
Chapter 21

Logistic Regression: Predicting Counts

For the most part, this book concerns itself with measurement data and the corresponding analyses
based on normal distributions. In this chapter and the next we consider data that consist of counts.
Elementary count data were introduced in Chapter 5.

Frequently data are collected on whether or not a certain event occurs. A mouse dies when
exposed to a dose of chloracetic acid or it does not. In the past, O-rings failed during a space shuttle
launch or they did not. Men have coronary incidents or they do not. These are modeled as random
events and we collect data on how often the event occurs. We also collect data on potential predictor
(explanatory) variables. For example, we use the size of dose to estimate the probability that a
mouse will die when exposed. We use the atmospheric temperature at launch time to estimate the
probability that O-rings fail. We may use weight, cholesterol, and blood pressure to estimate the
probability that men have coronary incidents. Once we have estimated the probability that these
events will occur, we are ready to make predictions. In this chapter we investigate the use of logistic
models to estimate probabilities. Logistic models (also known as logit models) are linear models for
the log-odds that an event will occur. For a more complete discussion of logistic and logit models,
see Christensen (1997).

Section 1 introduces models for predicting count data. Section 2 presents a simple model with
one predictor variable where the data are the proportions of trials that display the event. It also
discusses the output one typically obtains from running a logistic regression program. Section 3
discusses how to perform model tests with count data. Section 4 discusses how logistic models are
fitted. Section 5 introduces the important special case in which each observation is a separate trial
that either displays the event or does not. Section 6 explores the use of multiple continuous predic-
tors. Section 7 examines ANOVA type models with Section 8 examining ACOVA type models.

21.1 Models for Binomial Data

Logistic regression is a method of modeling the relationships between probabilities and predictor
variables. We begin with an example.

EXAMPLE 21.1.1. Woodward et al. (1941) reported data on 120 mice divided into 12 groups of
10. The mice in each group were exposed to a specific dose of chloracetic acid and the observations
consist of the number in each group that lived and died. Doses were measured in grams of acid per
kilogram of body weight. The data are given in Table 21.1, along with the proportions yh of mice
who died at each dose xh.

We could analyze these data using the methods discussed earlier in Chapter 5. We have samples
from twelve populations. We could test to see if the populations are the same. We don’t think they
are because we think survival depends on dose. More importantly though, we want to try to model
the relationship between dose level and the probability of dying. This allows us to make predictions
about the probability of dying for any dose level that is similar to those in the original data. 2

In Section 3.1 we talked about models for measurement data yh, h = 1, . . . ,n with E(yh) ≡ µh
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506 21. LOGISTIC REGRESSION: PREDICTING COUNTS

Table 21.1: Lethality of chloracetic acid

Dose (xh) Group (h) Died Survived Total Proportion (yh)
.0794 1 1 9 10 .1
.1000 2 2 8 10 .2
.1259 3 1 9 10 .1
.1413 4 0 10 10 .0
.1500 5 1 9 10 .1
.1588 6 2 8 10 .2
.1778 7 4 6 10 .4
.1995 8 6 4 10 .6
.2239 9 4 6 10 .4
.2512 10 5 5 10 .5
.2818 11 5 5 10 .5
.3162 12 8 2 10 .8

and Var(yh) = σ2. For testing models, we eventually assumed

yhs independent N(µh,σ2),

with some model for the µhs. In Section 3.9 we got more specific about models, writing

yhs independent N[m(xh),σ2],

where xh is the value of some predictor variable or vector and m(·) is the model for the means, i.e.,

µh ≡ m(xh).

We then discussed a variety of models m(·) that could be used for various types of predictor variables
and exploited those models in subsequent chapters.

In this chapter, we discuss similar models for data that are binomial proportions. In Section 1.4
we discussed binomial sampling. In particular, if we have N independent trials of whether some
event occurs (e.g., flipping a coin and seeing heads) and if each trial has the same probability p that
the event occurs, then the number of occurrences is a binomial random variable W , say

W ∼ Bin(N, p),

with
E(W ) = N p and Var(W ) = N p(1− p).

We will be interested in binomial proportions

y ≡ W
N
,

with
E(y) = p

and

Var(y) =
p(1− p)

N
,

see Proposition 1.2.11. In applications, N is known and p is an unknown parameter to be modeled
and estimated.

In general, we assume n independent binomial proportions yh for which we know the number of
trials Nh, i.e.,

Nhyh independent Bin(Nh, ph), h = 1, . . . ,n.
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With E(yh) = ph, much like we did for measurement data, we want to create a model for the phs that
depends on a predictor xh. In fact, we would like to use the same models, simple linear regression,
multiple regression, one-way ANOVA and multifactor ANOVA, that we used for measurement data.
But before we can do that, we need to deal with a problem.

We want to create models for ph = E(yh), but with binomial proportions this mean value is
always a probability and probabilities are required to be between 0 and 1. If we wrote a simple
linear regression model such as ph = β0 + β1xh for some predictor variable x, nothing forces the
probabilities to be between 0 and 1. When modeling probabilities, it seems reasonable to ask that
they be between 0 and 1.

Rather than modeling the probabilities directly, we model a function of the probabilities that is
not restricted between 0 and 1. In particular, we model the log of the odds, rather than the actual
probabilities. The odds Oh are defined to be the probability that the event occurs, divided by the
probability that it does not occur, thus

Oh ≡
ph

1− ph
.

Probabilities must be between 0 and 1, so the odds can take any values between 0 and +∞. Taking
the log of the odds permits any values between −∞ and +∞, so we consider models

log
(

ph

1− ph

)
= m(xh), (21.1.1)

where m(·) is any of the models that we considered earlier.
Two different names have been used for such models. If m(xh) corresponds to a one-sample,

two-sample, one-way ANOVA, or multifactor ANOVA, these models have often been called logit
models. The name stems from using the transformation

η = f (p)≡ log
(

p
1− p

)
,

which is known as the logit transform. It maps the unit interval into the real line. On the other hand,
if the model m(xh) corresponds to any sort of regression model, models like (1) are called logistic
regression models. These models are named after the logistic transform, which is the inverse of the
logit transform,

p = g(η)≡ eη

1+ eη .

The functions are inverses in the sense that g( f (p)) = p and f (g(η)) = η . To perform any worth-
while data analysis requires using both the logit transform and the logistic transform, so it really
does not matter what you call the models. These days, any model of the form (1) is often called
logistic regression, regardless of whether m(xh) corresponds to a regression model.

