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Preface

This book examines the application of basic statistical methods: primarily analysis of variance and
regression but with some discussion of count data. It is directed primarily towards Masters degree
students in statistics studying analysis of variance, design of experiments, and regression analy-
sis. I have found that the Masters level regression course is often popular with students outside of
statistics. These students are often weaker mathematically and the book caters to that fact while
continuing to give a complete matrix formulation of regression.

The book is complete enough to be used as a second course for upper division and beginning
graduate students in statistics and for graduate students in other disciplines. To do this, one must
be selective in the material covered, but the more theoretical material appropriate only for Statistics
Masters students is generally isolated in separate subsections and, less often, in separate sections.

For a Masters level course in analysis of variance and design, I have the students review Chap-
ter 2, I present Chapter 3 while simultaneously presenting the examples of Section 4.2, I present
Chapters 5 and 6, very briefly review the first five sections of Chapter 7, present Sections 7.11 and
7.12 in detail and then I cover Chapters 9, 10, 11, 12, and 17. Depending on time constraints, I will
delete material or add material from Chapter 16.

For a Masters level course in regression analysis, I again have the students review Chapter 2 and
I review Chapter 3 with examples from Section 4.2. I then present Chapters 7, 13, and 14, Appendix
A, Chapter 15, Sections 16.1.2, 16.3, 16.5 (along with analysis of covariance), Section 8.7 and
finally Chapter 18 . All of this is done in complete detail. If any time remains I like to supplement
the course with discussion of response surface methods.

As a second course for upper division and beginning graduate students in statistics and graduate
students in other disciplines, I cover the first eight chapters with omission of the more technical
material. A follow up course covers the less technical aspects of Chapters 9 through 15 and Ap-
pendix A.

I think the book is reasonably encyclopedic. It really contains everything I would like my stu-
dents to know about applied statistics prior to them taking courses in linear model theory or log-
linear models.

I believe that beginning students (even Statistics Masters students) often find statistical proce-
dures to be a morass of vaguely related special techniques. As a result, this book focuses on four
connecting themes.

1. Most inferential procedures are based on identifying a (scalar) parameter of interest, estimat-
ing that parameter, obtaining the standard error of the estimate, and identifying the appropriate
reference distribution. Given these items, the inferential procedures are identical for various pa-
rameters.

2. Balanced one-way analysis of variance has a simple, intuitive interpretation in terms of com-
paring the sample variance of the group means with the mean of the sample variances for each
group. All balanced analysis of variance problems are considered in terms of computing sample
variances for various group means.

3. Comparing different models provides a structure for examining both balanced and unbalanced
analysis of variance problems and for examining regression problems. In some problems the
most reasonable analysis is simply to find a succinct model that fits the data well.

4. Checking assumptions is a crucial part of every statistical analysis.

Xiii
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The object of statistical data analysis is to reveal useful structure within the data. In a model-
based setting, I know of two ways to do this. One way is to find a succinct model for the data. In
such a case, the structure revealed is simply the model. The model selection approach is particu-
larly appropriate when the ultimate goal of the analysis is making predictions. This book uses the
model selection approach for multiple regression and for general unbalanced multifactor analysis
of variance. The other approach to revealing structure is to start with a general model, identify in-
teresting one-dimensional parameters, and perform statistical inferences on these parameters. This
parametric approach requires that the general model involve parameters that are easily interpretable.
We use the parametric approach for one-way analysis of variance, balanced multifactor analysis of
variance, and simple linear regression. In particular, the parametric approach to analysis of variance
presented here involves a strong emphasis on examining contrasts, including interaction contrasts.
In analyzing two-way tables of counts, we use a partitioning method that is analogous to looking at
contrasts.

All statistical models involve assumptions. Checking the validity of these assumptions is crucial
because the models we use are never correct. We hope that our models are good approximations
to the true condition of the data and experience indicates that our models often work very well.
Nonetheless, to have faith in our analyses, we need to check the modeling assumptions as best we
can. Some assumptions are very difficult to evaluate, e.g., the assumption that observations are statis-
tically independent. For checking other assumptions, a variety of standard tools has been developed.
Using these tools is as integral to a proper statistical analysis as is performing an appropriate confi-
dence interval or test. For the most part, using model-checking tools without the aid of a computer
is more trouble than most people are willing to tolerate.

My experience indicates that students gain a great deal of insight into balanced analysis of
variance by actually doing the computations. The computation of the mean square for treatments in
a balanced one-way analysis of variance is trivial on any hand calculator with a variance or standard
deviation key. More importantly, the calculation reinforces the fundamental and intuitive idea behind
the balanced analysis of variance test, i.e., that a mean square for treatments is just a multiple of
the sample variance of the corresponding treatment means. I believe that as long as students find
the balanced analysis of variance computations challenging, they should continue to do them by
hand (calculator). I think that automated computation should be motivated by boredom rather than
bafflement.

In addition to the four primary themes discussed above, there are several other characteristics
that I have tried to incorporate into this book.

I have tried to use examples to motivate theory rather than to illustrate theory. Most chapters
begin with data and an initial analysis of that data. After illustrating results for the particular data,
we go back and examine general models and procedures. I have done this to make the book more
palatable to two groups of people: those who only care about theory after seeing that it is useful and
those unfortunates who can never bring themselves to care about theory. (The older I get, the more I
identify with the first group. As for the other group, I find myself agreeing with W. Edwards Deming
that experience without theory teaches nothing.) As mentioned earlier, the theoretical material is
generally confined to separate subsections or, less often, separate sections, so it is easy to ignore.

I believe that the ultimate goal of all statistical analysis is prediction of observable quantities. I
have incorporated predictive inferential procedures where they seemed natural.

The object of most statistics books is to illustrate techniques rather than to analyze data; this
book is no exception. Nonetheless, I think we do students a disservice by not showing them a
substantial portion of the work necessary to analyze even ‘nice’ data. To this end, I have tried to
consistently examine residual plots, to present alternative analyses using different transformations
and case deletions, and to give some final answers in plain English. I have also tried to introduce
such material as early as possible. I have included reasonably detailed examinations of a three-factor
analysis of variance and of a split plot design with four factors. I have included some examples in
which, like real life, the final answers are not ‘neat.” While I have tried to introduce statistical ideas
as soon as possible, I have tried to keep the mathematics as simple as possible for as long as possible.
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For example, matrix formulations are postponed to the last chapter on multiple regression and the
last section on unbalanced analysis of variance.

I never use side conditions or normal equations in analysis of variance.

In multiple comparison methods, (weakly) controlling the experimentwise error rate is discussed
in terms of first performing an omnibus test for no treatment effects and then choosing a criterion for
evaluating individual hypotheses. Most methods considered divide into those that use the omnibus
F test, those that use the Studentized range test, and the Bonferroni method, which does not use any
omnibus test.

I have tried to be very clear about the fact that experimental designs are set up for arbitrary
groups of treatments and that factorial treatment structures are simply an efficient way of defining
the treatments in some problems. Thus, the nature of a randomized complete block design does not
depend on how the treatments happen to be defined. The analysis always begins with a breakdown
of the sum of squares into treatments, blocks, and error. Further analysis of the treatments then
focuses on whatever structure happens to be present.

The analysis of covariance chapter includes an extensive discussion of how the covariates must
be chosen to maintain a valid experiment. Tukey’s one degree of freedom test for nonadditivity is
presented as an analysis of covariance test for the need to perform a power transformation rather
than as a test for a particular type of interaction.

The chapter on confounding and fractional replication has more discussion of analyzing such
data than many other books contain.

Minitab commands are presented for most analyses. Minitab was chosen because I find it the
easiest of the common packages to use. However, the real point of including computer commands is
to illustrate the kinds of things that one needs to specify for any computer program and the various
auxiliary computations that may be necessary for the analysis. The other statistical packages used
in creating the book were BMDP, GLIM, and MSUSTAT.
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Chapter 1

Introduction

In this chapter we introduce basic ideas of probability and some related mathematical concepts that
are used in statistics. Values to be analyzed statistically are generally thought of as random variables;
these are numbers that result from random events. The mean (average) value of a population is
defined in terms of the expected value of a random variable. The variance is introduced as a measure
of the variability in a random variable (population). We also introduce some special distributions
(populations) that are useful in modeling statistical data. The purpose of this chapter is to introduce
these ideas, so they can be used in analyzing data and in discussing statistical models.

In writing statistical models, we often use symbols from the Greek alphabet. A table of these
symbols is provided in Appendix B.6.

Rumor has it that there are some students studying statistics who have an aversion to mathemat-
ics. Such people might be wise to focus on the concepts of this chapter and not let themselves get
bogged down in the details. The details are given to provide a more complete introduction for those
students who are not math averse.

1.1 Probability

Probabilities are numbers between zero and one that are used to explain random phenomena. We are
all familiar with simple probability models. Flip a standard coin; the probability of heads is 1/2. Roll
a die; the probability of getting a three is 1/6. Select a card from a well-shuffled deck; the probability
of getting the queen of spades is 1/52 (assuming there are no jokers). One way to view probability
models that many people find intuitive is in terms of random sampling from a fixed population.
For example, the 52 cards form a fixed population and picking a card from a well-shuffled deck is
a means of randomly selecting one element of the population. While we will exploit this idea of
sampling from fixed populations, we should also note its limitations. For example, blood pressure is
a very useful medical indicator, but even with a fixed population of people it would be very difficult
to define a useful population of blood pressures. Blood pressure depends on the time of day, recent
diet, current emotional state, the technique of the person taking the reading, and many other factors.
Thinking about populations is very useful, but the concept can be very limiting both practically and
mathematically. For measurements such as blood pressures and heights, there are difficulties in even
specifying populations mathematically.

For mathematical reasons, probabilities are defined not on particular outcomes but on sets of
outcomes (events). This is done so that continuous measurements can be dealt with. It seems much
more natural to define probabilities on outcomes as we did in the previous paragraph, but consider
some of the problems with doing that. For example, consider the problem of measuring the height of
a corpse being kept in a morgue under controlled conditions. The only reason for getting morbid here
is to have some hope of defining what the height is. Living people, to some extent, stretch and con-
tract, so a height is a nebulous thing. But even given that someone has a fixed height, we can never
know what it is. When someone’s height is measured as 177.8 centimeters (5 feet 10 inches), their
height is not really 177.8 centimeters, but (hopefully) somewhere between 177.75 and 177.85 cen-
timeters. There is really no chance that anyone’s height is exactly 177.8 cm, or exactly 177.8001 cm,

1



2 1. INTRODUCTION

or exactly 177.800000001 cm, or exactly 56.59557 cm, or exactly (76\[5—1—4.5\@) cm. In any
neighborhood of 177.8, there are more numerical values than one could even imagine counting. The
height should be somewhere in the neighborhood, but it won’t be the particular value 177.8. The
point is simply that trying to specify all the possible heights and their probabilities is a hopeless
exercise. It simply cannot be done.

Even though individual heights cannot be measured exactly, when looking at a population of
heights they follow certain patterns. There are not too many people over 8 feet (244 cm) tall. There
are lots of males between 175.3 cm and 177.8 cm (5’9" and 5’10”). With continuous values, each
possible outcome has no chance of occurring, but outcomes do occur and occur with regularity. If
probabilities are defined for sets instead of outcomes, these regularities can be reproduced mathe-
matically. Nonetheless, initially the best way to learn about probabilities is to think about outcomes
and their probabilities.

There are five key facts about probabilities:

1. Probabilities are between 0 and 1.

2. Something that happens with probability 1 is a sure thing.

3. If something has no chance of occurring, it has probability O.
4

. If something occurs with probability, say, .25, the probability that it will not occur is 1 — .25 =
5.

5. If two events are mutually exclusive, i.e., if they cannot possibly happen at the same time, then
the probability that either of them occurs is just the sum of their individual probabilities.

Individual outcomes are always mutually exclusive, e.g., you cannot flip a coin and get both heads
and tails, so probabilities for outcomes can always be added together. Just to be totally correct, 1
should mention one other point. It may sound silly, but we need to assume that something occurring
is always a sure thing. If we flip a coin, we must get either heads or tails with probability 1. We
could even allow for the coin landing on its edge as long as the probabilities for all the outcomes
addupto 1.

EXAMPLE 1.1.1.  Consider the nine outcomes that are all combinations of three heights, tall (T),
medium (M), short (S) and three eye colors, blue (Bl), brown (Br) and green (G). The combinations
are displayed below.

Height—eye color combinations
Eye color
Blue Brown Green

Tall T,BI T,Br T,G
Height Medium | M,Bl M,Br M,G
Short S,Bl S,Br S.G

The set of all outcomes is
{(T,Bl),(T,Br),(T,G), (M,BI),(M,Br),(M,G), (S,Bl),(S,Br),(S,G)}.
The event that someone is tall consists of the three pairs in the first row of the table, i.e.,
{T} ={(T,BI),(T,Br),(T,G)}.

This is the union of the three outcomes (T,Bl), (T, Br), and (T, G). Similarly, the set of people with
blue eyes is obtained from the first column of the table; it is the union of (T, Bl), (M, BI), and (S, BI)
and can be written

{B1} = {(T,BI), (M, BI),(S,Bl)}.

If we know that {T} and {Bl} both occur, there is only one possible outcome, (T, BI).
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Table 1.1: Height—eye color probabilities

Eye color
‘ Blue Brown Green
Tall 12 15 .03
Height Medium 22 34 .04
Short .06 .01 .03

The event that {T} or {BI} occurs consists of all outcomes in either the first row or the first
column of the table, i.e.,

{(T,BI), (T,Br), (T,G), (M,Bl), (S,BI)}. 0

EXAMPLE 1.1.2. Table 1.1 contains probabilities for the nine outcomes that are combinations of
height and eye color from Example 1.1.1.
Note that each of the nine numbers is between 0 and 1 and that the sum of all nine equals 1. The
probability of blue eyes is
Pr(Bl) = Pr[(T,Bl),(M,Bl),(S,Bl)]

= Pr(T,Bl)+Pr(M,Bl) + Pr(S,BI)

= .124.22+.06

= 4.

Similarly, Pr(Br) = .5 and Pr(G) = .1. The probability of not having blue eyes is
Pr(notBl) = 1—Pr(Bl)
= 1-4
= .6.

Note also that Pr(not Bl) = Pr(Br) 4+ Pr(G).
The (marginal) probabilities for the various heights are:

Pr(T)=.3, Pr(M)=.6, Pr(S)=.1. O

Even if there are a countable (but infinite) number of possible outcomes, one can still define a
probability by defining the probabilities for each outcome. It is only for measurement data that one
really needs to define probabilities on sets.

Two random events are said to be independent if knowing that one of them occurs provides no
information about the probability that the other event will occur. Formally, two events A and B are
independent if

Pr(A and B) = Pr(A)Pr(B).
Thus the probability that both events A and B occur is just the product of the individual probabilities
that A occurs and that B occurs. As we will begin to see in the next section, independence plays an
important role is statistics.

EXAMPLE 1.1.3.  Using the probabilities of Table 1.1 and the computations of Example 1.1.2,
the events tall and brown eyes are independent because

Pr(tall and brown) = Pr(T,Br) = .15 = (.3)(.5) = Pr(T) x Pr(Br).
On the other hand, medium height and blue eyes are not independent because

Pr(medium and blue) = Pr(M, Bl) = .22 # (.6)(.4) = Pr(M) x Pr(BI). O
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1.2 Random variables and expectations

A random variable is simply a function that relates outcomes with numbers. The key point is that
any probability associated with the outcomes induces a probability on the numbers. The numbers
and their associated probabilities can then be manipulated mathematically. Perhaps the most
common and intuitive example of a random variable is rolling a die. The outcome is that a face of
the die with a certain number of spots ends up on top. These can be pictured as

Without even thinking about it, we define a random variable that transforms these six faces into the
numbers 1, 2, 3,4, 5, 6.

In statistics we think of observations as random variables. These are often some number asso-
ciated with a randomly selected member of a population. For example, one random variable is the
height of a person who is to be randomly selected from among University of New Mexico students.
(A random selection gives the same probability to every individual in the population. This random
variable presumes that we have well-defined methods for measuring height and defining UNM stu-
dents.) Rather than measuring height, we could define a different random variable by giving the
person a score of 1 if that person is female and O if the person is male. We can also perform math-
ematical operations on random variables to yield new random variables. Suppose we plan to select
a random sample of 10 students, then we would have 10 random variables with female and male
scores. The sum of these random variables is another random variable that tells us the (random)
number of females in the sample. Similarly, we would have 10 random variables for heights and
we can define a new random variable consisting of the average of the 10 individual height random
variables. Some random variables are related in obvious ways. In our example we measure both a
height and a sex score on each person. If the sex score variable is a 1 (telling us that the person is fe-
male), it suggests that the height may be smaller than we would otherwise suspect. Obviously some
female students are taller than some male students, but knowing a person’s sex definitely changes
our knowledge about their probable height.

We do similar things in tossing a coin.

EXAMPLE 1.2.1.  Consider tossing a coin twice. The four outcomes are ordered pairs of heads
(H) and tails (T"). The outcomes can be denoted as

(H,H) (H,T) (T,H) (T,T)

where the outcome of the first toss is the first element of the ordered pair.

The standard probability model has the four outcomes equally probable, i.e., 1/4 =Pr(H,H) =
Pr(H,T)=Pr(T,H) =Pr(T,T). Equivalently
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Second toss
Heads Tails | Total
First toss Heads 1/4 1/4 1/2
Tails 1/4 1/4 172
Total 12 172 1

The probability of heads on each toss is 1/2. The probability of tails is 1/2. We will define two
random variables:

yi(r,s) {1 ifr=H

’ 0 ifr=T
yz(rs) {l lfS:H

’ 0 ifs=T

Thus, yp is 1 if the first toss is heads and 0 otherwise. Similarly, y; is 1 if the second toss is heads
and 0 otherwise.

The event y; = 1 occurs if and only if we get heads on the first toss. We get heads on the first toss
by getting either of the outcome pairs (H,H) or (H,T). In other words, the event y; = 1 is equivalent
to the event {(H,H),(H,T)}. The probability of y; = 1 is just the sum of the probabilities of the
outcomes in {(H,H),(H,T)}.

Pr(yy=1) = Pr(H,H)+Pr(H,T)
= 1/4+1/4=1)2.
Similarly,
Pr(yy =0) = Pr(T,H)+Pr(T,T)
= 1/2
Pr(p=1) = 1/2
Pr(y,=0) = 1/2.

Now define another random variable,

W(V,S) :yl(ras)+y2(r>s)'

The random variable W is the total number of heads in two tosses:

W(H,H) = 2
W(H,T) = W(T,H) =1
w(T,T) = 0.
Moreover,
Pr(W=2) = Pr(H,H) =1/4
Pec(W=1) = Pr(H,T)+Pr(T,H) = 1/2
Pr(W =0) = Pr(T,T) = 1/4.

These three equalities define a probability on the outcomes 0, 1, 2. In working with W, we can
ignore the original outcomes of head-tail pairs and work only with the new outcomes 0, 1, 2 and
their associated probabilities. We can do the same thing for y; and y,. The probability table given
earlier can be rewritten in terms of y; and y;.
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Y2
1 0 y1 totals
Vi 1 1/4 1/4 1/2
0 1/4 1/4 1/2
yytotals | 1/2 1/2 1

Note that, for example, Pr{(y;,y2) = (1,0)] = 1/4 and Pr(y; = 1) = 1/2. This table shows the
distribution of the probabilities for y; and y, both separately (marginally) and jointly.
O

For any random variable, a statement of the possible outcomes and their associated probabilities
is referred to as the (marginal) probability distribution of the random variable. For two or more
random variables, a table or other statement of the possible joint outcomes and their associated
probabilities is referred to as the joint probability distribution of the random variables.

All of the entries in the center of the distribution table given above for y; and y; are independent.
For example,

Pr[(y1,y2) = (1,0)] = Pr(y; = l and y, = 0) = Pr(y; = 1)Pr(y, = 0).

We therefore say that y; and y, are independent. In general, two random variables y; and y, are
independent if any event involving only y1 is independent of any event involving only y,.
Independence is an extremely important concept in statistics. Observations to be analyzed are
commonly assumed to be independent. This means that the random aspect of one observation con-
tains no information about the random aspect of any other observation. (However, every observation
tells us about fixed aspects of the underlying population such as the population center.) For most
purposes in applied statistics, just this intuitive understanding of independence is sufficient.

1.2.1 Expected values and variances

The expected value (population mean) of a random variable is a number characterizing the middle
of the distribution. For a random variable y with a discrete distribution (i.e., one having a finite or
countable number of outcomes), the expected value is

E(y) = Z rPr(y=r).
all »

EXAMPLE 1.2.2. Let y be the result of picking one of the numbers 2, 4, 6, 8 at random. Because
the numbers are chosen at random,
1/4=Pr(y=2)=Pr(y=4) =Pr(y=6) =Pr(y=38).
The expected value in this simple example is just the mean (average) of the four possible outcomes.
1 1 1 1
21 = 41 - 6| - 8| =
(3)++(5)+o(3) = ()
= (2+446+8)/4
5. O

E(y)

EXAMPLE 1.2.3.  Five pieces of paper are placed in a hat. The papers have the numbers 2, 4, 6,
6, and 8 written on them. A piece of paper is picked at random. The expected value of the number
drawn is the mean of the numbers on the five pieces of paper. Let y be the random variable that
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relates a piece of paper to the number on that paper. Each piece of paper has the same probability of
being chosen, so, because the number 6 appears twice, the distribution of the random variable y is

1
3 = PO=2)=Prly=4)=Pr(y=8)
% = Pr(y=6).
The expected value is

1 1 2 1
E = 2| - |+4| ¢ 6= 8( =
o= 2(5)w(s) re(5) o s)

= (2+44+6+6+8)/5
52. -

EXAMPLE 1.2.4.  Consider the coin tossing random variables y, y», and W from Example 1.2.1.
Recalling that y; and y; have the same distribution,

o ()
E(y2) = %
i = (D) ()02 -1

The variable y; is the number of heads in the first toss of the coin. The two possible values 0 and
1 are equally probable, so the middle of the distribution is 1/2. W is the number of heads in two
tosses; the expected number of heads in two tosses is 1. O

The expected value indicates the middle of a distribution, but does not indicate how spread out
(dispersed) a distribution is.

EXAMPLE 1.2.5. Consider three gambles that I will allow you to take. In game z; you have equal
chances of winning 12, 14, 16, or 18 dollars. In game z, you can again win 12, 14, 16, or 18 dollars,
but now the probabilities are .1 that you will win either $14 or $16 and .4 that you will win $12 or
$18. The third game I call z3 and you can win 5, 10, 20, or 25 dollars with equal chances. Being no
fool, I require you to pay me $16 for the privilege of playing any of these games. We can write each
game as a random variable.

z1  outcome 12 14 16 18
probability .25 25 25 .25

Zzp  outcome 12 14 16 18
probability .4 .1 1 4

z3 outcome 5 10 20 25
probability .25 .25 25 .25

I try to be a good casino operator, so none of these games is fair. You have to pay $16 to play, but
you only expect to win $15. It is easy to see that

E(z1) = E(z2) =E(z3) = 15.
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But don’t forget that I’'m taking a loss on the ice-water I serve to players and I also have to pay for
the pictures of my extended family that I’ve decorated my office with.

Although the games z1, z2, and z3 have the same expected value, the games (random variables)
are very different. Game z, has the same outcomes as z;, but much more of its probability is placed
farther from the middle value 15. The extreme observations 12 and 18 are much more probable
under 7, than z;. If you currently have $16, need $18 for your grandmother’s bunion removal, and
anything less than $18 has no value to you, then z; is obviously a better game for you than z;.

Both z; and z; are much more tightly packed around 15 than is z3. If you needed $25 for the
bunion removal, z3 is the game to play because you can win it all in one play with probability .25.
In either of the other games you would have to win at least five times to get $25, a much less likely
occurrence. Of course you should realize that the most probable result is that Grandma will have
to live with her bunion. You are unlikely to win either $18 or $25. While the ethical moral of this
example is that a fool and his money are soon parted, the statistical point is that there is more to a
random variable than its mean. The variability of random variables is also important. O

The (population) variance is a measure of how spread out a distribution is from its expected
value. Let y be a random variable having a discrete distribution with E(y) = u, then the variance of
yis

Var(y) = Y (r— w)Pr(y=r).

all r

This is the average squared distance of the outcomes from the center of the population. More tech-
nically, it is the expected squared distance between the outcomes and the mean of the distribution.

EXAMPLE 1.2.6.  Using the random variables of Example 1.2.5,

Var(z;) = (12— 15)%(.25)+ (14— 15)*(.25)
+ (16 — 15)(.25) + (18 — 15)(.25)
=5
Var(zy) = (12—15)%(4)+ (14 —15)%(.1)
+ (16 —15)%(.1) + (18 — 15)(.4)
= 74
Var(zz) = (5—15)%(.25)+ (10 —15)%(.25)
+ (20 — 15)(.25) + (25 — 15)%(.25)
= 625

The increasing variances from z; through z3 indicate that the random variables are increasingly
spread out. However, the value Var(z3) = 62.5 seems too large to measure the relative variabilities
of the three random variables. More on this later. m|

EXAMPLE 1.2.7.  Consider the coin tossing random variables of Examples 1.2.1 and 1.2.4.

2 2
1 1 1 1 1
Var(n) - = (1_2> z+(0‘2> 371

Var(y;)

1
?21)2(i>+(11)2(;>+(01)2<i>;. O

A problem with the variance is that it is measured on the wrong scale. If y is measured in meters,

Var(W)
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Var(y) involves the terms (r — it)?; hence it is measured in meters squared. To get things back on
the original scale, we consider the standard deviation of y

Std. dev. (y) = +/Var(y).

EXAMPLE 1.2.8.  Consider the random variables of Examples 1.2.5 and 1.2.6.

Std. dev. (z1) = V5 = 2236
Std. dev. (z2) = V74 = 2720
Std. dev. (z3) = Vv62.5 = 7.906

The standard deviation of z3 is 3 to 4 times larger than the others. From examining the distribu-
tions, the standard deviations seem to be more intuitive measures of relative variability than the
variances. The variance of z3 is 8.5 to 12.5 times larger than the other variances; these values seem
unreasonably inflated. O

Standard deviations and variances are useful as measures of the relative dispersions of different
random variables. The actual numbers themselves do not mean much. Moreover, there are other
equally good measures of dispersion that can give results that are somewhat inconsistent with these.
One reason standard deviations and variances are so widely used is because they are convenient
mathematically. In addition, normal (Gaussian) distributions are widely used in applied statistics
and are completely characterized by their expected values (means) and variances (or standard devi-
ations). Knowing these two numbers, the mean and variance, one knows everything about a normal
distribution.

1.2.2  Chebyshev’s inequality

Another place in which the numerical values of standard deviations are useful is in applications
of Chebyshev’s inequality. Chebyshev’s inequality gives a lower bound on the probability that a
random variable is within an interval. Chebyshev’s inequality is important in quality control work
(control charts) and in evaluating prediction intervals.

Let y be a random variable with E(y) = u and Var(y) = 6. Chebyshev’s inequality states that
for any number k > 1,

1
Prlu —ko <y < u+ko] > lfk—z.

Thus the probability that y will fall within k standard deviations of y is at least 1 — (1/k2).

The beauty of Chebyshev’s inequality is that it holds for absolutely any random variable y. Thus
we can always make some statement about the probability that y is in a symmetric interval about
u. In many cases, for particular choices of y, the probability of being in the interval can be much
greater than 1 — k2. For example, if k = 3 and y has a normal distribution as discussed in the next
section, the probability of being in the interval is actually .997, whereas Chebyshev’s inequality
only assures us that the probability is no less than 1 —3~2 = .889. However, we know the lower
bound of .889 applies regardless of whether y has a normal distribution.

1.2.3 Covariances and correlations

Often we take two (or more) observations on the same member of a population. We might observe
the height and weight of a person. We might observe the 1Qs of a wife and husband. (Here the
population consists of married couples.) In such cases we may want a numerical measure of the
relationship between the pairs of observations. Data analysis related to these concepts is known as
regression analysis and is discussed in Chapters 7, 13, 14, and 15. These ideas are also briefly used
for testing normality in Section 2.4.
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The covariance is a measure of the linear relationship between two random variables. Suppose
y1 and y; are discrete random variables. Let E(y;) = ; and E(y2) = . The covariance between y;
and y; is

Cov(yi,y2) = Y, (r—mm)(s—w)Pr(yi =ry> =s).
all (rs)
Positive covariances arise when relatively large values of y; tend to occur with relatively large
values y, and small values of y; tend to occur with small values of y,. On the other hand, negative
covariances arise when relatively large values of y; tend to occur with relatively small values y, and
small values of y; tend to occur with large values of y;. It is simple to see from the definition that,
for example,
Var(y1) = Cov(yr,y1).

In an attempt to get a handle on what the numerical value of the covariance means, it is often
rescaled into a correlation coefficient.

Corr(y1,y2) = Cov(y1,y2)/+/ Var(y; ) Var(yz) .

Positive values of the correlation have the same qualitative meaning as positive values of the covari-
ance, but now a perfect increasing linear relationship is indicated by a correlation of 1. Similarly,
negative correlations and covariances mean similar things, but a perfect decreasing linear relation-
ship gives a correlation of —1. The absence of any linear relationship is indicated by a value of
0.

A perfect linear relationship between y; and y, means that an increase of one unit in, say, y;
dictates an exactly proportional change in y,. For example, if we make a series of very accurate
temperature measurements on something and simultaneously use one device calibrated in Fahren-
heit and one calibrated in Celsius, the pairs of numbers should have an essentially perfect linear
relationship.

EXAMPLE 1.2.9. Let z; and z; be two random variables defined by the following probability
table:

22
0 1 2 | zp totals
6 0o 13 0 1/3
21 4 173 0 0 1/3
2 0 0o 173 1/3
zptotals | 173 1/3 173 1

Then

o
Py
o
-
[
N

Var(z) = (2-4)°

Var(zz) = (0—1)2

o
~N
2
Il
(e]
N /N N N
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Cov(zi,z2) = (2-4)(0-D0O)+2-4)(1-1D0)+(2-4)(2-1) (;)

Fd-4)0-1) (;) 4= 4)(1-1)(0)+(4—4)2—1)(0)
T (6-4)(0—1)(0)+ (6—4)(1— 1) (;) +(6-4)2—1)(0)

= 72/35

Corr(zi,22) = (=2/3)/V/(8/3)(2/3)

= -1/2

This correlation indicates that relatively large z; values tend to occur with relatively small z, values.
However, the correlation is considerably greater than —1, so the linear relationship is less than
perfect. Moreover, the correlation measures the linear relationship and fails fo identify the perfect
nonlinear relationship between z; and 2. If z; =2, then zp = 2. If z; =4, then 2 = 0. If z; = 6,
then z; = 1. If you know one random variable, you know the other, but because the relationship is
nonlinear, the correlation is not 1. O

EXAMPLE 1.2.10. Consider the coin toss random variables y; and y, from Example 1.2.1. We
earlier observed that these two random variables are independent. If so, there should be no relation-
ship between them (linear or otherwise). We now show that their covariance is 0.

Cov(yi,y2) = (0—;) (0—;) %4‘ (O—;> (1—;> %
D6 D6 D0
= oo 97 +—=0. O

In general, whenever two random variables are independent, their covariance (and thus their
correlation) is 0. However, just because two random variables have 0 covariance does not imply that
they are independent. Independence has to do with not having any kind of relationship; covariance
examines only linear relationships. Random variables with nonlinear relationships can have zero
covariance but not be independent.

1.2.4  Rules for expected values and variances

We now present some extremely useful results that allow us to show that statistical estimates are
reasonable and to establish the variability associated with statistical estimates. These results relate to
the expected values, variances, and covariances of linear combinations of random variables. A linear
combination of random variables is something that only involves multiplying random variables by
fixed constants, adding such terms together, and adding a constant.

Proposition 1.2.11. Let y1, y2, ¥3, and y4 be random variables and let a;, az, a3, and a4 be real
numbers.

L. E(aiy1 + a2y2 +a3) = a1E(y1) + aE(y2) +a3.
2. If y; and y, are independent, Var(ajy; +axys +az) = a2 Var(y;) + a3 Var(y,).
3. Var(ajy; +azyz +a3) = atVar(y;) +2aja;Cov(y1,y2) + a3 Var(yz).
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4. Cov(aiy1 + asyz,a3ys + aays) = ajasCov(y,ys) + a1aaCov(yi,ys) + arazCov(yz,y3) +
azasCov(ya,ys).

All of these results generalize to linear combinations involving more than two random variables.

EXAMPLE 1.2.12. Recall that when independently tossing a coin twice, the total number of
heads, W, is the sum of y; and y;, the number of heads on the first and second tosses respectively.
We have already seen that E(y;) = E(y2) = .5 and that E(W) = 1. We now illustrate item 1 of the
proposition by finding E(W) again. Since W = y| +ya,

E(W)=E(y; +y2) =E(y1) +E(y2) =.5+.5=1.

We have also seen that Var(y;) = Var(y,) = .25 and that Var(W) = .5. Since the coin tosses are
independent, item 2 above gives

Var(W) = Var(y; +y2) = Var(y;) + Var(y2) = .25+ .25= 5.

The key point is that this is an easier way of finding the expected value and variance of W than using
the original definitions. a

We now illustrate the generalizations referred to in Proposition 1.2.11. We begin by looking at
the problem of estimating the mean of a population.

EXAMPLE 1.2.13. Letyy, y2, y3, and y4 be four random variables each with the same (population)
mean U, i.e., E(y;) = p for i = 1,2,3,4. We can compute the sample mean (average) of these,
defining

Yi+y2+y3+ya
4

1 1 1 1
= it ont oyt oy

4 4 4 4
The - in the subscript of ¥. indicates that the sample mean is obtained by summing over the subscripts
of the y;s. The - notation is not necessary for this problem but becomes useful in dealing with the
analysis of variance problems treated later in the book.
Using item 1 of Proposition 1.2.11 we find that

=
I

B 1 1 1 1
E(y.) = E<4y1 + Zyz + Zy3 + 4y4)

— %E(yl) + %E(yz) + %E(ys) + %E(ﬂ)

1 n 1 n 1 . 1
T o gh TR TRk
Thus one observation on y. would make a reasonable estimate of L.

If we also assume that the y;s are independent with the same variance, say, 62, then from item 2
of Proposition 1.2.11

Var(y.) g T Ty

- (2 ()
<i>2Var(ys) + (i)zVar(yzt)

1 1 1 1
Var( —y1+—y2+—~y3+—ya
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S ()

o2

1
The variance of y. is only one fourth of the variance of an individual observation. Thus the .
observations are more tightly packed around their mean p than the y;s are. This indicates that one
observation on . is more likely to be close to u than an individual y;. O

These results for y. hold quite generally; they are not restricted to the average of four random
variables. If . = (1/n)(y1 + - +yn) = Y1 yi/n is the sample mean of n independent random

variables all with the same population mean [ and population variance 62,
E(y.)=u
and o2
Var(y.) = —

In fact, proving these general results uses exactly the same ideas as the proofs for a sample of size
4.

As with a sample of size 4, the general results on y. are very important in statistical inference. If
we are interested in determining the population mean u from future data, the obvious estimate is the
average of the individual observations, y.. The observations are random, so the estimate y. is also a
random variable and the middle of its distribution is E(7.) = u, the original population mean. Thus
y. is a reasonable estimate of . Moreover, J. is a better estimate than any particular observation
y; because 7. has a smaller variance, 62 /n as opposed to ¢ for y;. With less variability in the
estimate, any one observation of y. is more likely to be near its mean y than a single observation
yi. In practice, we obtain data and compute a sample mean. This constitutes one observation on the
random variable y.. If our sample mean is to be a good estimate of (t, our one look at j. had better
have a good chance of being close to . This occurs when the variance of . is small. Note that the
larger the sample size 7, the smaller is 62 /n, the variance of 7.. We will return to these ideas later.

Generally, we will use item 1 of Proposition 1.2.11 to show that estimates are unbiased. In other
words, we will show that the expected value of an estimate is what we are trying to estimate. In
estimating t, we have E(y.) = 1, so . is an unbiased estimate of . All this really does is show that
y. is a reasonable estimate of (. More important than showing unbiasedness is using item 2 to find
variances of estimates. Statistical inference depends crucially on having some idea of the variability
of an estimate. Item 2 is the primary tool in finding the appropriate variance for different estimates.

1.3 Continuous distributions

As discussed in Section 1.1, many things that we would like to measure are, in the strictest sense, not
measurable. We cannot find a building’s exact height even though we can approximate it extremely
accurately. This theoretical inability to measure things exactly has little impact on our practical
world, but it has a substantial impact on the theory of statistics.

The data in most statistical applications can be viewed as counts of how often some event has
occurred or as measurements. Probabilities associated with count data are easy to describe. We dis-
cuss some probability models for count data in Sections 1.4 and 1.5. With measurement data, we can
never obtain an exact value, so we don’t even try. With measurement data, we assign probabilities to
intervals. Thus we do not discuss the probability that a person has the height 177.8 cm or 177.8001
cm or 56.59557 cm, but we do discuss the probability that someone has a height between 177.75
cm and 177.85 cm. Typically, we think of doing this in terms of pictures. We associate probabilities
with areas under curves. (Mathematically, this involves integral calculus and is discussed in a brief
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o K(1—a)

Figure 1.1: A continuous probability density.

appendix at the end of the chapter.) Figure 1.1 contains a picture of a continuous probability distri-
bution (a density). Probabilities must be between 0 and 1, so the curve must always be nonnegative
(to make all areas nonnegative) and the area under the entire curve must be 1.

Figure 1.1 also shows a point K(1 — ). This point divides the area under the curve into two
parts. The probability of obtaining a number less than K(1 — o) is 1 — «, i.e., the area under the
curve to the left of K(1 — at) is 1 — a . The probability of obtaining a number greater than K(1 — o)
is a, i.e., the area under the curve to the right of K(1 — a). K(1 — ) is a particular number, so the
probability is O that K (1 — o) will actually occur. There is no area under a curve associated with any
particular point.

Pictures such as Figure 1.1 are often used as models for populations of measurements. With a
fixed population of measurements, it is natural to form a histogram, i.e., a bar chart that plots in-
tervals for the measurement against the proportion of individuals that fall into a particular interval.
Pictures such as Figure 1.1 can be viewed as approximations to such histograms. The probabilities
described by pictures such as Figure 1.1 are those associated with randomly picking an individ-
ual from the population. Thus, randomly picking an individual from the population modeled by
Figure 1.1 yields a measurement less than K (1 — a) with probability 1 — .

Ideas similar to those discussed in Section 1.2 can be used to define expected values, variances,
and covariances for continuous distributions. These extensions involve integral calculus and are
discussed in the appendix. In any case, Proposition 1.2.11 continues to apply.

The most commonly used distributional model for measurement data is the normal distribution
(also called the Gaussian distribution). The bell shaped curve in Figure 1.1 is referred to as the
standard normal curve. The formula for writing the curve is not too ugly, it is

fx) = L 2n
V2r
Here e is the base of natural logarithms. Unfortunately, even with calculus it is very difficult to
compute areas under this curve. Finding standard normal probabilities requires a table.
By itself, the standard normal curve has little value in modeling measurements. For one thing,
the curve is centered about 0. I don’t take many measurements where I think the central value should
be 0. To make the normal distribution a useful model, we need to expand the standard normal into
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a family of distributions with different centers (expected values) u and different spreads (standard
deviations) o. By appropriate recentering and rescaling of the plot, all of these curves will have the
same shape as Figure 1.1.

The standard normal distribution is the special case of a normal with 4 =0 and ¢ = 1. The
standard normal plays an important role because it is the only normal distribution that we need
tabled. (Obviously, we could not table normal distributions for every possible value of yt and ©.)
Suppose a measurement y has a normal distribution with mean g, standard deviation ¢, and variance
0. We write this as

wa(lJ,,O'z),

Normal distributions have the property that

yY—H
P N(0,1),
cf. Exercise 1.6.2. This standardization process allows us to get by with only the standard normal
table for finding probabilities for all normal distributions.

The standard normal distribution is sometimes used in constructing statistical inferences but
more often a similar distribution is used. When data are normally distributed, statistical inferences
often require something called Student’s ¢ distribution. (Student was the pen name of W. S. Gosset.)
The ¢ distribution is a family of distributions all of which look roughly like Figure 1.1. They are all
symmetric about 0, but they have slightly different amounts of dispersion (spread). The amount of
variability in each distribution is determined by a positive integer parameter called the degrees of
freedom. With only 1 degree of freedom, the mathematical properties of a ¢ distribution are fairly
bizarre. (This special case is called a Cauchy distribution.) As the number of degrees of freedom
get larger, the ¢ distributions get better behaved and have less variability. As the degrees of freedom
gets arbitrarily large, the ¢ distribution approximates the standard normal distribution.

Two other distributions that come up later are the chi-squared distribution (y?) and the F dis-
tribution. These arise naturally when drawing conclusions about the population variance from data
that are normally distributed. Both distributions differ from those just discussed in that both are
asymmetric and both are restricted to positive numbers. However, the basic idea of probabilities
being areas under curves remains unchanged.

In Section 1.2, we introduced Chebyshev’s inequality. Shewhart (1931, p. 177) discusses work
by Camp and Meidell that allows us to improve on Chebyshev’s inequality for continuous distri-
butions. Once again let E(y) = u and Var(y) = o2. If the density, i.e., the function that defines the
curve, is symmetric, unimodal (has only one peak), and always decreases as one moves farther away
from the mode, then the inequality can be sharpened to

1
Priu—ko <y< ko|>1— ———.
As discussed in the previous section, with y normal and k = 3, the true probability is .997, Cheby-
shev’s inequality gives a lower bound of .889, and the new improved Chebyshev inequality gives
a lower bound of .951. By making some relatively innocuous assumptions, we get a substantial
improvement in the lower bound.

