)−SSE(F).

This notation assumes that the model contains an intercept. Alternatively, one can think of fitting the
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parameters βq, . . . ,βp−1 after fitting the parameters β0, . . . ,βq−1. The relevant notation refers to the
reduction in sum of squares (for error) due to fitting βq, . . . ,βp−1 after β0, . . . ,βq−1 and is written

R(βq, . . . ,βp−1|β0, . . . ,βq−1)≡ SSE(R)−SSE(F).

Note that it makes perfect sense to refer to SSR(xq, . . . ,xp−1|x1, . . . ,xq−1) as the reduction in sum of
squares for fitting xq, . . . ,xp−1 after x1, . . . ,xq−1.

It was mentioned earlier that the degrees of freedom for SSE(R)− SSE(F) is p− q. Note that
p−q is the number of variables to the left of the vertical bar in SSR(xq, . . . ,xp−1|x1, . . . ,xq−1) and
the number of parameters to the left of the vertical bar in R(βq, . . . ,βp−1|β0, . . . ,βq−1).

A point that is quite clear when thinking of model comparisons is that if you change either model
(1) or (2), the test statistic and thus the test changes. This point continues to be clear when dealing
with the notations SSR(xq, . . . ,xp−1|x1, . . . ,xq−1) and R(βq, . . . ,βp−1|β0, . . . ,βq−1). If you change
any variable on either side of the vertical bar, you change SSR(xq, . . . ,xp−1|x1, . . . ,xq−1). Similarly,
the parametric notation R(βq, . . . ,βp−1|β0, . . . ,βq−1) is also perfectly precise, but confusion can
easily arise when dealing with parameters if one is not careful. For example, when testing, say,
H0 : β1 = β3 = 0 versus the alternative that they are not both zero, the tests are completely different
in the three models

yi = β0 +β1xi1 +β3xi3 + εi, (13.3.4)

yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi, (13.3.5)

and
yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi . (13.3.6)

In model (4) the test is based on SSR(x1,x3)≡ R(β1,β3|β0), i.e., the sum of squares for regres-
sion (SSReg) in the model with only x1 and x3 as predictor variables. In model (5) the test uses

SSR(x1,x3|x2)≡ R(β1,β3|β0,β2).

Model (6) uses SSR(x1,x3|x2,x4)≡ R(β1,β3|β0,β2,β4). In all cases we are testing β1 = β3 = 0 after
fitting all the other parameters in the model. In general, we think of testing H0 : βq = · · ·= βp−1 = 0
after fitting β0, . . . ,βq−1.

If the reduced model is obtained by dropping out only one variable, e.g., if q− 1 = p− 2, the
parametric hypothesis is H0 : βp−1 = 0 versus HA : βp−1 6= 0. We have just developed an F test
for this and we have earlier used a t test for the hypothesis. In multiple regression, just as in simple
linear regression, the F test is equivalent to the t test. It follows that the t test must be considered
as a test for the parameter after fitting all of the other parameters in the model. In particular, the t
tests reported when fitting a regression tell you only whether a variable can be dropped relative to
the model that contains all the other variables. These t tests cannot tell you whether more than one
variable can be dropped from the fitted model. If you drop any variable from a regression model, all
of the t tests change. It is only for notational convenience that we are discussing testing βp−1 = 0;
the results hold for all βk.

The SSR notation can also be used to find SSEs. Consider models (4), (5), and (6) and suppose
we know SSR(x2|x1,x3), SSR(x4|x1,x2,x3), and the SSE from model (6). We can easily find the
SSEs for models (4) and (5). By definition,

SSE(5) = [SSE(5)−SSE(6)]+SSE(6)
= SSR(x4|x1,x2,x3)+SSE(6).

Also

SSE(4) = [SSE(4)−SSE(5)]+SSE(5)
= SSR(x2|x1,x3)+{SSR(x4|x1,x2,x3)+SSE(6)} .
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Moreover, we see that

SSR(x2,x4|x1,x3) = SSE(4)−SSE(6)
= SSR(x2|x1,x3)+SSR(x4|x1,x2,x3).

Note also that we can change the order of the variables.

SSR(x2,x4|x1,x3) = SSR(x4|x1,x3)+SSR(x2|x1,x3,x4).

13.4 Sequential fitting

Multiple regression analysis is largely impractical without the aid of a computer. One specifies
a regression model and the computer returns the vital statistics for that model. Many computer
programs actually fit a sequence of models rather than fitting the model all at once.

EXAMPLE 13.4.1. Suppose you want to fit the model

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi.

Many regression programs actually fit the sequence of models

yi = β0 +β1xi1 + εi,

yi = β0 +β1xi1 +β2xi2 + εi,

yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi,

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi.

The sequence is determined by the order in which the variables are specified. If the identical model
is specified in the form

yi = β0 +β3xi3 +β1xi1 +β4xi4 +β2xi2 + εi,

the end result is exactly the same but the sequence of models is

yi = β0 +β3xi3 + εi,

yi = β0 +β3xi3 +β1xi1 + εi,

yi = β0 +β3xi3 +β1xi1 +β4xi4 + εi,

yi = β0 +β3xi3 +β1xi1 +β4xi4 +β2xi2 + εi.

Frequently, programs that fit sequences of models also provide sequences of sums of squares.
Thus the first sequence of models yields

SSR(x1), SSR(x2|x1), SSR(x3|x1,x2), and SSR(x4|x1,x2,x3)

while the second sequence yields

SSR(x3), SSR(x1|x3), SSR(x4|x3,x1), and SSR(x2|x3,x1,x4).

These can be used in a variety of ways. For example, as shown at the end of the previous section, to
test

yi = β0 +β1xi1 +β3xi3 + εi

against
yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi
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we need SSR(x2,x4|x3,x1). This is easily obtained from the second sequence as

SSR(x2,x4|x3,x1) = SSR(x4|x3,x1)+SSR(x2|x3,x1,x4). 2

EXAMPLE 13.4.2. If we fit the model

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 + εi

to the school data, we get the sequential sums of squares listed below.

Source d f Seq SS Notation
x1 1 23.77 SSR(x1)
x2 1 343.23 SSR(x2|x1)
x3 1 186.34 SSR(x3|x1,x2)
x4 1 25.91 SSR(x4|x1,x2,x3)
x5 1 3.43 SSR(x5|x1,x2,x3,x4)

Recall that the MSE for the five-variable model is 4.30 on 14 degrees of freedom.
From the sequential sums of squares we can test a variety of hypotheses related to the full model.

For example, we can test whether variable x5 can be dropped from the five-variable model. The F
statistic is 3.43/4.30, which is less than 1, so the effect of x5 is insignificant. This test is equivalent to
the t test for x5 given in Section 13.1 when fitting the five-variable model. We can also test whether
we can drop both x4 and x5 from the full model. The F statistic is

F =
(25.91+3.43)/2

4.30
= 3.41.

F(.95,2,14) = 3.74, so this F statistic provides little evidence that the pair of variables is needed.
Similar tests can be constructed for dropping x3, x4, and x5, for dropping x2, x3, x4, and x5, and for
dropping x1, x2, x3, x4, and x5 from the full model. The last of these is just the ANOVA table F test.

We can also make a variety of tests related to ‘full’ models that do not include all five variables.
In the previous paragraph, we found little evidence that the pair x4 and x5 help explain the data in the
five-variable model. We now test whether x4 can be dropped when we have already dropped x5. In
other words, we test whether x4 adds explanatory power to the model that contains x1, x2, and x3. The
numerator has one degree of freedom and is SSR(x4|x1,x2,x3)= 25.91. The usual denominator mean
square for this test is the MSE from the model with x1, x2, x3, and x4, i.e., {14(4.303)+3.43}/15.
(For numerical accuracy we have added another significant digit to the MSE from the five-variable
model. The SSE from the model without x5 is just the SSE from the five-variable model plus the
sequential sum of squares SSR(x5|x1,x2,x3,x4).) Alternatively, we could construct the test using
the same numerator mean square but the MSE from the five-variable model in the denominator
of the test. Using this second denominator, the F statistic is 25.91/4.30 = 6.03. Corresponding F
percentiles are F(.95,1,14) = 4.60 and F(.99,1,14) = 8.86, so x4 may be contributing to the model.
If we had used the MSE from the model with x1, x2, x3, and x4, the F statistic would be equivalent
to the t statistic for dropping x4 that is obtained when fitting this four-variable model.

If we wanted to test whether x2 and x3 can be dropped from the model that contains x1, x2, and
x3, the usual denominator is [14(4.303)+25.91+3.43]/16 = 5.60. (The SSE for the model without
x4 or x5 is just the SSE from the five-variable model plus the sequential sum of squares for x4 and
x5.) Again, we could alternatively use the MSE from the five-variable model in the denominator.
Using the first denominator, the test uses

F =
(343.23+186.34)/2

5.60
= 47.28.
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This is much larger than F(.999,2,16) = 10.97, so there is overwhelming evidence that variables
x2 and x3 cannot be dropped from the x1, x2, x3 model.

The argument for basing tests on the MSE from the five-variable model is that it is less subject to
bias than the other MSEs. In the test given in the previous paragraph, the MSE from the usual ‘full’
model incorporates the sequential sums of squares for x4 and x5. A reason for doing this is that we
have tested x4 and x5 and are not convinced that they are important. As a result, their sums of squares
are incorporated into the error. Even though we may not have established an overwhelming case for
the importance of either variable, there is some evidence that x4 is a useful predictor when added to
the first three variables. The sum of squares for x4 may or may not be large enough to convince us
of its importance but it is large enough to change the MSE from 4.30 in the five-variable model to
5.60 in the x1, x2, x3 model. In general, if you test terms and pool them with the error whenever the
test is insignificant, you are biasing the MSE that results from this pooling. 2

In general, when given the ANOVA table and the sequential sums of squares, we can test any
model in the sequence against any reduced model that is part of the sequence. We cannot use these
statistics to obtain a test involving a model that is not part of the sequence.

13.5 Reduced models and prediction

Fitted regression models are, not surprisingly, very dependent on the observed values of the predictor
variables. We have already discussed the fact that fitted regression models are particularly good for
making predictions but only for making predictions on new cases with predictor variables that are
similar to those used in fitting the model. Fitted models are not good at predicting observations with
predictor variable values that are far from those in the observed data. We have also discussed the
fact that in evaluating a reduced model we are evaluating whether the reduced model is an adequate
explanation of the data. An adequate reduced model should serve well as a prediction equation
but only for new cases with predictor variables similar to those in the original data. It should not
be overlooked that when using a reduced model for prediction, new cases need to be similar to
the observed data on all predictor variables and not just on the predictor variables in the reduced
model.

Good prediction from reduced models requires that new cases be similar to observed cases on
all predictor variables because of the process of selecting reduced models. Predictor variables are
eliminated from a model if they are not necessary to explain the data. This can happen in two ways.
If a predictor variable is truly unrelated to the dependent variable, it is both proper and beneficial to
eliminate that variable. The other possibility is that a predictor variable may be related to the depen-
dent variable but that the relationship is hidden by the nature of the observed predictor variables. In
the Mosteller and Tukey data, suppose the true response depends on both x3 and x5. We know that x3
is clearly the best single predictor but the observed values of x5 and x3 are closely related; the sample
correlation between them is .819. Because of their high correlation in these data, much of the actual
dependence of y on x5 could be accounted for by the regression on x3 alone. Variable x3 acts as a
surrogate for x5. As long as we try to predict new cases that have values of x5 and x3 similar to those
in the original data, a reduced model based on x3 should work well. Variable x3 should continue to
act as a surrogate. On the other hand, if we tried to predict a new case that had an x3 value similar
to that in the observed data but where the pair x3, x5 was not similar to x3, x5 pairs in the observed
data, the reduced model that uses x3 as a surrogate for x5 would be inappropriate. Predictions could
be very bad and, if we thought only about the fact that the x3 value is similar to those in the original
data, we might expect the predictions to be good. Unfortunately, when we eliminate a variable from
a regression model, we typically have no idea if it is eliminated because the variable really has no
effect on y or because its effect is being masked by some other set of predictor variables. For further
discussion of these issues see Mandel (1989a, b).

Of course there is reason to hope that predictions will typically work well for reduced models.
If the data come from an observational study in which the cases are some kind of sample from a
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population, there is reason to expect that future cases that are sampled in the same way will behave
similarly to those in the original study. In addition, if the data come from an experiment in which the
predictor variables are under the control of the investigator, it is reasonable to expect the investigator
to select values of the predictor variables that cover the full range over which predictions will be
made. Nonetheless, regression models give good approximations and good predictions only within
the range of the observed data and, when a reduced model is used, the definition of the range of
the observed data includes the values of all predictor variables that were in the full model. In fact,
even this statement is too weak. When using a reduced model or even when using the full model for
prediction, new cases need to be similar to the observed cases in all relevant ways. If there is some
unmeasured predictor that is related to y and if the observed predictors are highly correlated with this
unmeasured variable, then for good prediction a new case needs to have a value of the unmeasured
variable that is similar to those for the observed cases. In other words, the variables in any model
may be acting as surrogates for some unmeasured variables and to obtain good predictions the new
cases must be similar on both the observed predictor variables and on these unmeasured variables.

13.6 Partial correlation coefficients and added variable plots

Partial correlation coefficients measure the linear relationship between two variables after adjusting
for a group of other variables. The square of a partial correlation coefficient is also known as a
coefficient of partial determination. The squared sample partial correlation coefficient between y
and x1 after adjusting for x2, x3, and x4 is

r2
y1·234 =

SSR(x1|x2,x3,x4)

SSE(x2,x3,x4)
,

where SSE(x2,x3,x4) is the sum of squares error from a model with an intercept and the three
predictors x2,x3,x4. The squared sample partial correlation coefficient between y and x2 given x1,
x3, and x4 is

r2
y2·134 =

SSR(x2|x1,x3,x4)

SSE(x1,x3,x4)
.

Alternatively, the sample partial correlation ry2·134 is precisely the ordinary sample correlation
computed between the residuals from fitting

yi = β0 +β1xi1 +β3xi3 +β4xi4 + εi (13.6.1)

and the residuals from fitting

xi2 = γ0 + γ1xi1 + γ3xi3 + γ4xi4 + εi. (13.6.2)

The residuals are yi− ŷi and xi2− x̂i2, where ŷi was defined near the end of Section 13.2 and x̂i2 is
defined similarly.

The information in r2
y2·134 is equivalent to the information in the F statistic for testing H0 : β2 = 0

versus HA : β2 6= 0 in the model

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi. (13.6.3)

To see this, observe that

F =
SSR(x2|x1,x3,x4)/1

[SSE(x1,x3,x4)−SSR(x2|x1,x3,x4)]/(n−5)

= (n−5)
SSR(x2|x1,x3,x4)/SSE(x1,x3,x4)

1−SSR(x2|x1,x3,x4)/SSE(x1,x3,x4)

= (n−5)
r2

y2·134

1− r2
y2·134

.
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Figure 13.1: Added variable plot: y residuals versus x3 residuals; school data.

EXAMPLE 13.6.1. In the school data,

ry3·1245 = .8477.

Thus even after adjusting for all of the other predictor variables, socioeconomic status has major
predictive abilities for mean verbal test scores. 2

Actually, the residuals from models (13.6.1) and (13.6.2) give the basis for the perfect plot to
evaluate whether adding variable x2 will improve model (13.6.1). Simply plot the yi− ŷis from model
(13.6.1) against the xi2− x̂i2s from model (13.6.2). If there seems to be no relationship between the
yi− ŷis and the xi2− x̂i2s, x2 will not be important in model (13.6.3). If the plot looks clearly linear,
x2 will be important in model (13.6.3). When a linear relationship exists in the plot but is due to
the existence of a few points, those points are the dominant cause for x2 being important in model
(13.6.3). The reason these added variable plots work is because the least squares estimate of β2
from model (13.6.3) is identical to the least squares estimate of β2 from the regression through the
origin

(yi− ŷi) = β2(xi2− x̂i2)+ εi,

see Christensen (1987, exercise 9.2).

EXAMPLE 13.6.2. For the school data, Figure 13.1 gives the added variable plot to determine
whether the variable x3 adds to the model that already contains x1, x2, x4, and x5. A clear linear
relationship exists, so x3 will improve the model. Here the entire data support the linear relationship,
but there are a couple of unusual cases. The second smallest x3 residual has an awfully large y
residual and the largest x3 residual has a somewhat surprisingly small y residual. 2

13.7 Collinearity

Collinearity exists when the predictor variables x1, . . . ,xp−1 are correlated. We have n observations
on each of these variables, so we can compute the sample correlations between them. Since the x
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variables are assumed to be fixed and not random, there is some question as to what a correlation
between two x variables means. Actually, we are concerned with whether the observed variables
are orthogonal, but this turns out to be equivalent to having sample correlations of zero between
the x variables. Nonzero sample correlations indicate nonorthogonality. Thus we need not concern
ourselves with the interpretation of sample correlations between nonrandom samples.

In regression, it is almost unheard of to have x variables that display no collinearity (correlation).
In other words, observed x variables are almost never orthogonal. The key ideas in dealing with
collinearity were previously incorporated into the discussion of comparing regression models. In
fact, the methods discussed earlier were built around dealing with the collinearity of the x variables.
This section merely reviews a few of the main ideas.

1. The estimate of any parameter, say β̂2, depends on all the variables that are included in the model.
2. The sum of squares for any variable, say x2, depends on all the other variables that are included

in the model. For example, none of SSR(x2), SSR(x2|x1), and SSR(x2|x3,x4) would typically be
equal.

3. Suppose the model
yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi

is fitted and we obtain t statistics for each parameter. If the t statistic for testing H0 : β1 = 0 versus
HA : β1 6= 0 is small, we are led to the model

yi = β0 +β2xi2 +β3xi3 + εi.

If the t statistic for testing H0 : β2 = 0 versus HA : β2 6= 0 is small, we are led to the model

yi = β0 +β1xi1 +β3xi3 + εi.

However, if the t statistics for both tests are small, we are not led to the model

yi = β0 +β3xi3 + εi.

To arrive at the model containing only the intercept and x3, one must at some point use the model
containing only the intercept and x3 as a reduced model.

4. A moderate amount of collinearity has little effect on predictions and therefore little effect on
SSE, R2, and the explanatory power of the model. Collinearity increases the variance of the
β̂ks, making the estimates of the parameters less reliable. (I told you not to rely on parameters
anyway.) Depending on circumstances, sometimes a large amount of collinearity can have an
effect on predictions. Just by chance, one may get a better fit to the data than can be justified
scientifically.

The complications associated with points 1 through 4 all vanish if the sample correlations between
the x variables are all zero.

Many computer programs will print out a matrix of correlations between the variables. One
would like to think that if all the correlations between the x variables are reasonably small, say less
than .3 or .4, then the problems of collinearity would not be serious. Unfortunately, that is simply
not true. To avoid difficulties with collinearity, not only do all the correlations need to be small but
all of the partial correlations among the x variables must be small. Thus, small correlations alone
do not ensure small collinearity.

EXAMPLE 13.7.1. The correlations among predictors for the Coleman data are given below.

x1 x2 x3 x4 x5
x1 1.000 0.181 0.230 0.503 0.197
x2 0.181 1.000 0.827 0.051 0.927
x3 0.230 0.827 1.000 0.183 0.819
x4 0.503 0.051 0.183 1.000 0.124
x5 0.197 0.927 0.819 0.124 1.000
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Note that x3 is highly correlated with x2 and x5. Since x3 is highly correlated with y, the fact that
x2 and x5 are also quite highly correlated with y is not surprising. Recall that the correlations with y
were given at the beginning of Section 13.1. Moreover, since x3 is highly correlated with x2 and x5,
it is also not surprising that x2 and x5 have little to add to a model that already contains x3. We have
seen that it is the two variables x1 and x4, i.e., the variables that do not have high correlations with
either x3 or y, that have the greater impact on the regression equation.

Having regressed y on x3, the sample correlations between y and any of the other variables are no
longer important. Having done this regression, it is more germane to examine the partial correlations
between y and the other variables that adjust for x3. However, as we will see in our discussion of
model selection in Chapter 14, even this has its drawbacks. 2

As long as points 1 through 4 are kept in mind, a moderate amount of collinearity is not a big
problem. For severe collinearity, there are four common approaches: a) classical ridge regression,
b) generalized inverse regression, c) principal components regression, and 4) canonical regression.
Classical ridge regression is probably the best known of these methods (and in my opinion, the
worst). The other three methods are closely related and seem quite reasonable. Principal components
regression is discussed in Chapter 15.

13.8 Exercises

EXERCISE 13.8.1. Younger (1979, p. 533) presents data from a sample of 12 discount department
stores that advertize on television, radio, and in the newspapers. The variables x1, x2, and x3 repre-
sent the respective amounts of money spent on these advertising activities during a certain month
while y gives the store’s revenues during that month. The data are given in Table 13.2. Complete the
following tasks using multiple regression.

(a) Give the theoretical model along with the relevant assumptions.
(b) Give the fitted model, i.e., repeat (a) substituting the estimates for the unknown parameters.
(c) Test H0 : β2 = 0 versus HA : β2 6= 0 at α = 0.05.
(d) Test the hypothesis H0 : β1 = β2 = β3 = 0.
(e) Give a 99% confidence interval for β2.
(f) Test whether the reduced model yi = β0 + β1xi1 + εi is an adequate explanation of the data as

compared to the full model.
(g) Test whether the reduced model yi = β0 + β1xi1 + εi is an adequate explanation of the data as

compared to the model yi = β0 +β1xi1 +β2xi2 + εi.
(h) Write down the ANOVA table for the ‘full’ model used in (g).
(i) Construct an added variable plot for adding variable x3 to a model that already contains variables

x1 and x2. Interpret the plot.
(j) Compute the sample partial correlation ry3·12. What does this value tell you?

EXERCISE 13.8.2. The information below relates y, a second measurement on wood volume, to
x1, a first measurement on wood volume, x2, the number of trees, x3, the average age of trees, and x4,
the average volume per tree. Note that x4 = x1/x2. Some of the information has not been reported,
so that you can figure it out on your own.

Predictor β̂k SE(β̂k) t P
Constant 23.45 14.90 0.122
x1 0.93209 0.08602 0.000
x2 0.4721 1.5554 0.126
x3 −0.4982 0.1520 0.002
x4 3.486 2.274 0.132
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Table 13.2: Younger’s advertising data

Obs. y x1 x2 x3 Obs. y x1 x2 x3
1 84 13 5 2 7 34 12 7 2
2 84 13 7 1 8 30 10 3 2
3 80 8 6 3 9 54 8 5 2
4 50 9 5 3 10 40 10 5 3
5 20 9 3 1 11 57 5 6 2
6 68 13 5 1 12 46 5 7 2

Analysis of Variance
Source d f SS MS F P
Regression 4 887994 0.000
Error
Total 54 902773

Sequential
Source d f SS
x1 1 883880
x2 1 183
x3 1 3237
x4 1 694

(a) How many observations are in the data?
(b) What is R2 for this model?
(c) What is the mean squared error?
(d) Give a 95% confidence interval for β2.
(e) Test the null hypothesis β3 = 0 with α = .05.
(f) Test the null hypothesis β1 = 1 with α = .05.
(g) Give the F statistic for testing the null hypothesis β3 = 0.
(h) Give SSR(x3|x1,x2) and find SSR(x3|x1,x2,x4).
(i) Test the model with only variables x1 and x2 against the model with all of variables x1, x2, x3,

and x4.
(j) Test the model with only variables x1 and x2 against the model with variables x1, x2, and x3.
(k) Should the test in part (g) be the same as the test in part (j)? Why or why not?
(l) For estimating the point on the regression surface at (x1,x2,x3,x4) = (100,25,50,4), the standard

error of the estimate for the point on the surface is 2.62. Give the estimated point on the surface,
a 95% confidence interval for the point on the surface, and a 95% prediction interval for a new
point with these x values.

(m) Test the null hypothesis β1 = β2 = β3 = β4 = 0 with α = .05.

EXERCISE 13.8.3. Atkinson (1985) and Hader and Grandage (1958) have presented Prater’s data
on gasoline. The variables are y, the percentage of gasoline obtained from crude oil; x1, the crude
oil gravity oAPI; x2, crude oil vapor pressure measured in lbs/in2; x3, the temperature, in oF, at
which 10% of the crude oil is vaporized; and x4, the temperature, in oF, at which all of the crude
oil is vaporized. The data are given in Table 13.3. Find a good model for predicting gasoline yield
from the other four variables.

EXERCISE 13.8.4. Dixon and Massey (1983) report data from the Los Angeles Heart Study
supervised by J. M. Chapman. The variables are y, weight in pounds; x1, age in years; x2, systolic
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Table 13.3: Prater’s gasoline–crude oil data

y x1 x2 x3 x4 y x1 x2 x3 x4
6.9 38.4 6.1 220 235 24.8 32.2 5.2 236 360

14.4 40.3 4.8 231 307 26.0 38.4 6.1 220 365
7.4 40.0 6.1 217 212 34.9 40.3 4.8 231 395
8.5 31.8 0.2 316 365 18.2 40.0 6.1 217 272
8.0 40.8 3.5 210 218 23.2 32.2 2.4 284 424
2.8 41.3 1.8 267 235 18.0 31.8 0.2 316 428
5.0 38.1 1.2 274 285 13.1 40.8 3.5 210 273

12.2 50.8 8.6 190 205 16.1 41.3 1.8 267 358
10.0 32.2 5.2 236 267 32.1 38.1 1.2 274 444
15.2 38.4 6.1 220 300 34.7 50.8 8.6 190 345
26.8 40.3 4.8 231 367 31.7 32.2 5.2 236 402
14.0 32.2 2.4 284 351 33.6 38.4 6.1 220 410
14.7 31.8 0.2 316 379 30.4 40.0 6.1 217 340
6.4 41.3 1.8 267 275 26.6 40.8 3.5 210 347
17.6 38.1 1.2 274 365 27.8 41.3 1.8 267 416
22.3 50.8 8.6 190 275 45.7 50.8 8.6 190 407

Table 13.4: L. A. heart study data

i x1 x2 x3 x4 x5 y i x1 x2 x3 x4 x5 y
1 44 124 80 254 70 190 31 42 136 82 383 69 187
2 35 110 70 240 73 216 32 28 124 82 360 67 148
3 41 114 80 279 68 178 33 40 120 85 369 71 180
4 31 100 80 284 68 149 34 40 150 100 333 70 172
5 61 190 110 315 68 182 35 35 100 70 253 68 141
6 61 130 88 250 70 185 36 32 120 80 268 68 176
7 44 130 94 298 68 161 37 31 110 80 257 71 154
8 58 110 74 384 67 175 38 52 130 90 474 69 145
9 52 120 80 310 66 144 39 45 110 80 391 69 159

10 52 120 80 337 67 130 40 39 106 80 248 67 181
11 52 130 80 367 69 162 41 40 130 90 520 68 169
12 40 120 90 273 68 175 42 48 110 70 285 66 160
13 49 130 75 273 66 155 43 29 110 70 352 66 149
14 34 120 80 314 74 156 44 56 141 100 428 65 171
15 37 115 70 243 65 151 45 53 90 55 334 68 166
16 63 140 90 341 74 168 46 47 90 60 278 69 121
17 28 138 80 245 70 185 47 30 114 76 264 73 178
18 40 115 82 302 69 225 48 64 140 90 243 71 171
19 51 148 110 302 69 247 49 31 130 88 348 72 181
20 33 120 70 386 66 146 50 35 120 88 290 70 162
21 37 110 70 312 71 170 51 65 130 90 370 65 153
22 33 132 90 302 69 161 52 43 122 82 363 69 164
23 41 112 80 394 69 167 53 53 120 80 343 71 159
24 38 114 70 358 69 198 54 58 138 82 305 67 152
25 52 100 78 336 70 162 55 67 168 105 365 68 190
26 31 114 80 251 71 150 56 53 120 80 307 70 200
27 44 110 80 322 68 196 57 42 134 90 243 67 147
28 31 108 70 281 67 130 58 43 115 75 266 68 125
29 40 110 74 336 68 166 59 52 110 75 341 69 163
30 36 110 80 314 73 178 60 68 110 80 268 62 138

blood pressure in millimeters of mercury; x3, diastolic blood pressure in millimeters of mercury; x4,
cholesterol in milligrams per dl; x5, height in inches. The data from 60 men are given in Table 13.4.
Find a good model for predicting weight from the other variables.

EXERCISE 13.8.5. Table 13.5 contains a subset of the pollution data analyzed by McDonald
and Schwing (1973). The data are from various years in the early 1960s. They relate air pollution
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to mortality rates for various standard metropolitan statistical areas in the United States. The de-
pendent variable y is the total age-adjusted mortality rate per 100,000 as computed for different
metropolitan areas. The predictor variables are, in order, mean annual precipitation in inches, mean
January temperature in degrees F, mean July temperature in degrees F, population per household,
median school years completed by those over 25, percent of housing units that are sound and with
all facilities, population per sq. mile in urbanized areas, percent non-white population in urbanized
areas, relative pollution potential of sulphur dioxide, annual average of percent relative humidity at
1 pm. Find a good predictive model for mortality.

Alternatively, you can obtain the complete data from the internet statistical service STATLIB by
e-mailing to ‘statlib@lib.stat.cmu.edu’ the one line message
send pollution from datasets

The message you receive in return includes the data consisting of 16 variables on 60 cases.

EXERCISE 13.8.6. Obtain the data set ‘bodyfat’ from STATLIB by e-mailing the one line mes-
sage
send bodyfat from datasets

to the address ‘statlib@lib.stat.cmu.edu’. The message you receive in return includes data for 15
variables along with a description of the data.

(a) Using the body density measurements as a dependent variable, perform a multiple regression
using all of the other variables except body fat as predictor variables. What variables can be
safely eliminated from the analysis? Discuss any surprising or expected results in terms of the
variables that seem to be most important.

(b) Using the body fat measurements as a dependent variable, perform a multiple regression using
all of the other variables except density as predictor variables. What variables can be safely
eliminated from the analysis? Discuss any surprising or expected results in terms of the variables
that seem to be most important.
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Table 13.5: Pollution data

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 y
36 27 71 3.34 11.4 81.5 3243 8.8 42.6 59 921.870
35 23 72 3.14 11.0 78.8 4281 3.5 50.7 57 997.875
44 29 74 3.21 9.8 81.6 4260 .8 39.4 54 962.354
47 45 79 3.41 11.1 77.5 3125 27.1 50.2 56 982.291
43 35 77 3.44 9.6 84.6 6441 24.4 43.7 55 1071.289
53 45 80 3.45 10.2 66.8 3325 38.5 43.1 54 1030.380
43 30 74 3.23 12.1 83.9 4679 3.5 49.2 56 934.700
45 30 73 3.29 10.6 86.0 2140 5.3 40.4 56 899.529
36 24 70 3.31 10.5 83.2 6582 8.1 42.5 61 1001.902
36 27 72 3.36 10.7 79.3 4213 6.7 41.0 59 912.347
52 42 79 3.39 9.6 69.2 2302 22.2 41.3 56 1017.613
33 26 76 3.20 10.9 83.4 6122 16.3 44.9 58 1024.885
40 34 77 3.21 10.2 77.0 4101 13.0 45.7 57 970.467
35 28 71 3.29 11.1 86.3 3042 14.7 44.6 60 985.950
37 31 75 3.26 11.9 78.4 4259 13.1 49.6 58 958.839
35 46 85 3.22 11.8 79.9 1441 14.8 51.2 54 860.101
36 30 75 3.35 11.4 81.9 4029 12.4 44.0 58 936.234
15 30 73 3.15 12.2 84.2 4824 4.7 53.1 38 871.766
31 27 74 3.44 10.8 87.0 4834 15.8 43.5 59 959.221
30 24 72 3.53 10.8 79.5 3694 13.1 33.8 61 941.181
31 45 85 3.22 11.4 80.7 1844 11.5 48.1 53 891.708
31 24 72 3.37 10.9 82.8 3226 5.1 45.2 61 871.338
42 40 77 3.45 10.4 71.8 2269 22.7 41.4 53 971.122
43 27 72 3.25 11.5 87.1 2909 7.2 51.6 56 887.466
46 55 84 3.35 11.4 79.7 2647 21.0 46.9 59 952.529
39 29 75 3.23 11.4 78.6 4412 15.6 46.6 60 968.665
35 31 81 3.10 12.0 78.3 3262 12.6 48.6 55 919.729
43 32 74 3.38 9.5 79.2 3214 2.9 43.7 54 844.053
11 53 68 2.99 12.1 90.6 4700 7.8 48.9 47 861.833
30 35 71 3.37 9.9 77.4 4474 13.1 42.6 57 989.265
50 42 82 3.49 10.4 72.5 3497 36.7 43.3 59 1006.490
60 67 82 2.98 11.5 88.6 4657 13.5 47.3 60 861.439
30 20 69 3.26 11.1 85.4 2934 5.8 44.0 64 929.150
25 12 73 3.28 12.1 83.1 2095 2.0 51.9 58 857.622
45 40 80 3.32 10.1 70.3 2682 21.0 46.1 56 961.009
46 30 72 3.16 11.3 83.2 3327 8.8 45.3 58 923.234
54 54 81 3.36 9.7 72.8 3172 31.4 45.5 62 1113.156
42 33 77 3.03 10.7 83.5 7462 11.3 48.7 58 994.648
42 32 76 3.32 10.5 87.5 6092 17.5 45.3 54 1015.023
36 29 72 3.32 10.6 77.6 3437 8.1 45.5 56 991.290
37 38 67 2.99 12.0 81.5 3387 3.6 50.3 73 893.991
42 29 72 3.19 10.1 79.5 3508 2.2 38.8 56 938.500
41 33 77 3.08 9.6 79.9 4843 2.7 38.6 54 946.185
44 39 78 3.32 11.0 79.9 3768 28.6 49.5 53 1025.502
32 25 72 3.21 11.1 82.5 4355 5.0 46.4 60 874.281





Chapter 14

Regression diagnostics and variable selection

In this chapter we continue our discussion of multiple regression. In particular, we focus on check-
ing the assumptions of regression models by looking at diagnostic statistics. If problems with as-
sumptions become apparent, one way to deal with them is to try transformations. The discussion of
transformations in Section 7.10 continues to apply. Among the methods discussed there, only the
circle of transformations depends on having a simple linear regression model. The other methods
apply with multiple regression as well as analysis of variance models. In particular, the discussion
of transforming x at the end of Section 7.10 takes on new importance in multiple regression because
multiple regression involves several predictor variables, each of which is a candidate for transforma-
tion. Incidentally, the modified Box–Tidwell procedure evaluates each predictor variable separately,
so it involves adding only one predictor variable xi j log(xi j) to the multiple regression model at a
time.

This chapter also examines methods for choosing good reduced models. Variable selection meth-
ods fall into two categories: best subset selection methods and stepwise regression methods. Finally,
we examine the interplay between influential cases and model selection techniques. We continue to
illustrate techniques on the data from The Coleman Report given in the previous chapter.

14.1 Diagnostics

Table 14.1 contains a variety of measures for checking the assumptions of the multiple regression
model with five predictor variables that was fitted in Chapter 13 to the Coleman Report data. The
table includes case indicators, the data y, the predicted values ŷ, the leverages, the standardized
residuals r, the standardized deleted residuals t, and Cook’s distances C. All of these, except for
Cook’s distance, were introduced in Section 7.9. Recall that leverages measure the distance between
the predictor variables for a particular case and the rest of the predictor variables in the data. Cases
with leverages near 1 dominate any fitted regression. As a rule of thumb, leverages greater than
2p/n cause concern and leverages greater than 3p/n cause (at least mild) consternation. Here n
is the number of observations in the data and p is the number of regression parameters, including
the intercept. The standardized deleted residuals t contain essentially the same information as the
standardized residuals r but t values can be compared to a t(d fE−1) distribution to obtain a formal
test of whether a case is consistent with the other data. (A formal test based on the r values requires
a more exotic distribution than the t(d fE−1).) Cook’s distance for case i is defined as

Ci =
∑

n
j=1
(
ŷ j− ŷ j[i]

)2

pMSE
, (14.1.1)

where ŷ j is the predictor of the jth case and ŷ j[i] is the predictor of the jth case when case i has been
removed from the data. Cook’s distance measures the effect of deleting case i on the prediction of
all of the original observations.

Figures 14.1 and 14.2 are plots of the standardized residuals versus normal scores and against
the predicted values. The largest standardized residual, that for case 18, appears to be somewhat
unusually large. To test whether the data from case 18 are consistent with the other data, we can

405
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Table 14.1: Diagnostics, full data

Case y ŷ Leverage r t C
1 37.01 36.66 0.482 0.23 0.23 0.008
2 26.51 26.86 0.486 −0.24 −0.23 0.009
3 36.51 40.46 0.133 −2.05 −2.35 0.107
4 40.70 41.17 0.171 −0.25 −0.24 0.002
5 37.10 36.32 0.178 0.42 0.40 0.006
6 33.90 33.99 0.500 −0.06 −0.06 0.001
7 41.80 41.08 0.239 0.40 0.38 0.008
8 33.40 33.83 0.107 −0.22 −0.21 0.001
9 41.01 40.39 0.285 0.36 0.34 0.008

10 37.20 36.99 0.618 0.16 0.16 0.007
11 23.30 25.51 0.291 −1.26 −1.29 0.110
12 35.20 33.45 0.403 1.09 1.10 0.133
13 34.90 35.95 0.369 −0.64 −0.62 0.040
14 33.10 33.45 0.109 −0.18 −0.17 0.001
15 22.70 24.48 0.346 −1.06 −1.07 0.099
16 39.70 38.40 0.157 0.68 0.67 0.014
17 31.80 33.24 0.291 −0.82 −0.81 0.046
18 31.70 26.70 0.326 2.94 4.56 0.694
19 43.10 41.98 0.285 0.64 0.63 0.027
20 41.01 40.75 0.223 0.14 0.14 0.001

compare the standardized deleted residual to a t(d fE−1) distribution. From Table 14.1, the t resid-
ual is 4.56. The corresponding P value for a two-sided test is .0006. Actually, we chose to perform
the test on the t residual for case 18 because it was the largest of the 20 t residuals. Because the
test is based on the largest of the t values, it is appropriate to multiply the P value by the number
of t statistics considered. This gives 20× .0006 = .012, which is still a very small P value. There is
considerable evidence that the data of case 18 are inconsistent, for whatever reason, with the other
data. This fact cannot be discovered from a casual inspection of the raw data.

The only point of any concern with respect to the leverages is case 10. Its leverage is .618, while
2p/n = .6. This is only a mildly high leverage and case 10 seems well behaved in all other respects;
in particular, C10 is small, so deleting case 10 has very little effect on predictions.

We now reconsider the analysis with case 18 deleted. The regression equation is

y = 34.3−1.62x1 +0.0854x2 +0.674x3 +1.11x4−4.57x5

and R2 = .963. Table 14.2 contains the estimated regression coefficients, standard errors, t statistics,
and P values. Table 14.3 contains the analysis of variance. Table 14.4 contains diagnostics. Note that
the MSE is less than half of its previous value when case 18 was included in the analysis. Also, the
regression parameter t statistics in Table 14.2 are all much more significant. The actual regression
coefficients have changed a bit but not greatly. Predictions have not changed radically either, as can
be seen by comparing the predictions given in Tables 14.1 and 14.4. Although the predictions have
not changed radically, they have changed more than they would have if we deleted any observation
other than case 18. From the definition of Cook’s distance given in equation (14.1.1), C18 is precisely
the sum of the squared differences between the predictions in Tables 14.1 and 14.4 divided by 6
times the MSE from the full data. From Table 14.1, Cook’s distance when dropping case 18 is much
larger than Cook’s distance from dropping any other case.

Consider again Table 14.4 containing the diagnostic statistics when case 18 has been deleted.
Case 10 has moderately high leverage but seems to be no real problem. Figures 14.3 and 14.4 give
the normal plot and the standardized residual versus predicted value plot, respectively, with case
18 deleted. Figure 14.4 is particularly interesting. At first glance, it appears to have a horn shape
opening to the right. But there are only three observations on the left of the plot and many on the
right, so one would expect a horn shape because of the data distribution. Looking at the right of the
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Figure 14.1: Normal plot, full data, W ′ = 0.903.
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Table 14.2: Regression, case 18 deleted

Predictor β̂ SE(β̂ ) t P
Constant 34.287 9.312 3.68 0.003
x1 −1.6173 0.7943 −2.04 0.063
x2 0.08544 0.03546 2.41 0.032
x3 0.67393 0.06516 10.34 0.000
x4 1.1098 0.2790 3.98 0.002
x5 −4.571 1.437 −3.18 0.007

Table 14.3: Analysis of variance, case 18 deleted

Source d f SS MS F P
Regression 5 607.74 121.55 68.27 0.000
Error 13 23.14 1.78
Total 18 630.88

plot, we see that in spite of the data distribution, much of the horn shape is due to a single very small
residual. If we mentally delete that residual, the remaining residuals contain a hint of an upward
opening parabola. The potential outlier is case 3. From Table 14.4, the standardized deleted residual
for case 3 is −5.08 which yields a two-sided raw P value of .0001 and if we adjust for having 19
t statistics, the P value is .0019, still an extremely small value. Note also that in Table 14.1, when
case 18 was included in the data, the standardized deleted residual for case 3 was somewhat large
but not nearly so extreme.

With cases 3 and 18 deleted, the regression equation becomes

y = 29.8−1.70x1 +0.0851x2 +0.666x3 +1.18x4−4.07x5.

The R2 for these data is .988. The regression parameters are in Table 14.5, the analysis of variance
is in Table 14.6, and the diagnostics are in Table 14.7.

Deleting the outlier, case 3, again causes a drop in the MSE, from 1.78 with only case 18 deleted
to 0.61 with both cases 3 and 18 deleted. This creates a corresponding drop in the standard errors for

Table 14.4: Diagnostics, case 18 deleted

Case y ŷ Leverage r t C
1 37.01 36.64 0.483 0.39 0.37 0.023
2 26.51 26.89 0.486 −0.39 −0.38 0.024
3 36.51 40.21 0.135 −2.98 −5.08 0.230
4 40.70 40.84 0.174 −0.12 −0.11 0.001
5 37.10 36.20 0.179 0.75 0.73 0.020
6 33.90 33.59 0.504 0.33 0.32 0.018
7 41.80 41.66 0.248 0.12 0.12 0.001
8 33.40 33.65 0.108 −0.20 −0.19 0.001
9 41.01 41.18 0.302 −0.15 −0.15 0.002

10 37.20 36.79 0.619 0.50 0.49 0.068
11 23.30 23.69 0.381 −0.37 −0.35 0.014
12 35.20 34.54 0.435 0.66 0.64 0.055
13 34.90 35.82 0.370 −0.87 −0.86 0.074
14 33.10 32.38 0.140 0.58 0.57 0.009
15 22.70 22.36 0.467 0.35 0.33 0.017
16 39.70 38.25 0.158 1.18 1.20 0.044
17 31.80 32.82 0.295 −0.91 −0.90 0.058
18 24.28 0.483
19 43.10 41.44 0.292 1.48 1.56 0.151
20 41.01 41.00 0.224 0.00 0.00 0.000
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Figure 14.3: Normal plot, case 18 deleted, W ′ = 0.854.
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Table 14.5: Regression, cases 3 and 18 deleted

Predictor β̂ SE(β̂ ) t P
Constant 29.758 5.532 5.38 0.000
x1 −1.6985 0.4660 −3.64 0.003
x2 0.08512 0.02079 4.09 0.001
x3 0.66617 0.03824 17.42 0.000
x4 1.1840 0.1643 7.21 0.000
x5 −4.0668 0.8487 −4.79 0.000

Table 14.6: Analysis of variance, cases 3 and 18 deleted

Source d f SS MS F P
Regression 5 621.89 124.38 203.20 0.000
Error 12 7.34 0.61
Total 17 629.23

all regression coefficients and makes them all appear to be more significant. The actual estimates of
the regression coefficients do not change much from Table 14.2 to Table 14.5. The largest changes
seem to be in the constant and in the coefficient for x5.

From Table 14.7, the leverages, t statistics, and Cook’s distances seem reasonable. Figures 14.5
and 14.6 contain a normal plot and a plot of standardized residuals versus predicted values. Both
plots look good. In particular, the suggestion of lack of fit in Figure 14.4 appears to be unfounded.
Once again, Figure 14.6 could be misinterpreted as a horn shape but the ‘horn’ is due to the distri-
bution of the predicted values.

Ultimately, someone must decide whether or not to delete unusual cases based on subject matter
considerations. There is only moderate statistical evidence that case 18 is unusual and case 3 does
not look severely unusual unless one previously deletes case 18. Are there subject matter reasons
for these schools to be unusual? Will the data be more or less representative of the appropriate
population if these data are deleted?

Table 14.7: Diagnostics, cases 3 and 18 deleted

Case y ŷ Leverage r t C
1 37.01 36.83 0.485 0.33 0.31 0.017
2 26.51 26.62 0.491 −0.20 −0.19 0.007
3 40.78 0.156
4 40.70 41.43 0.196 −1.04 −1.05 0.044
5 37.10 36.35 0.180 1.07 1.07 0.041
6 33.90 33.67 0.504 0.42 0.41 0.030
7 41.80 42.11 0.261 −0.46 −0.44 0.012
8 33.40 33.69 0.108 −0.39 −0.38 0.003
9 41.01 41.56 0.311 −0.84 −0.83 0.053

10 37.20 36.94 0.621 0.54 0.52 0.078
11 23.30 23.66 0.381 −0.58 −0.57 0.035
12 35.20 34.24 0.440 1.65 1.79 0.356
13 34.90 35.81 0.370 −1.47 −1.56 0.212
14 33.10 32.66 0.145 0.60 0.59 0.010
15 22.70 22.44 0.467 0.46 0.44 0.031
16 39.70 38.72 0.171 1.38 1.44 0.066
17 31.80 33.02 0.298 −1.85 −2.10 0.243
18 24.50 0.486
19 43.10 42.22 0.332 1.37 1.43 0.155
20 41.01 41.49 0.239 −0.70 −0.68 0.025
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Minitab commands

Below are given the Minitab commands for obtaining the diagnostics. On the ‘regress’ line, 5 pre-
dictors are specified, so the next 5 columns are taken to contain the predictor variables. The stan-
dardized residuals are placed in the next column listed and the predicted values are placed in the
column listed after that. Thus the standardized residuals are in c21 and the predicted values are in
c22. The subcommands ‘tresid’, ‘hi’, and ‘cookd’ indicate the standardized deleted residuals, lever-
ages, and Cook distances, respectively. The t statistics are in c23. The leverages are in c24. The
Cook distances are in c25.

MTB > regress c8 on 5 c2-c6 c21 c22;

SUBC> tresid c23;

SUBC> hi c24;

SUBC> cookd c25.

14.2 Best subset model selection methods

In this section and the next, we examine methods for identifying good reduced models relative to
a given (full) model. Reduced models are of interest because a good reduced model provides an
adequate explanation of the current data and, typically, the reduced model is more understandable
because it is more succinct. Even more importantly, for data collected in a similar fashion, a good
reduced model often provides better predictions and parameter estimates than the full model, cf.
the subsection below on Mallows’s Cp statistic and Christensen (1987, section XIV.7). Of course
difficulties with predictions arise when a good reduced model is used with new cases that are not
similar to those on which the reduced model was fitted and evaluated. In particular, a good fitted
reduced model should not be used for prediction of a new case unless all of the predictor variables
in the new case are similar to those in the original data. It is not enough that new cases be similar
on just the variables in the reduced model. In fact it is not sufficient that they be similar on all of
the variables in the full model because some important variable may not have been measured for
the full model, yet a new case with a very different value of this unmeasured variable can act very
differently.

This section presents three methods for examining all possible reduced models. These methods
are based on defining a criterion for a best model and then finding the models that are best by this
criterion. Section 14.3 considers three methods of making sequential selections of variables. Obvi-
ously, it is better to consider all reduced models whenever feasible rather than making sequential
selections. Sequential methods are flawed but they are cheap and easy.

14.2.1 R2 statistic

The fundamental statistic in comparing all possible reduced models is the R2 statistic. This is appro-
priate but we should recall some of the weaknesses of R2. The numerical size of R2 is more related
to predictive ability than to model adequacy. The perfect model can have small predictive ability
and thus a small R2, while demonstrably inadequate models can still have substantial predictive
ability and thus a high R2. Fortunately, we are typically more interested in prediction than in finding
the perfect model, especially since our models are typically empirical approximations for which no
perfect model exists. In addition, when considering transformations of the dependent variable, the
R2 values for different models are not comparable.

In the present context, the most serious drawback of R2 is that it typically goes up when more
predictor variables are added to a model. (It cannot go down.) Thus it is not really appropriate to
compare the R2 values of two models with different numbers of predictors. However, we can use R2

to compare models with the same number of predictor variables. In fact, for models with the same
number of predictors, we can use R2 to order them from best to worse; the largest R2 value then
corresponds to the best model. R2 is the fundamental model comparison statistic for best subset
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Table 14.8: Best subset regression, R2 statistic

Included variables
Vars. R2

√
MSE x1 x2 x3 x4 x5

1 86.0 2.2392 X
1 56.8 3.9299 X
2 88.7 2.0641 X X
2 86.2 2.2866 X X
3 90.1 1.9974 X X X
3 88.9 2.1137 X X X
4 90.2 2.0514 X X X X
4 90.1 2.0603 X X X X
5 90.6 2.0743 X X X X X

methods in that, for comparing models with the same number of predictors, the other methods
considered give the same relative orderings for models as R2. The essence of the other methods is
to develop a criterion for comparing models that have different numbers of predictors.

Table 14.8 contains the two best models for the school data based on the R2 statistic for each
number of predictor variables. The best single variable is x3; the second best is x2. This information
could be obtained from the correlations between y and the predictor variables given in Section 13.1.
Note the drastic difference between the R2 for using x3 and that for x2. The best pair of variables
for predicting y are x3 and x4, while the second best pair is x3 and x5. The best three-variable model
contains x1, x3, and x4. Note that the largest R2 values go up very little when a forth or fifth variable
is added. Moreover, all the models in Table 14.8 that contain three or more variables include x3 and
x4. We could conduct F tests to compare models with different numbers of predictor variables, as
long as the smaller models are contained in the large ones.

