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Abstract

We discuss the covariance matrix of the Wishart and the derivation of the covariance matrix of a

regression estimate discussed in Tarpey et al. (2014). We also examine the relationship between

inequalities considered in Cook, Forzani, and Rothman (2015) and Tarpey et al.’s response to

that comment.
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An appendix at the end contains results taken from Christensen (2011, Section B.6) on the

algebra of using Kronecker products and Vec operators. The notation and concepts are in accord

with Chistensen (2001, 2011). The first section introduces the vector space of p× p matrices. The

second section discusses the Wishart covariance matrix. The third section applies the results

on the Wishart to the regression problem of Tarpey et al. (2014). The final section examines the

relationship between inequalities considered in Cook, Forzani, and Rothman (2015) and Tarpey

et al.’s response to that comment.

1 The Vector Space of p× p Matrices

Clearly, p×pmatrices form a vector space under matrix addition and scalar multiplication. Note

that transposing a matrix constitutes a linear transformation on the space of p × p matrices. In

other words, the transpose operator T (P ) = P ′ is a linear transformation on the matrices.

Write the p dimensional identity matrix in terms of its columns,

Ip = [e1, · · · , ep]

A basis for the p×pmatrices (that will turn out to be orthonormal) is eie′j , i = 1, . . . , p, j = 1, . . . , p.

For a matrix P with elements ρij ,

P =
p∑

i=1

p∑
j=1

ρijeie
′
j.

The rank of the space is p2.

Symmetric matrices are closed under matrix addition and scalar multiplication so they form

a subspace with (eventually an orthogonal) basis (eie′j + eje
′
i), i = 1, . . . , p, j ≤ i. The rank of the

subspace is p(p+ 1)/2.

Matrix multiplication is defined by AP =
∑p

i=1

∑p
j=1 (

∑p
k=1 aikρkj) eie

′
j .

In statistics a key reason for using vectors is that we like to look at linear combinations of the

vector’s elements. We can accomplish that by using an inner product on the vector space but for
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most people it is probably easier to see what is going on if we turn p × p matrices into column

vectors in Rp2 .

There are two ways to do this. We will identify the matrix P with

Vec(P ) =
p∑

i=1

p∑
j=1

ρij[ej ⊗ ei] = Vec

 p∑
i=1

p∑
j=1

ρijeie
′
j

 .
Eaton (1982) (implicity) identifies P with Vec(P ′) =

∑p
i=1

∑p
j=1 ρij[ei ⊗ ej] which works just as

well and may have notational advantages. It is important to keep track of which representa-

tion you use. For example, if the rows of an n × p matrix Y are independent Np(µ,Σ) vectors,

Cov [Vec(Y )] = [Σ⊗ In] whereas Cov [Vec(Y ′)] = [In ⊗ Σ], which is what Eaton calls Cov(Y ).

A linear combination of two matrix vectors, say P and A, is

Vec(P )′Vec(A) = tr(P ′A).

This defines the standard Euclidean inner product on Rp2 and a natural inner product on the p×p

matrices. Defining an inner product defines the concepts of vector length and orthogonality.

We can now write the transpose operator, which is linear, as a p2 × p2 matrix,

T =
p∑

i=1

p∑
j=1

[ej ⊗ ei][ei ⊗ ej]
′.

Note that

TVec(P ) =

 p∑
i=1

p∑
j=1

[ej ⊗ ei][ei ⊗ ej]
′

 [ p∑
h=1

p∑
k=1

ρhk[ek ⊗ eh]

]
=

p∑
i=1

p∑
j=1

ρji[ej ⊗ ei] = Vec(P ′).

This is because [ei ⊗ ej]
′[ek ⊗ eh] = 1 when i = k and j = h but is 0 otherwise. In a similar vein,

the identity matrix can be written as

Ip2 =
p∑

i=1

p∑
j=1

[ei ⊗ ej][ei ⊗ ej]
′
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and of course we must have TT = Ip2 .

2 The Wishart Covariance Matrix

Let y1, . . . , yn be independent Np(0,Σ) vectors and let

Y =


y′1
...

y′n

 .

As mentioned earlier, Cov [Vec(Y )] = [Σ ⊗ Ip] whereas Cov [Vec(Y ′)] = [Ip ⊗ Σ], which is what

Eaton (1982) calls Cov(Y ).

Define W ≡ Y ′Y so that W ∼ Wp(n,Σ). The standard result for the covariance matrix of a

Wishart is

Cov [Vec(W )] = n[Σ⊗ Σ] [Ip2 + T ] (1)

where T is the transpose operator, i.e., TVec(P ) = Vec(P ′).