1.4 The binomial distribution

There are a few distributions that are used in the vast majority of statistical applications. The reason
for this is that they tend to occur naturally. The normal distribution is one. As discussed in the next
chapter, the normal distribution occurs in practice because a result called The central limit theorem
dictates that many distributions can be approximated by the normal. Two other distributions, the
binomial and the multinomial, occur in practice because they are very simple. In this section we
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discuss the binomial. The next section introduces the multinomial distribution. The results of this
section are only used in Chapter 8 and in discussions of transformations.

If you have independent identical random trials and count how often something (anything) oc-
curs, the appropriate distribution is the binomial. What could be simpler?

EXAMPLE 1.4.1. Being somewhat lonely in my misspent youth, I decided to go to a dating ser-
vice. The service was to provide me with five dates. Being a very open-minded soul, I convinced
myself that the results of one date would not influence my opinion about other dates. From my
limited experience with the opposite sex, I have found that I enjoy about 40% of such brief en-
counters. I decided that my money would be well spent if I enjoyed two or more of the five dates.
Unfortunately, my loan shark repossessed my 1954 Studebaker before I could indulge in this taste
of nirvana. Back in those days, we chauvinists believed: no wheels — no women. Nevertheless, let
us compute the probability that I would have been satisfied with the dating service. Let W be the
number of dates I would have enjoyed. The simplest way to find the probability of satisfaction is
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Pr(W >2) = 1-Pr(W<2)
= 1-Pt(W=0)—Pr(W=1),

but that is much too easy. Let’s compute
Pr(W >2) =Pr(W =2)+Pr(W =3)+Pr(W =4) +Pr(W =5).

In particular, we compute each term on the right-hand side.

Write the outcome of the five dates as an ordered collection of Ls and Ds. For example, (L, D,
L, D, D) indicates that I like the first and third dates, but dislike the second, fourth, and fifth.
To like five dates, I must like everyone of them.

Pr(W =5)=Pr(L,L,L,L,L).

Remember, I assumed that the dates were independent and that the probability of my liking any one
is .4. Thus,

Pr(W =5) = Pr(L)Pr(L)Pr(L)Pr(L)Pr(L)
= (4).

The probability of liking four dates is a bit more complicated. I could only dislike one date, but
there are five different choices for the date that I could dislike. It could be the fifth, the fourth, the
third, the second, or the first. Any pattern of 4 Ls and a D excludes the other patterns from occurring,
e.g., if the only date I dislike is the fourth, then the only date I dislike cannot be the second. Since
the patterns are mutually exclusive (disjoint), the probability of disliking one date is the sum of the
probabilities of the individual patterns.

Pr(W=4) = Pr(L,L,L,L,D) (1.4.1)
+Pr(L,L,L,D,L)
+Pr(L,L,D,L,L)

+Pr(L,D,L,L,L)

+Pr(D,L,L,L,L).

By assumption Pr(L) = .4, so Pr(D) = 1 —Pr(L) = 1 — .4 = .6. The dates are independent, so

Pr(L,L,L,L,D) = Pr(L)Pr(L)Pr(L)Pr(L)Pr(D)
= (4)%6.

Similarly,

Pr(L,L,L,D,L) = Pr(L,L,D,L,L)

Pr(L,D,L,L,L)
Pr(D,L,L,L,L)
= (4)%6.

Summing up the values in equation (1.4.1),

Pr(W =4) =5(.4)*(.6).
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Computing the probability of liking three dates is even worse.
Pr(W=3) = Pr(L,L,L,D,D)

+Pr(L,L,D,L,D)

+Pr(L,D,L,L,D)

+Pr(D,L,L,L,D)

+Pr(L,L,D,D,L)

+Pr(L,D,L,D,L)

+Pr(D,L,L,D,L)

+Pr(L,D,D,L,L)

+Pr(D,L,D,L,L)

+Pr(D,D,L,L,L)

Again all of these patterns have exactly the same probability. For example, using independence
Pr(D,L,D,L,L) = (.4)3(.6)°.

Adding up all of the patterns

By now it should be clear that
Pr(W = 2) = (no. of patterns with 2 Ls and 3 Ds)(.4)>(.6)>.

The number of patterns can be computed as

5 51 5.4.3.2.1
(2> G-y - G2 0

The probability that I would be satisfied with the dating service is

Pr(W >2) = 10(.4)%(.6)° +10(4)(.6)* +5(.4)* .6+ (4)°
= .663. u]

Binomial random variables can also be generated by sampling from a fixed population. If we
were going to make 20 random selections from the UNM student body, the number of females would
have a binomial distribution. Given a set of procedures for defining and sampling the student body,
there would be some fixed number of students of which a given number would be females. Under
random sampling, the probability of selecting a female on any of the 20 trials would be simply the
proportion of females in the population. Although it is very unlikely to occur in this example, the
sampling scheme must allow the possibility of students being selected more than once in the sample.
If people were not allowed to be chosen more than once, each successive selection would change the
proportion of females available for the subsequent selection. Of course, when making 20 selections
out of a population of over 20,000 UNM students, even if you did not allow people to be reselected,
the changes in the proportions of females are insubstantial and the binomial distribution makes a
good approximation to the true distribution. On the other hand, if the entire student population was
40 rather than 20,000+, it might not be wise to use the binomial approximation when people are
not allowed to be reselected.

Typically, the outcome of interest in a binomial is referred to as a success. If the probability
of a success is p for each of N independent identical trials, then the number of successes y has a
binomial distribution with parameters N and p. Write

y~Bin(N,p).
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The distribution of y is

forr=0,1,...,N. Here

()= v

where for any positive integer m, m! = m(m — 1)(m—2)---(2)(1) and 0! = 1. The notation (1;’)
is read “N choose r” because it is the number of distinct ways of choosing r individuals out of a
collection containing N individuals.

EXAMPLE 1.4.2.  The random variables in Example 1.2.1 were y;, the number of heads on the
first toss of a coin, y,, the number of heads on the second toss of a coin, and W, the combined
number of heads from the two tosses. These have the following distributions:

. 1
Yo~ B1n<1,2>
Y2 Bin(1,1>
2
W ~ Bin(Z 1>.
2

Note that W, the Bin (27 %) , was obtained by adding together the two independent Bin (1, %) random
variables y; and y,. This result is quite general. Any Bin (N, p) random variable can be written as
the sum of N independent Bin (1, p) random variables. O

Given the probability distribution of a binomial, we can find the mean (expected value) and
variance. By definition, if y ~ Bin(N, p), the mean is

E(y) = i r(f) pr(1—p)N".

This is difficult to evaluate directly, but by writing y as the sum of N independent Bin (1, p) random
variables and using Exercise 1.6.1 and Proposition 1.2.11, it is easily seen that

E(y)=Np.
Similarly, the variance of y is
- 2 (N N
Var(y) =} (r—Np) <r>p’(1 -p)
r=0

but by again writing y as the sum of N independent Bin (1, p) random variables and using Exer-
cise 1.6.1 and Proposition 1.2.11, it is easily seen that

Var(y) =Np(1—p).

Exercise 1.6.8 consists of proving these mean and variance formulae.

On occasion we will need to look at both the number of successes from a group of N trials and
the number of failures at the same time. If the number of successes is y; and the number of failures
is y2, then

> = N-y»
y1 ~ Bin(N,p)
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and
y2 ~Bin(N,1—p).

The last result holds because, with independent identical trials, the number of outcomes that we call
failures must also have a binomial distribution. If p is the probability of success, the probability of
failure is 1 — p. Of course,

E(y2) = N(1-p)
Var(yz) = N(1—p)p.

Note that Var(y;) = Var(y;) regardless of the value of p. Finally,

Cov(yi,y2) =—Np(1—p)

and
Corr(yl,yg) =—1.

There is a perfect linear relationship between y; and y;. If y; goes up one count, y, goes down one
count. When we look at both successes and failures write

()’17)’2) NBin(N7p7(1 7[))) .

This is the simplest case of the multinomial distribution discussed in the next section.

1.5 The multinomial distribution

The multinomial distribution is a generalization of the binomial allowing more than two categories.
The results in this section are only used in Chapter 8.

EXAMPLE 1.5.1. Consider the probabilities for the nine height and eye color categories given in
Example 1.1.2. The probabilities are repeated below.

Height—eye color probabilities

Eye color
Blue Brown Green
Tall 12 15 .03
Height Medium | .22 34 .04
Short .06 .01 .03

Suppose a random sample of 50 individuals was obtained with these probabilities. For example,
one might have a population of 100 people in which 12 were tall with blue eyes, 15 were tall with
brown eyes, 3 were short with green eyes, etc. We could randomly select one of the 100 people
as the first individual in the sample. Then, returning that individual to the population, take another
random selection from the 100 to be the second individual. We are to proceed in this way until 50
people are selected. Note that with a population of 100 and a sample of 50 there is a substantial
chance that some people would be selected more than once. The numbers of selections falling into
each of the nine categories has a multinomial distribution with N = 50 and these probabilities.

It is unlikely that one would actually perform sampling from a population of 100 people as
described above. Typically, one would not allow the same person to be chosen more than once.
However, if we had a population of 10,000 people where 1200 were tall with blue eyes, 1500 were
tall with brown eyes, 300 were short with green eyes, etc., with a sample size of 50 we might be
willing to allow the possibility of selecting the same person more than once simply because it is
extremely unlikely to happen. Technically, to obtain the multinomial distribution with N = 50 and
these probabilities, when sampling from a fixed population we need to allow individuals to appear
more than once. However, when taking a small sample from a large population, it does not matter
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much whether or not you allow people to be chosen more than once, so the multinomial often
provides a good approximation even when individuals are excluded from reappearing in the sample.
O

Consider a group of N independent identical trials in which each trial results in the occurrence

of one of g events. Let y;, i = 1,...,q be the number of times that the ith event occurs and let p; be
the probability that the ith event occurs on any trial. The p;s must satisfy p; +p2+---+p, = 1. We
say that (y1,...,y) has a multinomial distribution with parameters N, p1,..., p,. Write

V15---5Yq) ~Mult(N, p1,...,pg).

The distribution is given by the probabilities

Pr(yi =r1,...,y4 =14)

I
—
2
~
an S
>
~__
—
S,

Here the r;s are allowed to be any whole numbers with each r; > 0 and ry +- - - +r, = N. Note that if
q =2, this is just a binomial distribution. In general, each individual component y; of a multinomial
consists of N trials in which category i either occurs or does not occur, so individual components
have the marginal distributions

yi ~ Bin(N, p;).

It follows that
E(yi) =Np;
and
Var(y;) = Npi(1—p;).

It can also be shown that
COV()’ia}’j) =—Npip; for i#].

EXAMPLE 1.5.2.  Suppose that the 50 individuals from Example 1.5.1 fall into the categories as
listed below.

Height—eye color observations

Eye color
Blue Brown Green
Tall 5 8 2
Height Medium 10 18 2
Short 3 1 1

The probability of getting this particular table is

50!
SBIOISRBITI (.12)(.15)3(.03)(.22)'°(.34)'8(.04)%(.06)3(.01)' (.03)".

This number is zero to over 5 decimal places. The fact that this is a very small number is not
surprising. There are a lot of possible tables, so the probability of getting any particular table is very
small. In fact, many of the possible tables are much less likely to occur than this table.

Let’s return to thinking about the observations as random. The expected number of observations
for each category is given by Np;. It is easily seen that the expected counts for the cells are as given
below.
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Height—eye color expected values
Eye color
Blue Brown Green

Tall 6.0 7.5 1.5
Height Medium | 11.0 17.0 2.0
Short 3.0 0.5 1.5

Note that the expected counts need not be integers.

The variance for, say, the number of tall blue-eyed people in this population is 50(.12)(1 —
.12) = 5.28. The variance of the number of short green-eyed people is 50(.03)(1 — .03) = 1.455.
The covariance between the number of tall blue-eyed people and the number of short green-eyed
people is —50(.12)(.03) = —.18. The correlation between the numbers of tall blue-eyed people and

short green-eyed people is —.18/+/(5.28)(1.455) = —0.065. i

Appendix: probability for continuous distributions

As stated in Section 1.3, probabilities are sometimes defined as areas under a curve. The curve,
called a probability density function or just a density, must be defined by some nonnegative func-
tion f(-). (Nonnegative to ensure that probabilities are always positive.) Thus the probability that a
random observation y is between two numbers, say a and b, is the area under the curve measured
between a and b. Using calculus, this is

Prla <y < b] :/abf(y)dy.

Because we are measuring areas under curves, there is no area associated with any one point, so
Prla <y < b] =Pra <y < b] =Prla <y < b] =Pr[a <y < b]. The area under the entire curve must

be 1,i.e.,
o0

1:Pr[—oo<y<oo}:/ F)dy.

Figure 1.1 indicates that the probability below K(1 — o) is 1 — @, i.e.,
K(l—a)
1—06=Pr[y<K(1—06)]=/ f(y)dy
and that the probability above K(1 — &) is ¢, i.e.,
a=Pry>K(-a)= [ [0y
K(l—a)

The expected value of y is defined as

E0) = [ 3r0)d

For any function g(y), the expected value is

ge o)

Eg(y)] = / g)f(y)dy.

J —o0

In particular, if we let E(y) = u and g(y) = (y — it)?, we define the variance as

oo

var(y) = Ely=p)?l = [ (= 0)dy.

—0o0
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To define the covariance between two random variables, say y; and y,, we need a joint density
f(y1,¥2). We can find the density for y; alone as

ﬁ@OZ/mf@nmNn

— 00

and we can write E(y;) in two equivalent ways

E(yl)=/_O;/_O:Oylf(yhyz)dyldyz=/_O;y1f1(y1)dy1-

Writing E(y;) = y; and E(y,) = Uy we can now define the covariance between y; and y; as

COV(ylayZ):/i [ (1 — 1) (2 — 2) f(y1,¥2) dy1 dys.

1.6 Exercises

EXERCISE 1.6.1.  Use the definitions to find the expected value and variance of a Bin(1, p) dis-
tribution.

EXERCISE 1.6.2.  Lety be a random variable with E(y) = u and Var(y) = 6. Show that

E (y—,u) =0
(e}
Var (H> =1.
(e

Let y. be the sample mean of n independent observations y; with E(y;) = u and Var(y;) = o2.
What is the expected value and variance of

and

y—Hu,
o/\n

Hint: For the first part, write

and use Proposition 1.2.11.

EXERCISE 1.6.3.  Lety be the random variable consisting of the number of spots that face up upon
rolling a die. Give the distribution of y. Find the expected value, variance, and standard deviation of

y.

EXERCISE 1.6.4. Consider your letter grade for this course. Obviously, it is a random phe-
nomenon. Define the ‘grade point’ random variable: y(A) = 4, y(B) =3, y(C) =2, y(D) =1,
y(F) = 0. If you were lucky enough to be taking the course from me, you would find that T am
an easy grader. I give 5% As, 10% Bs, 35% Cs, 30% Ds, and 20% Fs. I also assign grades at ran-
dom, that is to say, my tests generate random scores. Give the distribution of y. Find the expected
value, variance, and standard deviation of the grade points a student would earn in my class. (Just
in case you hadn’t noticed, I'm being sarcastic.)

EXERCISE 1.6.5. Referring to Exercise 1.6.4, suppose I have a class of 40 students, what is the
joint distribution for the numbers of students who get each of the five grades? Note that we are no
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longer looking at how many grade points an individual student might get, we are now counting how
many occurrences we observe of various events. What is the distribution for the number of students
who get Bs? What is the expected value of the number of students who get Cs? What is the variance
and standard deviation of the number of students who get Cs? What is the probability that in a class
of 5 students, 1 gets an A, 2 get Cs, 1 gets a D, and 1 fails?

EXERCISE 1.6.6.  Graph the function f(x) = 1if 0 <x < 1 and f(x) = 0 otherwise. This is known
as the uniform density on (0,1). If we use this curve to define a probability function, what is the
probability of getting an observation larger than 1,/4? Smaller than 2/3? Between 1/3 and 7/9?

EXERCISE 1.6.7.  Arthritic ex-football players prefer their laudanum made with Old Pain-Killer
Scotch by two to one. If we take a random sample of 5 arthritic ex-football players, what is the
distribution of the number who will prefer Old Pain-Killer? What is the probability that only 2 of
the ex-players will prefer Old Pain-Killer? What is the expected number who will prefer Old Pain-
Killer? What are the variance and standard deviation of the number who will prefer Old Pain-Killer?

EXERCISE 1.6.8. Let W ~ Bin(N, p) and for i = 1,...,N take independent y;s that are Bin(1, p).
Argue that W has the same distribution as y; 4 - - - +yy. Use this fact, along with Exercise 1.6.1 and
Proposition 1.2.11, to find E(W) and Var(W).

EXERCISE 1.6.9. Appendix B.1 gives probabilities for a family of distributions that all look
roughly like Figure 1.1. All members of the family are symmetric about zero and the members are
distinguished by having different numbers of degrees of freedom (df). They are called ¢ distribu-
tions. For 0 < a < 1, the « percentile of a r distribution with d f degrees of freedom is the point x
such that Pr[t(df) < x] = a. For example, from Table B.1 the row corresponding to df = 10 and
the column for the .90 percentile tells us that Pr[#(10) < 1.372] = .90.

(a) Find the .99 percentile of a #(7) distribution.

(b) Find the .975 percentile of a #(50) distribution.

(c) Find the probability that a 7(25) is less than or equal to 3.450.

(d) Find the probability that a #(100) is less than or equal to 2.626.

(e) Find the probability that a #(16) is greater than 2.92.

(f) Find the probability that a (40) is greater than 1.684.

(2) Recalling that ¢ distributions are symmetric about zero, what is the probability that a #(40) dis-
tribution is less than —1.6847

(h) What is the probability that a 7(40) distribution is between —1.684 and 1.684?
(i) What is the probability that a #(25) distribution is less than —3.450?
(j) What is the probability that a ¢(25) distribution is between —3.450 and 3.450?

EXERCISE 1.6.10. Consider a random variable that takes on the values 25, 30, 45, and 50 with
probabilities .15, .25, .35, and .25, respectively. Find the expected value, variance, and standard
deviation of this random variable.

EXERCISE 1.6.11.  Consider three independent random variables X, Y, and Z. Suppose E(X) =
25,E(Y) =40, and E(Z) = 55 with Var(X) =4, Var(Y) =9, and Var(Z) = 25.

(a) Find E(2X +3Y + 10) and Var(2X +3Y + 10).
(b) Find E(2X + 3Y +Z+ 10) and Var(2X + 3Y +Z+ 10).
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EXERCISE 1.6.12.  As of 1994, Duke University had been in the final four of the NCAA’s national
basketball championship tournament seven times in nine years. Suppose their appearances were
independent and that they had a probability of .25 for winning the tournament in each of those
years.

(a) What is the probability that Duke would win two national championships in those seven appear-
ances?

(b) What is the probability that Duke would win three national championships in those seven ap-
pearances?

(c) What is the expected number of Duke championships in those seven appearances?
(d) What is the variance of the number of Duke championships in those seven appearances?

EXERCISE 1.6.13.  Graph the function f(x) = 2xif 0 <x < 1 and f(x) = 0 otherwise. If we use
this curve to define a probability function, what is the probability of getting an observation larger
than 1/4? Smaller than 2/3? Between 1/3 and 7/9?

EXERCISE 1.6.14. A pizza parlor makes small, medium, and large pizzas. Over the years they
make 20% small pizzas, 35% medium pizzas, and 45% large pizzas. On a given Tuesday night they
were asked to make only 10 pizzas. If the orders were independent and representative of the long-
term percentages, what is the probability that the orders would be for four small, three medium, and
three large pizzas. On such a night, what is the expected number of large pizzas to be ordered and
what is the expected number of small pizzas to be ordered? What is the variance of the number of
large pizzas to be ordered and what is the variance of the number of medium pizzas to be ordered?

EXERCISE 1.6.15.  When I order a limo, 65% of the time the driver is male. Assuming indepen-
dence, what is the probability that 6 of my next 8 drivers are male? What is the expected number of
male drivers among my next eight? What is the variance of the number of male drivers among my
next eight?

EXERCISE 1.6.16. When I order a limo, 65% of the time the driver is clearly male, 30% of
the time the driver is clearly female, and 5% of the time the gender of the driver is indeterminant.
Assuming independence, what is the probability that among my next 8 drivers 5 are clearly male
and 3 are clearly female? What is the expected number of indeterminant drivers among my next
eight? What is the variance of the number of clearly female drivers among my next eight?






Chapter 2

One sample

In this chapter we examine the analysis of a single random sample consisting of n independent
observations from some population.

2.1 Example and introduction

EXAMPLE 2.1.1.  Consider the dropout rate from a sample of math classes at the University of
New Mexico in the 1984-85 school year as reported by Koopmans (1987). The data are

5,22,10,12,8,17,2,25,10,10,7,7,40,7,9,17,12, 12,1,

13,10,13,16,3,14,17,10,10,13,59,11, 13,5, 12, 14,3, 14, 15.

This list of n = 38 observations is not very illuminating. A graphical display of the numbers is
more informative. Figure 2.1 plots the data above a single axis. This is often called a dot plot. From
Figure 2.1, we see that most of the observations are between 0 and 18. There are two conspicuously
large observations. Going back to the original data we identify these as the values 40 and 59. In
particular, these two outlying values strongly suggest that the data do not follow a bell shaped curve
and thus that the data do not follow a normal distribution.

O

Typically, for one sample of data we assume that the n observations are

Data Distribution
Y1,Y2,---,¥n _independent  N(u,o?)

The key assumptions are that the observations are independent and have the same distribution. In
particular, we assume they have the same (unknown) mean y and the same (unknown) variance 62.

These assumptions of independence and a constant distribution should be viewed as only useful
approximations to actual conditions. Often the most valuable approach to evaluating these assump-
tions is simply to think hard about whether they are reasonable. In any case, the conclusions we
reach are only as good as the assumptions we have made. The only way to be positive that these
assumptions are true is if we arrange for them to be true. If we have a fixed finite population and take

arandom sample from the population allowing elements of the population to be observed more than

Figure 2.1: Dot plot for drop rate percentage data.

27
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once, then the assumptions (other than normality) are true. In Example 2.1.1, if we had the dropout
rates for all math classes in the year and randomly selected these 38 while allowing for classes to
appear more than once in the sample, the assumptions of independence with the same distribution
are satisfied.

The ideal conditions of independent sampling from a fixed population are difficult to achieve.
Many populations refuse to hold still while we sample them. For example, the population of students
at a large university changes almost continuously (during working hours). To my way of thinking,
the populations associated with most interesting data are virtually impossible to define unambigu-
ously. Who really cares about the dropout rates for 1984-85? As such, they can only be used to
fix blame. Our real interest is in what the data can tell us about current and future dropout rates.
If the data are representative of current or future conditions, the data can be used to fix problems.
For example, one might find out whether certain instructors generate huge dropout rates and avoid
taking classes from them. It is difficult to decide whether these or any data are representative of
current or future conditions because we cannot possibly know the future population and we cannot
practically know the current population. As mentioned earlier, often our best hope is to think hard
about whether these data approximate independent observations from the population of interest.

Even when sampling from a fixed population, we use approximations. In practice we rarely
allow elements of a fixed population to be observed more than once in a sample. This invalidates
the assumptions. If the first sampled element is eliminated, the second element is actually being
sampled from a different population than the first. (One element has been eliminated.) Fortunately,
when the sample contains a small proportion of the fixed population, the standard assumptions make
a good approximation. Moreover, the normal distribution is never more than an approximation to a
fixed population. The normal distribution has an infinite number of possible outcomes, while fixed
populations are finite. Often, the normal distribution makes a good approximation, especially if we
do our best to validate it. In addition, the assumption of a normal distribution is only used when
drawing conclusions from small samples. For large samples we can get by without the assumption
of normality.

Our primary objective is to draw conclusions about the mean p. We condense the data into sum-
mary statistics. These are the sample mean, the sample variance, and the sample standard deviation.
The sample mean has the algebraic formula

n

S| =

n
i} 1
V==Y yi= ity
i=1

where the - in y. indicates that the mean is obtained by averaging the y;s over the subscript i. The
sample mean y. estimates the population mean . The sample variance is an estimate of the popula-
tion variance 2. The sample variance is essentially the average squared distance of the observations
from the sample mean,

2 I ¢
n—1
1
—1

Oi—3.) @2.1.1)
1

i

I
S
—

_\2 _\2 _\2
G1=3)"+02=3)"+ -+ 0n—7) } ~
The sample standard deviation is just the square root of the sample variance,

s=Vs2.

EXAMPLE 2.1.2.  The sample mean of the dropout rate data is

5 = S5+224+104+12+8+---+3+14415

=13.11.
38
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If we think of these data as a sample from the fixed population of math dropout rates in 1984—
85, ¥. is obviously an estimate of the simple average of all the dropout rates of all the classes in
that academic year. Equivalently, y. is an estimate of the expected value for the random variable
defined as the dropout rate obtained when we randomly select one class from the fixed population.
Alternatively, we may interpret y. as an estimate of the mean of some population that is more
interesting but less well defined than the fixed population of math dropout rates for 1984-85.

The sample variance is

) [(5-13.11)2+ (22— 13.11)> + -+ (14 = 13.11)? + (15— 13.11)?]

5T 381
— 106.5.

This estimates the variance of the random variable obtained when randomly selecting one class from
the fixed population. The sample standard deviation is

s =+v106.5=10.32. O

The only reason s> is not the average squared distance of the observations from the sample

mean is that the denominator in (2.1.1) is n — 1 instead of n. If 4 were known, a better estimate
of the population variance 62 would be 62 = Y, (v;i — /.L)2 /n. In %, we have used . to estimate
. Not knowing u, we know less about the population, so s> cannot be as good an estimate as
62. The quality of a variance estimate can be measured by the number of observations on which
it is based; 6% makes full use of all n observations for estimating 6. In using s>, we lose the
functional equivalent of one observation for having estimated the parameter u. Thus s has n — 1
in the denominator of (2.1.1) and is said to have n — 1 degrees of freedom. In nearly all problems
that we will discuss, there is one degree of freedom available for every observation. The degrees of
freedom are assigned to various estimates and we will need to keep track of them.

The statistics . and s? are estimates of u and o2 respectively. The law of large numbers is a
mathematical result implying that for large sample sizes n, . gets arbitrarily close to u and s> gets
arbitrarily close to 62.

Both 7. and s? are computed from the random observations y;. The summary statistics are func-
tions of random variables, so they must also be random. Each has a distribution and to draw conclu-
sions about the unknown parameters p and 6> we need to know the distributions. In particular, if
the original data are normally distributed, the sample mean has the distribution

or equivalently,

~N(0,1), (2.12)

see Exercise 1.6.2. In Subsection 1.2.4 we established that E(¥.) = u and Var(y.) = 6 /n, so the only
new claim made here is that the sample mean computed from independent, identically distributed
(iid) normal random variables is again normally distributed. Moreover, the central limit theorem is
a mathematical result stating that these distributions are approximately true for ‘large’ samples n,
regardless of whether the original data are normally distributed.

As we will see below, the distributions given above are only useful in drawing conclusions
about data when o2 is known. Generally, we will need to estimate 6> with s> and proceed as best
we can. By the law of large numbers, s> becomes arbitrarily close to 62, so for large samples we can
substitute s* for 62 in the distributions above. In other words, for large samples the approximation

y.—u
7]

~N(0,1) (2.1.3)

se/n
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Figure 2.2: Three distributions: solid, N(0,1); long dashes, t(1); short dashes, t(3).

holds regardless of whether the data were originally normal.

For small samples we cannot rely on s> being close to 62, so we fall back on the assumption that
the original data are normally distributed. For normally distributed data, the appropriate distribution
is called a ¢ distribution with n — 1 degrees of freedom. In particular,

~t(n—1). (2.1.4)

The ¢ distribution is similar to the standard normal but more spread out, see Figure 2.2. It only makes
sense that if we need to estimate ¢ rather than knowing it, our conclusions will be less exact. This
is reflected in the fact that the 7 distribution is more spread out than the N(0,1). In the previous
paragraph we argued that for large n the appropriate distribution is

y.—H
\/s%/n

We are now arguing that for normal data the appropriate distribution is #(n — 1). It better be the case
(and is) that for large n the N (0, 1) distribution is approximately the same as the #(n— 1) distribution.
In fact, we define 7(co) to be a N(0, 1) distribution where oo indicates an infinitely large number.

~N(0,1).

Formal distribution theory

By definition, the ¢ distribution is obtained as the ratio of two things related to the sample mean and
variance. We now present this general definition.

First, for normally distributed data, the sample variance s has a known distribution that depends
on 2. It is related to a distribution called the chi-squared (x?) distribution with n — 1 degrees of
freedom. In particular,

(n—1)s?

= ~x3(n—1). (2.1.5)

Moreover, for normal data, ¥. and s2 are independent.
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Definition 2.1.3. A t distribution is the distribution obtained when a random variable with a
N(0,1) distribution is divided by an independent random variable that is the square root of a x>
random variable over its degrees of freedom. The ¢ distribution has the same degrees of freedom as
the chi-square.

In particular, [§. — ] /\/02/nis N(0,1), \/[(n—1)s2/02] /(n— 1) is the square root of a chi-
squared random variable over its degrees of freedom, and the two are independent because y. and

s% are independent, so

y—-u — [)7'7#]/\/62/” Nl(l’l—l)

Vst/n o /l(n=1)s*/6? /(n—1)
The ¢ distribution has the same degrees of freedom as the estimate of 62; this is typically the case
in other applications.

2.2 Inference about p

Most statistical tests and confidence intervals are applications of a single theory. (Tests and confi-
dence intervals for variances are exceptions.) To use this theory we need to know four things. In the
one-sample problem the four things are

1. the parameter of interest, (i,
2. the estimate of the parameter, y.,
3. the standard error of the estimate, SE(3.) = /s?/n =s/+/n, and

4. the appropriate distribution for [y. — ] /\/s2/n .

Specifically, we need a known (tabled) distribution for [§. — ] /+/s?/n that is symmetric about zero
and continuous. The standard error, SE(3.), is the estimated standard deviation of y.. Recall that the
variance of . is 62 /n, so its standard deviation is v/ 62 /n and estimating 62 by s? gives the standard
error /2 /n.

The appropriate distribution for [y. — 1] //s%/n when the data are normally distributed is the
t(n—1) as in (2.1.4). For large samples, the appropriate distribution is the N(0,1) as in (2.1.3).
Recall that for large samples from a normal population, it is irrelevant whether we use the standard
normal or the 7 distribution because they are essentially the same. In the unrealistic case where ¢
is known we do not need to estimate it, so we use /02 /n instead of /s2/n for the standard error.
In this case, the appropriate distribution is (2.1.2) if either the original data are normal or the sample
size is large.

We need notation for the percentage points of the known distribution and we need a name for
the point that cuts off the top o of the distribution. Typically, we need to find points that cut off the
top 5%, 2.5%, 1%, or 0.5% of the distribution, so « is .05, .025, .01, or .005. As discussed in the
previous paragraph, the appropriate distribution depends on various circumstances of the problem,
so we begin by discussing percentage points with a generic notation. We use the notation K(1 — )
for the point that cuts off the top & of the distribution. Figure 2.3 displays this idea graphically for
a value of a between 0 and .5. The distribution is described by the curve, which is symmetric about
0. K(1 — o) is indicated along with the fact that the area under the curve to the right of K(1 — o) is
o. Formally the point that cuts off the top o of the distribution is K(1 — o) where

Pr EE(y‘#) >K(1— a)] =a.

Note that the same point K(1 — ) also cuts off the bottom 1 — @ of the distribution, i.e.,

Pr [gEzy“) <K(1 a)} —1-a.
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Figure 2.3: 1 — o percentile of the distribution of [y. — u]/SE(F.).

This is illustrated in Figure 2.3 by the fact that the area under the curve to the left of K(1 — )
is 1 — a. The reason the point is labeled K(1 — &) is because it cuts off the bottom 1 — ¢ of the
distribution. The labeling depends on the percentage to the left even though our interest is in the
percentage to the right.

There are at least three different ways to label these percentage points; I have simply used the
one I feel is most consistent with general usage in probability and statistics. The key point however
is to be familiar with Figure 2.3. We need to find points that cut off a fixed percentage of the area
under the curve. As long as we can find such points, what we call them is irrelevant. Ultimately,
anyone doing statistics will need to be familiar with all three methods of labeling. One method of
labeling is in terms of the area to the left of the point; this is the one we will use. A second method
is labeling in terms of the area to the right of the point; thus the point we call K(1 — @) could be
labeled, say, Q(a). The third method is to call this number, say, W (2a), where the area to the right
of the point is doubled in the label. For example, if the distribution is a N(0, 1), the point that cuts
off the bottom 97.5% of the distribution is 1.96. This point also cuts off the top 2.5% of the area. It
makes no difference if we refer to 1.96 as the number that cuts off the bottom 97.5%, K(.975), or as
the number that cuts off the top 2.5%, Q(.025), or as the number W (.05) where the label involves
2 x .025; the important point is being able to identify 1.96 as the appropriate number. Henceforth,
we will always refer to points in terms of K(1 — &), the point that cuts off the bottom 1 — o of
the distributions. No further reference to the alternative labelings will be made but all three labels
are used in Appendix B.1. There K(1 — a)s are labeled as percentiles and, for reasons related to
statistical tests, Q(a)s and W (20)s are labeled as one-sided and two-sided o levels respectively.

A fundamental assumption in inference about y is that the distribution of [y. — u]/SE(3.) is
symmetric about 0. By the symmetry around zero, if K(1 — o) cuts off the top « of the distribution,
—K(1 — o) must cut off the bottom « of the distribution. Thus for distributions that are symmetric
about 0 we have K (), the point that cuts off the bottom ¢ of the distribution, equal to —K (1 — ).
This fact is illustrated in Figure 2.4. Algebraically, we write

y.—Hu
SE(5.)

Frequently, we want to create a central interval that contains a specified probability, say 1 — c.

y—Hu
Pr
SE(3.)

<—K(1—a)} :Pr{ <K(oc)] =a.
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—t(1 —a, df) o t(1 —a, df)

Figure 2.4: Symmetry about 0 in the distribution of [y. — 1] /SE(¥.).

Figure 2.5 illustrates the construction of such an interval. Algebraically, the middle interval with
probability 1 — o is obtained by

Pr [K(l(;) < gEzy”) <K(1‘;>} —l-a

The probability of getting something outside of this interval is

o= %Jr% :Pr[;_'Ez;; < —K(l—;‘)} +Pr [gE?y“) >K(1—‘;)] .

In practice, the values K(1 — o) are found from either a normal table or a ¢ table. For normal
percentage points, we use the notation

(1-a)=K(1-a).
For percentage points of a r with df degrees of freedom, use
t(l—a,df)=K(1—0).
Recall that as df gets large, the #(d f) distribution converges to a N(0, 1), so
z(1—a)=t(1—-o,0).

Percentiles of the ¢ distribution are given in Appendix B.1 with the oo row giving percentiles of the
N(0, 1) distribution.

2.2.1 Confidence intervals

A confidence interval is an interval of possible i values in which we are ‘confident’ that the true
value of U lies. Moreover, a numerical level of confidence is specified for the interval. Confidence
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a/2 1-a a/2

—t(1—a/2,df) o t(1 —a/2, df)

Figure 2.5: 1 — & central interval for the distribution of [y. — u]/SE(3.).

intervals are commonly viewed as the most useful single procedure in statistical inference. A 95%
confidence interval for u is based on the following probability statements:

.- u
SE(y.)
= Prify. — K(.975)SE(F.) < i < 5. + K(.975)SE(3.)]

95

Pr|—K(.975) <

< K(.975)

The first equality given above holds simply by the definition of K(.975) and the symmetry of the
distribution; it expresses Figure 2.5 algebraically for & = .05. The second equality follows from
the fact that the statements within the two sets of square brackets can be shown to be algebraically
equivalent.

More generally, a (1 — &) 100% confidence interval for u is based on the following probability

statements:
re|-x(1-3) < Sey <K (1-3)

= Pl -k(1- %) SE(r) <p <3 +K(1- %) SE(7)|

11—«

The first equality given above holds simply by the definition of K (1 — %) and the symmetry of the
distribution. Again, it is just an algebraic statement of Figure 2.5. The second equality follows from
the fact that the statements within the square brackets are algebraically equivalent. A proof of the
equivalence is given in the appendix to the next chapter.

The probability statement

1—a=pr[y—k(1- %) SE(r) <p <3 +K(1- %) SE(7)|

is the basis of the confidence interval for u. The (1 — )100% confidence interval for u is sim-
ply the interval within the square brackets, i.e., the points between y. — K (1 — %) SE(y.) and
3.+ K(1—%)SE(3.) with observed values substituted for y. and SE(3.). The endpoints can be
written

y‘iK(l—%) SE(7.),
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or, substituting the form of the standard error,

AN
rK(1-7) ==
Y 2/ \/n
Note that increasing the sample size n decreases the standard error and thus makes the confidence

interval narrower. Narrower confidence intervals give more precise information about (. In fact, by
taking n large enough, we can make the confidence interval arbitrarily narrow.

EXAMPLE 2.2.1.  For the dropout rate data presented at the beginning of the chapter, the param-
eter is the mean dropout rate for math classes, the estimate is y. = 13.11, and the standard error is
s/y/n=10.32/1/38 = 1.67. As seen in the dot plot, the original data are not normally distributed.
The plot looks nothing at all like the bell shaped curve in Figure 1.1, which is a picture of a normal
distribution. Thus we hope that a sample of size 38 is sufficiently large to justify use of the N(0,1)
distribution via the central limit theorem and the law of large numbers. For a 95% confidence in-
terval, 95 = (1 — )100, .95 = (1 — ), x =1—.95= .05, and 1 — ot /2 = .975, so the number we
need from the 7 table is z(.975) = 1(.975,00) = 1.96. The endpoints of the confidence interval are

13.11 £1.96(1.67)

giving an interval of
(9.8,16.4).

Rounding to simple numbers, we are 95% confident that the true dropout rate is between 10% and
16.5% O

The confidence interval has probability 1 — o that we are going fo get a confidence interval that
covers what we are trying to estimate, i.e., 1. However, once the data are observed and the interval
computed, this is no longer true. The particular interval that we get either covers p or it does not.
There is no probability associated with the coverage; nothing is random, neither t nor the endpoints
of the interval. For this reason we say that, ‘We are (1 — &) 100% confident that the true value of u
is in the interval.” I doubt that anybody has a good definition of what the word ‘confident’ means
in that sentence. Having done my duty to explain the correct meaning of confidence intervals, you
can (and will) go back to thinking that the probability is 1 — ¢ that your interval covers u. It does
not do any real harm and it can be justified using arguments from Bayesian statistics. This issue of
interpretation is discussed in much more detail in the next chapter.

2.2.2 Hypothesis tests

An hypothesis test is a procedure for checking the validity of a claim. Someone makes a claim which
becomes the null hypothesis. We wish to test whether or not the claim is true. If relevant data are
available, we can test the claim, but we cannot really test whether it is true or false, we can merely
test whether the data are consistent or inconsistent with the claim. Data that are inconsistent with the
claim suggest that the claim is false. Data that are consistent with the claim are just that, consistent
with the claim; they do not imply that the claim is true because other circumstances could equally
well have generated the data.
In a one sample problem, for some fixed known number m we may want to test the null hypoth-

esis

Hy:u=m
versus the alternative hypothesis

Hy u 7& m.

The number m must be known, it is some number that is of interest for the specific data being
analyzed. It is not just an unspecified symbol.
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EXAMPLE 2.2.2.  For the dropout rate data, we might be interested in the hypothesis that the
true dropout rate is 10%. Thus the null hypothesis is Hy : ¢ = 10 and the alternative hypothesis is
Hy o p #10. m|

The test is based on the assumption that Hy is true and we check to see if the data are inconsistent
with that assumption. The idea is much like the idea of a proof by contradiction. We make an
assumption Hy. If the data contradict that assumption, we can conclude that the assumption Hy is
false. If the data do not contradict Hy, we can only conclude that the data are consistent with the
assumption; we cannot conclude that the assumption is true.

Unfortunately, there are two complicating factors in a statistical test. First, data almost never
yield an absolute contradiction to the assumption. We need to quantify the extent to which the data
are inconsistent with the assumption. Second, while we wish to test a specific assumption Hy, there
are other assumptions involved in any statistical procedure. A contradiction only invalidates Hj if the
other assumptions are valid. These other assumptions were discussed at the beginning of the chapter.
They include such things as independence, normality, and all observations having the same mean
and variance. While we can never confirm that these other assumptions are absolutely valid, it is a
key aspect of modern statistical practice to validate the assumptions as far as is reasonably possible.
When we are convinced that the other assumptions are reasonably valid, data that contradict the
assumptions can be reasonably interpreted as contradicting the specific assumption Hp.

We need to be able to identify data that are inconsistent with the assumption that it = m. Note
that, regardless of any hypotheses, y. is an estimate (. For example, suppose m = 10. If y. = 10.1, y.
is an estimate of L, so the data seem to be consistent with the idea that it = 10. On the other hand,
if y. = 10,000, we expect that u will be near 10,000 and the observed y. seems to be inconsistent
with Hp : 4 = 10. The trick is in determining which values of j. are far enough away from 10 for
us to be reasonably sure that p # 10. As a matter of fact, in the absence of information about the
variability of y., we cannot really say that y. = 10.1 is consistent with g = 10 or that y. = 10,000 is
inconsistent with p = 10. If the variability associated with y. is extremely small, y. = 10.1 may be
highly inconsistent with g = 10. On the other hand, if the variability associated with y. is extremely
large, y. = 10,000 may be perfectly consistent with y = 10. Obviously, the standard error of y.,
which is our measure of variability, must play a major role in the analysis.