In Chapter 3, to perform tests and construct confidence intervals, we assumed that the yh obser-
vations were independent, with a common variance σ2, and normally distributed. In this chapter,
to perform tests and construct confidence intervals similar to those used earlier, we need to rely on
having large amounts of data. That can happen in two different ways. The best way is to have the
Nh values large for every value of h. In the chloracetic acid data, each Nh is 10, which is probably
large enough. Unfortunately, this best way to have the data may be the least common way of ac-
tually obtaining data. The other and more common way to get a lot of data is to have the number
of proportions n reasonably large but the Nhs possibly small. Frequently, the Nhs all equal 1. When
worrying about O-ring failure, each shuttle launch is a separate trial, Nh = 1, but we have n = 23
launches to examine. When examining coronary incidents, each man is a separate trial, Nh = 1, but
we have n = 200 men to examine. In other words, if the Nhs are all large, we don’t really care if n is
large or not. If the Nhs are not all large, we need n to be large. A key point is that n needs to be large
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relative to the number of parameters we fit in our model. For the O-ring data, we will only fit two
parameters, so n = 23 is probably reasonable. For the coronary incident data, we have many more
predictors so we need many more subjects. In fact, we will need to resist the temptation to fit too
many parameters to the data.

21.2 Simple Logistic Regression

In simple logistic regression we use a single measurement variable to predictor probabilities.

EXAMPLE 21.2.1. In Example 21.1.1 and Table 21.1 we presented the data of Woodward et
al. (1941) on the slaughter of mice. These data are extremely well behaved in that they all have the
same reasonably large number of trials Nh = 10, h = 1, . . . ,12, and there is only one measurement
predictor variable, the dose xh.

A simple linear logistic regression model has

log
(

ph

1− ph

)
= β0 +β1xh, (21.2.1)

so our model fits a straight line in dose to the log-odds. Alternatively,

ph =
eβ0+β1xh

1+ eβ0+β1xh
.

Indeed, for an arbitrary dose x we can write

p(x) =
eβ0+β1x

1+ eβ0+β1x . (21.2.2)

Standard computer output involves a table of coefficients:
Table of Coefficients: Model (21.2.1)

Predictor Est SE t P
Constant −3.56974 0.705330 −5.06 0.000
Dose 14.6369 3.33248 4.39 0.000

The validity of everything but the point estimates relies on having large amounts of data. Using the
point estimates gives the linear predictor

η̂(x) = β̂0 + β̂1x =−3.56974+14.6369x.

Applying the logistic transformation to the linear predictor gives the estimated probability for any
x,

p̂(x) =
eη̂(x)

1+ eη̂(x)
.

This function is plotted in Figure 21.1. The approximate model is unlikely to fit well outside the
range of the xh values that actually occurred in Table 21.1.

The table of coefficients is used exactly like previous tables of coefficients, e.g., β̂1 = 14.64
is the estimated slope parameter and SE(β̂1) = 3.326 is its standard error. The t values are simply
the estimates divided by their standard errors, so they provide statistics for testing whether the
regression coefficient equals 0. The P values are based on large sample normal approximations, i.e.,
the t statistics are compared to a t(∞) distribution. Clearly, there is a significant effect for fitting the
dose, so we reject the hypothesis that β1 = 0. The dose helps explain the data.

Many computer programs expand the table of coefficients to include odds ratios, defined as
ξk ≡ eβk , and a confidence interval for the odds ratio. The (1−α) confidence interval for ξk is
typically found by exponentiating the limits of the confidence interval for βk, i.e., it is (eLk ,eUk)
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Figure 21.1: Fitted probabilities as a function of dose.

where Lk ≡ β̂k−t(1−α/2,∞)SE(β̂k) and Uk ≡ β̂k+t(1−α/2,∞)SE(β̂k) provide the (1−α)100%
confidence limits for βk.

Additional standard output includes the Log-Likelihood = −63.945 (explained in Section 4)
and a model based χ2 test for β1 = 0 that is explained in Section 3. The model based test for β1 = 0
has G2 = 23.450 with d f = 1 and a P value of 0.000, obtained by comparing 23.450 to a χ2(1)
distribution. This test provides substantial evidence that O-ring failure is related to temperature. 2

21.2.1 Goodness-of-Fit Tests

Computer programs written specifically for logistic regression frequently report goodness-of-fit
tests. If a valid goodness-of-fit test is rejected, it suggests that the fitted model is wrong. Typical
output is

Goodness-of-Fit Tests
Method Chi-Square d f P
Pearson 8.7421 10 0.557
Deviance 10.2537 10 0.419
Hosmer-Lemeshow 6.7203 4 0.151

There are a couple of problems with this output. First of all, as Hosmer, Lemeshow, and colleagues
established in Hosmer et al. (1997), their χ2 test isn’t worth the toner it takes to print it. It amazes me
that so many programs persist in computing it. (It is not a bad idea, but there was never any reason
to think the statistic had a χ2 distribution.) Second, the reported deviance is often problematic in
many specialized programs for doing logistic regression. The deviance is well-defined for these
particular data, because all the Nhs are large but as we will see later, specialized programs for
logistic regression frequently pool cases together to increase the size of the Nhs, which can destroy
the usefulness of the numbers reported as the deviance.

If the fitted model is correct and all of the Nh values are large, the Pearson and Deviance statistics
should have χ2 distributions with d f degrees of freedom. So the question becomes, “Do X2 =
8.7421 and G2 = 10.254 look like they could reasonably come from a χ2(10) distribution?” To
answer that question, check whether the P values are small. Alternatively, we could compare the
test statistics to values from a table of percentiles for the χ2(10) distribution, see Appendix B.2.
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However, since the mean of a χ2(d f ) distribution is d f , our values of 8.7421 and 10.254 are very
close to the mean of the distribution which is 10, so it is pretty obvious that the data are consistent
with the simple logistic regression model even if we did not have the P values given to us. The
Pearson and Deviance statistics are computed as in Chapter 5 for the 12×2 table of 12 rows (dose
groups) and 2 columns (Died and Survived) except to make the computations one must define the
observed counts as Oh1 = Nhyh, Oh2 = Nh(1− yh) and define the (estimated) expected counts as
Êh1 = Nh p̂h, and Êh2 = Nh(1− p̂h). The 10 degrees of freedom are the number of rows n = 12
minus the number of parameters we fit in the model, p = 2.

The reason that the deviance and Pearson tests work as advertised is because the fitted regression
model provides reasonable estimates of the probabilities for each case, i.e., for h = 1, . . . ,n model
(21.2.1) provides good estimates of the linear predictor

η̂h ≡ β̂0 + β̂1xh

and

p̂h ≡
eη̂h

1+ eη̂h
,

but in addition the values yh from Table 21.1 provide reasonable estimates for the twelve death prob-
abilities without fitting any obvious model. The problem with the Pearson and Deviance goodness-
of-fit tests is that when some or all of the Nhs are small, the yhs no longer provide good estimates
of the case probabilities, so the χ2(d f ) is no longer an appropriate reference distribution for the
Pearson and Deviance statistics.

As we will see in Section 5, in an attempt to get valid goodness-of-fit tests, many computer pro-
grams for logistic regression will redefine the Nhs to make them larger (and n smaller). They do this
by pooling together any cases that have exactly the same predictor variables x. With continuous pre-
dictors I have never seen this pooling procedure get the Nhs large enough to validate a χ2 distribution
but it certainly is possible. Although the deviance G2 may or may not provide a valid goodness of fit
test, ideally the deviance is extremely useful for constructing model tests. Unfortunately, different
models with different predictors typically have different poolings, which destroys the usefulness of
the deviance as a tool for comparing models. When using logistic regression programs, one must
compare models by constructing the likelihood ratio test statistic from the reported log-likelihoods.
It is also possible to fit logistic regression models by using programs for fitting generalized linear
models. (“Generalized linear models” are something distinct from “general linear models.”) Gener-
alized linear model programs rarely indulge in the pooling silliness that logistic regression programs
often display, so their reported deviance values can be used to compare models.