Because W is symmetric, i.e. wij = wji,

Vec(P )′Vec(W ) =
p∑

i=1

p∑
j=1

ρijwij =
p∑

i=1

p∑
j=1

ρjiwji =
p∑

i=1

p∑
j=1

ρjiwij = Vec(P ′)′Vec(W )

which implies that

Vec
[
1

2
(P + P ′)

]′
Vec(W ) = Vec(P )′Vec(W ) = Vec(P ′)′Vec(W ).

When considering linear combinations of the elements of W , without loss of generality, we can

assume that P = P ′, in which case

Var [Vec(P )′Vec(W )] = Vec(P )′[Σ⊗ Σ] [Ip2 + T ] Vec(P ) = 2Vec(P )′[Σ⊗ Σ]Vec(P ),
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which is the result in Eaton (1982). Moreover,

Cov [Vec(A)′Vec(W ),Vec(P )′Vec(W )] = Vec(A)′[Σ⊗ Σ] [Ip2 + T ] Vec(P ) = 2Vec(A)′[Σ⊗ Σ]Vec(P )

when either P or A is symmetric.

We now characterize the covariance matrix of Vec(W ) via

Vec(A)′[Σ⊗ Σ] [Ip2 + T ] Vec(P ) =
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

[aijρhk + aijρkh]σjkσih (2)

for arbitrary A and P (not necessarily symmetric). Alternatively,

Vec(A)′[Σ⊗ Σ] [Ip2 + T ] Vec(P ) =
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

aijρhk[σjkσih + σjhσik] (3)

The proofs of these results appear at the end of the section.

If Cov[Vec(W )] = n[Σ⊗ Σ] [Ip2 + T ], then [Σ⊗ Σ] [Ip2 + T ] must be nonnegative definite, even

though that fact is my no means obvious from the structure of the matrix. Just for completeness,

we provide a direct proof.

Proposition The matrix [Σ ⊗ Σ] [Ip2 + T ] is nonnegative (positive) definite if Σ is nonnegative

(positive) definite.

The proof is deferred to the end of the section.

We now present the proofs of equations (2) and (3). Equation (2) follows from

Vec(A)′[Σ⊗ Σ]Vec(P ) =
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

aij[ej ⊗ ei]
′[Σ⊗ Σ]ρhk[ek ⊗ eh]

=
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

aijρhk[e
′
jΣek ⊗ e′iΣeh]

=
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

aijρhkσjkσih (4)
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and

Vec(A)′[Σ⊗ Σ]T Vec(P ) = Vec(A)′[Σ⊗ Σ]Vec(P ′)

=
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

aij[ej ⊗ ei]
′[Σ⊗ Σ]ρkh[ek ⊗ eh]

=
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

aijρkh[e
′
jΣek ⊗ e′iΣeh]

=
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

aijρkhσjkσih.

Equation (3) follows from

p∑
i=1

p∑
j=1

p∑
h=1

p∑
k=1

[aijρhk + aijρkh]σjkσih

=
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

aijρhkσjkσih +
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

aijρkhσjkσih

=
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

aijρhkσjkσih +
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

aijρhkσjhσik

=
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

aijρhk[σjkσih + σjhσik].

PROOF OF PROPOSITION. To see that the matrix is symmetric, consider the (r − 1)p+ s row and

(v − 1)p+ w column of [Σ⊗ Σ] [Ip2 + T ] which is

[er ⊗ es]
′[Σ⊗ Σ] [Ip2 + T ] [ev ⊗ ew] = [er ⊗ es]

′[Σ⊗ Σ][ev ⊗ ew] + [er ⊗ es]
′[Σ⊗ Σ][ew ⊗ ev]

= [e′rΣev ⊗ e′sΣew] + [e′rΣew ⊗ e′sΣev]

= σrvσsw + σrwσsv

This equals the (v − 1)p+ w row and (r − 1)p+ s column of [Σ⊗ Σ] [Ip2 + T ] which is

[ev ⊗ ew]
′[Σ⊗ Σ] [Ip2 + T ] [er ⊗ es] = σvrσws + σwrσvs = σrvσsw + σrwσsv
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because Σ is symmetric.

The matrix is nonnegative definite if for any matrix P ,

Vec(P )′[Σ⊗ Σ][Ip2 + T ]Vec(P ) ≥ 0. (5)

This occurs if and only if

Vec(P )′[Σ⊗ Σ]Vec(P ) ≥ |Vec(P )′[Σ⊗ Σ]TVec(P )| = |Vec(P )′[Σ⊗ Σ]Vec(P ′)|.