Any models that we think are good candidates should be examined for influential and outlying
observations, consistency with assumptions, and subject matter implications. Any model that makes
particularly good sense to a subject matter specialist warrants special consideration. Models that
make particularly poor sense to subject matter specialists may be dumb luck but they may also
be the springboard for new insights into the process generating the data. We also need to concern
ourselves with the role of observations that are influential or outlying in the original (full) model. We
will examine this in more detail later. Finally, recall that when making predictions based on reduced
models, the point at which we are making the prediction generally needs to be consistent with the
original data on all variables, not just the variables in the reduced model. When we drop a variable,
we do not conclude that the variable is not important, we conclude that it is not important for this set
of data. For different data, a dropped variable may become important. We cannot presume to make
predictions from a reduced model for new cases that are substantially different from the original
data.

14.2.2 Adjusted R2 statistic

The adjusted R2 statistic is simply an adjustment of R2 that allows comparisons to be made between
models with different numbers of predictor variables. Let p be the number of predictor variables in
a regression equation (including the intercept), then the adjusted R2 is defined to be

Adj R2 ≡ 1− n−1
n− p

(
1−R2) .

For the school example with all predictor variables, this becomes

.873 = 1− 20−1
20−6

(1− .9063) ,

or, as it is commonly written, 87.3%.
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It is not too difficult to see that

Adj R2 = 1− MSE
s2

y

where s2
y is the sample variance of the yis, i.e., s2

y = SSTot/(n−1). This is a much simpler statement
than the defining relationship. For the school example with all predictor variables, this is

.873 = 1− 4.30
(642.92)/19

.

Note that when comparing two models, the model with the smaller MSE has the larger adjusted R2.
R2 is always between 0 and 1, but while the adjusted R2 cannot get above 1, it can get below 0.

It is possible to find models that have MSE > s2
y . In these cases, the adjusted R2 is actually less than

0.
Models with large adjusted R2s are precisely models with small mean squared errors. At first

glance, this seems like a reasonable way to choose models, but upon closer inspection the idea seems
flawed. The problem is that when comparing some model with a reduced model, the adjusted R2 is
greater for the larger model whenever the mean squared error of the larger model is less than the
numerator mean square for testing the adequacy of the smaller model. In other words, the adjusted
R2 is greater for the larger model whenever the F statistic for comparing the models is greater than
1. Typically, we want the F statistic to be substantially larger than 1 before concluding that the extra
variables in the larger model are important.

To see that the adjusted R2 is larger for the larger model whenever F > 1, consider the simplest
example, that of comparing the full model to the model that contains just an intercept. For the school
data, the mean squared error for the intercept model is

SSTot/19 = 642.92/19 = (SSReg+SSE)/19

= (5MSReg+14MSE)/19 =
5

19
116.54+

14
19

4.30.

Thus SSTot/19 is a weighted average of MSReg and MSE. The MSReg is greater than the MSE
(F > 1), so the weighted average of the terms must be greater than the smaller term, MSE. The
weighted average is SSTot/19, which is the mean squared error for the intercept model, while MSE
is the mean squared error for the full model. Thus F > 1 implies that the mean squared error for the
smaller model is greater than the mean squared error for the larger model and recall that the model
with the smaller mean squared error has the higher adjusted R2.

In general, the mean squared error for the smaller model is a weighted average of the mean
square for the variables being added and the mean squared error of the larger model. If the mean
square for the variables being added is greater than the mean squared error of the larger model, i.e.,
if F > 1, the mean squared error for the smaller model must be greater than that for the larger model.
If we add variables to a model whenever the F statistic is greater than 1, we will include a lot on
unnecessary variables.

Table 14.9 contains the 6 best fitting models as judged by the adjusted R2 criterion. As ad-
vertised, the ordering of the models from best to worst is consistent whether one maximizes the
adjusted R2 or minimizes the MSE (or equivalently,

√
MSE). The best model based on the adjusted

R2 is the model with variables x1, x3, and x4, but a number of the best models are given. Presenting
a number of the best models reinforces the idea that selection of one or more final models should be
based on many more considerations than just the value of one model selection statistic. Moreover,
the best model as determined by the adjusted R2 often contains too many variables.

Note also that the two models in Table 14.9 with three variables are precisely the two three-
variable models with the highest R2 values from Table 14.8. The same is true about the two four-
variable models that made this list. As indicated earlier, when the number of variables is fixed,
ordering models by their R2s is equivalent to ordering models by their adjusted R2s. The comments
about model checking and prediction made in the previous subsection continue to apply.
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Table 14.9: Best subset regression, adjusted R2 statistic

Adj. Included variables
Vars. R2

√
MSE x1 x2 x3 x4 x5

3 88.2 1.9974 X X X
4 87.6 2.0514 X X X X
4 87.5 2.0603 X X X X
2 87.4 2.0641 X X
5 87.3 2.0743 X X X X X
3 86.8 2.1137 X X X

14.2.3 Mallows’s Cp statistic

Mallows’s Cp statistic estimates a measure of the difference between the fitted regression surface
from a reduced model and the actual regression surface. The idea is to compare the points

zi = β0 +β1xi1 +β2xi2 +β3xi3 + . . .+βp−1xi,p−1

on the actual regression surface of the full model (F) to the corresponding predictions ŷiR from some
reduced model (R) with, say, r predictor variables (including the constant). The comparisons are
made at the locations of the original data. The model comparison is based on the sum of standardized
squared differences,

κ ≡
n

∑
i=1

(ŷiR− zi)
2/

σ
2.

The term σ2 serves only to provide some standardization. Small values of κ indicate good reduced
models. Note that κ is not directly useful because it is unknown. It depends on the zi values and
they depend on the unknown full model regression parameters. However, if we think of the ŷiRs as
functions of the random variables yi, the comparison value κ is a function of the yis and thus is a
random variable with an expected value. Mallows’s Cp statistic is an estimate of the expected value
of κ . In particular, Mallows’s Cp statistic is

Cp =
SSE(R)
MSE(F)

− (n−2r).

For a derivation of this statistic, see Christensen (1987, section XIV.1). The smaller the Cp value,
the better the model (up to the variability of the estimation). If the Cp statistic is computed for the
full model, the result is always p, the number of predictor variables including the intercept.

In multiple regression, estimated regression surfaces are identical to prediction surfaces, so mod-
els with Mallows’s Cp statistics that are substantially less than p can be viewed as reduced models
that are estimated to be better at prediction than the full model. Of course this comparison between
predictions from the full and reduced models is restricted to the actual combinations of predictor
variables in the observed data.

Table 14.10 contains the best six models based on the Cp statistic. The best model is the one
with variables x3 and x4, but the model including x1, x3, and x4 has essentially the same value
of Cp. There is a substantial increase in Cp for any of the other four models. Clearly, we would
focus attention on the two best models to see if they are adequate in terms of outliers, influential
observations, agreement with assumptions, and subject matter implications. As always, predictions
can only be made with safety from the reduced models when the new cases are to be obtained in
a similar fashion to the original data. In particular, new cases must have similar values to those in
the original data for all of the predictor variables, not just those in the reduced model. Note that the
ranking of the best models is different here than for the adjusted R2. The full model is not included
here, while it was in the adjusted R2 table. Conversely, the model with x2, x3, and x4 is included here
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Table 14.10: Best subset regression, Cp statistic

Included variables
Vars Cp

√
MSE x1 x2 x3 x4 x5

2 2.8 2.0641 X X
3 2.8 1.9974 X X X
3 4.6 2.1137 X X X
4 4.7 2.0514 X X X X
3 4.8 2.1272 X X X
4 4.8 2.0603 X X X X

Table 14.11: Best subset regression

Adj. Included variables
Vars. R2 R2 Cp

√
MSE x1 x2 x3 x4 x5

1 86.0 85.2 5.0 2.2392 X
1 56.8 54.4 48.6 3.9299 X
1 53.7 51.2 53.1 4.0654 X
2 88.7 87.4 2.8 2.0641 X X
2 86.2 84.5 6.7 2.2866 X X
2 86.0 84.4 6.9 2.2993 X X
3 90.1 88.2 2.8 1.9974 X X X
3 88.9 86.8 4.6 2.1137 X X X
3 88.7 86.6 4.8 2.1272 X X X
4 90.2 87.6 4.7 2.0514 X X X X
4 90.1 87.5 4.8 2.0603 X X X X
4 89.2 86.3 6.1 2.1499 X X X X
5 90.6 87.3 6.0 2.0743 X X X X X

but was not included in the adjusted R2 table. Note also that among models with three variables, the
Cp rankings agree with the R2 rankings and the same holds for four-variable models.

It is my impression that Mallows’s Cp statistic is the most popular method for selecting a best
subset of the predictor variables. It is certainly my favorite. Mallows’s Cp statistic is closely related
to Akaike’s information criterion (AIC), which is a general criterion for model selection. AIC and
the relationship between Cp and AIC are examined in Christensen (1990b, section IV.8).

14.2.4 A combined subset selection table

Table 14.11 lists the three best models based on R2 for each number of predictor variables. In
addition, the adjusted R2 and Cp values for each model are listed in the table. It is easy to identify
the best models based on any of the model selection criteria. The output is extensive enough to
include a few notably bad models. Rather than asking for the best 3, one might ask for the best 4,
or 5, or 6 models for each number of predictor variables but it is difficult to imagine a need for any
more extensive summary of the models when beginning a search for good reduced models.

Note that the model with x1, x3, and x4 is the best model as judged by adjusted R2 and is nearly
the best model as judged by the Cp statistic. (The model with x3 and x4 has a slightly smaller Cp
value.) The model with x2, x3, x4 has essentially the same Cp statistic as the model with x1, x2, x3,
x4 but the later model has a larger adjusted R2.

Minitab commands

Below are given Minitab commands for obtaining Table 14.11.

MTB > breg c8 on c2-c6;

SUBC> best 3.
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14.3 Stepwise model selection methods

Best subset selection methods evaluate all the possible subsets of variables from a full model and
identify the best reduced regression models based on some criterion. Evaluating all possible mod-
els is the most reasonable way to proceed in variable selection but the computational demands of
evaluating every model can be staggering. Every additional variable in a model doubles the number
of reduced models that can be constructed. In our example with five variables, there are 25 = 32
reduced models to be considered; in an example with 8 variables there are 28 = 256 reduced models
to be fitted. Years ago, when computation was slow and expensive, fitting large numbers of models
was not practical, and even now, when one has a very large number of predictor variables, fitting
all models can easily overwhelm a computer. (Actually, improved computer algorithms allow us
to avoid fitting all models, but even with the improved algorithms, computational limits can be
exceeded.)

An alternative to fitting all models is to evaluate the variables one at a time and look at a sequence
of models. Stepwise variable selection methods do this. The best of these methods begin with a full
model and sequentially identify variables that can be eliminated. In some procedures, variables that
have been eliminated may be put back into the model if they meet certain criteria. The virtue of
starting with the full model is that if you start with an adequate model and only do reasonable
things, you should end up with an adequate model. A less satisfactory procedure is to begin with no
variables and see which ones can be added into the model. This begins with an inadequate model
and there is no guarantee that an adequate model will ever be achieved. We consider three methods:
backwards elimination in which variables are deleted from the full model, forward selection in
which variables are added to a model, typically the model that includes only the intercept, and
stepwise methods in which variables can be both added and deleted. Because these methods only
consider the deletion or addition of one variable at a time, they may never find the best models as
determined by best subset selection methods.

14.3.1 Backwards elimination

Backwards elimination begins with the full model and sequentially eliminates from the model the
least important variable. The importance of a variable is judged by the size of the t (or equivalent
F) statistic for dropping the variable from the model, i.e., the t statistic for testing whether the
corresponding regression coefficient is 0. After the variable with the smallest absolute t statistic is
dropped, the model is refitted and the t statistics recalculated. Again, the variable with the smallest
absolute t statistic is dropped. The process ends when all of the absolute values of the t statistics are
greater than some predetermined level. The predetermined level can be a fixed number for all steps
or it can change depending on the step. When allowing it to change depending on the step, we could
set up the process so that it stops when all of the P values are below a fixed level.

Table 14.12 illustrates backwards elimination for the school data. In this example, the prede-
termined level for stopping the procedure is 2. If all |t| statistics are greater than 2, elimination of
variables halts. Step 1 includes all 5 predictor variables. The table gives estimated regression coef-
ficients, t statistics, the R2 value, and the square root of the MSE. In step 1, the smallest absolute t
statistic is 0.82, so variable x2 is eliminated from the model. The statistics in step 2 are similar to
those in step 1 but now the model includes only variables x1, x3, x4, and x5. In step 2, the smallest
absolute t statistic is |− 0.41|, so variable x5 is eliminated from the model. Step 3 is based on the
model with x1, x3, and x4. The smallest absolute t statistic is the −1.47 for variable x1, so x1 is
dropped. Step 4 uses the model with only x3 and x4. At this step, the t statistics are both greater than
2, so the process halts. Note that the intercept is not considered for elimination.

The final model given in Table 14.12 happens to be the best model as determined by the Cp
statistic and the model at stage 3 is the second best model as determined by the Cp statistic. This is
a fortuitous event; there is no reason that this should happen other than these data being particularly
clear about the most important variables.
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Table 14.12: Backwards elimination of y on 5 predictors, with N = 20

Step Const. x1 x2 x3 x4 x5 R2
√

MSE

1 β̂ 19.95 −1.8 0.044 0.556 1.11 −1.8 90.63 2.07
tobs −1.45 0.82 5.98 2.56 −0.89

2 β̂ 15.47 −1.7 0.582 1.03 −0.5 90.18 2.05
tobs −1.41 6.75 2.46 −0.41

3 β̂ 12.12 −1.7 0.553 1.04 90.07 2.00
tobs −1.47 11.27 2.56

4 β̂ 14.58 0.542 0.75 88.73 2.06
10.82 2.05

Table 14.13: Forward selection of y on 5 predictors, with N = 20

Step Const. x1 x2 x3 x4 x5 R2
√

MSE
1 β̂ 33.32 0.560 85.96 2.24

tobs 10.50
2 β̂ 14.58 0.542 0.75 88.73 2.06

tobs 10.82 2.05

14.3.2 Forward selection

Forward selection begins with an initial model and adds variables to this model one at a time. Most
often, the initial model contains only the intercept, but many computer programs have options for
including other variables in the initial model. To determine which variable to add at any step in
the process, a candidate variable is added to the current model and the t statistic is computed for
the candidate variable. This is done for each candidate variable and the candidate variable with the
largest |t| statistic is added to the model. The procedure stops when none of the absolute t statistics
is greater than a predetermined level. The predetermined level can be a fixed number for all steps
or it can change with the step. When allowing it to change depending on the step, we could set the
process so that it stops when none of the P values for the candidate variables is below a fixed level.

Table 14.13 gives an abbreviated summary of the procedure for the school data using 2 as the
predetermined |t| level for stopping the process. At the first step, the five models yi = γ0 j +γ jxi j +εi,
j = 1, . . . ,5 are fitted to the data. The variable x j with the largest absolute t statistic for testing
γ j = 0 is added to the model. Table 14.13 indicates that this was variable x3. At step 2, the four
models yi = β0 j + β3 jxi3 + β jxi j + εi, j = 1,2,4,5 are fitted to the data and the variable x j with
the largest absolute t statistic for testing β j = 0 is added to the model. In the example, the largest
absolute t statistic belongs to x4. At this point, the table stops, indicating that when the three models
yi = η0 j +η3 jxi3 +η4 jxi4 +η jxi j + εi, j = 1,2,5 were fitted to the model, none of the absolute t
statistics for testing η j = 0 were greater than 2.

The final model selected is the model with predictor variables x3 and x4. This is the same model
obtained from backwards elimination and the model that has the smallest Cp statistic. Again, this is
a fortuitous circumstance. There is no assurance that such agreement between methods will occur.

Rather than using t statistics, the decisions could be made using the equivalent F statistics. The
stopping value of 2 for t statistics corresponds to a stopping value of 4 for F statistics. In addition,
this same procedure can be based on sample correlations and partial correlations. The decision in
step 1 is equivalent to adding the variable that has the largest absolute sample correlation with y.
The decision in step 2 is equivalent to adding the variable that has the largest absolute sample partial
correlation with y after adjusting for x3. Step 3 is not shown in the table, but the computations for
step 3 must be made in order to know that the procedure stops after step 2. The decision in step 3 is
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equivalent to adding the variable that has the largest absolute sample partial correlation with y after
adjusting for x3 and x4, provided this value is large enough.

The author has a hard time imagining any situation where forward selection is a reasonable thing
to do, except possibly as a screening device when there are more predictor variables than there are
observations. In such a case, the full model cannot be fitted meaningfully, so best subset methods
and backwards elimination do not work.

14.3.3 Stepwise methods

Stepwise methods alternate between forward selection and backwards elimination. Suppose you
have just arrived at a model by dropping a variable. A stepwise method will then check to see if
any variable can be added to the model. If you have just arrived at a model by adding a variable,
a stepwise method then checks to see if any variable can be dropped. The value of the absolute t
statistic required for dropping a variable is allowed to be different from the value required for adding
a variable. Stepwise methods often start with an initial model that contains only an intercept, but
many computer programs allow starting the process with the full model. In the school example, the
stepwise method beginning with the intercept model gives the same results as forward selection and
the stepwise method beginning with the full model gives the same results as backwards elimination.
(The absolute t statistics for both entering and removing were set at 2.) Other initial models can also
be used. Christensen (1987, section XIV.2) discusses some alternative rules for conducting stepwise
regression.

Minitab commands

Minitab’s ‘stepwise’ command provides stepwise variable selection with a default in which variables
are only added if the greatest F statistic is greater than 4 and only removed if the smallest F statistic
is less than 4. There are options for forcing variables out of the model, forcing variables into the
model, specifying an initial model, and setting the comparison values for the F statistics. Backwards
elimination is obtained by entering all the variables into the initial model and resetting the F value
for entering a variable to a very large number, say, 100000. Forward selection is obtained by setting
the F value for removing a variable to 0. The commands are given below.

MTB > names c2 ’x1’ c3 ’x2’ c4 ’x3’ c5 ’x4’ c6 ’x5’ c8 ’y’

MTB > note STEPWISE: starting with full model

MTB > stepwise c8 on c2-c6;

SUBC> enter c2-c6.

MTB > note STEPWISE: starting with intercept model

MTB > stepwise c8 on c2-c6

MTB > note BACKWARDS ELIMINATION

MTB > stepwise c8 on c2-c6;

SUBC> enter c2-c6;

SUBC> fenter = 100000.

MTB > note FORWARD SELECTION

MTB > stepwise c8 on c2-c6;

SUBC> fremove = 0.

14.4 Model selection and case deletion

In this section we examine how the results of the previous two sections change when influential
cases are deleted. Before beginning, we make a crucial point. Both variable selection and the elim-
ination of outliers cause the resulting model to appear better than it probably should. Both tend to
give MSEs that are unrealistically small. It follows that confidence and prediction intervals are un-
realistically narrow and test statistics are unrealistically large. Outliers tend to be cases with large
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Table 14.14: Best subset regression with case 18 deleted

Adj. Included variables
Vars R2 R2 Cp

√
MSE x1 x2 x3 x4 x5

1 89.6 89.0 21.9 1.9653 X
1 56.0 53.4 140.8 4.0397 X
1 53.4 50.6 150.2 4.1595 X
2 92.3 91.3 14.3 1.7414 X X
2 91.2 90.1 18.2 1.8635 X X
2 89.8 88.6 23.0 2.0020 X X
3 93.7 92.4 11.4 1.6293 X X X
3 93.5 92.2 12.1 1.6573 X X X
3 92.3 90.8 16.1 1.7942 X X X
4 95.2 93.8 8.1 1.4766 X X X X
4 94.7 93.2 9.8 1.5464 X X X X
4 93.5 91.6 14.1 1.7143 X X X X
5 96.3 94.9 6.0 1.3343 X X X X X

residuals; any policy of eliminating the largest residuals obviously makes the SSE, which is the sum
of the squared residuals, and the MSE smaller. Some large residuals occur by chance even when
the model is correct. Systematically eliminating these large residuals makes the estimate of the vari-
ance too small. Variable selection methods tend to identify as good reduced models those with small
MSEs. The most extreme case is that of using the adjusted R2 criterion, which identifies as the best
model the one with the smallest MSE. Confidence and prediction intervals based on models that
are arrived at after variable selection or outlier deletion should be viewed as the smallest reasonable
intervals available, with the understanding that more appropriate intervals would probably be wider.
Tests performed after variable selection or outlier deletion should be viewed as giving the greatest
reasonable evidence against the null hypothesis, with the understanding that more appropriate tests
would probably display a lower level of significance.

Recall that in Section 14.1, case 18 was identified as an influential point in the school data and
then case 3 was identified as highly influential. Table 14.14 gives the results of a best subset selection
when case 18 has been eliminated. The full model is the best model as measured by either the Cp
statistic or the adjusted R2 value. This is a far cry from the full data analysis in which the models
with x3, x4 and x1, x3, x4 had the smallest Cp statistics. These two models are only the seventh
and fifth best models in Table 14.14. The two closest competitors to the full model in Table 14.14
involve dropping one of variables x1 and x2. The fourth and fifth best models involve dropping x2
and one of variables x1 and x5. In this case, the adjusted R2 ordering of the five best models agrees
with the Cp ordering.

Table 14.15 gives the best subset summary when cases 3 and 18 have both been eliminated.
Once again, the best model as judged by either Cp or adjusted R2 is the full model. The second
best model drops x1 and the third best model drops x2. However, the subsequent ordering changes
substantially.

Now consider backwards elimination and forward selection with influential observations
deleted. In both cases, we continue to use the |t| value 2 as the cutoff to stop addition and removal
of variables.

Table 14.16 gives the results of a backwards elimination when case 18 is eliminated and when
cases 3 and 18 are eliminated. In both situations, all five of the variables remain in the model.
The regression coefficients are similar in the two models with the largest difference being in the
coefficients for x5. Recall that when all of the cases were included, the backwards elimination model
included only variables x3 and x4, so we see a substantial difference due to the deletion of one or
two cases.

The results of forward selection are given in Table 14.17. With case 18 deleted, the process stops
with a model that includes x3 and x4. With case 3 also deleted, the model includes x1, x3, and x4.
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Table 14.15: Best subset regression with cases 3 and 18 deleted

Adj. Included variables
Vars R2 R2 Cp

√
MSE x1 x2 x3 x4 x5

1 92.2 91.7 66.5 1.7548 X
1 57.9 55.3 418.8 4.0688 X
1 55.8 53.0 440.4 4.1693 X
2 95.3 94.7 36.1 1.4004 X X
2 93.2 92.2 58.3 1.6939 X X
2 92.3 91.2 67.6 1.8023 X X
3 96.6 95.8 25.2 1.2412 X X X
3 96.1 95.2 30.3 1.3269 X X X
3 95.3 94.3 38.0 1.4490 X X X
4 97.5 96.8 17.3 1.0911 X X X X
4 97.2 96.3 20.8 1.1636 X X X X
4 96.6 95.6 27.0 1.2830 X X X X
5 98.8 98.3 6.0 0.78236 X X X X X

Table 14.16: Backwards elimination

Case 18 deleted
Step Const. x1 x2 x3 x4 x5 R2

√
MSE

1 β̂ 34.29 −1.62 0.085 0.674 1.11 −4.6 96.33 1.33
tobs −2.04 2.41 10.34 3.98 −3.18

Cases 18 and 3 deleted
Step Const. x1 x2 x3 x4 x5 R2

√
MSE

1 β̂ 29.76 −1.70 0.085 0.666 1.18 −4.07 98.83 0.782
tobs −3.64 4.09 17.42 7.21 −4.79

While these happen to agree quite well with the results from the complete data, they agree poorly
with the results from best subset selection and from backwards elimination, both of which indicate
that all variables are important. Forward selection gets hung up after a few variables and cannot deal
with the fact that adding several variables (rather than one at a time) improves the fit of the model
substantially.

Table 14.17: Forward selection

Case 18 deleted
Step Const. x1 x2 x3 x4 x5 R2

√
MSE

1 β̂ 32.92 0.604 89.59 1.97
tobs 12.10

2 β̂ 14.54 0.585 0.74 92.31 1.74
tobs 13.01 2.38

Cases 18 and 3 deleted
Step Const. x1 x2 x3 x4 x5 R2

√
MSE

1 β̂ 33.05 0.627 92.17 1.75
tobs 13.72

2 β̂ 13.23 0.608 0.79 95.32 1.40
tobs 16.48 3.18

3 β̂ 10.86 −1.66 0.619 1.07 96.57 1.24
tobs −2.26 18.72 4.23
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14.5 Exercises

EXERCISE 14.5.1. Reconsider the advertising data of Exercise 13.8.1.

(a) Are there any high leverage points? Why or why not?
(b) Test whether each case is an outlier using an overall significance level no greater than α = .05.

Completely state the appropriate reference distribution.
(c) Discuss the importance of Cook’s distances in regard to these data.
(d) Using only analysis of variance tables, compute R2, the adjusted R2, and the Cp statistic for

yi = β0 +β1xi1 +β2xi2 + εi. Show your work.
(e) In the three-variable model, which if any variable would be deleted by a backwards elimination

method? Why?

EXERCISE 14.5.2. Consider the information given below on diagnostic statistics for the wood
data of Exercise 13.8.2.

(a) Are there any outliers in the predictor variables? Why are these considered outliers?
(b) Are there any outliers in the dependent variable? If so, why are these considered outliers?
(c) What are the most influential observations in terms of the predictive ability of the model?

Obs. Leverage r t C Obs. Leverage r t C
1 .085 −0.25 −0.25 .001 29 .069 0.27 0.26 .001
2 .055 1.34 1.35 .021 30 .029 0.89 0.89 .005
3 .021 0.57 0.57 .001 31 .204 0.30 0.30 .005
4 .031 0.35 0.35 .001 32 .057 0.38 0.37 .002
5 .032 2.19 2.28 .032 33 .057 0.05 0.05 .000
6 .131 0.20 0.19 .001 34 .085 −2.43 −2.56 .109
7 .027 1.75 1.79 .017 35 .186 −2.17 −2.26 .215
8 .026 1.23 1.24 .008 36 .184 1.01 1.01 .046
9 .191 0.52 0.52 .013 37 .114 0.85 0.85 .019

10 .082 0.47 0.46 .004 38 .022 0.19 0.19 .000
11 .098 −3.39 −3.82 .250 39 .022 −0.45 −0.45 .001
12 .066 0.32 0.32 .001 40 .053 −1.15 −1.15 .015
13 .070 −0.09 −0.09 .000 41 .053 0.78 0.78 .007
14 .059 0.08 0.08 .000 42 .136 −0.77 −0.76 .018
15 .058 −0.91 −0.91 .010 43 .072 −0.78 −0.77 .009
16 .085 −0.09 −0.09 .000 44 .072 −0.27 −0.26 .001
17 .113 1.28 1.29 .042 45 .072 −0.40 −0.40 .002
18 .077 −1.05 −1.05 .018 46 .063 −0.62 −0.62 .005
19 .167 0.38 0.38 .006 47 .025 0.46 0.46 .001
20 .042 0.24 0.23 .000 48 .021 0.18 0.18 .000
21 .314 −0.19 −0.19 .003 49 .050 −0.44 −0.44 .002
22 .099 0.56 0.55 .007 50 .161 −0.66 −0.66 .017
23 .093 0.47 0.46 .004 51 .042 −0.44 −0.43 .002
24 .039 −0.60 −0.60 .003 52 .123 −0.26 −0.26 .002
25 .098 −1.07 −1.07 .025 53 .460 1.81 1.86 .558
26 .033 0.14 0.13 .000 54 .055 0.50 0.50 .003
27 .042 1.19 1.19 .012 55 .093 −1.03 −1.03 .022
28 .185 −1.41 −1.42 .090

EXERCISE 14.5.3. Consider the following information on best subset regression for the wood
data of Exercise 13.8.2.
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Best subset regression of wood data
Adj. Included variables

Vars R2 R2 Cp
√

MSE x1 x2 x3 x4
1 97.9 97.9 12.9 18.881 X
1 63.5 62.8 1064.9 78.889 X
1 32.7 31.5 2003.3 107.04 X
2 98.3 98.2 3.5 17.278 X X
2 97.9 97.8 14.3 18.969 X X
2 97.9 97.8 14.9 19.061 X X
3 98.3 98.2 5.3 17.419 X X X
3 98.3 98.2 5.4 17.430 X X X
3 98.0 97.9 13.7 18.763 X X X
4 98.4 98.2 5.0 17.193 X X X X

(a) In order, what are the three best models as measured by the Cp criterion?
(b) What is the mean squared error for the model with variables x1, x3, and x4?
(c) In order, what are the three best models as measured by the adjusted R2 criterion? (Yes, it is

possible to distinguish between the best four!)
(d) What do you think are the best models and what would you do next?

EXERCISE 14.5.4. Consider the following information on stepwise regression for the wood data
of Exercise 13.8.2.

Stepwise regression
STEP 1 2 3
Constant 23.45 41.87 43.85
x1 0.932 1.057 1.063
t 10.84 38.15 44.52
x2 0.73 0.09
t 1.56 0.40
x3 −0.50 −0.50 −0.51
t −3.28 −3.27 −3.36
x4 3.5
t 1.53√

MSE 17.2 17.4 17.3
R2 98.36 98.29 98.28

(a) What is being given in the rows labeled x1, x2, x3, and x4? What is being given in the rows labeled
t?

(b) Is this table for forward selection, backwards elimination, stepwise regression, or some other
procedure?

(c) Describe the results of the procedure.

EXERCISE 14.5.5. Reanalyze the Prater data of Atkinson (1985) and Hader and Grandage (1958)
from Exercise 13.8.3. Examine residuals and influential observations. Explore the use of the various
model selection methods.

EXERCISE 14.5.6. Reanalyze the Chapman data of Exercise 13.8.4. Examine residuals and in-
fluential observations. Explore the use of the various model selection methods.

EXERCISE 14.5.7. Reanalyze the pollution data of Exercise 13.8.5. Examine residuals and influ-
ential observations. Explore the use of various model selection methods.
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EXERCISE 14.5.8. Repeat Exercise 13.8.6 on the body fat data with special emphasis on diag-
nostics and model selection.



Chapter 15

Multiple regression: matrix formulation

In this chapter we use matrices to write regression models. Properties of matrices are reviewed in
Appendix A. The economy of notation achieved through using matrices allows us to arrive at some
interesting new insights and to derive several of the important properties of regression analysis.

15.1 Random vectors

In this section we discuss vectors and matrices that are made up of random variables rather than just
numbers. For simplicity, we focus our discussion on vectors that contain 3 rows, but the results are
completely general.

Let y1, y2, and y3 be random variables. From these, we can construct a 3×1 random vector, say

Y =

y1
y2
y3

 .
The expected value of the random vector is just the vector of expected values of the random vari-
ables. For the random variables write E(yi) = µi, then

E(Y )≡

E(y1)
E(y2)
E(y3)

=

µ1
µ2
µ3

≡ µ.

In other words, expectation of a random vector is performed elementwise. In fact, the expected
value of any random matrix (a matrix consisting of random variables) is the matrix made up of the
expected values of the elements in the random matrix. Thus if wi j, i = 1,2,3, j = 1,2 is a collection
of random variables and we write

W =

w11 w12
w21 w22
w31 w33

 ,
then

E(W )≡

E(w11) E(w12)
E(w21) E(w22)
E(w31) E(w33)

 .
We also need a concept for random vectors that is analogous to the variance of a random variable.

This is the covariance matrix, sometimes called the dispersion matrix, the variance matrix, or the
variance-covariance matrix. The covariance matrix is simply a matrix consisting of all the variances
and covariances associated with the vector Y . Write

Var(yi) = E(yi−µi)
2 ≡ σii

and
Cov(yi,y j) = E[(yi−µi)(y j−µ j)]≡ σi j.

425
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Two subscripts are used on σii to indicate that it is the variance of yi rather than writing Var(yi)=σ2
i .

The covariance matrix of our 3×1 vector Y is

Cov(Y ) =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 .
When Y is 3× 1, the covariance matrix is 3× 3. If Y were 20× 1, Cov(Y ) would be 20× 20. The
covariance matrix is always symmetric because σi j = σ ji for any i, j. The variances of the individual
random variables lie on the diagonal that runs from the top left to the bottom right. The covariances
lie off the diagonal.

In general, if Y is an r×1 random vector and E(Y ) = µ , then Cov(Y ) = E[(Y −µ)(Y −µ)′]. In
other words, Cov(Y ) is the expected value of the random matrix (Y −µ)(Y −µ)′.

15.2 Matrix formulation of regression models

Simple linear regression in matrix form

The usual model for simple linear regression is

yi = β0 +β1xi + εi i = 1, . . . ,n , (15.2.1)

E(εi) = 0, Var(εi) = σ2, and Cov(εi,ε j) = 0 for i 6= j. In matrix terms this can be written as
y1
y2
...

yn

 =


1 x1
1 x2
...

...
1 xn

 [
β0
β1

]
+


ε1
ε2
...

εn


Yn×1 = Xn×2 β2×1 + en×1

Multiplying and adding the matrices on the right-hand side gives
y1
y2
...

yn

=


β0 +β1x1 + ε1
β0 +β1x2 + ε2

...
β0 +β1xn + εn

 .
These two vectors are equal if and only if the corresponding elements are equal, which occurs if and
only if model (15.2.1) holds. The conditions on the εis translate into matrix terms as

E(e) = 0

where 0 is the n×1 matrix containing all zeros and

Cov(e) = σ
2I

where I is the n× n identity matrix. By definition, the covariance matrix Cov(e) has the variances
of the εis down the diagonal. The variance of each individual εi is σ2, so all the diagonal elements
of Cov(e) are σ2, just as in σ2I. The covariance matrix Cov(e) has the covariances of distinct εis as
its off-diagonal elements. The covariances of distinct εis are all 0, so all the off-diagonal elements
of Cov(e) are zero, just as in σ2I.

EXAMPLE 15.2.1. In matrix terms, the model for regressing weights on heights using the data of
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Exercise 7.13.10 is 

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12



=



1 65
1 65
1 65
1 65
1 66
1 66
1 63
1 63
1 63
1 72
1 72
1 72



[
β0
β1

]
+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12



.

The observed data for this example are



y1
y2
y3
y4
y5
y6
y7
y8
y9
y10


=



120
140
130
135
150
135
110
135
120
170
185
160



.

2

The general linear model

The general linear model is a generalization of the matrix form for the simple linear regression
model. The general linear model is

Y = Xβ + e, E(e) = 0, Cov(e) = σ
2I.

Y is an n× 1 vector of observable random variables. X is an n× p matrix of known constants. β

is a p×1 vector of unknown (regression) parameters. e is an n×1 vector of unobservable random
errors. It will be assumed that n≥ p. Regression is any general linear model where the rank of X is
p.

EXAMPLE 15.2.2. Multiple regression
In non-matrix form, the multiple regression model is

yi = β0 +β1xi1 +β2xi2 + · · ·+βp−1xi,p−1 + εi, i = 1, . . . ,n , (15.2.2)

where
E(εi) = 0, Var(εi) = σ

2, Cov(εi,ε j) = 0, i 6= j.

In matrix terms this can be written as
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y1
y2
...

yn

 =


1 x11 x12 · · · x1,p−1
1 x21 x22 · · · x2,p−1
...

...
...

. . .
...

1 xn1 xn2 · · · xn,p−1




β0
β1
β2
...

βp−1

 +


ε1
ε2
...

εn


Yn×1 = Xn×p βp×1 + en×1

Multiplying and adding the right-hand side gives
y1
y2
...

yn

=


β0 +β1x11 +β2x12 + · · ·+βp−1x1,p−1 + ε1
β0 +β1x21 +β2x22 + · · ·+βp−1x2,p−1 + ε2

...
β0 +β1xn1 +β2xn2 + · · ·+βp−1xn,p−1 + εn

 ,
which is just (15.2.2). The conditions on the εis translate into

E(e) = 0,

where 0 is the n×1 matrix consisting of all zeros, and

Cov(e) = σ
2I,

where I is the n×n identity matrix. 2

Analysis of variance and analysis of covariance models can also be written as general linear
models. This will be discussed further at the end of Chapter 16.

15.3 Least squares estimation of regression parameters

The regression estimates given by standard computer programs are least squares estimates. For
simple linear regression, the least squares estimates are the values of β0 and β1 that minimize

n

∑
i=1

(yi−β0−β1xi)
2
. (15.3.1)

For multiple regression, the least squares estimates of the β js minimize

n

∑
i=1

(yi−β0−β1xi1−β2xi2−·· ·−βp−1xi,p−1)
2
.

In matrix terms these can both be written as minimizing

(Y −Xβ )′(Y −Xβ ). (15.3.2)

The form in (15.3.2) is just the sum of the squares of the elements in the vector (Y −Xβ ). See also
Exercise 15.8.1.

We now give the general form for the least squares estimate of β .

Proposition 15.3.1. β̂ = (X ′X)
−1 X ′Y is the least squares estimate of β .

PROOF: The proof is optional material.
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Note that (X ′X)
−1 exists only because in a regression problem the rank of X is p. The proof

stems from rewriting the function to be minimized.

(Y −Xβ )
′
(Y −Xβ ) =

(
Y −X β̂ +X β̂ −Xβ

)′(
Y −X β̂ +X β̂ −Xβ

)
(15.3.3)

=
(

Y −X β̂

)′(
Y −X β̂

)
+
(

Y −X β̂

)′(
X β̂ −Xβ

)
+
(

X β̂ −Xβ

)′(
Y −X β̂

)
+
(

X β̂ −Xβ

)′(
X β̂ −Xβ

)
.

Now consider one of the two middle terms, say
(

X β̂ −Xβ

)′(
Y −X β̂

)
. Using the definition of β̂

given in the proposition,(
X β̂ −Xβ

)′(
Y −X β̂

)
=

[
X
(

β̂ −β

)]′(
Y −X β̂

)
=

(
β̂ −β

)′
X ′
(

Y −X (X ′X)
−1 X ′Y

)
=

(
β̂ −β

)′
X ′
(

I−X (X ′X)
−1 X ′

)
Y

but
X ′
(

I−X (X ′X)
−1 X ′

)
= X ′− (X ′X)(X ′X)

−1 X ′ = X ′−X ′ = 0.

Thus (
X β̂ −Xβ

)′(
Y −X β̂

)
= 0

and similarly (
Y −X β̂

)′(
X β̂ −Xβ

)
= 0.

Eliminating the two middle terms in (15.3.3) gives

(Y −Xβ )
′
(Y −Xβ ) =

(
Y −X β̂

)′(
Y −X β̂

)
+
(

X β̂ −Xβ

)′(
X β̂ −Xβ

)
.

This form is easily minimized. The first of the terms on the right-hand side does not depend
on β , so the β that minimizes (Y −Xβ )

′
(Y −Xβ ) is the β that minimizes the second term(

X β̂ −Xβ

)′(
X β̂ −Xβ

)
. The second term is non-negative because it is the sum of squares of

the elements in the vector X β̂ −Xβ and it is minimized by making it zero. This is accomplished by
choosing β = β̂ . 2

EXAMPLE 15.3.2. Simple linear regression
We now show that Proposition 15.3.1 gives the usual estimates for simple linear regression. Readers
should refamiliarize themselves with the results in Section 7.3. They should also be warned that the
algebra in the first half of the example is a bit more sophisticated than that used elsewhere in this
book.

Assume the model
yi = β0 +β1xi + εi i = 1, . . . ,n.

and write

X =


1 x1
1 x2
...

...
1 xn


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so

X ′X =

[
n ∑

n
i=1 xi

∑
n
i=1 xi ∑

n
i=1 x2

i

]
.

Inverting this matrix gives

(X ′X)
−1

=
1

n∑
n
i=1 x2

i − (∑
n
i=1 xi)

2

[
∑

n
i=1 x2

i −∑
n
i=1 xi

−∑
n
i=1 xi n

]
.

The denominator in this term can be simplified by observing that

n
n

∑
i=1

x2
i −

(
n

∑
i=1

xi

)2

= n

(
n

∑
i=1

x2
i −nx̄2

·

)
= n

n

∑
i=1

(xi− x̄)2
.

Note also that

X ′Y =

[
∑

n
i=1 yi

∑
n
i=1 xiyi

]
.

Finally, we get

β̂ = (X ′X)
−1 X ′Y

=
1

n∑
n
i=1 (xi− x̄)2

[
∑

n
i=1 x2

i ∑
n
i=1 yi−∑

n
i=1 xi ∑

n
i=1 xiyi

−∑
n
i=1 xi ∑

n
i=1 yi +n∑

n
i=1 xiyi

]

=
1

∑
n
i=1 (xi− x̄)2

[
ȳ∑

n
i=1 x2

i − x̄∑
n
i=1 xiyi

(∑
n
i=1 xiyi)−nx̄ȳ

]

=
1

∑
n
i=1 (xi− x̄)2

[
ȳ∑

n
i=1 x2

i −nx̄2ȳ−
{

x̄(∑n
i=1 xiyi)−

(
nx̄2ȳ

)}
β̂1 ∑

n
i=1 (xi− x̄)2

]
=

1

∑
n
i=1 (xi− x̄)2

[
ȳ
(
∑

n
i=1 x2

i −nx̄2
)
− x̄(∑n

i=1 xiyi−nx̄ȳ)
β̂1 ∑

n
i=1 (xi− x̄)2

]
=

[
ȳ− β̂1x̄

β̂1

]
=

[
β̂0
β̂1

]
.

As usual, the alternative regression model

yi = β∗0 +β1 (xi− x̄)+ εi i = 1, . . . ,n

is easier to work with. Write the model in matrix form as

Y = Zβ∗+ e

where

Z =


1 (x1− x̄)
1 (x2− x̄)
...

...
1 (xn− x̄)


and

β∗ =

[
β∗0
β1

]
.

We need to compute β̂∗ = (Z′Z)−1 Z′Y . Observe that

Z′Z =

[
n 0
0 ∑

n
i=1 (xi− x̄)2

]
,
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(Z′Z)−1
=

[ 1
n 0

0 1
/

∑
n
i=1 (xi− x̄)2

]
,

Z′Y =

[
∑

n
i=1 yi

∑
n
i=1 (xi− x̄)yi

]
,

and

β̂∗ = (Z′Z)−1 Z′Y =

[
ȳ

∑
n
i=1 (xi− x̄)yi

/
∑

n
i=1 (xi− x̄)2

]
=

[
β̂∗0
β̂1

]
.

These are the usual estimates. 2

Recall that least squares estimates have a number of other properties. If the errors are indepen-
dent with mean zero, constant variance, and are normally distributed, the least squares estimates are
maximum likelihood estimates (cf. subsection 19.2.2) and minimum variance unbiased estimates. If
the errors are merely uncorrelated with mean zero and constant variance, the least squares estimates
are best (minimum variance) linear unbiased estimates.

In multiple regression, simple algebraic expressions for the parameter estimates are not possible.
The only nice equations for the estimates are the matrix equations.

We now find expected values and covariance matrices for the data Y and the least squares esti-
mate β̂ . Two simple rules about expectations and covariance matrices can take one a long way in
the theory of regression. These are matrix analogues of Proposition 1.2.11. In fact, to prove these
matrix results, one really only needs Proposition 1.2.11, cf. Exercise 15.8.3.

Proposition 15.3.3. Let A be a fixed r× n matrix, let c be a fixed r× 1 vector, and let Y be an
n×1 random vector, then

1. E(AY + c) = AE(Y )+ c

2. Cov(AY + c) = ACov(Y )A′.

Applying these results allows us to find the expected value and covariance matrix for Y in a linear
model. The linear model has Y = Xβ + e where Xβ is a fixed vector (even though β is unknown),
E(e) = 0, and Cov(e) = σ2I. Applying the proposition gives

E(Y ) = E(Xβ + e) = Xβ +E(e) = Xβ

and
Cov(Y ) = Cov(e) = σ

2I.

We can also find the expected value and covariance matrix of the least squares estimate β̂ . In
particular, we show that β̂ is an unbiased estimate of β by showing

E
(

β̂

)
= E

(
(X ′X)

−1 X ′Y
)
= (X ′X)

−1 X ′E(Y ) = (X ′X)
−1 X ′Xβ = β .

To find variances and standard errors we need Cov
(

β̂

)
. To obtain this matrix, we use the rules in

Proposition A.7.1. In particular, recall that the inverse of a symmetric matrix is symmetric and that
X ′X is symmetric.

Cov
(

β̂

)
= Cov

[
(X ′X)

−1 X ′Y
]

=
[
(X ′X)

−1 X ′
]

Cov(Y )
[
(X ′X)

−1 X ′
]′
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=
[
(X ′X)

−1 X ′
]

Cov(Y )X
[
(X ′X)

−1
]′

= (X ′X)
−1 X ′Cov(Y )X (X ′X)

−1

= σ
2 (X ′X)

−1 X ′X (X ′X)
−1

= σ
2 (X ′X)

−1
.

15.4 Inferential procedures

We begin by examining the analysis of variance table for the regression model (15.2.2). We then
discuss tests, confidence intervals, and prediction intervals.

There are two frequently used forms of the ANOVA table:
Source d f SS MS

β0 1 nȳ2 ≡C nȳ2

Regression p−1 β̂ ′X ′X β̂ −C SSReg/(p−1)
Error n− p Y ′Y −C−SSReg SSE/(n− p)
Total n Y ′Y

and the more often used form
Source d f SS MS

Regression p−1 β̂ ′X ′X β̂ −C SSReg/(p−1)
Error n− p Y ′Y −C−SSReg SSE/(n− p)
Total n−1 Y ′Y −C

Note that Y ′Y = ∑
n
i=1 y2

i , C = nȳ2 = (∑
n
i=1 yi)

2
/n, and β̂ ′X ′X β̂ = β̂ ′X ′Y . The difference between

the two tables is that the first includes a line for the intercept or grand mean while in the second the
total has been corrected for the grand mean.

The coefficient of determination is

R2 =
SSReg

Y ′Y −C
.

This is the ratio of the variability explained by the predictor variables to the total variability of the
data. Note that (Y ′Y −C)/(n− 1) = s2

y , the sample variance of the ys without adjusting for any
structure except the existence of a possibly nonzero mean.

EXAMPLE 15.4.1. Simple linear regression
For simple linear regression, we know that

SSReg = β̂
2
1

n

∑
i=1

(xi− x̄)2
= β̂1

n

∑
i=1

(xi− x̄)2
β̂1

We will examine the alternative model

yi = β∗0 +β1 (xi− x̄)+ εi.

Note that C = nβ̂ 2
∗0, so the general form for SSReg reduces to the simple linear regression form

because

SSReg = β̂
′
∗Z
′Zβ̂∗−C

=

[
β̂∗0
β̂1

]′ [
n 0
0 ∑

n
i=1 (xi− x̄)2

][
β̂∗0
β̂1

]
−C

= β̂
2
1

n

∑
i=1

(xi− x̄)2
.
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The same result can be obtained from β̂ ′X ′X β̂ −C but the algebra is more tedious. 2

To obtain tests and confidence regions we need to make additional distributional assumptions.
In particular, we assume that the yis have independent normal distributions. Equivalently, we take

ε1, . . . ,εn indep. N(0,σ2).

To test the hypothesis
H0 : β1 = β2 = · · ·= βp−1 = 0

versus
HA : not all of β1,β2, . . . ,βp−1 are zero,

use the analysis of variance table test statistic

F =
MSReg
MSE

.

Under H0,
F ∼ F(p−1,n− p).

We can also perform a variety of t tests for individual regression parameters βk. The procedures
fit into the general techniques of Chapter 3 based on identifying 1) the parameter, 2) the estimate,
3) the standard error of the estimate, and 4) the distribution of (Est−Par)/SE(Est). The parameter
of interest is βk. Having previously established that

E


β̂0
β̂1
...

β̂p−1

=


β0
β1
...

βp−1

 ,
it follows that for any k = 0, . . . , p−1,

E
(

β̂k

)
= βk.

This shows that β̂k is an unbiased estimate of βk. Before obtaining the standard error of β̂k, it is
necessary to identify its variance. The covariance matrix of β̂ is σ2 (X ′X)

−1, so the variance of
β̂k is the (k+ 1)st diagonal element of σ2 (X ′X)

−1. The (k+ 1)st diagonal element is appropriate
because the first diagonal element is the variance of β̂0 not β̂1. If we let ak be the (k+1)st diagonal
element of (X ′X)

−1 and estimate σ2 with MSE, we get a standard error for β̂k of

SE
(

β̂k

)
=
√

MSE
√

ak.

Under normal errors, the appropriate reference distribution is

β̂k−βk

SE(β̂k)
∼ t(n− p).

Standard techniques now provide tests and confidence intervals. For example, a 95% confidence
interval for βk is

β̂k± t(.975,n− p)SE(β̂k)

where t(.975,n− p) is the 97.5th percentile of a t distribution with n− p degrees of freedom.
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A (1−α)100% simultaneous confidence region for β0,β1, . . . ,βp−1 consists of all the β vectors
that satisfy (

β̂ −β

)′
X ′X

(
β̂ −β

)/
p

MSE
≤ F(1−α, p,n− p).

This region also determines joint (1−α)100% confidence intervals for the individual βks with limits

β̂k±
√

pF(1−α, p,n− p)SE(β̂k).

These intervals are an application of Scheffé’s method of multiple comparisons.
We can also use the Bonferroni method to obtain joint (1−α)100% confidence intervals with

limits

β̂k± t
(

1− α

2p
,n− p

)
SE(β̂k).

Finally, we consider estimation of the point on the surface that corresponds to a given set of
predictor variables and the prediction of a new observation with a given set of predictor variables.
Let the predictor variables be x1,x2, . . . ,xp−1. Combine these into the row vector

x′ = (1,x1,x2, . . . ,xp−1) .

The point on the surface that we are trying to estimate is the parameter x′β = β0 +∑
p−1
j=1 β jx j. The

least squares estimate is x′β̂ . The variance of the estimate is

Var
(

x′β̂
)
= Cov

(
x′β̂
)
= x′Cov

(
β̂

)
x = σ

2x′ (X ′X)
−1 x,

so the standard error is

SE
(

x′β̂
)
=
√

MSE
√

x′ (X ′X)
−1 x.