21.2.2 Assessing Predictive Ability

We can measure the predictive ability of the model through R2, which is the squared correlation
between the yh values and the p̂h values. For these data R2 = 0.759, which is quite high for a logistic
regression. The high value is related to the fact that we have 10 observations in each binomial
proportion. We are evaluating the model on its ability to predict the outcome of 10 trials, not the
outcome of predicting one trial.

Frequently with dose-response data like the Woodward data, one uses the log dose as a predictor,
i.e., the model becomes

log
(

ph

1− ph

)
= β0 +β1 log(xh).

For these data we get R2 = 0.760 based on the log dose, which indicates that log dose is not much
of an improvement over dose.

Note that the predictive ability of the model depends a great deal on where the predictor variables
are located. At x =−β0/β1, from equation (21.2.2) the probability is 0.5. Nobody can predict well a
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Table 21.2: Diagnostics for rat data.

Group yh p̂h rh r̃h Leverage Cook
1 0.1 0.082597 0.19992 0.21824 0.160889
2 0.2 0.108510 0.93020 1.01250 0.155954
3 0.1 0.150978 −0.45026 −0.48593 0.141430
4 0.0 0.182195 −1.49260 −1.60009 0.129843
5 0.1 0.201942 −0.80301 −0.85751 0.123079
6 0.2 0.223498 −0.17837 −0.18978 0.116595
7 0.4 0.275420 0.88188 0.93280 0.106197
8 0.6 0.343063 1.71151 1.81021 0.106081
9 0.4 0.427383 −0.17504 −0.18754 0.128851

10 0.5 0.526738 −0.16935 −0.18769 0.185894
11 0.5 0.635281 −0.88874 −1.04399 0.275295
12 0.8 0.742394 0.41655 0.52474 0.369843

50:50 outcome like a coin toss. As x gets further from −β0/β1, p(x) gets further from 0.5, so closer
to 0 or 1. When the probability is close to 0 or 1, predicting the outcome is easy. Thus the predictive
ability of the model depends on the spread of x away from −β0/β1. For these data −β0/β1 is called
the LD50 which denotes the lethal dose 50 and is defined to be the dose at which lethality is 50%.
In other contexts this number might be called the effective dose 50 denoted ED50.

Many programs for fitting logistic regression report other values that can be used to assess the
predictive ability of the model. Typical output includes:

Measures of Association
Between the Response Variable and Predicted Probabilities

Pairs Number Percent Summary Measures
Concordant 2326 73.6 Somers’ D 0.53
Discordant 636 20.1 Goodman-Kruskal Gamma 0.57
Ties 197 6.2 Kendall’s Tau-a 0.24
Total 3159 100.0

EXPLAIN

21.2.3 Case Diagnostics

Diagnostic quantities can be computed that are similar to those for standard regression. Raw resid-
uals, yh − p̂h, are not of much interest. The Pearson residuals are just the observations minus their
estimated probability divided by the standard error of the observation, i.e.,

rh =
yh − p̂h√

p̂h(1− p̂h)/Nh
.

This SE does not really account for the process of fitting the model, i.e., estimating ph. We can in-
corporate the fitting process by incorporating the leverage, say, ah. A standardized Pearson residual
is

r̃h =
yh − p̂h√

p̂h(1− p̂h)(1−ah)/Nh
.

Leverages for logistic regression are similar in spirit to those discussed in Chapter 11, but rather
more complicated to compute. Values near 1 are still high leverage points and the 2r/n and 3r/n
rules of thumb can be applied where r is the number of (functionally distinct) parameters in the
model. Table 21.2 contains diagnostics for the rat data. Nothing seems overly disturbing.

I prefer using the standardized Pearson residuals, but the Pearson residuals often get used be-
cause of their simplicity. When all Nhs are large, both residuals can be compared to a N(0,1) dis-
tribution to asses whether they are consistent with the model and the other data. In this large Nh
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case, much like the spirit of Chapter 5, we use the residuals to identify cases that cause problems
in the goodness-of-fit test. Even with small Nhs, where no valid goodness-of-fit test is present, the
residuals are used to identify potential problems.

With measurement data, residuals are used to check for outliers in the dependent variable, i.e.,
values of the dependent variable that do not seem to belong with the rest of the data. With count
data it is uncommon to get anything that is really an outlier in the counts. The yhs are proportions,
so outliers would be values that are not between 0 and 1. With count data, large residuals really
highlight areas where the model is not fitting the data very well. If you have a high dose of poison
but very few rats die, something is wrong. The problem is often something that we have left out of
the model.

21.2.4 Computer Commands

Minitab has programs for fitting logistic regression but none for generalized linear models.
SAS contains a powerful program for logistic regression, PROC LOGISTIC, but it pools cases

for goodness-of-fit tests and diagnostics. The first line below controls printing. The next four lines
involve defining and reading the data. The remaining lines specify the model and that a logistic
regression is to be performed.

options ps=60 ls=72 nodate;

data mice;

infile ’tab21-1.dat’;

input x Ny N y;

proc logistic data=mice descending;

model y=x ;

run;

Alternatively, to get usable deviance values from SAS, we can use the generalized linear model
program PROC GENMOD. To perform logistic regression one must specify an appropriate link and
distribution. One also specifies the number of deaths for each case (Ny) divided by the number of
trials for each case (N).

options ps=60 ls=72 nodate;

data mice;

infile ’tab21-1.dat’;

input x Ny N y;

proc genmod data=mice ;

model Ny/N = x / link=logit dist=binomial;

run;

21.3 Model Testing

Based on the results of a valid goodness-of-fit test, we already have reason to believe that a sim-
ple linear logistic regression fits the chloracetic acid data reasonably well, but for the purpose of
illustrating the procedure for testing models, we will test the simple logistic model against a cubic
polynomial logistic model. This section demonstrates the test. In the next section we discuss the
motivation for it.

In Section 21.2 we gave the table of coefficients and the table of goodness-of-fit tests for the
simple logistic regression model

log
(

ph

1− ph

)
= β0 +β1xh. (21.3.1)

The table of coefficients along with the deviance information follows.
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Table of Coefficients: Model (21.3.1)
Predictor Est SE t P
Constant −3.56974 0.705330 −5.06 0.000
Dose 14.6369 3.33248 4.39 0.000

Deviance: G2 = 10.254 d f = 10
Additional standard output includes the Log-Likelihood = −63.945 (explained in Section 4) and
a model based test for β1 = 0 that is also discussed in Section 4, for which the test statistic is
G2 = 23.450 with d f = 1 and a P value of 0.000.