Generally, since y. estimates u, if 4 > m, then y. tends to be greater than m so that y. —m and
thus [y. —m|/SE(5.) tend to be large positive numbers (larger than they would be if Hy : L = m were
true). On the other hand, if p < m, then §. —m and [. —m]/SE(3.) will tend to be a large negative
numbers. Data that are inconsistent with the null hypothesis ¢ = m are large positive and large
negative values of the test statistic [j. —m|/SE(3.). The problem is in specifying what we mean by
‘large’.

We reject the null hypothesis (disbelieve pu = m) if the test statistic

SEG.)

is greater than some positive cutoff value or less than some negative cutoff value. Very large and
very small (large negative) values of the test statistic are those that are most inconsistent with
W = m. The problem is in specifying the cutoff values. For example, we do not want to reject
u = 10 if the data are consistent with gt = 10. One of our basic assumptions is that we know
the distribution of [y. — u] /SE(3.). Thus if Hp : u = 10 is true, we know the distribution of the
test statistic [y. — 10] /SE(¥.), so we know what kind of data are consistent with g = 10. For in-
stance, when 1 = 10, 95% of the possible values of [y. — 10] /SE(3.) are between —K(.975) and
K(.975). Any values of [y. — 10] /SE(7.) that fall between these numbers are reasonably consistent
with ¢ = 10 and values outside the interval are defined as being inconsistent with u = 10. Thus
values of [y. —10] /SE(3.) greater than K(.975) or less than —K(.975) cause us to reject the null
hypothesis. Note that we arbitrarily specified the central 95% of the distribution as being consistent
with u = 10. That leaves a 5% chance of getting outside the central interval, so a 5% chance that
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we will reject u = 10 even when it is true. In other words, even when u = 10, 5% of the time
[y. — 10] /SE(y.) will be outside the limits. We could reduce this chance of error by specifying the
central 99% of the distribution as consistent with pt = 10. This reduces the chance of error to 1%,
but then if u # 10, we are less likely to reject u = 10. Thus there are two types of possible errors
that we need to play off against each other. Type I error is rejecting Hy when it is true. Type Il error
is not rejecting Hy when it is not true. The probability of type I error is known as the « level of the
test.

EXAMPLE 2.2.3.  For the dropout rate data, consider the null hypothesis Hp : 4 = 10, i.e., that the

mean dropout rate is 10%. The alternative hypothesis is Ha : 4 # 10. As discussed in the example on

confidence intervals, these data are not normal, so we must hope that the sample size is large enough

to justify use of the N(0, 1) distribution. If we choose a central 90% interval and thus a type I error

rate of @ = .10, the upper cutoff value is K (1 — §) =z(1— %) =z(1 —.05) =1(.95,00) = 1.645.
The o = .10 level test for Hy : i = 10 versus Hy : it # 10 is to reject Hy if

y.—10
—— > 1.645.
s/v/38
or if N
y.—
< —1.645.
s/\/38

The estimate of i is . = 13.11 and the observed standard error is s/v/n = 10.32/+/38 = 1.67, so
the observed value of the test statistic is

13.11-10
1.67

Comparing this to the cutoff value of 1.645 we have 1.86 > 1.645, so the null hypothesis is rejected.
There is evidence at the o = .10 level that the mean dropout rate is not 10%. In fact, since y. =
13.11 > 10 there is the suggestion that the dropout rate is greater than 10%.

This conclusion depends on the choice of the ¢ level. If we choose o = .05, then the appropriate
cutoff value is z(.975) = 1.96. Since the observed value of the test statistic is 1.86, which is neither
greater than 1.96 nor less than —1.96, we do not reject the null hypothesis. When we do not reject
Hy, we cannot say that the true mean dropout rate is 10%, but we can say that, at the @ = .05 level,
the data are consistent with the (null) hypothesis that the true mean dropout rate is 10%. O

=1.86.

Generally, a test of hypothesis is based on controlling the probability of making an error when
the null hypothesis is true. The « level of the test (the probability a type I error) is the probability
of rejecting the null hypothesis (saying that it is false) when the null hypothesis is in fact true. The
o level test for Hy : i = m versus Hy : 1L # m is to reject Hy if

gEzy‘n; ~ K(l B %)

or if

gEzy‘n; < _K(l B %)

This is equivalent to saying, reject Hy if

Note that if Hy is true, the probability that we will reject Hy is

PrE'E_(;; >K(1‘;)] +Pr{§'lazy_"7; < K(lg)] =a/2+a/2=a.
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Also note that we are rejecting Hy for those values of [j. —m]/SE(5y.) that are most inconsistent with
Hy, these being the values of the test statistic with large absolute values.

A null hypothesis should never be accepted; it is either rejected or not rejected. A better way to
think of a test is that one concludes that the data are either consistent or inconsistent with the null
hypothesis. The statement that the data are inconsistent with Hy is a strong statement. It disproves Hy
in some specified degree. The statement that the data are consistent with Hy is not a strong statement;
it does not prove Hy. For example, the dropout data happen to be consistent with Hy : t = 12; the
test statistic

.—12  13.11-12
= = .66
SE(7.) 1.67

is very small. However, the data are equally consistent with ¢ = 12.00001. These data cannot possi-
bly indicate that i = 12 rather than u = 12.00001. However, when the null hypothesisis Hyp: Lt =12,
the value u = 12.00001 is part of the alternative hypothesis Hy : i # 12, so clearly data that are
consistent with Hy are also consistent with some elements of the alternative. In fact, we established
earlier that based on an o = .05 test, these data are even consistent with u = 10. Data that are
consistent with Hy do not imply that the alternative is false.

With these data there is very little hope of distinguishing between p = 12 and pt = 12.00001. The
probability of getting data that lead to rejecting Hy : t = 12 when u = 12.00001 is only just slightly
more than the probability of getting data that lead to rejecting Hy when y = 12. The probability of
getting data that lead to rejecting Hy : 4 = 12 when u = 12.00001 is called the power of the test
when u = 12.00001. The power is the probability of appropriately rejecting Hy and depends on the
particular value of 1 (# 12). The fact that the power is very small for detecting yt = 12.00001 is not
much of a problem because no one would really care about the difference between a dropout rate of
12 and a dropout rate of 12.00001. However, a small power for a difference that one cares about is a
major concern. The power is directly related to the standard error and can be increased by reducing
the standard error. One natural way to reduce the standard error s/+/n is by increasing the sample
size n.

One of the difficulties in a general discussion of hypothesis testing is that the actual null hypoth-
esis is always context specific. You cannot give general rules for what to use as a null hypothesis
because the null hypothesis needs to be some interesting claim about the population mean tt. When
you sample different populations, the population mean differs, and interesting claims about the pop-
ulation mean depend on the exact nature of the population. The best practice for setting up null
hypotheses is simply to look at lots of problems and ask yourself what claims about the population
mean are of interest to you. As we examine more sophisticated data structures, some interesting hy-
potheses will arise from the structures themselves. For example, if we have two samples of similar
measurements we might be interested in testing the null hypothesis that they have the same popula-
tion means. Note that there are lots of ways in which the means could be different, but only one way
in which they can be the same. Of course if the specific context suggests that one mean should be,
say, 25 units greater than the other, we can use that as the null hypothesis. Similarly, if we have a
sample of objects and two different measurements on each object, we might be interested in whether
or not the measurements are related. In that case, an interesting null hypothesis is that the measure-
ments are not related. Again, there is only one way in which measurements can be unrelated, but
there are many ways for measurements to display a relationship.

We will see in the next chapter that there is a duality between testing and confidence intervals.
Tests are used to examine whether a difference can be shown to exist between the hypothesized
mean and the mean of the population being sampled. Confidence intervals are used to quantify what
is known about the population mean. In particular, confidence intervals can be used to quantify
how much difference exists between some hypothesized mean and the sampled population’s mean.
Of course, one must consider not only how much of a difference exists but also whether such a
difference is meaningful in the context of the problem.
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One-sided tests

Unless math classes were intentionally being used to weed out students (something I do not believe
was true) high dropout rates are typically considered unfortunate. Math instructors might claim that
dropout rates are 10% or less and students may want to test that claim. In such a case the claim is
only contradicted by dropout rates greater than 10%

We can do one-sided tests in a similar manner to the two-sided testing discussed previously. The
a level test for Hy : 4 < m versus Hy : L > m is to reject Hy if

.—m

SE(7.)

~

>K(l-a).

Again, the value m must be known; either someone tells it to you or you determine it from the
subject being investigated. The alternative hypothesis is that y is greater than something and the
null hypothesis is rejected when the test statistic is greater than some cutoff value. We reject the null
hypothesis for those values of the test statistic that are most inconsistent with the null hypothesis
and most consistent with the alternative hypothesis. If the alternative is true, y. should be near u,
which is greater than m, so large positive values of y. —m or, equivalently, large positive values of
[y. —m] /SE(5.) are consistent with the alternative and inconsistent with the null hypothesis. Note
that if 4 = m is true, the probability of rejecting the test is
y.—m
Pr[SE()‘).) > K(1 a)} o.

Moreover, it is easily seen that if u < m,

y.—m

Pr — >K(1—a)} <a.
[SE(y-)

Thus when Hj is true, i.e., when y < m, the probability of rejecting the null hypothesis is at most

a. As with the two-sided tests, we have controlled the probability of making an error when the null

hypothesis is true.

EXAMPLE 2.2.4.  The null hypothesis is that the dropout rate is 10% or less, i.e., Hy : u < 10.
The alternative is that the dropout rate is greater than 10%, i.e., Hs : t > 10. The o = .05 level test
rejects Hy if
y.—10
SE(y.)
As seen earlier, the observed value of the test statistic is 1.86 > 1.645, so the null hypothesis is
rejected. Based on a one-sided o = .05 test, we have evidence to reject the (null) hypothesis that the
true dropout rate is 10% or less. In other words, we have evidence that the dropout rate is greater
than 10%.

Students who are math averse might be interested in the claim that the dropout rate is at least
10%, i.e., u > 10. Setting this up as the null hypothesis is much less informative than the approach
just demonstrated. In this case, the value of j. = 13.11 is obviously consistent with u being at least
10%. The question is whether y. is also inconsistent with y < 10. For Hp : u > 10 a test will not be
rejected. If you do not reject a test, @ means very little. However, when you reject a test, & measures
your chance of making an error. Setting up the test as we did allowed us to reject Hy : u < 10 at
a = .05, which quantifies our chance for error. Accepting Hp : £ > 10 tells us nothing about the
chance for error, so it is less informative. O

>z(1—.05) = 1.645.

As we argued earlier, with a two-sided test you can never be sure that your Hy claim is true.
With a one-sided test, this is not the case. If the data are extreme enough, one hypothesis or the
other is clearly indicated. In the dropout rate data example, with a standard error of 1.67, it is pretty
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clear that y. =4 indicates 4 < 10 and y. = 16 indicates u > 10, assuming that all other assumptions
are valid. The problem occurs with y. values close to 10, say y. =9 or y. = 11. If j. = 9, we cannot
be sure that y < 10 because u could be 10 or a little larger and we would still have a reasonable
chance of observing y. = 9. Similarly, §. = 11 is reasonably consistent with u values of 10 or a little
smaller. The only really hard problem is whether we are sure y # 10. If u is different from 10, it
is obvious whether pt < 10 or p > 10. And if you are bothering to run this test at all, 4 = 10 must
have some special significance and it should be of interest to establish which way u might differ
from 10. This is one of several reasons I have for preferring two-sided tests.
The o level test for Hy : L > m versus Hy : i < m is to reject Hy if

y.—m
SE(y.)

The alternative hypothesis is that u is less than something and the null hypothesis is rejected when
the test statistic is less than some cutoff value. Note that the form of the alternative determines the
form of the rejection region. In all cases we reject Hy for the data that are most inconsistent with
Hy.

The one-sided null hypotheses involve inequalities, but y = m is always part of the null hypoth-
esis. The tests are set up assuming that g = m and this needs to be part of the null hypothesis. In all
cases, the test is set up so that if 4 = m, then the probability of making a mistake is o.

<—K(l-a).

P values

Rather than having formal rules for when to reject the null hypothesis, one can report the evidence
against the null hypothesis. This is done by reporting the significance level of the test, also known
as the P value. The P value is computed under the assumption that u = m and is the probability of
seeing data that are as extreme or more extreme than those that were actually observed. In other
words, it is the & level at which the test would just barely be rejected.

EXAMPLE 2.2.5. For Hy : u = 10 versus Hy : 1 # 10 the observed value of the test statistic is
1.86. Clearly, data that give values of the test statistic that are greater than 1.86 are more extreme
than the actual data. Also, by symmetry, data that give a test statistic of —1.86 are just as extreme as
data that yield a 1.86. Finally, data that give values smaller than —1.86 are more extreme than data
yielding a 1.86. As before, we use the standard normal distribution z. From a standard normal table
or an appropriate computer program,

P = Pr[z>1.86]+Pr[z<—1.86]
= .03144.0314
= .0628.

Thus the approximate P value is .06. The P value is approximate because the use of the standard
normal distribution is an approximation based on large samples. Note that

P=Pr[z>1.86]+Pr[z < —1.86] =Pr||z| > |1.86]].

In the ¢ tables of Appendix B.1, the standard normal distribution corresponds to #(oo). Compar-
ing |1.86] to the tables, we see that

1(.95,00) = 1.645 < |1.86| < 1.96 =1(.975,0),
so for a two-sided test the P value satisfies

2(1—.95)=.10 > P> .05 =2(1 — .975).
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In other words, #(.95,00) is the cutoff value for an @ = .10 test and #(.975,00) is the cutoff value
for an a = .05 test; |1.86] falls between these values, so the P value is between .10 and .05. When
only a ¢ table is available, P values are most simply specified in terms of bounds such as these. O

The P value is a measure of the evidence against the null hypothesis in which the smaller the P
value the more evidence against Hy. The P value can be used to perform various « level tests. In
the example, the P value is .06. This is less than .10, so an @ = .10 level test of Hp : u = 10 versus
Hy @ # 10 will reject Hy. On the other hand, .06 is greater than .05, so an & = .05 test does not
reject Hy : u = 10. Note that these are exactly the conclusions we reached in the earlier example on
testing Hy : u = 10 versus Hy : u # 10.

The P value for a one-sided test, say, Hy : it > m versus Hy : L < m, is one half of the P value
from the test of Hy : & = m versus Hy : i = m provided that y. < m. If y. > m, the P value is at least
5.

2.3 Prediction intervals

In many situations, rather than trying to learn about y, it is more important to obtain information
about future observations from the same process. With independent observations, the natural point
prediction for a future observation is just the estimate of i, but a prediction interval with, say, 99%
confidence of containing a future observation differs from a 99% confidence interval for p. Our
ideas about where future observations will lie involves two sources of variability. First, there is
the variability that a new observation y displays about its mean value u. Second, we need to deal
with the fact that we do not know i, so there is variability associated with ., our estimate of L.
In the dropout rate example, 5. = 13.11 and s> = 106.5. If we could assume that the observations
are normally distributed (which is a poor assumption), we could create a 99% prediction interval,
i.e., an interval that contains a future observation with 99% confidence. The interval for the new
observation is centered about ., our best point predictor, and is similar to a confidence interval but
uses a standard error that is appropriate for prediction. The actual interval has endpoints

S2
5. £1(.995,n— 1) /s2+—.
n

In our example, n = 38 and #(.995,37) = 2.71, so this becomes

13.11£2.714/106.5 + 1065
38
or

13.11+28.33

for an interval of (—15.22,41.44). In practice, dropout percentages cannot be less than 0, so a
more practical interval is (0,41.44). To the limits of our assumptions, we can be 99% confident
that the dropout rate for a new, similar math class will be between 0 and 41.5%. It is impossible to
validate assumptions about future observations (as long as they remain in the future), thus the exact
confidence levels of prediction intervals are always suspect.

The key difference between the 99% prediction interval and a 99% confidence interval is the
standard error. In a confidence interval, the standard error is +/s2 /n. In a prediction interval, we
mentioned the need to account for two sources of variability and the corresponding standard error
is /52 + 52 /n. The first term in the square root estimates the variance of the new observation, while
the second term in the square root estimates the variance of ., the point predictor.

As mentioned earlier and as will be shown in the next section, the assumption of normality is
pretty poor for the 38 observations on dropout rates. Even without the assumption of normality we
can get an approximate evaluation of the interval. The interval uses the value 7(.995,37) =2.71, and
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we will see below that even without the assumption of normality, the approximate confidence level
of this prediction interval is at least

1
100 (1— ——— )% = 86%.
( (2.71)2>" 7

Theory

In this chapter we assume that the observations y; are independent from a population with mean
u and variance 62. We have assumed that all our previous observations on the process have been
independent, so it is reasonable to assume that the future observation y is independent of the previous
observations with the same mean and variance. The prediction interval is actually based on the
difference y — ., i.e., we examine how far a new observation may reasonably be from our point
predictor. Note that
E(y—y)=u—p=0.

To proceed we need a standard error for y —y. and a distribution that is symmetric about 0. The
standard error of y — y. is just the standard deviation of y — . when available or, more often, an
estimate of the standard deviation. First we need to find the variance. As y. is computed from the
previous observations, it is independent of y and, using Proposition 1.2.11,

2
9 1
Var(y —3.) = Var(y) + Var(y.) = ol =¢2 [1 n } .
n n

The standard deviation is the square root of the variance. Typically, 62 is unknown, so we estimate
it with s> and our standard error becomes

_ 52 1 1
SE(y—73.)=1/s24+— =42 |1+ ~| =s4/14+—.
n n n

To get an appropriate distribution, we assume that all the observations are normally distributed.
In this case, _
Y=y
SE(y—7.)
The validity of the #(n — 1) distribution is established in Exercise 2.7.10. When the observations
are not normally distributed, if we have a large sample we can use the law of large numbers and
Chebyshev’s inequality to approximate the worst case scenario.
Using the distribution based on normal observations, a 99% prediction interval is obtained from
the following probability equalities:

~t(n—1).

y—y
SE(y—7¥.)
= Pr[y. —1(995,n—1)SE(y—7.) <y <y +1(.995,n—1)SE(y —7.)].

99 = Pr|—t(995,n—1)< <t(.995,n—1)

The key point is that the two sets of inequalities within the square brackets are algebraically equiv-
alent. Based on the last equality, the 99% prediction interval consists of all y values between
5. —1(.995,n—1)SE(y —3.) and 3. +1(.995,n — 1)SE(y — 3.). In other words, the 99% prediction
interval has endpoints

7. £2(.995,n—1)SE(y —3.).

This looks similar to a 99% confidence interval for u but the standard error is very different. In the
prediction interval, the endpoints are actually

1
y.+1(.995,n—1)s {1 + n}’
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Figure 2.6: Dot plot for drop rate percentage data: outliers deleted.

while in a confidence interval the endpoints are

1
y.£1(.995,n— I)S\/>.
n

The standard error for the prediction interval is typically much larger than the standard error for
the confidence interval. Moreover, unlike the confidence interval, the prediction interval cannot be
made arbitrarily small by taking larger and larger sample sizes n. Of course to compute an arbitrary
(1 — &¢)100% prediction interval, simply replace the value 7(.995,n — 1) with ¢(1 — a/2,n— 1).

As mentioned above, even when the data are not normally distributed, we can obtain an ap-
proximate worst case result for large samples. The approximation comes from using the law of
large numbers to justify treating s as if it were the actual population standard deviation o. With this
approximation, Chebyshev’s inequality states that

1

1
1(:995,n—1)2

< Pr[—t(.995,n—1)< <t(.995,n—1)

Y7y
SE(y—7.)
= Pr[y. —1(.995,n—1)SE(y —3.) <y <3 +1(.995,n—1)SE(y —3.)],
cf. Subsection 1.2.2. As mentioned above, the 99% prediction interval based on 38 normal observa-
tions has a confidence level of at least
1 ! 100% = 86%
(2.71)2 CT

This assumes that the past observations and the future observation form a random sample from
the same population and assumes that 38 observations is large enough to justify using the law of
large numbers. Similarly, if we can apply the improved version of Chebyshev’s inequality from
Section 1.3, we get a lower bound of 1 —[1/2.25(2.71)?] = 93.9% on the confidence coefficient.

Throughout, we have assumed that the process of generating the data yields independent obser-
vations from some population. In quality control circles this is referred to as having a process that

is under statistical control.

2.4 Checking normality

From Figure 2.1, we identified two outliers in the dropout rate data, the 40% and the 59% dropout
rates. If we delete these two points from the data, the remaining data may have a more nearly normal
distribution. The dot plot with the two cases deleted is given in Figure 2.6. This is much more nearly
normally distributed, i.e., looks much more like a bell shaped curve, than the complete data.

Dot plots and other versions of histograms are not effective in evaluating normality. Very large
amounts of data are needed before one can evaluate normality from a histogram. A more useful
technique for evaluating the normality of small and moderate size samples is the construction of
a normal probability plot, also known as a normal plot or a rankit plot. The idea is to order the
data from smallest to largest and then to compare the ordered values to what one would expect the
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Figure 2.7: Normal plot for drop rate percentage data: full data.

ordered values to be if they were truly a random sample from a normal distribution. These pairs of
values should be roughly equal, so if we plot the pairs we would expect to see a line with a slope of
about 1 that goes through the origin.

The problem with this procedure is that finding the expected ordered values requires us to know
the mean p and standard deviation ¢ of the appropriate population. These are generally not avail-
able. To avoid this problem, the expectations of the ordered values are computed assuming t =0
and o = 1. The expected ordered values from this standard normal distribution are called normal
scores or rankits. Computing the expected values this way, we no longer anticipate a line with slope
1 and intercept 0. We now anticipate a line with slope ¢ and intercept pt. While it is possible to
obtain estimates of the mean and standard deviation from a normal plot, our primary interest is in
whether the plot looks like a line. A linear plot is consistent with normal data; a nonlinear plot is
inconsistent with normal data. Christensen (1987, section XIII.2) gives a more detailed motivation
for normal plots.

The normal scores are difficult to compute, so we generally get a computer program to do the
work. In fact, just creating a plot is considerable work without a computer.

EXAMPLE 2.4.1.  Consider the dropout rate data. Figure 2.7 contains the normal plot for the com-
plete data. The two outliers cause the plot to be severely nonlinear. Figure 2.8 contains the normal
plot for the dropout rate data with the two outliers deleted. It is certainly not horribly nonlinear.
There is a little shoulder at the bottom end and some wiggling in the middle.

We can eliminate the shoulder in this plot by transforming the original data. Figure 2.9 contains
a normal plot for the square roots of the data with the outliers deleted. While the plot no longer has
a shoulder on the lower end, it seems to be a bit less well behaved in the middle.

We might now repeat our tests and confidence intervals for the 36 observations left when the
outliers are deleted. We can do this for either the original data or the square roots of the original
data. In either case, it now seems reasonable to treat the data as normal, so we can use a 7(36 — 1)
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Figure 2.8: Normal plot for drop rate percentage data: outliers deleted.
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Figure 2.9: Normal plot for square roots of drop rate percentage data: outliers deleted.

distribution instead of hoping that the sample is large enough to justify use of the standard normal
distribution. We will consider these tests and confidence intervals in the next chapter.

It is important to remember that if outliers are deleted, the conclusions reached are not valid
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Figure 2.10: Normal plot.

for data containing outliers. For example, a confidence interval will be for the mean dropout rate
excluding the occasional classes with extremely large dropout rates. If we are confident that any
deleted outliers are not really part of the population of interest, this causes no problem. Thus, if
we were sure that the large dropout rates were the result of clerical errors and did not provide
any information about true dropout rates, our conclusions about the population should be based
on the data excluding the outliers. More often though, we do not know that outliers are simple
mistakes. Often, outliers are true observations and often they are the most interesting and useful
observations in the data. If the outliers are true observations, systematically deleting them changes
both the sample and the population of interest. In this case, the confidence interval is for the mean
of a population implicitly defined by the process of deleting outliers. Admittedly, the idea of the
mean dropout rate excluding the occasional outliers is not very clearly defined, but remember that
the real population of interest is not too clearly defined either. We do not really want to learn about
the clearly defined population of 1984-85 dropout rates, we really want to treat the dropout rate
data as a sample from a population that allows us to draw useful inferences about current and future
dropout rates. If we really cared about the fixed population, we could specify exactly what kinds of
observations we would exclude and what we meant by the population mean of the observations that
would be included. Given the nature of the true population of interest, I think that such technicalities
are more trouble than they are worth at this point. a

Normal plots are subject to random variation because the data used in them are subject to random
variation. Typically, normal plots are not perfectly straight. Figures 2.10 through 2.15 present six
normal plots for which the data are in fact normally distributed. By comparison to these, Figures 2.8
and 2.9, the normal plots for the dropout rate data and the square root of the dropout rates both with
outliers deleted, look reasonably normal. Of course, if the dropout rate data are truly normal, the
square root of these data cannot be truly normal and vice versa. However, both are reasonably close
to normal distributions.

Figures 2.10 through 2.15 contain normal plots based on 25 observations each. Normal plots
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Figure 2.11: Normal plot.
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Figure 2.12: Normal plot.

based on larger normal samples tend to appear straighter than these. Normal plots based on smaller
normal samples can look much more crooked.
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Figure 2.13: Normal plot.
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Figure 2.14: Normal plot.

In an attempt to quantify the straightness of a normal plot, Shapiro and Francia (1972) proposed
the summary statistic W', which is the squared sample correlation between the pairs of points in
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Figure 2.15: Normal plot.

the plots. The population correlation coefficient was introduced in Subsection 1.2.3. The sample
correlation coefficient is introduced in Chapter 7. At this point, it is sufficient to know that sam-
ple correlation coefficients near O indicate very little linear relationship between two variables and
sample correlation coefficients near 1 or —1 indicate a very strong linear relationship. Since you
need a computer to get the normal scores (rankits) anyway, just rely on the computer to give you the
squared sample correlation coefficient.

A sample correlation coefficient near 1 indicates a strong tendency of one variable to increase
(linearly) as the other variable increases and sample correlation coefficients near —1 indicate a
strong tendency for one variable to decrease (linearly) as the other variable increases. In normal
plots we are looking for a strong tendency for one variable, the ordered data, to increase as the
other variable, the rankits, increases, so normal data should display a sample correlation coefficient
near 1 and thus the square of the sample correlation, W’, should be near 1. If W’ is too small,
it indicates that the data are inconsistent with the assumption of normality. If W’ is smaller than,
say, 95% of the values one would see from normally distributed data, it is substantial evidence
that the data are not normally distributed. If W’ is smaller than, say, 99% of the values one would
see from normally distributed data, it is strong evidence that the data are not normally distributed.
Appendix B.3 presents tables of the values W’(.05,n) and W’(.01,n). These are the points above
which fall, respectively, 95% and 99% of the W' values one would see from normally distributed
data. Of course the W’ percentiles are computed using not only the assumption of normality, but also
the assumptions that the observations are independent with the same mean and variance. Note also
that the values of these percentiles depend on the sample size n. The tabled values are consistent
with our earlier observation that the plots are more crooked for smaller numbers of observations
and straighter for larger numbers of observations in that the tabled values get larger with n. For
comparison, we give the observed W’ values for the data used in Figures 2.10 through 2.15.
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Shapiro—Francia statistics

Figure w’
2.10 0.966
2.11 0.974
2.12 0.937
2.13 0.956
2.14 0.958
2.15 0.978

2. ONE SAMPLE

These should be compared to W’(.05,25) = .918 and W'(.01,25) = .88 from Appendix B.3. None

of these six values is below the 5% point.
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EXAMPLE 2.4.2. For the dropout rate data we have three normal plots. The complete, untrans-
formed data yield a W’ value of .697. This value is inconsistent with the assumption that the dropout
rate data has a normal distribution. Deleting the two outliers, W’ is .978 for the untransformed
data and .960 for the square roots of the data. The tabled percentiles are W’(.05,36) = .940 and
W’(.01,36) = .91, so the untransformed data and the square root data look alright. In addition, W’
was computed for the square roots of the complete data. Its value, .887, is still significantly low, but
is a vast improvement over the untransformed complete data. The outliers are not nearly as strange
when the square roots of the data are considered. Sometimes it is possible to find a transformation
that eliminates outliers. O

Minitab commands

A computer program is necessary for finding the normal scores and convenient for plotting the data
and computing W'. The following Minitab commands provide a normal plot and the W' statistic for
a variable in c1.

MTB > name cl ’y’

MTB > nscores cl c2

MTB > plot cl c2

MTB > corr cl c2

MTB > note The correlation is printed out, e.g., .987.
MTB > note This correlation is used in the next command.
MTB > let k1=.987**2

MTB > note k1 is W’

MTB > print ki

2.5 Transformations

In analyzing a collection of numbers, we assume that the observations are a random sample from
some population. Often, the population from which the observations come is not as well defined as
we might like. For example, if our observations are the yields of corn on 30 one acre plots of ground
grown in the summer of 1990, what is the larger population from which this is a sample? Typically,
we do not have a large number of one acre plots from which we randomly select 30. Even if we
had a large collection of plots, these plots are subject to different weather conditions, have different
fertilities, etc. Most importantly, we are rarely interested in corn grown in 1990 for its own sake. If
we are studying corn grown in 1990, we are probably interested in predicting how that same type
of corn would behave if we planted it at some time in the future. No population that currently exists
could be completely appropriate for drawing conclusions about plant growths in a future year. Thus
the assumption that the observations are a random sample from some population is often only a
useful approximation.

When making approximations, it is often necessary to adjust things to make the approximations
more accurate. In statistics, two approximations we frequently make are that all the data have the
same variance and that the data are normally distributed. Making numerical transformations of
the data is a primary tool for improving the accuracy of these approximations. When sampling
from a fixed population, we are typically interested in transformations that improve the normality
assumption because having different variances is not a problem associated with sampling from a
fixed population. With a fixed population, the variance of an object is the variance of randomly
choosing an object from the population. This is a constant regardless of which object we end up
choosing. But data are rarely as simple as random samples from a fixed population. Once we have
an object from the population, we have to obtain an observation (measurement or count) from the
object. These observations on a given object are also subject to random error and the error may well
depend on the specific object being observed.
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We now examine the fact that observations often have different variances, depending on the
object being observed. First consider taking length measurements using a 30 centimeter ruler that
has millimeters marked on it. For measuring objects that are less than 30 centimeters long, like this
book, we can make very accurate measurements. We should be able to measure things within half a
millimeter. Now consider trying to measure the height of a dog house that is approximately 3.5 feet
tall. Using the 30 cm ruler, we measure up from the base, mark 30 cm, measure from the mark up
another 30 cm, make another mark, measure from the new mark up another 30 cm, mark again, and
finally we measure from the last mark to the top of the house. With all the marking and moving of the
ruler, we have much more opportunity for error than we have in measuring the length of the book.
Obviously, if we try to measure the height of a house containing two floors, we will have much more
error. If we try to measure the height of the Sears tower in Chicago using a 30 cm ruler, we will not
only have a lot of error, but large psychiatric expenses as well. The moral of this tale is that, when
making measurements, larger objects tend to have more variability. If the objects are about the same
size, this causes little or no problem. One can probably measure female heights with approximately
the same accuracy for all women in a sample. One probably cannot measure the weights of a large
sample of marine animals with constant variability, especially if the sample includes both shrimp
and blue whales. When the observations are the measured amounts of something, often the standard
deviation of an observation is proportional to its mean. When the standard deviation is proportional
to the mean, analyzing the logarithms of the observations is more appropriate than analyzing the
original data.

Now consider the problem of counting up the net financial worth of a sample of people. For
simplicity, let’s think of just three people, me, my 10 year old son (at least he was 10 when I started
writing this), and my rich uncle, Scrooge. In fact, let’s just think of having a stack of one dollar
bills in front of each person. My pile is of a decent size, my son’s is small, and my uncle’s is huge.
When I count my pile, it is large enough that I could miscount somewhere and make a significant,
but not major, error. When I count my son’s pile, it is small enough that I should get it about
right. When I count my uncle’s pile, it is large enough that I will, almost inevitably, make several
significant errors. As with measuring amounts of things, the larger the observation, the larger the
potential error. However, the process of making these errors is very different than that described
for measuring amounts. In such cases, the variance of the observations is often proportional to the
mean of the observations. The standard corrective measure for counts is different from the standard
corrective measure for amounts. When the observations are counts of something, often the variance
of the count is proportional to its mean. In this case, analyzing the square roots of the observations
is more appropriate than analyzing the original data.

Suppose we are looking at yearly sales for a sample of corporations. The sample may include
both the corner gas (petrol) station and Exxon. It is difficult to argue that one can really count sales
for a huge company such as Exxon. In fact, it may be difficult to count even yearly sales for a gas
station. Although in theory one should be able to count sales, it may be better to think of yearly
sales as measured amounts. It is not clear how to transform such data. Another example is age. We
usually think of counting the years a person has been alive, but one could also argue that we are
measuring the amount of time a person has been alive. In practice, we often try both logarithmic
and square root transformations and use the transformation that seems to work best, even when the
type of observation (count or amount) seems clear.

Finally, consider the proportion of times people drink a particular brand of soda pop, say, Dr.
Pepper. The idea is simply that we ask a group of people what proportion of the time they drink
Dr. Pepper. People who always drink Dr. Pepper are aware of that fact and should give a quite
accurate proportion. Similarly, people who never drink Dr. Pepper should be able to give an accurate
proportion. Moreover, people who drink Dr. Pepper about 90% of the time or about 10% of the time,
can probably give a fairly accurate proportion. The people who will have a lot of variability in their
replies are those who drink Dr. Pepper about half the time. They will have little idea whether they
drink it 50% of the time, or 60%, or 40%, or just what. With observations that are counts or amounts,
larger observations have larger variances. With observations that are proportions, observations near
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0 and 1 have small variability and observations near .5 have large variability. Proportion data call for
a completely different type of transformation. The standard transformation for proportion data is the
inverse sine (arcsine) of the square root of the proportion. When the observations are proportions,
often the variance of the proportion is a constant times U(1 — ) /N, where W is the mean and N
is the number of trials. In this case, analyzing the inverse sine (arcsine) of the square root of the
proportion is more appropriate than analyzing the original data.

In practice, the square root transformation is sometimes used with proportion data. After all,
many proportions are obtained as a count divided by the total number of trials. For example, the
best data we could get in the Dr. Pepper drinking example would be the count of the number of Dr.
Peppers consumed divided by the total number of sodas devoured.

There is a subtle but important point that was glossed over in the previous paragraphs. If we take
multiple measurements on a house, the variance depends on the true height, but the true height is
the same for all observations. Such a dependence of the variance on the mean causes no problems.
The problem arises when we measure a random sample of buildings each with a variance depending
on its true height.

EXAMPLE 2.5.1. For the dropout rate data, we earlier considered the complete, untransformed
data and after deleting two outliers, we looked at the untransformed data and the square roots of the
data. In Examples 2.4.1 and 2.4.2 we saw that the untransformed data with the outliers deleted and
the square roots of the data with the outliers deleted had approximate normal distributions. Based on
the W’ statistic, the untransformed data seemed to be more nearly normal. The data are proportions
of people who drop from a class, so our discussion in this section suggests transforming by the
inverse sine of the square roots of the proportions. Recall that proportions are values between 0 and
1, while the dropout rates were reported as values between 0 and 100, so the reported rates need
to be divided by 100. For the complete data, this transformation yields a W’ value of .85, which
is much better than the untransformed value of .70, but worse than the value .89 obtained with the
square root transformation. With the two outliers deleted, the inverse sine of the square roots of
the proportions yields the respectable value W’ = .96, but the square root transformation is simpler
and gives almost the same value, while the untransformed data give a much better value of .98.
Examination of the six normal plots (only three of which have been presented here) reinforce the
conclusions given above.

With the outliers deleted, it seems reasonable to analyze the untransformed data and, to a lesser
extent, the data after either transformation. Other things being equal, we prefer using the simplest
transformation that seems to work. Simple transformations are easier to explain, justify, and inter-
pret. The square root transformation is simpler, and thus better, than the inverse sine of the square
roots of the proportions. Of course, not making a transformation seems to work best and not trans-
forming is always the simplest transformation. Actually some people would point out, and it is
undeniably true, that the act of deleting outliers is really a transformation of the data. However, we
will not refer to it as such. O

Minitab commands

Minitab commands for the three transformations discussed here and for the cubed root power trans-
formation are given below. The cubed root is just to illustrate a general power transformation.

MTB > name cl ’y’

MIB > let c2 = loge(cl)

MIB > let c3 = sqrt(cl)

MTIB > let c4 = asin(sqrt(cl))
MTB > let cb5 = c1**(1/3)
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Theory

The standard transformations given above are referred to as variance stabilizing transformations.
The idea is that each observation is a look at something with a different mean and variance, where
the variance depends on the mean. For example, when we measure the height of a house, the house
has some ‘true’ height and we simply take a measurement of it. The variability of the measurement
depends on the true height of the house. Variance stabilizing transformations are designed to elimi-
nate the dependence of the variance on the mean. Although variance stabilizing transformations are
used quite generally for counts, amounts, and proportions, they are derived for certain assumptions
about the relationship between the mean and the variance. These relationships are tied to theoretical
distributions that are appropriate for some counts, amounts, and proportions. Rao (1973, section 6g)
gives a nice discussion of the mathematical theory behind variance stabilizing transformations.

Proportions are related to the binomial distribution for the numbers of successes. We have a
fixed number of trials; the proportion is the number of successes divided by the number of trials.
The mean of a Bin(N, p) distribution is Np and the variance is Np(1 — p). This relationship between
the mean and variance of a binomial leads to the inverse sine of the square root transformation.

Counts are related to the Poisson distribution. The Poisson distribution is an approximation used
for binomials with a very large number of trials, each having a very small probability of success.
Poisson data has the property that the variance equals the mean of the observation. This relationship
leads to the square root as the variance stabilizing transformation.

For amounts, the log transformation comes from having the standard deviation proportional
to the mean. The standard deviation divided by the mean is called the coefficient of variation, so
the log transformation is appropriate for observations that have a constant coefficient of variation.
(The square root transformation comes from having the variance, rather than the standard deviation,
proportional to the mean.) A family of continuous distributions called the gamma distributions has
constant coefficient of variation.

The variance stabilizing transformations are given below. In each case we assume E(y;) = ;
and Var(y;) = 67. The symbol  means ‘proportional to.

Variance stabilizing transformations
Mean, variance

Data Distribution relationship Transformation
Count Poisson Wi o< 67 Vi
Amount Gamma Wi X G; log(yi)

Proportion  Binomial /N w o o7 sin™! (V)

I cannot honestly recommend using variance stabilizing transformations to analyze either bino-
mial or Poisson data. In the past 20 years, a large body of statistical techniques has been developed
specifically for analyzing binomial and Poisson data, see, for example, Christensen (1990b). I would
recommend using these alternative methods. Many people would make a similar recommendation
for gamma distributed data citing the applicability of generalized linear model theory, cf. McCul-
lagh and Nelder (1989) or Christensen (1990b, chapter X). When applied to binomial, Poisson, or
gamma distributed data, variance stabilizing transformations provide a way to force the methods
developed for normally distributed data into giving a reasonable analysis for data that are not nor-
mally distributed. If you have a clear idea about the true distribution of the data, you should use
methods developed specifically for that distribution. The problem is that we often have little idea of
the appropriate distribution for a set of data. For example, if we simply ask people the proportion
of times they drink Dr. Pepper, we have proportion data that is not binomial. In such cases, we
seek a transformation that will make a normal theory analysis approximately correct. We often pick
transformations by trial and error. The variance stabilizing transformations provide little more than
a place to start when considering transformations.

At the beginning of this section, we mentioned two key approximations that we frequently make.
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These are that all the data have the same variance and that the data are normally distributed. While
the rationale given above for picking transformations was based on stabilizing variances, in prac-
tice we typically choose a transformation for a single sample to attain approximate normality. To
evaluate whether a transformation really stabilizes the variance, we need more information than is
contained in a single sample. Control chart methods can be used to evaluate variance stabilization
for a single sample, cf. Shewhart (1931). Those methods require formation of rational subgroups
and that requires additional information. We could also plot the sample against appropriately chosen
variables to check variance stabilization, but finding appropriate variables can be quite difficult and
would depend on properties of the particular sampling process. Variance stabilizing transformations
are probably best suited to problems that compare samples from several populations, where the
variance in each population depends on the mean of the population.

On the other hand, we already have examined methods for evaluating the normality of a single
sample. Thus, since we cannot (actually, do not) evaluate variance stabilization in a single sample, if
we think that the variance of observations should increase with their mean, we might try both the log
and square root transformations and pick the one for which the transformed data best approximate
normality.

2.6 Inference about o2

If the data are normally distributed, we can also perform confidence intervals and tests for the
population variance ¢>. While these are not typically of primary importance, they can be useful.
They also tend to be sensitive to the assumption of normality. The procedures do not follow the
same pattern used for most inferences that involve 1) a parameter of interest, 2) an estimate of the
parameter, 3) the standard error of the estimate, and 4) a known distribution symmetric about zero;
however, there are similarities. Procedures for variances typically require a parameter, an estimate,
and a known distribution.

The procedures discussed in this section actually apply to all the problems in this book that
involve a single variance parameter 6. One need only substitute the relevant estimate of 62 and
use its degrees of freedom. Applications to the data and models considered in Chapter 12 are not
quite as straightforward because there the models involve more than one variance.

In the one-sample problem, the parameter is 62, the estimate is s°, and the distribution, as
discussed in equation (2.1.5), is

(n—1)s?

o2 NXZ(”_I)

The notation y*(1 — o,n — 1) is used to denote the point that cuts off the bottom 1 — & (top @) of
the x? distribution with n — 1 degrees of freedom. Note that (n — 1)s?/c? is nonnegative, so the
curve in Figure 2.16 illustrating the x? distribution is also nonnegative. Figure 2.16 shows a central
interval with probability 1 — ¢ for a y? distribution.