This is the standard error of the estimated regression surface. The appropriate reference distribution
is

x′β̂ − x′β

SE
(

x′β̂
) ∼ t(n− p)

and a (1−α)100% confidence interval is

x′β̂ ± t
(

1− α

2
,n− p

)
SE(x′β̂ ).

When predicting a new observation, the point prediction is just the estimate of the point on
the surface but the standard error must incorporate the additional variability associated with a new
observation. The original observations were assumed to be independent with variance σ2. It is rea-
sonable to assume that a new observation is independent of the previous observations and has the
same variance. Thus, in the prediction we have to account for the variance of the new observation,
which is σ2, plus the variance of the estimate x′β̂ , which is σ2 x′ (X ′X)

−1 x. This leads to a variance
for the prediction of σ2 +σ2 x′ (X ′X)

−1 x and a standard error of√
MSE +MSE x′ (X ′X)

−1 x =

√
MSE

[
1+ x′ (X ′X)

−1 x
]
.

The (1−α)100% prediction interval is

x′β̂ ± t
(

1− α

2
,n− p

)√
MSE

[
1+ x′ (X ′X)

−1 x
]
.

Results of this section constitute the theory behind most of the applications in Sections 13.1 and
13.2.
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15.5 Residuals, standardized residuals, and leverage

Let x′i = (1,xi1, . . . ,xi,p−1) be the ith row of X , then

ŷi = β̂0 + β̂1xi1 + · · ·+ β̂p−1xi,p−1 = x′iβ̂

and the corresponding residual is
ε̂i = yi− ŷi = yi− x′iβ̂ .

The vector of predicted values is

Ŷ =

 ŷ1
...

ŷn

=

x′1β̂

...
x′nβ̂

= X β̂ .

The vector of residuals is

ê = Y − Ŷ

= Y −X β̂

= Y −X(X ′X)−1X ′Y

=
(
I−X(X ′X)−1X ′

)
Y

= (I−M)Y

where
M ≡ X(X ′X)−1X ′.

M is called the perpendicular projection operator (matrix) onto C(X), the column space of X . M
is the key item in the analysis of the general linear model, cf. Christensen (1987). Note that M is
symmetric, i.e., M = M′, and that MM = M. Using these facts, observe that

SSE =
n

∑
i=1

ε̂
2
i

= ê′ê

= [(I−M)Y ]′ [(I−M)Y ]

= Y ′(I−M′−M+M′M)Y

= Y ′(I−M)Y.

Another common way of writing SSE is

SSE =
[
Y −X β̂

]′ [
Y −X β̂

]
.

Having identified M, we can define the standardized residuals. First we find the covariance
matrix of the residual vector ê:

Cov(ê) = Cov([I−M]Y )

= [I−M]Cov(Y )[I−M]′

= [I−M]σ2I[I−M]′

= σ
2 (I−M−M′+MM′)

= σ
2 (I−M) .

The last equality follows from M = M′ and MM = M. Typically, the covariance matrix is not diag-
onal, so the residuals are not uncorrelated.
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The variance of a particular residual ε̂i is σ2 times the ith diagonal element of (I−M). The ith
diagonal element of (I−M) is the ith diagonal element of I, 1, minus the ith diagonal element of
M, say, mii. Thus

Var(ε̂i) = σ
2(1−mii)

and the standard error of ε̂i is
SE(ε̂i) =

√
MSE(1−mii).

The ith standardized residual is defined as

ri ≡
ε̂i√

MSE(1−mii)
.

The leverage of the ith case is defined to be mii, the ith diagonal element of M. Some people
like to think of M as the ‘hat’ matrix because it transforms Y into Ŷ , i.e., Ŷ = X β̂ = MY . More
common than the name ‘hat matrix’ is the consequent use of the notation hi for the ith leverage.
This notation was used in Chapter 7 but the reader should realize that hi ≡ mii. In any case, the
leverage can be interpreted as a measure of how unusual x′i is relative to the other rows of the X
matrix, cf. Christensen (1987, section XIII.1).

15.6 Principal components regression

In Section 13.7 we dealt with the issue of collinearity. Four points were emphasized as the effects
of collinearity.

1. The estimate of any parameter, say β̂2, depends on all the variables that are included in the model.
2. The sum of squares for any variable, say x2, depends on all the other variables that are included

in the model. For example, none of SSR(x2), SSR(x2|x1), and SSR(x2|x3,x4) would typically be
equal.

3. In a model such as yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi, small t statistics for both H0 : β1 = 0 and
H0 : β2 = 0 are not sufficient to conclude that an appropriate model is yi = β0 +β3xi3 + εi. To
arrive at a reduced model, one must compare the reduced model to the full model.

4. A moderate amount of collinearity has little effect on predictions and therefore little effect on
SSE, R2, and the explanatory power of the model. Collinearity increases the variance of the β̂ js,
making the estimates of the parameters less reliable. Depending on circumstances, sometimes
a large amount of collinearity can have an effect on predictions. Just by chance one may get a
better fit to the data than can be justified scientifically.

At its worst, collinearity involves near redundancies among the predictor variables. An exact
redundancy among the predictor variables occurs when we can find a p vector d 6= 0 so that Xd = 0.
When this happens the rank of X is not p, so we cannot find (X ′X)−1 and we cannot find the es-
timates of β in Proposition 15.3.1. Near redundancies occur when we can find a vector d that is
not too small, say with d′d = 1, having Xd .

= 0. Principal components (PC) regression is a method
designed to identify near redundancies among the predictor variables. Having identified near re-
dundancies, they can be eliminated if we so choose. In Section 13.7 we mentioned that having
small collinearity requires more than having small correlations among all the predictor variables,
it requires all partial correlations among the predictor variables to be small as well. For this rea-
son, eliminating near redundancies cannot always be accomplished by simply dropping well chosen
predictor variables from the model.

The basic idea of principal components is to find new variables that are linear combinations
of the x js and that are best able to (linearly) predict the entire set of x js, see Christensen (1990a,
chapter III). Thus the first principal component variable is the one linear combination of the x js
that is best able to predict all of the x js. The second principal component variable is the linear
combination of the x js that is best able to predict all the x js among those linear combinations having
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Table 15.1: Eigen analysis of the correlation matrix

Eigenvalue 2.8368 1.3951 0.4966 0.2025 0.0689
Proportion 0.567 0.279 0.099 0.041 0.014
Cumulative 0.567 0.846 0.946 0.986 1.000

Table 15.2: Principal component variable coefficients

Variable PC1 PC2 PC3 PC4 PC5
x1 −0.229 −0.651 0.723 0.018 −0.024
x2 −0.555 0.216 0.051 −0.334 0.729
x3 −0.545 0.099 −0.106 0.823 −0.060
x4 −0.170 −0.701 −0.680 −0.110 0.075
x5 −0.559 0.169 −0.037 −0.445 −0.678

a sample correlation of 0 with the first principal component variable. The third principal component
variable is the best predictor that has sample correlations of 0 with the first two principal component
variables. The remaining principal components are defined similarly. With p−1 predictor variables,
there are p−1 principal component variables. The full collection of principal component variables
always predicts the full collection of x js perfectly. The last few principal component variables are
least able to predict the original x j variables, so they are the least useful. They are also the aspects
of the predictor variables that are most redundant, see Christensen (1987, section XIV.5). The best
(linear) predictors used in defining principal components can be based on either the covariances
between the x js or the correlations between the x js. Unless the x js are measured on the same scale
(with similarly sized measurements), it is generally best to use principal components defined using
the correlations.

For The Coleman Report data, a matrix of sample correlations between the x js was given in
Example 13.7.1. Principal components are derived from the eigenvalues and eigenvectors of this
matrix. (Alternatively, one could use eigenvalues and eigenvectors of the matrix of sample covari-
ances.) An eigenvector corresponding to the largest eigenvalue determines the first principal com-
ponent variable. The eigenvalues are given in Table 15.1 along with proportions and cumulative
proportions.

The proportions in Table 15.1 are simply the eigenvalues divided by the sum of the eigenvalues.
The cumulative proportions are the sum of the first group of eigenvalues divided by the sum of all
the eigenvalues. In this example, the sum of the eigenvalues is

5 = 2.8368+1.3951+0.4966+0.2025+0.0689.

The sum of the eigenvalues must equal the sum of the diagonal elements of the original matrix.
The sum of the diagonal elements of a correlation matrix is the number of variables in the matrix.
The third eigenvalue in Table 15.1 is .4966. The proportion is .4966/5 = .099. The cumulative
proportion is (2.8368+1.3951+ .4966)/5 = .946. With an eigenvalue proportion of 9.9%, the third
principal component variable accounts for 9.9% of the variance associated with predicting the x js.
Taken together, the first three principal components account for 94.6% of the variance associated
with predicting the x js because the third cumulative eigenvalue proportion is .946.

For the school data, the principal component (PC) variables are determined by the coefficients
in Table 15.2. The first principal component variable is

PC1i =−0.229(xi1− x̄·1)/s1−0.555(xi2− x̄·2)/s2

−0.545(xi3− x̄·3)/s3−0.170(xi4− x̄·5)/s4−0.559(xi5− x̄·5)/s5 (15.6.1)

for i = 1, . . . ,20 where s1 is the sample standard deviation of the xi1s, etc. The columns of coeffi-
cients given in Table 15.2 are actually eigenvectors for the correlation matrix of the x js. The PC1
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Table 15.3: Regression analysis on principal component scores

Predictor γ̂ SE(γ̂) t P
Constant 35.0825 0.4638 75.64 0.000
PC1 −2.9419 0.2825 −10.41 0.000
PC2 0.0827 0.4029 0.21 0.840
PC3 −2.0457 0.6753 −3.03 0.009
PC4 4.380 1.057 4.14 0.001
PC5 1.433 1.812 0.79 0.442

Table 15.4: Analysis of variance for regression on principal component scores

Source d f SS MS F P
Regression 5 582.69 116.54 27.08 0.000
Error 14 60.24 4.30
Total 19 642.92

coefficients are an eigenvector corresponding to the largest eigenvalue, the PC2 coefficients are an
eigenvector corresponding to the second largest eigenvalue, etc.

We can now perform a regression on the new principal component variables. The estimates,
standard errors, and t tests are given in Table 15.3. The analysis of variance is given in Table 15.4.
The value of R2 is .906. The analysis of variance table and R2 are identical to those for the original
predictor variables given in Section 13.1. The plot of standardized residuals versus predicted values
from the principal component regression is given in Figure 15.1. This is identical to the plot given
in Figure 14.2 for the original variables. All of the predicted values and all of the standardized
residuals are identical.

Since Table 15.4 and Figure 15.1 are unchanged, any usefulness associated with principal
component regression must come from Table 15.3. The principal component variables display no
collinearity. Thus, contrary to the warnings given earlier about the effects of collinearity, we can
make final conclusions about the importance of variables directly from Table 15.3. We do not have
to worry about fitting one model after another or about which variables are included in which mod-
els. From examining Table 15.3, it is clear that the important variables are PC1, PC3, and PC4. We
can construct a reduced model with these three; the estimated regression surface is simply

ŷ = 35.0825−2.9419(PC1)−2.0457(PC3)+4.380(PC4). (15.6.2)

In equation (15.6.2), we merely used the estimated regression coefficients from Table 15.3. Refitting
the reduced model is unnecessary because there is no collinearity.

To get predictions for a new set of x js, just compute the corresponding PC1, PC3, and PC4
variables using formulae similar to those in equation (15.6.1) and make the predictions using the
fitted model in equation (15.6.2). When using equations like (15.6.1) to obtain new values of the
principal component variables, continue to use the x̄· js and s js computed from only the original
observations.

As an alternative to this prediction procedure, we could use the definitions of the principal
component variables, e.g., equation (15.6.1), and substitute for PC1, PC3, and PC4 in equation
(15.6.2) to obtain estimated coefficients on the original x j variables.

ŷ = 35.0825+[−2.9419,−2.0457,4.380]

PC1
PC3
PC4


= 35.0825+[−2.9419,−2.0457,4.380]×
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Figure 15.1: Standardized residuals versus predicted values for principal component regression.

−0.229 −0.555 −0.545 −0.170 −0.559
0.723 0.051 −0.106 −0.680 −0.037
0.018 −0.334 0.823 −0.110 −0.445



(x1− x̄·1)/s1
(x2− x̄·2)/s2
(x3− x̄·3)/s3
(x4− x̄·4)/s4
(x5− x̄·5)/s5


= 35.0825+[−0.72651,0.06550,5.42492,1.40940,−0.22889]×

(x1−2.731)/0.454
(x2−40.91)/25.90
(x3−3.14)/9.63
(x4−25.069)/1.314
(x5−6.255)/0.654

 .

Obviously this can be simplified into a form ŷ = 35.0825+ β̃1x1+ β̃2x2+ β̃3x3+ β̃4x4+ β̃5x5, which
in turn simplifies the process of making predictions and provides new estimated regression coeffi-
cients for the x js that correspond to the fitted principal component model. These PC regression esti-
mates of the original β js can be compared to the least squares estimates. Many computer programs
for performing PC regression report these estimates of the β js and their corresponding standard
errors.

It was mentioned earlier that collinearity tends to increase the variance of regression coeffi-
cients. The fact that the later principal component variables are more nearly redundant is reflected
in Table 15.3 by the fact that the standard errors for their estimated regression coefficients increase.

One rationale for using PC regression is that you just don’t believe in using nearly redundant
variables. The exact nature of such variables can be changed radically by small errors in the x js. For
this reason, one might choose to ignore PC5 because of its small eigenvalue proportion, regardless
of any importance it may display in Table 15.3. If the t statistic for PC5 appeared to be significant,
it could be written off as a chance occurrence or, perhaps more to the point, as something that is un-
likely to be reproducible. If you don’t believe redundant variables, i.e., if you don’t believe that they
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are themselves reproducible, any predictive ability due to such variables will not be reproducible
either.

When considering PC5, the case is pretty clear. PC5 accounts for only about 1.5% of the vari-
ability involved in predicting the x js. It is a very poorly defined aspect of the predictor variables
x j and, anyway, it is not a significant predictor of y. The case is less clear when considering PC4.
This variable has a significant effect for explaining y, but it accounts for only 4% of the variability
in predicting the x js, so PC4 is reasonably redundant within the x js. If this variable is measuring
some reproducible aspect of the original x j data, it should be included in the regression. If it is not
reproducible, it should not be included. From examining the PC4 coefficients in Table 15.2, we see
that PC4 is roughly the average of the percent white collar fathers x2 and the mothers’ education
x5 contrasted with the socio- economic variable x3. (Actually, this comparison is between the vari-
ables after they have been adjusted for their means and standard deviation as in equation (15.6.1).)
If PC4 strikes the investigator as a meaningful, reproducible variable, it should be included in the
regression.

In our discussion, we have used PC regression both to eliminate questionable aspects of the
predictor variables and as a method for selecting a reduced model. We dropped PC5 primarily
because it was poorly defined. We dropped PC2 solely because it was not a significant predictor.
Some people might argue against this second use of PC regression and choose to take a model based
on PC1, PC2, PC3, and possibly PC4.

On occasion, PC regression is based on the sample covariance matrix of the x js rather than the
sample correlation matrix. Again, eigenvalues and eigenvectors are used, but in using relationships
like equation (15.6.1), the s js are deleted. The eigenvalues and eigenvectors for the covariance ma-
trix typically differ from those for the correlation matrix. The relationship between estimated prin-
cipal component regression coefficients and original least squares regression coefficient estimates
is somewhat simpler when using the covariance matrix.

It should be noted that PC regression is just as sensitive to violations of the assumptions as reg-
ular multiple regression. Outliers and high leverage points can be very influential in determining
the results of the procedure. Tests and confidence intervals rely on the independence, homoscedas-
ticity, and normality assumptions. Recall that in the full principal components regression model,
the residuals and predicted values are identical to those from the regression on the original predic-
tor variables. Moreover, highly influential points in the original predictor variables typically have a
large influence on the coefficients in the principal component variables.

Minitab commands

Minitab commands for the principal components regression analysis are given below. The basic
command is ‘pca.’ The ‘scores’ subcommand places the principal component variables into columns
c12 through c16. The ‘coef’ subcommand places the eigenvectors into columns c22 through c26. If
one wishes to define principal components using the covariances rather than the correlations, simply
include a pca subcommand with the word ‘covariance.’
MTB > pca c2-c6;

SUBC> scores c12-c16;

SUBC> coef c22-c26.

MTB > regress c8 on 5 c12-c16 c17 c18

MTB > plot c17 c18

15.7 Weighted least squares

In general, weighted regression is a method for dealing with observations that have nonconstant
variances and nonzero correlations. In this section, we deal with the simplest form of weighted
regression in which we continue to assume zero correlations between observations. This is the form
used for logistic regression in Section 8.7.
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Our standard regression model has

Y = Xβ + e, E(e) = 0, Cov(e) = σ
2I.

We now consider a model for data that do not all have the same variance. In this model, we assume
that the relative sizes of the variances are known but that the variances themselves are unknown.
In this simplest form of weighted regression, we have a covariance structure that changes from
Cov(e) = σ2I to Cov(e) = σ2D(w)−1. Here D(w) is a diagonal matrix with known weights w =
(w1, . . . ,wn)

′ along the diagonal. The covariance matrix involves D(w)−1, which is just a diagonal
matrix having diagonal entries that are 1/w1, . . . ,1/wn. The variance of an observation yi is σ2/wi.
If wi is large relative to the other weights, the relative variance of yi is small, so it contains more
information than other observations and we should place more weight on it. Conversely, if wi is
relatively small, the variance of yi is large, so it contains little information and we should place little
weight on it. For all cases, wi is a measure of how much relative weight should be placed on case i.
Note that the weights are relative, so we could multiply or divide them all by a constant and obtain
essentially the same analysis. Obviously, in standard regression the weights are all taken to be 1.

In matrix form, our new model is

Y = Xβ + e, E(e) = 0, Cov(e) = σ
2D(w)−1. (15.7.1)

In this model all the observations are uncorrelated because the covariance matrix is diagonal. We
do not know the variance of any observation because σ2 is unknown. However, we do know the
relative sizes of the variances because we know the weights wi. It should be noted that when model
(15.7.1) is used to make predictions, it is necessary to specify weights for any future observations.

Before giving a general discussion of weighted regression models, we examine some examples
of their application. A natural application of weighted regression is to data for a one-way analysis
of variance with treatments that are quantitative levels of some factor. With a quantitative factor, we
can perform either a one-way ANOVA or a regression on the data. However, if for some reason the
full data are not available, we can still obtain an appropriate simple linear regression by performing
a weighted regression analysis on the treatment means. The next examples explore the relationships
between regression on the full data and weighted regression on the treatment means.

In the weighted regression, the weights turn out to be the treatment group sample sizes from
the ANOVA. In a standard unbalanced ANOVA yi j = µi +εi j, i = 1, . . . ,a, j = 1, . . . ,Ni, the sample
means have Var(ȳi·) = σ2/Ni. Thus, if we perform a regression on the means, the observations
have different variances. In particular, from our earlier discussion of variances and weights, it is
appropriate to take the sample sizes as the weights, i.e., wi = Ni.

EXAMPLE 15.7.1. In Section 7.12 we considered data on the ASI indices given in Table 7.10. A
simple linear regression on the full data gives the following results for the parameters.

Predictor β̂k SE(β̂k) t P
Constant 285.30 15.96 17.88 0.000
x (plates) 12.361 1.881 6.57 0.000

The analysis of variance table for the simple linear regression is given below. The usual error line
would have 33 degrees of freedom but, as in Section 7.12, we have broken this into two components,
one for lack of fit and one for pure error.

Source d f SS MS
Regression 1 42780 42780
Lack of fit 3 1212 404
Pure error 30 31475 1049
Total 34 75468
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In Section 7.12 we also considered these data as a one-way ANOVA. As such, we examined the
sample sizes and sample means given below.

Plate 4 6 8 10 12
N 7 7 7 7 7
ȳi· 333.2143 368.0571 375.1286 407.3571 437.1714

Of course in Section 7.12 we also used the sample variances from each group in obtaining an error
term.

As mentioned in Section 7.12, one can get the same estimated line by just fitting a simple linear
regression to the means. For an unbalanced ANOVA, getting the correct regression line from the
means requires a weighted regression. In this balanced case, if we use a weighted regression we get
not only the same fitted line but also some interesting relationships in the ANOVA tables. Below are
given the parameter estimate table and the ANOVA table for the weighted regression on the means.
The weights are the sample sizes for each mean.

Predictor β̂k SE(β̂k) t P
Constant 285.30 10.19 27.99 0.000
x (plates) 12.361 1.201 10.29 0.002

Analysis of variance: weighted simple linear regression
Source d f SS MS F P
Regression 1 42780 42780 105.88 0.002
Error 3 1212 404
Total 4 43993

Note that the estimated regression coefficients are identical to those given earlier. The standard errors
and thus the other entries in the parameter estimate table differ. In the ANOVA tables, the regression
lines agree while the error line from the weighted regression is identical to the lack of fit line in the
ANOVA table for the full data. In the weighted regression, all standard errors use the lack of fit
as an estimate of the variance. In the regression on the full data, the standard errors use a variance
estimate obtained from pooling the lack of fit and the pure error. The ultimate point is that by using
weighted regression on the summarized data, we can still get most relevant summary statistics for
simple linear regression. Of course, this assumes that the simple linear regression model is correct,
and unfortunately the weighted regression does not allow us to test for lack of fit.

If we had taken all the weights to be one, i.e., if we had performed a standard regression on the
means, the parameter estimate table would be the same but the ANOVA table would not display the
identities discussed above. The sums of squares would all have been off by a factor of 7. 2

Minitab commands

To get the weighted regression from Minitab, suppose that c1 contains the plate lengths, c2 contains
the sample sizes, and c3 contains the means. The commands are as follows:

MTB > regress c3 on 1 c1;

SUBC> weights c2.

A complete set of commands for generating an analysis such as this are given for the next example.

Unbalanced weights

We now examine an unbalanced one-way ANOVA and again compare a simple linear regression
including identification of pure error and lack of fit to a weighted regression on sample means.

EXAMPLE 15.7.2. Consider the data of Exercise 7.13.1 and Table 7.14. These involve ages of
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truck tractors and the costs of maintaining the tractors. The analysis on the full data yields the tables
given below.

Predictor β̂k SE(β̂k) t P
Constant 323.6 146.9 2.20 0.044
Age 131.72 35.61 3.70 0.002

Source d f SS MS
Regression 1 1099635 1099635
Lack of fit 5 520655 104131
Pure error 10 684752 68475
Total 16 2305042

The weighted regression analysis is based on the sample means and sample sizes given below.
The means serve as the y variable, the ages are the x variable, and the sample sizes are the weights.

Age 0.5 1.0 4.0 4.5 5.0 5.5 6.0
Ni 2 3 3 3 3 1 2
ȳi· 172.5 664.3 633.0 900.3 1202.0 987.0 1068.5

The estimates and ANOVA table for the weighted regression are given below.

Predictor β̂k SE(β̂k) t P
Constant 323.6 167.3 1.93 0.111
Age 131.72 40.53 3.25 0.023

Analysis of variance: weighted simple linear regression
Source d f SS MS F P
Regression 1 1099635 1099635 10.56 0.023
Error 5 520655 104131
Total 6 1620290

Note that, as in the previous example, the regression estimates agree with those from the full data,
that the regression sum of squares from the ANOVA table agrees with the full data, and that the
lack of fit line from the full data ANOVA agrees with the error line from the weighted regression.
For an unbalanced ANOVA, you cannot obtain a correct simple linear regression analysis from the
treatment means without using weighted regression. 2

Minitab commands

The Minitab commands for this analysis are given below. To obtain pure error and lack of fit from
the full data one fits both the simple linear regression and the one-way ANOVA. The ages from
Table 7.14 are in c1 and the costs are in c2.

MTB > regress c2 on 1 c1

MTB > note THE AGES IN c1 ARE NOT INTEGERS, SO WE

MTB > note MULTIPLY THEM BY TWO TO MAKE INTEGER

MTB > note GROUP LABELS FOR THE ONE-WAY

MTB > let c3=2*c1

MTB > oneway c2 c3

MTB > note PUT THE MEANS FROM THE ONE-WAY INTO c6, THE

MTB > note AGES INTO c7, AND THE SAMPLE SIZES INTO c8.

MTB > set c6

DATA> 172.5 664.333333 633 900.3333333 1202 987 1068.5

DATA> set c7
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DATA> .5 1 4 4.5 5 5.5 6

DATA> end

MTB > set c8

DATA> 2 3 3 3 3 1 2

DATA> end

MTB > note DO THE WEIGHTED REGRESSION

MTB > regress c6 on 1 c7;

SUBC> weight c8.

Theory

The analysis of the weighted regression model (15.7.1) is based on changing it into a standard
regression model. The trick is to create a new diagonal matrix that has entries

√
wi. In a minor abuse

of notation, we write this matrix as D(
√

w). We now multiply model (15.7.1) by this matrix to obtain

D(
√

w)Y = D(
√

w)Xβ +D(
√

w)e. (15.7.2)

It is not difficult to see that

E
(
D(
√

w)e
)
= D(

√
w)E(e) = D(

√
w)0 = 0

and
Cov

(
D(
√

w)e
)
= D(

√
w)Cov(e)D(

√
w)′ = D(

√
w)
[
σ

2D(w)−1]D(
√

w) = σ
2I.

Thus equation (15.7.2) defines a standard regression model. For example, by Proposition 15.3.1 the
least squares regression estimates from model (15.7.2) are

β̂ =
(
[D(
√

w)X ]′[D(
√

w)X ]
)−1

[D(
√

w)X ]′[D(
√

w)Y ]

= (X ′D(w)X)−1X ′D(w)Y.

The estimate of β given above is referred to as a weighted least squares estimate because rather than
minimizing [Y −Xβ ]

′
[Y −Xβ ], the estimates are obtained by minimizing[

D(
√

w)Y −D(
√

w)Xβ
]′ [

D(
√

w)Y −D(
√

w)Xβ
]
= [Y −Xβ ]

′D(w) [Y −Xβ ] .

Thus the original minimization problem has been changed into a similar minimization problem that
incorporates the weights. The sum of squares for error from model (15.7.2) is

SSE =
[
D(
√

w)Y −D(
√

w)X β̂

]′ [
D(
√

w)Y −D(
√

w)X β̂

]
=
[
Y −X β̂

]′
D(w)

[
Y −X β̂

]
.

The d fE are unchanged from a standard model and MSE is simply SSE divided by d fE. Standard
errors are found in much the same manner as usual except now

Cov
(

β̂

)
= σ

2(X ′D(w)X)−1.

Because the D(w) matrix is diagonal, it is very simple to modify a computer program for stan-
dard regression to allow the analysis of models like (15.7.1). Of course to make a prediction, a
weight must now be specified for the new observation. Essentially the same idea of rewriting model
(15.7.1) as the standard regression model (15.7.2) works even when D(w) is not a diagonal matrix,
cf. Christensen (1987, sections II.7 and III.8).

In Section 8.7 we used weighted regression to analyze binomial data. We used observed pro-
portions p̂i to define a dependent variable log[p̂i/(1− p̂i)] and we used weights wi = Ni p̂i(1− p̂i).
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Here Ni is the number of trials involved in the ith binomial. In this application, the weights are func-
tions of the data, whereas in the previous discussion the weights were fixed. Ideally, the weights
for binomial regression would be the fixed quantities Ni pi(1− pi), but there is no hope of knowing
these weights, so we estimate them and rely on the law of large numbers. The example in Sec-
tion 8.7 involved only one predictor variable, but exactly the same methods apply when more than
one predictor variable is available. However, as suggested in Section 8.7, it is probably better to use
maximum likelihood methods to analyze binomial data than these weighted regression methods.

15.8 Exercises

EXERCISE 15.8.1. Show that the form (15.3.2) simplifies to the form (15.3.1) for simple linear
regression.

EXERCISE 15.8.2. Show that Cov(Y ) = E[(Y −µ)(Y −µ)′].

EXERCISE 15.8.3. Use Proposition 1.2.11 to show that E(AY + c) = AE(Y )+ c and Cov(AY +
c) = ACov(Y )A′.

EXERCISE 15.8.4. Using eigenvalues, discuss the level of collinearity in:

(a) the Younger data from Exercise 13.8.1,
(b) the Prater data from Exercise 13.8.3,
(c) the Chapman data of Exercise 13.8.4,
(d) the pollution data from Exercise 13.8.5,
(e) the body fat data of Exercise 13.8.6.

EXERCISE 15.8.5. Do a principal components regression for the Younger data from Exer-
cise 13.8.1.

EXERCISE 15.8.6. Do a principal components regression for the Prater data from Exer-
cise 13.8.3.

EXERCISE 15.8.7. Do a principal components regression for the Chapman data of Exer-
cise 13.8.4.

EXERCISE 15.8.8. Do a principal components regression on for the pollution data of Exer-
cise 13.8.5.

EXERCISE 15.8.9. Do a principal components regression on for the body fat data of Exer-
cise 13.8.6.





Chapter 16

Unbalanced multifactor analysis of variance

Multifactor unbalanced analysis of variance models are typically not amenable to analysis by hand
calculations unless the models are equivalent to a one-way ANOVA model. In general, these models
need to be treated with methods similar to multiple regression. In particular, tests are based on
model comparisons and the order in which effects are fitted can be important. In this chapter we
discuss general cases of analysis of variance with unequal numbers of observations on the treatment
combinations and some special cases in which relatively simple calculations can be made.

16.1 Unbalanced two-way analysis of variance

Unbalanced two-way analysis of variance situations can be divided into two categories: proportional
numbers in which a simple analysis can still be obtained and the general case in which methods
similar to regression analysis must be used. This section involves a lot of model comparisons, so for
simplicity, equations such as (16.1.1) are referred to simply as (1).

16.1.1 Proportional numbers

Consider a randomized complete block design where one of the treatments is a standard treatment,
e.g., a placebo or control. In such a situation, interest often focuses on comparing each of the other
treatments to the standard. If the analysis is to focus on the standard treatment, it may be wise to
include extra observations on the standard treatment. For example, with four treatments including
the standard, it might be wise to have blocks of five units where two experimental units are randomly
chosen to receive the standard treatment, while the other treatments are randomly assigned to the
other units. This procedure destroys the balance in the usual randomized complete block design but
if all the blocks are handled similarly, a simple analysis can still be salvaged. In general situations
with unequal numbers of observations on the treatments, a simple analysis is just not possible.

The experiment described in the previous paragraph is a special case of a two-way ANOVA with
proportional numbers. Suppose there are a levels of the first factor and b levels of the second and
suppose there are Ni j observations on the i, j treatment combination. The Ni j numbers are said to be
proportional if for any pair i = 1, . . . ,a and j = 1, . . . ,b,

Ni j =
Ni·N· j

N··
. (16.1.1)

Here

Ni· =
b

∑
j=1

Ni j, N· j =
a

∑
i=1

Ni j, N·· =
a

∑
i=1

b

∑
j=1

Ni j .

In any two-way ANOVA with proportional numbers, the analysis is analogous to a balanced two-
way ANOVA. If there is interaction, treat the problem as a large one-way ANOVA. If there is
no interaction, examine the main effects separately. Contrasts and the sums of squares for each
factor are simply computed as in a one-way analysis of variance, ignoring the other factor. The only
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difference is that there are, for example, Ni· observations on the ith level of the first factor. These
values differ from level to level, so the one-way ANOVA on the first factor is a one-way ANOVA
with unequal numbers. Similarly, the one-way ANOVA on the second factor is also a one-way with
unequal numbers, the N· js being the numbers of observations on group j.

Return now to the idea of taking extra observations on a standard treatment in a blocking design.
Suppose that there are a treatments and b blocks with the first treatment applied to N experimental
units in each block and the other treatments applied to one unit in each block. To show that the
numbers are proportional, observe that the number of observations on treatment i in block j is

Ni j =
{N if i = 1

1 otherwise
.

The number of observations on treatment i is

Ni· =
{

bN if i = 1
b otherwise

.

The number of observations in block j is

N· j = N +(a−1).

The total number of observations is

N·· = b[N +(a−1)].

For i = 1, equation (1) becomes N = (bN)[N + (a− 1)]/b[N + (a− 1)], and for i 6= 1, equation
(1) becomes 1 = b[N +(a− 1)]/b[N +(a− 1)]. Thus the sum of squares for blocks can be com-
puted simply from the block means as in a balanced one-way ANOVA and the sum of squares for
treatments can be computed from the treatment means as in an unbalanced one-way ANOVA. The
standard treatment has more observations on it than the other treatments, so an unbalanced one-way
analysis of the treatment means is required.

Minitab’s ‘ancova’ and ‘glm’ commands can be used to analyze proportional numbers ANOVAs.

16.1.2 General case

If the Ni js are not proportional, the analysis proceeds by fitting various models. We illustrate with
an example.

Bailey (1953), Scheffé (1959), and Christensen (1987) examine data on infant female rats that
were given to foster mothers for nursing. The variable of interest is the weight of the rat at 28 days.
Weights were measured in grams. A subset of the data is given in Table 16.1. There are four groups:
rats with genotype F were given to foster mothers of genotype A, rats with genotype F were given to
foster mothers of genotype J, rats with genotype I were given to foster mothers of genotype A, and
rats with genotype I were given to foster mothers of genotype J. The astute reader will recognize the
groups as having factorial treatment structure and this will be exploited as the example progresses.

As a first step, we wish to establish whether the data display interaction. We begin by fitting the
model with interaction.

yi jk = µi j + εi jk

= µ +αi +η j + γi j + εi jk, (16.1.2)

εi js independent N(0,σ2)

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j. Using model (2) we have the sample sizes N11 = 4, N12 = 3,
N21 = 2, N22 = 3. We also fit the model with no interaction:

yi jk = µ +αi +η j + εi jk, εi js independent N(0,σ2) (16.1.3)
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Table 16.1: Infant rats weight gains with foster mothers

Genotype of Genotype of litter
foster mother F I

48.0 68.0
A 49.3 36.3

51.7 37.0
60.3
40.5 54.5

J 51.3 42.8
50.2

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j. In the context of our example, the αis are mother effects and
the η js are litter effects.

We wish to evaluate how well model (3) fits as compared to model (2). A measure of how well
any model fits is the sum of squared errors. Since the no interaction model (3) is a special case of
the interaction model (2), the error from model (3) must be at least as great as the error from model
(2), i.e., SSE(3) ≥ SSE(2). However, if SSE(3) is much greater than SSE(2), it suggests that the
special case, model (3), is an inadequate substitute for the full model (2). In particular, large values
of SSE(3)−SSE(2) suggest that the reduced model (3) is inadequate to explain the data that were
explained by the full model (2). It can be established that if the reduced model is true,

SSE(3)−SSE(2)
d fE(3)−d fE(2)

is an estimate of σ2 and this is independent of the estimate of σ2 from the full model

SSE(2)
d fE(2)

.

A test of whether model (3) is an adequate substitute for model (2) rejects model (3) if

F =
[SSE(3)−SSE(2)]

/
[d fE(3)−d fE(2)]

SSE(2)
/

d fE(2)

is too large. The F statistic is compared to an F(d fE(3)−d fE(2),d fE(2)) distribution. When the
data are balanced, this is exactly the analysis of variance F test for no interaction that was discussed
in earlier chapters.

Table 16.2 gives two analysis of variance tables for the two-way ANOVA model with interaction.
In the first ANOVA table, mothers are fitted to the data before litters. In the second table, litters are
fitted before mothers. The rows for mother∗litter interaction are identical in both tables. The sum
of squares for mother∗litter interaction in the table is obtained by differencing the error sums of
squares for models (3) and (2). The F statistic is very small, less than 1, so there is no evidence of
interaction and we proceed with an analysis of model (3). In particular, we now examine the main
effects.

The effect of litters can measured in two ways. First, by comparing the no interaction model (3)
with a model that eliminates the effect for litters

yi jk = µ +αi + εi jk. (16.1.4)

The difference in the error sums of squares for these models is the sum of squares reported for
litters in the first of the two ANOVA tables in Table 16.2. Note that this model comparison assumes
that there is an effect for mothers because the αis are included in both models. The corresponding
F statistic is very small, so there is no evidence for differences in litters after accounting for any
differences due to mothers.



450 16. UNBALANCED MULTIFACTOR ANALYSIS OF VARIANCE

Table 16.2: Analyses of variance for rat weight gains

Source d f Seq SS MS F
Mothers 1 14.4 14.4 0.13
Litters 1 8.7 8.7 0.08
Mothers∗litters 1 50.9 50.9 0.47
Error 8 875.7 109.5
Total 11 949.7

Source d f Seq SS MS F
Litters 1 12.6 12.6 0.12
Mothers 1 10.5 10.5 0.10
Litters∗mothers 1 50.9 50.9 0.47
Error 8 875.7 109.5
Total 11 949.7

Alternatively, we could assume that there are no mother effects and base our evaluation of litter
effects on comparing the model with litter effects but no mother effects,

yi jk = µ +η j + εi jk, (16.1.5)

to the model that contains no treatment effects,

yi jk = µ + εi jk. (16.1.6)

The difference in the error sums of squares for these models is the sum of squares reported for
litters in the second of the two ANOVA tables in Table 16.2. Once again, the appropriate F statistic
is very small, so there is no evidence for differences in litters when ignoring any differences due to
mothers.

Similarly, the effect of mothers can be measured by comparing the no interaction model (3)
with model (5) that eliminates the effect for mothers. The difference in the error sums of squares
for these models is the sum of squares reported for mothers in the second of the two ANOVA tables
in Table 16.2. This model comparison assumes that there is an effect for litters because the η js are
included in both models. Additionally, we could assume that there are no litter effects and base our
evaluation of mother effects on comparing model (4) with model (6). The difference in the error
sums of squares for these models is the sum of squares reported for mothers in the first of the two
ANOVA tables in Table 16.2. Both of the corresponding F statistics are very small, so there is no
evidence of a mother effect whether accounting for or ignoring effects due to litters.

Table 16.2 results from doing model comparisons in two sequential fitting schemes. The first
ANOVA table results from fitting the sequence of models (6), (4), (3), (2). The second ANOVA
results from fitting (6), (5), (3), (2).

Generally, if there were an effect for mothers after accounting for litters and an effect for litters
after accounting for mothers, both mothers and litters would have to appear in the final model, i.e.,

yi jk = µ +αi +η j + εi jk,

because neither effect could be dropped.
If there were an effect for mothers after accounting for litters but no effect for litters after ac-

counting for mothers we could drop the effect of litters from the model. Then if the effect for mothers
was still apparent when litters were ignored, a final model

yi jk = µ +αi + εi jk

that includes mother effects but not litter effects would be appropriate. Similar reasoning with the
roles of mothers and litters reversed would lead one to the model

yi jk = µ +η j + εi jk.
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Table 16.3: Diagnostics for rat weight gains

Mother Litter y ŷ Leverage r t C
A F 48.0 52.325 0.25 −0.48 −0.45 0.019
A F 49.3 52.325 0.25 −0.33 −0.31 0.009
A F 51.7 52.325 0.25 −0.07 −0.06 0.000
A F 60.3 52.325 0.25 0.88 0.87 0.065
A I 68.0 47.100 0.33 2.45 4.56 0.748
A I 36.3 47.100 0.33 −1.26 −1.32 0.200
A I 37.0 47.100 0.33 −1.18 −1.22 0.175
J F 40.5 45.900 0.50 −0.73 −0.71 0.133
J F 51.3 45.900 0.50 0.73 0.71 0.133
J I 54.5 49.167 0.33 0.62 0.60 0.049
J I 42.8 49.167 0.33 −0.75 −0.72 0.069
J I 50.2 49.167 0.33 0.12 0.11 0.002

Unfortunately, with unequal numbers ANOVA, it is possible to get contradictory results. If there
were an effect for mothers after accounting for litters but no effect for litters after accounting for
mothers we could drop the effect of litters from the model and consider the model

yi jk = µ +αi + εi jk.

However, it is possible that in this model there may be no apparent effect for mothers (when litters
are ignored), so dropping mothers is suggested and we get the model

yi jk = µ + εi jk.

This model contradicts our first conclusion which was that there is an effect for mothers, albeit
one that only shows up after adjusting for litters. These issues are discussed more extensively in
Christensen (1987, section VII.5).

We return now to the analysis of the actual data in Table 16.1. It is necessary to consider the
validity of our assumptions. Table 16.3 contains many of the standard diagnostic statistics used in
regression analysis. The diagnostics are computed from the two-way with interaction model (2).
Model (2) is equivalent to a one-way ANOVA model, so the leverage of yi jk in Table 16.3 is just
1/Ni j.

Figures 16.1, 16.2, and 16.3 contain diagnostic plots. Figure 16.1 is a normal plot of the stan-
dardized residuals, Figure 16.2 is a plot of the standardized residuals versus the predicted values,
and Figure 16.3 is a plot of the Cook’s distances against case numbers. The plots identify one poten-
tial outlier. From Table 16.3 this is easily identified as the observed value of 68.0 for foster mother
A and litter I. This case has by far the largest standardized residual r, standardized deleted residual
t, and Cook’s distance C. We can test whether this case is consistent with the other data. The t resid-
ual of 4.56 has an unadjusted P value of .001. If we use a Bonferroni adjustment for having made
n = 12 tests, the P value is 12× .001 = .012. There is substantial evidence that this case does not
belong with the other data.

We now consider the results of an analysis with the outlier deleted. Table 16.4 contains two
ANOVA tables similar to those in Table 16.2. With the outlier deleted, the MSE has been reduced
to less than a third of its previous value. The P value for the interaction test is .031, which is
substantial evidence of interaction. In the face of such interaction, there is little point in pursuing
the main effects, rather we revert to thinking of this as a one-way ANOVA.

Diagnostics for the interaction model with the outlier deleted are given in Table 16.5. The lever-
ages are again 1/Ni j, so they are not reported, but note that the leverages for mother A, litter I
change because of the deletion of a case in that group. The standardized residuals, standardized
deleted residuals, and Cook’s distances look reasonable. The normal plot in Figure 16.4 looks toler-
able and the plot of r versus ŷ given in Figure 16.5 also looks reasonable except perhaps that there
is too little variability with mother A, litter I (the two smallest ŷ values).
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Figure 16.1: Normal plot, W ′ = 0.916.
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Figure 16.2: Standardized residuals versus predicted values.
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Figure 16.3: Cook’s distances versus observation number.

Table 16.4: Analysis of variance for rat weight gains with outlier deleted

Source d f Seq SS MS F P
Mothers 1 1.58 1.58 0.06
Litters 1 113.81 113.81 3.61
Mothers∗litters 1 226.60 226.60 7.20 0.031
Error 7 220.46 31.49
Total 10 562.45

Source d f Seq SS MS F P
Litters 1 98.95 98.95 3.14
Mothers 1 16.44 16.44 0.52
Litters∗mothers 1 226.60 226.60 7.20 0.031
Error 7 220.46 31.49
Total 10 562.45

Table 16.5: Diagnostics for rat weight gains, outlier deleted

Mother Litter y ŷ r t C
A F 48.0 52.325 −0.89 −0.87 0.07
A F 49.3 52.325 −0.62 −0.59 0.03
A F 51.7 52.325 −0.13 −0.12 0.00
A F 60.3 52.325 1.64 1.94 0.22
A I
A I 36.3 36.650 −0.09 −0.08 0.00
A I 37.0 36.650 0.09 0.08 0.00
J F 40.5 45.900 −1.36 −1.47 0.46
J F 51.3 45.900 1.36 1.47 0.46
J I 54.5 49.167 1.16 1.20 0.17
J I 42.8 49.167 −1.39 −1.51 0.24
J I 50.2 49.167 0.23 0.21 0.01
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Figure 16.4: Normal plot, outlier deleted, W ′ = 0.955.
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Table 16.6: Analysis of variance for rat weight gains with outlier deleted and three groups treated as one

Source d f SS MS F P
Mom-A, lit-I vs others 1 284.88 284.88 9.24 0.014
Error 9 277.57 30.84
Total 10 562.45

Glancing at the predicted values in Table 16.5, it seems that the predicted values are all quite
comparable except those from mother A and litter I. We proceed to test whether the other three
treatments have the same mean. Thinking of the two-way with interaction as a one-way ANOVA
with four treatments, we can construct a new one-way model with two treatments in which all
combinations except mother A and litter I are combined into a single common treatment. This
forms a reduced model relative to the one-way ANOVA with 4 treatments. The ANOVA table for
the reduced model is given in Table 16.6. The d fE, SSE, and MSE for the one-way with 4 treatments
come from Table 16.4. The F test for comparing the two models is

F =
(277.57−220.46)/(9−7)

31.49
= .91.

The F is small, so there is no evidence for any differences between the three groups other than
mother A, litter I. However, from the F test in Table 16.6, we see that there is substantial evidence
of a difference between mother A, litter I and the three other groups (although this is a test suggested
by the data).

With the outlier included, there is no evidence for any differences due to mothers or litters.
With the outlier deleted, the mother, litter combination that contained the outlier becomes the only
distinct treatment group. Since the deletion of the outlier for mother A, litter I was the direct cause
of establishing that mother A, litter I is different from the other treatments, I am very leery of this
conclusion. 2

An important application of general methods for analyzing unbalanced two-ways is the analysis
of randomized complete block designs with missing observations. Exercise 16.6.4 involves an RCB
design with a potential outlier. Analyzing the data after deleting the outlier involves analyzing an
unbalanced two-way ANOVA. Note, however, that in an RCB the treatments should be adjusted for
blocks but blocks should not be considered after adjusting for treatments. Block effects exist by
design and thus should always be adjusted for and never considered for elimination.

Minitab commands

Below are given Minitab commands for the initial analysis of variance on the rat data as contained
in Tables 16.2 and 16.3.
MTB > glm c1 = c2|c3;

SUBC> fits c5;

SUBC> sresid c6;

SUBC> cookd c7;

SUBC> hi c8;

SUBC> tresid c9.

MTB > glm c1 = c3|c2;

Minitab’s glm command reports both sequential and adjusted sums of squares for each effect. We
have reported and analyzed the sequential sums of squares. The adjusted sum of squares for a main
effect is the (sequential) sum of squares for fitting that main effect after the other main effect. To
delete the outlier in Minitab, just replace the 68.0 with an asterisk (∗) and repeat the commands
given above. Computing Table 16.6 requires constructing a new column of indices to identify the
two new treatments in the one-way ANOVA.
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16.2 Balanced incomplete block designs

Other than proportional numbers, the best behaved unbalanced two-way anova models are probably
those for balanced incomplete block (BIB) designs. In a balanced incomplete block design, the
blocks are incomplete; they do not contain every treatment in every block. Such designs are useful
when blocks need to be smaller than the number of treatments in order to maintain homogeneity of
the experimental material within the blocks. Balanced incomplete block designs are balanced in the
sense that every pair of treatments occurs together in the same block some fixed number of times,
say, λ .

Balanced incomplete block designs are not balanced in the same way that balanced ANOVAs
are balanced. In particular, BIBs are not sufficiently balanced to allow the analysis of blocks and
treatments to be performed as separate one-way ANOVAs. Typically, in a BIB the analysis of blocks
is conducted ignoring treatments and the analysis of treatments is conducted after adjusting for
blocks. This is the only order of fitting models that we need to consider. Blocks are designed to
have effects and these effects are of no intrinsic interest, so there is no reason to worry about fitting
treatments first and then examining blocks after adjusting for treatments. Blocks are nothing more
than an adjustment factor.

The virtue of the form of balance in a BIB is that the analysis of treatments after adjusting for
blocks can be based on methods analogous to one-way ANOVA by computing adjusted treatment
means and by using an adjusted (effective) number of observations on each treatment. The analysis
being discussed here is known as the intrablock analysis of a BIB; it is appropriate when the block
effects are viewed as fixed effects. If the block effects are viewed as random effects with mean 0,
there is an alternative analysis that is known as the recovery of interblock information. Cochran and
Cox (1957) discuss this analysis; we will not.

EXAMPLE 16.2.1. A simple balanced incomplete block design is given below for four treatments
A, B, C, D in four blocks of three units each.

Block Treatments
1 A B C
2 B C D
3 C D A
4 D A B

Note that every pair of treatments occurs together in the same block exactly λ = 2 times. Thus,
for example, the pair A, B occurs in blocks 1 and 4. There are b = 4 blocks each containing k = 3
experimental units. There are t = 4 treatments and each treatment is observed r = 3 times. 2

There are two relationships that must be satisfied by the numbers of blocks, b, units per block, k,
treatments, t, replications per treatment, r, and λ . Recall that λ is the number of times two treatments
occur together in a block. First, the total number of observations is the number of blocks times the
number of units per block, but the total number of observations is also the number of treatments
times the number of replications per treatment, thus

bk = rt.

The other key relationship in balanced incomplete block designs involves the number of compar-
isons that can be made between a given treatment and the other treatments within the same block.
Again, there are two ways to count this. The number of comparisons is the number of other treat-
ments, t − 1, multiplied by the number of times each other treatment is in the same block as the
given treatment, λ . Alternatively, the number of comparisons within blocks is the number of other
treatments within each block, k−1, times the number of blocks in which the given treatment occurs,
r. Thus we have

(t−1)λ = r(k−1).
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Table 16.7: Balanced incomplete block design investigating detergents; data are numbers of dishes washed

Block Treatment, Observation Mean

1 A, 19 B, 17 C, 11 15.6̄
2 D, 6 E, 26 F, 23 18.3̄
3 G, 21 H, 19 J, 28 22.6̄
4 A, 20 D, 7 G, 20 15.6̄
5 B, 17 E, 26 H, 19 20.6̄
6 C, 15 F, 23 J, 31 23.0̄
7 A, 20 E, 26 J, 31 25.6̄
8 B, 16 F, 23 G, 21 20.0̄
9 C, 13 D, 7 H, 20 13.3̄

10 A, 20 F, 24 H, 19 21.0̄
11 B, 17 D, 6 J, 29 17.3̄
12 C, 14 E, 24 G, 21 19.6̄

19.416̄

Table 16.8: Analysis of variance

Source d f Seq SS MS F P
Blocks 11 412.750 37.523 45.54 0.000
Trts 8 1086.815 135.852 164.85 0.000
Error 16 13.185 0.824
Total 35 1512.750

In Example 16.2.1, these relationships reduce to

(4)3 = 3(4)

and
(4−1)2 = 3(3−1).