The cubic polynomial logistic regression is

log
(

ph

1− ph

)
= γ0 + γ1xh + γ2x2

h + γ3x3
h. (21.3.2)

with table of coefficients
Table of Coefficients: Model (21.3.2)

Predictor γ̂k SE(γ̂k) t P
Constant −2.47396 4.99096 −0.50 0.620
dose −5.76314 83.1709 −0.07 0.945
x2 114.558 434.717 0.26 0.792
x3 −196.844 714.422 −0.28 0.783

and goodness-of-fit tests
Goodness-of-Fit Tests: Model (21.3.2)

Method Chi-Square d f P
Pearson 8.7367 8 0.365
Deviance 10.1700 8 0.253
Hosmer-Lemeshow 6.3389 4 0.175

Additional standard output includes the Log-Likelihood =−63.903 and a model based test that all
slopes are zero, i.e., 0 = γ1 = γ2 = γ3, that has G2 = 23.534 with d f = 3, and a P value of 0.000.

To test the full cubic model against the reduced simple linear model we compute the likelihood
ratio test statistic from the log-likelihoods,

G2 =−2[(−63.903)− (−63.945)] = 0.084.

There are 4 parameters in model (21.3.2) and only 2 parameters in model (21.3.1) so there are
4− 2 = 2 degrees of freedom associated with this test. When the total number of cases n is large
compared to the number of parameters in the full model, we can compare G2 = 0.084 to a χ2(4−2)
distribution. This provides no evidence that the cubic model fits better than the simple linear model.
Note that the validity of this test does not depend on having the Nhs large.

For these data, we can also obtain G2 by the difference in deviances reported for the two models,

G2 = 10.254−10.1700 = 0.084.

The difference in the deviance degrees of freedom is 10−8 = 2 which is also the correct degrees of
freedom.

Although finding likelihood ratio tests by subtracting deviances and deviance degrees of free-
dom is our preferred computational tool, unfortunately, subtracting the deviances and the deviance
degrees of freedom cannot be trusted to give the correct G2 and degrees of freedom when using
programs designed for fitting logistic models (as opposed to programs for fitting generalized linear
models). As discussed in Section 5, many logistic regression programs pool cases with identical
predictor variables prior to computing the deviance and when models use different predictors, the
pooling often changes, which screws up the test. Subtracting the deviances and deviance degrees of
freedom does typically give the correct result when using programs for generalized linear models.
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The standard output for model (21.3.1) also included a model based test for β1 = 0 with G2 =
23.450, d f = 1, and a P value of 0.000. This is the likelihood ratio test for comparing the full model
(21.3.1) with the intercept only model

log
(

ph

1− ph

)
= δ0. (21.3.3)

Alas, many logistic regression programs do not like to fit model (21.3.3), so we take the program’s
word for the result of the test. (Programs for generalized linear models are more willing to fit model
(21.3.3).) Finding the test statistic is discussed in Section 5.

The usual output for fitting model (21.3.2) has a model based test that all slopes are zero, i.e.,
that 0 = γ1 = γ2 = γ3, for which G2 = 23.534 with d f = 3 and a P value of 0.000. This is the
likelihood ratio test for the full model (21.3.2) against the reduced model (21.3.3). Generally, when
fitting a model these additional G2 tests are for comparing the current model to the intercept only
model (21.3.3).

21.4 Fitting Logistic Models

In this section we discuss the ideas behind our methods for estimating parameters and for testing
models. First we define the likelihood function. Our point estimates are maximum likelihood esti-
mates (MLEs) which are the parameter values that maximize the likelihood function. We compare
models by comparing the maximum value that the likelihood function achieves under each model.
Such tests are (generalized) likelihood ratio tests for binomial count data. While we did not present
the likelihood function for normal data, least squares estimates are also MLEs and F tests are also
equivalent to (generalized) likelihood ratio tests.

Our logistic models take the form

log
(

ph

1− ph

)
= m(xh), (21.4.1)

where xh is a vector of measurement or categorical variables and m(·) is any of the models that
we have considered earlier for such predictor variables. The model m(xh) can correspond to a one-
sample, two-sample, one-way ANOVA, or multifactor ANOVA model or any sort of regression
model. We can solve (1) for ph by writing

ph =
em(xh)

1+ em(xh)
. (21.4.2)

Given the estimate m̂(x) we get

p̂(x) =
em̂(x)

1+ em̂(x)
.

For example, given the estimates β̂0 and β̂1 for a simple linear logistic regression, we get

p̂(x) =
exp(β̂0 + β̂1x)

1+ exp(β̂0 + β̂1x)
. (21.4.3)

In particular, this formula provides the p̂hs when doing predictions at the xh’s.
Estimates of coefficients are found by maximizing the likelihood function. The likelihood func-

tion is the probability of getting the data that were actually observed. It is a function of the unknown
model parameters contained in m(·). Because the Nhyhs are independent binomials, the likelihood
function is

L(p1, . . . , pn) =
n

∏
h=1

(
Nh

Nhyh

)
pNhyh

h (1− ph)
Nh−Nhyh . (21.4.4)
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For a particular proportion yh, Nhyy is Bin(Nh, ph) and the probability from Section 1.4 is an indi-
vidual term on the right. We multiply the individual terms because the Nhyhs are independent.

If we substitute for the ph’s using (21.4.2) into the likelihood function (21.4.4), the likelihood
becomes a function of the model parameters. For example, if m(xh) = β0 +β1xh the likelihood be-
comes a function of the model parameters β0 and β1 for known values of (xh,yh,Nh), h = 1, . . . ,n.
Computer programs maximize this function of β0 and β1 to give maximum likelihood estimates β̂0
and β̂1 along with approximate standard errors. The estimates have approximate normal distribu-
tions for large sample sizes. For the large sample approximations to be valid, it is typically enough
that the total number of trials in the entire data n be large relative to the number of model param-
eters; the individual sample sizes Nh need not be large. The normal approximations also hold if all
the Nhs are large regardless of the size of n.

In Section 11.3 we found the least squares estimates for linear regression models. Although we
did not explicitly give the likelihood function for regression models with normally distributed data,
we mentioned that the least squares estimates were also maximum likelihood estimates. Unfortu-
nately, for logistic regression there are no closed form solutions for the estimates and standard errors
like those presented for measurement data in Chapter 11. For logistic regression, different computer
programs may give slightly different results because the computations are more complex.

Maximum likelihood theory also provides a (generalized) likelihood ratio (LR) test for a full
model versus a reduced model. Suppose the full model is

log
(

pFh

1− pFh

)
= mF(xh).

Fitting the model leads to estimated probabilities p̂Fh. The reduced model must be a special case of
the full model, say,

log
(

pRh

1− pRh

)
= mR(xh),

with fitted probabilities p̂Rh. The commonly used form of the likelihood ratio test statistic is,

G2 = −2log
(

L(p̂R1, . . . , p̂Rn)

L(p̂F1, . . . , p̂Fn)

)
= 2

n

∑
h=1

[Nhyh log(p̂Fh/ p̂Rh)+(Nh −Nhyh) log((1− p̂Fh)/(1− p̂Rh)] ,

where the second equality is based on equation (4). An alternative to the LR test statistic is the
Pearson test statistic which is

X2 =
n

∑
h=1

(Nh p̂Fh −Nh p̂Rn)
2

Nh p̂Rn(1− p̂Rn)
=

n

∑
h=1

[
p̂Fh − p̂Rn√

p̂Rn(1− p̂Rn)/Nh

]2

.