A (1 — a)100% confidence interval for 2 is based on the following equality:

2 2

B (n—1)s? (n—1)s?
= Pr [xz(l—g,n—l) <ol < 752(?”—1)1 .

The first equality corresponds to Figure 2.16 and is just the definition of the percentage points
x? (% JA— 1) and 2 (1 —S.n— 1). These are defined to be the points that cut out the middle 1 — o
of the chi-squared distribution and are tabled in Appendix B.2. The second equality in (2.6.1) is
based on algebraic manipulation of the terms in the square brackets. The actual derivation is given
later in this section. The second equality gives an interval that contains 6. There is a probability of

l—a = Pr{xz(a,n1><(noj)sz<xz(la,nl)] 2.6.1)
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a/2 1—a a/2

T T T
X3(a/2,df) 7 X3(A—a/2,df)

Figure 2.16: Central xz interval with probability 1 — a.

1 — o that 62 is going to be in the interval

(n—1)s (n—1)s?
(Xz(l—g,n_1)7x2(g7n_l)>' (2.6.2)

The derivation of the confidence interval for 6% requires the data to be normally distributed. This
assumption is more vital for inferences about 6> than it is for inferences about . For inferences
about U, the central limit theorem indicates that the sample means are approximately normal even
when the data are not normal. There is no similar result indicating that the sample variance is
approximately y? even when the data are not normal.

EXAMPLE 2.6.1. Consider again the dropout rate data. We have seen that the complete data are
not normal, but that after deleting the two outliers, the remaining data are reasonably normal. We
find a 95% confidence interval for 62 from the deleted data. The deleted data contain 36 observa-
tions and s> for the deleted data is 27.45. The percentage points for the y*(36 — 1) distribution are
2%(.025,35) = 20.57 and x>(.975,35) = 53.20. Applying (2.6.2), the 95% confidence interval is

35(27.45) 35(27.45)
5320 ' 2057

or equivalently (18.1,46.7). We are 95% confident that the true variance is between 18.1 and 46.7,
but remember that this is the true variance after the deletion of outliers. Again, when we delete
outliers we are a little fuzzy about the exact definition of our parameter, but we are also being fuzzy
about the exact population of interest. The exception to this is when we believe that the only outliers
that exist are observations that are not really part of the population. O

It is the endpoints of the interval (2.6.2) that are random. To use the interval, we replace the
random variable s> with the observed value of s> and replace the term ‘probability (1 — &)’ with
‘(1 — a)100% confidence.” Once the observed value of s* is substituted into the interval, nothing
about the interval is random any longer, the fixed unknown value of 67 is either in the interval or it
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is not; there is no probability associated with it. The probability statement about random variables
is mystically transformed into a ‘confidence’ statement. This is not unreasonable, but the rationale
is, to say the least, murky.

The o level test of Hy : 6% = o versus Hy : 62 # 0F is again based on the first equality in
equation (2.6.1). To actually perform a test, Gg must be a known value. As usual, we assume that
the null hypothesis is true, i.e., 6% = 602, so under this assumption

1 —o=Pr {xz(g,n—l) <(”;;)s2<12(1—‘;,n—1)].
0

If we observe data yielding an s> such that (n — 1)s*/og is between the values x*($,n—1) and
)(2 (1 — %,n — 1), the data are consistent with the assumption that ol = Gg at level a. Conversely,
we reject Hy : 62 = Gg with a two-sided o level test if

(n—1)s? 2( a
Wy I —1)
o} = 2"

or if ( )2
n—1)s 2(06
(=02 (%, ).
o; <X\

A clear definition of ‘confidence’ can be given in terms of testing the hypothesis Hy : 6% = O'g

versus the alternative Hy : 6> # cg. The same algebraic manipulations that lead to equation (2.6.1)
can be used to show that the (1 — a)100% confidence interval contains precisely those values of 65
that are consistent with the data when testing Hy : 6% = Gg at level o. This idea is discussed in more
detail in Section 3.4.

EXAMPLE 2.6.2.  For the dropout rate data consider testing Hy : 6> = 50 versus Hy : 62 # 50
with a = .01. Again, we use the data with the two outliers deleted, so our concept of the population
variance 6> must account for our deletion of weird cases. The test statistic is

(n—1)s> 35(27.45)

= =19.215.
o} 50

The critical region, the region for which we reject Hy, contains all values greater than y2(.995,35) =
60.275 and all values less than x2(.005,35) = 17.19. The test statistic is certainly not greater than
60.275 and it is also not less than 17.19, so we have no basis for rejecting the null hypothesis at the
o = .01 level. At the .01 level, the data are consistent with the claim that 6% = 50.

The 95% confidence interval (18.1,46.7) from Example 2.6.1 contains all values of ¢ that
are consistent with the data as determined by a two-sided o = .05 level test. The interval does not
contain 50, so we do have evidence against Hy : 62 =50 at the o = .05 level. O

While methods for drawing inferences about variances do not fit our standard pattern based on
1) a parameter of interest, 2) an estimate of the parameter, 3) the standard error of the estimate, and
4) a known distribution symmetric about zero, it should be noted that the basic logic behind these
confidence intervals and tests is the same. Confidence intervals are based on a random interval that
contains the parameter of interest with some specified probability. The unusable random interval is
changed into a usable nonrandom interval by substituting the observed value of the random variable
into the endpoints of the interval. The probability is then miraculously, if intuitively, turned into
‘confidence.” Tests of hypotheses are based on evaluating whether the data are consistent with the
null hypothesis. Consistency is defined in terms of a known distribution that applies when the null
hypothesis is true. If the data are inconsistent with the null hypothesis, the null hypothesis is rejected
as being inconsistent with the observed data.
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Table 2.1: Weights of rats

59 54 56 59 57 52 52 61 59
53 59 51 51 56 58 46 53 57
60 52 49 56 46 51 63 49 57

Below is a series of equalities that justify equation (2.6.1).

[ 1 o2 1
= Pr 2{ A 2 2 o

X ($,n—1) " (n—=1)s2" x2(1-%,n—1)
= Pr- ! < i < !
N _xz(l—%,n—l) (n—1)s = x2(%,n—1)
o -1 . (n—1)s?
R T R (e

2.7 Exercises

EXERCISE 2.7.1. Mulrow et al. (1988) presented data on the melting temperature of biphenyl as
measured on a differential scanning calorimeter. The data are given below; they are the observed
melting temperatures in Kelvin less 340.

3.02,2.36,3.35,3.13,3.33,3.67,3.54,3.11,3.31,3.41,3.84,3.27,3.28,3.30

Compute the sample mean, variance, and standard deviation. Give a 99% confidence interval for the
population mean melting temperature of biphenyl as measured by this machine. (Note that we don’t
know whether the calorimeter is accurately calibrated.)

EXERCISE 2.7.2.  Box (1950) gave data on the weights of rats that were about to be used in an
experiment. The data are repeated in Table 2.1. Assuming that these are a random sample from a
broader population of rats, give a 95% confidence interval for the population mean weight. Test the
null hypothesis that the population mean weight is 60 using a .01 level test.

EXERCISE 2.7.3.  Fuchs and Kenett (1987) presented data on citrus juice for fruits grown during
a specific season at a specific location. The sample size was 80 but many variables were measured
on each sample. Sample statistics for some of these variables are given below

Variable BX AC SUG K FORM PECT
Mean 10.4 1.3 7.7 1180.0 222 451.0
Variance 0.38 0.036 0.260 43590.364 6.529  16553.996

The variables are BX — total soluble solids produced at 20°C, AC — acidity as citric acid unhydrons,
SUG - total sugars after inversion, K — potassium, FORM — formol number, PECT - total pectin.
Give a 99% confidence interval for the population mean of each variable. Give a 99% prediction
interval for each variable. Test whether the mean of BX equals 10. Test whether the mean of SUG
is less than or equal to 7.5. Use o = .01 for each test.

EXERCISE 2.7.4.  Jolicoeur and Mosimann (1960) gave data on female painted turtle shell



2.7 EXERCISES 59

Table 2.2: Female painted turtle shell lengths

98 138 123 155 105 147 133 159
103 138 133 155 109 149 134 162
103 141 133 158 123 153 136 177

Table 2.3: Percentage of fathers with white collar jobs

28.87 | 20.10 | 69.05 | 65.40 | 29.59
44.82 | 77.37 | 24.67 | 65.01 9.99
12.20 | 22.55 | 14.30 | 31.79 | 11.60
68.47 | 42.64 | 16.70 | 86.27 | 76.73

lengths. The data are presented in Table 2.2. Give a 95% confidence interval for the population
mean length. Give a 99% prediction interval for the shell length of a new female.

EXERCISE 2.7.5. Mosteller and Tukey (1977) extracted data from the Coleman Report. Among
the variables considered was the percentage of sixth-graders who’s fathers were employed in white
collar jobs. Data for 20 New England schools are given in Table 2.3. Are the data reasonably nor-
mal? Do any of the standard transformations improve the normality? After finding an appropriate
transformation (if necessary), test the null hypothesis that the percentage of white collar fathers is
50%. Use a .05 level test. Give a 99% confidence interval for the percentage of fathers with white
collar jobs. If a transformation was needed, relate your conclusions back to the original measure-
ment scale.

EXERCISE 2.7.6.  Give a 95% confidence interval for the population variance associated with
the data of Exercise 2.7.5. Remember that inferences about variances require the assumption of
normality. Could the variance reasonably be 10?

EXERCISE 2.7.7. Give a 95% confidence interval for the population variance associated with
the data of Exercise 2.7.4. Remember that the inferences about variances require the assumption of
normality.

EXERCISE 2.7.8.  Give 99% confidence intervals for the population variances of all the variables
in Exercise 2.7.3. Assume that the original data were normally distributed. Using o = .01, test
whether the potassium variance could reasonably be 45000. Could the formol number variance be
8?7

EXERCISE 2.7.9.  Shewhart (1931, p. 62) reproduces Millikan’s data on the charge of an election.
These are repeated in Table 2.4. Check for outliers and nonnormality. Adjust the data appropriately
if there are any problems. Give a 98% confidence interval for the population mean value. Give
a 98% prediction interval for a new measurement. (Millikan argued that some adjustments were
needed before these data could be used in an optimal fashion but we will ignore his suggestions.)

EXERCISE 2.7.10.  Show that if y,yy,...,y, are independent N (i, %) random variables, (y —
7.)/\/062+02/n ~ N(0,1). Recalling that y, ¥., and s> are independent and that (n — 1)s?/c? ~
x%(n—1), use Definition 2.1.3 to show that (y —§.)/+/s2 +s2/n ~t(n—1).
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4.781
4.765
4.758
4.779
4.801
4.779
4.782
4.775

Table 2.4:

4.764
4.790
4.779
4.772
4.791
4.749
4.778
4.747

Observations on the charge of an electron

4.771
4.792
4.792
4.768
4.799
4.791
4.808

4.809
4.806
4.789
4.772
4.777
4.774
4.740

4.761
4.769
4.805
4.810
4.772
4.783
4.790

4.769
4.771
4.788
4.790
4.764
4.783
4.767

4.795
4.785
4.764
4.775
4.785
4.797
4.791

4.776
4.779
4.785
4.789
4.788
4.781
4.771

2. ONE SAMPLE



Chapter 3

A general theory for testing and confidence
intervals

The most commonly used statistical tests and confidence intervals derive from a single theory. (Tests
and confidence intervals about variances are an exception.) The basic ideas of this theory were
illustrated in Chapter 2. The point of the current chapter is to present the theory in its general form
and to reemphasize fundamental techniques. The general theory will then be used throughout the
book. Because the theory is stated in quite general terms, some prior familiarity with the ideas, e.g.,
reading Sections 2.2 and 2.3, is highly recommended.

To use the general theory you need to know four things:

1. the parameter of interest, Par,

2. the estimate of the parameter, Est,

3. the standard error of the estimate, SE(E'st), and
4.

the appropriate reference distribution.

Specifically, what you need to know about the distribution is that

Est — Par
SE(E'st)

has a known (tabled) distribution that is symmetric about zero. The estimate E'st is taken to be a
random variable. The standard error, SE(Est), is the standard deviation of the estimate if that is
known, but more commonly it is an estimate of the standard deviation. If the SE(Esr) is estimated,
the known distribution is usually the ¢ distribution with some known number of degrees of freedom.
If the SE(Est) is known, then the distribution is usually the standard normal distribution, i.e., mean
0, variance 1. In some problems, e.g., problems involving the binomial distribution, the central limit
theorem is used to get an approximate distribution and inferences proceed as if that distribution is
correct. When appealing to the central limit theorem, the known distribution is the standard normal.

Identifying a parameter of interest and an estimate of that parameter is relatively easy. The more
complicated part of the procedure is obtaining the standard error. To do this, one typically derives
the variance, estimates it (if necessary), and takes the square root. Obviously, rules for deriving
variances play an important role in the process.

We need notation for the percentage points of the known reference distribution. In particular, we
need a name for the point that cuts off the top & of the distribution. The point that cuts off the top
« of the distribution also cuts off the bottom 1 — ¢ of the distribution. These ideas are illustrated in
Figure 3.1. The notation K (1 — «) is used for the point that cuts off the top c.

The illustration in Figure 3.1 is written formally as

Est — Par

P -
" "SE(Esr)

>K(1-a)| =a.

61
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Figure 3.1: Percentiles of t(df ) distributions.

By the symmetry about zero we also have

Est — Par

Pt SEEsy <

—K(l-o)| = .
The value K(1 — ) is called a percentile or percentage point; it is most often found from either a
standard normal table or a ¢ table. For ¢ percentage points with d f degrees of freedom, we use the
notation

t(l—oa,df)=K(l—a)

and for standard normal percentage points we use
1-a)=K(1-0a).

As the degrees of freedom get arbitrarily large, the 7 distribution approximates the standard normal
distribution. Thus we write
(1—a)=t(1—a,0).

One can get a feeling for the quality of this approximation simply by examining the ¢ tables in
Appendix B.1 and noting how quickly the ¢ percentiles approach the values given for infinite degrees
of freedom.

3.1 Theory for confidence intervals

Confidence intervals are interval estimates of the parameter of interest. We have a specified ‘con-
fidence’ that the parameter is in the interval. Confidence intervals are more valuable than simply
reporting the estimate E'st because confidence intervals provide an idea of the amount of error asso-
ciated with the estimate.

A (1 — a)100% confidence interval for Par is based on the following probability equalities

Pr [—K(l—‘;) <IM<K(I—Z>} G.1.1)

(04 o
Pr [Est - K(l - E) SE(Est) < Par < Est +K(1 - 5) SE(Est)]

11—«
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—t(1 —a, df) o t(1 —a, df)

Figure 3.2: Symmetry about 0 in the distribution of [Est — Par]|/SE(Est).

The first equality in (3.1.1) is simply a statement of the picture illustrated in Figure 3.2. It follows
from the definition of K (1 - %) and the symmetry of the distribution. The second equality follows
from the fact that the statements within the two sets of square brackets are algebraically equivalent.
A proof of the equivalence is given in the appendix at the end of the chapter.

The probability statement

o (04
Lfa:PﬂngK<yf5)smﬁgy<ﬂw<En+K(yf§)suEgﬂ.

is the basis for the confidence interval for Par. The (1 — ¢)100% confidence interval for Par is
simply the interval within the square brackets, i.e., the points between Est — K ( 11— %) SE(Est) and
Est+K (1 - %) SE(Est). However, the confidence interval is obtained by substituting observed val-
ues for Est and SE(Est). We are (1 — a)100% ‘confident’ that Par is in this interval. The endpoints
of the interval can be written succinctly as

o
1—=

EtiK(
. 2

)SE@hﬂ.

I think everyone would agree with the statement ‘The probability is 1 — & that you are going
to get a confidence interval that covers what you are trying to estimate, Par.” I did not indicate that
the probability that your actual interval covers Par is 1 — a. The particular interval that you get
uses the observed values of Est and SE(Est), so it is a fixed interval and either covers Par or does
not. There is no probability associated with Par being in the interval. For this reason the result of a
confidence interval is described as, ‘We are (1 — a@)100% confident that the true value of Par is in
the interval.” I have no idea what this is supposed to mean, even though I find it intuitively appealing.
I do, however, know of two acceptable interpretations for confidence intervals. As we will see in
Section 3.4, a confidence interval contains all those parameter values that are consistent with the
data. Consistency is measured by performing a statistical test with a specified error level o. The
« in the test plays the same role as the ¢ in a confidence interval. Since I think I understand the
philosophical basis of hypothesis tests, I am comfortable with this interpretation.

The confidence intervals obtained from the theory presented in this chapter can frequently be
obtained by another approach using ‘Bayesian’ arguments. In the Bayesian justification, the correct
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interpretation of a 95% confidence interval is that the probability is 95% that the parameter is in
the interval. This is precisely the interpretation that most statistics students wish to adopt and that
many statisticians strive so hard and so unsuccessfully to make their students reject. We will return
to the issue of interpreting confidence intervals later in this section.

EXAMPLE 3.1.1.  Years ago, 10 people were independently abducted by S.P.E.C.T.R.E after a
Van Holland concert and forced to submit to psychological testing. Among the tests was a measure
of audio acuity. From many past abductions in other circumstances, S.P.E.C.T.R.E knows that such
observations form a normal population with variance 6. In this case, they found that . was 17. They
seek a 95% confidence interval for u, the mean of the population.

1) Par=p,
2) Est=75.,
3) SE(Est) = 1/6/10, in this case SE(Est) is known and not estimated.
4) [Est — Par]/SE(Est) = [y. — ] /+/6/10 has a standard normal distribution.
To find the appropriate tabled values, observe that (1 — @)100=95,s0 1 —a = .95 and o = .05.

It follows that K (1 — $) = K(.975) = z(.975) = 1.96.
The limits of the 95% confidence interval are

5.+1.96,/6/10

or, since y. = 17,
17+1.96+/6/10.

S.PE.C.T.R.E. was 95% confident that the mean hearing score for people at this concert (or at least
for the population they were considering for abduction) was between 15.5 and 18.5. a

EXAMPLE 3.1.2. In Chapter 2 we considered data on dropout rates for math classes. We found
that the 38 observations on dropout rates were not normally distributed; they contained two outliers.
Our parameter for these data is u, the population mean dropout rate for math classes, the estimate is
the sample mean ., and the standard error is +/s2/38 where s is the sample variance. Based on the
central limit theorem and the law of large numbers, we used the approximate reference distribution

y.—H
\/s%/38

From the 38 observations, we computed 7. = 13.11 and s> = 106.421 and found a 95% confidence
interval for the dropout rate of (9.8, 16.4). The endpoints of the confidence interval are computed as

13.11+1.96(1/106.421/38).

If we drop the two outliers, the remaining data seem to be normally distributed. Recomputing
the sample mean and sample variance with the outliers deleted we get j; = 11.083 and sgzl =27.45.
Here the subscripts d are used as a reminder that the outliers have been deleted. Without the outliers,
we can use the reference distribution

~N(0,1).

Ya — Ua
\/5%/36

The ¢ distribution relies on the assumption of normality (which we have validated) rather than re-
lying on the unvalidated large sample approximations from the central limit theorem and law of
large numbers. The ¢ distribution should give more accurate results. For a 95% confidence interval
based on the data without the outliers, we need to find the appropriate tabled values. Observe once

~1(35).
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again that (1 — )100 = 95, so 1 —a = .95 and o = .05. It follows that K(1 — §) = K(.975) =
1(.975,35) = 2.030 and the confidence interval has endpoints

11.083 +2.030(1/27.45/36).

The actual interval is (9.3,12.9). Excluding the extremely high values that occasionally occur, we
are 95% confident that the population mean dropout rate is between 9.3 and 12.9 percent. Remem-
ber, this is a confidence interval for the mean of math classes; it does not indicate that you can be
95% confident that your next math class will have a dropout rate between 9.3 and 12.9 percent. Such
an inference requires a prediction interval. The interval (9.3,12.9) is much narrower than the one
given in the previous paragraph, largely because our estimate of the variance is much smaller when
the outliers have been deleted. Note also that with the outliers deleted, we are drawing inferences
about a different parameter than when they are present. With the outliers deleted, our conclusions are
only valid for the bulk of the observations. While occasional weird observations can be eliminated
from our analysis, we cannot stop them from occurring.

In constructing the confidence interval we used the tabled value of 2.030 from the ¢ distribution.
This is larger than the 1.96 we obtained earlier from the standard normal distribution. Using the
larger t value makes our confidence intervals wider. Other things being equal, we prefer narrower
confidence intervals because they make more precise statements about the location of the mean.
However, even though the value 1.96 is smaller than 2.030 and thus gives narrower intervals, we
prefer to use the ¢ distribution. The ¢ distribution incorporates the fact that we do not know o>
and must estimate it. Thus an analysis using the N(0, 1) distribution is much cruder in that it treats
the estimate of o as if it were really 62. Whenever we can establish that the data are reasonably
normal, we will use the t distribution because it should give more accurate results.

In the previous chapter we discussed the use of transformations. In particular, we looked at
the square roots of the dropout rate data. We now consider the effect on confidence intervals of
transforming the data. With the two outliers deleted and taking square roots of the observations, we
found earlier that the data are reasonably normal. The sample mean and variance of the transformed,
deleted data are y,; = 3.218 and sfd = .749574. Here the subscript r reminds us that square roots
have been taken and the subscript d reminds us that outliers have been deleted. Using the reference

distribution B
Yrd — Hrd

V 574/36

we obtain a 95% confidence interval with endpoints

3.2184+2.030 (\/ '7439574> .

The confidence interval reduces to (2.925,3.511). This is a 95% confidence interval for the pop-
ulation mean of the square roots of the dropout rate percentages with ‘outliers’ removed from the
population.

The confidence interval (2.925,3.511) does not really address the issue that we set out to inves-
tigate. We wanted some idea of the value of the population mean dropout rate. We have obtained a
95% confidence interval for the population mean of the square roots of the dropout rate percentages
(with outliers removed from the population). There is no simple, direct relationship between the
population mean dropout rate and the population mean of the square roots of the dropout rate per-
centages, but a simple device can be used to draw conclusions about typical values for mean dropout
rates when the analysis is performed on the square roots of the dropout rates. Since (2.925,3.511)
provides a 95% confidence interval from the square roots of the dropout rate percentages, we simply
square all the values in the interval to draw conclusions about the dropout rate percentages. Squar-
ing the endpoints of the interval gives the new interval (2.925%,3.511%) = (8.6,12.3). We are now

~t(35),
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95% confident that the central value of the population of dropout rates is between 8.6 and 12.3. The
central value referred to here is really the square of the population mean of the square roots of the
dropout rate percentages. We are using this central value as a surrogate for the population mean of
the (outlier deleted) dropout rate percentages; generally this central value will not equal the mean
of the (deleted) dropout rates. For the most part we ignore the difference between the surrogate and
the parameter that we set out to investigate. Interestingly, we will see in Section 3.5 that prediction
intervals do not share these difficulties associated with transforming the data.

Note that the retransformed interval (8.6, 12.3) obtained from the transformed, deleted data is
similar to the interval (9.3,12.9) obtained earlier from the untransformed data with the outliers
deleted. When, as in this case, two distinct analyses both seem reasonably valid, I would be very
hesitant about drawing practical conclusions that could not be justified from both analyses. a

Interpreting confidence intervals

The interpretation of confidence intervals is actually a quite profound issue that statisticians have
been arguing about for decades. This subsection presents the author’s point of view in the context
of some relatively simple problems. Although the problems are simple, the issues being discussed
are not.

The disquieting thing about confidence intervals is the logic (or lack thereof) behind the leap
from the probability of 1 — « that a future interval will contain the parameter into a ‘(1 — a)100%
confidence’ that the parameter is in a particular observed interval. The problem is in defining the
meaning of confidence.

The standard interpretation of (1 — ¢&)100% confidence intervals is that if you repeatedly per-
formed many similar independent confidence intervals, about (1 — a)100% would contain the true
parameter. The repeated sampling interpretation is exactly the same idea as saying that since a fu-
ture coin toss has probability .5 of turning up heads, if you actually make many independent tosses
of a coin, about 50% will be heads. This interpretation is not really saying anything new nor does
it solve any problems because it still only relates to things that may be observed in the future. The
fundamental problem of inverting probabilities for future observables into confidence about param-
eters remains. Moreover, the repeated sampling interpretation rarely applies to interesting problems.
If you are obtaining a confidence interval for the height of corn plants grown outdoors, there is no
way to perform independent replications of the experiment because there is no way to reproduce
the exact growing conditions. In such cases, not only will the data behave differently but even the
parameter of interest is likely to have a different meaning and value.

An alternative interpretation of confidence intervals based on statistical tests of hypotheses is
presented in Section 3.4. I feel comfortable with the logic behind testing, so I like this interpretation.
However, this interpretation makes no appeal whatsoever to the intuitive idea that 95% confidence
means something similar to 95% probability.

I personally do not think it is possible to define confidence as anything other than probability.
Two simple examples illustrate my point. I am going to flip a coin; we agree that the probability is
.5 that it will land heads up. I flip the coin, look at it, but refuse to show it to you. Undoubtedly, you
would feel comfortable saying that you are 50% confident that the coin is heads. I cannot imagine
what that would mean except that you believe the probability is .5 that the coin is heads. Note
that the 50% confidence is a statement about your beliefs and not a statement about the coin. The
outcome of the coin toss is fixed (and known by someone other than you). This example has neither
a fixed parameter nor any observable data but we can modify the example to make it more like a
confidence interval problem. I place a coin either heads up or tails up and hide it from you, this is
the parameter. You are going to flip a coin but I exercise my well known psychic powers. When I
do this, the probability is .75 that the coin face I chose will be the face on your coin. When you toss
your coin it lands either heads or tails and you observe this datum. The observed outcome of your
toss is no longer random and it either matches mine or does not. Intuitively, you may reasonably
feel that the probability is still .75 that the coins match, regardless of how I set my coin. But now
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the probability is no longer about what the outcome of your flip will be because you have seen your
datum. The probability must now be about how you believe I set my coin. Such a probability can
only exist in your head. (Of course, I have other ideas and probabilities because, having seen both
coins, I know whether they match.) While the intuition behind this probability is appealing, the logic
escapes me. Glossing over the problem by saying that you have confidence, but not probability, of
.75 for matching my coin does nothing to clear up the real issue.

R. A. Fisher made an attempt to build a theory of inverting probabilities from future observables
into probabilities for parameters using this sort of intuition that we all find appealing. While it was a
noble effort, I do not know of anyone who thinks Fisher succeeded or anyone who thinks that such
a theory can succeed. (Of course, I have a limited sphere of acquaintance.) For more information,
see the discussion of fiducial probability in Fisher (1956).

Another method of inverting probabilities about future data into probabilities about parameters is
the theory of Bayesian statistics. Let me briefly mention how a Bayesian could arrive at a probability
of .75 for the second coin tossing example. The computations are illustrated in Exercise 3.7.1. I place
my coin any way I want. To arrive at a probability, you need to decide on your beliefs about how I
placed my coin. If you believe that I am equally likely to place it heads up or tails up, those are your
prior beliefs. Your prior beliefs are then modified by any data. In this example, if your initial beliefs
are that I was equally likely to place the coin heads up or tails up, using a result known as Bayes
theorem the probability that your coin agrees with mine becomes .75, regardless of what face of the
coin I chose to place upwards and regardless of what you actually saw on your flip.

Notice that there is a lot more structure here than the mere intuition referred to earlier. In the
intuitive discussion, your personal probability of a 75 : 25 chance of matching exists regardless of
how I set my coin. In this discussion, you need to specify your beliefs about how I set my coin and
the final 75 : 25 chance is a result of your having chosen an initial 50 : 50 chance for how I set my
coin. For example, if you thought I was four times more likely to select heads, the probability of
matching would be 12/13 if your coin turned up heads but only 3/7 if it turned up tails. Note that
these beliefs do not depend on how I actually set my coin because you cannot know that. These
beliefs do depend on your knowledge of how the data relate to how I set my coin, i.e., what data are
likely when I choose heads and what are likely when I choose tails.

Bayesian methods are often criticized for requiring you to specify your initial beliefs in terms
of a probability distribution on the possible parameter values. The result of a Bayesian data analysis
is then an updated version of your beliefs. Berger (1985), among many others, responds to such
criticisms. Many of us think that Bayesian methods provide the only logically consistent (though I
would not say the only useful) method for doing statistics.

As I see it, a person has three choices: one can ignore the problem of what confidence means,
one can use the hypothesis testing interpretation of confidence intervals to be given later, or one can
rely on Bayesian methods. As it turns out, the confidence intervals and prediction intervals used in
this book can be obtained by reasonable Bayesian methods. In the Bayesian interpretation of these
intervals, confidence simply means probability, as the data modify a particular set of prior beliefs
that are chosen to have a minimum of influence on the results of the data analysis.

3.2 Theory for hypothesis tests

Hypothesis tests are used to check whether Par has some specified value. For some fixed known
number m, we may want to test the null hypothesis

Hy:Par=m

versus the alternative hypothesis
Hy : Par # m.

The number m must be known; it is some number that is of interest for the specific data being
analyzed. It is impossible to give general rules for picking m because the choice must depend on
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the context of the data. As mentioned in the previous chapter, the structure of the data (but not the
actual values of the data) sometimes suggests interesting hypotheses such as testing whether two
populations have the same mean or testing whether there is a relationship between two variables,
but ultimately the researcher must determine what hypotheses are of interest and these hypotheses
determine m. In any case, m is never just an unspecified symbol; it must have meaning within the
context of the problem. The test of Hy : Par = m versus Hy : Par # m is based on the assumption that
Hy is true and consists of checking to see whether the data are inconsistent with that assumption.

To identify data that are inconsistent with the assumption that Par = m, we examine what hap-
pens when Par = m. Note that Est is always an estimate of Par; this has nothing to do with any
hypothesis. With Est estimating Par, it follows that if Par > m then Est tends to be larger than m.
Equivalently, Est —m, and thus [Est —m]/SE(Est), tend to be large positive numbers when Par > m
(larger than they would be if Hy : Par = m is true). On the other hand if Par < m, then Est —m and
[Est —m]/SE(Est) tend to be large negative numbers. Data that are inconsistent with the null hy-
pothesis Par = m are large positive and large negative values of the test statistic [Est — m|/SE(Est).
The problem is in specifying what we mean by ‘large.” In practice we conclude that the data con-
tradict the null hypothesis Par = m if we observe a value of [Est —m]/SE(Est) that is further from
0 than some cutoff values. The problem is to make an intelligent choice for the cutoff values. The
solution is based on the fact that if Hy is true, the test statistic

Est—m

SE(E'st)

has the known reference distribution that is symmetric about 0.

When we substitute the observed values of Est and SE(Est) into the test statistic we get one
observation on the random test statistic. When Hy is true, this observation comes from the refer-
ence distribution. The question is whether it is reasonable to believe that this one observation came
from the reference distribution. If so, the data are consistent with Hj. If the observation could not
reasonably have come from the reference distribution, the data contradict Hy. Contradicting Hy is a
strong inference; it implies that H is false. On the other hand, inferring that the data are consistent
with Hy does not suggest that Hy is true. Such data can also be consistent with some aspects of the
alternative.

Before we can state the test formally, i.e., give intelligent cutoff values to determine the test,
we need to consider the concept of error. Even if Hy is true, it is usually possible (not probable but
possible) to get any value at all for [Est —m]/SE(Est). For that reason, no matter what we conclude
about the null hypothesis, there is a possibility of error. A test of hypothesis is based on controlling
the probability of making an error when the null hypothesis is true. We define the o level of the test
as the probability of rejecting the null hypothesis (saying that it is false) when the null hypothesis is
in fact true. The « level is also called the probability of a type I error, with a type I error being the
rejection of a true null hypothesis.

The « level determines the cutoff values for testing. The o level test for Hy : Par = m versus
Hy : Par # m is to reject Hy if

Est—m a

S ox(-9)

SE(Est) 2
or if

Est—m < 7K(17g>
SE(Est) 2/

This is equivalent to saying, reject Hy if

|Est —m| >K(l—g)
SE(Est) 2)°

To see that using K (1 — %) and —K (1 — %) as cutoff values gives an o level test, observe that if Hy
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is true, the probability that we will reject Hy is

Pr {M >K(1- ;‘)] +Pr {M <—k(1- ‘;)] —a/2+a/2=aq,

see Figure 3.2. Also note that we are rejecting Hy for those values of [Est —m]/SE(Est) that are
most inconsistent with Hy, these being the values far from zero.

Actually, this test could be developed without any reference to the alternative hypothesis what-
soever. (In fact, I much prefer such a development since I believe that if you are willing to specify
an alternative you should probably do a Bayesian analysis.) The only place where we used the al-
ternative hypothesis was in determining which values of the test statistic were inconsistent with Hy.
A different approach simply uses Figure 3.2 to decide which values of the test statistic are inconsis-
tent. We can define the values that are most inconsistent as those that are the least likely to occur.
The values that are least likely to occur are those where the density (i.e., the curve) is lowest. In
Figure 3.2, the lowest values of the density are those corresponding to values of the test statistic
that are far from 0. The density is symmetric, so our test should be symmetric. Thus an « level
test has exactly the form given above. Of course this analysis relies on Figure 3.2 being an accurate
portrayal of the distribution under Hy, but for all of our applications it is.

EXAMPLE 3.2.1. In Example 3.1.1 we considered past data on audio acuity in a post-rock envi-
ronment. Those data were collected on fans of the group Van Holland in their Lee David Rothschild
days. The nefarious organization responsible for this study found it necessary to update their findings
after Rothschild was replaced by Slammy Hagar-Slacks. This time they abducted for themselves 16
independent observations and they were positive that the data would continue to follow a normal
distribution. (Such arrogance is probably responsible for the failure of S.P.E.C.T.R.E.’s plans of
world domination. In any case, their resident statistician was in no position to question this assump-
tion.) The observed values of 7. and s> were 22 and .25 respectively for the audio acuity scores.
Now the purpose of all this is that S.P.E.C.T.R.E. had a long standing plot that required the use of
a loud rock band. They had been planning to use the group Audially Disadvantaged Leopard but
Van Holland’s fans offered certain properties they preferred, provided that those fans audio acuity
scores were satisfactory. From extremely long experience with abducting Audially Disadvantaged
Leopard fans, S.PE.C.T.R.E. knows that they have a population mean of 20 on the audio acuity
test. S.P.E.C.T.R.E. wishes to know whether Van Holland fans differ from this value. Naturally, they
tested Hp : u = 20 versus Hy : 4 # 20 and they chose an « level of .01.

1) Par=p

2) Est=7y.

3) SE(Est) = s/+/16. In this case the SE(Est) is estimated.

4) [Est —Par] /SE(Est) = [y. — u]/[s/v/16] has a #(15) distribution. This follows because the data
are normally distributed and the standard error is estimated using s.

The a = .01 test is to reject Hy if

5. —20)
>2.947 =1(.995,15).
e (.995,15)

Note that the sample size isn = 16 and K(1 — a¢/2) = K(1 —.005) =#(.995,15). Since y. =22
and s> = .25 we reject Hy if
22— 20|

V/25/16

Since [22 —20|/+/.25/16 = 16 is greater than 2.947, we reject the null hypothesis at the a = .01
level. There is clear (indeed, overwhelming) evidence that the Van Holland fans have higher scores.

> 2.947.
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(Unfortunately, my masters will not let me inform you whether high scores mean better hearing or
worse.) O

EXAMPLE 3.2.2. The National Association for the Abuse of Student Yahoos (also known as
NAASTY) has established guidelines indicating that university dropout rates for math classes should
be 15%. Based on an ¢ = .05 test, we wish to know if the University of New Mexico (UNM) meets
these guidelines when treating the 1984—85 academic year data as a random sample. As is typical in
such cases, NAASTY has specified that the central value of the distribution of dropout rates should
be 15% but it has not stated a specific definition of the central value. We interpret the central value
to be the population mean of the dropout rates and test the null hypothesis Hy : it = 15% against the
two-sided alternative Hy : 1 # 15%.

The complete data consist of 38 observations from which we compute 3. = 13.11 and s> =
106.421. The data are nonnormal, so we have little choice but to hope that 38 observations constitute
a sufficiently large sample to justify the use of

y.—Hu
\/52/38

as an approximate reference distribution. With an ¢ level of .05 and the standard normal distribution,
the two-sided test rejects Hy if

~N(0,1)

y. —15
Y > 1.96:z(.975)=z(1—9)
s%/38 2
orif _
Y2 < 1.9
52/38
Substituting the observed values for . and s> gives the observed value of the test statistic
13.11—-15

—1.13.

/10642138

The value of —1.13 is neither greater than 1.96 nor less than —1.96, so the null hypothesis cannot
be rejected at the .05 level. The 1984—85 data provide no evidence that UNM violates the NAASTY
guidelines.

If we delete the two outliers, the analysis changes somewhat. Without the outliers, the data are
approximately normal and we can use the reference distribution

th@S).
\/55/36

For this reference distribution the two-sided o = .05 test rejects Hy : g = 15 if

S~ 2.030 = 1(.975,35)

orif
Va — 15

\/53/36

With j; = 11.083 and s(%l = 27.45 from the data without the outliers, the observed value of the test
statistic is

< —2.030 = —#(.975,35).

11.083—15

V/2745/36

—4.49.
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The absolute value of —4.49 is greater than 2.030, i.e., —4.49 < —2.030, so we reject the null
hypothesis of Hy : tly = 15% at the .05 level. When we exclude the two extremely high observations,
we have evidence that the typical dropout rate was different from 15%. In particular, since the test
statistic is negative, we have evidence that the population mean dropout rate with outliers deleted
was actually less than 15%. Obviously, most of the UNM math faculty during 1984-85 were not
sufficiently nasty.

Finally, we consider the role of transformations in testing. We again consider the square roots
of the dropout rates with the two outliers deleted. As discussed earlier, NAASTY has specified that
the central value of the distribution of dropout rates should be 15% but has not stated a specific
definition of the central value. We are reasonably free to interpret their guideline and we now inter-
pret it as though the population mean of the square roots of the dropout rates should be v/15. This
interpretation leads us to the null hypothesis Hy : it,; = /15 and the alternative Hy : 1,y # v/15. As
discussed earlier, a reasonably appropriate reference distribution is

Yrd — Hrd N t(35),

\/5%,/36

5a — /1
[a =VIS| 5 430 =1(.975,35).

\/$%,/36

The sample mean and variance of the transformed, deleted data are 7,4 = 3.218 and 52, = .749574,
so the observed value of the test statistic is

3.218-3.873

\/749574/36

The test statistic is similar to that in the previous paragraph. The null hypothesis is again rejected
and all conclusions drawn from the rejection are essentially the same. As stated earlier, I believe that
when two analyses both appear to be valid, either the practical conclusions agree or neither analysis
should be trusted. O

so the test rejects Hy if

—4.54.

One-sided tests

We can do one-sided tests in a similar manner. The o level test for Hy : Par < m versus Hy : Par > m
is to reject Hy if
Est—m
SE(Est)

The alternative hypothesis is that Par is greater than something and the null hypothesis is rejected
when the test statistic is greater than some cutoff value. We reject the null hypothesis for the values
of the test statistic that are most inconsistent with the null hypothesis and thus most consistent with
the alternative hypothesis. If the alternative is true, E'st should be near Par, which is greater than m,
so large positive values of Est —m or, equivalently, large positive values of [Est —m] /SE(Est) are
consistent with the alternative and inconsistent with the null hypothesis.

The o level test for Hy : Par > m versus Hy : Par < m is to reject Hy if

>K(l—a).

Est—m <-K(1-a)

SE(Est) '
The alternative hypothesis is that Par is less than something and the null hypothesis is rejected when
the test statistic is less than some cutoff value. The form of the alternative determines the form of
the rejection region. In both cases we reject Hy for the data that are most inconsistent with Hy
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The null hypotheses involve inequalities but Par = m is always part of the null hypotheses. The
tests are set up assuming that Par = m and this needs to be part of any null hypothesis. In both
cases, if Par = m then the probability of making a mistake is o. and, more generally, if Hy is true,
the probability of making a mistake is no greater than Q.

EXAMPLE 3.2.3.  Again consider the Slammy Hagar-Slacks era Van Holland audio data. Recall
that there are 16 independent observations taken from a normal population with observed statistics
of . = 22 and s> = .25. This time I have been required to perform a one-sided test to see whether I
can prove that the Van Holland mean audio acuity scores are lower than the Audially Disadvantaged
Leopard mean. I now test Hp : i > 20 versus Hy : 4 < 20 with o¢ = .01. Here I am claiming that
the scores are not lower and check to see whether the data contradict this. If they do, then my claim
must be false and I have proven that the scores must be lower. If I initially claimed that the scores
were lower, I would not be able to prove it; I could only establish that the data were consistent with
my claim. As before,

1) Par=p

2) Est=3.

3) SE(Est) = s/+/16. In this case the SE(Est) is estimated.

4) [Est —Par] /SE(Est) = [y. — ] /[s//16] has a 1(15) distribution.
The o = .01 test is to reject Hy : 0 > 20 if

§.-20
s/\V/16

Note that with a sample size of n = 16 we get K(1 — o) = K(1 —.01) =#(.99,15). With j. =22 and
s2 = .25, we reject if

< —2.602 = —1(.99,15).

22-20 560

V25716

Since (22 —20) / \/.25/16 = 16 is greater than —2.602 we do not reject the null hypothesis at
the o = .01 level. There is no evidence that the Van Holland mean is lower than the Audially
Disadvantaged Leopard mean. Observe that with the alternative u < 20, i.e., it less than something,
Hj is only rejected when the test statistic is less than some cutoff value.