The nice thing about balanced incomplete block designs is that the theory behind them works
out so simply that the computations can all be done on a hand calculator. I know, I did it once, see
Christensen (1987, section IX.4). But once was enough for this lifetime! We will rely on a computer
program to provide the more difficult computations and content ourselves with using the simple
structure of BIB designs to allow us to examine orthogonal contrasts. Examination of contrasts,
orthogonal or otherwise, is something that generally cannot be done easily in unbalanced two-way
ANOVAs. We illustrate the techniques with an example.

EXAMPLE 16.2.2. John (1961) reported data on the number of dishes washed prior to losing
the suds in the wash basin. Dishes were soiled in a standard way and washed one at a time. Three
operators and three basins were available for the experiment, so at any one time only three treatments
could be applied. Operators worked at the same speed, so no effect for operators was necessary nor
should there be any effect due to basins. Nine detergent treatments were evaluated in a balanced
incomplete block design. The treatments and numbers of dishes washed are given in Table 16.7.
There were b = 12 blocks with k = 3 units in each block. Each of the t = 9 treatments was replicated
r = 4 times. Each pair of treatments occurred together λ = 1 time. The three treatments assigned
to a block were randomly assigned to basins as were the operators. The blocks were run in random
order.

The analysis of variance is given in Table 16.8. Computation of the ANOVA table and the
adjusted means will be discussed later. The F test for treatment effects is clearly significant. We
now need to examine contrasts in the treatments.

The treatments were constructed with a structure that leads to interesting orthogonal contrasts.
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Table 16.9: Adjusted treatment means and orthogonal contrasts

Ctrl vs Det. Det. vs Det. vs
Treat. Adj. mean others I vs II Linear Quad. linear quad.
A 19.750 −1 1 −3 −1 −3 −1
B 17.194 −1 1 −1 1 −1 1
C 13.194 −1 1 1 1 1 1
D 6.528 −1 1 3 −1 3 −1
E 25.306 −1 −1 −3 −1 3 1
F 22.972 −1 −1 −1 1 1 −1
G 21.083 −1 −1 1 1 −1 −1
H 19.194 −1 −1 3 −1 −3 1
J 29.528 8 0 0 0 0 0

Est 91.003 −31.889 −63.891 3.665 −23.441 4.555
SS 345.06 381.34 306.15 5.04 41.21 7.78

Treatments A, B, C, and D all consisted of detergent I using, respectively, 3, 2, 1, and 0 doses of
an additive. Similarly, treatments E, F, G, and H used detergent II with 3, 2, 1, and 0 doses of the
additive. Treatment J was a control. Except for the control, the treatment structure is factorial in
detergents and levels of additive.

Table 16.9 gives the treatments, the adjusted treatment means, and a series of orthogonal con-
trasts in the treatments, along with the estimates and sums of squares for the contrasts. The adjusted
treatment means have been rounded off to three decimal places, so some slight numerical inaccu-
racies will result from their use. The contrasts chosen are essentially those used in the analysis of
a factorial experiment, except the first contrast compares the control to the other treatments. The
sum of squares for the first contrast is much larger than the MSE from Table 16.8. The second
contrast looks at the main effect for detergents; it compares detergent I with detergent II. Again,
there is a clear effect. In a factorial experiment, we would have three degrees of freedom for main
effects comparing the four levels of additive. These 3 degrees of freedom can be broken into linear,
quadratic, and cubic contrasts. The linear and quadratic contrasts are given in the table; these are
just the standard balanced ANOVA linear and quadratic contrasts for equally spaced levels given
in Appendix B.4. Each contrast is applied to both detergents. The cubic contrast will be considered
separately. With one degree of freedom for detergents and 3 degrees of freedom for additive levels,
there are 1×3 = 3 degrees of freedom for detergent–additive level interaction. Again, these can be
broken into contrasts: in particular, the detergent by linear contrast, the detergent by quadratic con-
trast, and the detergent by cubic contrast. The first two of these are given in the table, the detergent
by cubic contrast will be considered separately.

In balanced incomplete block designs, contrasts are orthogonal if and only if the contrasts would
be orthogonal in a standard balanced ANOVA. Estimates are computed for contrasts in the usual
way using the adjusted means. In other words, they are computed just as in a balanced one-way
analysis of variance treating the adjusted treatment means as the treatment means. Sums of squares
and standard errors for contrasts are computed in almost the same way, but in a balanced one-way
ANOVA the sample size for each treatment is N, while in a BIB this is replaced by an effective
sample size for the treatment, λ t/k. For example, treatment A is actually observed r = 4 times, but
because of the balanced incomplete block design, the effective sample size of the adjusted treatment
mean for A is

λ t
k

=
1(9)

3
= 3.

To illustrate, compare treatment A with the control, treatment J. The estimate is 19.750−29.528 =
−9.778, the standard error is √

MSE[12 +(−1)2]/3 = .741,
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Figure 16.6: Interaction plot of detergent data.

and the sum of squares for the comparison is

[−9.778]2

[12 +(−1)2]/3
= 143.41.

Similar computations give the sums of squares in Table 16.9.
We begin our examination of Table 16.9 by considering the missing cubic contrasts. SSTrt =

1086.815 with 8 degrees of freedom and adding the six orthogonal contrast sums of squares in
Table 16.9 gives 1086.58. That leaves 2 degrees of freedom, those for the cubic main effect and the
detergent by cubic interaction. The sum of squares for these 2 degrees of freedom are

1086.815−1086.58 = .24

where we have a small amount of rounding error perpetuated in the calculations. With a MSE of
.824, neither of these contrasts can be important because even if the sum of squares for one of them
is .24 and the other is 0, the larger sum of squares is still much smaller than the MSE.

We should now examine the sums of squares for the interaction contrasts. As we are fitting
polynomials, the initial interest is in the detergent by quadratic contrast. The F statistic for this
contrast is

F =
7.78
.824

= 9.44

so there is a clear interaction effect. Another way to think about this is that the t statistic for this
contrast has an absolute value of

√
9.44 = 3.07, which is very large. An interaction plot is given in

Figure 16.6. Our conclusion from these tests is that there is no evidence of any cubic effects but that
the quadratic curvature is different for detergent I than for detergent II. From the figure, there seems
to be very little quadratic curvature in detergent II.

An alternative to the contrasts in Table 16.9 is to fit a separate parabola for each detergent. Ap-
propriate contrasts are given in Table 16.10. Our earlier argument assures that we need not consider
cubic effects. The last contrast has a very small sum of squares, so there is no evidence of quadratic
curvature in detergent II, i.e., as far as we can tell there is at most a linear relationship between num-
bers of dishes washed and the amount of additive. The linear contrast has a large sum of squares for
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Table 16.10: Adjusted treatment means and contrasts

Ctrl vs Det. Det. I Det. I Det. II Det. II
Treat. Adj. mean others I vs II linear quad. linear quad.
A 19.750 −1 1 −3 −1 0 0
B 17.194 −1 1 −1 1 0 0
C 13.194 −1 1 1 1 0 0
D 6.528 −1 1 3 −1 0 0
E 25.306 −1 −1 0 0 −3 −1
F 22.972 −1 −1 0 0 −1 1
G 21.083 −1 −1 0 0 1 1
H 19.194 −1 −1 0 0 3 −1
J 29.528 8 0 0 0 0 0

Est 91.003 −31.889 −43.666 4.110 −20.225 −.445
SS 345.06 381.34 286.01 12.67 61.36 0.16
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Figure 16.7: Normal plot, W ′ = 0.953, dish data.

detergent II, so there is indeed a linear relationship. The quadratic contrast in detergent I has a large
sum of squares, so there is clear evidence of a quadratic curvature in the relationship between num-
bers of dishes washed and the amount of additive for detergent I. From inspection of the adjusted
treatment means or equivalently of the plots in Figure 16.6, suds last longer when there is more
additive (up to a triple dose). Detergent II works uniformly better than detergent I. The effect of a
dose of the additive is greater at low levels for detergent I than at high levels but the effect of a dose
is apparently steady for detergent II. The control is easily better than any of the new treatments.

As always, we need to evaluate our assumptions. Figures 16.7 and 16.8 contain a normal plot
and a plot of the residuals versus the predicted values. The normal plot looks less than thrilling but
is not too bad. The fifth percentile of W ′ for 36 observations is .940, whereas the observed value is
.953. Alternatively, the residuals have only 16 degrees of freedom and W ′(.95,16) = .886. The data
are counts, so a square root or log transformation might be appropriate, but we continue with the
current analysis. The plot of standardized residuals versus predicted values looks good.
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Figure 16.8: Standardized residuals versus predicted values, dishes.

Table 16.11 contains diagnostic statistics for the example. Note that the leverages are all iden-
tical. Some of the standardized deleted residuals (ts) are near 2 but none are so large as to indicate
an outlier. The Cook’s distances bring to one’s attention exactly the same points as the standardized
residuals and the ts. 2

Minitab commands

The analysis can be obtained from Minitab’s ‘glm’ command. Each variable has 36 entries. The
dependent variable is in c3. Variable c1 contains integers from 1 to 12 indicating blocks, c2 contains
integers from 1 to 9 indicating treatments. The pairing of these values is determined by Table 16.7.
The commands used are given below.

MTB > names c1 ’Blocks’ c2 ’Trts’ c3 ’y’

MTB > glm c3=c1 c2;

SUBC> means c1 c2;

SUBC> sresids c11;

SUBC> fits c12;

SUBC> tresid c13;

SUBC> hi c14;

SUBC> cookd c15.

None of the numbers obtained from the subcommand ‘means’ are simple averages. They are ‘ad-
justed means’; the adjusted block means will do us little good in this section, but the adjusted
treatment means can be used in almost the same way as treatment means in a balanced ANOVA.

Computing adjusted treatment means and the analysis of variance table

The lines for total and blocks in the analysis of variance table are computed just as in a one-way
ANOVA. In particular, the mean square for blocks is the sample variance of the block means times k,
the number of observations in each block. In the process of computing the mean square for blocks,
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Table 16.11: Diagnostics for the detergent data

Block Trt. y ŷ Leverage r t C
1 A 19 18.7 0.56 0.49 0.48 0.01
1 B 17 16.1 0.56 1.41 1.46 0.12
1 C 11 12.1 0.56 −1.90 −2.09 0.22
2 D 6 6.6 0.56 −0.98 −0.98 0.06
2 E 26 25.4 0.56 1.04 1.04 0.07
2 F 23 23.0 0.56 −0.06 −0.06 0.00
3 G 21 20.5 0.56 0.86 0.85 0.05
3 H 19 18.6 0.56 0.67 0.66 0.03
3 J 28 28.9 0.56 −1.53 −1.60 0.15
4 A 20 19.6 0.56 0.61 0.60 0.02
4 D 7 6.4 0.56 0.98 0.98 0.06
4 G 20 21.0 0.56 −1.59 −1.68 0.16
5 B 17 17.3 0.56 −0.49 −0.48 0.01
5 E 26 25.4 0.56 0.98 0.98 0.06
5 F 19 19.3 0.56 −0.49 −0.48 0.01
6 C 15 14.3 0.56 1.16 1.18 0.08
6 F 23 24.1 0.56 −1.77 −1.92 0.20
6 J 31 30.6 0.56 0.61 0.60 0.02
7 A 20 20.6 0.56 −0.92 −0.91 0.05
7 E 26 26.1 0.56 −0.18 −0.18 0.00
7 J 31 30.3 0.56 1.10 1.11 0.08
8 B 16 16.8 0.56 −1.29 −1.31 0.10
8 F 23 22.6 0.56 0.73 0.72 0.03
8 G 21 20.7 0.56 0.55 0.54 0.02
9 C 13 13.6 0.56 −0.92 −0.91 0.05
9 D 7 6.9 0.56 0.18 0.18 0.00
9 H 20 19.6 0.56 0.73 0.72 0.03

10 A 20 20.1 0.56 −0.18 −0.18 0.00
10 F 24 23.3 0.56 1.10 1.11 0.08
10 H 19 19.6 0.56 −0.92 −0.91 0.05
11 B 17 16.8 0.56 0.37 0.36 0.01
11 D 6 6.1 0.56 −0.18 −0.18 0.00
11 J 29 29.1 0.56 −0.18 −0.18 0.00
12 C 14 13.0 0.56 1.65 1.76 0.17
12 E 24 25.1 0.56 −1.84 −2.00 0.21
12 G 21 20.9 0.56 0.18 0.18 0.00

one must compute the grand mean of all of the observations. The grand mean is also used in finding
adjusted treatment means. For the example, the necessary means are given in Table 16.7.

To find an adjusted treatment mean, locate every block in which the treatment is observed.
From each block, compute the difference between the observation on the treatment and the block
mean. For treatment C in Table 16.7, these values are: block 1, 11− 15.6̄; block 6, 15− 23.0̄;
block 9, 13− 13.3̄; block 12, 14− 19.6̄. Add these numbers and divide by the effective number of
observations on a treatment, λ t/k. For treatment C in the example, this gives

1
1(9)/3

[
−4.6̄+(−8)+−0.3̄+(−5.6̄)

]
=−6.2̄.

The adjusted treatment mean is obtained by adding the grand mean to this value. In the example the
grand mean is 19.416̄, so the adjusted mean for treatment C is

−6.2̄+19.416̄ = 13.194̄.

In Table 16.9, this was rounded off to 13.194. The mean square for treatments (adjusted for blocks)
is the sample variance of the adjusted treatment means times the effective number of observations
on a treatment. The degrees of freedom for treatments is, as always, the number of treatments minus
one. 2
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Table 16.12: Balanced lattice design for 9 treatments

Block Block
1 A B C 7 A H F
2 D E F 8 D B I
3 G H I 9 G E C
4 A D G 10 A E I
5 B E H 11 G B F
6 C F I 12 D H C

Computing techniques

One difficulty with using computer programs for unbalanced analysis of variance is figuring out
what the program is giving you. In the previous section we discussed the fact that Minitab’s glm
command gives both sequential and adjusted sums of squares. Some programs provide as many as
four different sums of squares for each effect. I never use anything except the sequential sums of
squares but I frequently need to read the program’s manual to find out what it gives and how to get
what I want. Minitab’s glm command also has a subcommand to report means. These are adjusted
means, so for BIBs the mean reported for a treatment is not the mean of all of the observations that
have that treatment. Similarly for a block. I am not aware of any universally accepted definition for
the term ‘adjusted mean’, so I had to figure out what Minitab was reporting and how to use their
adjusted means. It turns out that Minitab’s adjusted means for BIB’s are very easy to use. The point,
however, is that if I was using a different program I would have to find out their definition of an
adjusted mean and how to use it. To do this well, you need to examine the method of calculation
and compare that to the methods given for this example. As an alternative, when using a program
other than Minitab, you might try reproducing the results of the data analysis given here. If you get
the same adjusted means as reported here, you are probably safe.

Special cases

Balanced lattice designs are BIBs with t = k2, r = k+ 1, and b = k(k+ 1). Table 16.12 gives an
example for k = 3. These designs can be viewed as k+ 1 squares in which each treatment occurs
once. Each row of a square is a block, each block contains k units, there are k rows in a square, so
all of the t = k2 treatments can appear in each square. To achieve a BIB, k+1 squares are required,
so there are r = k+ 1 replications of each treatment. With k+ 1 squares and k blocks (rows) per
square, there are b = k(k+1) blocks. The analysis follows the standard form for a BIB. In fact, the
design in Example 16.2.2 is a balanced lattice with k = 3.

Youden squares are a generalization of BIBs that allows a second form of blocking and a very
similar analysis. These designs are discussed in Section 16.4.

16.3 Unbalanced multifactor analysis of variance

The material of this section is essentially example 7.6.1 from Christensen (1987). Minor editorial
changes have been made. It is reprinted with the kind permission of Springer-Verlag.

Table 16.13 below is derived from Scheffé (1959) and gives the moisture content (in grams) for
samples of a food product made with three kinds of salt (A), three amounts of salt (B), and two
additives (C). The amounts of salt, as measured in moles, are equally spaced. The two numbers
listed for some treatment combinations are replications. We wish to analyze these data.

We will consider these data as a three-factor ANOVA. From the structure of the replications the
ANOVA has unequal numbers. The general model for a three-factor ANOVA with replications is

yi jkm = G+Ai +B j +Ck +[AB]i j +[AC]ik +[BC] jk +[ABC]i jk + ei jkm.
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Table 16.13: Moisture content of a food product

A (salt) 1 2 3
B (amount salt) 1 2 3 1 2 3 1 2 3

1 8 17 22 7 26 34 10 24 39
13 20 10 24 9 36

C (additive)
2 5 11 16 3 17 32 5 16 33

4 10 15 5 19 29 4 34

Table 16.14: Statistics for fitting models to the data of Table 16.13

Model SSE d fE F*
[ABC] 32.50 14
[AB][AC][BC] 39.40 18 .743
[AB][AC] 45.18 20 .910
[AB][BC] 40.46 20 .572
[AC][BC] 333.2 22 16.19
[AB][C] 45.75 22 .713
[AC][B] 346.8 24 13.54
[BC][A] 339.8 24 13.24
[A][B][C] 351.1 26 11.44

* The F statistics are for testing each model
against the model with a three-factor interaction, i.e., [ABC].

The denominator of each F statistic is MSE([ABC]) = 32.50/14 = 2.3214.

Our first priority is to find out which interactions are important. Table 16.14 contains the sum
of squares for error and the degrees of freedom for error for the ANOVA models that include all
of the main effects. Each model is identified in the table by the highest order terms in the model.
(For example, [AB][AC] indicates the model with only the [AB] and [AC] interactions. In [AB][AC],
the grand mean and all of the main effects are redundant; it does not matter whether these terms
are included in the model. Similarly, [AB][C] indicates the model with the [AB] interaction and the
C main effect. In [AB][C], the grand mean and the A and B main effects are redundant.) Readers
familiar with methods for fitting log-linear models (cf. Christensen, 1990b or Fienberg, 1980) will
notice a correspondence between Table 16.14 and similar displays used in fitting three-dimensional
contingency tables. The analogies between selecting log-linear models and selecting models for
unbalanced ANOVA are pervasive.

All of the models have been compared to the full model using F statistics in Table 16.14. It
takes neither a genius nor an F table to see that the only models that fit the data are the models
that include the [AB] interaction. There are a number of other model comparisons that can be made
among models that include [AB]. These are [AB][AC][BC] versus [AB][AC], [AB][AC][BC] versus
[AB][BC], [AB][AC][BC] versus [AB][C], [AB][AC] versus [AB][C], and [AB][BC] versus [AB][C]. None
of the comparisons show any lack of fit. The last two comparisons are illustrated below.

[AB][AC] versus [AB][C]

R(AC|AB,C) = 45.75−45.18 = 0.57

F = (0.57/2)/2.3214 = .123

[AB][BC] versus [AB][C]

R(BC|AB,C) = 45.75−40.46 = 5.29

F = (5.29/2)/2.3214 = 1.139
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Table 16.15: Additional statistics for fitting models to the data of Table 16.13

Model SSE d fE
[A0][A1][A2][C] 45.75 22
[A0][A1][C] 59.98 25
[A0][A1] 262.0 26
[A0][C] 3130. 28

Note that, by analogy to the commonly accepted practice for balanced ANOVAs, the denominator
in each test is MSE([ABC]), i.e., the estimate of pure error from the full model.

The smallest model that seems to fit the data adequately is [AB][C]. The F statistics for compar-
ing [AB][C] to the larger models are all extremely small. Writing out the model [AB][C], it is

yi jkm = G+Ai +B j +Ck +[AB]i j + ei jkm.

We need to examine the [AB] interaction. Since the levels of B are quantitative, a model that is equiv-
alent to [AB][C] is a model that includes the main effects for C, but, instead of fitting an interaction
in A and B, fits a separate regression equation in the levels of B for each level of A. Let x j, j = 1,2,3
denote the levels of B. There are three levels of B, so the most general polynomial we can fit is
a second-degree polynomial in x j. Since the levels of salt were equally spaced, it does not matter
much what we use for the x js. The computations were performed using x1 = 1, x2 = 2, x3 = 3. In
particular, the model [AB][C] was reparameterized as

yi jkm = Ai0 +Ai1x j +Ai2x2
j +Ck + ei jkm. (16.3.1)

With a notation similar to that used in Table 16.14, the SSE and the d fE are reported in Ta-
ble 16.15 for model (16.3.1) and three reduced models. Note that the SSE and d fE reported in
Table 16.15 for [A0][A1][A2][C] are identical to the values reported in Table 16.14 for [AB][C]. This,
of course, must be true if the models are merely reparameterizations of one another. First we want
to establish whether the quadratic effects are necessary in the regressions. To do this we test

[A0][A1][A2][C] versus [A0][A1][C]

R(A2|A1,A0,C) = 59.88−45.75 = 14.23

F = (14.23/3)/2.3214 = 2.04 .

Since F(.95,3,14) = 3.34, there is no evidence of any nonlinear effects.
At this point it might be of interest to test whether there are any linear effects. This is done by

testing [A0][A1][C] against [A0][C]. The statistics needed for this test are in Table 16.15. Instead of
actually doing the test, recall that no models in Table 16.14 fit the data unless they included the
[AB] interaction. If we eliminated the linear effects we would have a model that involved none of
the [AB] interaction. (The model [A0][C] is identical to the ANOVA model [A][C].) We already know
that such models do not fit.

Finally, we have never explored the possibility that there is no main effect for C. This can be
done by testing

[A0][A1][C] versus [A0][A1]

R(C|A1,A0) = 262.0−59.88 = 202

F = (202/1)/2.3214 = 87.

Obviously, there is a substantial main effect for C, the type of food additive.
Our conclusion is that the model [A0][A1][C] is the smallest model that has been considered that

adequately fits the data. This model indicates that there is an effect for the type of additive and a
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Table 16.16: Parameter estimates and standard errors for the model yi jkm = Ai0 +Ai1x j +Ck + ei jkm

Parameter Estimate SE
A10 3.35 1.375
A11 5.85 .5909
A20 −3.789 1.237
A21 13.24 .5909
A30 −4.967 1.231
A31 14.25 .5476
C1 0. none
C2 −5.067 .5522

Table 16.17 Parameter estimates and standard errors for the model yi jkm =Ai0+Ai1x j+Ck+ei jkm, A21 =A31,
A20 = A30

Parameter Estimate SE
A10 3.395 1.398
A11 5.845 .6008
A20 −4.466 .9030
A21 13.81 .4078
C1 0. none
C2 −5.130 .5602

linear relationship between amount of salt and moisture content. The slope and intercept of the line
may depend on the type of salt. (The intercept of the line also depends on the type of additive.)
Table 16.16 contains parameter estimates and standard errors for the model. All estimates in the
example use the side condition C1 = 0.

Note that, in lieu of the F test, the test for the main effect C could be performed by looking at
t =−5.067/.5522 =−9.176. Moreover, we should have t2 = F . The t statistic squared is 84, while
the F statistic reported earlier is 87. The difference is due to the fact that the SE reported uses the
MSE for the model being fitted, while in performing the F test we used the MSE([ABC]).

Are we done yet? No. The parameter estimates suggest some additional questions. Are the slopes
for salts 2 and 3 the same, i.e., is A21 = A31? In fact, are the entire lines for salts 2 and 3 the same,
i.e., are A21 = A31, A20 = A30? We can fit models that incorporate these assumptions.

Model SSE d fE
[A0][A1][C] 59.88 25
[A0][A1][C], A21 = A31 63.73 26
[A0][A1][C], A21 = A31, A20 = A30 66.97 27

It is a small matter to check that there is no lack of fit displayed by any of these models. The
smallest model that fits the data is now [A0][A1][C], A21 = A31, A20 = A30. Thus there seems to be
no difference between salts 2 and 3, but salt 1 has a different regression than the other two salts.
(We did not actually test whether salt 1 is different, but if salt 1 had the same slope as the other
two then there would be no interaction and we know that interaction exists.) There is also an effect
for the food additives. The parameter estimates and standard errors for the final model are given in
Table 16.17.

Are we done yet? Probably not. We have not even considered the validity of the assumptions.
Are the errors normally distributed? Are the variances the same for every treatment combination?
Some methods for addressing these questions are discussed in Christensen (1987, chapter XIII) (and
elsewhere in this book). Technically, we need to ask whether C1 = C2 in this new model. A quick
look at the estimate and standard error for C2 answers the question in the negative. We also have
not asked whether A10 = A20. Personally, given that the slopes are different, I find this last question
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Table 16.18: Mangold root data

Columns Row
Row 1 2 3 4 means
1 D(376) E(371) C(355) B(356) 364.50
2 B(316) D(338) E(336) A(356) 336.50
3 C(326) A(326) B(335) D(343) 332.50
4 E(317) B(343) A(330) C(327) 329.25
5 A(321) C(332) D(317) E(318) 322.00
Col. means 331.2 342.0 334.6 340.0 336.95

Table 16.19: Analysis of variance

Source d f Seq SS MS F P
Rows 4 4247.2 1061.8 6.87
Column 3 367.0 122.3 0.79
Trts 4 224.1 56.0 0.36 0.829
Error 8 1236.7 154.6
Total 19 6075.0

so uninteresting that I would be loath to examine it. However, a look at the estimates and standard
errors suggest that the answer is no.

Exercise 16.6.7 examines the process of fitting the more unusual models found in this section.

16.4 Youden squares

Consider the data on mangold roots in Table 16.18. There are five rows, four columns, and five
treatments. If we ignore the columns, the rows and the treatments form a balanced incomplete block
design, every pair of treatments occurs together three times. The key feature of Youden squares
is that additionally the treatments are set up in such a way that every treatment occurs once in
each column. Since every row also occurs once in each column, the analysis for columns can be
conducted independently of the analysis for rows and treatments. Columns are balanced relative to
both treatments and rows.

Table 16.19 contains the analysis of variance for these data. The line for columns is computed as
in a one-way ANOVA, ignoring both the rows and the treatments. The line for rows is computed as
in a one-way ANOVA, ignoring both the columns and the treatments. The means necessary for these
computations are given in Table 16.18. The adjusted treatment means and the ANOVA table line for
treatments are computed as in a balanced incomplete block, adjusting for the rows and ignoring the
columns. The adjusted treatment means are given below.

Adjusted treatment means
Treatment A B C D E
Mean 340.4 333.5 334.8 341.9 334.2

From the ANOVA table, there is no evidence for a difference between treatments.
Evaluation of assumptions is carried out as in all unbalanced ANOVAs. Diagnostic statistics are

given in Table 16.20. The diagnostic statistics look reasonably good.
Figures 16.9 and 16.10 contain a normal plot for the standardized residuals and a plot of stan-

dardized residuals against predicted values, respectively. The normal plot looks very reasonable.
The predicted value plot may indicate increasing variability as predicted values increase. One could
attempt to find a transformation that would improve the plot but there is so little evidence of any
difference between treatments that it hardly seems worth the bother.

The reader may note that the data in this section consist of the first four columns of the Latin
square examined in Example 9.3.1. Dropping one column (or row) from a Latin square is a simple
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Table 16.20: Diagnostics

Row Col Trt y ŷ Leverage r t C
1 1 D 376 364.5 0.6 1.46 1.59 0.27
2 1 B 316 326.8 0.6 −1.37 −1.47 0.24
3 1 C 326 323.9 0.6 0.27 0.25 0.01
4 1 E 317 322.0 0.6 −0.64 −0.61 0.05
5 1 A 321 318.8 0.6 0.28 0.26 0.01
1 2 E 371 367.7 0.6 0.42 0.40 0.02
2 2 D 338 345.9 0.6 −1.01 −1.01 0.13
3 2 A 326 340.3 0.6 −1.81 −2.21 0.41
4 2 B 343 332.1 0.6 1.38 1.48 0.24
5 2 C 332 324.0 0.6 1.02 1.02 0.13
1 3 C 355 360.8 0.6 −0.74 −0.71 0.07
2 3 E 336 330.9 0.6 0.65 0.63 0.05
3 3 B 335 326.1 0.6 1.14 1.16 0.16
4 3 A 330 331.5 0.6 −0.19 −0.18 0.00
5 3 D 317 323.7 0.6 −0.86 −0.84 0.09
1 4 B 356 365.0 0.6 −1.14 −1.17 0.16
2 4 A 356 342.4 0.6 1.73 2.04 0.37
3 4 D 343 339.8 0.6 0.41 0.38 0.02
4 4 C 327 331.3 0.6 −0.55 −0.53 0.04
5 4 E 318 321.5 0.6 −0.44 −0.42 0.02

r

-

- *

- * *

1.2+ *

- *

- *

- * *

- * *

0.0+

- *

- **

- * *

- * *

-1.2+ *

- *

-

- *

--------+---------+---------+---------+---------+--------

-1.40 -0.70 0.00 0.70 1.40

Rankits

Figure 16.9: Normal plot, W ′ = .978.
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r

-

- *

- * *

1.2+ *

- *

- *

- * *

- * *

0.0+

- *

- * *

- * *

- * *

-1.2+ *

- *

-

- *

------+---------+---------+---------+---------+---------+yhat

320 330 340 350 360 370

Figure 16.10: Standardized residuals versus predicted values.

Table 16.21: Mangold root data: column(observation)

Treatments
Row A B C D E
1 4(356) 3(355) 1(376) 2(371)
2 4(356) 1(316) 2(338) 3(336)
3 2(326) 3(335) 1(326) 4(343)
4 3(330) 2(343) 4(327) 1(317)
5 1(321) 2(332) 3(317) 4(318)

way to produce a Youden square. As Youden square designs do not give a square array of numbers
(recall our example had 4 columns and 5 rows), one presumes that the name Youden square derives
from this relationship to Latin squares. Table 16.21 presents an alternative method of presenting the
data in Table 16.18 that is often used. 2

Minitab commands

The Minitab commands for the mangold root analysis are given below.

MTB > names c1 ’y’ c2 ’Rows’ c3 ’Cols’ c4 ’Trts’

MTB > glm c1 = c2 c3 c4;

SUBC> means c4;

SUBC> fits c11;

SUBC> sresids c12;

SUBC> tresids c13;

SUBC> hi c14;

SUBC> cookd c15.
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Table 16.22: Balanced lattice square design for 9 treatments

Column Column
Row 1 2 3 Row 4 5 6

1 A B C 4 A F H
2 D E F 5 I B D
3 G H I 6 E G C

Balanced lattice squares

The key idea in balanced lattice square designs is that if you look at every row as a block, the
treatments form a balanced incomplete block design and simultaneously if every column is viewed
as a block, the treatments again form a balanced incomplete block design. In other words, each pair
of treatments occurs together in the same row or column the same number of times. Balanced lattice
square designs are similar to balanced lattices in that the number of treatments is t = k2 and that the
treatments are arranged in k× k squares. Table 16.22 gives an example for k = 3. If k is odd, one
can typically get by with (k+ 1)/2 squares. If k is even, k+ 1 squares are generally needed. See
Cochran and Cox (1957) for the analysis of such designs.

16.5 Matrix formulation of analysis of variance

Consider a one-way ANOVA with three treatments, 3 observations on the first two treatments and 2
observations on the third treatment group. The model can be written as

yi j = µi + εi j

or

yi j = µ +αi + εi j,

both with i = 1,2,3, j = 1, . . . ,Ni, and N1 = 3, N2 = 3, N3 = 2. In matrix form, the first model can
be written as 

y11
y12
y13
y21
y22
y23
y31
y32


=



µ1 + ε11
µ1 + ε12
µ1 + ε13
µ2 + ε21
µ2 + ε22
µ2 + ε23
µ3 + ε31
µ3 + ε32


.

It can also be written in the form Y = Xβ + e that we used in Chapter 15 for regression models. In
this form it is written 

y11
y12
y13
y21
y22
y23
y31
y32


=



1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1


µ1

µ2
µ3

+



ε11
ε12
ε13
ε21
ε22
ε23
ε31
ε32


.
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The one-way ANOVA model yi j = µ +αi + εi j can be written as



y11
y12
y13
y21
y22
y23
y31
y32


=



1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1




µ

α1
α2
α3

+



ε11
ε12
ε13
ε21
ε22
ε23
ε31
ε32


.

Suppose we want to examine a model in which α2 = α3. We can rewrite the model as



y11
y12
y13
y21
y22
y23
y31
y32


= µ



1
1
1
1
1
1
1
1


+α1



1
1
1
0
0
0
0
0


+α2



0
0
0
1
1
1
0
0


+α3



0
0
0
0
0
0
1
1


+



ε11
ε12
ε13
ε21
ε22
ε23
ε31
ε32


.

If α2 = α3 this becomes



y11
y12
y13
y21
y22
y23
y31
y32


= µ



1
1
1
1
1
1
1
1


+α1



1
1
1
0
0
0
0
0


+α2



0
0
0
1
1
1
0
0


+α2



0
0
0
0
0
0
1
1


+



ε11
ε12
ε13
ε21
ε22
ε23
ε31
ε32




y11
y12
y13
y21
y22
y23
y31
y32


= µ



1
1
1
1
1
1
1
1


+α1



1
1
1
0
0
0
0
0


+α2





0
0
0
1
1
1
0
0


+



0
0
0
0
0
0
1
1




+



ε11
ε12
ε13
ε21
ε22
ε23
ε31
ε32




y11
y12
y13
y21
y22
y23
y31
y32


= µ



1
1
1
1
1
1
1
1


+α1



1
1
1
0
0
0
0
0


+α2



0
0
0
1
1
1
1
1


+



ε11
ε12
ε13
ε21
ε22
ε23
ε31
ε32


.
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Bringing the model back into the standard form Y = Xβ + e gives

y11
y12
y13
y21
y22
y23
y31
y32


=



1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1


 µ

α1
α2

+



ε11
ε12
ε13
ε21
ε22
ε23
ε31
ε32


.

This technique is used in Exercise 16.6.7.

EXAMPLE 16.5.1. Consider again the data of Table 16.1. In specifying models, we will need to
play games with subscripts. We are considering the data as an unbalanced one-way ANOVA,

yhk = µh + εhk (16.5.1)

where h = 1,2,3,4 and k = 1, . . . ,Nh. We denote the treatments as follows.

Treatments
A J

Index F I F I
h 1 2 3 4
(i, j) (1,1) (1,2) (2,1) (2,2)

The index h identifies a treatment in model (16.5.1). The pair (i, j) can also be used to identify the
same treatment.

Using model (16.5.1) we have the sample sizes N1 = 4, N2 = 3, N3 = 2, N4 = 3 and the model
can be written in the matrix form Y = Xβ + e as

y11
y12
y13
y14
y21
y22
y23
y31
y32
y21
y22
y23



=



48.0
49.3
51.7
60.3
68.0
36.3
37.0
40.5
51.3
54.5
42.8
50.2



=



1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1




µ1
µ2
µ3
µ4

+



ε11
ε12
ε13
ε14
ε21
ε22
ε23
ε31
ε32
ε21
ε22
ε23



.

Alternatively, we can replace the single subscript h with the equivalent pair of subscripts i j and
rewrite the one-way ANOVA model as

yi jk = µi j + εi jk.

where i = 1,2, j = 1,2, and k = 1, . . . ,Ni j with N11 = 4, N12 = 3, N21 = 2, N22 = 3. The matrix form
of this model is very similar to that of the previous model; the only change is that we now use two
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subscripts to identify treatments instead of one subscript.



y111
y112
y113
y114
y121
y122
y123
y211
y212
y221
y222
y223



=



48.0
49.3
51.7
60.3
68.0
36.3
37.0
40.5
51.3
54.5
42.8
50.2



=



1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1




µ11
µ12
µ21
µ22

+



ε111
ε112
ε113
ε114
ε121
ε122
ε123
ε211
ε212
ε221
ε222
ε223



.

The key portions of the model, the Y data and the X matrix, are identical in the two models. That is
why the models are equivalent.

As discussed earlier, the one-way ANOVA model using the two subscripts i j can be written as
an equivalent model that involves a grand mean, main effects, and an interaction, i.e.,

yi jk = µi j + εi jk

= µ +αi +η j + γi j + εi jk,

The Y vector and the e vector remain unchanged when using the second parameterization, but the
Xβ portion of the model becomes

Xβ =



1 1 0 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0
1 1 0 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 0 1 1 0 0 0 1 0
1 0 1 1 0 0 0 1 0
1 0 1 0 1 0 0 0 1
1 0 1 0 1 0 0 0 1
1 0 1 0 1 0 0 0 1





µ

α1
α2
η1
η2
γ11
γ12
γ21
γ22


. (16.5.2)

Note that the last four columns of this X matrix are identical to the columns in the one-way ANOVA
X matrices given earlier for these data. In fact, these four are the only columns in the X matrix that
matter. All of the other columns (the first five) can be obtained by adding together various of the
last four columns. (The column space of this new X matrix is the same as in the one-way ANOVA
model.)

The only reason for considering the interaction model is that it leads naturally to the model
without interaction,

yi jk = µ +αi +η j + εi jk.
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Table 16.23: Beef tenderness scores

Block Trt, Score Block Trt, Score
1 A, 7 B, 17 9 A, 17 C, 27
2 C, 26 D, 25 10 B, 23 E, 27
3 E, 33 F, 29 11 D, 29 F, 30
4 A, 25 E, 40 12 A, 11 F, 27
5 B, 25 D, 34 13 B, 24 C, 21
6 C, 34 F, 32 14 D, 26 E, 32
7 A, 10 D, 25 15 B, 26 F, 37
8 C, 24 E, 26 16

In matrix form, the no interaction model becomes

y111
y112
y113
y114
y121
y122
y123
y211
y212
y221
y222
y223



=



48.0
49.3
51.7
60.3
68.0
36.3
37.0
40.5
51.3
54.5
42.8
50.2



=



1 1 0 1 0
1 1 0 1 0
1 1 0 1 0
1 1 0 1 0
1 1 0 0 1
1 1 0 0 1
1 1 0 0 1
1 0 1 1 0
1 0 1 1 0
1 0 1 0 1
1 0 1 0 1
1 0 1 0 1




µ

α1
α2
η1
η2

+



ε111
ε112
ε113
ε114
ε121
ε122
ε123
ε211
ε212
ε221
ε222
ε223



.

Note that the X matrix for this model consists of the first five columns from the X matrix for the
interaction model given in (16.5.2). We just dropped the columns that corresponded to the inter-
action terms, the γi js. This model is not equivalent to the interaction model or any version of the
one-way ANOVA model. The columns of the previous X matrices can be added together to obtain
every column in this X matrix but we cannot go the other way. From these five columns, we cannot
reconstruct the columns of the X matrices for either the interaction model or the one-way ANOVA.
2

16.6 Exercises

EXERCISE 16.6.1. In Example 16.2.2, find the sums of squares for the cubic main effect contrast
and the detergent by cubic interaction contrast. Also find the sums of squares for the separate cubic
effect contrasts in detergents I and II.

EXERCISE 16.6.2. Cochran and Cox (1957) presented data from Pauline Paul on the effect of
cold storage on roast beef tenderness. Treatments are labeled A through F and consist of 0, 1, 2, 4, 9,
and 18 days of storage respectively. The data are tenderness scores and are presented in Table 16.23.
Determine the values of t, r, b, k, and λ . Analyze the data.

EXERCISE 16.6.3. The balanced incomplete block data of Table 16.24 were presented in Finney
(1964) and Bliss (1947). The observations are serum calcium values of dogs after they have been
injected with a dose of parathyroid extract. The doses are the treatments and they have factorial
structure. One factor involves using either the standard preparation (S) or a test preparation (T). The
other factor is the amount of a dose; it is either low (L) or high (H). Low doses are .125cc and high
doses are .205cc. Each dog is subjected to three injections at about 10 day intervals. Serum calcium
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Table 16.24: Serum calcium for dogs after parathyroid extract injections

Day
Dog I II III
1 TL, 14.7 TH, 15.4 SH, 14.8
2 TL, 15.1 TH, 15.0 SH, 15.8
3 TH, 14.4 SH, 13.8 TL, 14.4
4 TH, 16.2 TL, 14.0 SH, 13.0
5 TH, 15.8 SH, 16.0 TL, 15.0
6 TH, 15.8 TL, 14.3 SL, 14.8
7 TH, 17.0 TL, 16.5 SL, 15.0
8 TL, 13.6 SL, 15.3 TH, 17.2
9 TL, 14.0 TH, 13.8 SL, 14.0

10 TL, 13.0 SL, 13.4 TH, 13.8
11 SL, 13.8 SH, 17.0 TH, 16.0
12 SL, 12.0 SH, 13.8 TH, 14.0
13 SH, 14.6 TH, 15.4 SL, 14.0
14 SH, 13.0 SL, 14.0 TH, 14.0
15 SH, 15.2 TH, 16.2 SL, 15.0
16 SH, 15.0 SL, 14.5 TL, 14.0
17 SH, 15.0 SL, 14.0 TL, 14.6
18 SL, 15.8 TL, 15.0 SH, 15.2
19 SL, 13.2 SH, 16.0 TL, 14.9
20 SL, 14.2 TL, 14.1 SH, 15.0

Table 16.25: Percentage of manganese concentrations

Operator
Sample 1 2 3 4
1 .615 .620 .600 .600
2 .635 .635 .660 .630
3 .590 .605 .600 .590
4 .745 .740 .735 .745
5 .695 .695 .680 .695
6 .640 .635 .635 .630
7 .655 .665 .650 .650
8 .640 .645 .620 .610
9 .670 .675 .670 .665
10 .655 .660 .645 .650

is measured on the day after an injection. Analyze the data. Look at contrasts and residuals. Should
day effects be isolated? Can this be done conveniently? If so, do so.

EXERCISE 16.6.4. Inman et al. (1992) report data on the percentages of Manganese (Mn) in
various samples as determined by a spectrometer. Ten samples were used and the percentage of
Mn in each sample was determined by each of 4 operators. The data are given in Table 16.25. The
operators actually made two readings; the data presented are the averages of the two readings for
each sample–operator combination.

Treating the samples as blocks, analyze the data. Include in your analysis an evaluation of
whether any operators are significantly different. Identify a potential outlier, delete that outlier,
reanalyze the data, and compare the results of the two analyses.

EXERCISE 16.6.5. Nelson (1993) presents data on the average access times for various disk
drives. The disk drives are five brands of half-height fixed drives. The performance of disk drives
depends on the computer where they are installed, so computers were used as blocks. The computers
could only hold four disk drives, so a balanced incomplete block design was used. The data are given
in Table 16.26. Analyze them.
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Table 16.26: Access times (ms) for disk drives

Brand
Computer 1 2 3 4 5
A 35 42 31 30 —
B 41 45 — 32 40
C — 40 42 33 39
D 32 — 33 35 36
E 40 38 35 — 37

EXERCISE 16.6.6. Write models (10.1.1), (10.1.2), and (10.1.3) in matrix form. Use a regression
program on the heart weight data of Table 10.1 to find 95% and 99% prediction intervals for a male
and a female each with body weight of 3.0. (Hint: In Minitab use the subcommand ‘noconstant’ to
eliminate the intercept.)

EXERCISE 16.6.7. Using the notation of Section 16.3, write the models [A0][A1][C],
[A0][A1][C] A21 = A31, and [A0][A1][C] A21 = A31,A20 = A30 in matrix form. (Hint: To obtain
[A0][A1][C] A21 = A31 from [A0][A1][C], replace the two columns of X corresponding to A21 and
A31 with one column consisting of their sum.) Use a regression program to fit these three models.
(Hint: In Minitab use the subcommand ‘noconstant’ to eliminate the intercept, and to impose the
side condition C1 = 0, drop the column corresponding to C1.)



Chapter 17

Confounding and fractional replication in 2n

factorial systems

Confounding is a method of designing a factorial experiment that allows incomplete blocks, i.e.,
blocks of smaller size than the full number of factorial treatments. In fractional replication an ex-
periment has fewer observations than the full factorial number of treatments. A basic idea in ex-
perimental design is ensuring adequate replication to provide a good estimate of error. Fractional
replication not only fails to get replication – it fails to provide even an observation on every factor
combination. Not surprisingly, fractional replications present new challenges in analyzing data.

In this chapter, we will informally use concepts of modular arithmetic, e.g., 7 mod 5 = 2 where
2 is the remainder when 7 is divided by 5. Modular arithmetic is crucial to more advanced discus-
sions of confounding and fractional replication, but its use in this chapter will be minimal. To help
minimize modular arithmetic, we will refer to 0 as an even number.

Previously, we have used the notation 2×2×2 to indicate the presence of three factors each at
two levels. It is a natural extension of this notation to write

2×2×2 = 23.

A 2n factorial system involves n factors each at 2 levels, so there are 2n treatment combinations.
2n factorials and fractional replications of 2n factorials are often used in experiments designed to
screen large numbers of factors to see which factors have substantial effects.

In a 2n experiment, the treatments have 2n− 1 degrees of freedom and they are broken down
into 2n−1 effects each with one degree of freedom.

EXAMPLE 17.0.1. A 24 factorial structure
Consider a 24 experiment with factors A, B, C, D at levels a0, a1, b0, b1, c0, c1, and d0, d1, respec-
tively. There are 24 = 16 treatment combinations, so there are 15 degrees of freedom for treatments.
The treatments line in the ANOVA table can be broken down as follows

Source d f Source d f
A 1 ABC 1
B 1 ABD 1
C 1 ACD 1
D 1 BCD 1
AB 1 ABCD 1
AC 1
AD 1
BC 1
BD 1
CD 1

Since each effect has a single degree of freedom, it can be identified with a contrast among the 16
treatments. 2

477
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Effect contrasts in 2n factorials

The simplest way to understand confounding and fractional replication in 2n systems is in terms of
contrasts corresponding to the different effects. As was just seen, each effect in a 2n has one degree
of freedom and thus each effect corresponds to a single contrast. We now review the correspondence
between contrasts and factorial effects.

EXAMPLE 17.0.2. A 22 experiment
Consider a 22 experiment with factors A and B at levels a0, a1 and b0, b1, respectively. The coeffi-
cients of the contrasts that correspond to the main effects and interaction are given below

Treatment A B AB
a0b0 1 1 1
a0b1 1 −1 −1
a1b0 −1 1 −1
a1b1 −1 −1 1

In Example 11.1.1, we examined a 22 experiment and showed that these contrasts give the same
sums of squares as the analysis of variance table methods for obtaining the sums of squares for A,
B, and AB.

The contrast coefficients are determined by the subscripts in the treatment combinations. The
A contrast coefficient is 1 for any treatment that has an a subscript of 0 and −1 for any treatment
that has an a subscript of 1. In other words, the A contrast is 1 for a0b0 and a0b1 and −1 for
a1b0 and a1b1. Similarly the B contrast is 1 for any treatment that has a b subscript of 0 and −1
for any treatment that has an b subscript of 1, i.e., a0b0 and a1b0 have coefficients of 1 and a0b1
and a1b1 have coefficients of−1. The AB contrast involves both factors, so the subscripts are added.
Treatments with an even total, 0 or 2, get contrast coefficients of 1, while treatments with an odd total
for the subscripts get −1. Thus a0b0 and a1b1 get 1s and a0b1 and a1b0 get −1s. Actually, the key
is modular arithmetic. For 2n factorials, the contrast coefficients are determined by an appropriate
sum of the subscripts modulo 2. Thus any sum that is an even number is 0 mod 2 and any odd sum
is 1 mod 2.

2

EXAMPLE 17.0.3. A 23 experiment
Consider a 23 experiment with factors A, B, and C. The contrast coefficients for main effects and
interactions are given below.

Treatment A B C AB AC BC ABC
a0b0c0 1 1 1 1 1 1 1
a0b0c1 1 1 −1 1 −1 −1 −1
a0b1c0 1 −1 1 −1 1 −1 −1
a0b1c1 1 −1 −1 −1 −1 1 1
a1b0c0 −1 1 1 −1 −1 1 −1
a1b0c1 −1 1 −1 −1 1 −1 1
a1b1c0 −1 −1 1 1 −1 −1 1
a1b1c1 −1 −1 −1 1 1 1 −1

Once again the contrast coefficients are determined by the subscripts of the treatment combi-
nations. The A contrast has 1s for a0s and −1s for a1s; similarly for B and C. The AB contrast is
determined by the sum of the a and b subscripts. The sum of the a and b subscripts is even, either
0 or 2, for the treatments a0b0c0, a0b0c1, a1b1c0, a1b1c1, so all have AB contrast coefficients of 1.
The sum of the a and b subscripts is 1 for the treatments a0b1c0, a0b1c1, a1b0c0, a1b0c1, so all have
coefficients of −1. The AC contrast is determined by the sum of the a and c subscripts and the BC
contrast is determined by the sum of the b and c subscripts. The ABC contrast is determined by the
sum of the a, b, and c subscripts. The sum of the a, b, and c subscripts is even, either 0 or 2, for
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Table 17.1: Main effect and second-order interaction contrast coefficients for a 24 factorial

Treatment A B C D AB AC AD BC BD CD
a0b0c0d0 1 1 1 1 1 1 1 1 1 1
a0b0c0d1 1 1 1 −1 1 1 −1 1 −1 −1
a0b0c1d0 1 1 −1 1 1 −1 1 −1 1 −1
a0b0c1d1 1 1 −1 −1 1 −1 −1 −1 −1 1
a0b1c0d0 1 −1 1 1 −1 1 1 −1 −1 1
a0b1c0d1 1 −1 1 −1 −1 1 −1 −1 1 −1
a0b1c1d0 1 −1 −1 1 −1 −1 1 1 −1 −1
a0b1c1d1 1 −1 −1 −1 −1 −1 −1 1 1 1
a1b0c0d0 −1 1 1 1 −1 −1 −1 1 1 1
a1b0c0d1 −1 1 1 −1 −1 −1 1 1 −1 −1
a1b0c1d0 −1 1 −1 1 −1 1 −1 −1 1 −1
a1b0c1d1 −1 1 −1 −1 −1 1 1 −1 −1 1
a1b1c0d0 −1 −1 1 1 1 −1 −1 −1 −1 1
a1b1c0d1 −1 −1 1 −1 1 −1 1 −1 1 −1
a1b1c1d0 −1 −1 −1 1 1 1 −1 1 −1 −1
a1b1c1d1 −1 −1 −1 −1 1 1 1 1 1 1

Table 17.2: Higher order interaction contrast coefficients for a 24 factorial

Treatment ABC ABD ACD BCD ABCD
a0b0c0d0 1 1 1 1 1
a0b0c0d1 1 −1 −1 −1 −1
a0b0c1d0 −1 1 −1 −1 −1
a0b0c1d1 −1 −1 1 1 1
a0b1c0d0 −1 −1 1 −1 −1
a0b1c0d1 −1 1 −1 1 1
a0b1c1d0 1 −1 −1 1 1
a0b1c1d1 1 1 1 −1 −1
a1b0c0d0 −1 −1 −1 1 −1
a1b0c0d1 −1 1 1 −1 1
a1b0c1d0 1 −1 1 −1 1
a1b0c1d1 1 1 −1 1 −1
a1b1c0d0 1 1 −1 −1 1
a1b1c0d1 1 −1 1 1 −1
a1b1c1d0 −1 1 1 1 −1
a1b1c1d1 −1 −1 −1 −1 1

the treatments a0b0c0, a0b1c1, a1b0c1, a1b1c0, so all have ABC coefficients of 1. The sum of the
a, b, and c subscripts is odd, 1 or 3, for the treatments a0b0c1, a0b1c0, a1b0c0, a1b1c1, so all have
coefficients of −1.