We make minimal use of X2 in our discussions.
If the reduced model is true and the sample size n is large relative to the number of parameters

in the full model, G2 and X2 have asymptotic χ2 distributions where the degrees of freedom is the
difference in the number of (functionally distinct) parameters between the two models. The same
χ2 distribution holds even if n is not large when the Nhs are all large.

Many computer programs for fitting a model report the value of the log-likelihood,

ℓ(p̂1, . . . , p̂n)≡ log [L(p̂1, . . . , p̂n)] .

To compare a full and reduced model, G2 is twice the absolute value of the difference between these
values. When using logistic regression programs (as opposed to generalized linear model programs)
this is how one needs to compute G2.
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The smallest interesting logistic model that we can fit to the data is the intercept only model

log
(

ph

1− ph

)
= β0. (21.4.5)

The largest logistic model that we can fit to the data is the saturated model that has a separate
parameter for each case,

log
(

ph

1− ph

)
= γh. (21.4.6)

Interesting models tend to be somewhere between these two. Many computer programs automati-
cally report the results of testing the fitted model against both of these.

Testing a fitted model m(·) against the saturated model (21.4.6) is called a goodness-of-fit test.
The fitted probabilities under model (21.4.6) are just the observed proportions for each case, the yhs.
The deviance for a fitted model is defined as G2 for testing the fitted model against the saturated
model (21.4.6),

G2 = −2log
(

L(p̂1, . . . , p̂n)

L(y1, . . . ,yn)

)
= 2

n

∑
h=1

[Nhyh log(yh/ p̂h)+(Nh −Nhyh) log((1− yh)/(1− p̂h))] .

In this formula, if yh = 0, then yh log(yh) is taken as zero. The degrees of freedom for the deviance
are n (the number of parameters in model (21.4.6)) minus the number of (functionally distinct)
parameters in the fitted model.

The problem with the goodness-of-fit test is that the number of parameters in model (21.4.6) is
the sample size n, so the only way for G2 to have an asymptotic χ2 distribution is if all the Nhs are
large. For the rat death data, the Nhs are all 10, which is probably fine, but for a great many data sets,
all the Nhs are 1, so a χ2 test of the goodness-of-fit statistic is not appropriate. A similar conclusion
holds for the Pearson statistic.

As also discussed in the next section, in an effort to increase the size of the Nhs, many logistic
regression computer programs pool together any cases for which xh = xi. Thus, instead of having
two cases with Nhyh ∼ Bin(Nh, ph) and Niyi ∼ Bin(Ni, pi), the two cases get pooled into a single
case with (Nhyh +Niyi)∼ Bin(Nh +Ni, ph). Note that if xh = xi, it follows that ph = pi and the new
proportion would be (Nhyh +Niyi)/(Nh +Ni). I have never encountered regression data with so few
distinct xh values that this pooling procedure actually accomplished its purpose of making all the
group sizes reasonably large. Although if the mice data were presented as 120 mice that either died
or not along with their dose, such pooling would work fine.

Ideally, the deviance G2 could be used analogously to the SSE in normal theory and the degrees
of freedom for the deviance would be analogous to the d fE. To compare a full and reduced model
you just subtract their deviances (rather than their SSEs) and compare the test statistic to a χ2

with degrees of freedom equal to the difference in the deviance degrees of freedom (rather than
differencing the d fEs). This procedure works just fine when fitting the models using programs for
fitting generalized linear models. The invidious thing about the pooling procedure of the previous
paragraph is that when you change the model from reduced to full, you often change the predictor
vector xh in such a way that it changes which cases have xh = xi. When comparing a full and a
reduced model, the models may well have different cases pooled together, which means that the
difference in deviances no longer provide the appropriate G2 for testing the models. In such cases
G2 needs to be computed directly from the log-likelihood.

After discussing the commonly reported goodness-of-fit statistics in the next section, we will
no longer discuss any deviance values that are obtained by pooling. After Subsection 21.5.1, the
deviances we discuss may not be those reported by a logistic regression program but they should be
those obtained by a generalized linear models program.
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Table 21.3: O-ring Failure Data

Case Flight Failure Temperature Case Flight Failure Temperature
1 14 1 53 13 2 1 70
2 9 1 57 14 11 1 70
3 23 1 58 15 6 0 72
4 10 1 63 16 7 0 73
5 1 0 66 17 16 0 75
6 5 0 67 18 21 1 75
7 13 0 67 19 19 0 76
8 15 0 67 20 22 0 76
9 4 0 68 21 12 0 78

10 3 0 69 22 20 0 79
11 8 0 70 23 18 0 81
12 17 0 70

21.5 Binary data

Logistic regression is often used when the binomial sample sizes are all 1. The resulting binary data
consist entirely of 0s and 1s.

EXAMPLE 21.5.2. O-ring Data.
Table 21.3 presents data from Dalal, Fowlkes, and Hoadley (1989) on field O-ring failures in the
23 pre-Challenger space shuttle launches. Challenger was the shuttle that blew up on take-off.
Atmospheric temperature is the predictor variable. The Challenger explosion occurred during a
takeoff at 31 degrees Fahrenheit. Each flight is viewed as an independent trial. The result of a trial
is 1 if any field O-rings failed on the flight and 0 if all the O-rings functioned properly. A simple
logistic regression uses temperature to model the probability that any O-ring failed. Such a model
allows us to predict O-ring failure from temperature.

Let pi be the probability that any O-ring fails in case i. The simple linear logistic regression
model is

logit(pi)≡ log
(

pi

1− pi

)
= β0 +β1xi,

where xi is the known temperature and β0 and β1 are unknown intercept and slope parameters
(coefficients).

Maximum likelihood theory gives the coefficient estimates, standard errors, and t values as

Table of Coefficients: O-rings
Predictor Est SE t P
Constant 15.0429 7.37862 2.04 0.041
Temperature −0.232163 0.108236 −2.14 0.032

The t values are the estimate divided by the standard error. For testing H0 : β1 = 0, the value t =
−2.14 yields a P value that is approximately .03, so there is evidence that temperature does help
predict O-ring failure. Alternatively, a model based test of β1 = 0 compares the simple linear logistic
model to an intercept only model and gives G2 = 7.952 with d f = 1 and P = 0.005. These tests
should be reasonably valid because n = 23 is reasonably large relative to the 2 parameters in the
fitted model. The log-likelihood is ℓ=−10.158.

Figure 21.2 gives a plot of the estimated probabilities as a function of temperature,

p̂(x) =
e15.0429−0.232163x

1+ e15.0429−0.232163x .