If you stop and think about it, we really did not have to go to all this trouble to discover the
conclusion of this test. The null hypothesis is that > 20. The observed y. value of 22 is obviously
consistent with the hypothesis that the mean is greater than or equal to 20. Only y. values that
are less than 20 could possibly contradict the null hypothesis. The only point at issue is how far
7. must be below 20 before we can claim that y. contradicts the null hypothesis. As discussed in
Example 2.2.4, given a choice it would be more informative to reverse the inequalities in Hy and Hy
for this problem. m|

EXAMPLE 3.2.4. A colleague of mine claims that, excluding classes with outrageous dropout
rates, the math dropout rate at UNM was never more than 9% in any year during the 1980s. We
now test this claim using the only data we have, that from the 198485 school year. My colleague
excluded classes with outrageous dropout rates, so we use only the data with the outliers deleted.
We again use o = .05.

Based on the untransformed data, the null hypothesis is simply my colleague’s claim, i.e., Hy :
W <9. The alternative is Hy : i > 9. With oo = .05, the test is rejected if

Ya—9

\/5%/36

> 1.690 =#(.95,35).
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With j; = 11.083 and 5121 = 27.45, the observed test statistic is

11.083-9
V/27.45/36

so the test is easily, but not overwhelmingly, rejected.
Using the square roots of the data, the null hypothesis becomes Hy : i1,; < 1/9. The alternative
is Hy : Uyq > /9. With o = .05, the test is rejected if

Vrd — \/§
V $74/36

The sample mean and variance of the transformed, deleted data are y,; = 3.218 and sfd = .749574,
so the observed value of the test statistic is

3.218-3

/74957436

The observed value is not greater than 1.690, so the test cannot be rejected at the .05 level.

In this case the two tests disagree. The untransformed data rejects the .05 level test easily. The
transformed data does not quite achieve significance at the .05 level. To me, the data seem inconclu-
sive. There is certainly some reason to suspect that the true dropout rate during 1984-85 was greater
than 9%; one test rejected the null hypothesis and the other came somewhat close to being rejected.
However, both analyses seem reasonable, so I cannot place great confidence in the rejection ob-
tained using the untransformed data when the result is not fully corroborated by the transformed
data. O

2.39,

> 1.690 = 1(.95,35).

P values

Rather than having formal rules for when to reject the null hypothesis, one can report the evidence
against the null hypothesis. This is done by reporting the P value. The P value is computed under
the assumption that Par = m. It is the probability of seeing data that are as extreme or more extreme
than those that were actually observed. Formally, we write 7, for the observed value of the test
statistic, computed from the observed values of Est and SE(Est). Thus f,p, is our summary of the
data that were actually observed. Recalling our earlier discussion of which values of Est would be
most inconsistent with Par = m, the probability of seeing something as or more extreme than we
actually saw is
P=Pr UEst—m’ >t |}
~|ISE(Est) | =

where Est (and usually SE(Esr)) are viewed as random and it is assumed that Par = m. Under these
conditions (Est —m)/SE(Est) has the known reference distribution and 7, is a known number,
so we can actually compute P. The basic idea is that for, say, #,,s positive, any value of (Est —
m)/SE(Est) greater than f,p, is more extreme than #,,;. Any data that yield (Est —m)/SE(Est) =
—lyps Are just as extreme as f,p; and values of (Est —m)/SE(Est) less than —t,,, are more extreme
than observing #,p;.

EXAMPLE 3.2.5. Again consider the Slammy Hagar-Slacks era Van Holland data. We have 16
observations taken from a normal population and we wish to test Hy : . = 20 versus Hy : u # 20.
As before, 1) Par = u, 2) Est = y., 3) SE(Est) = s/\/ﬁ, and 4) [Est —Par]/SE(Est) =y -
11]/[s/+/16] has a1(15) distribution. This time we take 3. = 19.78 and s* = .25, so the observed test

statistic is
19.78 — 20

fops = —m—
T /2516

= —1.76.
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From a t table, #(.95,15) = 1.75, so

P =Pr[|t(15)] > | - 1.76]] = Pr[|¢(15)] > 1.75] = .10.

Alternatively, £(.95,15) = [1.76

,s0 P=2(1-.95). O

Equivalently, the P value is the smallest & level for which the test would be rejected. With
this definition, if we perform an o level test where « is less than the P value, we can conclude
immediately that the null hypothesis is not rejected. If we perform an « level test where o is greater
than the P value, we know immediately that the null hypothesis is rejected. Thus computing a P
value eliminates the need to go through the formal testing procedures described above. Knowing
the P value immediately gives the test results for any choice of . The P value is a measure of how
consistent the data are with Hy. Large values (near 1) indicate great consistency. Small values (near
0) indicate data that are inconsistent with Hj.

EXAMPLE 3.2.6. In Example 3.2.2 we considered two-sided tests for the drop rate data. Using
the complete untransformed data, the null hypothesis Hp : it = 15, and the alternative Hy : i # 15,

we observed the test statistic
13.11—-15

lobs =~ =
= /106.421/38

Using a standard normal table or a computer program, we can compute

—1.13.

P=Pr[jz] > |- 1.13]] = .26.

An a = .26 test would be just barely rejected by these data. Any test with an o level smaller than
.26 is more stringent (the cutoff values are farther from O than 1.13) and would not be rejected.
Thus the standard @ = .05 and a = .01 tests would not be rejected. Similarly, any test with an «
level greater than .26 is less stringent and would be rejected. Of course, it is extremely rare that one
would use a test with an o level greater than .26.

Using the untransformed data with outliers deleted, the null hypothesis Hy : ty = 15, and the
alternative Hy : ly # 15, we observed the test statistic

11.083 —15

J/2745/36

—4.49.

We compute
P =Pr|[¢(35)] > | —4.49|] = .000.

This P value is not really zero; it is a number that is so small that when we round it off to three
decimal places the number is zero. In any case, the test is rejected for any reasonable choice of «.
In other words, the test is rejected for any choice of o that is greater than .000. (Actually for any o
greater than .0005 because of the round off problem.)

Using the square roots of the data with outliers deleted, the null hypothesis Hy : 1,4 = v/15, and
the alternative Hy : 1,4 # V/15, the observed value of the test statistic is

3.218-3.873

/74957436

—4.54.

We compute
P =Pr|[¢(35)] > | —4.54|] = .000.

Once again, the test result is highly significant. m|

EXAMPLE 3.2.7. In Example 3.2.4 we considered one-sided tests for the drop rate data. Using
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the deleted untransformed data, the null hypothesis Hy : ity <9, and the alternative Hy : ity > 9, we

observed the test statistic
11.083-9

V/2745/36

P=Pr[1(35) >2.39] = .011.

2.39.

Using Minitab, we compute

The probability is only for large positive values because negative values of the test statistic are
consistent with Hy. The P value of .011 is just greater than .01, so we would not be able to reject an
a = .01 test. We can of course reject any test with o greater than .011. The P value for the one-sided
test is exactly half of what the P value would be for testing Hy : iy =9 versus Hy : g # 9.

Using the square roots of the data, the null hypothesis became Hy : [,y < /9 with the alternative
Hy : g > /9. The observed value of the test statistic was

3218-3
\/-749574/36

We compute
P =Pr[t(35) > 1.51] = .07.

The P value here is small, .07, but not small enough to reject an o = .05 test. There is some in-
dication that the null hypothesis is not true but the indication is not very strong. To be precise, if
we repeated this test procedure many times when the null hypothesis is true, 7% of the time we
would expect to get results that are at least this suggestive of the incorrect conclusion that the null
hypothesis is false. O

Minitab commands

To find a P value using Minitab when the reference distribution is a ¢, start with the number — |7,
where t,,, is the observed value of the test statistic. In other words, find the observed test statistic
and make it a negative number. Then simply use this number with the ‘cdf” command, specifying
the ¢ distribution and the degrees of freedom in the subcommand. The procedure for #,,; = 1.51 is
illustrated below. The probability given by the cdf command is the appropriate P value for one-sided
tests but must be doubled if the test is two-sided.

MTB > cdf -1.51;
SUBC> t 35.

Conclusion

To keep this discussion as simple as possible, the examples have been restricted to one-sample nor-
mal theory. However, the results of this section and Section 3.1 apply to more complicated problems
such as two-sample problems, testing contrasts in analysis of variance, and testing coefficients in
regression. All of these applications will be considered in later chapters.

3.3 Validity of tests and confidence intervals

In testing an hypothesis, we make an assumption, namely the null hypothesis, and check to see
whether the data are consistent with the assumption or inconsistent with it. If the data are consistent
with the null hypothesis, that is all that we can say. If the data are inconsistent with the null hypoth-
esis, it suggests that our assumption was wrong. (This is very similar to the mathematical idea of a
proof by contradiction.)

One of the problems with testing hypotheses is that we are really making a series of assumptions.
The null hypothesis is one of these, but there are many others. Typically we assume that observations
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are independent. In most tests that we will consider, we assume that the data have normal distribu-
tions. As we consider more complicated data structures, we will need to make more assumptions.
The proper conclusion from a test of hypothesis is that either the data are consistent with our as-
sumptions or the data are inconsistent with our assumptions. If the data are inconsistent with the
assumptions, it suggests that at least one of them is invalid. In particular, if the data are inconsistent
with the assumptions, it does not necessarily imply that the particular assumption embodied in the
null hypothesis is the one that is invalid. Before we can reasonably conclude that the null hypothesis
is untrue, we need to ensure that the other assumptions are reasonable. Thus it is crucial to check
our assumptions as fully as we can. Plotting the data plays a vital role in checking assumptions.
Plots are used throughout the book, but special emphasis on plotting is given in Chapter 7.

Typically, it is quite easy to define parameters Par and estimates Est. The role of the assumptions
is crucial in obtaining a valid SE(Est) and an appropriate reference distribution. If our assumptions
are reasonably valid, our SE(Est) and reference distribution will be reasonably valid and the proce-
dures outlined here for performing statistical inferences will be reasonably valid. This applies not
only to testing but to confidence intervals as well. Of course the assumptions that need to be checked
depend on the precise nature of the analysis being performed.

3.4 The relationship between confidence intervals and tests

The two most commonly used tools in statistical inference are tests and confidence intervals. Tests
determine whether a difference can be established between an hypothesized parameter value and
the true parameter for the data. Typically, one must consider not only whether a difference exists,
but how much difference exists, and whether such a difference is important within the context of
the problem. Confidence intervals are used to quantify what is known about the true parameter and
thus can be used to quantify how much of a difference may exist. In particular, confidence intervals
give all the possible parameter values that seem to be consistent with the data. Tests and confidence
intervals are very closely related inferential tools and in this section we explore their relationship.

As discussed earlier, the term ‘confidence’ as used in confidence intervals is rather nebulously
defined. Confidence intervals are based on the unusable probability statement

a (07
| —a=Pr [Est 7K<1 - E) SE(Est) < Par < Est+K(1 - E) SE(Est)} ,
which is a statement about the unknown (unobserved) random variables Est and SE(Est). It is a

highly intuitive idea that this probability statement generates a usable interval for Par,
o o
Est —K(l - 5) SE(Est) < Par < Est+K(l - E) SE(Est),

in which the observed values of Est and SE(Est) are used to define a known interval. However,
the logic behind this intuitive idea is not clear and so we are left with an unclear definition of
‘confidence.’

A clear definition of confidence can be made in terms of testing hypotheses. The (1 — a)100%
confidence interval for Par,

Est fK(l - %) SE(Est) < Par < Est+K(1 - %) SE(Est),

consists of all the values m that would not be rejected by an o level test of Hy : Par = m versus
Hy : Par # m. To see this recall that the « level test is rejected when

Est —
St—m K(l—g)

SE(Est) 2
or
Est—m - (1 _ g)
SE(Est) 2/
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Conversely, the o level test is not rejected when

K(1-3) < Est —m <k(1-2)

2/ 7 SE(Est) — 2/
Exactly the same algebraic manipulations that lead to equation (3.1.1) also lead to the conclusion
that the test is not rejected when

Est—K(1- %) SE(Est) <m < Est+K(1- %) SE(Est).

Thus the confidence interval consists of all values of m for which the o level test of Hy : Par = m
versus Hy : Par # m is not rejected. In other words, a (1 — ¢&¢)100% confidence interval consists of
all parameter values that are consistent with the data as judged by an  level test.

We have now established that there is little point in performing the fixed Q, fixed m testing
procedures discussed in Section 3.2. P values give the results of testing Hy : Par = m versus Hy :
Par # m for a fixed m but every choice of a. Confidence intervals give the results of testing Hy :
Par = m versus Hy : Par # m for a fixed a but every choice of m.

EXAMPLE 3.4.1. In Example 3.2.1 we considered audio acuity data for Van Holland fans and
tested whether their mean score differed from fans of Audially Disadvantaged Leopard. In this
example we test whether their mean score differs from that of Tangled Female Sibling fans. Recall
that the observed values of n, 7., and s% for Van Holland fans were 16, 22, and .25, respectively and
that the data were normal. Tangled Female Sibling fans have a population mean score of 22.325, so
we test Hy : L =22.325 versus Hy : it # 22.325. The test statistic is (22 —22.325)/+/.25/16 = —2.6.
If we do an o = .05 test, | —2.6] > 2.13 =1¢(.975,15), so we reject Hy, but if we do an oo = .01 test,
| —2.6] < 2.95=1(.995,15), so we do not reject Hy. In fact, | —2.6] = (.99, 15), so the P value is
essentially .02. The P value is larger than .01, so the .01 test does not reject Hy; the P value is less
than .05, so the test rejects Hy at the .05 level.

If we consider confidence intervals, the 99% interval has endpoints 22 +2.95,/.25/16 for an
interval of (21.631,22.369) and the 95% interval has endpoints 22 +2.13/.25/16 for an interval
of (21.734,22.266). Notice that the hypothesized value of 22.325 is inside the 99% interval, so
it is not rejected by a .01 level test, but 22.325 is outside the 95% interval, so a .05 two-sided
test rejects Hy : 4 = 22.325. The 98% interval has endpoints 22 4+-2.60+/.25/16 for an interval of
(21.675,22.325) and the hypothesized value is on the edge of the interval.

O

3.5 Theory of prediction intervals

Some slight modifications of the general theory allow us to construct prediction intervals. Many of
us would argue that the fundamental purpose of science is making accurate predictions of things
that could be observed in the future. As with estimation, predicting the occurrence of a particular
value (point prediction) is less valuable than interval prediction because a point prediction gives no
idea of the variability associated with the prediction.

In constructing prediction intervals for a new observation y, we make a number of assumptions.
The observations, including the new one, are assumed to be independent and normally distributed.
Moreover, we take as our parameter Par = E(y). E(y) would be a reasonable point prediction for
y but we do not know the value of E(y). Est depends only on the observations other than y and
it estimates E(y), so Est makes a reasonable point prediction of y. We also assume that Var(y) =
o2, that 62 has an estimate 62, that SE(Est) = 6A for some known constant A, and that (Est —
Par) /SE(Est) has a t distribution with, say, r degrees of freedom. (Technically, we need Est to have
a normal distribution, (62 /0?) to have a x2(r) distribution, and independence of Est and 62.) In
some applications, these methods are used with the approximation r = oo, i.e., we act as if we know
the variance and the appropriate distribution is taken to be a standard normal.
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A prediction interval for y is based on the distribution of y — E'st because we need to evaluate
how far y can reasonably be from our point prediction of y. The value of the future observation y is
independent of the past observations and thus of Est. It follows that the variance of y — Est is

Var(y — Est) = Var(y) + Var(Est) = 62 + Var(Est)

and that the standard error of y — E'st is

SE(y — Est) = \/ 62 + [SE(Est)]2. (3.5.1)

y—Est
— ~I(r).
SE(y — Est) r)

A (1 — a)100% prediction interval is based on the probability equality,

a y—Est a
l—a=P —t(l——,) AL t(l——,) .
r[ ") S SEG—Est) © 2"

Rearranging the terms within the square brackets leads to the equality

One can then show that

o o
l—a:Pr[Est—t(l —E,r) SE(y — Est) <y<Est—|—t(1 —E,r) SE(y—Est)]

The prediction interval consists of all y values that fall between the two observable limits in the
probability statement. The endpoints of the interval are generally written

o
Estj:t(l - E,r) SE(y — Est).

Of course, it is impossible to validate assumptions about observations to be taken in the future, so
the confidence levels of prediction intervals are always suspect.
From the form of SE(y — Est) given in (3.5.1), we see that

SE(y—Est) = \/ 6%+ [SE(Est)]? > SE(Est).

Typically, the prediction standard error is much larger than the standard error of the estimate, so
prediction intervals are much wider than confidence intervals. In particular, increasing the number
of observations typically decreases the standard error of the estimate but has a relatively minor effect
on the standard error of prediction. Increasing the sample size is not intended to make 62 smaller,
it only makes 62 a more accurate estimate of 6.

EXAMPLE 3.5.1.  Asin Example 3.1.2, we eliminate the two outliers from the dropout rate data.
The 36 remaining observations are approximately normal. A 95% confidence interval for the mean
had endpoints

11.083 £2.030+/27.45/36.

A 95% prediction interval has endpoints

11.083 +2.0304/27.45 + %

11.083 £10.782.

or

The prediction interval is (.301,21.865), which is much wider than the confidence interval of
(9.3,12.9). We are 95% confident that the dropout rate for a new math class would be between
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.3% and 21.9%. We are 95% confident that the population mean dropout rate for math classes is
between 9% and 13%. Of course the prediction interval assumes that the new class is from a pop-
ulation similar to the 1984—85 math classes with huge dropout rates deleted. Such assumptions are
almost impossible to validate. Moreover, there is some chance that the new observation will be one
with a huge dropout rate and this interval says nothing about such observations.

In Example 3.1.2 we also considered the square roots of the dropout rate data with the two
outliers eliminated. To predict the square root of a new observation, we use the 95% interval

3.218£2.030 <\/.749574+ .74396574> ,

which reduces to (1.436,5.000). This is a prediction interval for the square root of a new obser-
vation, so we are 95% confident that the actual value of the new observation will fall between
(1.436,5.000%), i.e., (2.1,25). Retransforming a prediction interval back into the original scale
causes no problems of interpretation whatsoever. This prediction interval and the one in the pre-
vious paragraph are comparable. Both include values from near O up to the low to mid twenties.
O

We have criticized commonly used definitions of the word ‘confidence’ but to this point the
motivation for a prediction interval is exactly analogous to the motivation for confidence intervals.
The endpoints of a prediction interval are obtained by taking a probability statement about ran-
dom variables, substituting observed values for the random variables, and replacing ‘probability’ by
‘confidence’. For some reason, explicitly stating that a 95% prediction interval gives 95% confidence
that a future observation will fall within the interval seems to be a somewhat rare occurrence. Once
again, a solution to the problem of defining confidence can be obtained by testing. If we wanted to
test whether a new observation y was consistent with the old observations we could set up an « level
test that would reject if (y — Est)/SE(y — Est) was too far from zero, i.e., if its absolute value was
greater than K(1 — o¢/2). Analogous to the relationship between tests of parameters and confidence
intervals, this test of a new observation will not be rejected precisely when y is within the prediction
interval. Thus the (1 — o) 100% prediction interval consists of all values of y that are consistent with
the other data as determined by an o level test. Moreover, the testing approach gives some insight
into why prediction intervals are based on the distribution of y — E'st, i.e., because we are comparing
the new observation y to the old data as summarized by E'st.

Lower bounds on prediction confidence

If the normal and y? distributional assumptions stated at the beginning of the section break down,
the prediction interval based on the ¢ distribution is invalid. Relying primarily on the independence
assumptions and there being sufficient data to use 62 as an approximation to 6%, we can find an
approximate lower bound for the confidence that a new observation is in the prediction interval.
Chebyshev’s inequality from Subsection 1.2.2 gives

1—t(1—%,r)72 SPr[—t(l—(;,r) < SEy(y;—Elsftsz) <t(1—(;,r)}

or equivalently

o 2 o

l—t(l — 5,;’) < Pr[Est—t(l — 5,;’) SE(y—Est) <y
o

< Est—l—t(l - E,r) SE(y—Est)]

This indicates that the confidence coefficient for the prediction interval given by

(04
Estit(l — E,r) SE(y — Est)
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-2
[1—;(1—Z,r) ]100%.

If we can use the improved version of Chebyshev’s inequality from Section 1.3, we can raise the
confidence coefficient to

is (approximately) at least

[1 - (2.25)*%(1 - (;,r)z} 100%.

EXAMPLE 3.5.2.  Assuming that a sample of 36 observations is enough to ensure that s is es-
sentially equal to 62, the nominal 95% prediction interval given in Example 3.5.1 for dropout rates
has a confidence level, regardless of the distribution of the data, that is at least

1 1
1= ) =76% l— ) =89%,
( 2.0302) coreven ( 2.25(2.030)2> ¢

3.6 Sample size determination and power

Suppose we wish to estimate the mean height of the men officially enrolled in statistics classes at the
University of New Mexico on Thursday, February 4, 1993 at 3 pm. How many observations should
we take? The answer to that question depends on how accurate our estimate needs to be and on our
having some idea of the variability in the population.

To get a rough indication of the variability we argue as follows. Generally, men have a mean
height of about 69 inches and I would guess that about 95% of them are between 63 inches and
75 inches. The probability that a N(u,6?) random variable is between u 4206 is approximately
.95, which suggests that ¢ = [( +20) — (1 —20)]/4 may be about (75 — 63) /4 = 3 for a typical
population of men.

Before proceeding with sample size determination, observe that sample sizes have a real effect
on the usefulness of confidence intervals. Suppose y. = 72 and n = 9, so the 95% confidence inter-
val for mean height has endpoints of roughly 72 +2(3/+/9), or 7242, with an interval of (70,74).
Here we use 3 as a rough indication of ¢ in the standard error and 2 as a rough indication of the
tabled value for a 95% interval. If having an estimate that is off by 1 inch is a big deal, the confi-
dence interval is totally inadequate. There is little point in collecting the data, because regardless of
the value of y., we do not have enough accuracy to draw interesting conclusions. For example, if I
claimed that the true mean height for this population was 71 inches and I cared whether my claim
was off by an inch, the data are not only consistent with my claim but also with the claims that the
true mean height is 70 inches and 72 inches and even 74 inches. The data are inadequate for my pur-
poses. Now suppose y. = 72 and n = 3600, the confidence interval has endpoints 72 +2(3/+/3600)
or 72+ .1 with an interval of (71.9,72.1). We can tell that the population mean may be 72 inches
but we are quite confident that it is not 72.11 inches. Would anyone really care about the difference
between a mean height of 72 inches and a mean height of 72.11 inches? Three thousand six hundred
observations gives us more information that we really need. We would like to find a middle ground.

Now suppose we wish to learn the mean height to within 1 inch with 95% confidence. From
a sample of size n, a 95% confidence interval for the mean has endpoints that are roughly y. £
2(3/+/n). With 95% confidence, the mean height could be as high as y. +2(3/+/n) or as low as
v. —2(3/4/n). We want the difference between these numbers to be no more than 1 inch. The
difference between the two numbers is 12/4/n, so for the required difference of 1 inch set 1 =
12/+/n, so that \/n = 12/1 or n = 144.

The semantics of these problems can be a bit tricky. We asked for an interval that would tell us
the mean height to within 1 inch with 95% confidence. If instead we specified that we wanted our
estimate to be off by no more than 1 inch, the estimate is in the middle of the interval, so the distance
from the middle to the endpoint needs to be 1 inch. In other words, 1 =2(3/+/n), so v/n=6/1 or
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n = 36. Note that learning the parameter to within 1 inch is the same as having an estimate that is
off by no more than 1/2 inch.

The concepts illustrated above work quite generally. Typically an observation y has Var(y) = ¢
and Est has SE(Est) = 0A. The constant A in SE(Est) is a known function of the sample size (or
sample sizes in situations involving more than one sample). In inference problems we replace ¢ in
the standard error with an estimate of ¢ obtained from the data. In determining sample sizes, the
data have not yet been observed, so ¢ has to be approximated from previous data or knowledge.
The length of a (1 — &) 100% confidence interval is

2

[Est +K(1— o/2)SE(Est)] — [Est — K(1 — a/2)SE(Est)]
=2K(1 — a/2)SE(Est) = 2K(1 — &t/2)GA.

The tabled value K(1 — ¢¢/2) can be approximated by 7(1 — ot/2,00). If we specify that the confi-
dence interval is to be w units wide, set

w=2t(1—at/2,00)0A (3.6.1)

and solve for the (approximate) appropriate sample size. In equation (3.6.1), w, (1 — a./2,0), and
o are all known and A is a known function of the sample size.

Unfortunately it is not possible to take equation (3.6.1) any further and show directly how it
determines the sample size. The discussion given here is general and thus the ultimate solution
depends on the type of data being examined. In the only case we have examined as yet, there is one-
sample, Par = U, Est = ., and SE(Est) = o//n. Thus, A = 1/4/n and equation (3.6.1) becomes

w=2t(1—a/2,00)0//n.

Rearranging this gives
Vn=2t(1-a/2,00)c/w
and
n=(2t(1—at/2,00)0/w)*.

But this formula only applies to one sample problems. For other problems considered in this book,
e.g., comparing two independent samples, comparing more than two independent samples, and sim-
ple linear regression, equation (3.6.1) continues to apply but the constant A becomes more compli-
cated. In cases where there is more than one sample involved, the various sample sizes are typically
assumed to all be the same, and in general their relative sizes need to be specified, e.g., we could
specify that the first sample will have 10 more observations than the second or that the first sample
will have twice as many observations as the second.

Another approach to determining approximate sample sizes is based on the power of an « level
test. Tests are set up assuming that, say, Hy : Par = my is true. Power is computed assuming that
Par # my. Suppose that Par = my # myg, then the power when Par = my is the probability that the
(1 —a)100% confidence interval will not contain my. Another way of saying that the confidence
interval does not contain my is saying that an « level two-sided test of Hy : Par = myg rejects Hy.
In determining sample sizes, you need to pick m4 as some value you care about. You need to care
about it in the sense that if Par = my rather than Par = myg, you would like to have a reasonably
good chance of rejecting Hy : Par = my.

Cox (1958, p. 176) points out that it often works well to choose the sample size so that

Ima — mo| = 3SE(Est). (3.6.2)

Cox shows that this procedure gives reasonable powers for common choices of ¢. Here my and
my are known and SE(Est) = 0A, where o is known and A is a known function of sample size.
Also note that this suggestion does not depend on the « level of the test. As with equation (3.6.1),
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equation (3.6.2) can be solved to give n in particular cases, but a general solution for 7 is not possible
because it depends on the exact nature of the value A.

Consider again the problem of determining the mean height. If my null hypothesisis Hy : 4 =72
and I want a reasonable chance of rejecting Hy when u = 73, Cox’s rule suggests that I should have
1=|73—-72| =3(3/+/n) so that \/n =9 or n = 81.

It is important to remember that these are only rough guides for sample sizes. They involve
several approximations, the most important of which is approximating ¢. If there is more than
one parameter of interest in a study, sample size computations can be performed for each and a
compromise sample size can be selected.

For the past ten years I’ve been amazed at my own lack of interest in teaching students about
statistical power. Cox (1958, p. 161) finally explained it for me. He points out that power is very
important in planning investigations but it is not very important in analyzing them. I might even go
so far as to say that once the data have been collected, a power analysis can at best tell you whether
you have been wasting your time. In other words, a power analysis will only tell you how likely you
were to find differences given the design of your experiment and the choice of test.

Appendix: derivation of confidence intervals

We wish to establish the validity of equation (3.1.1), i.e.,

l—a = Pr[K(lZ) <’M<K(1g)}

Pr [Esz - K(l - f) SE(Est) < Par < Est +K(1 - f) SE(Est)}

and in particular we wish to show that the expressions in the square brackets are equivalent. We do
this by establishing a series of equivalences. The justifications for the equivalences are given at the
end.

o Est — Par o
—k(1-2) <X 2 1
( 2)< SE(Est) ( 2) (1)
if and only if
o
—K(l - 5) SE(Est) < Est — Par < K( . ) SE(Est) 2)
if and only if
(1 - 5) SE(Est) > —Est + Par > K(l - 5) SE(Est) (3)
if and only if
o
Est +K( ) SE(Est) > Par > Est — K(l - §> SE(Est) (4)
if and only if
Est — (1 - 5) SE(Est) < Par < Est+K(1 - 5) SE(Est). (5)

JUSTIFICATION OF STEPS.
For (1) iff (2):  if ¢ > 0, then a < b if and only if ac < bc.
For (2) iff (3): a < bif and only if —a > —b.
For 3)iff (4): a<bifandonlyifa+c<b+c.
For (4) iff (5): a>bifandonlyif b < a.
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3.7 Exercises

EXERCISE 3.7.1.  This exercise illustrates the Bayesian computations discussed in the subsection
of 3.1 on interpreting confidence intervals. I place a coin either heads up or tails up and hide it from
you. Because of my psychic powers, when you subsequently flip a coin the probability is .75 that
your coin face will be the same as mine. The four things of interest here are the outcomes that I have
tails (IT'), I have heads (IH), you have tails (YT'), and you have heads (YH).

The computations involve ideas of conditional probability. For example, the probability that you
get tails given that my coin was placed tails up is defined to be Pr(YT|IT) =Pr(YT and IT) /Pr(IT)

Bayes’ theorem relates different conditional probabilities. It states that

PH(IT|YT) = Pr(YT|IT)Pr(IT)
~ Pr(YT|T)Pr(IT)+Pr(YT|IH)Pr(IH)'
Similarly,
Pr(YH|IH)Pr(IH
Pr(IH|YH) = r(YH\IH)Pr(IH)

Pr(YH|IH)Pr(IH) + Pr(YH|IT)Pr(IT)’

Clearly this problem is set up so that Pr(YT|IT) = Pr(YH|IH) = .75. Show that if your prior prob-
ability is Pr(IT) = Pr(IH) = .5, then Pr(IT|YT) = Pr(IH|YH) = .75 as claimed in the earlier dis-
cussion.

The earlier discussion also mentioned prior probabilities that were four times greater for me
placing my coin heads up than tails up. In this case, Pr(IT) = 1/5 and Pr(/H) = 4/5. Find
Pr(IT|YT) and Pr(IH|Y H) and check whether these agree with the values given in Section 3.1.

Obviously, you should show all of your work.

EXERCISE 3.7.2. Identify the parameter, estimate, standard error of the estimate, and reference
distribution for Exercise 2.7.1.

EXERCISE 3.7.3. Identify the parameter, estimate, standard error of the estimate, and reference
distribution for Exercise 2.7.2.

EXERCISE 3.7.4. Identify the parameter, estimate, standard error of the estimate, and reference
distribution for Exercise 2.7.4.

EXERCISE 3.7.5. Consider that I am collecting (normally distributed) data with a variance of 4
and I want to test a null hypothesis of Hy : t = 10. What sample size should I take according to
Cox’s rule if I want a reasonable chance of rejecting Hy when pt = 13? What if I want a reasonable
chance of rejecting Hy when pt = 12? What sample size should I take if I want a 95% confidence
interval that is no more than 2 units long? What if I want a 99% confidence interval that is no more
than 2 units long?

EXERCISE 3.7.6.  The turtle shell data of Jolicoeur and Mosimann (1960) given in Exercise 2.7.4
has a standard deviation of about 21.25. If we were to collect a new sample, how large should
the sample size be in order to have a 95% confidence interval with a length of (about) four units?
According to Cox’s rule, what sample size should I take if I want a reasonable chance of rejecting
Hp : u =130 when pu = 1407

EXERCISE 3.7.7. With reference to Exercise 2.7.3, give the approximate number of observations
necessary to estimate the mean of BX to within .01 units with 99% confidence. How large a sample
is needed to get a reasonable test of Hp : 4 = 10 when u = 11 using Cox’s rule?

EXERCISE 3.7.8.  With reference to Exercise 2.7.3, give the approximate number of observations
necessary to get a 99% confidence for the mean of K that has a length of 60. How large a sample
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is needed to get a reasonable test of Hy : £ = 1200 when p = 1190 using Cox’s rule? What is the
number when y = 11507

EXERCISE 3.7.9.  With reference to Exercise 2.7.3, give the approximate number of observations
necessary to estimate the mean of FORM to within .5 units with 95% confidence. How large a
sample is needed to get a reasonable test of Hp : t = 20 when u = 20.2 using Cox’s rule?

EXERCISE 3.7.10.  With reference to Exercise 2.7.2, give the approximate number of observa-
tions necessary to estimate the mean rat weight to within 1 unit with 95% confidence. How large a
sample is needed to get a reasonable test of Hy : it = 55 when y = 54 using Cox’s rule?



Chapter 4

Two sample problems

In this chapter we consider several situations where it is of interest to compare two samples. First
we consider two samples of correlated data. These are data that consist of pairs of observations
measuring comparable quantities. Next we consider two independent samples from populations
with the same variance. We then examine two independent samples from populations with different
variances. Finally we consider the problem of testing whether the variances of two populations are
equal.

4.1 Two correlated samples: paired comparisons

Paired comparisons involve pairs of observations on similar variables. Often these are two observa-
tions taken on the same object under different circumstances or two observations taken on related
objects. No new statistical methods are needed for analyzing such data.

EXAMPLE 4.1.1.  Shewhart (1931, p. 324) presents data on the hardness of an item produced by
welding two parts together. Table 4.1 gives the hardness measurements for each of the two parts.
The hardness of part 1 is denoted y; and the hardness of part 2 is denoted y,. For i = 1,2, the data for
part i are denoted y;;, j = 1,...,27. The data are actually a subset of the data presented by Shewhart.

We are interested in the difference between 1, the population mean for part one, and U, the
population mean for part two. In other words, the parameter of interest is Par = [ — . Note
that if there is no difference between the population means, y; — t» = 0. The natural estimate of
this parameter is the difference between the sample means, i.e., Est = y;. — j».. Here we use the -
subscript to indicate averaging over the second subscript in y;. = (y;; +--- +yin7)/27.

To perform statistical inferences, we need the standard error of the estimate, i.e., SE (7. — ¥5.).

Table 4.1: Shewhart’s hardness data

d= d=
Case Vi Y2 yi—y2 | Case Vi 2 —»
1 50.9 443 6.6 15 46.6 31.5 15.1
2 448  25.7 19.1 16 504  38.1 12.3
3 51.6 395 12.1 17 459 352 10.7
4 43.8 19.3 24.5 18 473 334 139
5 49.0 432 58 19 46.6  30.7 159
6
7
8

454 269 18.5 20 473  36.8 10.5
449 345 10.4 21 48.7 36.8 11.9
49.0 374 11.6 22 449 36.7 8.2
9 534  38.1 15.3 23 46.8 37.1 9.7
10 48.5 33.0 15.5 24 49.6 378 11.8
11 46.0 32.6 13.4 25 514 335 17.9
12 490 354 13.6 26 45.8 375 8.3
13 434 36.2 72 27 485 383 10.2
14 444 325 11.9

85



86 4. TWO SAMPLE PROBLEMS

————— e et et e s |
7.0 10.5 14.0 17.5 21.0 24.5

Figure 4.1: Dot plot of differences.

As indicated earlier, finding an appropriate standard error is often the most difficult aspect of sta-
tistical inference. In problems such as this, where the data are paired, finding the standard error is
complicated by the fact that the two observations in each pair are not independent. In data such as
these, different pairs are often independent but observations within a pair are not.

In paired comparisons, we use a trick to reduce the problem to one sample. It is a sim-
ple algebraic fact that the difference of the sample means, j. — ¥,. is the same as the sample
mean of the differences d; = yi; —y2;, ie., d = §1. — y».. Thus d is an estimate of the param-
eter of interest ) — Wp. The differences are given in Table 4.1 along with the data. Summary
statistics are listed below for each variable and the differences. Note that for the hardness data,
d = 12.663 = 47.552 — 34.889 = §|. — ¥,.. In particular, if the positive value for d means anything
(other than random variation), it indicates that part one is harder than part two.

Sample statistics
Variable N; Mean  Variance Std. dev.
i 27 47552  6.79028 2.606
2 27 34.8890 26.51641 5.149
d=y —yy 27 12,663 17.77165 4216

Given that d is an estimate of y; — U, we can base the entire analysis on the differences. The
differences constitute a single sample of data, so the standard error of d is simply the usual one-
sample standard error,

SE(d) = 54/V27,

where s, is the sample standard deviation as computed from the 27 differences. The differences are
plotted in Figure 4.1. Note that there is one potential outlier. We leave it as an exercise to reanalyze
the data with the possible outlier removed.

We now have Par, Est, and SE(Est); it remains to find the appropriate distribution. Figure 4.2
gives a normal plot for the differences. While there is an upward curve at the top due to the possible
outlier, the curve is otherwise reasonably straight. The Wilk—Francia statistic of W' = 0.955 is above
the fifth percentile of the null distribution. With normal data we use the reference distribution

d— (U1 — H2)
s/ V2T

and we are now in a position to perform statistical inferences.

Our observed values of the mean and standard error are d = 12.663 and SE(d) = 4.216/1/27 =
0.811. From a ¢(26) distribution, we find #(.995,26) = 2.78. A 99% confidence interval for the
difference in hardness has endpoints

~t(27-1)

12.663 +2.78(.811),

which gives an interval of, roughly, (10.41,14.92). We are 99% confident that the population mean
hardness for part 1 is between 10.41 and 14.92 units harder than that for part 2.

We can also get a 99% prediction interval for the difference in hardness to be observed on a new
welded piece. The prediction interval has endpoints of

12.663+2.781/4.216% + .8112
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Figure 4.2: Normal plot of differences, W' = .955.

for an interval of (.73,24.60).
To test the hypothesis that the two parts have the same hardness, we set up the hypotheses
Hy : 1y = yp versus Hy @ [ # Lo, or equivalently, Hy : iy — tp = 0 versus Hy : iy — Up # 0. The

test statistic is
12.663 -0

811

This is far from zero, so the data are inconsistent with the null hypothesis. In other words, there is
strong evidence that the hardness of part 1 is different than the hardness of part 2. Since the test
statistic is positive, we conclude that iy — o > 0 and that part 1 is harder than part 2. Note that this
is consistent with our 99% confidence interval (10.41,14.92), which contains only positive values
for Hy — Uz,

Inferences and predictions for an individual population are made ignoring the other population,
i.e., they are made using methods for one sample. For example, using the sample statistics for y;
gives a 99% confidence interval for 1, the population mean hardness for part 1, with endpoints

=15.61.

6.79028

47.552+2.78
27

and a 99% prediction interval for the hardness of a new piece of part 1 has endpoints

6.79028

47.552+ 2.78\/6.79028 +

and interval (40.175,59.929). Of course, the use of the 7(26) distribution requires that we validate
the assumption that the observations on part 1 are a random sample from a normal distribution.
When finding a prediction interval for y;, we can typically improve the interval if we know
the corresponding value of y,. As we saw earlier, the 99% prediction interval for a new difference
d=y)—yzhas .73 < y; —y; < 24.60. If we happen to know that, say, y, = 35, the interval becomes
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73 <y1—35<24.60 0r 35.73 < y; < 59.60. As it turns out, with these data the new 99% prediction
interval for y; is not an improvement over the interval in the previous paragraph. The new interval
is noticeably wider. However, these data are somewhat atypical. Typically in paired data, the two
measurements are highly correlated, so that the sample variance of the differences is substantially
less than the sample variance of the individual measurements. In such situations, the new interval
will be substantially narrower. In these data, the sample variance for the differences is 17.77165 and
is actually much larger than the sample variance of 6.79028 for y;. O

The trick of looking at differences between pairs is necessary because the two observations in a
pair are not independent. While different pairs of welded parts are assumed to behave independently,
it seems unreasonable to assume that two hardness measurements on a single item that has been
welded together would behave independently. This lack of independence makes it difficult to find a
standard error for comparing the sample means unless we look at the differences. In the remainder
of this chapter, we consider two-sample problems in which all of the observations are assumed to
be independent. The observations in each sample are independent of each other and independent of
all the observations in the other sample. Paired comparison problems almost fit those assumptions
but they break down at one key point. In a paired comparison, we assume that every observation is
independent of the other observations in the same sample and that each observation is independent
of all the observations in the other sample except for the observation in the other sample that it is
paired with. When analyzing two samples, if we can find any reason to identify individuals as being
part of a pair, that fact is sufficient to make us treat the data as a paired comparison.

The method of paired comparisons is also the name of a totally different statistical procedure.
Suppose one wishes to compare five brands of chocolate chip cookies: A, B, C, D, E. It would be
difficult to taste all five and order them appropriately. As an alternative, one can taste test pairs of
cookies, e.g., (A,B), (A,C), (A,D), (A,E), (B,C), (B,D), etc. and identify the better of the two. The
benefit of this procedure is that it is much easier to rate two cookies than to rate five. See David
(1988) for a survey and discussion of procedures developed to analyze such data.