2

EXAMPLE 17.0.4. A 24 experiment
Consider a 24 experiment with factors A, B, C, and D. The contrast coefficients are given in Ta-
bles 17.1 and 17.2. Again the contrast coefficients are determined by the subscripts of the treat-
ments. The A, B, C, and D contrasts are determined by the subscripts of a, b, c, and d, respectively.
The AB, AC, AD, BC, BD, and CD contrasts are determined by the sums of the appropriate pair of
subscripts. The ABC, ABD, ACD, and BCD contrasts are determined by the sum of the three ap-
propriate subscripts. The coefficients of the ABCD contrast are determined by the sum of all four
subscripts. As before, the contrast coefficient is 1 if the appropriate value or sum equals 0 mod 2
(even) and is −1 if it equals 1 mod 2 (odd). 2

Most books on experimental design contain a discussion of confounding and fractional repli-



48017. CONFOUNDING AND FRACTIONAL REPLICATION IN 2N FACTORIAL SYSTEMS

cation for 2n treatment structures. Daniel (1976), Box, Hunter, and Hunter (1978), and Box and
Draper (1987) are excellent books that focus on industrial applications.

17.1 Confounding

Confounding involves creating blocks that are smaller than the total number of treatments. Thus,
confounding is a method for arriving at an incomplete block design. However, we will see that the
analysis of confounding designs remains simple. For example, the analysis is considerably simpler
than the balanced incomplete block analysis of the previous chapter.

EXAMPLE 17.1.1. Confounding in a 23 experiment
Suppose we have three drugs that we wish to investigate simultaneously. Each drug is a factor; the
levels are either no dose of the drug or a standard dose. There are 23 = 8 treatment combinations. The
drugs will be applied to a certain type of animal. To reduce variation, we may want to use different
litters of animals as blocks. However, it may be difficult to find litters containing 8 animals. On the
other hand, litters of size 4 may be readily available. In such a case, we want to use four treatments
on one litter and the other four treatments on a different litter. There are 70 ways to do this. We need
a systematic method of choosing the treatments for each litter that allows us to perform as complete
an analysis as possible.

To examine the application of the treatments from a 23 factorial in blocks of size 4, recall that
the 23 has 8 treatments, so 1/2 the treatments will go in each block. The table of contrast coefficients
for a 23 factorial is repeated below.

Treatment A B C AB AC BC ABC
a0b0c0 1 1 1 1 1 1 1
a0b0c1 1 1 −1 1 −1 −1 −1
a0b1c0 1 −1 1 −1 1 −1 −1
a0b1c1 1 −1 −1 −1 −1 1 1
a1b0c0 −1 1 1 −1 −1 1 −1
a1b0c1 −1 1 −1 −1 1 −1 1
a1b1c0 −1 −1 1 1 −1 −1 1
a1b1c1 −1 −1 −1 1 1 1 −1

We need to divide the treatments into two groups of size 4 but every contrast does this. The two
groups of four are those treatments that have contrast coefficients of 1 and those that have −1. Thus
we can use any contrast to define the blocks. Unfortunately, the contrast we choose will be lost to us
because it will be confounded with blocks. In other words, we will not be able to tell what effects are
due to blocks (litters) and what effects are due to the defining contrast. We choose to define blocks
using the ABC contrast because it is the highest order interaction. Typically, it is the least painful to
lose. The ABC contrast defines two groups of treatments

ABC coefficients
ABC(1) ABC(−1)
a0b0c0 a0b0c1
a0b1c1 a0b1c0
a1b0c1 a1b0c0
a1b1c0 a1b1c1

Each group of treatments is used in a separate block. The four treatments labeled ABC(1) will be
randomly assigned to the animals in one randomly chosen litter and the four treatments labeled
ABC(−1) will be randomly assigned to the animals in another litter. Recall that all information
about ABC has been lost because it is confounded with blocks.

As indicated earlier, we could choose any of the contrasts to define the blocks. Typically, we use
high order interactions because they are the effects that are most difficult to interpret and thus the
most comfortable to live without. For illustrative purposes, we also give the blocks defined by the
BC contrast.
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BC coefficients
BC(1) BC(−1)
a0b0c0 a0b0c1
a0b1c1 a0b1c0
a1b0c0 a1b0c1
a1b1c1 a1b1c0

If the subjects of the drug study are humans, it will be difficult to obtain ‘litters’ of four, but
it may be practical to use identical twins. We now have 8 treatments that need to be divided into
blocks of 2 units. Each block will consist of 1/4 of the treatments. Since each contrast divides the
treatments into two groups of four, if we use two contrasts we can divide each group of four into 2
groups of two. We take as our first contrast ABC and as our second contrast AB. The four treatments
with ABC coefficients of 1 are a0b0c0, a0b1c1, a1b0c1, and a1b1c0. These can be divided into 2
groups of two, depending on whether their AB coefficient is 1 or −1. The two groups are a0b0c0,
a1b1c0 and a0b1c1, a1b0c1. Similarly, the ABC(−1) group, a0b0c1, a0b1c0, a1b0c0, and a1b1c1 can
be divided into a0b0c1, a1b1c1 and a0b1c0, a1b0c0 based on the AB coefficients. In tabular form we
get

ABC(1) ABC(−1)
AB(1) AB(−1) AB(1) AB(−1)
a0b0c0 a1b0c1 a0b0c1 a1b0c0
a1b1c0 a0b1c1 a1b1c1 a0b1c0

To get blocks of size 2, we confounded two contrasts, ABC and AB. Thus we have lost all
information on both of these contrasts. It turns out that we have also lost all information on another
contrast, C. Exactly the same four blocks would be obtained if we confounded ABC and C.

ABC(1) ABC(−1)
C(1) C(−1) C(−1) C(1)

a0b0c0 a1b0c1 a0b0c1 a1b0c0
a1b1c0 a0b1c1 a1b1c1 a0b1c0

Similarly, if we had confounded AB and C, we would obtain the same four blocks. Note that with
four blocks, there are three degrees of freedom for blocks. Each contrast has one degree of freedom,
so there must be three contrasts confounded with blocks.

Given the two defining contrasts ABC and AB, there is a simple way to identify the other contrast
that is confounded with blocks. The confounding is determined by a form of modular multiplication
where any even power is treated as 0; thus A2 = A0 = 1 and B2 = 1. Multiplying the defining
contrasts gives

ABC×AB = A2B2C =C,

so C is also confounded with blocks.
Typically, we want to retain information on all main effects. The choice of ABC and AB for

defining contrasts is poor because it leads to complete loss of information on the main effect C. We
would do better to choose AB and BC. In that case, the other confounded contrast is

AB×BC = AB2C = AC,

which is another two-factor interaction. Using this confounding scheme, we get information on all
main effects. The blocking scheme is given below.

AB(1) AB(−1)
BC(1) BC(−1) BC(1) BC(−1)
a0b0c0 a0b0c1 a1b0c0 a1b0c1
a1b1c1 a1b1c0 a0b1c1 a0b1c0

2

EXAMPLE 17.1.2. Confounding in a 24 experiment
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The ABCD contrast was given in Table 17.2. Dividing the treatments into two groups based on their
ABCD coefficients defines two blocks of size 8,

ABCD coefficients
ABCD(1) ABCD(−1)
a0b0c0d0 a0b0c0d1
a0b0c1d1 a0b0c1d0
a0b1c0d1 a0b1c0d0
a0b1c1d0 a0b1c1d1
a1b0c0d1 a1b0c0d0
a1b0c1d0 a1b0c1d1
a1b1c0d0 a1b1c0d1
a1b1c1d1 a1b1c1d0

To define four blocks of size 4 requires choosing two defining contrasts. To obtain four blocks,
ABCD is not a good choice for a defining contrast because if we choose the second contrast as a
three-factor effect, we also confound a main effect, e.g.,

ABCD×ABC = A2B2C2D = D.

Similarly, if we choose the second contrast as a two-factor effect, we lose another two-factor effect,
e.g.,

ABCD×AB = A2B2CD =CD

However, if we choose two three-factor effects as defining contrasts, we lose only one two-factor
effect, e.g.,

ABC×BCD = AB2C2D = AD.

The four blocks for the confounding scheme based on ABC and BCD are given below.

ABC(1) ABC(−1)
BCD(1) BCD(−1) BCD(1) BCD(−1)
a0b0c0d0 a0b0c0d1 a0b0c1d1 a0b0c1d0
a0b1c1d0 a0b1c1d1 a0b1c0d1 a0b1c0d0
a1b0c1d1 a1b0c1d0 a1b0c0d0 a1b0c0d1
a1b1c0d1 a1b1c0d0 a1b1c1d0 a1b1c1d1

The treatment groups can be checked against the contrasts given in Table 17.2.
If we wanted blocks of size 2 we would need three defining contrasts, say ABC, BCD, and ACD.

Blocks of size 2 imply the existence of 8 blocks, so 7 degrees of freedom must be confounded
with blocks. To obtain the other confounded contrasts, multiply each pair of defining contrasts
and multiply all three defining contrasts together. Multiplying the pairs gives ABC×BCD = AD,
ABC×ACD=BD, and BCD×ACD=AB. Multiplying all three together gives ABC×BCD×ACD=
AD×ACD =C. 2

Consider the problem of creating 16 blocks for a 2n experiment. Since 16 = 24, we need 4
defining contrasts. With 16 blocks there are 15 degrees of freedom for blocks, hence 15 contrasts
confounded with blocks. Four of these 15 are the defining contrasts. Multiplying distinct pairs of
defining contrasts gives 6 implicitly confounded contrasts. There are 4 distinct triples that can be
made from the defining contrasts; multiplying the triples gives 4 more confounded contrasts. Multi-
plying all four of the defining contrasts gives the fifteenth and last confounded contrast.

We now consider the analysis of data obtained from a confounded 2n design.

EXAMPLE 17.1.3. Analysis of a 23 in blocks of four with replication
Yates (1935) presented data on a 23 agricultural experiment involving yields of peas when various
fertilizers were applied. The three factors were a nitrogen fertilizer (N), a phosphorous fertilizer (P),
and a potash fertilizer (K). Each factor consisted of two levels, none of the fertilizer and a standard
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Table 17.3: Yates’s confounded pea data

n0 p0k0(56.0) n1 p1k0(59.0) n0 p0k1(55.0) n1 p1k1(55.8)
n0 p1k1(53.2) n1 p0k1(57.2) n1 p0k0(69.5) n0 p1k0(62.8)
n0 p1k1(48.8) n0 p0k0(51.5) n0 p1k0(56.0) n1 p1k1(58.5)
n1 p0k1(49.8) n1 p1k0(52.0) n0 p0k1(55.5) n1 p0k0(59.8)
n0 p1k0(44.2) n1 p1k1(48.8) n1 p0k1(57.0) n1 p1k0(62.8)
n0 p0k1(45.5) n1 p0k0(62.0) n0 p0k0(46.8) n0 p1k1(49.5)

Three replications with NPK confounded in each.

Table 17.4: Analysis of variance

Source d f SS MS F P
Blocks 5 343.30 68.66 4.45 0.016
N 1 189.28 189.28 12.26 0.004
P 1 8.40 8.40 0.54 0.475
K 1 95.20 95.20 6.17 0.029
NP 1 21.28 21.28 1.38 0.263
NK 1 33.14 33.14 2.15 0.169
PK 1 0.48 0.48 0.03 0.863
Error 12 185.29 15.44
Total 23 876.36

dose. It was determined that homogenous blocks of land were best obtained by creating six squares
each containing four plots. Thus we have 23 = 8 treatments, blocks of size 4, and six available
blocks. By confounding one treatment contrast, we can obtain blocks of size 4. With six blocks,
we can have 3 replications of the treatments. The confounded contrast was chosen to be the NPK
interaction, so the treatments in one block are n0 p0k0, n1 p1k0, n1 p0k1, and n0 p1k1 and the treatments
in the other block are n1 p0k0, n0 p1k0, n0 p0k1, and n1 p1k1. The data are given in Table 17.3. The
table displays the original geographical layout of the experiment with lines identifying blocks and
replications. Each pair of rows in the table are a replication with the left and right halves identifying
blocks. In each replication, the set of four treatments to be applied to a block is randomly decided
and then within each block the four treatments are randomly assigned to the four plots.

The analysis of these data is straightforward; it follows the usual pattern. The mean square and
sum of squares for blocks is obtained from the six block means. Each block mean is the average of
4 observations. The sum of squares for a main effect, say, N, can be obtained from the two nitrogen
means, each based on 12 observations, or equivalently, it can be obtained from the contrast

Treatment N
n0 p0k0 1
n0 p0k1 1
n0 p1k0 1
n0 p1k1 1
n1 p0k0 −1
n1 p0k1 −1
n1 p1k0 −1
n1 p1k1 −1

applied to the 8 treatment means which are obtained by averaging over the 3 replications. The
contrast for NPK was confounded with blocks, so it should not appear in the analysis; the one
degree of freedom for NPK is part of the five degrees of freedom for blocks.
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Figure 17.1: Plot of residuals versus predicted values, pea data.

The complete analysis of variance is given in Table 17.4. It is the result of fitting the model

yhi jk = µ +βh +νi +ρ j +κk +(νρ)i j +(νκ)ik +(ρκ) jk + εhi jk (17.1.1)

where βh, h = 1, . . . ,6 indicates a block effect and ν , ρ , and κ indicate effects relating to N, P, and
K respectively. Every effect in the analysis of variance has one degree of freedom, so there is no
need to investigate contrasts beyond what is given in the ANOVA table. The only effects that appear
significant are those for N and K. The evidence for an effect due to the nitrogen-based fertilizer is
quite clear. The means for the nitrogen treatments are

N n0 n1
52.067 57.683

so the addition of nitrogen increases yields. The evidence for an affect due to potash is somewhat
less clear. The means are

K k0 k1
56.867 52.883

Surprisingly (to a city boy like me), application of potash actually decreases pea yields.
Fitting the analysis of variance model (17.1.1) provides residuals that can be evaluated in the

usual way. Figures 17.1 and 17.2 contain residual plots. Except for some slight curvature at the very
ends of the normal plot, the residuals look good. Remember that these are plots of the residuals, not
the standardized residuals, so residual values greater than 3 do not necessarily contain a suggestion
of outlying points. 2
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Figure 17.2: Normal plot of residuals, pea data, W ′ = .980.

Minitab commands

Minitab’s ‘glm’ command gives a simple way of obtaining the analysis of these data. The glm
command does not recognize the orthogonality in the design, so it reports two types of sums of
squares for each term. However, the orthogonality ensures that the values are identical for the two
types. This particular analysis could also be run using the ‘ancova’ command, but the other analyses
in this chapter require glm.

MTB > names c1 ’y’ c2 ’Blocks’ c3 ’N’ c4 ’P’ c5 ’K’

MTB > glm c1=c2 c3|c4|c5 - c3*c4*c5;

SUBC> resid c10;

SUBC> fits c11;

SUBC> means c3 c5.

Split plot analysis

EXAMPLE 17.1.4. Split plot analysis of a 23 in blocks of four with replication
Example 17.1.3 gives the standard analysis of confounded data with replications. However, more
information can be extracted. Yates’ design is very similar to a split plot design. We have three repli-
cations and we can think of each block as a whole plot. The whole plots are randomly assigned one
of two treatments but the treatments have a peculiar structure. One ‘treatment’ applied to a whole
plot consists of having the NPK(1) treatments assigned to the whole plot and the other ‘treatment’
is having the NPK(−1) treatments assigned to a whole plot. The one degree of freedom for whole
plot treatments is due to the difference between these sets of treatments. This difference is just the
NPK interaction. The analysis in Example 17.1.3 is the subplot analysis and remains unchanged
when we consider applying a split plot analysis to the data. Recall that in a subplot analysis each
whole plot is treated like a block; that is precisely what we did in Example 17.1.3. We need only
perform the whole plot analysis to complete the split plot analysis.
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Table 17.5: Whole plot analysis of variance

Source d f SS MS F
Reps 2 177.80 88.90 1.38
NPK 1 37.00 37.00 0.58
Error 2 128.50 64.25
Total 5 343.30 68.66

The 6 blocks in Example 17.1.3 are now considered as whole plots. The 5 degrees of freedom for
blocks are the 5 degrees of freedom total for the whole plot analysis. These 5 degrees of freedom
can be decomposed into 2 degrees of freedom for comparing the three replications, 1 degree of
freedom for NPK interaction, i.e., whole plot treatments, and 2 degrees of freedom for replication
by whole plot treatment interaction. The replication by whole plot treatment interaction is just the
error term for the whole plot analysis. Note that in this model, rather than thinking about having 6
fixed block effects, we have 3 fixed replication effects, a fixed NPK effect, and a random error term
that distinguishes the blocks within the replications.

The necessary means for the whole plot analysis are given below.

N = 4 NPK level
Rep. NPK(1) NPK(−1) Rep. means

1 56.350 60.775 58.5625
2 50.525 57.450 53.9875
3 54.025 50.125 52.0750

NPK means 53.633̄ 56.116̄ 54.8750

The three rep. means are averages over the 8 observations in each replication. The mean square
for replications is obtained in the usual way as 8 times the sample variance of the rep. means. The
mean square for NPK interaction is obtained from the NPK(1) mean and the NPK(−1) mean.
Each of these means is averaged over 12 observations. The mean square for NPK is 12 times the
sample variance of the NPK means. The interaction (whole plot error) sum of squares is found
by subtracting the NPK and replication sums of squares from the blocks sum of squares found in
Example 17.1.3. The whole plot analysis of variance is given in Table 17.5. There is no evidence
for an NPK interaction.

In this experiment, there are not enough whole plots to provide a very powerful test for the
NPK interaction. There are only 2 degrees of freedom in the denominator of the F test. If we had
5 replications of a 23 in blocks of size 2 rather than blocks of size 4, i.e., if we confounded three
contrasts with blocks, the whole plot analysis would have 4 degrees of freedom for reps., three 1
degree of freedom effects for the confounded contrasts, and 12 degrees of freedom for whole plot
error. The 12 error degrees of freedom come from pooling the rep. by effect interactions. 2

Partial confounding

In Example 17.1.3, we considered a 23 in blocks of 4 with three replications. The same contrast
NPK was confounded in all replications, so, within the subplot analysis, all information was lost on
the NPK contrast. Something must be lost when a treatment effect is confounded with blocks, but
with multiple replications it is not necessary to give up all the information on NPK. Consider a 23

experiment with factors A, B, and C that is conducted in blocks of size 4 with two replications. It
would be natural to confound ABC with blocks. However, instead of confounding ABC with blocks
in both replications, we could pick another contrast, say, BC, to confound in the second replication.
The design is given below.
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Table 17.6: Pea data with partial confounding

n1 p0k0(59.8) n0 p0k1(55.5) n1 p0k1(57.2) n0 p1k1(53.2)
n1 p1k1(58.5) n0 p1k0(56.0) n1 p1k0(59.0) n0 p0k0(56.0)
n0 p1k1(49.5) n0 p0k0(46.8) n0 p1k0(62.8) n1 p0k0(69.5)
n1 p1k0(62.8) n1 p0k1(57.0) n1 p1k1(55.8) n0 p0k1(55.0)
The first replication has NPK, PK, and N confounded. The second replication has NPK, NK, and P confounded.

Replication 1 Replication 2
ABC(1) ABC(−1) BC(1) BC(−1)
a0b0c0 a0b0c1 a0b0c0 a0b0c1
a0b1c1 a0b1c0 a0b1c1 a0b1c0
a1b0c1 a1b0c0 a1b0c0 a1b0c1
a1b1c0 a1b1c1 a1b1c1 a1b1c0

In the first replication we give up all the information on ABC but retain information on BC. In the
second replication we give up all the information on BC but retain information on ABC. Thus we
have partial information available on both ABC and BC.

The process of confounding different contrasts in different replications is known as partial con-
founding because contrasts are only partially confounded with blocks. In some replications they are
confounded but in others they are not. Thus partial information is available on contrasts that are
partially confounded.

When more than one confounded contrast is needed to define blocks of an appropriate size, some
contrasts can be totally confounded, while others are only partially confounded. We now consider
an example using these ideas.

EXAMPLE 17.1.5. We again analyze pea yield data with the same 23 fertilizer treatments consid-
ered in Examples 17.1.3 and 17.1.4. This analysis involves blocks of size 2 with two replications.
Both replications have NPK confounded, but the first rep. has PK (and thus N) confounded, while
the second has NK (and thus P) confounded. The data are given in Table 17.6 with lines used to
identify blocks. Again, pairs of rows denote replications.

The mean square and sum of squares for blocks is obtained from the eight block means. Each of
these means is the average of 2 observations. The sums of squares for error is obtained by subtrac-
tion. The sums of squares for treatment effects are more complicated. We use contrasts to compute
them. First, NPK is confounded in both replications, so no information is available on it. The ef-
fects of K and NP are not confounded in either replication, so they can be estimated from both. The
contrasts, means, and sums of squares are given below.

Treatment K NP Means
n0 p0k0 1 1 51.40
n0 p0k1 −1 1 55.25
n0 p1k0 1 −1 59.40
n0 p1k1 −1 −1 51.35
n1 p0k0 1 −1 64.65
n1 p0k1 −1 −1 57.10
n1 p1k0 1 1 60.90
n1 p1k1 −1 1 57.15
SS 60.0625 15.210

The sum of squares for K is

SS(K) =
[−15.50]2

8/2
= 60.0625
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where −15.50 is the estimated contrast, 8 is the sum of the squared contrast coefficients, and the
means are averages of 2 observations, one from each replication.

The effects of N and PK are confounded in the first replication but P and NK are not. Thus P
and NK can be evaluated from the first replication.

Treatment P NK Rep. 1
n0 p0k0 1 1 56.0
n0 p0k1 1 −1 55.5
n0 p1k0 −1 1 56.0
n0 p1k1 −1 −1 53.2
n1 p0k0 1 −1 59.8
n1 p0k1 1 1 57.2
n1 p1k0 −1 −1 59.0
n1 p1k1 −1 1 58.5
SS 0.405 0.005

The sum of squares for P is

SS(P) =
[−1.8]2

8/1
= 0.405

where −1.8 is the estimated contrast and the treatment ‘means’ used in the contrasts are just the
observations from the first replication.

Note that the sums of squares for the partially confounded contrasts involve a multiplier of 1,
because they are averages of one observation, rather than the multiplier of 2 that is used for the
contrasts that have full information. This is the price paid for partial confounding. An estimated
contrast with full information would have a sum of squares that is twice as large as the same esti-
mated contrast that is confounded in half of the replications. This sort of thing happens generally
when using partial confounding but the size of the multiplicative effect depends on the exact exper-
imental design. In this example the factor is 2 because the sample sizes of the means are twice as
large for full information contrasts as for partial information contrasts.

Similarly, the effects of N and PK can be obtained from the second replication but not the first.

Treatment N PK Rep. 2
n0 p0k0 −1 −1 46.8
n0 p0k1 −1 1 55.0
n0 p1k0 −1 1 62.8
n0 p1k1 −1 −1 49.5
n1 p0k0 1 −1 69.5
n1 p0k1 1 1 57.0
n1 p1k0 1 1 62.8
n1 p1k1 1 −1 55.8
SS 120.125 32.000

The analysis of variance table is given in Table 17.7. Too much blocking has been built into
this experiment. The F statistic for blocks is only 0.85, so the differences between blocks are not as
substantial as the error. The whole point of blocking is that the differences between blocks should
be greater than error so that by isolating the block effects we reduce the experimental error. The
excessive blocking has also reduced the degrees of freedom for error to 2, thus ensuring a poor
estimate of the variance. A poor error estimate reduces power; it is difficult to establish that effects
are significant. For example, the F statistic for N is 4.92; this would be significant at the .05 level if
there were 11 degrees of freedom for error, but with only 2 degrees of freedom the P value is just
.157. 2
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Table 17.7: Analysis of variance

Source d f SS MS F P
Blocks 7 145.12 20.73 0.85 —
N 1 120.12 120.12 4.92 0.157
P 1 0.40 0.40 0.02 0.909
K 1 60.06 60.06 2.46 0.257
NP 1 15.21 15.21 0.62 0.513
NK 1 0.01 0.01 0.00 0.990
PK 1 32.00 32.00 1.31 0.371
Error 2 48.79 24.40
Total 15 421.72

In general, effects are evaluated from all replications in which they are not confounded. If we
had 3 replications with NPK confounded in each and PK and N confounded only in the first, the
sums of squares for N and PK would be based on treatment means averaged over both rep. 2 and
rep. 3.

Minitab commands

Minitab’s glm command can again provide the analysis, however, the column with the block indices
must appear immediately after the equals sign in the statement of the glm model. Minitab provides
both sequential and adjusted sums of squares. For all effects other than blocks, these are the same.
When blocks are listed first in the model, the sequential sum of squares is appropriate for blocks.

MTB > names c1 ’Blocks’ c2 ’N’ c3 ’P’ c4 ’K’ c5 ’y’

MTB > glm c5=c1 c2|c3|c4 - c2*c3*c4

17.2 Fractional replication

Consider a chemical process in which there are seven factors that affect the process. These could be
percentages of four chemical components, temperature of the reaction, choice of catalyst, and choice
of different machines for conducting the process. If all of these factors are at just two levels, there
are 27 = 128 treatment combinations. If obtaining data on a treatment combination is expensive,
running 128 treatment combinations may be prohibitive. If there are just three levels for each factor,
there are 37 = 2187 treatment combinations. In fractional replication, one uses only a fraction of
the treatment combinations. Of course, if we give up the full factorial, we must lose information in
the analysis of the experiment. In fractional replication the treatments are chosen in a systematic
fashion so that we lose only the higher order interactions. (I, for one, do not look forward to trying
to interpret 6- and 7-factor interactions anyway.) To be more precise, we do not actually give up
the high order interactions, we give up our ability to distinguish them from the main effects and
lower order interactions. Effects are aliased with other effects. The contrasts we examine involve
both a main effect or lower order interaction and some higher order interactions. Of course we
assume the high order interactions are of no interest and treat the contrasts as if they involve only
the main effects and low order interactions. That is the whole point of fractional replication. While
fractional replication is of most interest when there are large numbers of factors, we will illustrate
the techniques with smaller numbers of factors.

EXAMPLE 17.2.1. A 1/2 rep. of a 23 experiment
We now examine the construction of a 1/2 replicate of a 23 factorial. The 23 has 8 treatments, so a
1/2 replicate involves 4 treatments. Recall the table of contrast coefficients for a 23 factorial.
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Treatment A B C AB AC BC ABC
a0b0c0 1 1 1 1 1 1 1
a0b0c1 1 1 −1 1 −1 −1 −1
a0b1c0 1 −1 1 −1 1 −1 −1
a0b1c1 1 −1 −1 −1 −1 1 1
a1b0c0 −1 1 1 −1 −1 1 −1
a1b0c1 −1 1 −1 −1 1 −1 1
a1b1c0 −1 −1 1 1 −1 −1 1
a1b1c1 −1 −1 −1 1 1 1 −1

Every contrast divides the treatments into two groups of four. We can use any contrast to define the
1/2 rep. We choose to use ABC because it is the highest order interaction. The ABC contrast defines
two groups of treatments

ABC coefficients
ABC(1) ABC(−1)
a0b0c0 a0b0c1
a0b1c1 a0b1c0
a1b0c1 a1b0c0
a1b1c0 a1b1c1

These are just the two blocks obtained when confounding a 23 into two blocks of 4. Each of these
groups of four treatments comprises a 1/2 replicate. It is irrelevant which of the two groups is
actually used. These 1/2 replicates are referred to as resolution III designs because the defining
contrast involves three factors.

The 1/2 rep. involves only four treatments, so there can be at most three orthogonal treatment
contrasts. All seven effects cannot be estimated. The aliasing of effects is determined by the mod-
ular multiplication illustrated earlier. To determine the aliases, multiply each effect by the defining
contrast ABC. For example, to find the alias of A, multiply

A×ABC = A2BC = BC

where any even power is treated as 0, so A2 = A0 = 1. Thus A and BC are aliased; we cannot tell
them apart; they are two names for the same contrast. Similarly,

BC×ABC = AB2C2 = A.

The aliasing structure for the entire 1/2 rep. based on ABC is given below.

Effect ×ABC Alias
A = BC
B = AC
C = AB
AB = C
AC = B
BC = A
ABC —

In this experiment, we completely lose any information about the defining contrast, ABC. In ad-
dition, we cannot tell the main effects from the two-factor interactions. If we had no interest in
two-factor interactions, this design would be fine. Generally, if there are only three factors each at
two levels, there is little reason not to perform the entire experiment. As mentioned earlier, fractional
replication is primarily of interest when there are many factors so that even a fractional replication
involves many observations.

Another way to examine aliasing is by looking at the table of contrast coefficients when we use
only 1/2 of the treatments. We consider the 1/2 rep. in which the treatments have ABC coefficients
of 1. The contrasts, when restricted to the treatments actually used, have the following coefficients:
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Treatment A B C AB AC BC ABC
a0b0c0 1 1 1 1 1 1 1
a0b1c1 1 −1 −1 −1 −1 1 1
a1b0c1 −1 1 −1 −1 1 −1 1
a1b1c0 −1 −1 1 1 −1 −1 1

All of the columns other than ABC still define contrasts in the four treatment combinations; each
column has two 1s and two −1s. However, the contrast defined by A is identical to the contrast
defined by its alias, BC. In fact, this is true for each contrast and its alias.

Consider now the choice of a different contrast to define the 1/2 rep. Instead of ABC, we might
choose AB. Again, we lose all information about the defining contrast AB and we have aliases
involving the other effects. The AB contrast defines two groups of treatments

AB coefficients
AB(1) AB(−1)
a0b0c0 a0b1c0
a0b0c1 a0b1c1
a1b1c0 a1b0c0
a1b1c1 a1b0c1

Each of these groups of four treatments comprises a 1/2 replicate. Again, it is irrelevant which of
the two groups is actually used. Both groups determine resolution II designs because the defining
contrast involves two factors.

The aliasing is determined by modular multiplication with the defining contrast AB. To find the
alias of A multiply

A×AB = A2B = B.

The alias of BC is
BC×AB = AB2C = AC.

The aliasing structure for the entire 1/2 rep. based on AB is given below.

Effect ×AB Alias
A = B
B = A
C = ABC
AB —
AC = BC
BC = AC
ABC = C

With this 1/2 rep., we do not even get to estimate all of the main effects because A is aliased with
B. 2

EXAMPLE 17.2.2. A 1/4 replicate of a 24 experiment
In Example 17.1.2 we considered confounding ABC and BCD in a 24 experiment. The four blocks
are given below.

ABC(1) ABC(−1)
BCD(1) BCD(−1) BCD(1) BCD(−1)
a0b0c0d0 a0b0c0d1 a0b0c1d1 a0b0c1d0
a0b1c1d0 a0b1c1d1 a0b1c0d1 a0b1c0d0
a1b0c1d1 a1b0c1d0 a1b0c0d0 a1b0c0d1
a1b1c0d1 a1b1c0d0 a1b1c1d0 a1b1c1d1

With ABC and BCD defining the blocks,

ABC×BCD = AB2C2D = AD
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is also confounded with blocks. Any one of these blocks can be used as a 1/4 replicate of the 24

experiment. The smallest defining contrast is the two-factor effect AD, so this 1/4 replicate is a
resolution II design.

The aliasing structure of the 1/4 rep. must account for all three of the defining contrasts. An
effect, say A, is aliased with

A×ABC = A2BC = BC,

A×BCD = ABCD,

and
A×AD = A2D = D.

Thus we cannot tell main effects A from main effects D, from BC interaction, or from ABCD inter-
action. After all, what do you expect when you take four observations to learn about 16 treatments?
Similar computations show that

B = AC =CD = ABD

and
C = AB = BD = ACD.

This is the complete aliasing structure for the 1/4 rep. There are 4 observations, so there are 3
degrees of freedom for treatment effects. We can label these effects as A, B, and C with the under-
standing that we cannot tell aliases apart, so we have no idea if an effect referred to as A is really
due, entirely or in part, to D, BC, or ABCD. 2

Fractional replication is primarily of value when you have large numbers of treatments, require
information only on low order effects, can assume that high order effects are negligible, and can
find a design that aliases low order effects with high order effects.

EXAMPLE 17.2.3. Fractional replication of a 28 experiment
A 28 experiment involves eight factors, A through H, and 256 treatments. It may be impractical to
take that many observations. Consider first a 1/8 = 2−3 replication. This involves only 28−3 = 32
treatment combinations, a much more manageable number than 256. A 1/8 = 2−3 rep. requires
3 defining contrasts, say ABCD, EFGH, and CDEF . Multiplying pairs of the defining contrasts
and multiplying all three of the contrasts give the other contrasts that implicitly define the 1/8 rep.
The other implicit defining contrasts are ABED, CDGH, ABCDEFGH, and ABGH. Note that the
smallest defining contrast has four terms, so this is a resolution IV design.

The aliases of an effect are obtained from multiplying the effect by all 7 of the defining contrasts;
e.g., for A the aliases are

A = A(ABCD) = A(EFGH) = A(CDEF) = A(ABED)

= A(CDGH) = A(ABCDEFGH) = A(ABGH)

or simplifying

A = BCD = AEFGH = ACDEF = BED = ACDGH = BCDEFGH = BGH.

With a resolution IV design, it is easily seen that main effects are only aliased with three-factor and
higher order effects. A two-factor effect, say AB, has aliases

AB = AB(ABCD) = AB(EFGH) = AB(CDEF) = AB(ABED)

= AB(CDGH) = AB(ABCDEFGH) = AB(ABGH)

or simplifying

AB =CD = ABEFGH = ABCDEF = ED = ABCDGH =CDEFGH = GH.
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Table 17.8: Pea data

n1 p0k0(59.8) n0 p0k1(55.5)
n1 p1k1(58.5) n0 p1k0(56.0)
The fractional replication is based on NPK.

Confounding is based on PK.

Unfortunately, at least some two-factor effects are aliased with other two-factor effects in a resolu-
tion IV design.

If we had constructed a 1/4 replicate, we could have chosen the defining contrasts in such a
way that two-factor effects were only aliased with three-factor and higher order effects. For exam-
ple, the defining contrasts ABCDE and DEFGH determine such a design. The additional defining
contrast is ABCDE(DEFGH) = ABCFGH. The smallest defining effect involves 5 factors, so this
has resolution V. In computing aliases, a two-factor term is multiplied by a five-factor or greater
term. The result is at least a three-factor term. Thus two-factor effects are aliased with 3 or higher
order effects. Similarly, main effects are aliased with 4 or higher order effects. A 1/4 replicate of a
28 experiment can provide information on all main effects and all two-factor interactions under the
assumption of no 3 or higher order interaction effects. 2

As mentioned, the 1/4 replicate given above is known as a resolution V design because the
smallest defining contrast involved a five-factor interaction. As should now be clear, in general, the
resolution of a 2n fractional replication is the order of the smallest defining contrast. To keep main
effects from being aliased with one another, one needs a resolution III or higher design. To keep
both main effects and two-factor effects from being aliased with one another, one needs a resolution
V or higher design.

Fractional replication with confounding

The two concepts of fractional replication and confounding can be combined in designing an ex-
periment. To illustrate fractional replication with confounding we consider a subset of the 23 data
in Table 17.6. The subset is given in Table 17.8. This is the first half of the first replication in Ta-
ble 17.6. The fractional replication is based on NPK. All of the observations have NPK contrast
coefficients of −1. The confounding is based on PK. The first block has PK contrast coefficients of
1 and the second block has PK contrast coefficients of −1.

The aliasing structure for the 1/2 rep. based on NPK is given below.

Effect ×NPK Alias
N = PK
P = NK
K = NP
NP = K
NK = P
PK = N
NPK —

Blocks are confounded with PK and PK is aliased with N, so N is also confounded with blocks.
With only 4 observations, we can compute sums of squares for only 3 effects. Ignoring the two-
factor interactions, those effects are blocks, P, and K.

Perhaps the simplest way to perform the analysis of such designs is to begin by ignoring the
blocking. If the blocking is ignored, the analysis is just that of a fractional factorial and can be
conducted as discussed in the next section. After computing all the sums of squares ignoring blocks,
go back and isolate the effects that are confounded with blocks. In this example, the fractional
factorial ignoring blocks gives sums of squares for N = PK, P = NK, and NP = K. Then observe
that the sum of squares for N is really the sum of squares for blocks.
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17.3 Analysis of unreplicated experiments

One new problem we have in a fractional replication is that there is no natural estimate of error
because there is no replication. We don’t even have observations on every factor combination, much
less multiple observations on treatments. We present two ways to proceed, one is to assume that
higher order interactions do not exist, the other is based on a graphical display of the effects that is
similar in spirit to a normal plot.

EXAMPLE 17.3.1. We consider a 1/2 rep. of a 25 that was reported by Hare (1988). The issue
is excessive variability in the taste of a dry soup mix. The source of variability was identified as a
particular component of the mix called the ‘intermix’ containing flavorful ingredients such as salt
and vegetable oil.

From each batch of intermix, the original data are groups of 5 samples taken every 15 minutes
throughout a day of processing. Thus each batch yields data for a balanced one-way analysis of
variance with N = 5. The data actually analyzed are derived from the ANOVAs on different batches.
There are two sources of variability in the original observations, the variability within a group of 5
samples and variability that occurs between 15 minute intervals. From the analysis of variance data,
the within group variability is estimated with the MSE and summarized as the estimated ‘capability’
standard deviation

sc =
√

MSE.

The ‘process’ standard deviation was defined as the standard deviation of an individual observation.
The standard deviation of an observation incorporates both the between group and the within group
sources of variability. The estimated process standard deviation is taken as

sp =

√
MSE +

MSTrts−MSE
5

,

where the 5 is the number of samples taken at each time, cf. Subsection 12.4.2. These two statistics,
sc and sp, are available from every batch of soup mix prepared and provide the data for analyzing
batches. The 1/2 rep. of a 25 involves different ways of making batches of soup mix. The factors in
the design are discussed later. For now, we analyze only the data on sp.

The two blocks obtained by confounding ABCDE in a 25 are reported in Table 17.9. Table 17.9
also presents an alternative form of identifying the treatments. In the alternative form, only the
letters with a subscript of 1 are reported. Hare’s experiment used the block consisting of treatments
with ABCDE contrast coefficients of 1.

There are five factors involved in the experiment. Intermix is made in a large mixer. Factor A
is the number of ports for adding vegetable oil to the mixer. This was set at either 1 (a0) or 3 (a1).
Factor B is the temperature of the mixer. The mixer can be cooled by circulating water through the
mixer jacket (b0) or the mixer can be used at room temperature (b1). Factor C is the mixing time,
60 seconds (c0) or 80 seconds (c1). Factor D is the size of the intermix batch, either 1500 pounds
(d0) or 2000 pounds (d1). Factor E is the delay between making the intermix and using it in the
final soup mix. The delay is either 1 day (e0) or 7 days (e1). Table 17.10 contains the data along
with the aliases for a 1/2 rep. of a 25 based on ABCDE. The order in which the treatments were run
was randomized and they are listed in that order. Batch number 7 contains the standard operating
conditions. Note that this is a resolution V design: all main effects are confounded with four-factor
interactions and all two-factor interactions are confounded with three-factor interactions. If we are
prepared to assume that there are no three- or four-factor interactions, we have estimates of all the
main effects and two-factor interactions.

One way to perform the analysis is to compute the sums of squares for each contrast, however
the simplest way to obtain an analysis is to trick a computer program into doing most of the work.
If we could drop one of the factors, we would have observed a full factorial (without replication) on
the remaining factors. For example, if we dropped factor E, and thus dropped the e terms from all
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Table 17.9: 1/2 reps. from a 25 based on ABCDE

ABCDE(1) Treatment ABCDE(−1) Treatment
a0b0c0d0e0 (1) a0b0c0d0e1 e
a0b0c0d1e1 de a0b0c0d1e0 d
a0b0c1d0e1 ce a0b0c1d0e0 c
a0b0c1d1e0 cd a0b0c1d1e1 cde
a0b1c0d0e1 be a0b1c0d0e0 b
a0b1c0d1e0 bd a0b1c0d1e1 bde
a0b1c1d0e0 bc a0b1c1d0e1 bce
a0b1c1d1e1 bcde a0b1c1d1e0 bcd
a1b0c0d0e1 ae a1b0c0d0e0 a
a1b0c0d1e0 ad a1b0c0d1e1 ade
a1b0c1d0e0 ac a1b0c1d0e1 ace
a1b0c1d1e1 acde a1b0c1d1e0 acd
a1b1c0d0e0 ab a1b1c0d0e1 abe
a1b1c0d1e1 abde a1b1c0d1e0 abd
a1b1c1d0e1 abce a1b1c1d0e0 abc
a1b1c1d1e0 abcd a1b1c1d1e1 abcde

Table 17.10: Hare’s 1/2 rep. from a 25 based on ABCDE

Batch Treatment sc sp Aliases
1 a0b0c0d1e1 de .43 .78 A = BCDE
2 a1b0c1d1e1 acde .52 1.10 B = ACDE
3 a1b1c0d0e0 ab .58 1.70 C = ABDE
4 a1b0c1d0e0 ac .55 1.28 D = ABCE
5 a0b1c0d0e1 be .58 .97 E = ABCD
6 a0b0c1d0e1 ce .60 1.47 AB = CDE
7 a0b1c0d1e0 bd 1.04 1.85 AC = BDE
8 a1b1c1d1e0 abcd .53 2.10 AD = BCE
9 a0b1c1d1e1 bcde .38 .76 AE = BCD

10 a1b1c0d1e1 abde .41 .62 BC = ADE
11 a0b0c1d1e0 cd .66 1.09 BD = ACE
12 a0b0c0d0e0 (1) .55 1.13 BE = ACD
13 a1b0c0d0e1 ae .65 1.25 CD = ABE
14 a1b1c1d0e1 abce .72 .98 CE = ABD
15 a1b0c0d1e0 ad .48 1.36 DE = ABC
16 a0b1c1d0e0 bc .68 1.18

the treatment combinations in Table 17.10, we would have observations on all 16 of the treatment
combinations in the 24 defined by A, B, C, and D. It is easy to find computer programs that will
analyze a full factorial. Table 17.11 gives the results of an analysis in which we have ignored the
presence of factor E. Table 17.11 contains two columns labeled ‘Source’. The one on the left gives
the sources from the full factorial on A, B, C, and D; the one on the right replaces the higher order
interactions from the full factorial with their lower order aliases. Table 17.11 also contains a ranking
of the sizes of the sums of squares from smallest to largest.

One method of analysis is to assume that no higher order interactions exist and form an error
term by pooling the estimable terms that involve only higher order interactions. A particular term
involves only higher order interactions if the term and all of its aliases are high order interactions.
What we mean by high order interactions is intentionally left ill defined to maintain flexibility. In
this design, unless you consider second-order interactions as higher order, there are no terms involv-
ing only higher order interactions. Most often, higher order interactions are taken to be interactions
that only involve three or more factors, but in designs like this, one might be willing to consider
two-factor interactions as higher order to obtain an error term for testing main effects. (I personally
would not be willing to do it with these data.) Often terms that involve only three and higher order
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Table 17.11: ANOVA for sp

Source Source d f SS Rank
A A 1 0.0841 10
B B 1 0.0306 7
C C 1 0.0056 4
D D 1 0.0056 3
AB AB 1 0.0009 1
AC AC 1 0.0361 8
AD AD 1 0.0036 2
BC BC 1 0.0182 5
BD BD 1 0.1056 12
CD CD 1 0.0210 6
ABC DE 1 0.3969 13
ABD CE 1 0.0729 9
ACD BE 1 0.6561 14
BCD AE 1 0.0930 11
ABCD E 1 0.8836 15
Total Total 15 2.4140

Table 17.12: Analysis of variance on sp for Hare’s data

Source d f SS MS F
A 1 0.0841 0.0841 0.60
B 1 0.0306 0.0306 0.22
C 1 0.0056 0.0056 0.04
D 1 0.0056 0.0056 0.04
E 1 0.8836 0.8836 6.29
Error 10 1.4044 0.1404
Total 15 2.4140

interactions are pooled into an error, but in designs with more factors and many high order inter-
actions, one might wish to estimate three-factor interactions and use only terms involving four or
more factors in a pooled error.

If we assume away all two-factor and higher order interactions for the present data, the ANOVA
table becomes that displayed in Table 17.12. With this error term, only factor E appears to be
important. As we will see later, most of the important effects in these data seem to be interactions,
so the error term based on no interactions is probably inappropriate.

Rather than assuming away higher order interactions, Daniel (1959) proposed an alternative
method of analysis based on an idea similar to normal plotting. Recall that in a normal plot, the data
from a single sample are ordered from smallest to largest and plotted against the expected order
statistics from a standard normal distribution. In other words, the smallest observation in a sample
of size, say, 13 is plotted against the expected value for the smallest observation in a sample of
size 13 from a N(0,1) distribution. The second smallest observation is plotted against the expected
value for the second smallest observation in a sample of size 13 from a N(0,1) distribution, and
so on. This plot should approximate a straight line if the data are truly normal, the slope of the
plot estimates the standard deviation of the population, and the intercept estimates the population
mean. One approach to a graphical analysis of 2n experiments is to perform a normal plot on the
estimated contrasts. Daniel (1959) used a plot of the absolute values of the estimated contrasts. Here
we discuss a graphical method of analysis for unreplicated and fractional factorials that applies a
similar idea to the sums of squares in Table 17.11.

Assume a standard ANOVA model with independent N(0,σ2) errors. The analysis looks for
departures from the assumption that none of the factors have an effect on the observations. Under
the assumption of no effects, every mean square gives an estimate of σ2 and every sum of squares
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Table 17.13 χ
2(1) scores, ordered sums of squares, and partial sums of the sums of squares for Hare’s (1988)

data

χ2(1) Ordered Partial
scores SS sums

0.00615 0.0009 0.0009
0.02475 0.0036 0.0045
0.07711 0.0056 0.0101
0.07711 0.0056 0.0157
0.16181 0.0182 0.0339
0.23890 0.0210 0.0549
0.33539 0.0306 0.0855
0.45494 0.0361 0.1216
0.60283 0.0729 0.1945
0.78703 0.0841 0.2786
1.02008 0.0930 0.3716
1.32330 0.1056 0.4772
1.73715 0.3969 0.8741
2.35353 0.6561 1.5302
3.46977 0.8836 2.4138

has the distribution
SS
σ2 ∼ χ

2(1),

where the degrees of freedom in the χ2 are 1 because each effect has 1 degree of freedom. Moreover,
the sums of squares are independent, so in the absence of treatment effects, the sums of squares
form a random sample from a σ2χ2(1) distribution. If we order the sums of squares from smallest
to largest, the ordered sums of squares should estimate the expected order statistics from a σ2χ2(1)
distribution. Plotting the ordered sums of squares against the expected order statistics, we should
get an approximate straight line through the origin with a slope of 1. In practice, we cannot obtain
expected values from a σ2χ2(1) distribution because we do not know σ2. Instead, we plot the
ordered sums of squares against the expected order statistics of a χ2(1) distribution. This plot should
be an approximate straight line through the origin with a slope of σ2.

Table 17.13 contains the statistics necessary for the χ2 plot of the 15 effects from Hare’s data.
Figure 17.3 contains the plot. The χ2(1) scores in Table 17.13 are approximate expected order
statistics. They are computed by applying the inverse of the χ2(1) cumulative distribution function
to the values i/(n + 1), where i goes from 1 to 15 and n = 15. This is easily done in Minitab.
Table 17.13 also contains partial sums of the ordered sums of squares; these values will be used in
the next section.

The key to the graphical analysis is that nonnegligible treatment effects cause the mean square
to estimate something larger than σ2. The sums of squares for nonnegligible effects should show
up in the plot as inappropriately large values. The lower 12 observations in Figure 17.3 seem to
fit roughly on a line, but the three largest observations seem to be inconsistent with the others.
These three observations correspond to the most important effects in the data. From the rankings in
Table 17.11, we see that the important effects are E, BE, and DE.

We need to evaluate the meaning of the important effects. There is no question of breaking
things down into contrasts because all of the effects already have only one degree of freedom. We
need only interpret the meanings of the specific effects. The largest effect is due to E, the delay in
using the intermix. However, this effect is complicated by interactions involving the delay.

The means for the four combinations of B and E are given below.
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Figure 17.3: χ
2(1) plot of sums of squares.

N = 4 B
E b0 b1
e0 1.215 1.7075
e1 1.150 0.8325

The BE interaction is due to the fact that running the mixer at room temperature, b1, increases
variability if the intermix is used after one day, e0, but decreases variability if the intermix is used a
week later, e1. However, the variability under delay is smaller for both B levels than the variability
for immediate use with either B level. This suggests delaying use of the intermix.

The means for the four combinations of D and E are given below.

N = 4 D
E d0 d1
e0 1.3225 1.6000
e1 1.1675 0.8150

A large batch weight, d1, causes increased variability when the intermix is used immediately but
decreased variability with use delayed to 7 days. Again, it is uniformly better to delay.

Figure 17.4 contains a plot of the remaining sums of squares after deleting the three largest
effects. The plot indicates that the four largest values are somewhat larger than the remaining effects.
The fourth through seventh largest effects are BD, AE, A, and CE. These may be important but the
results are less clear. Figure 17.5 is an alternative to Figure 17.4. Figure 17.4 simply dropped the
three largest cases in Figure 17.3 to give a better view of the remainder of the plot. In Figure 17.5
the three largest sums of squares from Figure 17.3 are dropped but the expected order statistics are
recomputed for a sample of size 15−3 = 12.

