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Abstract

We examine the transformations necessary for establishing that the linear model
F test is a uniformly most powerful invariant (UMPI) test. We also note that the
Studentized range test for equality of groups means in a balanced one-way ANOVA is
not invariant under all of these transformations so the UMPI result says nothing about
the relative powers of the ANOVA F test and the Studentized range test.
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1. Introduction

It has been well-known for a long time that the linear model F test is a
uniformly most powerful invariant (UMPI) test. Lehmann (1959) discussed
the result in the first edition of his classic test and in all subsequent editions,
e.g. Lehmann and Romano (2005). But the exact nature of this result is a
bit convoluted and may be worth looking at with some simpler and more
modern terminology.

Consider a (full) linear model

Y = Xβ + e, e ∼ N(0, σ2I)

where Y is an n vector of observable random variables and consider a reduced
(null) model

Y = X0γ + e, C(X0) ⊂ C(X),

where C(X) denotes the column (range) space of X. Let M be the perpen-
dicular projection operator (ppo) onto C(X) and M0 be the ppo onto C(X0).
The usual F test statistic, which is equivalent to the generalized likelihood
test statistic, is

F (Y ) ≡ F ≡ Y ′(M −M0)Y/[r(X)− r(X0)]

Y ′(I −M)Y/[n− r(X)]
,

where r(X) denotes the rank of X.
Consider a group of transformations G that map Rn into Rn. A test

statistic T (Y ) is invariant under G if

T (Y ) = T [G(Y )],

for any G ∈ G and any Y . It is not too surprising that the F statistic is
invariant under location and scale transformations. Specifically, if we define
G(Y ) = a(Y + X0δ) for any positive real number a and any vector δ, it is
easy to see using properties of ppos that F (Y ) = F [G(Y )]. Unfortunately,
this is not the complete set of transformations required to get the UMPI
result. Note also that the location invariance is defined with respect to the
reduced model, that is, it involves X0. Given that the alternative hypothesis
is the existence of a location Xβ ̸= X0γ for any γ, one would not want a test
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statistic that is invariant to changes in the alternative, particularly changes
that could turn the alternative into the null.

Before discussing the third group of transformations required for a UMPI
F test, let’s look at the best known alternative to the linear model F test.
Consider a balanced one-way ANOVA model,

yij = µi + εij, εij iid N(0, σ2),

i = 1, . . . , a, j = 1, . . . , N . The F statistic for H0 : µ1 = · · · = µa is

F (Y ) ≡ F ≡ N
∑a

i=1(ȳi· − ȳ··)
2/[a− 1]∑a

i=1

∑N
j=1(ȳij − ȳi·)2/[a(N − 1)]

≡ MSGrps

MSE
.

The best known competitor to an F test for H0 is the test that rejects for
large values of the studentized range,

Q(Y ) ≡ Q ≡ maxi ȳi· −mini ȳi·√
MSE/N

.

We already know that F is location and scale invariant and it is easy to see
that Q is too. In this case, location invariance means that the test statistic
remains the same if we add a constant to every observation. Moreover, it
is reasonably well known that neither of these tests is uniformly superior to
the other, which means that Q must not be invariant under the full range of
transformations that are required to make F a UMPI test.

We can decompose Y into three orthogonal pieces,

Y = M0Y +(M −M0)Y +(I −M)Y = X0γ̂+(Xβ̂−X0γ̂)+ (Y −Xβ̂). (1)

The first term of the decomposition contains the fitted values for the reduced
model. The second term is the difference between the fitted values of the
full model and those of the reduced model. The last term is the residual
vector from the full model. Intuitively we can think of the transformations
that define the invariance as relating to the three parts of this decomposition.
The residuals are used to estimate σ, the scale parameter of the linear model,
so we can think of scale invariance as relating to (I −M)Y . The translation
invariance of adding vectors X0δ modifies M0Y . To get the UMPI result we
need another group of transformations that relate to (M−M0)Y . Specifically,
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we need to incorporate rotations of the vector (M−M0)Y that keep the vector
within C(M −M0) = C(X0)

⊥
C(X), the orthogonal complement of C(X0) with

respect to C(X). If we allow rotations of (M − M0)Y within C(M − M0),
the end result can be any vector in C(M −M0) that has the same length as
(M − M0)Y . The length of a vector v is ∥v∥ ≡

√
v′v. The end result of a

rotation within C(M−M0) can be, for any n vector v with ∥(M−M0)v∥ ̸= 0,

∥(M −M0)Y ∥
∥(M −M0)v∥

(M −M0)v.

Finally, the complete set of transformations to obtain the UMPI result is for
any positive number a, any appropriate size vector δ, and any n vector v with
∥(M −M0)v∥ ̸= 0,

G(Y ) = a

[
M0Y +X0δ + (I −M)Y +

∥(M −M0)Y ∥
∥(M −M0)v∥

(M −M0)v

]
.

Again, it is not difficult to see that F (Y ) = F [G(Y )].
However, in the balanced ANOVA problem, there exist such transforma-

tions G with Q(Y ) ̸= Q[G(Y )], so Q is not invariant under these transfor-
mations and when we say that F is UMPI, it says nothing about the relative
powers of F andQ. We know thatQ is invariant to location and scale changes,
so it must be the rotation that Q is not invariant to. Let Jm be an m di-
mensional vector of 1s. In a one-way ANOVA, write Y = [y11, y12, . . . , yaN ]

′

and

(M −M0)Y = Xβ̂ −X0γ̂

=


JN 0

JN
. . .

0 Jn



ȳ1·
ȳ2·
...
ȳa·

− JaN ȳ·· =


(ȳ1· − ȳ··)JN
(ȳ2· − ȳ··)JN

...
(ȳa· − ȳ··)JN

 . (2)

Since Y is an arbitrary vector, (M −M0)v must display a similar structure.
Also

∥(M −M0)Y ∥2 = N

a∑
i=1

(ȳi· − ȳ··)
2 ≡ SSGrps. (3)

Thinking about the decomposition in (1), if Q(Y ) were invariant we should
get the same test statistic if we replace M0Y with M0Y +X0δ (which we do)
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and if we replace (M −M0)Y with [∥(M −M0)Y ∥/∥(M −M0)v∥](M −M0)v
(which we do not). The numerator of Q is a function of (M −M0)Y , namely,
it takes the difference between the largest and smallest components of (M −
M0)Y . For Q(Y ) to be invariant, the max minus the min of (M−M0)Y would
have to be the same as the max minus the min of [∥(M − M0)Y ∥/∥(M −
M0)v∥](M −M0)v for any Y and v. Alternatively, the max minus the min of
[1/∥(M −M0)Y ∥](M −M0)Y would have to be the same as the max minus
the min of [1/∥(M − M0)v∥](M − M0)v for any Y and v. In other words,
given (2) and (3),

maxi ȳi· −mini ȳi·√
SSGrps

would have to be a constant for any data vector Y , which it is not.
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