However, by Cauchy-Schwartz,

{Vec(P )′[Σ⊗ Σ]Vec(P )} {Vec(P ′)′[Σ⊗ Σ]Vec(P ′)} ≥ {Vec(P )′[Σ⊗ Σ]Vec(P ′)}2

where equality can only occur if P = P ′ or Σ is singular. Shortly we will demonstrate that

Vec(P )′[Σ⊗ Σ]Vec(P ) = Vec(P ′)′[Σ⊗ Σ]Vec(P ′) (6)

which gives us

{Vec(P )′[Σ⊗ Σ]Vec(P )}2 ≥ {Vec(P )′[Σ⊗ Σ]Vec(P ′)}2

and

Vec(P )′[Σ⊗ Σ]Vec(P ) ≥ |Vec(P )′[Σ⊗ Σ]Vec(P ′)|

as desired. Since equality can only occur when P is symmetric or Σ is singular, when Σ is positive

definite, the inequality (5) is strict unless P = 0.

To see equation (6), apply equation (4) to get

Vec(P )′[Σ⊗ Σ]Vec(P ) =
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

ρijρhkσjkσih
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and

Vec(P ′)′[Σ⊗ Σ]Vec(P ′) =
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

ρjiρkhσjkσih

=
p∑

i=1

p∑
j=1

p∑
h=1

p∑
k=1

ρijρhkσihσjk.

3 Applications to Tarpey et al. (2014)

Assume that the p+ 1 dimensional vectors (yi, xi1, · · · , xip)′ ≡ (yi, x
′
i)
′ are independent and

 yi
xi

 ∼ Np

 µy

µx

 ,
 σ2

y Ψyx

Ψxy Ψx

 .
Write,

Y =


y1
...

yn

 ; X =


x′1
...

x′n

 .

Consider a linear model conditional on X

Y = αJ +Xβ + e, E(e) = 0, Cov(e) = σ2In

where J is a column of ones, β is a solution to

Ψxβ = Ψxy,

α = µy − µ′
xβ,

and

σ2 = σ2
y − β′Ψxβ.
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Also write

Yc ≡ [I − (1/n)JJ ′]Y ; Xc ≡ [I − (1/n)JJ ′]X

and the usual unbiased estimates of the variance and covariance parameters as

 s2y Syx

Sxy Sx

 =
1

n− 1

 Y ′
cYc Y ′Xc

X ′
cY X ′

cXc

 .
The usual least squares estimate of β is

β̂ = S−1
x Sxy = (X ′

cXc)
−1X ′

cY.

Tarpey et al. examine the estimate

β̃ = Ψ−1
x Sxy = Ψ−1

x

1

n− 1
X ′

cY.

It is relatively easy to see that the covariance matrix of β̂ is

Cov(β̂) =
σ2
y − β′Ψxβ

n− p− 2
Ψ−1

x =
σ2
yΨ

−1
x − β′ΨxβΨ

−1
x

n− p− 2

(especially after seeing the derivation below). We establish at the end of this section that

Cov(β̃) =
1

n− 1

(
σ2
yΨ

−1
x + ββ′

)
. (1)

Clearly, when n >> p, the variability of β̃ will exceed that of β̂.

The incorrect covariance matrix for β̃ given (by me) in Tarpey et al. (2014) is actually an upper

bound on Cov(β̃).

σ2
y +Ψ′

xyΨ
−1
x Ψxy

n− 1
Ψ−1

x ≥ 1

n− 1

(
σ2
yΨ

−1
x +Ψ−1

x ΨxyΨ
′
xyΨ

−1
x

)
=

1

n− 1

(
σ2
yΨ

−1
x + ββ′

)
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because

(Ψ′
xyΨ

−1
x Ψxy)Ψ

−1
x ≥ Ψ−1

x ΨxyΨ
′
xyΨ

−1
x

which is true because for any vector c, by Cauchy-Schwartz,

(Ψ′
xyΨ

−1
x Ψxy)c

′Ψ−1
x c ≥ c′Ψ−1

x ΨxyΨ
′
xyΨ

−1
x c =

(
Ψ′

xyΨ
−1
x c

)2
.