4.2 Two independent samples with equal variances

The most commonly used two-sample technique consists of comparing independent samples from
two populations with the same variance. The sample sizes for the two groups are possibly different,
say, N1 and N,, and we write the common variance as o2

EXAMPLE 4.2.1. The data in Table 4.2 are final point totals for an introductory statistics class.
The data are divided by the sex of the student. We investigate whether the data display sex dif-
ferences. The data are plotted in Figure 4.3. Figures 4.4 and 4.5 contain normal plots for the two
sets of data. Figure 4.4 is quite straight but Figure 4.5 looks curved. Our analysis is not particularly
sensitive to nonnormality and the W’ statistic for Figure 4.5 is .937, which is well above the fifth per-
centile, so we proceed under the assumption that both samples are normal. We also assume that all
of the observations are independent. This assumption may be questionable because some students
probably studied together, nonetheless, independence seems like a reasonable working assumption.
O

The methods in this section rely on the assumption that the two populations are normally dis-
tributed and have the same variance. In particular, we assume two independent samples

Sample Data Distribution

1 YiLyiz,--yy, iid  N(up,07)
2 y217)’227~--7)’2N2 iid N(IJQ’O'Z)

and compute summary statistics from the samples. The summary statistics are just the sample mean
and the sample variance for each individual sample.
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Table 4.2: Final point totals for an introductory statistics class

Females Males
140 125 90 105 145 | 165 175 135
135 155 170 140 85 | 175 160 165

150 115 125 95 170 115 150
135 145 110 135 150 85 130
110 120 140 145 90 95 125
——————— +----——+--—-——-—+-———--———4-————————+-—————————females
96 112 128 144 160 176
s e B o o +—--males
80 100 120 140 160 180
Figure 4.3: Dot plots for final point totals.
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———————— B et e e et e
-1.40 -0.70 0.00 0.70 1.40
Rankits

Figure 4.4: Normal plot for females, W' = .974.
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males
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Figure 4.5: Normal plot for males, W' = 937.

Sample statistics
Sample Size Mean Variance

1 Ni 1. S%
2 N> V2. S%

Except for checking the validity of our assumptions, these summary statistics are more than suffi-
cient for the entire analysis. Algebraically, the sample mean for population i, i = 1,2, is

i, = % - Vit +yi2 + - +yin]

Yii = N, j:lylj_ N, Yil TYi2 YiN;
where the - in §;. indicates that the mean is obtained by averaging over j, the second subscript in the
vijs. The sample means, ;. and y., are estimates of {; and p.

The sample variance for population i, i = 1,2, is
N
2 1

o= ) 0y—)’

Ni—1 &=
J=
1 _ _ _
= N1 [()’il =52+ = 3i) o+ Oy, _yi.)z] :
1

The s?s both estimate 62. Combining the s?s can yield a better estimate of ¢ than either individual
estimate. We form a pooled estimate of the variance, say sf,, by averaging s% and s%. With unequal

sample sizes an efficient pooled estimate of 6> must be a weighted average of the sl-zs. Obviously,
if we have N; = 100000 observations in the first sample and only N, = 10 observations in the
second sample, the variance estimate s% is much better than s% and we want to give it more weight.
The weights are the degrees of freedom associated with the estimates. The pooled estimate of the
variance is

s N (N1

S ) VAN G VA
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s | Lo R
= ———— Y -7+ Y Gy —7)
Ni+N,—2 =1 i
2 N
= N1—|—N2—2l;];1 Yij— yz

The degrees of freedom for sf, are Ny +N, —2 = (N; — 1) + (N2 — 1), i.e., the sum of the degrees
of freedom for the individual estimates s?.

EXAMPLE 4.2.2.  For the data on final point totals, the sample statistics are given below.

Sample Statistics
Sample N, i s? s
females 22 127.954545 487.2835498 22.07
males 15 139.000000 979.2857143 31.29

From these values, we obtain the pooled estimate of the variance,

o (N1 —1)st+ (N> —1)s3  (21)487.28+(14)979.29

= = = 684.08. O
p Ni+Ny—2 35

We are now in a position to draw statistical inferences about the y;s. The main problem in
obtaining tests and confidence intervals is in finding appropriate standard errors. The crucial fact is
that the samples are independent so that the y;.s are independent.

For inferences about the difference between the two means, say, (| — L, use the general proce-
dure of Chapter 3 with

Par = — 1y
and

Est =51. —y..
Note that y;. — ¥,. is unbiased for estimating y; — t, because

E(d1. —52.) =E(1.) —E(2) = 1 — 2.

The two means are independent, so the variance of ;. — y,. is the variance of ¥;. plus the variance
of y,.,i.e.,

2 2

_ (o o 5| 1 1
Var(y,. — Va Var =0 |—+—].
(1.~ 52) = Var(r.) + Var(rz) = 5+ & = 0| L

The standard error of y;. — ¥,. is the estimated standard deviation of y;. — 5.,

1 1

SE(71. —32.) = 1 /53 — .
1. —92.) [Nl +N2}

Under our assumption that the original data are normal, the reference distribution is

(1. —32.) — (11 — o)

2| L, 1
SP |:N1 +N2:|

~t(Ny+ N, —2).

The degrees of freedom for the ¢ distribution are the degrees of freedom for s?,. For nonnormal data
with large sample sizes, the reference distribution is N (0, 1).
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Having identified the parameter, estimate, standard error, and distribution, inferences follow the
usual pattern. A 95% confidence interval for ; — iy is

1 1
V1. —¥y2.) £t(.975,N1 +Np — 2 2 — 4+ —|.
(1. —32.) £1(.975,N1 + N, = 2) S,,{NI—FNZ]

A test of hypothesis that the means are equal, say
Ho: = pp versus Hy:py # iy
can be converted into the equivalent hypothesis involving Par = 1| — lp, namely
Ho:uy— =0 versus Hy:uy— Uy #0.
The test is handled in the usual way. An o = .01 test rejects Hy if
|(F1. —92.) — 0 > ¢

2| 1L, 1
SP |:N1 +N2:|

In our discussion of comparing differences, we have defined the parameter as (| — y». We could
just as well have defined the parameter as u, — . This would have given an entirely equivalent
analysis.

Inferences about a single mean, say, {, use the general procedures with Par = Uy and Est = y5..

995, Ny + N> —2).

The variance of y. is 62 /N2, s0 SE(2.) = 4 /53 /Na. Note the use of s% rather than s3. The reference
distribution is [y2. — 2] /SE(F2.) ~ t(N1 + N2 —2). A 95% confidence interval for y is

y-zit(.975,N1+N2—2)\/S§/71\’2-

A 95% prediction interval for a new observation on variable y, is

¥2. £1(.975, N1 + Ny —2)4 [ 5% + L.

An a = .01 test of the hypothesis, say
Hy:up,=5 versus Hy:lp #5,

rejects Hy if
[y2. =5

,/S127/N2

EXAMPLE 4.2.3.  For comparing females and males on final point totals, the parameter of interest
is

> 1(.995,N; + Ny —2).

Par=pu; —

where (; indicates the population mean final point total for females and u, indicates the population
mean final point total for males. The estimate of the parameter is

Est =71 — 2. = 127.95—139.00 = —11.05.

12, = 684.08, so the standard error is

11 11
EGr. —52) = /2 —+-— ) =/684.08 [ —= + — | =8.7578.
SE(51. —32.) \/sp<Nl+N2) \/68 08<22+15) 8.7578

The pooled estimate of the variance is s
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The data have reasonably normal distributions and the variances are not too different (more on this
later), so the reference distribution is taken as

(1. —32.) — (1 — )

s (22 +15)

~t(35)

where 35 = N| + N, — 2. The tabled value for finding 95% confidence intervals and o = .05 two-
sided tests is

1(.975,35) =2.030.

A 95% confidence interval for p1; — u; has endpoints
—11.05+(2.030)8.7578

which yields an interval (—28.8,6.7). We are 95% confident that the population mean scores are
between, roughly, 29 points less for females and 7 points more for females.

An o = .05 two-sided test of Hy : i — iy = 0 versus Hy : U — Up 7 0 is not rejected because
0, the hypothesized value of L — i, is contained in the 95% confidence interval for y; — . The
P value for the test is based on the observed value of the test statistic

(71.—52) =0  —11.05-0

= —1.26.
slz,(i—i—i) 8.7578

Tobs =

The probability of obtaining an observation from a #(35) distribution that is as extreme or more
extreme than | — 1.26] is 0.216. There is very little evidence that the population mean final point
total for females is different (smaller) than the population mean final point total for males. The P
value is greater than .2, so, as we established earlier, neither an o = .05 nor an @ = .01 test is
rejected. If we were silly enough to do an o = .25 test, we would then reject the null hypothesis.

If one claimed that, for whatever reason, females tend to do worse than males in statistics classes,
a two-sided test would probably be inappropriate. To test Ho : 1 — tip < 0 versus Hy : iy — o > 0,
the test statistic is the same but the interpretation is very different. The negative value of the test
statistic is consistent with the null hypothesis. The P value is the very large value 1 —.216/2 =
.892. Claiming that females do better would give the opposite one-sided test with a P value of
.216/2 = .108.

A 95% confidence interval for iy, the mean of the females, has endpoints

127.95+ (2.030)+/684.08,/22

which gives the interval (116.6,139.3). We are 95% confident that the mean of the final point totals
for females is between 117 and 139. A 95% prediction interval for a new observation on a female
has endpoints

684.08

127.95 +(2.030) 4/ 684.08 + »

which gives the interval (73.7,182.2). We are 95% confident that a new observation on a female
will be between 74 and 182. This assumes that the new observation is randomly sampled from the
same population as the previous data.

A test of the assumption of equal variances is left for the final section but we will see in the next

section that the results for these data do not depend substantially on the equality of the variances.
O
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Table 4.3: Turtle shell heights

Female Male
51 38 63 46 39 42 37 43
51 38 60 51 39 45 35 41
53 42 62 51 38 45 35 41
57 42 63 51 40 45 39 41
55 44 61 48 40 46 38 40
56 50 67 49 40 47 37 44

S o —————— Fom e Fo———————= +---Females

————tm Fomm—————— tomm—————— Fomm—————— Fomm—————— +---Males
3.60 3.72 3.84 3.96 4.08 4.20

Figure 4.6: Plot of turtle shell log heights.

4.3 Two independent samples with unequal variances

We now consider two independent samples with unequal variances 012 and 622. In this section we
examine inferences about the means of the two populations. While inferences about means are im-
portant, some care is required when drawing practical conclusions about populations with unequal
variances. For example, if you want to produce gasoline with an octane of at least 87, you may have
a choice between two processes. One process y; gives octanes distributed as N(89,4) and the other
y2 gives N(90,4). The two processes have the same variance, so the process with the higher mean
gives more gas with an octane of at least 87. On the other hand, if y; gives N(89,4) and y, gives
N(90,16), the y; process with mean 89 has a higher probability of achieving an octane of 87 than
the y, process with mean 90, see Exercise 4.5.10. This is a direct result of the y, process having
more variability. Having given this warning, we proceed with our discussion on drawing statistical
inferences for the means.

EXAMPLE 4.3.1.  Jolicoeur and Mosimann (1960) present data on the sizes of turtle shells (cara-
paces). Table 4.3 presents data on the shell heights for 24 females and 24 males. These data are not
paired; it is simply a caprice that 24 carapaces were measured for each sex. Our interest centers on
estimating the population means for female and male heights, estimating the difference between the
heights, and testing whether the difference is zero.

Following Christensen (1990a) and others, we take natural logarithms of the data, i.e.,

y1 = log(female height) y2 = log(male height).

(All logarithms in this book are natural logarithms.) The log data are plotted in Figure 4.6. The
female heights give the impression of being both larger and more spread out. Figures 4.7 and 4.8
contain normal plots for the females and males respectively. Neither is exceptionally straight but
they do not seem too bad. Summary statistics are given below; they are consistent with the visual
impressions given by Figure 4.6. The summary statistics will be used in later examples as the basis
for our statistical inferences.

Group Size  Mean Variance Standard deviation
Females 24  3.9403 0.02493979 0.1579
Males 24 37032  0.00677276 0.0823
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Figure 4.7: Normal plot for female turtle shell log heights.
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Figure 4.8: Normal plot for male turtle shell log heights.
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In general we assume two independent samples

Sample Data Distribution

1 VILY12, .-y, iid  N(uy,02)
2 Y21,¥225--+3Y2N, iid N(:u27622)

and compute summary statistics from the samples.

Sample Size Mean Variance

1 N 1. S%
2 N> y2. 53

Again, the sample means, y;. and y,., are estimates of y; and {, but now s% and s% estimate 0'12

and 622. We have two different variances, so it is inappropriate to pool the variance estimates. Once
again, the crucial fact in obtaining a standard error is that the samples are independent.

For inferences about the difference between the two means, say, 1 — U, again use the general
procedure with

Par =ty — o

and
Est =31. —y,..

Just as before, y;. — 3. is unbiased for estimating (; — t,. The two sample means are independent
SO
%

2
Var(f’l- —5) = Var(yl_) —i—Var()‘;z_) — ]\711 + N

The standard error of y;. — ¥,. is

s,
SE(¥1. —2.) = N + Ny

Even when the original data are normal, the appropriate reference distribution is not a ¢ distribution.
As a matter of fact, the appropriate reference distribution is not known. However, a good approxi-
mate distribution is

(1. —¥2.) — (b1 — tha)

\/53 /N1 + 53 /N,

2
(s1/N1 + 53 /Na)
2 2
(s7/N1)" /(N1 = 1) + (53/N2) " / (N2 = 1)
is an approximate number of degrees of freedom. This approximate distribution was proposed by
Satterthwaite (1946) and is discussed by Snedecor and Cochran (1980).
For nonnormal data with large sample sizes, the reference distribution can be taken as N(0, 1).

Having identified the parameter, estimate, standard error and reference distribution, inferences fol-
low the usual pattern.

~t(V)

where

1%

4.3.1)

EXAMPLE 4.3.2. Consider the turtle data. Recall that

Group Size  Mean Variance Standard deviation
Females 24  3.9403 0.02493979 0.1579
Males 24 37032 0.00677276 0.0823
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We begin by considering a test of Hy : t1; = U versus Hy : 1) # U or equivalently Hy : p — tp =0
versus Hy : 11 — tp # 0. As before, Par =y — lp and E'st = 3.9403 —3.7032 = .2371. The standard
error is now

7 o7 =.03635.

Using s7/Ny = 0.02493979/24 = .001039158 and 53 /N, = 0.00677276/24 = .000282198 in equa-
tion (4.3.1), the approximate degrees of freedom are

0.02493979  0.00677276
SE(¥1. —2.) = \/ +

b (.001039158 +.000282198)° e
~ (.001039158)2/23 + (.000282198)2/23 ~ ~

An o = .01 test is rejected if the observed value of the test statistic is farther from zero than the
cutoff value 7(.995,34.6) =#(.995,35) = 2.72. The observed value of the test statistic is

2371 -0

fops = e~ — 6.523
°bs = 03635

which is greater than the cutoff value, so the test is rejected. There is evidence at the .01 level
that the mean shell height for females is different from the mean shell height for males. Obviously,
since y1. — y2. = .2371 is positive, there is evidence that the females have shells of greater height.
Actually, the conclusion is that the means of the log(heights) are different, but if these are different
we conclude that the mean heights are different.

The 95% confidence interval for the difference between mean log shell heights for females and
males, i.e., U — o, uses 7(.975,34.6) =(.975,35) = 2.03. The endpoints are

2371 42.03(.03635),

and the interval is (.163,.311). We took logs of the data, so if we transform back to the original
scale the interval is (e'16%,e-311) or (1.18,1.36). We are 95% confident that the population center for
females is, roughly, between one and a sixth and one and a third times the shell heights for males.
Note that a difference between .163 and .311 on the log scale transforms into a multiplicative effect
between 1.18 and 1.36 on the original scale. This idea is discussed in more detail in Example 5.1.1.

It is inappropriate to pool the variance estimates, so inferences about t; and u, are performed
just as for one sample. The 95% confidence interval for the mean shell height for females, p;, uses
the estimate y;., the standard error s/ V24, and the tabled value 1(.975,24 — 1) = 2.069. It has
endpoints

3.9403 +2.069 (0.1579//24)

which gives the interval (3.87,4.01). Transforming to the original scale gives the interval
(47.9,55.1). We are 95% confident that the ‘average’ height for females’ shells is between,
roughly, 48 and 55 millimeters. Males also have 24 observations, so the interval for u, also uses
£(.975,24 — 1), has endpoints

3.7032 42.069 (0.0823 / \/24) :
and an interval (3.67,3.74). Transforming the interval back to the original scale gives (39.3,42.1).

We are 95% confident that the ‘average’ height for males’s shells is between, roughly, 39 and 42
millimeters. The 95% prediction interval for the transformed shell height of a future male has end-

points
1
3.7032 +£2.069 (0.0823 1+ 24) ,

which gives the interval (3.529,3.877). Transforming the prediction interval back to the original
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scale gives (34.1,48.3). Transforming a prediction interval back to the original scale creates no
problems of interpretation. a

EXAMPLE 4.3.3.  Reconsider the final point totals data of Section 4.2. Without the assumption of
equal variances, the standard error is

487.28 n 979.29
22 15

SE(y1. —y2.) = =9.3507.
From equation (4.3.1), the degrees of freedom for the approximate ¢ distribution are 23. A 95%
confidence interval for the difference is (—30.4,8.3) and the observed value of the statistic for
testing equal means is 7, = —1.18. This gives a P value for a two-sided test of 0.22. These values
are all quite close to those obtained using the equal variance assumption.

O

It is an algebraic fact that if N = N,, the observed value of the test statistic for Hp : U; = Uy
based on unequal variances is the same as that based on equal variances. In the turtle example,
the sample sizes are both 24 and the test statistic of 6.523 is the same as the equal variances test
statistic. The algebraic equivalence occurs because with equal sample sizes, the standard errors from
the two procedures are the same. With equal sample sizes, the only practical difference between
the two procedures for examining Par = [ — U is in the choice of degrees of freedom for the ¢
distribution. In the turtle example above, the unequal variances procedure had approximately 35
degrees of freedom, while the equal variance procedure has 46 degrees of freedom. The degrees of
freedom are sufficiently close that the substantive results of the turtle analysis are essentially the
same, regardless of method. The other fact that should be recalled is that the reference distribution
associated with p; — p for the equal variance method is exactly correct for data that satisfy the
assumptions. Even for data that satisfy the unequal variance method assumptions, the reference
distribution is just an approximation.

4.4 Testing equality of the variances

Throughout this section we assume that the original data are normally distributed and that the two
samples are independent. Our goal is to test the hypothesis that the variances are equal, i.e.,

Hy:0? =0} versus Hy: o7 # oL,
The hypotheses can be converted into equivalent hypotheses,

2 2
o} o}
Hy:—2 =1 versus Hy:—2% #1.
2 2
i Oj

An obvious test statistic is
5
5
51
We will reject the hypothesis of equal variances if the test statistic is too much greater than 1 or
too much less than 1. As always, the problem is in identifying a precise meaning for ‘too much’.
To do this, we need to know the distribution of the test statistic when the variances are equal. The
distribution is known as an F distribution, i.e., if Hy is true
53
5 ~F(N2—1,N —1).
51
The distribution depends on the degrees of freedom for the two estimates. The first parameter in
F(Ny—1,N; — 1) is N, — 1, the degrees of freedom for the variance estimate in the numerator of
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s% / s%, and the second parameter is N1 — 1, the degrees of freedom for the variance estimate in the
denominator. The test statistic s3 / 52 is nonnegative, so our reference distribution F (N, — 1,Ny — 1)
is nonnegative. Tables are given in Appendix B.

In some sense, the F distribution is ‘centered’ around one and we reject Hy if s% / s% is too large
or too small to have reasonably come from an F (N, — 1,N; — 1) distribution. An @ = .01 level test
is rejected, i.e., we conclude that o5 # o7, if

2
2 5 F(.995,N, — 1,N; — 1)
ST
or if 5
S
2 < F(.005,N—1,N; — 1)

S

where F(.995,N, — 1,N; — 1) cuts off the top .005 of the distribution and F(.005,N; — 1,N; — 1)
cuts off the bottom .005 of the distribution. It is rare that one finds the bottom percentiles of an F
distribution tabled but they can be obtained from the top percentiles. In particular,

1
1) = .
) F(.995,N, — I,N, — 1)

F(.005,N, — 1,N; —

Note that the degrees of freedom have been reversed in the right-hand side of the equality.

The procedure for this test does not fit within the general procedures outlined in Chapter 3. It
has been indicated all along that results for variances do not fit the general pattern. Although we
have a parameter, 622 / 0'12, and an estimate of the parameter, s% / s%, we do not have a standard error
or a reference distribution that is symmetric about zero. In fact, the F distribution is not symmetric
though we rely on it being ‘centered’ about 1.

EXAMPLE 4.4.1. We again consider the log turtle height data. The sample variance of log female
heights is s% = 0.02493979 and the sample variance of log male heights is s% = 0.00677276. An
a = .01 level test is rejected, i.e., we conclude that 622 #+ 612, if

0067727 2
0.00677276 _ 55  p(995,23,23) = 3.04

2716 = DL
0= 0.02493979 ~ 2

or if
1 1

F(995,23,23)  3.04
The second of these inequalities is true, so the null hypothesis of equal variances is rejected at the

.01 level. We have evidence that 622 #+ 612 and, since the statistic is less than one, evidence that
02 < o2 O
2 1-

2716 < F(.005,23,23) = 33

EXAMPLE 4.4.2.  Consider again the final point total data. The sample variance for females is
57 = 487.28 and the sample variance for males is s3 = 979.29. The test statistic is

2
$3 487.28
1= =0.498.
2 979.29

Naturally, it does not matter which variance estimate we put in the numerator as long as we keep the
degrees of freedom straight. The observed test statistic is not less than 1 / F(95,14,21)=1 / 2.197=
455 nor greater than F(.95,21,14) = 2.377, so the test cannot be rejected at the o = .10 level. O

In practice, tests for the equality of variances are rarely performed. Typically, the main em-
phasis is on drawing conclusions about the y;s; the motivation for testing equality of variances is
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frequently to justify the use of the pooled estimate of the variance. The test assumes that the null
hypothesis of equal variances is true and data that are inconsistent with the assumptions indicate
that the assumptions are false. We generally take this to indicate that the assumption about the null
hypothesis is false, but, in fact, unusual data may be obtained if any of the assumptions are invalid.
The equal variances test assumes that the data are independent and normal and that the variances
are equal. Minor deviations from normality may cause the test to be rejected. While procedures for
comparing L;s based on the pooled estimate of the variance are sensitive to unequal variances, they
are not particularly sensitive to nonnormality. The test for equality of variances is so sensitive to
nonnormality that when rejecting this test one has little idea if the problem is really unequal vari-
ances or if it is nonnormality. Thus one has little idea whether there is a problem with the pooled
estimate procedures or not. Since the test is not very informative, it is rarely performed. However,
studying this test prepares one for examining the important analysis of variance F test that is treated
in the next chapter.

Minitab commands

Minitab can be used to get the F percentiles reported in Example 4.4.1.

MTB > invcdf .995
SUBC> f 23 23.
MTB > invcdf .005
SUBC> f 23 23.

Theory

The F distribution used here is related to the fact that for normal data
N;j—1)s?
( 162) 1 NXZ(NI_I)

l

Definition 4.4.3.  An F distribution is the ratio of two independent chi-squared random variables
divided by their degrees of freedom. The numerator and denominator degrees of freedom for the F
distribution are the degrees of freedom for the respective chi-squares.

In this problem, the two chi-squared random variables divided by their degrees of freedom are
(Ni—Vs;/o} _ st

Ni—1 o?

1
i =1,2. They are independent because they are taken from independent samples and their ratio is

2 2 242
5 /5 %01

3/ 3T 2
0/ O0f 8510,
When the null hypothesis is true, i.e., 67 /07 = 1, by definition, we get

2

S
éNHM—LM—M

so the test statistic has an F' distribution under the null hypothesis.
Note that we could equally well have reversed the roles of the two groups and set the test up as
2 2
o o
Hy:—L =1 versus HA:—lzyél
o
2

2
%)
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Table 4.4: Weights of rats on thiouracil

Rat  Start  Finish ‘ Rat  Start  Finish
61 129 6 51 119
59 122 7 56 108
53 133 8 58 138
59 122 9 46 107
51 140 10 53 122

(O R O R

Table 4.5: Weight gain comparison

Control Thyroxin
115 107 | 132 88
117 90 84 119
133 91 | 133
115 91 | 118

95 112 87

with the test statistic

st
53
An o level test is rejected if
2
o
%>F(1 N —1,N, 1)
5 2
or if 5
o
S—;<F<f,1vlf1,1v2f1).
55 2

Using the fact that for any « between zero and one and any degrees of freedom r and s,

1

Fla ==
(@,r5) F(l1-a,s,r)’

(44.1)
it is easily seen that this test is equivalent to the one we constructed. Relation (4.4.1) is a result of
the fact that with equal variances both s% / s% and s% / s% have F distributions. Clearly, the smallest,
say, 5% of values from s3 /57 are also the largest 5% of the values of 57 /s3.

4.5 Exercises

EXERCISE4.5.1. Box (1950) gave data on the weights of rats that were given the drug Thiouracil.
The rats were measured at the start of the experiment and at the end of the experiment. The data are
given in Table 4.4. Give a 99% confidence interval for the difference in weights between the finish
and the start. Test the null hypothesis that the population mean weight gain was less than or equal
to 50 with a = .02.

EXERCISE 4.5.2.  Box (1950) also considered data on rats given Thyroxin and a control group of
rats. The weight gains are given in Table 4.5. Give a 95% confidence interval for the difference in
weight gains between the Thyroxin group and the control group. Give an & = .05 test of whether
the control group has weight gains no greater than the Thyroxin group.

EXERCISE 4.5.3.  Conover (1971, p. 226) considered data on the physical fitness of male seniors
in a particular high school. The seniors were divided into two groups based on whether they lived
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Table 4.6: Physical fitness of male high school seniors

Town | 12.7 169 7.6 2.4 6.2 9.9
Boys | 14.2 79 113 6.4 6.1 10.6
126 16.0 8.3 9.1 153 148
2.1 106 6.7 6.7 10.6 5.0
17.7 5.6 3.6 186 1.8 2.6
11.8 5.6 1.0 32 5.9 4.0
Farm | 14.8 73 5.6 6.3 9.0 4.2
Boys | 10.6 125 129 161 114 2.7

Table 4.7: Turtle lengths

Females Males
98 138 123 155 | 121 104 116 93
103 138 133 155 | 125 106 117 94
103 141 133 158 | 127 107 117 96
105 147 133 159 | 128 112 119 101
109 149 134 162 | 131 113 120 102
123 153 136 177 | 135 114 120 103

on a farm or in town. The results in Table 4.6 are from a physical fitness test administered to the
students. High scores indicate that an individual is physically fit. Give a 95% confidence interval for
the difference in mean fitness scores between the town and farm students. Test the hypothesis of no
difference at the ot = .10 level. Give a 99% confidence interval for the mean fitness of town boys.
Give a 99% prediction interval for a future fitness score for a farm boy.

EXERCISE 4.5.4. Use the data of Exercise 4.5.3 to test whether the fitness scores for farm boys
are more or less variable than fitness scores for town boys.

EXERCISE 4.5.5. Jolicoeur and Mosimann (1960) gave data on turtle shell lengths. The data for
females and males are given in Table 4.7. Explore the need for a transformation. Test whether there
is a difference in lengths using & = .01. Give a 95% confidence interval for the difference in lengths.

EXERCISE 4.5.6. Koopmans (1987) gave the data in Table 4.8 on verbal ability test scores for 8
year-olds and 10 year-olds. Test whether the two groups have the same mean with o = .01 and give
a 95% confidence interval for the difference in means. Give a 95% prediction interval for a new 10
year old. Check your assumptions.

EXERCISE 4.5.7. Burt (1966) and Weisberg (1985) presented data on IQ scores for identical
twins that were raised apart, one by foster parents and one by the genetic parents. Variable y; is
the 1Q score for a twin raised by foster parents, while y; is the corresponding IQ score for the twin
raised by the genetic parents. The data are given in Table 4.9.

We are interested in the difference between L, the population mean for twins raised by foster

Table 4.8: Verbal ability test scores

8 yr. olds 10 yr. olds
324 344 448 | 428 399 414
366 390 372 | 366 412 396
322 434 364 | 386 436
398 350 404 452
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Table 4.9: Burt’s IQ data

Case i y2 [ Case  yi  y» | Case y1  »
82 82| 10 93 82 | 19 97 87
80 90 | 11 95 97 | 20 87 93
88 91 | 12 88 100 | 21 94 94

108 115 | 13 111 107 | 22 9% 95

116 115 | 14 63 68| 23 112 97

117 129 | 15 77 73| 24 113 97

132 131 | 16 8 81| 25 106 103
71 78 | 17 83 8 | 26 107 106
75 79| 18 93 87 | 27 98 111

—

O 001N W B~ W

Table 4.10: Atomic weights in 1931 and 1936

Compound 1931 1936 \ Compound 1931 1936

Arsenic 74.93 7491 Lanthanum  138.90  138.92
Caesium 132.81 132.91 Osmium 190.8 191.5

Columbium 93.3 92.91 Potassium 39.10 39.096
Todine 126932  126.92 Radium 22597  226.05
Krypton 82.9 83.7 Ytterbium 173.5 173.04

parents, and U, the population mean for twins raised by genetic parents. Analyze the data. Check
your assumptions.

EXERCISE 4.5.8. Table 4.10 presents data given by Shewhart (1939, p. 118) on various atomic
weights as reported in 1931 and again in 1936. Analyze the data. Check your assumptions.

EXERCISE 4.5.9. Reanalyze the data of Example 4.1.1 after deleting the one possible outlier.
Does the analysis change much? If so, how?

EXERCISE 4.5.10. Lety; ~ N(89,4) and y, ~ N(90,16). Show that Pr[y; > 87] > Pr[y, > 87|,
so that the population with the lower mean has a higher probability of exceeding 87. Recall that
(v1 — 89)/v4 ~ N(0,1) with a similar result for y, so that both probabilities can be rewritten in
terms of a N(0, 1).

EXERCISE 4.5.11. Mandel (1972) reported stress test data on elongation for a certain type of
rubber. Four pieces of rubber sent to one laboratory yielded a sample mean and variance of 56.50
and 5.66, respectively. Four different pieces of rubber sent to another laboratory yielded a sample
mean and variance of 52.50 and 6.33, respectively. Are the data two independent samples or a paired
comparison? Is the assumption of equal variances reasonable? Give a 99% confidence interval for
the difference in population means and give an approximate P value for testing that there is no
difference between population means.

EXERCISE 4.5.12.  Bethea et al. (1985) reported data on the peel-strengths of adhesives. Some of
the data are presented in Table 4.11. Give an approximate P value for testing no difference between
adhesives, a 95% confidence interval for the difference between mean peel-strengths, and a 95%
prediction interval for a new observation on Adhesive A.

EXERCISE 4.5.13.  Garner (1956) presented data on the tensile strength of fabrics. Here we con-
sider a subset of the data. The complete data and a more extensive discussion of the experimental
procedure are given in Exercise 11.5.2. The experiment involved testing fabric strengths on different
machines. Eight homogeneous strips of cloth were divided into samples and each machine was used
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Table 4.11: Peel-strengths

Adhesive ‘ Observations
A 60 63 57 53 56 57
B 52 53 44 48 48 53

Table 4.12: Tensile strength

Swip | 1 2 3 4 5 6 71 8
m 18 76 10 7 13
my 7 11 11 4 8 12 5 11

on a sample from each strip. The data are given in Table 4.12. Are the data two independent sam-
ples or a paired comparison? Give a 98% confidence interval for the difference in population means.
Give an approximate P value for testing that there is no difference between population means. What
is the result of an o = .05 test?

EXERCISE 4.5.14.  Snedecor and Cochran (1967) presented data on the number of acres planted
in corn for two sizes of farms. Size was measured in acres. Some of the data are given in Table 4.13.
Are the data two independent samples or a paired comparison? Is the assumption of equal variances
reasonable? Test for differences between the farms of different sizes. Clearly state your o level.
Give a 98% confidence interval for the mean difference between different farms.

EXERCISE 4.5.15.  Snedecor and Haber (1946) presented data on cutting dates of asparagus.
On two plots of land, asparagus was grown every year from 1929 to 1938. On the first plot the
asparagus was cut on June 1, while on the second plot the asparagus was cut on June 15. Note
that growing conditions will vary considerably from year to year. Also note that the data presented
have cutting dates confounded with the plots of land. If one plot of land is intrinsically better for
growing asparagus than the other, there will be no way of separating that effect from the effect of
cutting dates. Are the data two independent samples or a paired comparison? Give a 95% confidence
interval for the difference in population means and give an approximate P value for testing that there
is no difference between population means. Give a 95% prediction interval for the difference in a
new year. The data are given in Table 4.14.

EXERCISE 4.5.16.  Snedecor (1945b) presented data on a pesticide spray. The treatments were
the number of units of active ingredient contained in the spray. Several different sources for breed-
ing mediums were used and each spray was applied on each distinct breeding medium. The data
consisted of numbers of dead adults flies found in cages that were set over the breeding medium

Table 4.13: Acreage in corn for different farm acreages

Size ‘ Corn acreage
240 | 65 80 65 85 30
400 | 75 35 140 90 110

Table 4.14: Cutting dates

Year ‘ 29 30 31 32 33 34 35 36 37 38
June 1 201 230 324 512 399 891 449 595 632 527
June 15 | 301 296 543 778 644 1147 585 807 804 749
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Table 4.15: Dead adult flies

Medium | A B C D E F G
Ounits | 423 326 246 141 208 303 256
Sunits | 414 127 206 78 172 45 103

containers. Some of the data are presented in Table 4.15. Give a 95% confidence interval for the
difference in population means. Give an approximate P value for testing that there is no difference
between population means and an oo = .05 test. Give a 95% prediction interval for a new obser-
vation with 8 units. Give a 95% prediction interval for a new observation with 8 units when the
corresponding 0 unit value is 300.

EXERCISE 4.5.17.  Using the data of Example 4.2.1 give a 95% prediction interval for the dif-
ference in total points between a new female and a new male. This was not discussed earlier so it
requires a deeper understanding of Section 3.5.






Chapter 5

One-way analysis of variance

Analysis of variance (ANOVA) involves comparing random samples from several populations. Of-
ten the samples arise from observing experimental units with different treatments applied to them
and we refer to the populations as treatment groups. The sample sizes for the treatment groups are
possibly different, say, NV; and we assume that the samples are all independent. Moreover, we assume
that each population has the same variance and is normally distributed.

5.1 Introduction and examples

EXAMPLE 5.1.1. Table 5.1 gives data from Koopmans (1987, p. 409) on the ages at which sui-
cides were committed in Albuquerque during 1978. Ages are listed by ethnic group. The data are
plotted in Figure 5.1. The assumption is that the observations in each group are a random sam-
ple from some population. While it is not clear what these populations would be, we proceed to
examine the data. Note that there are fewer Native Americans in the study than either Hispanics
or non-Hispanic Caucasians; moreover the ages for Native Americans seem to be both lower and
less variable than for the other groups. The ages for Hispanics seem to be a bit lower than for
non-Hispanic Caucasians.
Summary statistics are given below for the three groups.

Sample statistics: suicide ages
Group N; i 57 S;
Caucasians 44 41.66 2829 16.82
Hispanics 34 35.06 268.3 16.38

Native Am. 15 25.07 744 851

The sample standard deviation for the Native Americans is about half the size of the others. To

Table 5.1: Suicide ages

Non-Hispanic Native

Caucasians Hispanics Americans
21 31 28 52 50 27 45 26 23
55 31 24 27 31 22 57 17 25
42 32 53 76 29 20 22 24 23
25 43 66 44 21 51 48 22 22
48 57 90 35 27 60 48 16
22 42 27 32 34 15 14 21
42 34 48 26 76 19 52 36
53 39 47 51 35 24 29 18
21 24 49 19 55 24 21 48
21 79 53 27 24 18 28 20
31 46 62 58 68 43 17 35
38

107
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Figure 5.1: Dot plots of suicide age data.
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Figure 5.2: Normal plot of suicide residuals, W' = .945.

evaluate the combined normality of the data, we subtracted the appropriate group mean from each
observation, i.e., we computed residuals

&j=yij— i,

where y;; is the jth observation in the ith group and y;. is the sample mean from the ith group. We
then did a normal plot of the residuals. One normal plot for all of the y;;s would not be appropriate
because they have different means, y;. The residuals adjust for the different means. Of course with
the reasonably large samples available here for each group, it would be permissible to do three
separate normal plots, but in other situations with small samples for each group, individual normal
plots would not contain enough observations to be of any value. The normal plot for the residuals is
given in Figure 5.2. The plot is based on n = 44 434 4 15 = 93 observations. This is quite a large
number, so if the data are normal the plot should be quite straight. In fact, the plot seems reasonably
curved.
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Figure 5.3: Dotplots of log suicide age data.

In order to improve the quality of the assumptions of equal variances and normality, we consider
transformations of the data. In particular, consider transforming to log(y;;). Figure 5.3 contains the
plot of the transformed data. The variability in the groups seems more nearly the same. This is
confirmed by the sample statistics given below.

Sample statistics: log of suicide ages
Group N; Vi. 51'2 S;
Caucasians 44 3.6521 0.1590 0.3987
Hispanics 34 34538 0.2127 0.4612

Native Am. 15 3.1770 0.0879 0.2965

The largest sample standard deviation is only about 1.5 times the smallest. The normal plot of
residuals for the transformed data is given in Figure 5.4; it seems considerably straighter than the
normal plot for the untransformed data.

All in all, the logs of the original data seem to satisfy the assumptions reasonably well and
considerably better than the untransformed data. The square roots of the data were also examined
as a possible transformation. While the square roots seem to be an improvement over the original
scale, they do not seem to satisfy the assumptions nearly as well as the log transformed data.

A basic assumption in analysis of variance is that the variance is the same for all populations. As
we did for two independent samples with the same variance, we can compute a pooled estimate of
the variance. Again, this is a weighted average of the variance estimates from the individual groups
with weights that are the individual degrees of freedom. In analysis of variance, the pooled estimate
of the variance is called the mean squared error (MSE). For the logs of the suicide age data, the
mean squared error is

(44— 1)(.1590) + (34 — 1)(.2127) + (15— 1)(.0879)
(44—1)+34—1)+(15-1)

MSE = =.168.

The degrees of freedom for this estimate are the sum of the degrees of freedom for the individual
estimates; the degrees of freedom for error (d fE) are

dfE = (44— 1)+ (34— 1)+ (15—1) = 44+ 34415 -3 = 90.

The data have an approximate normal distribution, so we can use #(90) as the reference distribution
for statistical inference.

We can now perform statistical inferences for a variety of parameters using our standard
procedure involving a Par, an Est, a SE(Est), and a known distribution symmetric about O for
[Est — Par] /SE(Est). In this example, perhaps the most useful things to look at are simply whether
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Figure 5.4: Normal plot of suicide residuals, log data, W' = .986.

there is evidence of any age differences in the three groups. Let uc, Uy, and uy denote the popula-
tion means for the log ages of the non-Hispanic Caucasian, Hispanic, and Native American groups
respectively. Parameters of interest, with their estimates and the variances of the estimates, are given
below.

Par Est Var(Est)

pe—py  3.6521-34538 o2 (L +4)
fe—py 3652131770 o2 (&4 + &)
Up—py  34538-3.1770 o* (L +£)

The estimates and variances are obtained exactly as in Section 4.2. The standard errors of the esti-
mates are obtained by substituting MSE for ¢ in the variance formula and taking the square root.
Below are given the estimates, standard errors, the f,,,, values for testing Hy : Par = 0, the two-sided
test P values, and the 99% confidence intervals for Par. The confidence intervals require the value
1(.995,90) = 2.631. This 7 table value appears repeatedly in our discussion.

Par Est  SE(Est)  tops P 99% CI
Uc—ug 1983 .0936 212 .037 (—.04796,.44456)
Uc—uy 4751 1225 3.88 .000 (.15280,.79740)
Ug —uy 2768 1270 2.18 .032 (—.05734,.61094)

Note that while the estimated difference between Hispanics and Native Americans is half again as
large as the difference between non-Hispanic Caucasians and Hispanics, the #,,; values, and thus
the significance levels of the differences, are almost identical. This occurs because the standard
errors are substantially different. The standard error for the estimate of yc — py involves only the
reasonably large samples for non-Hispanic Caucasians and Hispanics; the standard error for the
estimate of Uy — Uy involves the comparatively small sample of Native Americans, which is why
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this standard error is larger. On the other hand, the standards errors for the estimates of pc — (y and
Ug — Wy are very similar. The difference in the standard error between having a sample of 34 or 44
is minor by comparison to the effect on the standard error of having a sample size of only 15.

The hypothesis Hy : tc — Uy = 0, or equivalently Hy : tic = Uy, is the only one rejected at the
.01 level. Summarizing the results of the tests at the .01 level, we have no strong evidence of a
difference between the ages at which non-Hispanic Caucasians and Hispanics commit suicide, we
have no strong evidence of a difference between the ages at which Hispanics and Native Americans
commit suicide, but we do have strong evidence that there is a difference in the ages at which
non-Hispanic Caucasians and Native Americans commit suicide.

Note that establishing a difference between non-Hispanic Caucasians and Native Americans
does little to explain why that difference exists. The reason that Native Americans committed suicide
at younger ages could be some complicated function of socio-economic factors or it could be simply
that there were many more young Native Americans than old ones in Albuquerque at the time. The
test only indicates that the two groups were different, it says nothing about why the groups were
different.

The confidence interval for the difference between non-Hispanic Caucasians and Native Amer-
icans was constructed on the log scale. Transforming the interval gives (e'!328 ¢7974) or (1.2,2.2).
We are 99% confident that the average age of suicides is between 1.2 and 2.2 times higher for
non-Hispanic Caucasians than for Native Americans. Note that examining differences in log ages
transforms to the original scale as a multiplicative factor between groups. The parameters u¢c and
Wy are means for the logs of the suicide ages. When we transform the interval (.1528,.7974) for
U — Wy into the interval (19?8, ¢797%), we obtain a confidence interval for e“c~H¥ or equivalently
for e#c /eN. We can think of e#c and eMV as ‘average’ values for the age distributions of the non-
Hispanic Caucasians and Native Americans although they are not the expected values of the dis-
tributions. Obviously, etc = (eHc /eFV) etV 5o eHC /eMV is the number of times greater the average
suicide age is for non-Hispanic Caucasians. That is the basis for the interpretation of the interval
(6'1528 ’ 6'7974).