The Challenger was launched at x = 31 degrees, so the predicted log odds are 15.04− .2321(31) =
7.8449 and the predicted probability of an O-ring failure is e7.8449/(1+ e7.8449) = .9996. Actually,
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Figure 21.2: O-ring Failure Probabilities.

there are problems with this prediction because we are predicting very far from the observed data.
The lowest temperature at which a shuttle had previously been launched was 53 degrees, very far
from 31 degrees. According to the fitted model, a launch at 53 degrees has probability .939 of O-ring
failure, so even with the caveat about predicting beyond the range of the data, the model indicates
an overwhelming probability of failure.

21.5.1 Goodness-of-Fit Tests

Many specialized logistic regression computer programs report the following goodness-of-fit statis-
tics for the O-ring data.

Goodness-of-Fit Tests
Method Chi-Square d f P
Pearson 11.1303 14 0.676
Deviance 11.9974 14 0.607
Hosmer-Lemeshow 9.7119 8 0.286

For 0-1 data, these are all useless. The Hosmer-Lemeshow statistic does not have a χ2 distribution.
For computing the Pearson and Deviance statistics the 23 original cases have been pooled into
ñ = 16 new cases based on duplicate temperatures. This gives binomial sample sizes of Ñ6 = 3,
Ñ9 = 4,Ñ12 = Ñ13 = 2, and Ñh = 1 for all other cases. With two parameters in the fitted model, the
reported degrees of freedom are 14 = 16− 2. To have a valid χ2(14) test, all the Ñhs would need
to be large, but none of them are. Pooling does not give a valid χ2 test and it also eliminates the
deviance as a useful tool in model testing.

Henceforward, we only report deviances that are not obtained by pooling. These are the
likelihood ratio test statistics for the fitted model against the saturated model with the correspond-
ing degrees of freedom. Test statistics for any full and reduced models can then be obtained by
subtracting the corresponding deviances from each other just as the degrees of freedom for the test
can be obtained by subtraction. These deviances can generally be found by fitting logistic models
as special cases in programs for fitting generalized linear models. When using specialized logistic
regression software, great care must be taken and the safest bet is to always use log-likelihoods to
obtain test statistics.
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EXAMPLE 21.5.1 CONTINUED. For the simple linear logistic regression model

log
(

pi

1− pi

)
= β0 +β1xi. (21.5.1)

Without pooling the deviance is G2 = 20.315 with 21 = 23−2 = n−2 degrees of freedom. For the
intercept only model

log
(

pi

1− pi

)
= β0 (21.5.2)

the deviance is G2 = 28.267 with 22 = 23− 1 = n− 1 degrees of freedom. Since Ni = 1 for all i,
neither of these G2’s is compared directly to a chi-squared distribution. However, the model based
test for H0 : β1 = 0 has G2 = 28.267− 20.315 = 7.952 on d f = 22− 21 = 1 which agrees with
the test reported earlier even though the deviance for model (21.5.1) is different from that reported
earlier. Comparing G2 = 7.952 to a χ2(1) distribution, the P value for the test is approximately .005.
It is considerably smaller than the P value for the t test of H0. 2

It can be difficult to get even generalized linear model programs to fit the intercept only model
but the deviance G2 can be obtained from the formula in Section 4. Given the estimate β̂0 for model
(21.5.2), we get p̂i = eβ̂0/(1+ eβ̂0) for all i, and apply the formula. In general, for the intercept
only model p̂i = ∑n

i=1 Niyi/∑n
i=1 Ni which, for binary data, reduces to p̂i = ∑n

i=1 yi/n. The degrees
of freedom are the number of cases minus the number of fitted parameters, n−1.

21.5.2 Case Diagnostics

The residuals and leverages in Table 21.4 have also been computed using pooling which is why
some values are missing. Cases 6, 7, 8, cases 11, 12, 13, 14, cases 17, 18, and cases 19, 20 all
have duplicated temperatures with residuals and leverages reported only for the first case. Without
pooling the reported leverage for case 6, 0.22, would otherwise be distributed as 0.22/3 for each of
cases 6, 7, and 8.

21.5.3 Assessing Predictive Ability

R2 = .346

Measures of Association:

(Between the Response Variable and Predicted Probabilities)

Pairs Number Percent Summary Measures

Concordant 85 75.9 Somers’ D 0.56

Discordant 22 19.6 Goodman-Kruskal Gamma 0.59

Ties 5 4.5 Kendall’s Tau-a 0.25

Total 112 100.0

21.5.4 Computer Commands

The data are in a file TAB21-3.DAT that contains six columns similar to Table 21.3. ID indicates the
case, flt is the flight, f indicates failure of any O-rings, and temp is temperature. The fourth column
s is one minus f. The last column in the file contains the actual number of O-rings that failed on a
flight.

The following commands are for the generalized linear model procedure in SAS, genmod.
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Table 21.4: Diagnostics for Challenger data.

Case yh p̂h rh r̃h Leverage Cook
1 1 0.939248 0.25433 0.27874 0.167481
2 1 0.859317 0.40462 0.45459 0.207773
3 1 0.828845 0.45442 0.51093 0.208982
4 1 0.602681 0.81194 0.87704 0.142942
5 0 0.430493 -0.86943 -0.90961 0.086393
6 0 0.374724 -1.34085 -1.52147 0.223334
7 0 0.374724 * * *
8 0 0.374724 * * *
9 0 0.322094 -0.68930 -0.71359 0.066923

10 0 0.273621 -0.61375 -0.63417 0.063342
11 0 0.229968 1.28338 1.48289 0.250981
12 0 0.229968 * * *
13 1 0.229968 * * *
14 1 0.229968 * * *
15 0 0.158049 -0.43326 -0.44831 0.065987
16 0 0.129546 -0.38578 -0.39958 0.067861
17 0 0.085544 2.09565 2.25756 0.138293
18 1 0.085544 * * *
19 0 0.069044 -0.38514 -0.41441 0.136286
20 0 0.069044 * * *
21 0 0.044541 -0.21591 -0.22306 0.063106
22 0 0.035641 -0.19225 -0.19823 0.059440
23 0 0.022703 -0.15242 -0.15645 0.050869

options ps=60 ls=72 nodate;

data oring;

infile ’oring.dat’;

input ID flt f s temp no;

n = 1;

proc genmod data = oring;

model f/n = temp / link=logit dist=binomial;

run;

The first line controls printing of the output. The next four lines define the data. The variable “n”
is used to specify that there is only one trial in each of the 23 binomials. PROC GENMOD needs
the data specified: “data = oring”. GENMOD also needs information on the model. “link = logit”
and “dist = binomial” both are needed to specify that a logistic regression is being fitted. “model
f/n = temp” indicates that we are modeling the number of failures in “f” out of “n” trials using the
predictor “temp” (and implicitly an intercept).

The SAS program for logistic regression, PROC LOGISTIC, provides more specialized output.

21.6 Multiple Logistic Regression

This section examines regression models for the log-odds of a two-category response variable in
which we use more than one predictor variable. The discussion is centered around an example.

EXAMPLE 21.6.1. Chapman Data.
Dixon and Massey (1983) and Christensen (1997) present data on 200 men taken from the Los An-
geles Heart Study conducted under the supervision of John M. Chapman, UCLA. The data consist
of seven variables:
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Figure 21.3: Coronary incident scatterplot matrix.