To establish (1) note that

Cov(β̃) =
1

(n− 1)2
Ψ−1Cov(X ′

cY )Ψ−1. (2)

We need to find

Cov(X ′
cY ) = E [Cov(X ′

cY |X)] + Cov [E(X ′
cY |X)]

= E
[
σ2X ′

cXc

]
+ Cov [X ′

cXcβ] . (3)

Recall that X ′
cXc ∼ Wp(n− 1,Ψx), so that

E(X ′
cXc) = (n− 1)Ψx; Cov{Vec[(X ′

cXc)]} = (n− 1)(Ψx ⊗Ψx) {Ip2 + T} .

It follows that

E
{
σ2X ′

cXc

}
= (n− 1)[σ2

y − β′Ψxβ]Ψx (4)

and

Cov[X ′
cXcβ] = Cov{[β′ ⊗ Ip]Vec(X

′
cXc)}

= [β′ ⊗ Ip]Cov{Vec(X ′
cXc)}[β ⊗ Ip]

= (n− 1)[β′ ⊗ Ip][Ψx ⊗Ψx][β ⊗ Ip] + (n− 1)[β′ ⊗ Ip][Ψx ⊗Ψx]T [β ⊗ Ip]

= (n− 1)(β′Ψxβ)Ψx + (n− 1)[β′Ψx ⊗Ψx]T [β ⊗ Ip]. (5)
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We will show below that

[β′Ψx ⊗Ψx]T [β ⊗ Ip] = Ψxββ
′Ψx, (6)

so substituting (6) into (5), then (5) and (4) into (3), and then (3) into (2) gives (1).

To show that

[β′Ψx ⊗Ψx]T [β ⊗ Ip] = Ψxββ
′Ψx,

we show that for any r and s

e′r[β
′Ψx ⊗Ψx]T [β ⊗ Ip]es = e′rΨxββ

′Ψxes.

Write Ψx = [ψx1, · · · , ψxp], then

e′rΨxββ
′Ψxes = ψ′

xrββ
′ψxs.

On the other hand,

e′r[β
′Ψx ⊗Ψx]T [β ⊗ Ip]es = [1⊗ er]

′[β′Ψx ⊗Ψx]T [β ⊗ Ip][1⊗ es]

= [β′Ψx ⊗ e′rΨx]T [β ⊗ es]

= [β′Ψx ⊗ ψ′
xr][es ⊗ β]

= [β′Ψxes ⊗ ψ′
xrβ]

= [β′ψxs ⊗ ψ′
xrβ] = β′ψxsψ

′
xrβ.

4 Equivalence of Inequalities

We now demonstrate that inequality (4) in Cook et al. (2015) and inequality (1) in Tarpey et al.’s

response are equivalent.
1 +R2

p

n− 1
<

1−R2
p

n− p− 2
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if and only if

2R2
pn < (1 +R2

p)(p+ 2)− (1−R2
p)

if and only if

2R2
pn < (1 +R2

p)(p+ 1) + 2R2
p

if and only if

2R2
pn < (1−R2

p)(p+ 1) + 2R2
p(p+ 1) + 2R2

p

if and only if

n <

(
1−R2

p

R2
p

)(
p+ 1

2

)
+ p+ 2

as was to be shown.

Appendix

Kronecker products and Vec operators are extremely useful in multivariate analysis and some

approaches to variance component estimation. They are also often used in writing balanced

ANOVA models. We now present their basic algebraic properties.

1. If the matrices are of conformable sizes, [A⊗ (B + C)] = [A⊗B] + [A⊗ C].

2. If the matrices are of conformable sizes, [(A+B)⊗ C] = [A⊗ C] + [B ⊗ C].

3. If a and b are scalars, ab[A⊗B] = [aA⊗ bB].

4. If the matrices are of conformable sizes, [A⊗B][C ⊗D] = [AC ⊗BD].

5. The transpose of a Kronecker product matrix is [A⊗B]′ = [A′ ⊗B′].

6. The generalized inverse of a Kronecker product matrix is [A⊗B]− = [A− ⊗B−].

7. For two vectors v and w, Vec(vw′) = w ⊗ v.
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8. For a matrix W and conformable matrices A and B, Vec(AWB′) = [B ⊗ A]Vec(W ).

9. For conformable matrices A and B, Vec(A)′Vec(B) = tr(A′B).

10. The Vec operator commutes with any matrix operation that is performed elementwise.

For example, E{Vec(W )} = Vec{E(W )} when W is a random matrix. Similarly, for con-

formable matrices A and B and scalar ϕ, Vec(A + B) = Vec(A) + Vec(B) and Vec(ϕA) =

ϕVec(A).

11. If A and B are positive definite, then A⊗B is positive definite.
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