The suggestions of treatment effects in these plots are not sufficiently clear to justify their use
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2(1) plot of sums of squares, largest 3 cases deleted, expected order statistics recomputed.
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in the analysis. Recalling that the current process is batch 7 with one vegetable oil port, room
temperature mixing, 60 seconds mixing time, 2000 pound batches, and a 1 day delay, we would
recommend changing to a 7 day delay. 2

Minitab commands

Below are given Minitab commands for obtaining the analysis given. The data file had eight
columns, the first six were indicators for batch and factors A, B, C, D and E, respectively. Columns
7 and 8 contained the data on sc and sp.

MTB > names c8 ’y’ c2 ’a’ c3 ’b’ c4 ’c’ c5 ’d’ c6 ’e’

MTB > anova c8=c2|c3|c4|c5 - c2*c3*c4*c5

MTB > note AFTER SEEING THE ANOVA, ENTER THE SUMS

MTB > note OF SQUARES INTO c10.

MTB > set c10

DATA> 841 306 56 56 9 361 36 182

DATA> 1056 210 3969 729 6561 930 8836

DATA> end

MTB > let c10=c10/10000

MTB > note CONSTRUCT CHI-SQUARED SCORES AND PLOT.

MTB > rank c10 c11

MTB > let c11=c11/16

MTB > invcdf c11 c12;

SUBC> chisquare 1.

MTB > plot c10 c12

Note that c6 was not used in the anova command. Factor E was dropped to deal with the fractional
nature of the factorial. Minitab’s ANOVA command requires an error term to exist in the model.
The command given above specifies a full factorial model (c2|c3|c4|c5) but subtracts out the ABCD
interaction (c2 ∗ c3 ∗ c4 ∗ c5) and sets it equal to the error. Thus, Minitab’s error term is actually
the ABCD interaction. The command ‘set c10’ is used to create a data column that contains the
sums of squares for the various effects. The commands involving c11 and c12 are used to get the
approximate expected order statistics from a χ2(1) and to plot the ordered sums of squares against
the expected order statistics. After identifying the important effects, the ANOVA command can be
repeated with various factors deleted to obtain the necessary means tables.

Computing techniques

The technique of computing the sums of squares in a fractional factorial by dropping factors and
performing a full factorial analysis on the remaining factors is quite general, but when choosing
factors to be dropped every defining contrast must involve at least one dropped factor. For example,
if we used ABCD as a defining contrast in a 1/2 rep. of a 25, we must drop A, B, C, or D to compute
a full factorial. Dropping any of these will give all 16 treatment combinations in a 24 based on E and
the other three factors. On the other hand, dropping E does not give all 16 treatments combinations
that are present in a 24 based on factors A, B, C, and D, nor does dropping E give the appropriate
sums of squares. In particular, a factorial analysis with factors A, B, C, and D normally has terms for
both A and BCD, but these are aliased in the 1/2 rep. based on ABCD. Thus the full factorial cannot
be computed. (If you are confused, do Exercise 17.6.7.)

In a 1/4 rep, two defining contrasts are used with another contrast also lost. In the analysis of a
1/4 rep, two factors are dropped and a full factorial is computed on the remaining factors. Again,
at least one of the dropped factors must be in each of the three defining contrasts. For example, in a
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25 with defining contrasts BCD, CDE and implicitly BE, we could not drop the two factors C and D
because the defining contrast BE contains neither of these. In particular, dropping C and D leads to
a factorial on A, B, and E, but the main effects for B and E are aliased. Similarly, the factor A cannot
be one of those dropped to obtain a full factorial. Since A is not contained in any of the defining
contrasts, the other dropped factor would have to be in all three. This is impossible because if a
factor is in two defining contrasts, when they are multiplied to obtain the third defining contrast that
factor will not be present.

Generally, in a 1/2s replication of a 2n factorial there are 2n−s−1 distinct groups of effects that
are aliased. We need to find the sum of squares for each group. To do this we drop s appropriately
chosen factors and compute a full factorial analysis on the remaining factors. The effects in this
analysis of a 2n−s factorial represent all of the alias groups in the 1/2s replication. We merely have
to identify the lowest order, and thus most interesting, effects in each group of aliases. Having
at least one dropped factor in every defining contrast ensures that the effects arising in the 2n−s

factorial are all aliased only with effects that involve a dropped factor and thus are not aliased with
any other effect in the 2n−s factorial. Therefore all the effects in the 2n−s factorial are in distinct
alias groups and we have sums of squares for every alias group.

17.4 More on graphical analysis

Normal and χ2 graphs of effects give valuable information on the relative sizes of effects but it is
difficult to judge which effects are truly important and which could be the result of random variation.
Many such plots give the false impression that there are a number of important effects. The problem
is that we tend to see what we look for. In a normal plot of, say, regression residuals, we look for
a straight line and are concerned if the residuals obviously contradict the assumption of normality.
When analyzing a saturated linear model, we expect to see important effects, so instead of looking
for an overall line, we focus on the extreme order statistics. Doing so can easily lead us astray.

In this section we consider two methods for evaluating significant effects in a χ2 plot. The first
method was originally suggested by Holms and Berrettoni (1969). It uses Cochran’s (1941) test
for homogeneity (equality) of variances. The second is similar in spirit to the simulation envelopes
suggested by Atkinson (1981) for evaluating normal plots of regression residuals. The methods are
introduced in relation to Hare’s data but they apply quite generally. Both methods provide envelopes
for the χ2 plots. A χ2 plot that goes outside the envelope suggests the existence of significant effects.
Box and Meyer (1986), Lenth (1989), and Berk and Picard (1991) recently proposed alternative
methods for the analysis of contrasts in unreplicated factorials.

Multiple maximum tests

Cochran’s test for homogeneity of variances applies when there are, say, n ≥ 2 independent χ2(r)
estimates of a variance. In a balanced one-way ANOVA with a treatments, N observations per
group, and independent N(0,σ2) errors, Cochran’s test applies to the individual group variances s2

i .
Cochran’s n equals a and his r is N−1. In this case, Cochran’s test statistic is the maximum of the
variance estimates divided by the sum of the variance estimates. The test is rejected for large values
of the statistic. In analyzing Hare’s unreplicated factorial, if there are no significant effects, the 15
sums of squares in Hare’s data are independent χ2(1) estimates of σ2. Thus Cochran’s procedure
can be applied with n= 15 and r = 1 to test the hypothesis that all the sums of squares are estimating
the same variance.

Cochran’s test is best suited for detecting a single variance that is larger than the others. (Under
the alternative, large terms other than the maximum get included in the total, making it more difficult
to detect unusual behavior in the maximum.) In analyzing unreplicated linear models we often
expect more than one significant effect. In the spirit of the multiple range tests used for comparing
pairs of means in analysis of variance, we use Cochran’s test repeatedly to evaluate the ordered sums
of squares. Thus we define C j as the jth smallest of the sums of squares divided by the sum of the
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Table 17.14: Percentiles for Cochran’s statistic with r = 1 and Cochran’s statistics for Hare’s data

j .01 .05 .10 .15 C j
2 0.9999 0.9985 0.9938 0.9862 0.80000
3 0.9933 0.9670 0.9344 0.9025 0.55446
4 0.9677 0.9065 0.8533 0.8096 0.35669
5 0.9279 0.8413 0.7783 0.7311 0.53687
6 0.8826 0.7808 0.7141 0.6668 0.38251
7 0.8377 0.7270 0.6598 0.6139 0.35789
8 0.7945 0.6798 0.6138 0.5696 0.29688
9 0.7549 0.6385 0.5742 0.5320 0.37481

10 0.7176 0.6020 0.5399 0.4997 0.30187
11 0.6837 0.5697 0.5100 0.4716 0.25027
12 0.6528 0.5411 0.4834 0.4469 0.22129
13 0.6248 0.5152 0.4598 0.4249 0.45407
14 0.5987 0.4921 0.4386 0.4053 0.42877
15 0.5749 0.4711 0.4196 0.3876 0.36606

j smallest sums of squares. From Table 17.13, the values of C j are obtained by taking the ordered
sums of squares and dividing by the partial sums of the ordered sums of squares. Each value of C j is
then compared to an appropriate percentile of Cochran’s distribution based on having j estimates of
the variance. Note that such a procedure does not provide any control of the experimentwise error
rate for the multiple comparisons. Weak control can be achieved by first performing an overall test
for equality of variances and then evaluating individual C js only if this overall test is significant.
One such choice could be Cochran’s test for the entire collection of sums of squares, but that seems
like a poor selection. As mentioned, Cochran’s test is best at detecting a single unusual variance;
having more than one large variance (as we often expect to have) reduces the power of Cochran’s
test. To control the experimentwise error rate, it is probably better to use alternative tests for equality
of variances such as Bartlett’s (1937) or Hartley’s (1938) tests, see Snedecor and Cochran (1980).

Table 17.14 gives the values of the C j statistics and various percentiles of Cochran’s distribution.
Note that the 13th largest effect exceeds the .15 percentage point and is almost significant at the
.10 level. While a significance level of .15 is not commonly thought to be very impressive, in an
unreplicated experiment one would not expect to have a great deal of power, so the use of larger
α levels may be appropriate. Having concluded that the 13th effect is significant, it is logical to
conclude that all larger effects are also significant. Once we have a single significant effect, testing
the larger effects makes little sense. For larger effects, the sum of squares in the denominator of
Cochran’s statistic is biased by the inclusion of the sum of squares for the 13th effect. Moreover, if
the 13th effect is so large as to be identified as significant, effects that are even larger should also
be significant. Note that for Hare’s data the test of the 14th effect is also significant at the .15 level.
This simply compounds the evidence for the significance of the 14th effect.

The commonly available tables for Cochran’s distribution are inadequate for the analysis just
given. The α level percentage points in Table 17.14 were obtained by evaluating the inverse of the
cumulative distribution function of a Beta(r/2,r( j−1)) distribution at the point 1−α/ j. These are
easily obtained in Minitab. Cochran (1941) notes that these values are generally a good approxi-
mation to the true percentage points and that they are exact whenever the true percentage point is
greater than .5. Moreover, the true significance level corresponding to a nominal significance level
of α in Table 17.14 is at most α and at least α−α2/2, so the true significance level associated with
the .15 values listed in Table 17.14 is between .13875 and .15 for j = 10, . . . ,15 and is exactly .15
for j = 2, . . . ,9.

Most tests for equality of variances, including Cochran’s test, are notoriously sensitive to non-
normality – so much so that they are rarely used in practice. However the analysis of variance F test
is not noted for extreme sensitivity to nonnormality, even though it is a test for the equality of two
variances. This is probably because the numerator mean square is computed from sample means
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Figure 17.6: χ
2(1) plot for Hare’s data with 15% Cochran upper envelope.

and sample means tend to be reasonably normal. The current application of Cochran’s test should
benefit in the same way. The sums of squares in this example are essentially computed from the
difference between two sample means each based on 8 observations. Thus the sensitivity to non-
normality should be mitigated. Of course for nonnormal data the sums of squares are unlikely to be
independent, but the estimated effects are still uncorrelated.

The multiple maximum procedure is easily incorporated into χ2 plots. Figure 17.6 contains the
χ2(1) plot for Hare’s data along with an upper envelope. The upper envelope is the product of the
Cochran 15% points and the partial sums from Table 17.13. The 13th and 14th largest sums of
squares exceed the upper envelope, indicating that the corresponding maximum tests are rejected.

Simulation envelopes

Figure 17.7 contains the χ2(1) plot for Hare’s data with a simulation envelope. Actually, the plot
uses the standardized sums of squares, i.e., the sums of squares divided by the total sum of squares.
Obviously, dividing each sum of squares by the same number has no effect on the visual interpre-
tation of the plot. The simulation envelope is based on 99 analyses of randomly generated standard
normal data. The upper envelope is the maximum for each order statistic from the 99 replications
and the lower envelope is the minimum of the replications. Performing 99 analyses of a 24 experi-
ment is time consuming; it is computationally more efficient just to take 99 random samples from a
χ2(1) distribution, standardize them, and order them. Unlike Atkinson’s (1981) residual envelopes
for regression, having divided all the sums of squares by the total, the same envelopes can be used
for any subsequent analysis of 15 sums of squares each having one degree of freedom.

There are two prominent features in Figure 17.7. The 12th effect is barely below the lower
envelope and the 14th effect is barely above the upper envelope. All of the sums of squares have
been divided by the total, so the low value for the 12th effect indicates that the sum of squares for
the 12th effect has been divided by a number that is too large. In other words, the sum of squares
total is too large to be consistent with the 12 smallest sums of squares. This indicates that there
must be significant effects among the 3 largest terms. The simulation envelope does not indicate
which of the 3 larger terms are real effects; violation of the envelope only suggests that the envelope
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Figure 17.7: χ
2(1) plot for Hare’s data with simulated envelope.

is inappropriate, i.e., that there are real effects. Visual interpretation of the graph must be used to
identify the important effects.

Outliers

It is frequently suggested that outliers can be spotted from patterns in the plots. Consider a single
outlier. Every effect contrast is the sum of 8 observations minus the sum of the other 8, thus if the
outlier is not on the treatment a0b0c0d0e0, the outlier is added into either 7 or 8 effect contrasts and
is subtracted in the others. In a normal plot, such an outlier should cause a jump in the level of the
line involving about half of the effects. In a χ2 plot, a single outlier should cause all of the effects
to look large, i.e., the intercept of the plot should not be zero. If two outliers exist in the data, they
should cancel each other in about half of the effect contrasts and compound each other in the other
effects. Thus, half of the effects should appear to be important in the plot. In my experience the
natural variation in the plots is large enough that it is difficult to identify even very large outliers
based on these facts.

17.5 Augmenting designs for factors at two levels

When running a sequence of experiments, one may find that a particular 2q experiment or fractional
replication is inadequate to answer the relevant questions. In such cases it is often possible to add
more points to the design to gain the necessary information. After running an initial fractional
replication, a particular factor, say A, may be identified as being of primary importance. It is then of
interest to estimate the main effect A and all two-factor interactions involving A without their being
aliased with other two-factor interactions.

Box and Draper (1987, p. 156) suggest a method for adding points to the original design to
achieve this end. Christensen and Huzurbazar (1996) also treat this method and provide a proof.
Consider the resolution III, 1/16th replication of a 27 experiment defined by ABD(1), ACE(1),
BCF(1), ABCG(1). Box and Draper suggest augmenting the design with the 1/16th replication
ABD(−1), ACE(−1), BCF(1), ABCG(−1). The idea is that 1s have been changed to −1s in all
defining contrasts that include A.
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Together, the two 1/16th replications define a 1/8th replication. The nature of this 1/8th repli-
cation can be explored by adding an imaginary factor H to the experiment. As H is imaginary,
obviously it can have no effect on the responses. Any effects that involve H are simply error. For
example, the DH interaction examines whether the effect for D changes from the low to high level
of H. As there are no low and high levels of H, any observed change must be due to random er-
ror. The treatments included in the augmented 1/8th rep. of the 27 given previously are identical to
those obtained from the 1/16th rep. of the 28 defined by ABDH(1),ACEH(1),BCF(1),ABCGH(1).
Here H has been added to any defining effect that includes A. In fact, if we want to consider the
augmented 1/8th rep. as occurring in two blocks, the imaginary factor H is the effect confounded
with blocks.

Now consider the aliasing structure of this 28 design. In constructing any 2q design in 16 blocks,
there are 16− 1 effects confounded with the blocks, i.e., with the possible fractional replications.
All of these effects are involved in determining the aliases of the 1/16th rep. To get the complete set
of 15 defining effects we must multiply the nominal defining effects together and multiply products
of the nominal defining effects with other nominal defining effects. Using an asterisk (∗) to identify
the nominal defining effects and performing the multiplications systematically, the complete set of
defining effects is

ABDH∗,ACEH∗,BCDE,BCF∗,ACDFH,ABEFH,DEF,ABCGH∗,

CDG,BEG,AFGH,ADEGH,BDFG,CEFG,ABCDEFGH.

This is still a resolution III design but now every defining effect that includes A has at least three
other factors, one of which is the imaginary H. Thus multiplying A times the defining effects we
see that A is not aliased with any two-factor or main effects. Moreover, a two-factor effect involving
A, say AB, is only aliased with other two-factor effects that involve H. In the case of AB, the only
two-factor effect that it is aliased with is DH. But H is imaginary, so two-factor effects involving A
are not aliased with any real two-factor effects.

Box and Draper (1987) and Christensen and Huzurbazar (1996) provide a similar solution to
the problem of augmenting a design to allow estimation of all main effects unaliased with two-
factor effects. Again consider the resolution III, 1/16th replication of a 27 experiment defined by
ABD(1),ACE(1),BCF(1),ABCG(1). For this problem they suggest adding the 1/16th fraction de-
fined by ABD(−1),ACE(−1),BCF(−1),ABCG(1). Here 1s have been changed to−1s in the defin-
ing effects that involve an odd number of factors. This augmented 1/8th rep. design is equiva-
lent to adding an imaginary factor H and using the 1/16th rep. of the 28 experiment defined by
ABDH(1),ACEH(1),BCFH(1),ABCG(1). In this approach, any defining effect with an odd num-
ber of terms has H added to it. As before, any effects that involve H are error. Adding H in this
manner has changed the resolution III design into a resolution IV design. Thus all main effects
are aliased with three-factor or higher terms. As before, if we view the augmented 1/8th rep. as
occurring in two blocks, H is the effect confounded with blocks.

17.6 Exercises

EXERCISE 17.6.1. Analyze Hare’s sc data that was given in Table 17.10.

EXERCISE 17.6.2. To consider the effect of a possible outlier, reanalyze Hare’s sp data, changing
the largest value, the 2.10 in Table 17.10, into the second largest value, 1.85.

EXERCISE 17.6.3. Reanalyze Hare’s sc data after identifying and deleting the possible outlier.
Does having an outlier in that particular batch suggest anything?

EXERCISE 17.6.4. Consider a 26 factorial. Give a good design for performing this in blocks of
sixteen. Try to avoid confounding main effects and two-factor interactions with blocks.



50617. CONFOUNDING AND FRACTIONAL REPLICATION IN 2N FACTORIAL SYSTEMS

EXERCISE 17.6.5. Consider a 26 factorial. Give a good design for performing a 1/4 replication.
Try to avoid aliasing main effects with each other and with two-factor interactions. Also try to avoid
aliasing two-factor interactions with other two-factor interactions.

EXERCISE 17.6.6. Consider a 26 factorial. Give a good design for performing a 1/2 replication
in blocks of 16. Do not confound main effects or two-factor interactions with blocks. Try to avoid
aliasing main effects with each other and with two-factor interactions. Also try to avoid aliasing
two-factor interactions with other two-factor interactions.

EXERCISE 17.6.7. Consider a 1/2 rep. of a 25 with factors A, B, C, D, E and ABCD defining
the 1/2 rep. Write down the treatment combinations in the 1/2 rep. Now drop factor D from the
analysis. In particular, write down all the treatment combinations in the 1/2 rep. but delete all the
d terms from the treatments. Does this list contain all the treatments in a 24 on factors A, B, C, E?
Now return to the original 1/2 rep., drop factor E, and list the treatment combinations. Does this
list contain all the treatments in a 24 on factors A, B, C, D?



Chapter 18

Nonlinear regression

Most relationships between predictor variables and the mean values of observations are nonlinear.
Fortunately, the linear regression models of Chapters 13, 14, and 15 can be used in a wide variety of
situations. Taylor’s theorem from calculus indicates that linear models can make good approximate
models to nonlinear relationships. However, when you have good knowledge about the relation-
ship between mean values and predictor variables, nonlinear regression provides a way to use that
knowledge and thus can provide much better models. The biggest difficulty with nonlinear regres-
sion is that to use it you need detailed knowledge about the process generating the data, i.e., you
need a good idea about the appropriate nonlinear relationship between the predictor variables and
the mean values of the observations. Nonlinear regression is a technique with wide applicability in
the biological and physical sciences.

From a statistical point of view, nonlinear regression models are much more difficult to work
with than linear regression models. It is harder to obtain estimates of the parameters. It is harder to
do good statistical inference once those parameter estimates are obtained. Section 1 introduces non-
linear regression models. In section 2 we discuss parameter estimation. Section 3 examines methods
for statistical inference. Section 4 considers the choice that is sometimes available between doing
nonlinear regression and doing linear regression on transformed data. For a much more extensive
treatment of nonlinear regression see Seber and Wild (1989).

18.1 Introduction and examples

In Chapters 13, 14, and 15 we considered linear regression models

yi = β0 +β1xi1 + · · ·+βp−1xi p−1 + εi (18.1.1)

i = 1, . . . ,n. Written in vector form these are

yi = x′iβ + εi (18.1.2)

where x′i = (1,xi1, . . . ,xi p−1) and β = (β0, . . . ,βp−1)
′ These models are linear in the sense that

E(yi) = x′iβ where the unknown parameters, the βis, are multiplied by constants, the xi js, and added
together. In this chapter we consider an important generalization of this model, nonlinear regression.
A nonlinear regression model is simply a model for E(yi) that does not combine the parameters of
the model in a linear fashion.

EXAMPLE 18.1.1. Some nonlinear regression models
Almost any nonlinear function can be made into a nonlinear regression model. Consider the follow-
ing four nonlinear functions of parameters βi and a single predictor variable x:

f1(x;β0,β1,β2) = β0 +β1 sin(β2x)

f2(x;β0,β1,β2) = β0 +β1eβ2x

f3(x;β0,β1,β2) = β0
/
[1+β1eβ2x]

f4(x;β0,β1,β2,β3) = β0 +β1[eβ2x− eβ3x].

507
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Each of these can be made into a nonlinear regression model. Using f4, we can write a model for
data pairs (yi,xi), i = 1, . . . ,n:

yi = β0 +β1[eβ2xi − eβ3xi ]+ εi

≡ f4(xi;β0,β1,β2,β3)+ εi .

Similarly, for k = 1,2,3 we can write models

yi = fk(xi;β0,β1,β2)+ εi.

As usual, we assume that the εis are independent N(0,σ2) random variables. As alluded to earlier,
the problem is to find an appropriate function f (·) for the data at hand. 2

In general, for s predictor variables and p regression parameters we can write a nonlinear re-
gression model that generalizes model (18.1.1) as

yi = f (xi1, . . . ,xis;β0,β1, . . . ,βp−1)+ εi, εis indep. N(0,σ2)

i = 1, . . . ,n. This is quite an awkward way to write f (·), so we write the model in vector form as

yi = f (xi;β )+ εi, εis indep. N(0,σ2) (18.1.3)

where xi = (xi1, . . . ,xis)
′ and β = (β0,β1, . . . ,βp−1)

′ are vectors defined similarly to model (18.1.2).
Note that

E(yi) = f (xi;β ).

EXAMPLE 18.1.2. Pritchard, Downie, and Bacon (1977) reported data from Jaswal et al. (1969)
on the initial rate r of benzene oxidation over a vanadium pentoxide catalyst. The predictor variables
involve three temperatures, T , for the reactions, different oxygen and benzene concentrations, x1
and x2, and the observed number of moles of oxygen consumed per mole of benzene, x4. Based on
chemical theory, a steady state adsorption model was proposed. One algebraically simple form of
this model is

yi = exp[β0 +β1xi3]
1

xi2
+ exp[β2 +β3xi3]

xi4

xi1
+ εi. (18.1.4)

where y = 100/r and the temperature is involved through x3 = 1/T −1/648. The data are given in
Table 18.1.

The function giving the mean structure for model (18.1.4) is

f (x;β )≡ f (x1,x2,x3,x4;β0,β2,β3,β4) = exp[β0 +β1x3]
1
x2

+ exp[β2 +β3x3]
x4

x1
. (18.1.5)

2

18.2 Estimation

We used least squares estimation to obtain β̂is in linear regression; we will continue to use least
squares estimation in nonlinear regression. For the linear regression model (18.1.2), least squares
estimates minimize

SSE(β )≡
n

∑
i=1

[yi−E(yi)]
2
=

n

∑
i=1

[yi− x′iβ ]
2
.

For the nonlinear regression model (18.1.3), least squares estimates minimize

SSE(β )≡
n

∑
i=1

[yi−E(yi)]
2
=

n

∑
i=1

[yi− f (xi;β )]
2
. (18.2.1)
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Table 18.1: Benzene oxidation data

Obs. x1 x2 T x4 r = 100/y Obs. x1 x2 T x4 r = 100/y
1 134.5 19.1 623 5.74 218 28 30.0 20.0 648 5.64 294
2 108.0 20.0 623 5.50 189 29 16.3 20.0 648 5.61 233
3 68.6 19.9 623 5.44 192 30 16.5 20.0 648 5.63 222
4 49.5 20.0 623 5.55 174 31 20.4 12.5 648 5.70 188
5 41.7 20.0 623 5.45 152 32 20.5 16.6 648 5.67 231
6 29.4 19.9 623 6.31 139 33 20.8 20.0 648 5.63 239
7 22.5 20.0 623 5.39 118 34 21.3 30.0 648 5.63 301
8 17.2 19.9 623 5.60 120 35 19.6 43.3 648 5.62 252
9 17.0 19.7 623 5.61 122 36 20.6 20.0 648 5.72 217

10 22.8 20.0 623 5.54 132 37 20.5 30.0 648 5.43 276
11 41.3 20.0 623 5.52 167 38 20.3 42.7 648 5.60 467
12 59.6 20.0 623 5.53 208 39 16.0 19.1 673 5.88 429
13 119.7 20.0 623 5.50 216 40 23.5 20.0 673 6.01 475
14 158.2 20.0 623 5.48 294 41 132.8 20.0 673 6.48 1129
15 23.3 20.0 648 5.65 229 42 107.7 20.0 673 6.26 957
16 40.8 20.0 648 5.95 296 43 68.5 20.0 673 6.40 745
17 140.3 20.0 648 5.98 547 44 47.2 19.7 673 5.82 649
18 140.8 19.9 648 5.96 582 45 42.5 20.3 673 5.86 742
19 141.2 20.0 648 5.64 480 46 30.1 20.0 673 5.87 662
20 140.0 19.7 648 5.56 493 47 11.2 20.0 673 5.87 373
21 121.2 19.96 648 6.06 513 48 17.1 20.0 673 5.84 440
22 104.7 19.7 648 5.63 411 49 65.8 20.0 673 5.85 662
23 40.8 20.0 648 6.09 349 50 108.2 20.0 673 5.86 724
24 22.6 20.0 648 5.88 226 51 123.5 20.0 673 5.85 915
25 55.2 20.0 648 5.64 338 52 160.0 20.0 673 5.81 944
26 55.4 20.0 648 5.64 351 53 66.4 20.0 673 5.87 713
27 29.5 20.0 648 5.63 295 54 66.5 20.0 673 5.88 736

As shown below, in nonlinear regression with independent N(0,σ2) errors, the least squares esti-
mates are also maximum likelihood estimates. Not surprisingly, finding the minimum of a function
like (18.2.1) involves extensive use of calculus. We present in detail the Gauss–Newton algorithm
for finding the least squares estimates and briefly mention an alternative method for finding the
estimates.

18.2.1 The Gauss–Newton algorithm

The Gauss–Newton algorithm produces a series of vectors β r that we hope will converge to β̂ . The
algorithm requires some initial value for the vector β , say β 0. This can be thought of as a guess for
the least squares estimate β̂ . We use matrix methods similar to those in Chapter 15 to present the
algorithm.

In matrix notation write Y = (y1, . . . ,yn)
′, e = (ε1, . . . ,εn)

′, and

F(X ;β )≡

 f (x1;β )
...

f (xn;β )

 .
We can now write model (18.1.3) as

Y = F(X ;β )+ e, εis indep. N(0,σ2) . (18.2.2)

Given β r, the algorithm defines β r+1. Define the matrix Zr as the n× p matrix of partial deriva-
tives ∂ f (xi;β )

/
∂β j evaluated at β r. Note that to find the ith row of Zr, we need only differentiate to

find the p partial derivatives ∂ f (x;β )
/

∂β j and evaluate these p functions at x = xi and β = β r. For
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β values that are sufficiently close to β r, a vector version of Taylor’s theorem from calculus gives
the approximation

F(X ;β )
.
= F(X ;β

r)+Zr(β −β
r) . (18.2.3)

Here, because β r is known, F(X ;β r) and Zr are known. Substituting the approximation (18.2.3)
into equation (18.2.2), we get the approximate model

Y = F(X ;β
r)+Zr(β −β

r)+ e

= F(X ;β
r)+Zrβ −Zrβ

r + e .

Rearranging terms gives
[Y −F(X ;β

r)+Zrβ
r] = Zrβ + e . (18.2.4)

If Zr has full column rank, this is simply a linear regression model. The dependent variable vector
is Y −F(X ;β r)+Zrβ

r, the matrix of predictor variables (design matrix) is Zr, the parameter vector
is β , and the error vector is e. Using least squares to estimate β gives us

β
r+1 = (Z′rZr)

−1Z′r[Y −F(X ;β
r)+Zrβ

r]

= (Z′rZr)
−1Z′r[Y −F(X ;β

r)]+(Z′rZr)
−1Z′rZrβ

r

= (Z′rZr)
−1Z′r[Y −F(X ;β

r)]+β
r (18.2.5)

From linear regression theory, the value β r+1 minimizes the function

SSEr(β )≡ [{Y −F(X ;β
r)+Zrβ

r}−Zrβ ]
′
[{Y −F(X ;β

r)+Zrβ
r}−Zrβ ] .

Actually, we wish to minimize the function defined in (18.2.1). In matrix form, (18.2.1) is

SSE(β ) = [Y −F(X ;β )]
′
[Y −F(X ;β )] .

From (18.2.3), we have SSEr(β )
.
= SSE(β ) for β s near β r. If β r is near the least squares estimate

β̂ , the minimum of SSEr(β ) should be close to the minimum of SSE(β ). While β r+1 minimizes
SSEr(β ) exactly, β r+1 is merely an approximation to the estimate β̂ that minimizes SSE(β ). How-
ever, when β r is close to β̂ , the approximation (18.2.3) is good. At the end of this subsection, we
give a geometric argument that β r converges to the least squares estimate.

EXAMPLE 18.2.1. Multiple linear regression
Suppose we treat model (18.1.2) as a nonlinear regression model. Then f (xi;β ) = x′iβ , F(X ;β ) =
Xβ , ∂ f (xi;β )

/
∂β j = xi j, where xi0 = 1, and Zr = X . From standard linear regression theory we

know that β̂ = (X ′X)−1X ′Y . Using the Gauss–Newton algorithm (18.2.5) with any β 0,

β
1 = (Z′rZr)

−1Z′r[Y −F(X ;β
0)+Z0β

0]

= (X ′X)−1X ′[Y −Xβ
0 +Xβ

0]

= (X ′X)−1X ′Y

= β̂ .

Thus, for a linear regression problem, the Gauss–Newton algorithm arrives at β̂ in only one iteration.
2

EXAMPLE 18.2.2. To perform the analysis on the benzene oxidation data, we need the partial
derivatives of the function (18.1.5):

∂ f (x;β )

∂β0
= exp[β0 +β1x3]

1
x2
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∂ f (x;β )

∂β1
= exp[β0 +β1x3]

x3

x2

∂ f (x;β )

∂β2
= exp[β2 +β3x3]

x4

x1

∂ f (x;β )

∂β3
= exp[β2 +β3x3]

x3x4

x1
.

With β 1 = (.843092,11427.598, .039828,2018.7689)′, we illustrate one step of the algorithm.
The dependent variable in model (18.2.4) is

Y −F(X ;β
1)+Z1β

1 =



0.458716
0.529101
0.520833
0.574713
0.657895

...
0.140252
0.135870


−



0.297187
0.295806
0.330450
0.367968
0.389871

...
0.142284
0.142300


+



0.391121
0.375497
0.382850
0.387393
0.391003

...
0.005125
0.005123


=



0.552649
0.608792
0.573233
0.594137
0.659027

...
0.003093
−0.001307


.

The design matrix in model (18.2.4) is

Z1 =



0.246862 0.0000153 0.050325 0.0000031
0.235753 0.0000146 0.060052 0.0000037
0.236938 0.0000147 0.093512 0.0000058
0.235753 0.0000146 0.132214 0.0000082
0.235753 0.0000146 0.154117 0.0000095

...
...

...
...

0.060341 −0.0000035 0.081942 −0.0000047
0.060341 −0.0000035 0.081958 −0.0000047


.

Fitting model (18.2.4) gives the estimate β 2 = (1.42986,12717,−0.15060,9087.3)′. Eventually, the
sequence converges to β̂ ′ = (1.3130,11908,−.23463,10559.5). 2

In practice, methods related to Marquardt (1963) are often used to find the least squares esti-
mates. These involve use of a statistical procedure known as ridge regression, cf. Seber and Wild
(1989, p. 624). Marquardt’s method involves modifying model (18.2.4) to estimate β −β r by sub-
tracting Zrβ

r from both sides of the equality. Now, rather than using the least squares estimate
β r+1−β r = (Z′rZr)

−1Z′r[Y−F(X ;β r)], the simplest form of ridge regression (cf. Christensen, 1987,
section XIV.6) uses the estimate

β
r+1−β

r = (Z′rZr + kIp)
−1Z′r[Y −F(X ;β

r)]

where Ip is a p× p identity matrix and k is a number that needs to be determined. More complicated
forms of ridge regression involve replacing Ip with a diagonal matrix.

When the sequence of values β r stops changing (converges), β r is the least squares estimate.
We will use a geometric argument to justify this statement. The argument applies to both the Gauss–
Newton algorithm and the Marquardt method. By definition, SSE(β ) is the squared length of the
vector Y −F(X ;β ), i.e., it is the square of the distance between Y and F(X ;β ). Geometrically, β̂

is the value of β that makes Y −F(X ;β ) as short a vector as possible. Y can be viewed as either a
point in Rn or as a vector in Rn. For now, think of it as a point. Y −F(X ;β ) is as short as possible
when the line connecting Y and F(X ;β ) is perpendicular to the surface F(X ;β ). By definition, a
line is perpendicular to a surface if it is perpendicular to the tangent plane of the surface at the point



512 18. NONLINEAR REGRESSION

Y

F(X;β)

F(X;βr)

Z
r
(β-βr) + F(X;βr)Z

1
(β-β1) + F(X;β1)

F(X;β1)

Figure 18.1: The geometry of nonlinear least squares estimation.

of intersection between the line and the surface. Thus in Figure 18.1, β r has Y −F(X ;β r) as short
as possible but β 1 does not have Y −F(X ;β 1) as short as possible. We will show that when β r

converges, the line connecting Y and F(X ;β r) is perpendicular to the tangent plane at β r and thus
Y −F(X ;β r) is as short as possible. To do this technically, i.e., using vectors, we need to subtract
F(X ;β r) from everything. Thus we want to show that Y −F(X ;β r) is a vector that is perpendicular
to the surface F(X ;β )−F(X ;β r). From (18.2.3), the tangent plane to the surface F(X ;β ) at β r is
F(X ;β r)+Zr(β −β r), so the tangent plane to the surface F(X ;β )−F(X ;β r) is just Zr(β −β r).
Thus we need to show that when β r converges, Y −F(X ;β r) is perpendicular to the plane defined
by Zr. Algebraically, this means showing that

0 = Z′r[Y −F(X ;β
r)].

From the Gauss–Newton algorithm, at convergence we have β r+1 = β r and by (18.2.5) β r+1 =
(Z′rZr)

−1Z′r[Y −F(X ;β r)]+β r, so we must have

0 = (Z′rZr)
−1Z′r[Y −F(X ;β

r)]. (18.2.6)

This occurs precisely when 0= Z′r[Y−F(X ;β r)] because you can go back and forth between the two
equations by multiplying with (Z′rZr) and (Z′rZr)

−1, respectively. Thus β r is the value that makes
Y −F(X ;β ) as short a vector as possible and β r = β̂ . Essentially the same argument applies to the
Marquardt method except equation (18.2.6) is replaced by 0 = (Z′rZr + kIp)

−1Z′r[Y −F(X ;β r)].

The problem with this geometric argument – and indeed with the algorithms themselves – is that
sometimes there is more than one β for which Y −F(X ;β ) is perpendicular to the surface F(X ;β ).
If you start with an unfortunate choice of β 0, the sequence might converge to a value that does not
minimize SSE(β ) over all β but only in a region around β 0. In fact, sometimes the sequence β r

might not even converge.
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18.2.2 Maximum likelihood estimation

Nonlinear regression is a problem in which least squares estimates are maximum likelihood esti-
mates. We now show this. The density of a random variable y with distribution N(µ,σ2) is

φ(y) =
1

√
2π
√

σ2
exp[−(y−µ)2/2σ

2].

The joint density of independent random variables is obtained by multiplying the densities of the
individual random variables. From model (18.1.3), the yis are independent N( f (xi;β ),σ2) random
variables, so

φ(Y ) ≡ φ(y1, . . . ,yn) =
n

∏
i=1

φ(yi)

=
n

∏
i=1

1
√

2π
√

σ2
exp[−{yi− f (xi;β )}2/2σ

2]

=

[
1√
2π

]n [√
σ2
]−n

exp

[
− 1

2σ2

n

∑
i=1
{yi− f (xi;β )}2

]

=

[
1√
2π

]n [√
σ2
]−n

exp
[
− 1

2σ2 SSE(β )
]
.

The density is a function of Y for fixed values of β and σ2. The likelihood is exactly the same
function except that the likelihood is a function of β and σ2 for fixed values of the observations yi.
Thus, the likelihood function is

L(β ,σ2) =

[
1√
2π

]n [√
σ2
]−n

exp
[
− 1

2σ2 SSE(β )
]
.

The maximum likelihood estimates of β and σ2 are those values that maximize L(β ,σ2). For any
given value of σ2, the likelihood is a simple function of SSE(β ). In fact, the likelihood is maximized
by whatever value of β that minimizes SSE(β ), i.e., the least squares estimate β̂ . Moreover, the
function SSE(β ) does not involve σ2, so β̂ does not involve σ2 and the maximum of L(β ,σ2) occurs
wherever the maximum of L(β̂ ,σ2) occurs. This is now a function of σ2 alone. Differentiating with
respect to σ2, it is not difficult to see that the maximum likelihood estimate of σ2 is

σ̂
2 =

SSE(β̂ )
n

=
1
n

n

∑
i=1

[
yi− f (xi; β̂ )

]2
.

Alternatively, by analogy to linear regression, an estimate of σ2 is

MSE =
SSE(β̂ )

n− p
=

1
n− p

n

∑
i=1

[
yi− f (xi; β̂ )

]2
.

Incidentally, these exact same arguments apply to linear regression, showing that least squares
estimates are also maximum likelihood estimates in linear regression.

18.3 Statistical inference

Statistical inference for nonlinear regression is based entirely on versions of the central limit theo-
rem. It requires a large sample size for the procedures to be approximately valid. The entire analysis
can be conducted as if the multiple linear regression model[

Y −F(X ; β̂ )+Z∗β̂
]
= Z∗β + e, εis indep. N(0,σ2) (18.3.1)
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were valid. Here Z∗ is just like Zr from the previous section except that the partial derivatives
are evaluated at β̂ rather than β r. In other words, Z∗ is the n× p matrix of partial derivatives
∂ f (xi;β )

/
∂β j evaluated at β̂ . Actually, model (18.3.1) is simply the linear model (18.2.4) from

the Gauss–Newton algorithm evaluated when β r has converged to β̂ .

EXAMPLE 18.3.1. Inference on regression parameters
For the benzene oxidation data, β̂ ′ = (1.3130,11908,−.23463,10559.5). It follows that the depen-
dent variable for model (18.3.1) is

Y −F(X ; β̂ )+Z∗β̂ =



0.458716
0.529101
0.520833
0.574713
0.657895

...
0.140252
0.135870


−



0.471786
0.466022
0.511129
0.559092
0.587341

...
0.132084
0.132091


+



0.86150
0.82922
0.85132
0.86824
0.88009

...
0.02715
0.02714


=



0.84843
0.89230
0.86102
0.88386
0.95064

...
0.03532
0.03092


and the design matrix for model (18.3.1) is

Z∗ =



0.406880 0.0000252 0.064906 0.0000040
0.388570 0.0000241 0.077452 0.0000048
0.390523 0.0000242 0.120606 0.0000075
0.388570 0.0000241 0.170522 0.0000106
0.388570 0.0000241 0.198771 0.0000123

...
...

...
...

0.093918 −0.0000054 0.038166 −0.0000022
0.093918 −0.0000054 0.038174 −0.0000022


.

The size of the values in the second and fourth columns could easily cause numerical instability,
but there were no signs of such problems in this analysis. Note also that the two small columns of
Z∗ correspond to the large values of β̂ . Fitting this model gives SSE = 0.0810169059 with d fE =
54− 4 = 50, so MSE = 0.0016203381. The parameters, estimates, large sample standard errors, t
statistics, P values, and 95% confidence intervals for the parameters are given below.

Asymptotic
Par Est SE(Est) t P 95% Confidence interval
β0 1.3130 .0600724 21.86 0.000 (1.1923696,1.433687)
β1 11908 1118.1335 10.65 0.000 (9662.1654177,14153.831076)
β2 −.23463 .0645778 −3.63 0.001 (−.3643371,−.104921)
β3 10559.5 1311.4420 8.05 0.000 (7925.4156062,13193.622791)

Generally, Cov(β̂ ) is estimated with

MSE(Z′∗Z∗)
−1 = 0.0016203381


2 −30407 −2 24296

−30407 771578688 24805 −720666240
−2 24805 3 −30620

24296 −720666240 −30620 1061435136


however, here we begin to see some numerical instability, at least in the reporting of this matrix.
For example, using this matrix, SE(β̂0) = .0600724 =

√
0.0016203381(2). The 2 in the matrix has

been rounded off because of the large numbers in other entries of the matrix. In reality, SE(β̂0) =
.0600724 =

√
0.0016203381(2.22712375). 2

The primary complication from using model (18.3.1) involves forming confidence intervals
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for points on the regression surface and prediction intervals. Suppose we want to predict a new
value y0 for a given vector of predictor variable values, say x0. Unfortunately, model (18.3.1) is
not set up to predict y0 but rather to provide a prediction of y0 − f (x0; β̂ ) + z′∗0β̂ , where z′∗0 is
(∂ f (x0;β )

/
∂β0, . . . ,∂ f (x0;β )

/
∂βp−1) evaluated at β̂ . Happily, a simple modification of the pre-

diction interval for y0− f (x0; β̂ )+ z′∗0β̂ produces a prediction interval for y0. As in Section 15.4,
the (1−α)100% prediction interval has endpoints z′∗0β̂ ±Wp, where

Wp ≡ t
(

1− α

2
,n− p

)√
MSE

[
1+ z′∗0(Z

′
∗Z∗)−1z∗0

]
.

In other words, the prediction interval is

z′∗0β̂ −Wp < y0− f (x0; β̂ )+ z′∗0β̂ < z′∗0β̂ +Wp.

To make this into an interval for y0, simply add f (x0; β̂ )− z′∗0β̂ to each term, giving the interval

f (x0; β̂ )−Wp < y0 < f (x0; β̂ )+Wp.

Similarly, the (1−α)100% confidence interval from model (18.3.1) for a point on the surface
gives a confidence interval for z′∗0β rather than for f (x0;β ). Defining

Ws ≡ t
(

1− α

2
,n− p

)√
MSE z′∗0(Z

′
∗Z∗)−1z′∗0,

the confidence interval for z′∗0β is

z′∗0β̂ −Ws < z′∗0β < z′∗0β̂ +Ws.

As in (18.2.3), f (x0;β )
.
= f (x0; β̂ )+ z′∗0(β − β̂ ) or equivalently

f (x0;β )− f (x0; β̂ )+ z′∗0β̂
.
= z′∗0β .

We can substitute into the confidence interval to get

z′∗0β̂ −Ws < f (x0;β )− f (x0; β̂ )+ z′∗0β̂ < z′∗0β̂ +Ws

and again adding f (x0; β̂ )− z′∗0β̂ to each term, gives

f (x0; β̂ )−Ws < f (x0;β )< f (x0; β̂ )+Ws.

EXAMPLE 18.3.2. Prediction
For the benzene oxidation data, we choose to make a prediction at x′0 = (x01,x02,x03,x04) =

(100,20,0,5.7). Using x0 and β̂ to evaluate the partial derivatives, the vector used for making pre-
dictions in model (18.3.1) is z′∗0 = (0.185871,0,0.0450792,0) and the prediction (estimate of the
value on the surface at z∗0) for model (18.3.1) is z′∗0β̂ = 0.233477. The standard error of the sur-
face is 0.00897 and the standard error for prediction is

√
.0016203381+ .008972. Model (18.3.1)

gives the 95% confidence interval for the surface as (0.21545,0.25150) and the 95% prediction
interval as (0.15062,0.31633). The actual prediction (estimate of the value on the surface at x0)
is f (x0; β̂ ) = 0.230950. The confidence interval and prediction interval need to be adjusted by
f (x0; β̂ )− z′∗0β̂ = 0.230950− 0.233477 = −0.002527. This term needs to be added to the end-
points of the intervals, giving a 95% confidence interval for the surface of (0.21292,0.24897) and a
95% prediction interval of (0.14809,0.31380). Actually, our interest is in r = 100/y rather than y,
so a 95% prediction interval for r is (100/.31380,100/.14809), which is (318.7,675.3). 2
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We can also test full models against reduced models. Again write the full model as

yi = f (xi;β )+ εi, εis indep. N(0,σ2) (18.3.2)

which, when fitted, gives SSE(β̂ ) and write the reduced model as

yi = f0(xi;γ)+ εi (18.3.3)

with γ ′ = (γ0, . . . ,γq−1). When fitted, model (18.3.3) gives SSE(γ̂). The simplest way of ensuring
that model (18.3.3) is a reduced model relative to model (18.3.2) is by specifying constraints on the
parameters.

EXAMPLE 18.3.3. In Section 1 we considered the model yi = β0 + β1[eβ2xi − eβ3xi ] + εi with
p = 4. If we specify H0 : β1 = 4; 2β2 = β3, the reduced model is yi = β0 +4[eβ2xi−e2β2xi ]+εi. The
parameters do not mean the same things in the reduced model as in the original model, so we can
rewrite the reduced model as yi = γ0+4[eγ1xi−e2γ1xi ]+εi with q = 2. This particular reduced model
can also be rewritten as yi = γ0 + 4[eγ1xi(1− eγ1xi)]+ εi, which is beginning to look quite different
from the full model. 2

Corresponding to model (18.3.3), there is a linear model similar to model (18.3.1),

[Y −F0(X ; γ̂)+Z∗0γ̂] = Z∗0γ + e.

Alas, this model will typically not be a reduced model relative to model (18.3.1). In fact, the depen-
dent variables (left-hand sides of the equations) are not even the same. Nonetheless, because model
(18.3.3) is a reduced version of model (18.3.2), we can test the models in the usual way by using
sums of squares error, cf. Section 13.3. Reject the reduced model with an α level test if

[SSE(γ̂)−SSE(β̂ )]/(p−q)

SSE(β̂ )/(n− p)
> F(1−α, p−q,n− p). (18.3.4)

Of course, as in all of inference for nonlinear regression, the test is only a large sample approxima-
tion. The test statistic does not have exactly an F distribution when the reduced model is true.

EXAMPLE 18.3.4. Testing a reduced model
Consider the reduced model obtained from (18.1.4) by setting β0 = β2 and β1 = β3. We can rewrite
the model as

yi = exp[γ0 + γ1xi3]
1

xi2
+ exp[γ0 + γ1xi3]

xi4

xi1
+ εi.

This model has q = 2 parameters. The partial derivatives of the function

f0(x;γ)≡ f (x1,x2,x3,x4;γ0,γ1) = exp[γ0 + γ1x3]
1
x2

+ exp[γ0 + γ1x3]
x4

x1

are

∂ f0(x;γ)

∂γ0
= exp[γ0 + γ1x3]

1
x2

+ exp[γ0 + γ1x3]
x4

x1

∂ f0(x;γ)

∂γ1
= exp[γ0 + γ1x3]

x3

x2
+ exp[γ0 + γ1x3]

x3x4

x1
.

Fitting the model gives estimated parameters γ̂ ′ = (.267172,12155.54478) with SSE =
.4919048545 on d fE = 54− 2 = 52 for MSE = .0094597087. From inequality (18.3.4) and Ex-
ample 18.3.1, the test statistic is

[.4919048545− .0810169059]/[4−2]
0.0016203381

= 126.79 .
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Figure 18.2: Index plot of leverage versus observation number.

With an F statistic this large, the test will be rejected for any reasonable α level. 2

EXAMPLE 18.3.5. Diagnostics
Table 18.2 contains the standard diagnostic quantities from model (18.3.1). We use these quantities
in the usual way but possible problems are discussed at the end of the section.

The predicted values from model (18.3.1) are denoted d̂. Given that there are 54 cases, none of
the standardized residuals r or standardized deleted residuals t look exceptionally large.

Figures 18.2 through 18.9 contain index plots and standardized residual plots. Figures 18.2 and
18.3 are index plots of the leverages and Cook’s distances, respectively. They simply plot the value
against the observation number for each case. The symbol being plotted is the last digit of the
observation number. Neither plot looks too bad to me (at least at 12:15 a.m. while I am doing this).
However, there are some leverages that exceed the 3p/n = 3(4)/54 = .222 rule.

Figure 18.4 contains a normal plot of the standardized residuals. This does not look too bad to
me either and the Wilk–Francia statistic of W ′ = .964 is not significantly low.