Abbreviation Variable Units
Ag Age: in years
S Systolic Blood Pressure: millimeters of mercury
D Diastolic Blood Pressure: millimeters of mercury
Ch Cholesterol: milligrams per DL
H Height: inches
W Weight: pounds
CN Coronary incident: 1 if an incident had

occurred in the previous
ten years; 0 otherwise

Of the 200 cases, 26 had coronary incidents. The data are available on the internet via STATLIB as
well as through the webpage:
http://stat.unm.edu/~fletcher

The data are part of the data that go along with the book Log-Linear Models and Logistic Regression.
Figure 21.3 plots each variable against y = CN. Figures 21.4 through 21.7 provide a scatterplot
matrix of the predictor variables.

Let pi be the probability of a coronary incident for the ith man. We begin with the logistic
regression model

log[pi/(1− pi)] = β0 +β1Agi +β2Si +β3Di +β4Chi +β5Hi +β6Wi (21.6.1)

i = 1, . . . ,200. The maximum likelihood fit of this model is given in Table 21.5 The deviance d f
is the number of cases, 200, minus the number of fitted parameters, 7. Based on the t values, none
of the variables really stand out. There are suggestions of age, cholesterol, and weight effects. The
(unpooled) deviance G2 would look good except that, as discussed earlier, with Ni = 1 for all i there
is no basis for comparing it to a χ2(193) distribution.

Prediction follows as usual,

log[p̂i/(1− p̂i)] = β̂0 + β̂1Agi + β̂2Si + β̂3Di + β̂4Chi + β̂5Hi + β̂6Wi .
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Figure 21.4: Coronary incident scatterplot matrix.
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Figure 21.5: Coronary incident scatterplot matrix.

Table 21.5: Table of Coefficients: Model (21.6.1)

Predictor Est SE t
Constant −4.5173 7.481 −0.60

Ag 0.04590 0.02354 1.95
S 0.00686 0.02020 0.34
D −0.00694 0.03835 −0.18
Ch 0.00631 0.00363 1.74
H −0.07400 0.10622 −0.70
W 0.02014 0.00987 2.04

Deviance: G2 = 134.9 d f = 193
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Figure 21.6: Coronary incident scatterplot matrix.
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Figure 21.7: Coronary incident scatterplot matrix.

For a 60 year old man with blood pressure of 140 over 90, a cholesterol reading of 200, who is 69
inches tall and weighs 200 pounds, the estimated log odds of a coronary incident are

log[p̂/(1− p̂)] =−4.5173+ .04590(60)+ .00686(140)− .00694(90)
+ .00631(200)−0.07400(69)+0.02014(200) =−1.2435.

The probability of a coronary incident is estimated as

p̂ =
e−1.2435

1+ e−1.2435 = .224 .



524 21. LOGISTIC REGRESSION: PREDICTING COUNTS

20 30 40 50 60 70

0.0
0.1

0.2
0.3

0.4
0.5

Age

Fit
ted

Chol
300
200

Figure 21.8 Coronary incident probabilities as a function of age for S = 140, D = 90, H = 69, W = 200. Solid
Ch = 200, dashed Ch = 300.

Figure 21.8 plots the estimated probability of a coronary incident as a function of age for people
with S = 140, D = 90, H = 69, W = 200 and either Ch = 200 (solid line) or Ch = 300 (dashed line).

Diagnostic quantities for the cases with the largest Cook’s distances are given in Table 21.6.
They include 19 of the 26 cases that had coronary incidents. The large residuals are for people who
had low probabilities for a coronary incident but had one nonetheless. High leverages correspond to
unusual data. For example, case 41 has the highest cholesterol. Case 108 is the heaviest man in the
data.

We now consider fitting some reduced models. Simple linear logistic regressions were fitted for
each of the variables with high t values, i.e., Ag, Ch, and W. Regressions with variables that seem
naturally paired were also fitted, i.e., S,D and H,W. Table 21.7 contains the models along with d f ,
G2, A− q, and A∗. The first two of these are the deviance degrees of freedom and the deviance.
No P values are given because the asymptotic χ2 approximation does not hold. Also given are two
analogues of Mallow’s Cp statistic, A− q and A∗. A− q ≡ G2 − 2(d f ) is the Akaike information
criterion (AIC) less twice the number of trials (q ≡ 2n). A∗ is a version of the Akaike information
criterion defined for comparing model (21.6.1) to various submodels. It gives numerical values
similar to the Cp statistic and is defined by

A∗ = (G2 −134.9)− (7−2p) .

Here 134.9 is the deviance G2 for the full model (21.6.1), 7 comes from the degrees of freedom
for the full model (6 explanatory variables plus an intercept), and p comes from the degrees of
freedom for the submodel (p = 1+number of explanatory variables). The information in A−q and
A∗ is identical, A∗ = 258.1+(A− q). (The value 258.1 = 2n−G2[full model]− p[full model] =
400− 134.9− 7 does not depend on the reduced model.) A∗ is listed because it is a little easier to
look at since it takes values similar to Cp. Computer programs rarely report A− q or A∗. (The glm
procedure in the R language provides a version of the AIC.) A−q is very easy to compute from the
deviance and its degrees of freedom.

Of the models listed in Table 21.7

log[pi/(1− pi)] = γ0 + γ1Agi (21.6.2)
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Table 21.6: Diagnostics for Chapman data.

Case yh p̂h Leverage rh r̃h Cook
5 1 0.36 0.13 1.32 1.42 .043

19 1 0.46 0.15 1.08 1.17 .036
21 1 0.08 0.02 3.34 3.37 .028
27 1 0.21 0.03 1.97 1.99 .016
29 1 0.11 0.01 2.73 2.75 .016
39 1 0.16 0.03 2.33 2.36 .022
41 1 0.31 0.15 1.46 1.59 .065
42 1 0.12 0.03 2.60 2.63 .027
44 1 0.41 0.09 1.19 1.24 .021
48 1 0.18 0.06 2.14 2.21 .045
51 1 0.34 0.06 1.39 1.44 .019
54 1 0.19 0.03 2.07 2.09 .017
55 1 0.52 0.08 0.96 1.00 .012
81 1 0.32 0.06 1.44 1.49 .021
84 0 0.36 0.20 -0.74 -0.83 .026
86 1 0.03 0.01 5.95 5.98 .052

108 0 0.45 0.17 -0.91 -1.00 .029
111 1 0.56 0.11 0.89 0.95 .015
113 0 0.37 0.21 -0.76 -0.85 .027
114 0 0.46 0.14 -0.93 -1.00 .024
116 0 0.41 0.10 -0.84 -0.89 .013
123 1 0.36 0.07 1.35 1.40 .022
124 1 0.12 0.02 2.70 2.72 .019
126 1 0.13 0.04 2.64 2.70 .047

Table 21.7: Models for Chapman data.