With these data, the tests for differences in means do not depend crucially on the log trans-
formation but interpretations of the confidence intervals do. For the untransformed data, the mean
squared error is MSE, = 245 and the observed value of the test statistic for comparing non-Hispanic
Caucasians and Native Americans is

s ALO6-2507
245 (4 + 1)

which is not far from the transformed value 3.88. However, the untransformed 99% confidence inter-
val is (4.3,28.9), indicating a 4 to 29 year higher age for the mean non-Hispanic Caucasian suicide,
rather than the transformed interval (1.2,2.2), indicating that typical non-Hispanic Caucasian sui-
cide ages are 1.2 to 2.2 times greater than those for Native Americans.

The data do not strongly suggest that the means for Hispanics and Native Americans are dif-
ferent, so we might wish to compare the mean of the non-Hispanic Caucasians with the average of
these groups. Typically, averaging means will only be of interest if we feel comfortable treating the
means as the same. The parameter of interest is Par = e — (U + Wy)/2 or

1 1
Pa’":IJC—EHH—EﬂN

with

1 1 1 1
Est =yc— 5)711 — EyN =3.6521 - 53.4538 — 53.1770 =.3367.

It is not appropriate to use our standard methods to test this contrast between the means because the
contrast was suggested by the data. Nonetheless, we will illustrate the standard methods. From the
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independence of the data in the three groups and Proposition 1.2.11, the variance of the estimate is

_ 1 1_
Var <J’C - E)’H - ZyN)

—1\? —1\?
= Var(yc)+ (2> Var(vy) + (2> Var(Fy)
o2 —1\? 02 —1\? 62
- 44+(z> 34+<z> 5
L, 1\ 1 (! 2
44 2 ) 34 2 ) 15|

Substituting the MSE for o2 and taking the square root, the standard error is

1 (—1\*1 [—1\"1
.0886 =, |.168 l44+< > ) 34+( 7 > 151.
Note that the standard error happens to be smaller than any of those we have considered when
comparing pairs of means. To test the null hypothesis that the mean for non-Hispanic Cau-
casians equals the average of the other groups, i.e., Hy : U¢c — % Ugr — % uy = 0, the test statistic
is [.3367 — 0]/.0886 = 3.80, so the null hypothesis is easily rejected. This is an appropriate test
statistic for evaluating Hy, but when letting the data suggest the contrast, the 7(90) distribution is no

longer appropriate for quantifying the level of significance. Similarly, we could construct the 99%
confidence interval

3367 +2.631(.0886)

but again, the confidence coefficient 99% is not really appropriate for a contrast suggested by the
data.

While the parameter uc — % Ug — % Uy was suggested by the data, the theory of inference in
Chapter 3 assumes that the parameter of interest does not depend on the data. In particular, the
reference distributions we have used are invalid when the parameters depend on the data. Moreover,
performing numerous inferential procedures complicates the analysis. Our standard tests are set up
to check on one particular hypothesis. In the course of analyzing these data we have performed
several tests. Thus we have had multiple opportunities to commit errors. In fact, the reason we have
been discussing .01 level tests rather than .05 level tests is to help limit the number of errors made
when all of the null hypotheses are true. In Chapter 6, we discuss methods of dealing with the
problems that arise from making multiple comparisons among the means.

To this point, we have considered contrasts (comparisons) among the means. In constructing
confidence intervals, prediction intervals, or tests for an individual mean, we continue to use the
MSE and the t(d fE) distribution. For example, the endpoints of a 99% confidence interval for iz,
the mean of the log suicide age for this Hispanic population, are

/.168
3.4538£2.6314/ ——
34

for an interval of (3.269,3.639). Transforming the interval back to the original scale gives
(26.3,38.1), i.e., we are 99% confident that the average age of suicides for this Hispanic popu-
lation is between 26.3 years old and 38.1 years old. The word ‘average’ is used because this is not
a confidence interval for the expected value of the suicide ages, it is a confidence interval for the
exponential transformation of the expected value of the log suicide age. A 99% prediction interval
for the age of a future suicide from this Hispanic population has endpoints

.168

4538 +2.6314/.1 —_—
3.4538 63 68 + 34
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for an interval of (2.360,4.548). Transforming the interval back to the original scale gives
(10.6,94.4), i.e., we are 99% confident that a future suicide from this Hispanic population would
be between 10.6 years old and 94.4 years old. This interval happens to include all of the observed
suicide ages for Hispanics in Table 5.1; that seems reasonable, if not terribly informative. d

5.1.1 Theory

In analysis of variance, we assume that we have independent observations on, say, a different normal
populations with the same variance. In particular, we assume the following data structure.

Sample Data Distribution
1 ViLY12, .-y, iid  N(up,02)
2 V21,922, yon,  iid  N(ip,02)

a Yal,Ya2y---sYaN, iid N(uaacz)

Here each sample is independent of the other samples. These assumptions can be written more
succinctly as the one-way analysis of variance model

yij = i+ &j, &;sindependent N(0,c?) (5.1.1)

i=1,...,a, j=1,...,N;. The g;s are unobservable random errors. We are writing each observation
as its mean plus some random error. Alternatively, model (5.1.1) is often written as

yij =M+ 0;+&;j, & sindependent N(0, 0'2) (5.1.2)

where U; = 1 + ;. The parameter p is viewed as a grand mean, while ¢; is an effect for the ith
treatment group. The u and ¢ parameters are not well defined. In model (5.1.2) they only occur
as the sum U + @;, so for any choice of u and ¢; the choices, say, 4 +5 and o; — 5 are equally
valid. The 5 can be replaced by any number we choose. The parameters y and ¢; are not completely
specified by the model. There would seem to be little point in messing around with model (5.1.2)
except that it has useful relationships with other models that will be considered later.

To analyze the data, we compute summary statistics from each sample. These are the sample
means and sample variances. For the ith group of observations, the sample mean is

13
Yii= Z)’ij
IVij:I
and the sample variance is
1 & 2
Si TN —1 4 l(yij—yi-) :

J

With independent normal errors having the same variance, all of the summary statistics are indepen-
dent of one another. Except for checking the validity of our assumptions, these summary statistics
are more than sufficient for the entire analysis. Typically, we present the summary statistics in tab-
ular form.

Sample statistics
Group Size Mean Variance
1 N V1. 57
2 N> V2. S%
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The sample means, the y;.s, are estimates of the corresponding ;s and the sl.zs all estimate the
common population variance 6. With unequal sample sizes an efficient pooled estimate of 6> must
be a weighted average of the s?s. The weights are the degrees of freedom associated with the various
estimates. The pooled estimate of 62 is called the mean squared error (MSE),

(Nt =1)si+ (N2 —1)s3 4+ (Na— 1)s;
Yo (Vi—1)

— 2 =
MSE = S]) =

a N;

— i)
1:1 ]:l

where n =Y7 | N; is the total sample size. The degrees of freedom for the MSE are the degrees of

freedom for error,
a

dfE=n—a= Z(Ni* 1).
i=1
This is the sum of the degrees of freedom for the individual variance estimates. Note that the MSE
depends only on the sample variances, so, with independent normal errors having the same variance,
MSE is independent of the y;.s.

A simple average of the sample variances s? is not reasonable. If we had N; = 1000000 observa-
tions in the first sample and only N, =5 observations in the second sample, obviously the variance
estimate from the first sample is much better than that from the second and we want to give it more
weight.

We need to check the validity of our assumptions. The errors in models (1) and (2) are assumed
to be independent normals with mean 0 and variance 02, so we would like to use them to evaluate
the distributional assumptions, e.g., equal variances and normality. Unfortunately, the errors are
unobservable, we only see the y;;s and we do not know the p;s, so we cannot compute the g;s.
However, since &;; = y;; — W; and we can estimate ;, we can estimate the errors with the residuals,

&j = yij — Ji.-

The residuals y;; — y;. can be plotted against predicted values y;. to check whether the variance
depends in some way on the means ;. They can also be plotted against rankits (normal scores) to
check the normality assumption.

Using residuals to evaluate assumptions is a fundamental part of modern statistical data analysis.
However, complications can arise. In later chapters we will discuss reasons for using standardized
residuals rather than these raw residuals. Standardized residuals will be discussed in connection
with regression analysis. In balanced analysis of variance, i.e., situations with equal numbers of
observations on each group, the complications disappear. Thus, the unstandardized residuals are
adequate for evaluating the assumptions in a balanced analysis of variance. In other analysis of
variance situations, the problems are relatively minor.

If we are satisfied with the assumptions, we proceed to examine the parameters of interest. The
basic parameters of interest in analysis of variance are the ;s, which have natural estimates, the y;.s.
We also have an estimate of 62, so we are in a position to draw a variety of statistical inferences. The
main problem in obtaining tests and confidence intervals is in finding appropriate standard errors.
To do this we need to observe that each of the a samples are independent. The y;.s are computed
from different samples, so they are independent of each other. Moreover, y;. is the sample mean of

N; observations, so
o’
yi. ~N|( Ui, — | .
Yi (.ut N, )

For inferences about a single mean, say, U, use the general procedures with Par = L, and
Est = y,.. The variance of ;. is o /Ng, so SE(32.) = /MSE/N,. The reference distribution is
[¥2. — 2] /SE(2.) ~ t(dfE). Note that the degrees of freedom for the ¢ distribution are precisely the
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degrees of freedom for the MSE. The general procedures also provide prediction intervals using the
MSE and t(dfE) distribution.

For inferences about the difference between two means, say, U, — (i1, use the general procedures
with Par = Hp — yy and Est = 3. — ¥1.. The two means are independent, so the variance of y,. —y;.
is the variance of y,. plus the variance of y;., i.e., 62/N2 + Gz/Nl. The standard error of y,. — . is

MSE MSE
7_‘_7 —

11
SE(¥2. —31.) = MSE {Nl +—

The reference distribution is
(F2. = 31.) — (H2 — 1)
1 1
MSE {Nﬁ + Nﬁ}

~t(dfE).

We might wish to compare one mean, [, with the average of two other means, (U + t3)/2. In
this case, the parameter can be taken as Par = [y — (U + l13) /2 = [t; — 5 1t» — 3 113. The estimate is
Est =y — %)72. — %)73.. By the independence of the sample means, the variance of the estimate is

1 1 -1 —1
Var (y"l. — ?72. — 2)‘)3.) = Var(y;.) +Var<2)72.) —|—Var<2)73.)
o2 “1\’ 62 “1\? 62
B Nl+<2> Nz+<2> A
e[l
N Ny 4N, 4N;|°
The standard error is
SE(51— S50 — Lo ) = Jmse | Ly L4 ]
ME 2)’2. 2y3' o Ny 4N,  4N; '

The reference distribution is

()71- - %)72- - %y_z-) - (/Jl - %Mz - %M)
1 1 1
\/MSE [N—] + a5 + W}

Typically, in analysis of variance we are concerned with parameters that are contrasts (compar-
isons) among the y;s. For known coefficients Ai,...,A, with Y7 ; A; = 0, a contrast is defined by
Y& Ay, For example, tp — u; has 41 = —1, A, = 1, and all other A;s equal to 0. The contrast
W — %/.L - %[Jg has 4 = 1, Ay = —1/2, A3 = —1/2, and all other ;s equal to 0. The natural esti-
mate of Y% | A;l; substitutes the sample means for the population means, i.e., the natural estimate
is Y7 | A;7:.. In fact, Proposition 1.2.11 gives

~t(dfE).

E(Z )Li)_’L) =Y AE@L) =Y i,
i=1 i=1 i=1

so by definition this is an unbiased estimate of the contrast. Using the independence of the sample
means and Proposition 1.2.11,

Var( 7Li)75-> = Zl,-zVar(y'i.)
=1 =1

= =
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The standard error is
a a )LZ
SE Ay | =/ MSEY -+
E{ iYi ; N,
and the reference distribution is

(Xisy Aayi) — (X Aapi)

\VMSE XL A2 /N

see Exercise 5.7.14. If the independence and equal variance assumptions hold, then the central
limit theorem and law of large numbers can be used to justify a N(0, 1) reference distribution even
when the data are not normal. Moreover, in one-way ANOVA all of these results hold even when
¥YiAi # 0, so they hold for linear combinations of the ;s that are not contrasts. Nonetheless, our
primary interest is in contrasts.

Having identified a parameter, an estimate, a standard error, and an appropriate reference distri-
bution, inferences follow the usual pattern. A 95% confidence interval for }'i ; A;it; has endpoints

Y Ay £1(.975,dfE) [MSE Y A?/N;.
i=1 i=1

An o = .05 test of Hy : Yi | Aipt; = 0 versus Hy : Y| Al # O rejects Hy if
| Yy Ay — O

\VMSEX{ | A2 /N;

An equivalent procedure to the test in (5.1.3) is often useful. If we square both sides of (5.1.3),
the test rejects if

~ 1(dfE),

> 1(.975,dfE) (5.1.3)

2

| X1 Ay — 0 > (1(.975,dfE)).

VMSEYX A2 /Ni

The square of the test statistic leads to another statistic that will be useful later, the sum of squares
for the contrast. Rewrite the test statistic as

Sarso0 | (SAs-0”

JSELL RN, | MSEXLLIN

(T, A5e)” /B A2 /N;

MSE
and define the sum of squares for the contrast as
: (X8 Agi)’
ss{Y | === 5.1.4
(Ei g > Y1 AP /N 14

The o = .05t test of Hy : Yo Aipt; = 0 versus Hy : Y A;1; # 0 is equivalent to rejecting Hy if

SS (X Aitki)

2
NSE > [t(.975,dfE)]".
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It is a mathematical fact that for any o between 0 and 1 and any d fE,

[t(l - %,de)r —F(1—a,1,dfE).

Thus the test based on the sum of squares for the contrast is an F' test with 1 degree of freedom in
the numerator. Any contrast has 1 degree of freedom associated with it.

A notational matter needs to be mentioned. Contrasts, by definition, have Y7 ; 4; = 0. If we use
model (5.1.2) rather than model (5.1.1) we get

Y i =Y hi(pto)=p) L+ ) hoi=Y Ao
=1 Py S i1

Thus contrasts in model (5.1.2) involve only the treatment effects. This is of some importance later
when dealing with more complicated models.

In our first example we transformed the suicide age data so that they better satisfy the assump-
tions of equal variances and normal distributions. In fact, analysis of variance tests and confidence
intervals are frequently useful even when these assumptions are violated. Scheffé (1959, p. 345)
concludes that (a) nonnormality is not a serious problem for inferences about means but it is a se-
rious problem for inferences about variances, (b) unequal variances are not a serious problem for
inferences about means from samples of the same size but are a serious problem for inferences
about means from samples of unequal sizes, and (c) lack of independence can be a serious problem.
Of course any such rules depend on just how bad the nonnormality is, how unequal the variances
are, and how bad the lack of independence is. My own interpretation of these rules is that if you
check the assumptions and they do not look too bad, you can probably proceed with a fair amount
of assurance.

a

i=1

5.1.2 Balanced ANOVA: introductory example

We now consider an example of a balanced one-way ANOVA. A balanced one-way ANOVA has
equal numbers of observations in each group, say, N=N; =--- = N,.

EXAMPLE 5.1.2.  Ott (1949) presented data on an electrical characteristic associated with ceramic
components for a phonograph. Ott and Schilling (1990) and Ryan (1989) have also considered these
data. Ceramic pieces were cut from strips, each of which could provide 25 pieces. It was decided
to take 7 pieces from each strip, manufacture the 7 ceramic phonograph components, and measure
the electrical characteristic on each. The data from 4 strips are given below. (These are actually the
third through sixth of the strips reported by Ott.)

Strip Observations

1 173 158 168 172 162 169 149
169 158 169 168 16.6 160 16.6
155 166 159 165 16.1 162 157
13,5 145 160 159 13.7 152 159

B Lo

In the current analysis, we act as if the four strips are of intrinsic interest and investigate whether
there are differences among them. In Subsection 13.4.2 we will consider an analysis in which we
assume that the strips are themselves a random sample from some wider population. The data are
displayed in Figure 5.5 and summary statistics follow.

Sample statistics: electrical characteristics

Strip N Vi. si2 S
1 7 16.4429 0.749524 0.866
2 7 16.5143  0.194762 0.441
3 7 16.0714 0.162381 0.403
4 7 149571 1.139524 1.067
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Figure 5.5: Plot of electrical characteristics data.

The electrical characteristic appears to be lowest for strip 4 and highest for strips 1 and 2, but we
need to use formal inferential procedures to establish whether the differences could be reasonably
ascribed to random variation. The sample standard deviations, and thus the sample variances, are
comparable. The ratio of the largest to the smallest standard deviation is just over 2.5, which is not
small but which is also not large enough to cause major concern. As in Section 4.4, we could do F
tests to determine whether any pairs of variances differ. The largest of these F tests is not significant
at the .02 level and, after considering that there are six pairs to test, we conclude that there is no
cause for major concern. Figure 5.5 is poorly suited to evaluate the variances visually because in
Figure 5.5 the plot involves any differences in means as well as differences in variance. A better
plot from which to evaluate the variances is given as Figure 5.6. Figure 5.6 is a plot of the residuals
&;; = yij — Ji. against the appropriate group. The residuals have been adjusted for their different
means, so residuals, and thus residual plots, are centered at 0. Figure 5.6 is not wonderful in that we
see differences in variability for the four groups, but it is also not outlandishly inconsistent with the
assumption of equal variances. (Note that if one group had many more observations than another, the
spread for that group would be greater even if the population variances were the same.) Figure 5.7
contains a normal plot of the residuals. The plot looks fairly reasonable, although it tails off at the
top. The W’ statistic of .956 gives a P value for the hypothesis of normality that is larger than .05
and in any case, analysis of variance procedures are not particularly sensitive to nonnormality.

With equal sample sizes in each group, the MSE reduces to the simple average of the sample
variances.

(7—1).74952+ (7 —1).19476 + (7 —1).16238 + (7 — 1)1.13952

T+7+7+7—4
74952 + 19476+ .16238 4 1.13952
4

MSE =

56155
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Figure 5.7: Normal plot of residuals, W' = 0.956.
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and has error degrees of freedom dfE =7+ 7+ 7+ 7 —4 = 24. Again, we compare all pairs of
means. The value 7(.995,24) = 2.797 is required for constructing 99% confidence intervals. These
intervals and two-sided tests of Hy : Par = 0 are given below.

Par Est  SE(Est) tobs P 99% CI
Wy — Hg 1.4858  0.4006 3.709 .001  (0.37,2.61)
Uy — Uy 1.5572  0.4006 3.887 .001  (0.44,2.68)
Uz — g 1.1143  0.4006 2.782 .010 (—0.01,2.23)
Ww—u —0.0714 04006 —0.178 .860 (—1.19,1.05)
W — U3 0.3715  0.4006 0.927 363 (—0.75,1.49)
U — U3 0.4429  0.4006 1.106 .280 (—0.68,1.56)

Note that with equal numbers of observations on each group, the standard errors are the same
for each comparison of two means. Based on o = .01 tests, the electrical characteristic for strip 4
differs significantly from those for strips 1 and 2, the decision for strip 3 is essentially a toss-up, and
no other differences are significant. Even for strips 1 and 2, the 99% confidence intervals indicate
that the data are consistent with differences from strip 4 as small as .37 and .44 respectively. Such
differences may or may not be of practical importance. Clearly, the main source of differences
among these data is that strip 4 tends to give smaller values than the other strips. In fact, the P
values for comparisons among the other three strips are all quite large.

Using formula (5.1.4), the sum of squares for p; — g is

(1.4858)%

SS(,LL[ —,114) = (1)2/7+(_1)2/7 =7.7266.

The table below gives the sums of squares and F tests for equality between all pairs of means.

Par SS Fops P
ur—pg 7727 1376 .001
w—pus 8487 15.11 .001
us—pug 4346 7.74 010
ur—pp  0.018 0.03 .860
ur—puz 0483  0.86 363
w—pu3 0.687 122 280

Note that the F statistics are just the sums of squares divided by the MSE. They equal the squares
of the ¢ statistics given earlier and the P values are identical. O

5.1.3 Analytic and enumerative studies

In one-sample, two-sample, and one-way ANOVA problems, we assume that we have random sam-
ples from various populations. In the more sophisticated models treated later, we continue to assume
that at least the errors are a random sample from a N(0, 0'2) population. The statistical inferences
we draw are valid for the populations that were sampled. Often it is not clear what the sampled
populations are. What are the populations from which the Albuquerque suicide ages were sampled?
Presumably, our data were all of the suicides reported in 1978 for these ethnic groups. The electrical
characteristic data has four ceramic strips divided into 25 pieces, of which seven pieces are taken.
Are the seven pieces a random sample from the 25? They could be. Is the collection of 25 pieces
the population that we really care about? Doubtful! What we really care about is whether the differ-
ences in ceramic strips are large enough to cause problems in the production of phonographs. (Not
that anyone makes phonographs anymore.)

When we analyze data, we assume that the measurements are subject to errors and that the
errors are consistent with our models. However, the populations from which these samples are taken
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may be nothing more than mental constructs. In such cases, it requires extrastatistical reasoning to
justify applying the statistical conclusions to whatever issues we really wish to address. Moreover,
the desire to predict the future underlies virtually all studies and, unfortunately, one can never be
sure that data collected now will apply to the conditions of the future. So what can you do? Only
your best. You can try to make your data as relevant as possible to your anticipation of future
conditions. You can try to collect data for which the assumptions will be reasonably true. You can
try to validate your assumptions. Studies in which it is not clear that the data are random samples
from the population of immediate interest are often called analytic studies.

About the only time one can be really sure that statistical conclusions apply directly to the
population of interest is when one has control of the population of interest. If we have a list of all
the elements in the population, we can choose a random sample from the population. Of course,
choosing a random sample is still very different from obtaining a random sample of observations.
Without control or total cooperation, we may not be able to take measurements on the sample.
(Even when you can find people that you want for a sample, many will not submit to a measurement
process.) Studies in which one can arrange to have the assumptions met are often called enumerative
studies. See Hahn and Meeker (1993) and Deming (1986) for additional discussion of these issues.

5.2 Balanced one-way analysis of variance: theory

We now examine in detail the important special case of one-way analysis of variance in which the
numbers of observations for each sample are the same, cf. Subsection 5.1.2. In this case, the analysis
of variance is referred to as balanced. Balanced one-way ANOVA is important because it is both
understandable and extendable. The logic behind analysis of variance is much clearer when dealing
with balanced samples and the standard methods for multifactor analysis of variance are extensions
of the techniques developed for balanced one-way ANOVA. The standard methods for multifactor
ANOVA also assume equal numbers of observations on all treatments.

For balanced analysis of variance, let N = N} = --- = N, be the number of observations in each
sample. In particular, we assume the data structure

Sample Data Distribution
1 Yitsyi,--yiv - id  N(up,0%)
2 ya1,322,---,yon iid  N(up,62)

a Yal;Ya2,---,Yan  1id N(“avcz)
with all samples independent. The data structure can be rewritten as the balanced one-way ANOVA
model
yij = Wi+ €&j, &;sindependent N(O, 0'2)

i=1,...,a, j=1,...,N. Again, we have assumed the same variance 6> for each sample.
In this section, we focus on testing the (null) hypothesis

Ho: === Uy

This is a test of whether there are any differences among the groups. If we use model (5.1.2), the null
hypothesis can be written as Hy : &t = 0p = --- = 0. To perform the test, first compute summary
statistics from the samples.

Sample statistics
Group Size Mean Variance
1 N V1. S%
2 N V2. S%
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As before, the sample means, the y;.s, are estimates of the ;s and the sl.zs all estimate G2.

The test of Hy is based on estimating 6. We construct two estimates of the variance. The first
estimate is always valid, assuming of course that our initial assumptions were correct. The second
estimate is valid only when | = U = - -- = U,. If the y;s are all equal, we have two estimates of o2,
so they should be about the same. If the ;s are not all equal, the second estimate tends to be bigger
than 62, so it should be larger than the first estimate. We conclude that the data are consistent with
Up = Up = --- = U, when the two estimates seem to be about the same and conclude that the y;s
are not all equal when the second estimate is substantially larger than the first. As usual, when the
estimates are about the same we conclude that the data are consistent with the y;s all being equal;
we do not conclude that the ;s are really all equal. If the ;s are not quite equal but are very nearly
so, we cannot expect to be able to detect the differences. On the other hand, two widely different
variance estimates give substantial proof that the ;s are not all the same.

The easy part of the process is creating the first estimate of the variance, the one that is always
valid. From each sample, regardless of the value of ;, we have an estimate of 62, namely s?.
Obviously, the average of the sl-zs must also be an estimate of 6. The average is the pooled estimate
of the variance, i.e., the mean squared error is

st+s) 4o+ s,
a

MSE =

1 a N 5
—— (vij = 3i)"-
a(N—1) =&

1

Lj

As discussed earlier, a simple average such as this is not always appropriate. The simple average is
only reasonable because we have the same number of observations in each sample.

Recall that each 51‘2 has N — 1 degrees of freedom. Each sl-2 is based on N observations but is
functionally based on N — 1 observations because of the need to estimate y; before estimating the
variance. By pooling together the variance estimates, we also get to pool the degrees of freedom.
We have combined a independent estimates of o2, each with N — 1 degrees of freedom, so the
pooled estimate has a(N — 1) degrees of freedom. In other words, the MSE is functionally based on
a(N — 1) observations. The degrees of freedom associated with the MSE are the degrees of freedom
for error (d fE), so we have

dfE =a(N—-1).

The data, the y;;s, are random, so the MSE, which is computed from them, must also be random.
If we collected another set of similar data we would not expect to get exactly the same value for the
MSE. If we are to evaluate whether this estimate of 62 is similar to another estimate, we need to
have some idea of the variability in the MSE. Under the assumptions we have made, the distribution
of the MSE depends only on d fE and 6. The distribution is related to the x> family of distributions.
In particular,

UEMSE g
where, on the right hand side, d fE indicates the particular member of the x> family that is appro-
priate. A commonly used terminology in analysis of variance is the sum of squares for error (SSE).
This is defined to be

a N
SSE=dfExMSE=Y Y (yij—3.) (5.2.1)
i=1 j=1
Note that SSE/c? ~ x?(dfE). Note also that the SSE is the sum of the squared residuals, the
residuals being
&j=yij—Ji-
The second estimate of G2 is to be valid only when u; = pp = --- = u,. We have already used

the sample variances si2 in constructing the MSE, so we use the rest of our summary statistics, the
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7.5, in constructing the second estimate of 6. In fact, the J;.s are estimates of the y;s, so it is only
reasonable to use the y;.s when trying to draw conclusions about the t;s. Consider the distributions
of the y;.s. Each is the sample mean of N observations, so each has the distribution of a sample

mean. In particular,
2
c
s~ N c”
Y1 <I~l17 N>

N
2. .Uz,N

_ NP
: Ha,

The a different samples are independent of each other, so y;.,77.,...,¥,. are all independent. They
all have the same variance, 62 /N, and they all have normal distributions. In fact, the only thing
keeping them from having independent and identical distributions is that they have different means
u;. If we assume that y; = tp = - - - = U, they have independent and identical distributions and thus
form a random sample from a population. Balanced analysis of variance is based on the fact that if
the y;s are the same, the y;.s can be treated as a random sample. If the j;.s are a random sample, we
can compute their sample variance to get an estimate of the variance of the y;.s. The variance of the
Ji.s is 6% /N and the sample variance of the ¥;.s is

<
)
2

a—1ig
where

o1&

Y.==2 Vi

4=
is the sample mean of the y;.s. We have s% as an estimate of 62/N but we set out to find an estimate
of 62. The obvious choice is
N a
) N
MSTrts = Ns5 = o Z i —3..)

i=1

where MSTrts abbreviates the commonly used term mean squared treatments. The estimate s% is

based on a sample of size a, so it, and thus MSTrts, has a — 1 degrees of freedom. These are referred
to as the degrees of freedom for treatments (d f7Trts). The sum of squares for treatments is defined

as
a

SSTrts=dfTrts x MSTrts =N 'Y (5. —5..)". (5.2.2)
i=1
Just as the MSE is random, the MSTrts is also random. The estimate s% is the sample variance of a
random sample of size a from a normal population with variance 6% /N, so

(a—1)s3  (a—1)MSTrts
Y ( ) NXZ(a_ 1)

c2/N o2

The discussion above is based on the assumption that t; = tp = --- = . If this is not true, the
¥i.s do not form a random sample and s% does not estimate 62/N. Actually, it estimates 62 /N plus

the ‘variance’ of the y;s. Algebraically, s% estimates

2 o2 1 & )
E(s) =+ 7 L (Wi—R)
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where fI. =Y W;/a is the mean of the y;s. Multiplying by N gives

N
a—1

Y (i), (5.2.3)

i=1

E(MSTrts) = E(Ns?) = 6%+

so MSTrts is an estimate of 62 plus something that is always nonnegative. If () = tp = --- = Uy,
the w;s are all equal to their average [, thus (i; — /1.)2 =0 for all 7, and

N
a—14

(i —.)* =0.
=1

As advertised earlier, if y; = --- = p1,, MSTrts is an estimate of 62. If the ;s are not all the same,
[N/(a—1)]X%, (u; — fi.)* is positive. The larger this term is, the easier it is to conclude that the
treatment means are different. The term increases when N, the number of observations in each
group, increases and when the variability of the y;s increases, i.e., when Y& (t; — ﬁ‘)z /(a—1)
increases.

A decision regarding the validity of the claim y; = up = --- = U, is based on comparing MSTrts
with MSE. If they are about the same, or equivalently if

F= MSTrts
- MSE

(5.2.4)

is about 1, the data are consistent with the idea that MSTrts and MSE both estimate the same
(unknown) quantity ¢ and thus are consistent with t; = tp = --- = . The alternative is that the
wW;s are not all equal, in which case MSTrts is estimating something larger than ¢, while MSE
continues to estimate 2. In this case, the ratio F = MSTrts/MSE estimates something greater than
1. If F is much greater than 1, it provides clear evidence that the statistics are not estimating the
same thing and thus that the y;s are not all equal.

The nature of this evidence is probabilistic and one cannot eliminate the possibility of error.
Although they are very unlikely to occur, F ratios much greater than 1 can arise even when the y;s
are all equal. Assuming that model (5.1.1) is appropriate, when the data yield a very large F ratio,
the correct conclusion is either that the assumption of equal treatment means is violated or that the
means are equal and a very rare event has occurred. The rarer the event, the stronger the suggestion
of unequal treatment means. While we cannot directly quantify the strength of the suggestion of
unequal treatment means, we can quantify it indirectly by evaluating how rarely large F ratios occur
when the treatment means are equal. Under the assumption that y; = tp = --- = U, the F ratio is
random and has an F(a — 1,a(N — 1)) distribution. (This distribution is called an F distribution in
honor of the originator of analysis of variance, R. A. Fisher.)

The F distribution determines those values of the F ratio in (5.2.4) that commonly occur with
equal treatment means. If the observed F ratio is so large as to be an uncommon occurrence when
Uup = Up = -+ = Uy, we conclude that the ;s are not all equal. To measure the strength of this
conclusion, compute the probability of obtaining an F ratio as large or larger than that actually
obtained from the data. This probability is called the P value or the significance level of the test.
The smaller the P value, the more inconsistent the observed F ratio is with the assumption that the
u;s are all equal.

On occasion, it may be desired to have a fixed decision rule as to whether the data are inconsis-
tent with the (null) hypothesis of equal means. One may decide that, with equal treatment means,
common occurrences of the F ratio include 95% or 99% or more generally (1 — a)100% of the pos-
sible F' values. Thus uncommon occurrences constitute 5% or 1% or 1000t% of the observations.
The hypothesis () = p = --- = U, is rejected at the o level if

MSTrts
>F(1— —1,dfE).
e 2 F(1- o= 1,dfE)
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Table 5.2: Analysis of variance

Source df SS MS F

Treatments a— 1 NY, (i —5.)° 88Trts/(a—1) Mz%}rsm
_\2

Error aN —a Y, 21}/:1 (yij - yi-) SSE/(n—a)

_\2
Total — C aN—1 Y ¥ (vij—5-)

Here F(1 — a,a— 1,dfE) is the number below which fall (1 — &)100% of the possible F ratios
when the ;s are all equal. There is a possibility that our data would yield an F ratio at least this
large when the ;s are all equal but it is pretty slim, ot. We consider it more reasonable that the
assumption of equal ;s is violated. The number F (1 — o,a — 1,d fE) can be obtained from tables
of the F' distribution, see Appendix B.7. The number depends not only on the choice of ¢ but also
on the degrees of freedom for the estimate in the numerator of the ratio, a — 1, and the degrees of
freedom for the estimate in the denominator of the ratio, d fE. If we do not reject the hypothesis,
the data are consistent with the hypothesis. Again, just because the data are consistent with the
hypothesis does not mean that the hypothesis is true.

Fixed « level tests are easy to perform if the P value is available. To perform, say, an o = .05
test, just compare the P value with .05. If the P value is greater than .05, a .05 level test does not
reject the hypothesis of equal treatment means y;. If the P value is less than .05, a .05 test rejects
the hypothesis.

5.2.1 The analysis of variance table

The computations for the analysis of variance F' test can be summarized in an analysis of variance
table. The columns of the table are sources, degrees of freedom (df), sums of squares (SS), mean
squares (MS), and F. There are rows for treatments, error, and total (corrected for the grand mean).
The commonly used form for the analysis of variance table is given in Table 5.2. The sums of squares
for error and treatments are just those given in equations (5.2.1) and (5.2.2). In each row, the mean
square is the sum of squares divided by the degrees of freedom. The degrees of freedom and sums
of squares for treatments and error can be added together to give the degrees of freedom and sum of
squares total (corrected for the grand mean) respectively. Note that the sum of squares total divided
by the degrees of freedom total is sf, the sample variance of all aN observations computed without
reference to any treatment groups. The degrees of freedom in the total line are just the degrees of
freedom associated with the sample variance based on all aN observations. Traditionally, the total
line does not include a mean square. The sample variance of all aN observations, and thus the total
line, involves adjusting each observation for the grand mean. This can be accomplished as indicated
in Table 5.2 or, alternatively, by the use of a correction factor. The correction factor is C = aNy2,
so that SSTot —C =Y¢ sz\l:l y,»zj — C, which is the sum of the squares of all the observations minus
the correction factor.

A less commonly used form for the analysis of variance table, but one I prefer, is presented in
Table 5.3. In this form, the total degrees of freedom consist of one degree of freedom for every
observation, the sum of squares total is the sum of all of the squared observations, and an extra row
has been added for the grand mean. The degrees of freedom and sums of squares for the grand mean,
treatments, and error can be added together to obtain the degrees of freedom and sums of square
total. In spite of my preference for Table 5.3, I will bow to tradition and generally use Table 5.2 with
the — C notation deleted from the Total line.

EXAMPLE 5.2.1. We now examine the analysis of variance table for the electrical characteristic
data of Example 5.1.2. The summary statistics for the four samples are repeated below.
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Table 5.3: Analysis of variance

Source df SS MS F
Grand mean 1 aNy*> =C aNy‘.z.

Treatments a—1 NYL | (i —5.)? SSTrts/(a—1) %
Error aN—a Y&, ZI},:] (yij —)7i~)2 SSE/(n—a)

Total aN T 0h

Table 5.4: Analysis of variance table: electrical characteristic data

Source df SS MS F P
Treatments 3 10.873 3.624 645 0.002
Error 24 13.477 0.562

Total 27 24.350

Sample statistics: electrical characteristics

Strip N Vi. sl2

1 7 16.4429 0.749524
2 7 16.5143 0.194762
3 7 16.0714 0.162381
4 7 14.9571 1.139524

The MSE for balanced data is the simple average of the s?s,

74952+ .19476 +.16238 +1.13952

MSE ) = .56155.
The sample mean of the j;.s is
16.4429 +16.5143 +16.0714 + 14.9571
5. = + + + — 15.996425

4

and the sample variance of the y;.s is

1
57 = - [(16.4429 — 15.996425) + (16.5143 — 15.996425)*
+(16.0714 — 15.996425)% + (14.9571 — 15.996425)2] =.517784.
The mean square treatments is the sample variance of the y;.s times the number of observations in
each y;.,
MSTrts = Nsé =7(.517784) = 3.6245.

The analysis of variance table is given as Table 5.4. As discussed earlier in this section, all of the
table entries are easily computed given the MSE and the MSTrts.

The F statistic for these data is substantial and the P value is quite small. There is strong evidence
that the treatments do not have the same mean. In other words, strips 1, 2, 3, and 4 do not have
the same mean value for the electrical characteristic. The analysis of variance F' test tells us that
the means are not all equal but it does not tell us which particular means are unequal. Examining
individual contrasts is required to answer more specific questions about the means. O
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Distribution theory

It has been stated that when there are no differences between the treatment means, the test statistic
F = MSTrts/MSE has an F(a — 1,dfE) distribution. We now briefly expand on that statement. By
Definition 4.4.3, an F distribution is constructed from two independent 2 distributions. If W ~
x%(r) and W5 ~ x?(s) with W; and W, independent, then by definition

In analysis of variance with the usual assumptions, the y;.s and sizs are all independent of each
other. The MSE is computed from the sizs and the MSTrts is computed from the ¥;.s, so the MSE is
independent of the MSTrts. We mentioned earlier that when the means are all equal

(a—1)MSTrts

o2 ~ Xz(a - 1)
and regardless of the mean structure
dfE x MSE
ez x’ (dfE),

so it follows from the definition of the F' distribution that, when the means are all equal,

MSTrts  [(a—1)MSTrts/c?] [(a—1)
MSE ~— [(dfE)MSE/oc?]/dfE

~F(a—1,dfE).

When the treatment means are not all equal, the distribution of MST'rts depends on the value of

N < )
SR T
(a—1)o? &

Note the similarity of this number to the expected value of MSTrts given in (5.2.3).

5.3 Unbalanced analysis of variance

In unbalanced analysis of variance we allow different numbers N; of observations on the groups.
The analysis is slightly more difficult but it follows the same pattern as in Section 5.2. In particular,
we assume that

Sample Data Distribution

1 ViLY12, .-y, iid  N(up,02)
2 Y21,022,--,yon,  iid  N(pa,0?)

a Yal,Ya2s--»YaN, 1id N(uaao-z)
with independent samples and the same variance ¢ for each sample. In other words, we assume
yij = Wi+ €&j, &;sindependent N (O, 62)

i=1,...,aand j=1,...,N;. The total number of observations is denoted n = Y7 ; N;. We wish to
examine the (null) hypothesis

Ho:py =ty == la.

Again we compute summary statistics from the samples.
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Sample statistics
Group Size Mean Variance

1 Ny ¥i. S%
2 N> Y. 53
a N, Va- sZ

As before, the sample means, the y;.s, are estimates of the corresponding ;s and the sizs all estimate
o2. As discussed earlier, with unequal sample sizes an efficient pooled estimate of 6> must be
a weighted average of the s?s. The weights are the degrees of freedom associated with various
estimates.

(N1 —1)s7+ (N, — 1)s3 4+ (N,

MSE = Y (Ni—1)
N,

2: Yij — %

1j=1

I
Ma

I

As before, dfE =n—a and SSE = (d fE)MSE.

The second estimate of 62, the one based on the j;.s, is not particularly intuitive. The ¥;.s do not
all have the same variance, so even when the ;s are all equal, the y;.s do not form a random sample.
To get a variance estimate, the y;.s must be weighted appropriately. It turns out that the appropriate
estimate of 67 is .

2:”%(?1—*_

i=1

1
MSTrts =
a—

where

Ma

a N;
v “a kL
Thus y.. is the sample mean of all n observations, ignoring the treatment structure. As in the balanced
case, the degrees of freedom are a — 1 and SSTrts = (a — 1)MSTrts. In general, MSTrts is an
estimate of

S|
: \_

i=1

1
E(MSTrts) = 6° + — Y Ni(pi- i)

where

is the weighted mean of the y;s. Once again, if the ;s are all equal, y; = fi. for every i and MSTrts
is an estimate of ¢. If the means are not all equal, MSTrts is an estimate of something larger than
o2, Values of MSTrts/MSE that are much larger than 1 call in question the hypothesis of equal
population means. Note that the computations for balanced data are just a special, simpler case of
the computations for unbalanced data. In particular, the balanced case has N; = N and n = aN.

The computations are again summarized in an analysis of variance table. The commonly used
form for the analysis of variance table is given below.

Analysis of variance
Source df A MS F

Treatments a— 1 Y& N (3 —)7..)2 SSTrts/(a—1) MSTr1s

MSE
: 32
Error n—a Z?:lzy;l (vij —3i.) SSE/(n—a)

g _\2
Total n—1 zlezy;l (yij —3-)
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Table 5.5: Analysis of variance, logs of suicide age data

Source  df SS MS F P
Groups 2 2655 1.328 7.92  0.001
Error 90 15.088 0.168

Total 92 17.743

The degrees of freedom and sums of squares for treatments and error can be added together to give
the degrees of freedom and sum of squares total (corrected for the grand mean). Again,

Ni
a2
Y &)
1j=1

Q

SSE =

[N agB

1

N
- \2

Y Gij—vi) =
i=1j=1
establishing that the sum of squares error is the sum of the squared residuals. Moreover,
SSTot/dfTot = sg, the sample variance of all n observations computed without reference to treat-
ment groups. The degrees of freedom in the total line are the degrees of freedom associated with
the sample variance based on all n observations. The total line is corrected for the grand mean, so
that SSTor = ¥, ):7;1 yizj — C, which is the sum of the squares of all the observations minus the

correction factor, C = n)72

EXAMPLE 5.3.1. We now consider construction of the analysis of variance table for the logs of
the suicide data. The sample statistics are repeated below.