Now we get to the real fun. Figures 18.5 through 18.9 contain plots of the standardized residuals
versus the d̂s, i.e., the predicted values from model (18.3.1), and versus the predictor variables x1,
x2, x3, x4. The plot versus d̂ is most notable for the large empty space in the middle. To some extent
in the plot versus x1 and very clearly in the plots versus x3 and x4, we see signs of heteroscedastic
variances. This calls in question all of the inferential procedures that we have illustrated because
the analysis assumes that the variance is the same for each observation. For more on how to analyze
these data, see Pritchard et al. (1977) and Carroll and Ruppert (1984). 2

Unlike linear regression, where the procedure is dominated by the predictor variables, nonlinear
regression is very parameter oriented. This is perhaps excusable because in nonlinear regression
there is usually some specific theory suggesting the regression model and that theory may give
meaning to the parameters. Nonetheless, one can create big statistical problems or remove statistical
problems simply by the choice of the parameterization. For example, model (18.1.4) can be rewritten
as

yi = γ0 exp[γ1xi3]
1
x2

+ γ2 exp[γ3xi3]
x4

x1
+ εi (18.3.5)
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Table 18.2: Diagnostic statistics

Obs. ê d̂ Leverage r t C
1 −.01307 .47179 .15936 −0.35412 −0.35103 .005944
2 .06308 .46602 .13152 1.68152 1.71375 .107045
3 .00971 .51113 .10156 0.25436 0.25195 .001828
4 .01562 .55909 .07718 0.40396 0.40054 .003412
5 .07055 .58734 .07046 1.81795 1.86227 .062624
6 .00248 .71694 .09688 0.06491 0.06427 .000113
7 .09455 .75290 .12257 2.50767 2.65506 .219614
8 −.05236 .88569 .27329 −1.52579 −1.54686 .218863
9 −.07670 .89638 .28149 −2.24800 −2.34713 .494925

10 −.00054 .75812 .12675 −0.01435 −0.01419 .000007
11 .00696 .59184 .06980 0.17923 0.17748 .000603
12 −.04892 .52968 .08901 −1.27316 −1.28133 .039595
13 .00451 .45845 .13811 0.12073 0.11951 .000584
14 −.10112 .44125 .15431 −2.73157 −2.93174 .340371
15 .05903 .37765 .03341 1.49170 1.51071 .019231
16 .03663 .30121 .02807 0.92310 0.92172 .006153
17 −.03676 .21958 .05558 −0.93981 −0.93868 .012994
18 −.04846 .22028 .05636 −1.23931 −1.24613 .022932
19 −.00913 .21746 .05675 −0.23346 −0.23122 .000820
20 −.01727 .22011 .05887 −0.44225 −0.43864 .003058
21 −.03085 .22579 .05273 −0.78755 −0.78450 .008630
22 .01208 .23123 .05285 0.30838 0.30559 .001327
23 −.01739 .30392 .02775 −0.43803 −0.43446 .001369
24 .05084 .39164 .03765 1.28753 1.29625 .016213
25 .02918 .26668 .03552 0.73818 0.73478 .005018
26 .01852 .26638 .03561 0.46839 0.46472 .002025
27 .00218 .33681 .02682 0.05485 0.05430 .000021
28 .00558 .33455 .02671 0.14058 0.13920 .000136
29 −.02888 .45806 .07150 −0.74455 −0.74120 .010672
30 −.00527 .45572 .06992 −0.13582 −0.13450 .000347
31 .01355 .51837 .06789 0.34853 0.34546 .002212
32 −.00978 .44268 .04494 −0.24865 −0.24631 .000727
33 .01847 .39994 .04064 0.46855 0.46486 .002325
34 −.00073 .33295 .04625 −0.01853 −0.01836 .000004
35 .08420 .31262 .07329 2.17301 2.26054 .093364
36 .05536 .40547 .04282 1.40571 1.41991 .022102
37 .02892 .33340 .04651 0.73583 0.73239 .006603
38 −.09110 .30523 .06575 −2.34133 −2.45639 .096455
39 −.02390 .25700 .09852 −0.62540 −0.62158 .010687
40 .00620 .20433 .04176 0.15727 0.15571 .000269
41 −.02641 .11498 .04883 −0.67271 −0.66896 .005807
42 −.01452 .11901 .04522 −0.36911 −0.36588 .001613
43 −.00003 .13425 .03438 −0.00065 −0.00063 .000000
44 .00550 .14858 .02983 0.13875 0.13740 .000148
45 −.01729 .15206 .02610 −0.43515 −0.43159 .001268
46 −.02705 .17811 .02799 −0.68170 −0.67801 .003346
47 −.05209 .32019 .26019 −1.50456 −1.52442 .199053
48 −.01409 .24136 .08364 −0.36561 −0.36245 .003051
49 .01876 .13230 .03552 0.47447 0.47078 .002073
50 .02082 .11730 .04672 0.52980 0.52598 .003439
51 −.00508 .11437 .04941 −0.12939 −0.12809 .000217
52 −.00366 .10959 .05414 −0.09355 −0.09259 .000125
53 .00817 .13208 .03565 0.20665 0.20468 .000395
54 .00378 .13209 .03565 0.09558 0.09465 .000084
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Figure 18.3: Index plot of Cook’s distance versus observation number.
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Figure 18.4: Rankit plot of standardized residuals, W ′ = .964.
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Figure 18.5: Standardized residuals versus predicted values from model (18.3.1).
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Figure 18.6: Standardized residuals versus x1.
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Figure 18.7: Standardized residuals versus x2.
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Figure 18.8: Standardized residuals versus x3.
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Figure 18.9: Standardized residuals versus x4.

If, say, γ0 = 0, the entire term γ0 exp[γ1xi3]/x2 vanishes. This term is the only place in which the
parameter γ1 appears. So if γ0 = 0, it will be impossible to learn about γ1. More to the point, if γ0
is near zero, it will be very difficult to learn about γ1. (Of course, one could argue that from the
viewpoint of prediction, one may not care much what γ1 is if γ0 is very near zero and x3 is of moder-
ate size.) In any case, unlike linear regression, the value of one parameter can affect what we learn
about other parameters. (In linear regression, the values of some predictor variables effect what we
can learn about the parameters for other predictor variables, but it is not the parameters themselves
that create the problem. In fact, in nonlinear regression, as the benzene example indicates, the pre-
dictor variables are not necessarily associated with any particular parameter.) In model (18.1.4) we
have ameliorated the problem of γ0 near 0 by using the parameter β0. When γ0 approaches zero, β0
approaches negative infinity, so this problem with the coefficient of xi3, i.e. γ1 or β1, will not arise
for finite β0. However, unlike (18.3.5), model (18.1.4) cannot deal with the possibility of γ0 < 0.
Similar problems can occur with γ2.

All of the methods in this section depend crucially on the quality of the approximation in (18.2.3)
when β r = β̂ . If this approximation is poor, these methods can be very misleading. In particular,
Cook and Tsai (1985, 1990) discuss problems with residual analysis when the approximation is poor
and diagnostics for the quality of the normal approximation. St. Laurent and Cook (1992) discuss
concepts of leverage for nonlinear regression. For large samples, the true value of β should be close
to β̂ and the approximation should be good. (This conclusion also depends on having the standard
errors for functions of β̂ small in large samples.) But it is very difficult to tell what constitutes a
‘large sample.’ As a practical matter, the quality of the approximation depends a great deal on the
amount of curvature found in f (x;β ) near β = β̂ . This curvature is conveniently measured by the
second partial derivatives ∂ 2 f (x;β )

/
∂β j∂βk evaluated at β̂ . A good analysis of nonlinear regression

data should include an examination of curvature, but such an examination is beyond the scope of
this book, cf. Seber and Wild (1989, chapter 4).
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18.4 Linearizable models

Some nonlinear relationships can be changed into linear relationships. The nonlinear regression
model (18.1.3) indicates that

E(yi) = f (xi;β ).

Sometimes f (xi;β ) can be written as

f (xi;β ) = f (x′iβ ).

If f is invertible, we get

f−1[E(yi)] = x′iβ .

Often it is not too clear whether we should be modeling f−1[E(yi)] = x′iβ or E[ f−1(yi)] = x′iβ . As
we saw, the first of these comes from nonlinear regression. The second equality suggests the linear
regression model,

f−1(yi) = x′iβ + εi . (18.4.1)

It can be very difficult to choose between analyzing the nonlinear model (18.1.3) and the linear
model (18.4.1). The decision is often based on which model gives better approximations to the
assumption of independent identically distributed mean zero normal errors.

EXAMPLE 18.4.1. In Section 7.10 we analyzed the Hooker data using a linear model log(yi) =
β0 + β1xi + εi. Exponentiating both sides gives yi = exp[β0 + β1xi + εi], which we can rewrite as
yi = exp[β0 + β1xi]ξi, where ξi is a multiplicative error term with ξi = exp(εi). Alternatively, we
could fit a nonlinear regression model

yi = exp[β0 +β1xi]+ εi. (18.4.2)

The difference between these two models is that in the first model (the linearized model) the er-
rors on the original scale are multiplied by the regression structure exp[β0 + β1xi], whereas in
the nonlinear model the errors are additive, i.e., are added to the regression structure. To fit the
nonlinear model (18.4.2), we need the partial derivatives of f (x;β0,β1) ≡ exp[β0 + β1x], namely
∂ f (x;β0,β1)/∂β0 = exp[β0 +β1x] and ∂ f (x;β0,β1)/∂β1 = exp[β0 +β1x]x. As mentioned earlier,
the choice between using the linearized model from Section 7.10 or the nonlinear regression model
(18.4.2) is often based on which model seems to have better residual plots, etc. Exercise 18.5.1 asks
for this comparison. 2

18.5 Exercises

EXERCISE 18.5.1. Fit the nonlinear regression (18.4.2) to the Hooker data and compare the fit
of this model to the fit of the linearized model described in Section 7.10.

EXERCISE 18.5.2. For pregnant women, Day (1966) modeled the relationship between weight z
and week of gestation x with

E(y) = β0 + exp[β1 +β2x]

where y = 1/
√

z− z0 and z0 is the initial weight of the woman. For a woman with initial weight of
138 pounds, the following data were recorded:
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Week Weight Week Weight
8 140.50 34 163.75

12 139.25 35 168.75
14 138.75 36 170.00
15 140.00 37 171.25
19 147.25 38 173.00
23 150.50 39 174.00
27 156.75 40 174.00
31 162.75 42 174.50

Fit the model yi = β0 + exp[β1 +β2xi]+ εi. Test whether each parameter is equal to zero, give
95% confidence intervals for each parameter, give 95% prediction intervals and surface confidence
intervals for x = 21 weeks, and check the diagnostic quantities. Test the reduced model defined by
H0 : β0 = 0; β1 = 0.

EXERCISE 18.5.3. Following Bliss and James (1966) fit the model yi = (xiβ0)
/
(xi +β1)+ εi to

the following data on the relationship between reaction velocity y and concentration of substrate x.

x .138 .220 .291 .560 .766 1.460
y .148 .171 .234 .324 .390 .493

Test whether each parameter is equal to zero, give 99% confidence intervals for each parameter,
give 99% prediction intervals and surface confidence intervals for x = .5, and check the diagnostic
quantities.

EXERCISE 18.5.4. Bliss and James (1966) give data on the median survival time z of house flies
following application of the pesticide DDT at a level of molar concentration x. Letting y = 100/z,
fit the model yi = β0 +β1xi

/
(xi +β2)+ εi to the data given below.

x z x z
.200 99 .0150 172
.100 115 .0100 188
.075 119 .0075 284
.050 112 .0070 227
.0375 126 .0060 275
.0250 149 .0050 525
.0200 152 .0025 948

Test whether each parameter is equal to zero, give 99% confidence intervals for each parameter,
give 95% prediction intervals and surface confidence intervals for a concentration of x = .03, and
check the diagnostic quantities. Find the SSE and test the reduced model defined by H0 : β0 =
0,β2 = .0125. Test H0 : β2 = .0125.
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A matrix is a rectangular array of numbers. Such arrays have rows and columns. The numbers of
rows and columns are referred to as the dimensions of a matrix. A matrix with, say, 5 rows and 3
columns is referred to as a 5×3 matrix.

EXAMPLE A.0.1. Three matrices are given below along with their dimensions.

1 4
2 5
3 6

 , [
20 80
90 140

]
,


6

180
−3
0


3×2 2×2 4×1

.

2

Let r be an arbitrary positive integer. A matrix with r rows and r columns, i.e., an r× r matrix,
is called a square matrix. The second matrix in Example A.0.1 is square. A matrix with only one
column, i.e., an r× 1 matrix, is a vector, sometimes called a column vector. The third matrix in
Example A.0.1 is a vector. A 1× r matrix is sometimes called a row vector.

An arbitrary matrix A is often written

A = [ai j]

where ai j denotes the element of A in the ith row and jth column. Two matrices are equal if they have
the same dimensions and all of their elements (entries) are equal. Thus for r× c matrices A = [ai j]
and B = [bi j], A = B if and only if ai j = bi j for every i = 1, . . . ,r and j = 1, . . . ,c.

EXAMPLE A.0.2. Let

A =

[
20 80
90 140

]
and B =

[
b11 b12
b21 b22

]
.

If B = A, then b11 = 20,b12 = 80,b21 = 90, and b22 = 140. 2

The transpose of a matrix A, denoted A′, changes the rows of A into columns of a new matrix
A′. If A is an r×c matrix, the transpose A′ is a c× r matrix. In particular, if we write A′ = [ãi j], then
the element in row i and column j of A′ is defined to be ãi j = a ji.

EXAMPLE A.0.3. 1 4
2 5
3 6

′ = [1 2 3
4 5 6

]
and [

20 80
90 140

]′
=

[
20 90
80 140

]
.

525
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The transpose of a column vector is a row vector,
6

180
−3
0


′

= [6 180 −3 0 ] . 2

A.1 Matrix addition and subtraction

Two matrices can be added (or subtracted) if they have the same dimensions, that is, if they have the
same number of rows and columns. Addition and subtraction is performed elementwise.

EXAMPLE A.1.1. 1 4
2 5
3 6

+
2 8

4 10
6 12

=

1+2 4+8
2+4 5+10
3+6 6+12

=

3 12
6 15
9 18

 .
[

20 80
90 140

]
−
[
−15 −75
80 130

]
=

[
35 155
10 10

]
.

2

In general, if A and B are r× c matrices with A = [ai j] and B = [bi j], then

A+B = [ai j +bi j] and A−B = [ai j−bi j] .

A.2 Scalar multiplication

Any matrix can be multiplied by a scalar. Multiplication by a scalar (a real number) is elementwise.

EXAMPLE A.2.1. Scalar multiplication gives

1
10

[
20 80
90 140

]
=

[
20/10 80/10
90/10 140/10

]
=

[
2 8
9 14

]
.

2 [6 180 −3 0 ] = [12 360 −6 0 ] . 2

In general, if λ is any number and A = [ai j], then

λA = [λai j] .

A.3 Matrix multiplication

Two matrices can be multiplied together if the number of columns in the first matrix is the same
as the number of rows in the second matrix. In the process of multiplication, the rows of the first
matrix are matched up with the columns of the second matrix.

EXAMPLE A.3.1.1 4
2 5
3 6

[20 80
90 140

]
=

(1)(20)+(4)(90) (1)(80)+(4)(140)
(2)(20)+(5)(90) (2)(80)+(5)(140)
(3)(20)+(6)(90) (3)(80)+(6)(140)


=

380 640
490 860
600 1080

 .
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The entry in the first row and column of the product matrix, (1)(20) + (4)(90), matches the
elements in the first row of the first matrix, (1 4), with the elements in the first column of the second

matrix,
(

20
90

)
. The 1 in (1 4) is matched up with the 20 in

(
20
90

)
and these numbers are multiplied.

Similarly, the 4 in (1 4) is matched up with the 90 in
(

20
90

)
and the numbers are multiplied. Finally,

the two products are added to obtain the entry (1)(20)+ (4)(90). Similarly, the entry in the third
row, second column of the product, (3)(80)+ (6)(140), matches the elements in the third row of

the first matrix, (3 6), with the elements in the second column of the second matrix,
(

80
140

)
. After

multiplying and adding we get the entry (3)(80)+(6)(140). To carry out this matching, the number
of columns in the first matrix must equal the number of rows in the second matrix. The matrix
product has the same number of rows as the first matrix and the same number of columns as the
second because each row of the first matrix can be matched with each column of the second.

2

EXAMPLE A.3.2. We illustrate another matrix multiplication commonly performed in statistics,
multiplying a matrix on its left by the transpose of that matrix, i.e., computing A′A.1 4

2 5
3 6

′1 4
2 5
3 6

 =

[
1 2 3
4 5 6

]1 4
2 5
3 6


=

[
1+4+9 4+10+18

4+10+18 16+25+36

]
=

[
14 32
32 77

]
.

2

Notice that in matrix multiplication the roles of the first matrix and the second matrix are not
interchangeable. In particular, if we reverse the order of the matrices in Example A.3.1, the matrix
product [

20 80
90 140

]1 4
2 5
3 6


is undefined because the first matrix has two columns while the second matrix has three rows. Even
when the matrix products are defined for both AB and BA, the results of the multiplication typically
differ. If A is r× s and B is s× r, then AB is an r× r matrix and BA is and s× s matrix. When r 6= s,
clearly AB 6= BA, but even when r = s we still can not expect AB to equal BA.

EXAMPLE A.3.3. Consider two square matrices, say,

A =

[
1 2
3 4

]
B =

[
0 2
1 2

]
.

Multiplication gives

AB =

[
2 6
4 14

]
and

BA =

[
6 8
7 10

]
,

so AB 6= BA. 2
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In general if A = [ai j] is an r× s matrix and B = [bi j] is a s× c matrix, then

AB = [di j]

is the r× c matrix with

di j =
s

∑
`=1

ai`b` j.

A useful result is that the transpose of the product AB is the product, in reverse order, of the
transposed matrices, i.e. (AB)′ = B′A′.

EXAMPLE A.3.4. As seen in Example A.3.1,

AB≡

1 4
2 5
3 6

[20 80
90 140

]
=

380 640
490 860
600 1080

≡C.

The transpose of this matrix is

C′ =
[

380 490 600
640 860 1080

]
=

[
20 90
80 140

][
1 2 3
4 5 6

]
= B′A′.

2

Let a = (a1, . . . ,an)
′ be a vector. A very useful property of vectors is that

a′a =
n

∑
i=1

a2
i ≥ 0.

A.4 Special matrices

If A = A′, then A is said to be symmetric. If A = [ai j] and A = A′, then ai j = a ji. The entry in row i
and column j is the same as the entry in row j and column i. Only square matrices can be symmetric.

EXAMPLE A.4.1. The matrix

A =

4 3 1
3 2 6
1 6 5


has A = A′. A is symmetric about the diagonal that runs from the upper left to the lower right. 2

For any r× c matrix A, the product A′A is always symmetric. This was illustrated in Exam-
ple .3.2. More generally, write A = [ai j], A′ = [ãi j] with ãi j = a ji, and

A′A = [di j] =

[
c

∑
`=1

ãi`a` j

]
.

Note that

di j =
c

∑
`=1

ãi`a` j =
c

∑
`=1

a`ia` j =
c

∑
`=1

ã j`a`i = d ji

so the matrix is symmetric.
Diagonal matrices are square matrices with all off diagonal elements equal to zero.

EXAMPLE A.4.2. The matrices1 0 0
0 2 0
0 0 3

 , [
20 0
0 −3

]
, and

1 0 0
0 1 0
0 0 1


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are diagonal. 2

In general, a diagonal matrix is a square matrix A= [ai j] with ai j = 0 for i 6= j. Obviously, diagonally
matrices are symmetric.

An identity matrix is a diagonal matrix with all 1s along the diagonal, i.e., aii = 1 for all i. The
third matrix in Example A.4.2 above is a 3× 3 identity matrix. The identity matrix gets it name
because any matrix multiplied by an identity matrix remains unchanged.

EXAMPLE A.4.3. 1 4
2 5
3 6

[1 0
0 1

]
=

1 4
2 5
3 6

 .
1 0 0

0 1 0
0 0 1

1 4
2 5
3 6

=

1 4
2 5
3 6

 .
2

An r× r identity matrix is denoted Ir with the subscript deleted if the dimension is clear.
A zero matrix is a matrix that consists entirely of zeros. Obviously, the product of any matrix

multiplied by a zero matrix is zero.

EXAMPLE A.4.4. 0 0
0 0
0 0

 ,


0
0
0
0

 .
2

Often a zero matrix is denoted by 0 where the dimension of the matrix, and the fact that it is a
matrix rather than a scalar, must be inferred from the context.

A.5 Linear dependence and rank

Consider the matrix

A =

1 2 5 1
2 2 10 6
3 4 15 1

 .
Note that each column of A can be viewed as a vector. The column space of A, denoted C(A), is the
collection of all vectors that can be written as a linear combination of the columns of A. In other
words, C(A) is the set of all vectors that can be written as

λ1

1
2
3

+λ2

2
2
4

+λ3

 5
10
15

+λ4

1
6
1

= A


λ1
λ2
λ3
λ4

= Aλ

for some vector λ = (λ1,λ2,λ3,λ4)
′.

The columns of any matrix A are linearly dependent if they contain redundant information.
Specifically, let x be some vector in C(A). The columns of A are linearly dependent if we can find
two distinct vectors λ and γ such that x = Aλ and x = Aγ . Thus two distinct linear combinations of
the columns of A give rise to the same vector x. Note that λ 6= γ because λ and γ are distinct. Note
also that, using a distributive property of matrix multiplication, A(λ − γ) = Aλ −Aγ = 0, where
λ − γ 6= 0. This condition is frequently used as an alternative definition for linear dependence, i.e.,
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the columns of A are linearly dependent if there exists a vector δ 6= 0 such that Aδ = 0. If the
columns of A are not linearly dependent, they are linearly independent.

EXAMPLE A.5.1. Observe that the example matrix A given at the beginning of the section has

1 2 5 1
2 2 10 6
3 4 15 1




5
0
−1

0

=

0
0
0

 ,
so the columns of A are linearly dependent. 2

The rank of A is the smallest number of columns of A that can generate C(A). It is also the
maximum number of linearly independent columns in A.

EXAMPLE A.5.2. The matrix

A =

1 2 5 1
2 2 10 6
3 4 15 1


has rank 3 because the columns 1

2
3

 ,
2

2
4

 ,
1

6
1


generate C(A). We saw in Example A.5.1 that the column (5,10,15)′ was redundant. None of the
other three columns are redundant; they are linearly independent. In other words, the only way to
get 1 2 1

2 2 6
3 4 1

δ =

0
0
0


is to take δ = (0,0,0)′. 2

A.6 Inverse matrices

The inverse of a square matrix A is the matrix A−1 such that

AA−1 = A−1A = I.

The inverse of A exists only if the columns of A are linearly independent. Typically, it is difficult to
find inverses without the aid of a computer. For a 2×2 matrix

A =

[
a11 a12
a21 a22

]
,

the inverse is given by

A−1 =
1

a11a22−a12a21

[
a22 −a12
−a21 a11

]
. (A.6.1)

To confirm that this is correct, multiply AA−1 to see that it gives the identity matrix. Moderately
complicated formulae exist for computing the inverse of 3×3 matrices. Inverses of larger matrices
become very difficult to compute by hand. Of course computers are ideally suited for finding such
things.

One use for inverse matrices is in solving systems of equations.
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EXAMPLE A.6.1. Consider the system of equations

2x+4y = 20
3x+4y = 10.

We can write this in matrix form as [
2 4
3 4

][
x
y

]
=

[
20
10

]
.

Multiplying on the left by the inverse of the coefficient matrix gives[
2 4
3 4

]−1 [2 4
3 4

][
x
y

]
=

[
2 4
3 4

]−1 [20
10

]
.

Using the definition of the inverse on the left-hand side of the equality and the formula in (A.6.1)
on the right-hand side gives [

1 0
0 1

][
x
y

]
=

[
−1 1
3/4 −1/2

][
20
10

]
or [

x
y

]
=

[
−10

10

]
.

Thus (x,y) = (−10,10) is the solution for the two equations, i.e., 2(−10) + 4(10) = 20 and
3(−10)+4(10) = 10. 2

More generally a system of equations, say,

a11 y1 +a12 y2 +a13 y3 = c1

a21 y1 +a22 y2 +a23 y3 = c2

a31 y1 +a32 y2 +a33 y3 = c3

in which the ai js and cis are known and the yis are variables, can be written in matrix form asa11 a12 a13
a21 a22 a23
a31 a32 a33

y1
y2
y3

=

c1
c2
c3


or

AY =C.

To find Y simply observe that AY = C implies A−1AY = A−1C and Y = A−1C. Of course this ar-
gument assumes that A−1 exists, which is not always the case. Moreover, the procedure obviously
extends to larger sets of equations.

On a computer, there are better ways of finding solutions to systems of equations than finding the
inverse of a matrix. In fact, inverses are often found by solving systems of equations. For example,
in a 3×3 case the first column of A−1 can be found as the solution toa11 a12 a13

a21 a22 a23
a31 a32 a33

y1
y2
y3

=

1
0
0

 .
For a special type of square matrix, called an orthogonal matrix, the transpose is also the inverse.

In other words, a square matrix P is an orthogonal matrix if

P′P = I = PP′.

To establish that P is orthogonal, it is enough to show either that P′P = I or that PP′ = I. Orthogonal
matrices are particularly useful in discussions of eigenvalues and principal component regression.
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A.7 A list of useful properties

The following proposition summarizes many of the key properties of matrices and the operations
performed on them.

Proposition A.7.1. Let A, B, and C be matrices of appropriate dimensions and let λ be a scalar.

A+B = B+A

(A+B)+C = A+(B+C)

(AB)C = A(BC)

C(A+B) = CA+CB

λ (A+B) = λA+λB

(A′)′ = A

(A+B)′ = A′+B′

(AB)′ = B′A′(
A−1)−1

= A

(A′)−1
=

(
A−1)′

(AB)−1 = B−1A−1.

The last equality only holds when A and B both have inverses. The second to the last property
implies that the inverse of a symmetric matrix is symmetric because then A−1 = (A′)−1 = (A−1)′.
This is a very important property.

A.8 Eigenvalues and eigenvectors

Let A be a square matrix. A scalar φ is an eigenvalue of A and x 6= 0 is an eigenvector for A corre-
sponding to φ if

Ax = φx.

EXAMPLE A.8.1. Consider the matrix

A =

 3 1 −1
1 3 −1
−1 −1 5

 .
The value 3 is an eigenvalue and any nonzero multiple of the vector (1,1,1)′ is a corresponding
eigenvector. For example,  3 1 −1

1 3 −1
−1 −1 5

1
1
1

=

3
3
3

= 3

1
1
1

 .
Similarly, if we consider a multiple, say, 4(1,1,1)′, 3 1 −1

1 3 −1
−1 −1 5

4
4
4

=

12
12
12

= 3

4
4
4

 .
The value 2 is also an eigenvalue with eigenvectors that are nonzero multiples of (1,−1,0)′. 3 1 −1

1 3 −1
−1 −1 5

 1
−1

0

=

 2
−2

0

= 2

 1
−1

0

 .
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Finally, 6 is an eigenvalue with eigenvectors that are nonzero multiples of (1,1,−2)′. 2

Proposition A.8.2. Let A be a symmetric matrix, then for a diagonal matrix D(φi) consisting
of eigenvalues there exists an orthogonal matrix P whose columns are corresponding eigenvectors
such that

A = PD(φi)P′.

EXAMPLE A.8.3. Consider again the matrix

A =

 3 1 −1
1 3 −1
−1 −1 5

 .
In writing A = PD(φi)P′, the diagonal matrix is

D(φi) =

3 0 0
0 2 0
0 0 6

 .
The orthogonal matrix is

P =


1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −2√
6

 .
We leave it to the reader to verify that PD(φi)P′ = A and that P′P = I.

Note that the columns of P are multiples of the vectors identified as eigenvectors in Exam-
ple A.8.1; hence the columns of P are also eigenvectors. The multiples of the eigenvectors were
chosen so that PP′ = I and P′P = I. Moreover, the first column of P is an eigenvector corresponding
to 3, which is the first eigenvalue listed in D(φi). Similarly, the second column of P is an eigenvector
corresponding to 2 and the third column corresponds to the third listed eigenvalue, 6.

With a 3× 3 matrix A having three distinct eigenvalues, any matrix P with eigenvectors for
columns would have P′P a diagonal matrix, but the multiples of the eigenvectors must be chosen so
that the diagonal entries of P′P are all 1. 2

EXAMPLE A.8.4. Consider the matrix

B =

 5 −1 −1
−1 5 −1
−1 −1 5

 .
This matrix is closely related to the matrix in Example A.8.1. The matrix B has 3 as an eigenvalue
with corresponding eigenvectors that are multiples of (1,1,1)′, just like the matrix A. Once again 6
is an eigenvalue with corresponding eigenvector (1,1,−2)′ and once again (1,−1,0)′ is an eigen-
vector, but now, unlike A, (1,−1,0) also corresponds to the eigenvalue 6. We leave it to the reader
to verify these facts. The point is that in this matrix, 6 is an eigenvalue that has two linearly inde-
pendent eigenvectors. In such cases, any nonzero linear combination of the two eigenvectors is also
an eigenvector. For example, it is easy to see that

3

 1
−1

0

+2

 1
1
−2

=

 5
−1
−4


is an eigenvector corresponding to the eigenvalue 6.
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To write B = PD(φ)P′ as in Proposition A.8.2, D(φ) has 3, 6, and 6 down the diagonal and one
choice of P is that given in Example A.8.3. However, because one of the eigenvalues occurs more
than once in the diagonal matrix, there are many choices for P. 2

Generally, if we need eigenvalues or eigenvectors we get a computer to find them for us.
Two frequently used functions of a square matrix are the determinant and the trace.

Definition A.8.5.
a) The determinant of a square matrix is the product of the eigenvalues of the matrix.
b) The trace of a square matrix is the sum of the eigenvalues of the matrix.

In fact, one can show that the trace of a square matrix also equals the sum of the diagonal elements
of that matrix.
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B.1 Tables of the t distribution

Table 1: Percentage points of the t distribution

α levels
Two-
sided .20 .10 .05 .04 .02 .01 .002 .001
One-
sided .10 .05 .025 .02 .01 .005 .001 .0005

Percentiles
d f 0.90 0.95 0.975 0.98 0.99 0.995 0.999 0.9995

1 3.078 6.314 12.7062 15.8946 31.8206 63.6570 318.317 636.607
2 1.886 2.920 4.3027 4.8487 6.9646 9.9248 22.327 31.598
3 1.638 2.353 3.1824 3.4819 4.5407 5.8409 10.215 12.924
4 1.533 2.132 2.7764 2.9985 3.7470 4.6041 7.173 8.610
5 1.476 2.015 2.5706 2.7565 3.3649 4.0322 5.893 6.869
6 1.440 1.943 2.4469 2.6122 3.1427 3.7075 5.208 5.959
7 1.415 1.895 2.3646 2.5168 2.9980 3.4995 4.785 5.408
8 1.397 1.860 2.3060 2.4490 2.8965 3.3554 4.501 5.041
9 1.383 1.833 2.2622 2.3984 2.8214 3.2499 4.297 4.781

10 1.372 1.812 2.2281 2.3593 2.7638 3.1693 4.144 4.587
11 1.363 1.796 2.2010 2.3281 2.7181 3.1058 4.025 4.437
12 1.356 1.782 2.1788 2.3027 2.6810 3.0546 3.930 4.318
13 1.350 1.771 2.1604 2.2816 2.6503 3.0123 3.852 4.221
14 1.345 1.761 2.1448 2.2638 2.6245 2.9769 3.787 4.140
15 1.341 1.753 2.1315 2.2485 2.6025 2.9467 3.733 4.073
16 1.337 1.746 2.1199 2.2354 2.5835 2.9208 3.686 4.015
17 1.333 1.740 2.1098 2.2239 2.5669 2.8982 3.646 3.965
18 1.330 1.734 2.1009 2.2137 2.5524 2.8784 3.611 3.922
19 1.328 1.729 2.0930 2.2047 2.5395 2.8610 3.579 3.883
20 1.325 1.725 2.0860 2.1967 2.5280 2.8453 3.552 3.850
21 1.323 1.721 2.0796 2.1894 2.5176 2.8314 3.527 3.819
22 1.321 1.717 2.0739 2.1829 2.5083 2.8188 3.505 3.792
23 1.319 1.714 2.0687 2.1769 2.4999 2.8073 3.485 3.768
24 1.318 1.711 2.0639 2.1716 2.4922 2.7969 3.467 3.745
25 1.316 1.708 2.0595 2.1666 2.4851 2.7874 3.450 3.725
26 1.315 1.706 2.0555 2.1620 2.4786 2.7787 3.435 3.707
27 1.314 1.703 2.0518 2.1578 2.4727 2.7707 3.421 3.690
28 1.313 1.701 2.0484 2.1539 2.4671 2.7633 3.408 3.674
29 1.311 1.699 2.0452 2.1503 2.4620 2.7564 3.396 3.659
30 1.310 1.697 2.0423 2.1470 2.4573 2.7500 3.385 3.646
31 1.309 1.696 2.0395 2.1438 2.4528 2.7441 3.375 3.633
32 1.309 1.694 2.0369 2.1409 2.4487 2.7385 3.365 3.622
33 1.308 1.692 2.0345 2.1382 2.4448 2.7333 3.356 3.611
34 1.307 1.691 2.0323 2.1356 2.4412 2.7284 3.348 3.601
35 1.306 1.690 2.0301 2.1332 2.4377 2.7238 3.340 3.591
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Table 2: Percentage points of the t distribution

α levels
Two-
sided .20 .10 .05 .04 .02 .01 .002 .001
One-
sided .10 .05 .025 .02 .01 .005 .001 .0005

Percentiles
d f 0.90 0.95 0.975 0.98 0.99 0.995 0.999 0.9995
36 1.306 1.688 2.0281 2.1309 2.4345 2.7195 3.333 3.582
37 1.305 1.687 2.0262 2.1287 2.4314 2.7154 3.326 3.574
38 1.304 1.686 2.0244 2.1267 2.4286 2.7116 3.319 3.566
39 1.304 1.685 2.0227 2.1247 2.4258 2.7079 3.313 3.558
40 1.303 1.684 2.0211 2.1229 2.4233 2.7045 3.307 3.551
41 1.303 1.683 2.0196 2.1212 2.4208 2.7012 3.301 3.544
42 1.302 1.682 2.0181 2.1195 2.4185 2.6981 3.296 3.538
43 1.302 1.681 2.0167 2.1179 2.4163 2.6951 3.291 3.532
44 1.301 1.680 2.0154 2.1164 2.4142 2.6923 3.286 3.526
45 1.301 1.679 2.0141 2.1150 2.4121 2.6896 3.281 3.520
46 1.300 1.679 2.0129 2.1136 2.4102 2.6870 3.277 3.515
47 1.300 1.678 2.0117 2.1123 2.4083 2.6846 3.273 3.510
48 1.299 1.677 2.0106 2.1111 2.4066 2.6822 3.269 3.505
49 1.299 1.677 2.0096 2.1099 2.4049 2.6800 3.265 3.500
50 1.299 1.676 2.0086 2.1087 2.4033 2.6778 3.261 3.496
51 1.298 1.675 2.0076 2.1076 2.4017 2.6757 3.258 3.492
52 1.298 1.675 2.0067 2.1066 2.4002 2.6737 3.255 3.488
53 1.298 1.674 2.0058 2.1055 2.3988 2.6718 3.251 3.484
54 1.297 1.674 2.0049 2.1046 2.3974 2.6700 3.248 3.480
55 1.297 1.673 2.0041 2.1036 2.3961 2.6682 3.245 3.476
56 1.297 1.673 2.0033 2.1027 2.3948 2.6665 3.242 3.473
57 1.297 1.672 2.0025 2.1018 2.3936 2.6649 3.239 3.470
58 1.296 1.672 2.0017 2.1010 2.3924 2.6633 3.237 3.466
59 1.296 1.671 2.0010 2.1002 2.3912 2.6618 3.234 3.463
60 1.296 1.671 2.0003 2.0994 2.3902 2.6604 3.232 3.460
70 1.294 1.667 1.9944 2.0927 2.3808 2.6480 3.211 3.435
80 1.292 1.664 1.9901 2.0878 2.3739 2.6387 3.195 3.416
90 1.291 1.662 1.9867 2.0840 2.3685 2.6316 3.183 3.402

100 1.290 1.660 1.9840 2.0809 2.3642 2.6259 3.174 3.391
110 1.289 1.659 1.9818 2.0784 2.3607 2.6213 3.166 3.381
120 1.289 1.658 1.9799 2.0763 2.3578 2.6174 3.160 3.373
150 1.287 1.655 1.9759 2.0718 2.3515 2.6090 3.145 3.357
200 1.286 1.653 1.9719 2.0672 2.3451 2.6006 3.131 3.340
250 1.285 1.651 1.9695 2.0645 2.3414 2.5956 3.123 3.330
300 1.284 1.650 1.9679 2.0627 2.3388 2.5923 3.118 3.323
350 1.284 1.649 1.9668 2.0614 2.3371 2.5900 3.114 3.319
400 1.284 1.649 1.9659 2.0605 2.3357 2.5882 3.111 3.315
∞ 1.282 1.645 1.9600 2.0537 2.3263 2.5758 3.090 3.291
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B.2 Tables of the χ2 distribution

Table 3: Percentage points of the χ
2 distribution

α levels
Two-
sided 0.002 0.01 0.02 0.04 0.05 0.10 0.20 0.40
One-
sided 0.001 0.005 0.01 0.02 0.025 0.05 0.10 0.20

Percentiles
d f 0.001 0.005 0.01 0.02 0.025 0.05 0.10 0.20

1 0.000 0.000 0.000 0.001 0.001 0.004 0.016 0.064
2 0.002 0.010 0.020 0.040 0.051 0.103 0.211 0.446
3 0.024 0.072 0.115 0.185 0.216 0.352 0.584 1.005
4 0.091 0.207 0.297 0.429 0.484 0.711 1.064 1.649
5 0.210 0.412 0.554 0.752 0.831 1.145 1.610 2.343
6 0.381 0.676 0.872 1.134 1.237 1.635 2.204 3.070
7 0.598 0.989 1.239 1.564 1.690 2.167 2.833 3.822
8 0.857 1.344 1.646 2.032 2.180 2.733 3.490 4.594
9 1.152 1.735 2.088 2.532 2.700 3.325 4.168 5.380

10 1.479 2.156 2.558 3.059 3.247 3.940 4.865 6.179
11 1.834 2.603 3.053 3.609 3.816 4.575 5.578 6.989
12 2.214 3.074 3.571 4.178 4.404 5.226 6.304 7.807
13 2.617 3.565 4.107 4.765 5.009 5.892 7.042 8.634
14 3.041 4.075 4.660 5.368 5.629 6.571 7.790 9.467
15 3.483 4.601 5.229 5.985 6.262 7.261 8.547 10.307
16 3.942 5.142 5.812 6.614 6.908 7.962 9.312 11.152
17 4.416 5.697 6.408 7.255 7.564 8.672 10.085 12.002
18 4.905 6.265 7.015 7.906 8.231 9.390 10.865 12.857
19 5.407 6.844 7.633 8.567 8.907 10.117 11.651 13.716
20 5.921 7.434 8.260 9.237 9.591 10.851 12.443 14.578
21 6.447 8.034 8.897 9.915 10.283 11.591 13.240 15.445
22 6.983 8.643 9.542 10.600 10.982 12.338 14.041 16.314
23 7.529 9.260 10.196 11.293 11.689 13.091 14.848 17.187
24 8.085 9.886 10.856 11.992 12.401 13.848 15.659 18.062
25 8.649 10.520 11.524 12.697 13.120 14.611 16.473 18.940
26 9.222 11.160 12.198 13.409 13.844 15.379 17.292 19.820
27 9.803 11.808 12.879 14.125 14.573 16.151 18.114 20.703
28 10.391 12.461 13.565 14.847 15.308 16.928 18.939 21.588
29 10.986 13.121 14.256 15.574 16.047 17.708 19.768 22.475
30 11.588 13.787 14.953 16.306 16.791 18.493 20.599 23.364
31 12.196 14.458 15.655 17.042 17.539 19.281 21.434 24.255
32 12.811 15.134 16.362 17.783 18.291 20.072 22.271 25.148
33 13.431 15.815 17.074 18.527 19.047 20.867 23.110 26.042
34 14.057 16.501 17.789 19.275 19.806 21.664 23.952 26.938
35 14.688 17.192 18.509 20.027 20.569 22.465 24.797 27.836
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Table 4: Percentage points of the χ
2 distribution

α levels
Two-
sided .40 .20 .10 .05 .04 .02 .01 .002
One-
sided .20 .10 .05 .025 .02 .01 .005 .001

Percentiles
d f 0.80 0.90 0.95 0.975 0.98 0.99 0.995 0.999

1 1.642 2.706 3.841 5.024 5.412 6.635 7.879 10.828
2 3.219 4.605 5.991 7.378 7.824 9.210 10.597 13.816
3 4.642 6.251 7.815 9.348 9.837 11.345 12.838 16.266
4 5.989 7.779 9.488 11.143 11.668 13.277 14.860 18.467
5 7.289 9.236 11.070 12.833 13.388 15.086 16.750 20.515
6 8.558 10.645 12.592 14.449 15.033 16.812 18.548 22.458
7 9.803 12.017 14.067 16.013 16.622 18.475 20.278 24.322
8 11.030 13.362 15.507 17.535 18.168 20.090 21.955 26.125
9 12.242 14.684 16.919 19.023 19.679 21.666 23.589 27.877

10 13.442 15.987 18.307 20.483 21.161 23.209 25.188 29.588
11 14.631 17.275 19.675 21.920 22.618 24.725 26.757 31.264
12 15.812 18.549 21.026 23.337 24.054 26.217 28.300 32.910
13 16.985 19.812 22.362 24.736 25.471 27.688 29.819 34.528
14 18.151 21.064 23.685 26.119 26.873 29.141 31.319 36.124
15 19.311 22.307 24.996 27.488 28.259 30.578 32.801 37.697
16 20.465 23.542 26.296 28.845 29.633 32.000 34.267 39.254
17 21.615 24.769 27.587 30.191 30.995 33.409 35.718 40.789
18 22.760 25.989 28.869 31.526 32.346 34.805 37.156 42.312
19 23.900 27.204 30.143 32.852 33.687 36.191 38.582 43.819
20 25.038 28.412 31.410 34.170 35.020 37.566 39.997 45.315
21 26.171 29.615 32.671 35.479 36.343 38.932 41.401 46.797
22 27.301 30.813 33.924 36.781 37.660 40.290 42.796 48.270
23 28.429 32.007 35.172 38.076 38.968 41.638 44.181 49.726
24 29.553 33.196 36.415 39.364 40.270 42.980 45.559 51.179
25 30.675 34.382 37.653 40.647 41.566 44.314 46.928 52.622
26 31.795 35.563 38.885 41.923 42.856 45.642 48.290 54.054
27 32.912 36.741 40.113 43.195 44.140 46.963 49.645 55.477
28 34.027 37.916 41.337 44.461 45.419 48.278 50.994 56.893
29 35.139 39.087 42.557 45.722 46.693 49.588 52.336 58.303
30 36.250 40.256 43.773 46.979 47.962 50.892 53.672 59.703
31 37.359 41.422 44.985 48.232 49.226 52.192 55.003 61.100
32 38.466 42.585 46.194 49.480 50.487 53.486 56.328 62.486
33 39.572 43.745 47.400 50.725 51.743 54.775 57.648 63.868
34 40.676 44.903 48.602 51.966 52.995 56.061 58.964 65.246
35 41.778 46.059 49.802 53.204 54.244 57.342 60.275 66.622
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Table 5: Percentage points of the χ
2 distribution

α levels
Two-
sided 0.002 0.01 0.02 0.04 0.05 0.10 0.20 0.40
One-
sided 0.001 0.005 0.01 0.02 0.025 0.05 0.10 0.20

Percentiles
d f 0.001 0.005 0.01 0.02 0.025 0.05 0.10 0.20
36 15.32 17.887 19.233 20.783 21.336 23.269 25.64 28.74
37 15.96 18.586 19.960 21.542 22.106 24.075 26.49 29.64
38 16.61 19.289 20.691 22.304 22.878 24.884 27.34 30.54
39 17.26 19.996 21.426 23.069 23.654 25.695 28.20 31.44
40 17.92 20.707 22.164 23.838 24.433 26.509 29.05 32.34
41 18.58 21.421 22.906 24.609 25.215 27.326 29.91 33.25
42 19.24 22.138 23.650 25.383 25.999 28.144 30.76 34.16
43 19.91 22.859 24.398 26.159 26.785 28.965 31.62 35.06
44 20.58 23.584 25.148 26.939 27.575 29.787 32.49 35.97
45 21.25 24.311 25.901 27.720 28.366 30.612 33.35 36.88
46 21.93 25.041 26.657 28.504 29.160 31.439 34.22 37.80
47 22.61 25.775 27.416 29.291 29.956 32.268 35.08 38.71
48 23.30 26.511 28.177 30.080 30.755 33.098 35.95 39.62
49 23.98 27.249 28.941 30.871 31.555 33.930 36.82 40.53
50 24.67 27.991 29.707 31.664 32.357 34.764 37.69 41.45
51 25.37 28.735 30.475 32.459 33.162 35.600 38.56 42.36
52 26.06 29.481 31.246 33.256 33.968 36.437 39.43 43.28
53 26.76 30.230 32.018 34.055 34.776 37.276 40.31 44.20
54 27.47 30.981 32.793 34.856 35.586 38.116 41.18 45.12
55 28.17 31.735 33.570 35.659 36.398 38.958 42.06 46.04
56 28.88 32.490 34.350 36.464 37.212 39.801 42.94 46.96
57 29.59 33.248 35.131 37.270 38.027 40.646 43.82 47.88
58 30.30 34.008 35.913 38.078 38.843 41.492 44.70 48.80
59 31.02 34.770 36.698 38.888 39.662 42.339 45.58 49.72
60 31.74 35.535 37.485 39.699 40.482 43.188 46.46 50.64
70 39.04 43.275 45.442 47.893 48.758 51.739 55.33 59.90
80 46.52 51.172 53.540 56.213 57.153 60.391 64.28 69.21
90 54.16 59.196 61.754 64.635 65.647 69.126 73.29 78.56

100 61.92 67.328 70.065 73.142 74.222 77.930 82.36 87.94
110 69.79 75.550 78.458 81.723 82.867 86.792 91.47 97.36
120 77.76 83.852 86.923 90.367 91.573 95.705 100.62 106.81
150 102.11 109.142 112.668 116.608 117.984 122.692 128.28 135.26
200 143.84 152.241 156.432 161.100 162.728 168.279 174.84 183.00
250 186.55 196.161 200.939 206.249 208.098 214.392 221.81 231.01
300 229.96 240.663 245.972 251.864 253.912 260.878 269.07 279.21
350 273.90 285.608 291.406 297.831 300.064 307.648 316.55 327.56
400 318.26 330.903 337.155 344.078 346.482 354.641 364.21 376.02



B.2 TABLES OF THE χ2 DISTRIBUTION 541

Table 6: Percentage points of the χ
2 distribution

α levels
Two-
sided .40 .20 .10 .05 .04 .02 .01 .002
One-
sided .20 .10 .05 .025 .02 .01 .005 .001

Percentiles
d f 0.80 0.90 0.95 0.975 0.98 0.99 0.995 0.999
36 42.88 47.212 50.998 54.437 55.489 58.619 61.58 67.99
37 43.98 48.363 52.192 55.668 56.731 59.893 62.89 69.35
38 45.08 49.513 53.384 56.896 57.969 61.163 64.18 70.71
39 46.17 50.660 54.572 58.120 59.204 62.429 65.48 72.06
40 47.27 51.805 55.759 59.342 60.437 63.691 66.77 73.41
41 48.36 52.949 56.942 60.561 61.665 64.950 68.05 74.75
42 49.46 54.090 58.124 61.777 62.892 66.207 69.34 76.09
43 50.55 55.230 59.303 62.990 64.115 67.459 70.62 77.42
44 51.64 56.369 60.481 64.201 65.337 68.709 71.89 78.75
45 52.73 57.505 61.656 65.410 66.555 69.957 73.17 80.08
46 53.82 58.640 62.829 66.616 67.771 71.201 74.44 81.40
47 54.91 59.774 64.001 67.820 68.985 72.443 75.70 82.72
48 55.99 60.907 65.171 69.022 70.196 73.682 76.97 84.03
49 57.08 62.038 66.339 70.222 71.406 74.919 78.23 85.35
50 58.16 63.167 67.505 71.420 72.613 76.154 79.49 86.66
51 59.25 64.295 68.669 72.616 73.818 77.386 80.75 87.97
52 60.33 65.422 69.832 73.810 75.021 78.616 82.00 89.27
53 61.41 66.548 70.993 75.002 76.222 79.843 83.25 90.57
54 62.50 67.673 72.153 76.192 77.422 81.070 84.50 91.88
55 63.58 68.796 73.312 77.381 78.619 82.292 85.75 93.17
56 64.66 69.919 74.469 78.568 79.815 83.515 87.00 94.47
57 65.74 71.040 75.624 79.752 81.009 84.733 88.24 95.75
58 66.82 72.160 76.777 80.935 82.200 85.949 89.47 97.03
59 67.90 73.279 77.931 82.118 83.392 87.167 90.72 98.34
60 68.97 74.397 79.082 83.298 84.581 88.381 91.96 99.62
70 79.72 85.527 90.531 95.023 96.387 100.424 104.21 112.31
80 90.41 96.578 101.879 106.628 108.069 112.328 116.32 124.84
90 101.05 107.565 113.145 118.135 119.648 124.115 128.30 137.19

100 111.67 118.499 124.343 129.563 131.144 135.811 140.18 149.48
110 122.25 129.385 135.480 140.917 142.562 147.416 151.95 161.59
120 132.81 140.233 146.567 152.211 153.918 158.950 163.65 173.62
150 164.35 172.580 179.579 185.798 187.675 193.202 198.35 209.22
200 216.61 226.022 233.997 241.062 243.192 249.455 255.28 267.62
250 268.60 279.052 287.884 295.694 298.045 304.951 311.37 324.93
300 320.40 331.787 341.393 349.870 352.419 359.896 366.83 381.34
350 372.05 384.305 394.624 403.720 406.454 414.466 421.89 437.43
400 423.59 436.647 447.628 457.298 460.201 468.707 476.57 492.99
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B.3 Tables of the W ′ statistic

This table was obtained by taking the mean of ten estimates of the percentile each based on a
sample of 500 observations. Estimates with standard errors of about .002 or less are reported to
three decimal places. The estimates reported with two decimal places have standard errors between
about .002 and .008.