Sample statistics: log of suicide ages

Group N; 3. 57
Caucasians 44 3.6521 0.1590
Hispanics 34 3.4538 0.2127

Native Am. 15 3.1770 0.0879

The mean squared error was computed earlier as .168. The sum of squares error is just the degrees
of freedom error, 90, times the MSE. The sum of squares treatments is

SSTrts = 2.655 = 44(3.6521 — 3.5030)% + 34(3.4538 — 3.5030) + 15(3.1770 — 3.5030)>

.6521) + 3.4538) + 177
3.5030=y.. = '
y 44 + 34+ 15

The ANOVA table is presented as Table 5.5.

The extremely small P value for the analysis of variance F test establishes a clear difference
between the mean log suicide ages. Again, more detailed comparisons are needed to identify which
particular groups are different. We established earlier that at the .01 level, only non-Hispanic Cau-
casians and Native Americans display a pairwise difference. O

5.4 Choosing contrasts

You may be wondering why statisticians make a big fuss about analysis of variance. The procedures
discussed in Sections 5.2 and 5.3 are not really of much use. The analysis of variance test involves
only one hypothesis, that of equal treatment means y;. The more interesting issue of identifying
which means are different is handled with a pooled estimate of the variance and the usual techniques
involving a Par, an Est, a SE(Est), and a known distribution symmetric about zero for [Est —
Par]/SE(Est). Actually, ‘analysis of variance’ is used as a name for the entire package of techniques
used to compare more than two samples. The analysis of variance F test, from which the name
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devolves, is only one small part of the package. There are two reasons for examining the F test in
detail. In more complicated situations than one-way ANOVA, the analysis of variance table becomes
a very useful tool for identifying aspects of a complicated problem that deserve more attention. The
other reason is that it introduces the SSTrts as a measure of treatment differences.

The SSTrts can be broken into components corresponding to the sums of squares for individual
orthogonal contrasts. These components of SSTrts can then be used to explain the differences in
the means. Recall that a contrast is a parameter Y5 | A;it; where the A;s satisfy Y& | A; = 0. The
appropriate estimate and standard error were discussed earlier and the sum of squares for a contrast

was given in (5.1.4) as
% (X Aigi)?
SS i | = S5
('1 > Zi:l )‘iz/Ni

=

In the balanced case with N = N; for all i,

C (X8 Agi)
ss Y A | = &=t 20
(Z ) (512) /N
The F test for Hy : Y& Ay = O versus Hy : Y& Ay # 0 rejects Hy for large values of
SS(Xiy Aitti) /MSE.
Two contrasts Y& ; A; i; and Yi | Appt; are defined to be orthogonal if
S Aidn

ZN,- 0.

i=1

In balanced problems, N; = N for all i, so the condition of orthogonality becomes Y% | A;; A /N =0
or equivalently

i Aitdip =0.
i1

Contrasts are only of interest when they define interesting functions of the u;s. Orthogonal contrasts
are most useful in balanced problems because a set of orthogonal contrasts can retain interesting
interpretations. In unbalanced cases, orthogonality depends on the unequal N;s, so there is rarely
more than one interpretable contrast in a set of orthogonal contrasts.

EXAMPLE 5.4.1. Consider again the electrical characteristic data. The sample statistics are

Sample statistics: electrical characteristics

Strip N Vi. 57

l

1 7 16.4429 0.749524
2 7 16.5143 0.194762
3 7 16.0714 0.162381
4 7 14.9571 1.139524

with MSE = .56155. We examine four contrasts

Cr= M+ (=12 + (0) 3 + (0) pla = ph1 — o,

Cr = (1/2)p1 + (1/2)p2 + (~ 1) + (0)ps = & ;F”Z _ i3,
C3=(1/3)m +(1/3)a + (1/3) 3 + (—1)pg = W .

and
Co= (=D + (= D2+ (2) 3+ (0) g
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Contrasts C and C; are orthogonal because
(1D)(1/2)+ (=1)(1/2) + (0)(=1) +(0)(0) = 0.

Similarly, C; and C3 are orthogonal and C; and C5 are orthogonal. We have previously examined
the contrast C; and found the sum of squares to be

[(1)16.4429 + (—1)16.5143 4 (0)16.0714 + (0)14.9571)*

SS(Cr1) = =0.0178.
) 12+ (~1)2+02+07] /7
The sum of squares for C; is
2
SS(Co) = [(1/2)16.4429 + (1/2)16.5143 + (—1)16.0714 + (0)14.9571] 07738,

[(1/2)2+(1/2)* +(=1)>+0%] /7
The sum of squares for C3 is

[(1/3)16.4429 + (1/3)16.5143 + (1/3)16.0714 + (—1)14.9571]

SS(C3) = [(]/3)2+(1/3)2+(1/3)2+(—1)2]/7

10.0818.

The decomposition referred to earlier follows from the fact that
10.873 = SSTrts = SS(C1) +SS(C2) + SS(C3) = 0.0178 +0.7738 + 10.0818 .

SSTrts is a measure of the evidence for differences between means. Almost all of the SSTrts is
accounted for by Cz. Thus, almost all of the differences between the means can be accounted for
by the difference between 4 and the average of iy, U, and 3. Almost none of the sum of squares
for treatments is due to the difference between u; and (. A small amount is due to the difference
between L3 and the average of p; and u,. The data are consistent with the idea that the means for
strips 1, 2, and 3 are the same.

The contrast C4 was introduced to illustrate the fact that multiplying a contrast by a constant has
no real effect on the contrast. Observe that

Cy=-2C;.
In particular, C4 = 0 if and only if C; = 0. Note that

[(—1)16.4429 4 (—1)16.5143 + (2)16.0714 4 (0)14.9571]*
(=124 (=1)2+22+07] /7

SS(Cq) = =0.7738,

s0 SS(C4) = SS(C7) and the F test for C; = 0 is identical to the F test for C4 = 0. It is also easily
seen that a two-sided ¢ test for H : C4 = 0 is identical to that for H : C; = 0. The factor of —2 must
be accounted for in estimation and in tests of C, and Cy other than testing that they are zero, but,
after suitable adjustment, estimation and testing are equivalent. The virtue of using C4 rather than
C; is that the A;s in Cy4 are all integers, so computations are simpler with Cj.

There are many ways to pick a set of orthogonal contrasts. We established that the data are
consistent with the idea that ceramic strip 4 is different from the other strips and that there are no
differences between the other strips. The data are even more consistent with another set of orthog-
onal contrasts. Consider the claim that the value for strip 4 is the average of the values for strips 1
and 2, i.e., s = (U1 + U2)/2 or equivalently

Cs = (D + (D2 + (0)uz + (—2)pa = 0.



132 5. ONE-WAY ANALYSIS OF VARIANCE
A contrast orthogonal to Cs is Cy, considered earlier. A contrast orthogonal to both Cs and Cj is
Co= (L) + (2 + (—3)u3 + (1) ua.

The sum of squares for Cs is

[(1)16.4429 + (1)16.5143 4 (0)16.0714 + (—2)14.9571]2
[124+ 12402+ (—2)2] /7

SS8(Cs) = = 10.803.

The sum of squares for C; was given earlier, SS(C;) = .018. The sum of squares for Cg is

[(1)16.4429 + (1)16.5143 + (—3)16.0714 + (1)14.9571]2
[124+124(=3)2+12] /7

SS(Co) = = .052.

As before, with orthogonal contrasts
10.873 = SSTrts = SS(Cs) + SS(C1) + SS(Ce) = 10.803 +.018 4 .052.

For all practical purposes, these data are fotally consistent with the claims Cg = 0 and C; = O be-
cause SS(Cs) = 0 = SS(C}). Essentially, all the differences in means can be attributed to Cs because
SS(Cs) = SSTrts. O

It is a mathematical fact that there is always one contrast that accounts for all of SSTrts, how-
ever, this contrast rarely has a simple interpretation because the coefficients of this contrast depend
on the sample means. In a balanced one-way analysis of variance with, say, four treatments, the
coefficients of the contrast that accounts for the entire SSTrts are A; = 1. —y.., Ao = J2. — ..,
A3 =y3. — V.., and Ag = y4. — y... Typically, a contrast with these coefficients will be difficult to in-
terpret. In Example 5.4.1, Cs was constructed in this way, but to simplify the discussion we rounded
the coefficients off. Rounding the coefficients helps to make the contrast more interpretable. In the
case of Cs, the contrast became very simple. When rounding the coefficients, the contrast will not
contain quite all of the sum of squares for treatments.

One reasonable approach to analysis of variance is to identify the contrast that accounts for all
of the SSTrts and to try to interpret it. I prefer to look at the data and try to identify a contrast or
a few orthogonal contrasts that are interpretable and account for most of SSTrts. Either of these
approaches involves looking at the data to identify contrasts of interest. In such a situation, using
the standard F (1,dfE) or ¢(d fE) distributions for statistical inference is inappropriate. Appropriate
statistical methods are discussed in the next chapter.

In some situations, the structure of the treatments suggests orthogonal contrasts that are both
interesting and interpretable. When the structure of the treatments, rather than the data, suggests the
contrasts, standard methods of inference apply.

The key fact about orthogonal contrasts is that if Cy,...,C,_1 is any set of contrasts with each
orthogonal to every other one, then

SSTrts = SS(Cy)+ -+ SS(Ca_y).

In our example, a = 4, so there were sets of a — 1 = 3 orthogonal contrasts that decompose the
SSTrts. We gave two such sets of contrasts. There are an infinite number of other ways to choose
sets of orthogonal contrasts.

With a treatments, a set of orthogonal contrasts can contain no more than a — 1 elements. There
can be at most a — 1 orthogonal contrasts but one can also choose sets of orthogonal contrasts with,
say, g < a— 1 elements. In such a case,

SSTrts > SS(Cy)+---+5S(C,).
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In particular, any one contrast C can be viewed as a set with g = 1, so
SSTrts > SS(C). (5.4.1)

Interesting contrasts are determined by the structure of the treatments. We now illustrate this
fact with an example.

EXAMPLE 5.4.2.  Five diets were investigated to determine their effects on the growth of animals.
If the diets do not have any recognizable structure, about the only interesting set of contrasts is to
compare all pairs of population means. The collection of contrasts is u; — yy for i,i’ = 1,2,3,4,5
with i # i’. Note that 1y = Up = Uz = U4 = Us if and only if all 10 of these contrast are zero, i.e.,
if w; — puy = 0 for all i # i’. These contrasts are not orthogonal. There can be at most 5—1 =4
members in a set of orthogonal contrasts; this collection of contrasts has 10 members. In fact, many
of these 10 contrasts are redundant. For example, if t; — tp = 0 and upy — u3 = 0, then, of course,
t1 — p3 = 0. More generally, if you know the value of p; — pt; and the value of u; — i, you also
know the value of p; — .

Although these 10 contrasts may be redundant, statistical inferences about them may not be. For
example, failing to reject Hy : iy — 42 = 0 and Hy : 4y — pz = 0 in no way implies the we will fail
to reject Hy : 11 — 3 = 0. Similarly, rejecting Hy : iy — tp = 0 and Hy : yp — u3 = 0 does not imply
that we will reject Hy : uy — uz =0.

Now suppose we are told that treatment 1 is the standard diet and that the other four treatments
are new, experimental diets. In this case, the structure of the treatments suggests that we might
examine only the contrasts t; — y; for i = 2,3,4,5. These contrasts are not redundant. Knowing
two or three of them will never tell you the values of any others. For example, if y; — t, = 0,
U —p3 =0, and yuy — g = 0, we still do not know the value of (; — us. On the other hand, if all 4
of the contrasts equal 0, we must have [y = Uy = U3 = Ug = Us, and if the treatment means are all
equal, every contrast must be zero. These four contrasts are not orthogonal in any ANOVA.

Contrasts that are not redundant are said to be linearly independent. With a treatments, one can
have at most a — 1 linearly independent contrasts. Nontrivial orthogonal contrasts are always lin-
early independent. (The trivial contrast has A; = 0 for all i.) If any set of a— 1 linearly independent
contrasts are all equal to 0, then Uy = ) = --- = U,

Additional structure on the treatments may suggest other contrasts. Suppose that the four new
diets are, in order, two based on beef, one based on pork, and one based on soybeans. In this case
contrasts with the following coefficients seem interesting.

Diet treatments
Control Beef Beef Pork Beans
Contrast M A A3 A4 As
Ctrl vs others 4 —1 —1 —1 —1
Beef vs beef 0 1 -1 0 0
Beef vs pork 0 1 1 -2 0
Meat vs beans 0 1 1 1 -3

The first contrast, Ctrl vs others, compares the control (standard diet) to the average of the other
four diets. This contrast would actually be

N R I
4

H
but multiplying the contrast by 4 gives the equivalent contrast
Apy — o — 3 — Hg — Us

which is the one tabled. The tabled contrast is simpler to work with because its contrast coefficients
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are all integers. The other three contrasts compare the two beef diets, the average of the beef diets
with the pork diet, and the average of the meat diets with the soybean diet. In a balanced ANOVA,
these four contrasts are all orthogonal to each other.

If the structure of the treatments was different, say, the first beef diet was instead a diet based on
lima beans, the interesting orthogonal contrasts change.

Diet treatments
Control Lima Beef Pork Soy
Contrast M A A3 Ay As
Ctrl vs others 4 -1 -1 -1 —1
Beef vs pork 0 0 1 -1 0
Lima vs soy 0 1 0 0 —1
Meat vs beans 0 -1 1 1 —1

These contrasts compare the control to the average of the other four diets, the two meat diets, the
two bean diets, and the average of the meat diets with the average of the bean diets. Again, the
contrasts are all orthogonal in a balanced ANOVA. O

5.5 Comparing models

The hypothesis
Hy: ===l

can be viewed as imposing a change in the analysis of variance model

Yij = Mi+ €ij, (5.5.1)
i=1,...,a, j=1,...,N; If for some value u, u =ty = Up = --- = U, the analysis of variance
model can be rewritten as

Yij = 1+ E&ij, (5.5.2)

which involves only a grand mean p. This is just the special case of the analysis of variance model
in which the p;s do not really depend on the value of i. In (5.1.2) we wrote the analysis of vari-
ance model as y;; = 1+ o; + &;;. Model (5.5.2) is the special case obtained by dropping the o;s.
For simplicity, in this section models (5.5.1) and (5.5.2) will be referred to as models (1) and (2),
respectively.

We wish to evaluate how well model (2) fits as compared to how well model (1) fits. A measure
of how well any model fits is the sum of squared errors; a poor fitting model has much larger errors
and thus a much larger SSE. In y;; = L; + &;;, the errors are &; = y;; — L; and the estimated errors
(residuals) are & ; = y;j — y;.. The sum of squares error in model (1) is the usual analysis of variance
sum of squares error,

a
A -2
SSE(1) =Y. | & = Y Y Oy
Recall that MSE (1) = SSE(1)/(n — a) is an estimate of 6> and denote the error degrees of freedom
dfE(l)=n-—a.

Model (2) treats all n observations as a random sample from one population with mean u. Under
model (2), an estimate of 62 is s)z,, the sample variance of all n observations, so
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with error degrees of freedom

dfE2)=n—1.
We define the sum of squares error from model (2) to be
SSE(2) = dfE(2)xMSE(2)
a N; )
=YY Gij-5.)

Since model (2) is a special case of model (1), the error from model (2) must be as large as
the error from model (1), i.e., SSE(2) > SSE(1). However, if SSE(2) is much greater than SSE(1),
it suggests that the special case, model (2), is an inadequate substitute for the full model (1). In
particular, large values of SSE(2) — SSE(1) suggest that the reduced model (2) is inadequate to
explain the data that, by assumption, were adequately explained using the full model (1). It can be
established that, if the reduced model is true, the statistic

SSE(2) — SSE(1)

MSTest = m

is an estimate of 62, which is independent of the estimate from the full model, MSE(1). If the
reduced model is not true, MSTest estimates 62 plus a positive number. A test of whether model (2)
is an adequate substitute for model (1) is rejected if

[SSE(2) — SSE(1)] / [dfE(2) — dfE(1)]

F = MSE(D) (5.5.3)

is too much larger than 1. In particular, an « level test rejects the adequacy of model (2) when

[SSE(2) —SSE(1)] / [dfE(2) —dfE(1)]
MSE(1)

>F(1—a,dfEQ2)—dfE(1),dfE(1)).  (5.5.4)

To see that the numerator in (5.5.3) is a reasonable estimate of 6> when model (2) holds, write

MSE(2) = del(z) [SSE(2) — SSE(1) + SSE(1)]
 dfEQ)—dfE(1) (SSE(2)—SSE(1)\ . dfE(1)
dfEQ) (de<2> de(l)) T arE@)MSEW:

MSE(2) is a weighted average of MSTest and MSE(1). MSE(1) is certainly a reasonable estimate
of 62 and, if the means are all equal, MSE (2) is also a reasonable estimate of 62. Thus, if the means
are all equal, [SSE(2) — SSE(1)]/[dfE(2) — dfE(1)] must be a reasonable estimate of 6> because
if it were not, a weighted average of it and MSE (1) would not be a reasonable estimate of 2.

The F statistic in (5.5.3) is exactly the analysis of variance table F statistic. This follows because,
relative to the analysis of variance table,

SSTot = SSE(2)

dfTot = dfE(2)

SSE = SSE(1)

dfE = dfE(1)

MSE = SSE(1)/dfE(1)
SSTrts = SSE(2)—SSE(1)
dfTrts = dfE(2)—dfE(

MSTrts = [SSE(2)—SSE(1)]/[dfE(2) —dfE(1)]
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This technique of testing the adequacy of a reduced (special case) model by comparing the
error sum of squares for the full model and the reduced model is applicable very generally. In
more sophisticated unbalanced analysis of variance situations and in regression analysis, this is a
primary method used to test hypotheses. In particular, the test in (5.5.4) applies for any ANOVA or
regression model (2) that is a special case of any ANOVA or regression model (1) as long as the
errors are independent N(0,67).

5.6 The power of the analysis of variance F test

The power of a test is the probability of rejecting the null hypothesis when the null hypothesis is
false. Thus, the power of the analysis of variance F test is the probability of correctly concluding
that the t;s are not all the same when they are in fact not all the same. In this section we give some
intuition for the power of the analysis of variance F' test. For simplicity we discuss only balanced

analysis of variance.
As discussed in Section 5.2, whenever the analysis of variance model is correct, the MSE is an

unbiased estimate of
E(MSE) = ¢* (5.6.1)

and MSTrts is an unbiased estimate of

N a

2 =\2
E(MSTrts) = 0%+ — ;(M — @)% (5.6.2)
Write
1 ¢ _
so = — Z(uifu-)z, (5.6.3)

SO s,i is the ‘sample’ variance of the y;s. The word sample is in quotation marks because we do not

really have a sample of y;s, in fact we never get to observe the y;s. si is a sample variance only in
the sense that the computational formula (5.6.3) is identical to that for a sample variance. With the
new notation, we can rewrite (5.6.2) as

E(MSTrts) = 6* + Nsj,. (5.6.4)
The analysis of variance F statistic is defined as

Fo MSTrts
~ MSE

Since the MSE and the MSTrts estimate (5.6.1) and (5.6.4) respectively, by substitution we see that
F is an estimate of

2 2
%ﬁvs“ =1+ %si. (5.6.5)
(F is not an unbiased estimate of this quantity but F is a reasonable estimate of it.)

The behavior of the F test depends crucially on the quantity that F estimates. First notice that if
the y;s are all equal, they have no variability and sﬁ = 0. In fact the u;s are all equal if and only if
sfl = (. The statistic F' always estimates the value in (5.6.5) and when sfl = 0 that value is 1. Thus
an F statistic that is too far above 1 suggests that Si # 0. Alternatively, when the ;s are not all
equal, they have positive variability and 5%1 > 0. In this case, F is estimating a value in (5.6.5) that
is greater than 1, so values of F substantially greater than 1 lead us to suspect that sﬁ > (0 and hence
that the ;s are not all equal.

Remember that even when s%l =0, F is only an estimate of 1; it has a natural variability about
1. To reject the idea that st = 0, an observed F value must be larger than would normally be

experienced when s3; = 0.



5.7 EXERCISES 137

When st = 0, the statistic F has an F(dfTrts,dfE) distribution. This distribution specifies
the values of F' that would normally be experienced. Thus an ¢ level test is rejected when the
observed F value is larger than all but 100a% of the observations that normally occur, i.e., larger
than F(1 — ot,dfTrts,dfE). When sﬁ = 0 there is only a probability of o that the observed F value
will exceed F (1 — a,dfTrts,dfE).

Note that values of F' that are much smaller than 1 do not suggest that sﬁ > (0. Within the present
discussion, values of F that are smaller than 1 are most consistent with sfl = 0 and will not be
considered further. It should be noted, however, that very small values of F' are suggestive. In terms
of modeling, they are suggestive of something fairly complicated, cf. Christensen (1989, 1991).
Very small test statistics have also been known to occur when someone has manufactured data in
order to justify a null hypothesis. For example, some data reported by Mendel that supported his
theories of genetic inheritance were too good to be true.

We reject the hypothesis of equal y;s for F values that are substantially greater than 1. It is
natural to ask what causes F' to take on values that are substantially greater than 1. In other words,
what causes the test to have high power for detecting differences in the p;s? Obviously, F will tend
to be substantially greater than 1 when it is estimating something that is substantially greater than
1, i.e., when

N 2
1+?S“

is substantially greater than 1. There are three items involved. To make 1 +stl /o much larger

than 1 we need some combination of N large, 6> small, and sfl large. The first two items are some-
what controllable. To increase the power of the F' test we can increase N, the size of the various
samples. The second item, 62, is a parameter, so we will never know it exactly, but improving one’s
experimental methods can make it smaller. For example, measuring the height of a house with a
meter stick rather than a 30 centimeter ruler is likely to yield a much more accurate value for the
height. In later chapters we discuss some general methods for designing experiments that enable us
to reduce 2. The third item above, 52, we are simply stuck with. There is little we can do with
the w;s to cause a test to be powerful. If the differences among the ;s are small, the y;s have little
variability and sfl is near zero. Other things being equal, it is unlikely that we will correctly reject

the F test when s,
4 is so small that Ns;; /G is near zero. Even when s

is much smaller than sﬁ,

is near zero. More accurately, it is unlikely that we will correctly reject the F

2
u

we have a good chance of correctly identifying that there are

test when s is small in absolute terms, if N is

large or 6

differences in the y;s.

For specified values of Nslz1 / o2 it is possible to compute the probability of rejecting the F test.
To specify stt /o2 one needs to know N and some approximation for 62; these are often available.
The most difficult part of computing the power of an F test is in specifying a reasonable value for
sﬁ. In specifying a value for sﬁ we need both to specify a pattern for the differences in the ;s and to
quantify the extent of the differences. For example, our interest may be in detecting differences in
the ;s when all of the ;s are equal except one, which is, say, d units larger than the others. We can
compute the value for si by specifying d. Similarly, with an even number of treatments our interest
may be in detecting differences in the ;s in which half the y;s equal one value and the other half
equal a different value, with the two values d units apart. Again we can compute a value of sfl for

any difference d but the value of 5%1 depends on d in a very different manner than in the first case.

5.7 Exercises

EXERCISE 5.7.1. In a study of stress at 600% elongation for a certain type of rubber, Mandel
(1972) reported stress test data from five different laboratories. Summary statistics are given in
Table 5.6. Compute the analysis of variance table and test for differences in means between all pairs
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Table 5.6: Rubber stress at five laboratories

Sample  Sample Sample

Lab. size mean variance
1 4 57.00 32.00
2 4 67.50 46.33
3 4 40.25 14.25
4 4 56.50 5.66
5 4 52.50 6.33

Table 5.7: Acreage in corn for different sized farms

Farm  Sample Sample  Sample

acres size mean std. dev.
80 5 2.9957 0.4333
160 5 3.6282 0.4056
240 5 4.1149 0.4169
320 5 4.0904 0.4688
400 5 4.4030 0.5277

of labs. Use o = .01. Is there any reason to worry about the assumptions of the analysis of variance
model?

EXERCISE 5.7.2.  Snedecor and Cochran (1967, section 6.18) presented data obtained in 1942
from South Dakota on the relationship between the size of farms (in acres) and the number of
acres planted in corn. Summary statistics are presented in Table 5.7. Note that the sample standard
deviations rather than the sample variances are given. In addition, the pooled standard deviation is
0.4526.

(a) Give the one-way analysis of variance model with all of its assumptions. Can any problems with
the assumptions be identified?

(b) Give the analysis of variance table for these data. Test whether there are any differences in corn
acreages due to the different size farms. Use o = .01.

(c) Test for differences between all pairs of farm sizes using @ = .01 tests.

(d) Find the sum of squares for the following contrast:

Farm 80 160 240 320 400
Coeff. -2 -1 0 1 2

What percentage is this of the treatment sum of squares?
e) Give 95% confidence and prediction intervals for the number of acres in corn for each farm
size.

EXERCISE 5.7.3. Table 5.8 gives data on heights and weights of people. Give the analysis of
variance table and test for differences among the four groups. Give a 99% confidence interval for
the mean weight of people in the 72 inch height group.

EXERCISE 5.7.4. Conover (1971, p. 326) presented data on the amount of iron found in the
livers of white rats. Fifty rats were randomly divided into five groups of ten and each group was
given a different diet. We analyze the logs of the original data. The total sample variance of the 50
observations is 0.521767 and the means for each diet are given below.
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Table 5.8: Weights (in pounds) for various heights (in inches)

Sample  Sample  Sample

Height size mean variance
63 3 121.66  158.333
65 4 131.25 72.913
66 2 142.50  112.500
72 3 171.66  158.333

Table 5.9: Peel-strength of various adhesive systems

Adhesive
system Observations
1 60 63 57 53 56 57
2 57 52 55 59 56 54
3 198 195 197 216 21.1 193
4 52 53 44 48 48 53
Diet A B C D E

Mean 1.6517 0.87413 0.89390 0.40557 0.025882

Compute the analysis of variance table and test whether there are differences due to diet.
If diets A and B emphasize beef and pork respectively, diet C emphasizes poultry, and diets D
and E are based on dried beans and oats, the following contrasts may be of interest.

Diet
Contrast A B C D E
Beef vs. pork 1 -1 0 0 0
Mammals vs. poultry | 1 1 -2 0 0
Beans vs. oats 0 0 0 1 -1
Animal vs. vegetable | 2 2 2 -3 -3

Show that the contrasts are orthogonal and compute sums of squares for each contrast. Interpret
your results and draw conclusions about the data.

EXERCISE 5.7.5. In addition to the data discussed earlier, Mandel (1972) reported data from one
laboratory on four different types of rubber. Four observations were taken on each type of rubber.
The means are given below.

Material A B C D
Mean 26.4425 26.0225 23.5325 29.9600

The sample variance of the 16 observations is 14.730793. Compute the analysis of variance table,
the overall F test, and test for differences between each pair of rubber types. Use @ = .05.

EXERCISE 5.7.6. In Exercise 5.7.5 on the stress of four types of rubber, the observations on
material B were 22.96, 22.93, 22.49, and 35.71. Redo the analysis, eliminating the outlier. The
sample variance of the 15 remaining observations is 9.3052838.

EXERCISE 5.7.7. Bethea et al. (1985) reported data on an experiment to determine the effective-
ness of four adhesive systems for bonding insulation to a chamber. The data are a measure of the
peel-strength of the adhesives and are presented in Table 5.9. A disturbing aspect of these data is
that the values for adhesive system 3 are reported with an extra digit.
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Table 5.10: Weight gains of rats

Thyroxin | Thiouracil Control
132 68 68 107 115
84 63 52 90 117
133 80 80 91 133

118 63 61 91 115
87 89 69 112 95
88

119

Table 5.11: Tetrahydrocortisone values for patients with Cushing’s syndrome

a ‘ b c
3.1 8.3 15.4 10.2
3.0 3.8 7.7 9.2
1.9 3.9 6.5 9.6
3.8 7.8 5.7 53.8
4.1 9.1 13.6 15.8
1.9

(a) Compute the sample means and variances for each group. Give the one-way analysis of variance
model with all of its assumptions. Are there problems with the assumptions? If so, does an
analysis on the square roots or logs of the data reduce these problems?

(b) Give the analysis of variance table for these (possibly transformed) data. Test whether there are
any differences in adhesive systems. Use &t = .01.

(c) Test for differences between all pairs of adhesive systems using o = .01 tests.

(d) Find the sums of squares i) for comparing system 1 with system 4 and ii) for comparing system
2 with system 3.

(e) Perform a .0l level F test for whether the mean peel-strength of systems 1 and 4 differs from the
mean peel-strength of systems 2 and 3.

(f) What property is displayed by the sums of squares computed in (d) and (e)? Why do they have
this property?

(g) Give a 99% confidence interval for the mean of every adhesive system.

(h) Give a 99% prediction interval for every adhesive system.

(1) Give a 95% confidence interval for the difference between systems 1 and 2.

EXERCISE 5.7.8. Table 5.10 contains weight gains of rats from Box (1950). The rats were given
either Thyroxin or Thiouracil or were in a control group. Do a complete analysis of variance on the
data. Give the model, check assumptions, make residual plots, give the ANOVA table, and examine
appropriate contrasts.

EXERCISE 5.7.9.  Aitchison and Dunsmore (1975) presented data on Cushing’s syndrome. Cush-
ing’s syndrome is a condition in which the adrenal cortex overproduces cortisol. Patients are divided
into one of three groups based on the cause of the syndrome: a — adenoma, b — bilateral hyperplasia,
and ¢ — carcinoma. The data are amounts of tetrahydrocortisone in the urine of the patients. The
data are given in Table 5.11. Give a complete analysis.

EXERCISE 5.7.10.  Draper and Smith (1966, p. 41) considered data on the relationship between
the age of truck tractors (in years) and the cost (in dollars) of maintaining them over a six month
period. The data are given in Table 5.12.



5.7 EXERCISES 141

Table 5.12: Age and costs of maintenance for truck tractors

Age Costs
0.5 | 163 182
1.0 | 978 466 549
4.0 | 495 723 681
45 | 619 1049 1033
5.0 | 890 1522 1194
5.5 | 987
6.0 | 764 1373

Note that there is only one observation at 5.5 years of age. This group does not yield an estimate
of the variance and can be ignored for the purpose of computing the mean squared error. In the
weighted average of variance estimates, the variance of this group is undefined but the variance gets
0 weight, so there is no problem.

Give the analysis of variance table for these data. Does cost differ with age? Is there a significant
difference between the cost at 0.5 years as opposed to 1.0 year? Use several contrasts to determine
whether there are any differences between costs at 4, 4.5, 5, 5.5, and 6 years. How much of the sum
of squares for treatments is due to the following contrast?

Age 05 10 40 45 50 55 6.0
Coeff. -5 -5 2 2 2 2 2

What is the sum of squares for the contrast that compares the average of 0.5 and 1.0 with the
averages of 4, 4.5, 5, 5.5, and 67

EXERCISE 5.7.11.  George Snedecor (1945a) asked for the appropriate variance estimate in the
following problem. One of six treatments was applied to the 10 hens contained in each of 12 cages.
Each treatment was randomly assigned to two cages. The data were the number of eggs laid by each
hen.

(a) What should you tell Snedecor? Were the treatments applied to the hens or to the cages? How
will the analysis differ depending on the answer to this question?

(b) The mean of the 12 sample variances computed from the 10 hens in each cage was 297.8. The
average of the 6 sample variances computed from the two cage means for each treatment was
57.59. The sample variance of the 6 treatment means was 53.725. How should you construct an
F test? Remember that the numbers reported above are not necessarily mean squares.

EXERCISE 5.7.12.  Lehmann (1975), citing Heyl (1930) and Brownlee (1960), considered data
on determining the gravitational constant of three elements: gold, platinum, and glass. The data
Lehmann gives are the third and fourth decimal places in five determinations of the gravitational
constant. They are presented below. Analyze the data.

Gold Platinum Glass

83 61 78
81 61 71
76 67 75
79 67 72
76 64 74

EXERCISE 5.7.13.  Shewhart (1939, p. 69) also presented the gravitational constant data of Heyl
(1930) that was considered in the previous problem, but Shewhart reports six observations for gold
instead of five. Shewhart’s data are given below. Analyze these data and compare your results to
those of the previous exercise.



142 5. ONE-WAY ANALYSIS OF VARIANCE
Gold Platinum Glass

83 61 78
81 61 71
76 67 75
79 67 72
78 64 74
72

EXERCISE 5.7.14.  Recall that if Z ~ N(0,1) and W ~ x2(r) with Z and W independent, then
by Definition 2.1.3 Z/+/W /r has a t(r) distribution. Also recall that in a one-way ANOVA with
independent normal errors, a contrast has

; >

1

>

Za: Ayi. ~N <i Ailti, 6*
= =1

SSE
o2 ~ Xz(de)a

and MSE independent of all the y;.s. Show that
Y A — X Al

\VMSEX A7 /N;

.Ma
=|

Il
-

1

~t(dfE).



Chapter 6

Multiple comparison methods

As illustrated in Section 5.1, the most useful information from a one-way ANOVA is obtained
through examining contrasts. The trick is in picking interesting contrasts to consider. Interesting
contrasts are determined by the structure of the treatments or are suggested by the data.

The structure of the treatments often suggests a fixed group of contrasts that are of interest. For
example, if one of the treatments is a standard treatment or a control, it is of interest to compare
all of the other treatments to the standard. With a treatments, this leads to a — 1 contrasts. (These
will not be orthogonal.) In Chapter 11 we will consider factorial treatment structures. These include
cases such as four fertilizer treatments, say,

nopo nopi1 nMpo nipi

where ngpo is no fertilizer, nop; consists of no nitrogen fertilizer but application of a phosphorous
fertilizer, ny pg consists of a nitrogen fertilizer but no phosphorous fertilizer, and n; p; indicates both
types of fertilizer. Again the treatment structure suggests a fixed group of contrasts to examine. One
interesting contrast compares the two treatments having nitrogen fertilizer against the two without
nitrogen fertilizer, another compares the two treatments having phosphorous fertilizer against the
two without phosphorous fertilizer, and a third contrast compares the effect of nitrogen fertilizer
when phosphorous is not applied with the effect of nitrogen fertilizer when phosphorous is applied.
Again, we have a treatments and a — 1 contrasts. In a balanced ANOVA, these a — 1 contrasts are
orthogonal. Even when there is an apparent lack of structure in the treatments, the very lack of
structure suggests a fixed group of contrasts. If there is no apparent structure, the obvious thing to
do is compare all of the treatments with all of the other treatments. With three treatments, there are
three distinct pairs of treatments to compare. With four treatments, there are six distinct pairs of
treatments to compare. With five treatments, there are ten pairs. With seven treatments, there are 21
pairs. With 13 treatments, there are 78 pairs.

One problem is that, with a moderate number of treatment groups, there are many contrasts to
look at. When we do tests or confidence intervals, there is a built in chance for error. The more
statistical inferences we perform, the more likely we are to commit an error. The purpose of the
multiple comparison methods examined in this chapter is to control the probability of making a
specific type of error. When testing many contrasts, we have many null hypotheses. This chapter
considers multiple comparison methods that control (i.e., limit) the probability of making an error
in any of the tests, when all of the null hypotheses are correct. Limiting this probability is referred to
as weak control of the experimentwise error rate. It is referred to as weak control because the control
only applies under the very stringent assumption that all null hypotheses are correct. Some authors
consider a different approach and define strong control of the experimentwise error rate as control
of the probability of falsely rejecting any null hypothesis. Thus strong control limits the probability
of false rejections even when some of the null hypotheses are false. Not everybody distinguishes
between weak and strong control, so the definition of experimentwise error rate depends on whose
work you are reading. One argument against weak control of the experimentwise error rate is that in
designed experiments, you choose treatments that you expect to have different effects. In such cases,

143
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Table 6.1: Mandel’s data on thirteen laboratories with summary statistics for the logs of the data

Lab Observations N Vi. s% i
1| 133 129 123 156 | 4 49031 0.01061315 0.1030
2| 129 125 136 127 | 4 4.8612 0.00134015 0.0366
30 121 125 109 128 | 4 47919 0.00502248  0.0709
4 57 58 59 67 | 4 4.0964 0.00540738  0.0735
5] 122 98 107 110 | 4 4.6906 0.00814531 0.0903
6 | 109 120 112 107 | 4 47175 0.00252643  0.0503
7 80 72 76 64 | 4 42871 0.00915446  0.0957
8 | 135 151 143 142 | 4 49603 0.00210031  0.0458
9 69 69 73 70 | 4 42518 0.00071054  0.0267
10 | 132 129 141 137 | 4 49028 0.00155179 0.0394
11 | 118 109 115 106 | 4 47176 0.00239586  0.0489
12 | 133 133 129 128 | 4 4.8731 0.00040518 0.0201
13 86 84 96 81 | 4 44610 0.00535505 0.0732

it makes little sense to concentrate on controlling the error under the assumption that all treatments
have the same effect. On the other hand, strong control is more difficult to establish.

Our discussion of multiple comparisons focuses on testing whether contrasts are equal to 0. In
all but one of the methods considered in this chapter, the experimentwise error rate is (weakly)
controlled by first doing a test of the hypothesis (; = up = --- = U,. If this test is not rejected, we
do not claim that any individual contrast is different from 0. In particular, if y; = tp = --- = g, any
contrast among the means must equal 0, so all of the null hypotheses are correct. Since the error rate
for the test of () = U = --- = Y, is controlled, the weak experimentwise error rate for the contrasts
is also controlled.

Many multiple testing procedures can be adjusted to provide multiple confidence intervals that
have a guaranteed simultaneous coverage. Several such methods will be presented in this chapter.

Besides the treatment structure suggesting contrasts, the other source of interesting contrasts is
having the data suggest them. If the data suggest a contrast, then the ‘parameter’ in our standard
theory for statistical inferences is a function of the data and not a parameter in the usual sense of
the word. When the data suggest the parameter, the standard theory for inferences does not apply.
To handle such situations we can often include the contrasts suggested by the data in a broader class
of contrasts and develop a procedure that applies to all contrasts in the class. In such cases we can
ignore the fact that the data suggested particular contrasts of interest because these are still contrasts
in the class and the method applies for all contrasts in the class. Of the methods considered in the
current chapter, only Scheffé’s method (discussed in Section 6.4) is generally considered appropriate
for this kind of data dredging.

Recently, a number of books have been published on multiple comparison methods, e.g.,
Hochberg and Tamhane (1987). A classic discussion is Miller (1981), who also focuses on weak
control of the experimentwise error rate, cf. Miller’s section 1.2.

We present multiple comparison methods in the context of the one-way ANOVA model (5.1.1)
but the methods extend easily to many other situations. We will use a single numerical example to
illustrate most of the methods discussed in this chapter. The data are introduced in Example 6.0.1.

EXAMPLE 6.0.1. Mandel (1972) presented data on the stress at 600% elongation for natural
rubber with a 40 minute cure at 140 °C. Stress was measured four times by each of 13 laboratories.
The units for the data are kilograms per centimeter squared (kg/cm?). The data are presented in
Table 6.1. While an analysis of these data on the original scale is not unreasonable, the assumptions
of equal variances and normality seem to be more nearly satisfied on the logarithmic scale. The
standard summary statistics for computing the analysis of variance on the natural logs of the data
are also given in Table 6.1.

This is a balanced one-way ANOVA, so the simple average of the 13 s7s gives the MSE. There
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Table 6.2: Analysis of variance table for logs of Mandel’s data

Source  df SS MS F P
Trts 12 392678 0.32723 77.73  0.000
Error 39  0.16418  0.00421

Total 51 4.09097
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Figure 6.1: Plot of residuals versus predicted values.

are three degrees of freedom for the variance estimate from each laboratory, so with 13 laboratories
there are a total of 13(3) = 39 degrees of freedom for error. The mean squared error times the
degrees of freedom for error gives the sum of squares for error. The sample variance of the 13
¥i.8 18 syg = .081806429. Multiplying this by the number of observations in each group, 4, gives
the MSTrts. The MSTrts times (13 — 1) gives the SSTrts. The sum of squares total is the sample
variance of the logs of all 52 observations times (52 — 1). The degrees of freedom total are 52 — 1.
These calculations are summarized in the analysis of variance table given in Table 6.2.

Figures 6.1, 6.2, and 6.3 give residual plots. Figure 6.1 is a plot of the residuals versus the pre-
dicted values. The group mean y;. is the predicted value for an observation from group i. Figure 6.1
shows no particular trend in the variabilities. Figure 6.2 is a plot of the residuals versus indicators
of the 13 laboratories. Again, there are no obvious problems. Figure 6.3 gives a normal plot of the
residuals; the plot looks quite straight.

For pedagogical purposes, on some occasions we consider only the first seven of the 13 treatment
groups. We are not selecting these laboratories based on the data and we will continue to use the

MSE and dfE from the full data. O

6.1 Fisher’s least significant difference method

The easiest way to adjust for multiple comparisons is to use R. A. Fisher’s least significant difference
method. To put it as simply as possible, with this method you first look at the analysis of variance
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Figure 6.2: Plot of residuals versus treatment number.
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Figure 6.3: Normal plot of residuals, W' = 0.976.
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F test for whether there are differences between the groups. If this test provides no evidence of
differences, you quit and go home. If the test is significant at, say, the @ = .05 level, you just
ignore the multiple comparison problem and do all other tests in the usual way at the .05 level. This
method is generally considered inappropriate for use with contrasts suggested by the data. While
the theoretical basis for excluding contrasts suggested by the data is not clear (at least relative to
weak control of the experimentwise error rate), experience indicates that the method rejects far too
many individual null hypotheses if this exclusion is not applied. In addition, many people would not
apply the method unless the number of comparis<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>