Table 7: Percentiles of the W ′ statistic

n .01 .05 n .01 .05
5 0.69 0.77 36 0.91 0.940
6 0.70 0.79 38 0.915 0.942
7 0.72 0.81 40 0.918 0.946
8 0.75 0.82 45 0.928 0.951
9 0.75 0.83 50 0.931 0.952

10 0.78 0.83 55 0.938 0.958
11 0.79 0.85 60 0.943 0.961
12 0.79 0.86 65 0.945 0.961
13 0.81 0.870 70 0.953 0.966
14 0.82 0.877 75 0.954 0.968
15 0.82 0.883 80 0.957 0.970
16 0.83 0.886 85 0.958 0.970
17 0.84 0.896 90 0.960 0.972
18 0.85 0.896 95 0.961 0.972
19 0.86 0.902 100 0.962 0.974
20 0.86 0.902 120 0.970 0.978
22 0.87 0.910 140 0.973 0.981
24 0.88 0.915 160 0.976 0.983
26 0.89 0.923 180 0.978 0.985
28 0.89 0.924 200 0.981 0.986
30 0.89 0.928 250 0.984 0.988
32 0.90 0.933 300 0.987 0.991
34 0.91 0.936
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B.4 Tables of orthogonal polynomials

Table 8: Orthogonal polynomial contrasts

t = 3 t = 4 t = 5
L Q C L Q C L Q C
−1 1 −3 1 −1 −2 2 −1

0 −2 −1 −1 3 −1 −1 2
1 1 1 −1 −3 0 −2 0

3 1 1 1 −1 −2
2 2 1

t = 6 t = 7 t = 8
L Q C L Q C L Q C
−5 5 −5 3 5 −1 −7 7 −7
−3 −1 7 2 0 1 −5 1 5
−1 −4 4 1 −3 1 −3 −3 7

1 −4 −4 0 −4 0 −1 −5 3
3 −1 −7 1 −3 −1 1 −5 −3
5 5 5 2 0 −1 3 −3 −7

3 5 1 5 1 −5
7 7 7

t = 9 t = 10 t = 11
L Q C L Q C L Q C
−4 28 −14 −9 6 −42 −5 15 −30
−3 7 7 −7 2 14 −4 6 6
−2 −8 13 −5 −1 35 −3 −1 22
−1 −17 9 −3 −3 31 −2 −6 23

0 −20 0 −1 −4 12 −1 −9 14
1 −17 −9 1 −4 −12 0 −10 0
2 −8 −13 3 −3 −31 1 −9 −14
3 7 −7 5 −1 −35 2 −6 −23
4 28 14 7 2 −14 3 −1 −22

9 6 42 4 6 −6
5 15 30

L: linear, Q: quadratic, C: cubic
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B.5 Tables of the Studentized range

These tables are largely those from May (1952) and are presented with the permission of the Trustees
of Biometrika. Comparisons with several other tables have been made and the values that appear to
be most accurate have been used. In doubtful cases, values have been rounded up.

Table 9: Q(.95,r,d fE)

r
d fE 2 3 4 5 6 7 8 9 10 11

1 18.0 27.0 32.8 37.1 40.4 43.1 45.4 47.4 49.1 50.6
2 6.09 8.33 9.80 10.88 11.74 12.44 13.03 13.54 13.99 14.39
3 4.50 5.91 6.83 7.50 8.04 8.48 8.85 9.18 9.46 9.72
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.03
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 7.00 7.17
6 3.46 4.34 4.90 5.31 5.63 5.90 6.12 6.32 6.49 6.65
7 3.34 4.17 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05
9 3.20 3.95 4.42 4.76 5.02 5.24 5.43 5.60 5.74 5.87

10 3.15 3.88 4.33 4.65 4.91 5.12 5.31 5.46 5.60 5.72
11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40 5.51
13 3.06 3.74 4.15 4.45 4.69 4.89 5.05 5.19 5.32 5.43
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26
17 2.98 3.63 4.02 4.30 4.52 4.71 4.86 4.99 5.11 5.21
18 2.97 3.61 4.00 4.28 4.50 4.67 4.82 4.96 5.07 5.17
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14
20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11
24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01
30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.64 4.74 4.82
60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73

120 2.80 3.36 3.69 3.92 4.10 4.24 4.36 4.47 4.56 4.64
∞ 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55
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Table 10: Q(.95,r,d fE)

r
d fE 12 13 14 15 16 17 18 19 20

1 52.0 53.2 54.3 55.4 56.3 57.2 58.0 58.8 59.6
2 14.75 15.08 15.38 15.65 15.91 16.14 16.37 16.57 16.77
3 9.95 10.15 10.35 10.53 10.69 10.84 10.98 11.11 11.24
4 8.21 8.37 8.53 8.66 8.79 8.91 9.03 9.13 9.23
5 7.32 7.47 7.60 7.72 7.83 7.93 8.03 8.12 8.21
6 6.79 6.92 7.03 7.14 7.24 7.34 7.43 7.51 7.59
7 6.43 6.55 6.66 6.76 6.85 6.94 7.02 7.10 7.17
8 6.18 6.29 6.39 6.48 6.57 6.65 6.73 6.80 6.87
9 5.98 6.09 6.19 6.28 6.36 6.44 6.51 6.58 6.64

10 5.83 5.94 6.03 6.11 6.19 6.27 6.34 6.41 6.47
11 5.71 5.81 5.90 5.98 6.06 6.13 6.20 6.27 6.33
12 5.62 5.71 5.80 5.88 5.95 6.02 6.09 6.15 6.21
13 5.53 5.63 5.71 5.79 5.86 5.93 6.00 6.06 6.11
14 5.46 5.55 5.64 5.71 5.79 5.85 5.92 5.97 6.03
15 5.40 5.49 5.57 5.65 5.72 5.79 5.85 5.90 5.96
16 5.35 5.44 5.52 5.59 5.66 5.73 5.79 5.84 5.90
17 5.31 5.39 5.47 5.54 5.61 5.68 5.73 5.79 5.84
18 5.27 5.35 5.43 5.50 5.57 5.63 5.69 5.74 5.79
19 5.23 5.32 5.39 5.46 5.53 5.59 5.65 5.70 5.75
20 5.20 5.28 5.36 5.43 5.49 5.55 5.61 5.66 5.71
24 5.10 5.18 5.25 5.32 5.38 5.44 5.49 5.55 5.59
30 5.00 5.08 5.15 5.21 5.27 5.33 5.38 5.43 5.48
40 4.90 4.98 5.04 5.11 5.16 5.22 5.27 5.31 5.36
60 4.81 4.88 4.94 5.00 5.06 5.11 5.15 5.20 5.24

120 4.71 4.78 4.84 4.90 4.95 5.00 5.04 5.09 5.13
∞ 4.62 4.69 4.74 4.80 4.85 4.89 4.93 4.97 5.01
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Table 11: Q(.99,r,d fE)

r
d fE 2 3 4 5 6 7 8 9 10 11

1 90.0 135 164 186 202 216 227 237 246 253
2 14.0 19.0 22.3 24.7 26.6 28.2 29.5 30.7 31.7 32.6
3 8.26 10.6 12.2 13.3 14.2 15.0 15.6 16.2 16.7 17.1
4 6.51 8.12 9.17 9.96 10.6 11.1 11.6 11.9 12.3 12.6
5 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48
6 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30
7 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55
8 4.75 5.64 6.20 6.63 6.96 7.24 7.47 7.68 7.86 8.03
9 4.60 5.43 5.96 6.35 6.66 6.92 7.13 7.33 7.50 7.65

10 4.48 5.27 5.77 6.14 6.43 6.67 6.88 7.06 7.21 7.36
11 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13
12 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94
13 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79
14 4.21 4.90 5.32 5.63 5.88 6.09 6.26 6.41 6.54 6.66
15 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.56
16 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46
17 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38
18 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31
19 4.05 4.67 5.05 5.33 5.55 5.74 5.89 6.02 6.14 6.25
20 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19
24 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02
30 3.89 4.46 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85
40 3.83 4.37 4.70 4.93 5.11 5.27 5.39 5.50 5.60 5.69
60 3.76 4.28 4.60 4.82 4.99 5.13 5.25 5.36 5.45 5.53

120 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.38
∞ 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23
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Table 12: Q(.99,r,d fE)

r
d fE 12 13 14 15 16 17 18 19 20

1 260 266 272 277 282 286 290 294 298
2 33.4 34.1 34.8 35.4 36.0 36.5 37.0 37.5 38.0
3 17.5 17.9 18.2 18.5 18.8 19.1 19.3 19.6 19.8
4 12.8 13.1 13.3 13.5 13.7 13.9 14.1 14.2 14.4
5 10.70 10.89 11.08 11.24 11.40 11.55 11.68 11.81 11.9
6 9.49 9.65 9.81 9.95 10.08 10.21 10.32 10.43 10.5
7 8.71 8.86 9.00 9.12 9.24 9.35 9.46 9.55 9.65
8 8.18 8.31 8.44 8.55 8.66 8.76 8.85 8.94 9.03
9 7.78 7.91 8.03 8.13 8.23 8.33 8.41 8.50 8.57

10 7.49 7.60 7.71 7.81 7.91 7.99 8.08 8.15 8.23
11 7.25 7.36 7.47 7.56 7.65 7.73 7.81 7.88 7.95
12 7.06 7.17 7.27 7.36 7.44 7.52 7.59 7.67 7.73
13 6.90 7.01 7.10 7.19 7.27 7.35 7.42 7.49 7.55
14 6.77 6.87 6.96 7.05 7.13 7.20 7.27 7.33 7.40
15 6.66 6.76 6.85 6.93 7.00 7.07 7.14 7.20 7.26
16 6.56 6.66 6.74 6.82 6.90 6.97 7.03 7.09 7.15
17 6.48 6.57 6.66 6.73 6.81 6.87 6.94 7.00 7.05
18 6.41 6.50 6.58 6.66 6.73 6.79 6.85 6.91 6.97
19 6.34 6.43 6.51 6.59 6.65 6.72 6.78 6.84 6.89
20 6.29 6.37 6.45 6.52 6.59 6.65 6.71 6.77 6.82
24 6.11 6.19 6.26 6.33 6.39 6.45 6.51 6.56 6.61
30 5.93 6.01 6.08 6.14 6.20 6.26 6.31 6.36 6.41
40 5.76 5.84 5.90 5.96 6.02 6.07 6.12 6.17 6.21
60 5.60 6.67 5.73 5.79 5.84 5.89 5.93 5.97 6.02

120 5.44 5.51 5.56 5.61 5.66 5.71 5.75 5.79 5.83
∞ 5.29 5.35 5.40 5.45 5.49 5.54 5.57 5.61 5.65
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B.6 The Greek alphabet

Table 13: The Greek alphabet

Capital Small Name Capital Small Name
A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
∆ δ ,∂ delta Π π pi
E ε,ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ θ theta ϒ υ upsilon
I ι iota Φ φ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega
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B.7 Tables of the F distribution

Table 14: 90th percentiles of the F distribution

Den. Numerator degrees of freedom
d f 1 2 3 4 5 6 7 8

1 39.862 49.500 53.593 55.833 57.240 58.204 58.906 59.439
2 8.5263 9.0000 9.1618 9.2434 9.2926 9.3255 9.3491 9.3668
3 5.5383 5.4625 5.3908 5.3427 5.3092 5.2847 5.2662 5.2517
4 4.5449 4.3246 4.1909 4.1072 4.0506 4.0098 3.9790 3.9549
5 4.0604 3.7797 3.6195 3.5202 3.4530 3.4045 3.3679 3.3393
6 3.7760 3.4633 3.2888 3.1808 3.1075 3.0546 3.0145 2.9830
7 3.5895 3.2574 3.0741 2.9605 2.8833 2.8274 2.7849 2.7516
8 3.4579 3.1131 2.9238 2.8065 2.7265 2.6683 2.6241 2.5894
9 3.3603 3.0065 2.8129 2.6927 2.6106 2.5509 2.5053 2.4694

10 3.2850 2.9245 2.7277 2.6054 2.5216 2.4606 2.4140 2.3772
11 3.2252 2.8595 2.6602 2.5362 2.4512 2.3891 2.3416 2.3040
12 3.1765 2.8068 2.6055 2.4801 2.3941 2.3310 2.2828 2.2446
13 3.1362 2.7632 2.5603 2.4337 2.3467 2.2830 2.2341 2.1954
14 3.1022 2.7265 2.5222 2.3947 2.3069 2.2426 2.1931 2.1539
15 3.0732 2.6952 2.4898 2.3614 2.2730 2.2081 2.1582 2.1185
16 3.0481 2.6682 2.4618 2.3328 2.2438 2.1783 2.1280 2.0880
17 3.0263 2.6446 2.4374 2.3078 2.2183 2.1524 2.1017 2.0613
18 3.0070 2.6240 2.4160 2.2858 2.1958 2.1296 2.0785 2.0379
19 2.9899 2.6056 2.3970 2.2663 2.1760 2.1094 2.0580 2.0171
20 2.9747 2.5893 2.3801 2.2489 2.1583 2.0913 2.0397 1.9985
21 2.9610 2.5746 2.3649 2.2334 2.1423 2.0751 2.0233 1.9819
22 2.9486 2.5613 2.3512 2.2193 2.1279 2.0605 2.0084 1.9668
23 2.9374 2.5493 2.3387 2.2065 2.1149 2.0472 1.9949 1.9531
24 2.9271 2.5384 2.3274 2.1949 2.1030 2.0351 1.9826 1.9407
25 2.9177 2.5283 2.3170 2.1842 2.0922 2.0241 1.9714 1.9293
26 2.9091 2.5191 2.3075 2.1745 2.0822 2.0139 1.9610 1.9188
28 2.8939 2.5028 2.2906 2.1571 2.0645 1.9959 1.9427 1.9002
30 2.8807 2.4887 2.2761 2.1422 2.0492 1.9803 1.9269 1.8841
32 2.8693 2.4765 2.2635 2.1293 2.0360 1.9669 1.9132 1.8702
34 2.8592 2.4658 2.2524 2.1179 2.0244 1.9550 1.9012 1.8580
36 2.8504 2.4563 2.2426 2.1079 2.0141 1.9446 1.8905 1.8471
38 2.8424 2.4479 2.2339 2.0990 2.0050 1.9352 1.8810 1.8375
40 2.8354 2.4404 2.2261 2.0909 1.9968 1.9269 1.8725 1.8289
60 2.7911 2.3932 2.1774 2.0410 1.9457 1.8747 1.8194 1.7748
80 2.7693 2.3702 2.1536 2.0165 1.9206 1.8491 1.7933 1.7483

100 2.7564 2.3564 2.1394 2.0019 1.9057 1.8339 1.7778 1.7324
150 2.7393 2.3383 2.1207 1.9827 1.8861 1.8138 1.7572 1.7115
200 2.7308 2.3293 2.1114 1.9732 1.8763 1.8038 1.7470 1.7011
300 2.7224 2.3203 2.1021 1.9637 1.8666 1.7939 1.7369 1.6908
400 2.7182 2.3159 2.0975 1.9590 1.8617 1.7889 1.7319 1.6856
∞ 2.7055 2.3026 2.0838 1.9449 1.8473 1.7741 1.7167 1.6702
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Table 15: 90th percentiles of the F distribution

Den. Numerator degrees of freedom
d f 9 10 11 12 13 14 15 16

1 59.858 60.195 60.473 60.705 60.903 61.072 61.220 61.350
2 9.3805 9.3915 9.4005 9.4080 9.4144 9.4198 9.4245 9.4286
3 5.2401 5.2305 5.2226 5.2158 5.2098 5.2047 5.2003 5.1964
4 3.9357 3.9199 3.9067 3.8956 3.8859 3.8776 3.8704 3.8639
5 3.3163 3.2974 3.2816 3.2682 3.2568 3.2468 3.2380 3.2303
6 2.9577 2.9369 2.9195 2.9047 2.8920 2.8809 2.8712 2.8626
7 2.7247 2.7025 2.6839 2.6681 2.6545 2.6426 2.6322 2.6230
8 2.5613 2.5381 2.5186 2.5020 2.4876 2.4752 2.4642 2.4545
9 2.4404 2.4164 2.3961 2.3789 2.3640 2.3511 2.3396 2.3295

10 2.3473 2.3226 2.3018 2.2841 2.2687 2.2553 2.2435 2.2331
11 2.2735 2.2482 2.2269 2.2087 2.1930 2.1792 2.1671 2.1563
12 2.2135 2.1878 2.1660 2.1474 2.1313 2.1173 2.1049 2.0938
13 2.1638 2.1376 2.1155 2.0966 2.0802 2.0659 2.0532 2.0419
14 2.1220 2.0954 2.0730 2.0537 2.0370 2.0224 2.0095 1.9981
15 2.0862 2.0593 2.0366 2.0171 2.0001 1.9853 1.9722 1.9605
16 2.0553 2.0282 2.0051 1.9854 1.9682 1.9532 1.9399 1.9281
17 2.0284 2.0010 1.9777 1.9577 1.9404 1.9252 1.9117 1.8997
18 2.0047 1.9770 1.9535 1.9334 1.9158 1.9004 1.8868 1.8747
19 1.9836 1.9557 1.9321 1.9117 1.8940 1.8785 1.8647 1.8524
20 1.9649 1.9367 1.9129 1.8924 1.8745 1.8588 1.8450 1.8325
21 1.9480 1.9197 1.8957 1.8750 1.8570 1.8412 1.8271 1.8147
22 1.9328 1.9043 1.8801 1.8593 1.8411 1.8252 1.8111 1.7984
23 1.9189 1.8903 1.8659 1.8450 1.8267 1.8107 1.7964 1.7837
24 1.9063 1.8775 1.8530 1.8319 1.8136 1.7974 1.7831 1.7703
25 1.8947 1.8658 1.8412 1.8200 1.8015 1.7853 1.7708 1.7579
26 1.8841 1.8550 1.8303 1.8090 1.7904 1.7741 1.7596 1.7466
28 1.8652 1.8359 1.8110 1.7895 1.7708 1.7542 1.7395 1.7264
30 1.8490 1.8195 1.7944 1.7727 1.7538 1.7371 1.7223 1.7090
32 1.8348 1.8052 1.7799 1.7581 1.7390 1.7222 1.7072 1.6938
34 1.8224 1.7926 1.7672 1.7452 1.7260 1.7091 1.6940 1.6805
36 1.8115 1.7815 1.7559 1.7338 1.7145 1.6974 1.6823 1.6687
38 1.8017 1.7716 1.7459 1.7237 1.7042 1.6871 1.6718 1.6581
40 1.7929 1.7627 1.7369 1.7146 1.6950 1.6778 1.6624 1.6486
60 1.7380 1.7070 1.6805 1.6574 1.6372 1.6193 1.6034 1.5890
80 1.7110 1.6796 1.6526 1.6292 1.6087 1.5904 1.5741 1.5594

100 1.6949 1.6632 1.6360 1.6124 1.5916 1.5731 1.5566 1.5417
150 1.6736 1.6416 1.6140 1.5901 1.5690 1.5502 1.5334 1.5182
200 1.6630 1.6308 1.6031 1.5789 1.5577 1.5388 1.5218 1.5065
300 1.6525 1.6201 1.5922 1.5679 1.5464 1.5273 1.5102 1.4948
400 1.6472 1.6147 1.5868 1.5623 1.5408 1.5217 1.5045 1.4889
∞ 1.6315 1.5987 1.5705 1.5458 1.5240 1.5046 1.4871 1.4714
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Table 16: 90th percentiles of the F distribution

Den. Numerator degrees of freedom
d f 18 20 25 30 40 50 100 200

1 61.566 61.740 62.054 62.265 62.528 62.688 63.006 63.163
2 9.4354 9.4408 9.4513 9.4579 9.4662 9.4712 9.4812 9.4861
3 5.1900 5.1846 5.1747 5.1681 5.1597 5.1546 5.1442 5.1389
4 3.8531 3.8444 3.8283 3.8175 3.8037 3.7952 3.7781 3.7695
5 3.2172 3.2067 3.1873 3.1741 3.1573 3.1471 3.1263 3.1157
6 2.8481 2.8363 2.8147 2.8000 2.7812 2.7697 2.7463 2.7343
7 2.6074 2.5947 2.5714 2.5555 2.5351 2.5226 2.4971 2.4841
8 2.4381 2.4247 2.3999 2.3830 2.3614 2.3481 2.3208 2.3068
9 2.3123 2.2983 2.2725 2.2547 2.2320 2.2180 2.1892 2.1743

10 2.2153 2.2008 2.1739 2.1554 2.1317 2.1171 2.0869 2.0713
11 2.1380 2.1231 2.0953 2.0762 2.0516 2.0364 2.0050 1.9888
12 2.0750 2.0597 2.0312 2.0115 1.9861 1.9704 1.9379 1.9210
13 2.0227 2.0070 1.9778 1.9576 1.9315 1.9153 1.8817 1.8642
14 1.9785 1.9625 1.9326 1.9119 1.8852 1.8686 1.8340 1.8159
15 1.9407 1.9243 1.8939 1.8728 1.8454 1.8284 1.7928 1.7743
16 1.9079 1.8913 1.8603 1.8388 1.8108 1.7935 1.7570 1.7380
17 1.8792 1.8624 1.8309 1.8090 1.7805 1.7628 1.7255 1.7059
18 1.8539 1.8368 1.8049 1.7827 1.7537 1.7356 1.6976 1.6775
19 1.8314 1.8142 1.7818 1.7592 1.7298 1.7114 1.6726 1.6521
20 1.8113 1.7938 1.7611 1.7382 1.7083 1.6896 1.6501 1.6292
21 1.7932 1.7756 1.7424 1.7193 1.6890 1.6700 1.6298 1.6085
22 1.7768 1.7590 1.7255 1.7021 1.6714 1.6521 1.6113 1.5896
23 1.7619 1.7439 1.7101 1.6864 1.6554 1.6358 1.5944 1.5723
24 1.7483 1.7302 1.6960 1.6721 1.6407 1.6209 1.5788 1.5564
25 1.7358 1.7175 1.6831 1.6589 1.6272 1.6072 1.5645 1.5417
26 1.7243 1.7059 1.6712 1.6468 1.6147 1.5945 1.5513 1.5281
28 1.7039 1.6852 1.6500 1.6252 1.5925 1.5718 1.5276 1.5037
30 1.6862 1.6673 1.6316 1.6065 1.5732 1.5522 1.5069 1.4824
32 1.6708 1.6517 1.6156 1.5901 1.5564 1.5349 1.4888 1.4637
34 1.6573 1.6380 1.6015 1.5757 1.5415 1.5197 1.4727 1.4470
36 1.6453 1.6258 1.5890 1.5629 1.5282 1.5061 1.4583 1.4321
38 1.6345 1.6149 1.5778 1.5514 1.5163 1.4939 1.4453 1.4186
40 1.6249 1.6052 1.5677 1.5411 1.5056 1.4830 1.4336 1.4064
60 1.5642 1.5435 1.5039 1.4755 1.4373 1.4126 1.3576 1.3264
80 1.5340 1.5128 1.4720 1.4426 1.4027 1.3767 1.3180 1.2839

100 1.5160 1.4944 1.4527 1.4227 1.3817 1.3548 1.2934 1.2571
150 1.4919 1.4698 1.4271 1.3960 1.3534 1.3251 1.2595 1.2193
200 1.4799 1.4575 1.4142 1.3826 1.3390 1.3100 1.2418 1.1991
300 1.4679 1.4452 1.4013 1.3691 1.3246 1.2947 1.2236 1.1779
400 1.4619 1.4391 1.3948 1.3623 1.3173 1.2870 1.2143 1.1667
∞ 1.4439 1.4206 1.3753 1.3419 1.2951 1.2633 1.1850 1.1301
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Table 17: 95th percentiles of the F distribution

Den. Numerator degrees of freedom
d f 1 2 3 4 5 6 7 8

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88
2 18.513 19.000 19.164 19.247 19.296 19.329 19.353 19.371
3 10.128 9.552 9.277 9.117 9.013 8.941 8.887 8.845
4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041
5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818
6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147
7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726
8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438
9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230

10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072
11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948
12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849
13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767
14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699
15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641
16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591
17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548
18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510
19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477
20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447
21 4.325 3.467 3.072 2.840 2.685 2.573 2.488 2.420
22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397
23 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2.375
24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355
25 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337
26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321
28 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291
30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266
32 4.149 3.295 2.901 2.668 2.512 2.399 2.313 2.244
34 4.130 3.276 2.883 2.650 2.494 2.380 2.294 2.225
36 4.113 3.259 2.866 2.634 2.477 2.364 2.277 2.209
38 4.098 3.245 2.852 2.619 2.463 2.349 2.262 2.194
40 4.085 3.232 2.839 2.606 2.449 2.336 2.249 2.180
60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097
80 3.960 3.111 2.719 2.486 2.329 2.214 2.126 2.056

100 3.936 3.087 2.696 2.463 2.305 2.191 2.103 2.032
150 3.904 3.056 2.665 2.432 2.274 2.160 2.071 2.001
200 3.888 3.041 2.650 2.417 2.259 2.144 2.056 1.985
300 3.873 3.026 2.635 2.402 2.244 2.129 2.040 1.969
400 3.865 3.018 2.627 2.394 2.237 2.121 2.032 1.962
∞ 3.841 2.996 2.605 2.372 2.214 2.099 2.010 1.938
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Table 18: 95th percentiles of the F distribution

Den. Numerator degrees of freedom
d f 9 10 11 12 13 14 15 16

1 240.54 241.88 242.98 243.91 244.69 245.36 245.95 246.46
2 19.385 19.396 19.405 19.412 19.419 19.424 19.429 19.433
3 8.812 8.786 8.763 8.745 8.729 8.715 8.703 8.692
4 5.999 5.964 5.936 5.912 5.891 5.873 5.858 5.844
5 4.772 4.735 4.704 4.678 4.655 4.636 4.619 4.604
6 4.099 4.060 4.027 4.000 3.976 3.956 3.938 3.922
7 3.677 3.637 3.603 3.575 3.550 3.529 3.511 3.494
8 3.388 3.347 3.313 3.284 3.259 3.237 3.218 3.202
9 3.179 3.137 3.102 3.073 3.048 3.025 3.006 2.989

10 3.020 2.978 2.943 2.913 2.887 2.865 2.845 2.828
11 2.896 2.854 2.818 2.788 2.761 2.739 2.719 2.701
12 2.796 2.753 2.717 2.687 2.660 2.637 2.617 2.599
13 2.714 2.671 2.635 2.604 2.577 2.554 2.533 2.515
14 2.646 2.602 2.566 2.534 2.507 2.484 2.463 2.445
15 2.588 2.544 2.507 2.475 2.448 2.424 2.403 2.385
16 2.538 2.494 2.456 2.425 2.397 2.373 2.352 2.333
17 2.494 2.450 2.413 2.381 2.353 2.329 2.308 2.289
18 2.456 2.412 2.374 2.342 2.314 2.290 2.269 2.250
19 2.423 2.378 2.340 2.308 2.280 2.256 2.234 2.215
20 2.393 2.348 2.310 2.278 2.250 2.225 2.203 2.184
21 2.366 2.321 2.283 2.250 2.222 2.197 2.176 2.156
22 2.342 2.297 2.259 2.226 2.198 2.173 2.151 2.131
23 2.320 2.275 2.236 2.204 2.175 2.150 2.128 2.109
24 2.300 2.255 2.216 2.183 2.155 2.130 2.108 2.088
25 2.282 2.236 2.198 2.165 2.136 2.111 2.089 2.069
26 2.265 2.220 2.181 2.148 2.119 2.094 2.072 2.052
28 2.236 2.190 2.151 2.118 2.089 2.064 2.041 2.021
30 2.211 2.165 2.126 2.092 2.063 2.037 2.015 1.995
32 2.189 2.142 2.103 2.070 2.040 2.015 1.992 1.972
34 2.170 2.123 2.084 2.050 2.021 1.995 1.972 1.952
36 2.153 2.106 2.067 2.033 2.003 1.977 1.954 1.934
38 2.138 2.091 2.051 2.017 1.988 1.962 1.939 1.918
40 2.124 2.077 2.038 2.003 1.974 1.948 1.924 1.904
60 2.040 1.993 1.952 1.917 1.887 1.860 1.836 1.815
80 1.999 1.951 1.910 1.875 1.845 1.817 1.793 1.772

100 1.975 1.927 1.886 1.850 1.819 1.792 1.768 1.746
150 1.943 1.894 1.853 1.817 1.786 1.758 1.734 1.711
200 1.927 1.878 1.837 1.801 1.769 1.742 1.717 1.694
300 1.911 1.862 1.821 1.785 1.753 1.725 1.700 1.677
400 1.903 1.854 1.813 1.776 1.745 1.717 1.691 1.669
∞ 1.880 1.831 1.789 1.752 1.720 1.692 1.666 1.644
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Table 19: 95th percentiles of the F distribution

Den. Numerator degrees of freedom
d f 18 20 25 30 40 50 100 200

1 247.32 248.01 249.26 250.09 251.14 251.77 253.04 253.68
2 19.440 19.446 19.456 19.462 19.470 19.475 19.486 19.491
3 8.675 8.660 8.634 8.617 8.594 8.581 8.554 8.540
4 5.821 5.803 5.769 5.746 5.717 5.699 5.664 5.646
5 4.579 4.558 4.521 4.496 4.464 4.444 4.405 4.385
6 3.896 3.874 3.835 3.808 3.774 3.754 3.712 3.690
7 3.467 3.445 3.404 3.376 3.340 3.319 3.275 3.252
8 3.173 3.150 3.108 3.079 3.043 3.020 2.975 2.951
9 2.960 2.936 2.893 2.864 2.826 2.803 2.756 2.731

10 2.798 2.774 2.730 2.700 2.661 2.637 2.588 2.563
11 2.671 2.646 2.601 2.570 2.531 2.507 2.457 2.431
12 2.568 2.544 2.498 2.466 2.426 2.401 2.350 2.323
13 2.484 2.459 2.412 2.380 2.339 2.314 2.261 2.234
14 2.413 2.388 2.341 2.308 2.266 2.241 2.187 2.159
15 2.353 2.328 2.280 2.247 2.204 2.178 2.123 2.095
16 2.302 2.276 2.227 2.194 2.151 2.124 2.068 2.039
17 2.257 2.230 2.181 2.148 2.104 2.077 2.020 1.991
18 2.217 2.191 2.141 2.107 2.063 2.035 1.978 1.948
19 2.182 2.156 2.106 2.071 2.026 1.999 1.940 1.910
20 2.151 2.124 2.074 2.039 1.994 1.966 1.907 1.875
21 2.123 2.096 2.045 2.010 1.965 1.936 1.876 1.845
22 2.098 2.071 2.020 1.984 1.938 1.909 1.849 1.817
23 2.075 2.048 1.996 1.961 1.914 1.885 1.823 1.791
24 2.054 2.027 1.975 1.939 1.892 1.863 1.800 1.768
25 2.035 2.007 1.955 1.919 1.872 1.842 1.779 1.746
26 2.018 1.990 1.938 1.901 1.853 1.823 1.760 1.726
28 1.987 1.959 1.906 1.869 1.820 1.790 1.725 1.691
30 1.960 1.932 1.878 1.841 1.792 1.761 1.695 1.660
32 1.937 1.908 1.854 1.817 1.767 1.736 1.669 1.633
34 1.917 1.888 1.833 1.795 1.745 1.713 1.645 1.609
36 1.899 1.870 1.815 1.776 1.726 1.694 1.625 1.587
38 1.883 1.853 1.798 1.760 1.708 1.676 1.606 1.568
40 1.868 1.839 1.783 1.744 1.693 1.660 1.589 1.551
60 1.778 1.748 1.690 1.649 1.594 1.559 1.481 1.438
80 1.734 1.703 1.644 1.602 1.545 1.508 1.426 1.379

100 1.708 1.676 1.616 1.573 1.515 1.477 1.392 1.342
150 1.673 1.641 1.580 1.535 1.475 1.436 1.345 1.290
200 1.656 1.623 1.561 1.516 1.455 1.415 1.321 1.263
300 1.638 1.606 1.543 1.497 1.435 1.393 1.296 1.234
400 1.630 1.597 1.534 1.488 1.425 1.383 1.283 1.219
∞ 1.604 1.571 1.506 1.459 1.394 1.350 1.243 1.170
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Table 20: 99th percentiles of the F distribution

Den. Numerator degrees of freedom
d f 1 2 3 4 5 6 7 8

1 4052 5000 5403 5625 5764 5859 5928 5981
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71
19 8.19 5.93 5.01 4.50 4.17 3.94 3.77 3.63
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17
32 7.50 5.34 4.46 3.97 3.65 3.43 3.26 3.13
34 7.44 5.29 4.42 3.93 3.61 3.39 3.22 3.09
36 7.40 5.25 4.38 3.89 3.57 3.35 3.18 3.05
38 7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82
80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74

100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69
150 6.81 4.75 3.91 3.45 3.14 2.92 2.76 2.63
200 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60
300 6.72 4.68 3.85 3.38 3.08 2.86 2.70 2.57
400 6.70 4.66 3.83 3.37 3.06 2.85 2.68 2.56
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51
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Table 21: 99th percentiles of the F distribution

Den. Numerator degrees of freedom
d f 9 10 11 12 13 14 15 16

1 6022 6056 6083 6106 6126 6143 6157 6170
2 99.39 99.40 99.41 99.42 99.42 99.43 99.43 99.44
3 27.35 27.23 27.13 27.05 26.98 26.92 26.87 26.83
4 14.66 14.55 14.45 14.37 14.31 14.25 14.20 14.15
5 10.16 10.05 9.96 9.89 9.82 9.77 9.72 9.68
6 7.98 7.87 7.79 7.72 7.66 7.60 7.56 7.52
7 6.72 6.62 6.54 6.47 6.41 6.36 6.31 6.28
8 5.91 5.81 5.73 5.67 5.61 5.56 5.52 5.48
9 5.35 5.26 5.18 5.11 5.05 5.01 4.96 4.92

10 4.94 4.85 4.77 4.71 4.65 4.60 4.56 4.52
11 4.63 4.54 4.46 4.40 4.34 4.29 4.25 4.21
12 4.39 4.30 4.22 4.16 4.10 4.05 4.01 3.97
13 4.19 4.10 4.02 3.96 3.91 3.86 3.82 3.78
14 4.03 3.94 3.86 3.80 3.75 3.70 3.66 3.62
15 3.89 3.80 3.73 3.67 3.61 3.56 3.52 3.49
16 3.78 3.69 3.62 3.55 3.50 3.45 3.41 3.37
17 3.68 3.59 3.52 3.46 3.40 3.35 3.31 3.27
18 3.60 3.51 3.43 3.37 3.32 3.27 3.23 3.19
19 3.52 3.43 3.36 3.30 3.24 3.19 3.15 3.12
20 3.46 3.37 3.29 3.23 3.18 3.13 3.09 3.05
21 3.40 3.31 3.24 3.17 3.12 3.07 3.03 2.99
22 3.35 3.26 3.18 3.12 3.07 3.02 2.98 2.94
23 3.30 3.21 3.14 3.07 3.02 2.97 2.93 2.89
24 3.26 3.17 3.09 3.03 2.98 2.93 2.89 2.85
25 3.22 3.13 3.06 2.99 2.94 2.89 2.85 2.81
26 3.18 3.09 3.02 2.96 2.90 2.86 2.81 2.78
28 3.12 3.03 2.96 2.90 2.84 2.79 2.75 2.72
30 3.07 2.98 2.91 2.84 2.79 2.74 2.70 2.66
32 3.02 2.93 2.86 2.80 2.74 2.70 2.65 2.62
34 2.98 2.89 2.82 2.76 2.70 2.66 2.61 2.58
36 2.95 2.86 2.79 2.72 2.67 2.62 2.58 2.54
38 2.92 2.83 2.75 2.69 2.64 2.59 2.55 2.51
40 2.89 2.80 2.73 2.66 2.61 2.56 2.52 2.48
60 2.72 2.63 2.56 2.50 2.44 2.39 2.35 2.31
80 2.64 2.55 2.48 2.42 2.36 2.31 2.27 2.23

100 2.59 2.50 2.43 2.37 2.31 2.27 2.22 2.19
150 2.53 2.44 2.37 2.31 2.25 2.20 2.16 2.12
200 2.50 2.41 2.34 2.27 2.22 2.17 2.13 2.09
300 2.47 2.38 2.31 2.24 2.19 2.14 2.10 2.06
400 2.45 2.37 2.29 2.23 2.17 2.13 2.08 2.05
∞ 2.41 2.32 2.25 2.18 2.13 2.08 2.04 2.00
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Table 22: 99th percentiles of the F distribution

Den. Numerator degrees of freedom
d f 18 20 25 30 40 50 100 200

1 6191 6209 6240 6261 6287 6302 6334 6350
2 99.44 99.45 99.46 99.46 99.47 99.48 99.49 99.49
3 26.75 26.69 26.58 26.50 26.41 26.35 26.24 26.18
4 14.08 14.02 13.91 13.84 13.75 13.69 13.58 13.52
5 9.61 9.55 9.45 9.38 9.29 9.24 9.13 9.08
6 7.45 7.40 7.30 7.23 7.14 7.09 6.99 6.93
7 6.21 6.16 6.06 5.99 5.91 5.86 5.75 5.70
8 5.41 5.36 5.26 5.20 5.12 5.07 4.96 4.91
9 4.86 4.81 4.71 4.65 4.57 4.52 4.41 4.36

10 4.46 4.41 4.31 4.25 4.17 4.12 4.01 3.96
11 4.15 4.10 4.01 3.94 3.86 3.81 3.71 3.66
12 3.91 3.86 3.76 3.70 3.62 3.57 3.47 3.41
13 3.72 3.66 3.57 3.51 3.43 3.38 3.27 3.22
14 3.56 3.51 3.41 3.35 3.27 3.22 3.11 3.06
15 3.42 3.37 3.28 3.21 3.13 3.08 2.98 2.92
16 3.31 3.26 3.16 3.10 3.02 2.97 2.86 2.81
17 3.21 3.16 3.07 3.00 2.92 2.87 2.76 2.71
18 3.13 3.08 2.98 2.92 2.84 2.78 2.68 2.62
19 3.05 3.00 2.91 2.84 2.76 2.71 2.60 2.55
20 2.99 2.94 2.84 2.78 2.69 2.64 2.54 2.48
21 2.93 2.88 2.79 2.72 2.64 2.58 2.48 2.42
22 2.88 2.83 2.73 2.67 2.58 2.53 2.42 2.36
23 2.83 2.78 2.69 2.62 2.54 2.48 2.37 2.32
24 2.79 2.74 2.64 2.58 2.49 2.44 2.33 2.27
25 2.75 2.70 2.60 2.54 2.45 2.40 2.29 2.23
26 2.72 2.66 2.57 2.50 2.42 2.36 2.25 2.19
28 2.65 2.60 2.51 2.44 2.35 2.30 2.19 2.13
30 2.60 2.55 2.45 2.39 2.30 2.25 2.13 2.07
32 2.55 2.50 2.41 2.34 2.25 2.20 2.08 2.02
34 2.51 2.46 2.37 2.30 2.21 2.16 2.04 1.98
36 2.48 2.43 2.33 2.26 2.18 2.12 2.00 1.94
38 2.45 2.40 2.30 2.23 2.14 2.09 1.97 1.90
40 2.42 2.37 2.27 2.20 2.11 2.06 1.94 1.87
60 2.25 2.20 2.10 2.03 1.94 1.88 1.75 1.68
80 2.17 2.12 2.01 1.94 1.85 1.79 1.65 1.58

100 2.12 2.07 1.97 1.89 1.80 1.74 1.60 1.52
150 2.06 2.00 1.90 1.83 1.73 1.66 1.52 1.43
200 2.03 1.97 1.87 1.79 1.69 1.63 1.48 1.39
300 1.99 1.94 1.84 1.76 1.66 1.59 1.44 1.35
400 1.98 1.92 1.82 1.75 1.64 1.58 1.42 1.32
∞ 1.93 1.88 1.77 1.70 1.59 1.52 1.36 1.25
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Table 23: 99.9th percentiles of the F distribution

Den. Numerator degrees of freedom
d f 1 2 3 4 5 6 7 8

1 405292 500009 540389 562510 576416 585949 592885 598156
2 998.54 999.01 999.18 999.26 999.31 999.35 999.37 999.39
3 167.03 148.50 141.11 137.10 134.58 132.85 131.59 130.62
4 74.138 61.246 56.178 53.436 51.712 50.526 49.658 48.997
5 47.181 37.123 33.203 31.085 29.753 28.835 28.163 27.650
6 35.508 27.000 23.703 21.924 20.803 20.030 19.463 19.030
7 29.245 21.689 18.772 17.198 16.206 15.521 15.019 14.634
8 25.415 18.494 15.830 14.392 13.485 12.858 12.398 12.046
9 22.857 16.387 13.902 12.560 11.714 11.128 10.698 10.368

10 21.040 14.905 12.553 11.283 10.481 9.926 9.517 9.204
11 19.687 13.812 11.561 10.346 9.578 9.047 8.655 8.355
12 18.643 12.974 10.804 9.633 8.892 8.379 8.001 7.710
13 17.816 12.313 10.209 9.073 8.354 7.856 7.489 7.206
14 17.143 11.779 9.729 8.622 7.922 7.436 7.077 6.802
15 16.587 11.339 9.335 8.253 7.567 7.092 6.741 6.471
16 16.120 10.971 9.006 7.944 7.272 6.805 6.460 6.195
17 15.722 10.658 8.727 7.683 7.022 6.563 6.223 5.962
18 15.379 10.390 8.488 7.459 6.808 6.355 6.021 5.763
19 15.081 10.157 8.280 7.265 6.623 6.175 5.845 5.590
20 14.819 9.953 8.098 7.096 6.461 6.019 5.692 5.440
21 14.587 9.772 7.938 6.947 6.318 5.881 5.557 5.308
22 14.380 9.612 7.796 6.814 6.191 5.758 5.438 5.190
23 14.195 9.469 7.669 6.696 6.078 5.649 5.331 5.085
24 14.028 9.339 7.554 6.589 5.977 5.550 5.235 4.991
25 13.877 9.223 7.451 6.493 5.885 5.462 5.148 4.906
26 13.739 9.116 7.357 6.406 5.802 5.381 5.070 4.829
28 13.498 8.931 7.193 6.253 5.657 5.241 4.933 4.695
30 13.293 8.773 7.054 6.125 5.534 5.122 4.817 4.581
32 13.118 8.639 6.936 6.014 5.429 5.021 4.719 4.485
34 12.965 8.522 6.833 5.919 5.339 4.934 4.633 4.401
36 12.832 8.420 6.744 5.836 5.260 4.857 4.559 4.328
38 12.714 8.331 6.665 5.763 5.190 4.790 4.494 4.264
40 12.609 8.251 6.595 5.698 5.128 4.731 4.436 4.207
60 11.973 7.768 6.171 5.307 4.757 4.372 4.086 3.865
80 11.671 7.540 5.972 5.123 4.582 4.204 3.923 3.705

100 11.495 7.408 5.857 5.017 4.482 4.107 3.829 3.612
150 11.267 7.236 5.707 4.879 4.351 3.981 3.706 3.493
200 11.155 7.152 5.634 4.812 4.287 3.920 3.647 3.434
300 11.044 7.069 5.562 4.746 4.225 3.860 3.588 3.377
400 10.989 7.028 5.527 4.713 4.194 3.830 3.560 3.349
∞ 10.828 6.908 5.422 4.617 4.103 3.743 3.475 3.266
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Table 24: 99.9th percentiles of the F distribution

Den. Numerator degrees of freedom
d f 9 10 11 12 13 14 15 16

1 602296 605634 608381 610681 612636 614316 615778 617058
2 999.40 999.41 999.42 999.43 999.44 999.44 999.45 999.45
3 129.86 129.25 128.74 128.32 127.96 127.65 127.38 127.14
4 48.475 48.053 47.705 47.412 47.163 46.948 46.761 46.597
5 27.245 26.917 26.646 26.418 26.224 26.057 25.911 25.783
6 18.688 18.411 18.182 17.989 17.825 17.683 17.559 17.450
7 14.330 14.083 13.879 13.707 13.561 13.434 13.324 13.227
8 11.767 11.540 11.353 11.195 11.060 10.943 10.841 10.752
9 10.107 9.894 9.718 9.570 9.443 9.334 9.238 9.154

10 8.956 8.754 8.587 8.445 8.325 8.220 8.129 8.048
11 8.116 7.922 7.761 7.626 7.510 7.409 7.321 7.244
12 7.480 7.292 7.136 7.005 6.892 6.794 6.709 6.634
13 6.982 6.799 6.647 6.519 6.409 6.314 6.231 6.158
14 6.583 6.404 6.256 6.130 6.023 5.930 5.848 5.776
15 6.256 6.081 5.935 5.812 5.707 5.615 5.535 5.464
16 5.984 5.812 5.668 5.547 5.443 5.353 5.274 5.205
17 5.754 5.584 5.443 5.324 5.221 5.132 5.054 4.986
18 5.558 5.390 5.251 5.132 5.031 4.943 4.866 4.798
19 5.388 5.222 5.084 4.967 4.867 4.780 4.704 4.636
20 5.239 5.075 4.939 4.823 4.724 4.637 4.562 4.495
21 5.109 4.946 4.811 4.696 4.598 4.512 4.437 4.371
22 4.993 4.832 4.697 4.583 4.486 4.401 4.326 4.260
23 4.890 4.730 4.596 4.483 4.386 4.301 4.227 4.162
24 4.797 4.638 4.505 4.393 4.296 4.212 4.139 4.074
25 4.713 4.555 4.423 4.312 4.216 4.132 4.059 3.994
26 4.637 4.480 4.349 4.238 4.142 4.059 3.986 3.921
28 4.505 4.349 4.219 4.109 4.014 3.932 3.859 3.795
30 4.393 4.239 4.110 4.001 3.907 3.825 3.753 3.689
32 4.298 4.145 4.017 3.908 3.815 3.733 3.662 3.598
34 4.215 4.063 3.936 3.828 3.735 3.654 3.583 3.520
36 4.144 3.992 3.866 3.758 3.666 3.585 3.514 3.451
38 4.080 3.930 3.804 3.697 3.605 3.524 3.454 3.391
40 4.024 3.874 3.749 3.642 3.551 3.471 3.400 3.338
60 3.687 3.541 3.419 3.315 3.226 3.147 3.078 3.017
80 3.530 3.386 3.265 3.162 3.074 2.996 2.927 2.867

100 3.439 3.296 3.176 3.074 2.986 2.908 2.840 2.780
150 3.321 3.180 3.061 2.959 2.872 2.795 2.727 2.667
200 3.264 3.123 3.005 2.904 2.816 2.740 2.672 2.612
300 3.207 3.067 2.950 2.849 2.762 2.686 2.618 2.558
400 3.179 3.040 2.922 2.822 2.735 2.659 2.592 2.532
∞ 3.097 2.959 2.842 2.742 2.656 2.580 2.513 2.453
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Table 25: 99.9th percentiles of the F distribution

Den. Numerator degrees of freedom
d f 18 20 25 30 40 50 100 200

1 619201 620922 624031 626114 628725 630301 633455 635033
2 999.46 999.46 999.47 999.48 999.49 999.49 999.50 999.50
3 126.74 126.42 125.84 125.45 124.96 124.67 124.07 123.77
4 46.322 46.101 45.699 45.429 45.089 44.884 44.470 44.261
5 25.568 25.395 25.080 24.869 24.602 24.441 24.115 23.951
6 17.267 17.120 16.853 16.673 16.445 16.307 16.028 15.887
7 13.063 12.932 12.692 12.530 12.326 12.202 11.951 11.824
8 10.601 10.480 10.258 10.109 9.919 9.804 9.571 9.453
9 9.012 8.898 8.689 8.548 8.369 8.260 8.039 7.926

10 7.913 7.804 7.604 7.469 7.297 7.193 6.980 6.872
11 7.113 7.008 6.815 6.684 6.518 6.417 6.210 6.105
12 6.507 6.405 6.217 6.090 5.928 5.829 5.627 5.524
13 6.034 5.934 5.751 5.626 5.467 5.370 5.172 5.070
14 5.655 5.557 5.377 5.254 5.098 5.002 4.807 4.706
15 5.345 5.248 5.071 4.950 4.796 4.702 4.508 4.408
16 5.087 4.992 4.817 4.697 4.545 4.451 4.259 4.160
17 4.869 4.775 4.602 4.484 4.332 4.239 4.049 3.950
18 4.683 4.590 4.418 4.301 4.151 4.058 3.868 3.770
19 4.522 4.430 4.259 4.143 3.994 3.902 3.713 3.615
20 4.382 4.290 4.121 4.005 3.856 3.765 3.576 3.478
21 4.258 4.167 3.999 3.884 3.736 3.645 3.456 3.358
22 4.149 4.058 3.891 3.776 3.629 3.538 3.349 3.251
23 4.051 3.961 3.794 3.680 3.533 3.442 3.254 3.156
24 3.963 3.873 3.707 3.593 3.447 3.356 3.168 3.070
25 3.884 3.794 3.629 3.516 3.369 3.279 3.091 2.992
26 3.812 3.723 3.558 3.445 3.299 3.208 3.020 2.921
28 3.687 3.598 3.434 3.321 3.176 3.085 2.897 2.798
30 3.581 3.493 3.330 3.217 3.072 2.981 2.792 2.693
32 3.491 3.403 3.240 3.128 2.983 2.892 2.703 2.603
34 3.413 3.325 3.163 3.051 2.906 2.815 2.625 2.524
36 3.345 3.258 3.096 2.984 2.839 2.748 2.557 2.456
38 3.285 3.198 3.036 2.925 2.779 2.689 2.497 2.395
40 3.232 3.145 2.984 2.872 2.727 2.636 2.444 2.341
60 2.912 2.827 2.667 2.555 2.409 2.316 2.118 2.009
80 2.763 2.677 2.518 2.406 2.258 2.164 1.960 1.846

100 2.676 2.591 2.431 2.319 2.170 2.076 1.867 1.749
150 2.564 2.479 2.319 2.206 2.056 1.959 1.744 1.618
200 2.509 2.424 2.264 2.151 2.000 1.902 1.682 1.552
300 2.456 2.371 2.210 2.097 1.944 1.846 1.620 1.483
400 2.429 2.344 2.184 2.070 1.917 1.817 1.589 1.448
∞ 2.351 2.266 2.105 1.990 1.835 1.733 1.495 1.338
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