Variables d f G2 A−q A∗

Ag,S,D,Ch,H,W 193 134.9 −251.1 7
Ag 198 142.7 −253.3 4.8
W 198 150.1 −245.9 12.2

H,W 197 146.8 −247.2 10.9
Ch 198 146.9 −249.1 9.0
S,D 197 147.9 −246.1 12.0

Intercept 199 154.6 −243.4 14.7

is the only model that is better than the full model based on the information criterion, i.e., A∗ is 4.8
for this model, less than the 7 for model (21.6.1).

Asymptotically valid tests of submodels against model (21.6.1) are available. These are per-
formed in the usual way, i.e., the differences in deviance degrees of freedom and deviance G2s give
the appropriate values for the tests. For example, the test of model (21.6.2) versus model (21.6.1)
has G2 = 142.7−134.9 = 7.8 with d f = 198−193 = 5. This and other tests are given below.

Tests against Model (21.6.1)
Model d f G2

Ag 5 7.8
W 5 15.2**

H,W 4 11.9*
Ch 5 12.0*
S,D 4 13.0*

Intercept 6 19.7**

All of the test statistics are significant at the .05 level, except for that associated with model (21.6.2).
This indicates that none of the models other than (2) is an adequate substitute for the full model
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Table 21.8: Chapman data models that include Age.

Variables d f G2 A∗

Ag,S,D,Ch,H,W 193 134.9 7.0
Ag,S,D 196 141.4 7.5
Ag,S,Ch 196 139.3 5.4
Ag,S,H 196 141.9 8.0
Ag,S,W 196 138.4 4.5
Ag,D,Ch 196 139.0 5.1
Ag,D,H 196 141.4 7.5
Ag,D,W 196 138.5 4.6
Ag,Ch,H 196 139.9 6.0
Ag,Ch,W 196 135.5 1.6
Ag,H,W 196 138.1 4.2

Ag,S 197 141.9 6.0
Ag,D 197 141.4 5.5
Ag,Ch 197 139.9 4.0
Ag,H 197 142.7 6.8
Ag,W 197 138.8 2.9

Ag 198 142.7 4.8

(21.6.1). In the table above, one asterisk indicates significance at the .05 level and two asterisks
denotes significance at the .01 level.

Our next step is to investigate models that include Ag and some other variables. If we can find
one or two variables that account for most of the value G2 = 7.8, we may have an improvement over
model (21.6.2). If it takes three or more variables to explain the 7.8, model (21.6.2) will continue to
be the best-looking model. (Note that χ2(.95,3) = 7.81, so a model with three more variables than
model (21.6.2) and the same G2 fit as model (21.6.1) would still not demonstrate a significant lack
of fit in model (21.6.2).)

Fits for all models that involve Ag and either one or two other explanatory variables are given
in Table 21.8. Based on the A∗ values, two models stand out

log[pi/(1− pi)] = γ0 + γ1Agi + γ2Wi (21.6.3)

with A∗ = 2.9 and
log[pi/(1− pi)] = η0 +η1Agi +η2Wi +η3Chi (21.6.4)

with A∗ = 1.6.
The estimated parameters and standard errors for model (21.6.3) are

Table of Coefficients: Model (21.6.3).
Variable Parameter Est SE
Intercept γ0 −7.513 1.706

Ag γ1 0.06358 0.01963
W γ2 0.01600 0.00794

For model (21.6.4), these are

Table of Coefficients: Model (21.6.4).
Variable Parameter Est SE
Intercept η0 −9.255 2.061

Ag η1 0.05300 0.02074
W η2 0.01754 0.003575
Ch η3 0.006517 0.008243

The coefficients for Ag and W are quite stable in the two models. The coefficients of Ag, W, and
Ch are all positive, so that a small increase in age, weight, or cholesterol is associated with a small
increase in the odds of having a coronary incident. Note that we are establishing association, not
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causation. The data tell us that higher cholesterol is related to higher probabilities, not that it causes
higher probabilities.

As in standard regression, interpreting regression coefficients can be very tricky. The fact that
the regression coefficients are all positive conforms with the conventional wisdom that high values
for any of these factors is associated with increased chance of heart trouble. However, as in standard
regression analysis, correlations between predictor variables can make interpretations of individual
regression coefficients almost impossible.

It is interesting to note that from fitting model (21.6.1) the estimated regression coefficient for D,
diastolic blood pressure, is negative, cf. Table 21.5. A naive interpretation would be that as diastolic
blood pressure goes up, the probability of a coronary incident goes down. (If the log odds go down,
the probability goes down.) This is contrary to common opinion about how these things work.
Actually, this is really just an example of the fallacy of trying to interpret regression coefficients.
The regression coefficients have been determined so that the fitted model explains these particular
data as well as possible. As mentioned, correlations between the predictor variables can have a
huge effect on the estimated regression coefficients. The sample correlation between S and D is
.802, so estimated regression coefficients for these variables are unreliable. Moreover, it is not even
enough just to check pairwise correlations between variables; any large partial correlations will
also adversely affect coefficient interpretations. Fortunately, such correlations should not normally
have an adverse affect on the predictive ability of the model; they only adversely affect attempts to
interpret regression coefficients. Another excuse for the D coefficient β̂3 being negative is that, from
the t value, β3 is not significantly different from 0.

The estimated blood pressure coefficients from model (21.6.1) also suggest an interesting hy-
pothesis. (The hypothesis would be more interesting if the individual coefficients were significant,
but we wish to demonstrate a modeling technique.) The coefficient for D is −0.00694, which is
approximately the negative of the coefficient for S, 0.00686. This suggests that perhaps β3 = −β2
in model (21.6.1). If we incorporate this hypothesis into model (21.6.1) we get

log[pi/(1− pi)]

= β0 +β1Agi +β2Si +(−β2)Di +β4Chi +β5Hi +β6Wi (21.6.5)
= β0 +β1Agi +β2(Si −Di)+β4Chi +β5Hi +β6Wi,

which gives deviance G2 = 134.9 on d f = 194. This model is a reduced model relative to model
(21.6.1), so from Table 21.8 a test of it against model (21.6.1) has

G2 = 134.9−134.9 = 0.0,

with d f = 194 − 193 = 1. The G2 is essentially 0, so the data are consistent with the reduced
model. Of course this reduced model was suggested by the fitted full model, so any formal test
would be biased — but then one does not accept null hypotheses anyway, and the whole point of
choosing this reduced model was that it seemed likely to give a G2 close to that of model (21.6.1).
We note that the new variable S−D is still not significant in model (21.6.5); it only has a t value of
.006834/.01877 = .36.

If we wanted to test something like β3 =−0.005, the reduced model is

log[pi/(1− pi)] = β0 +β1Agi +β2Si +(−0.005)Di +β4Chi +β5Hi +β6Wi

and involves a known term (−0.005)Di in the linear predictor. This known term is called an offset.
To fit a model with an offset, most computer programs require that the offset be specified separately
and that the model be specified without it, i.e., as

log[pi/(1− pi)] = β0 +β1Agi +β2Si +β4Chi +β5Hi +β6Wi.

The use of an offset is illustrated in Section 22.6.
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We learned earlier that, relative to model (21.6.1), either model (21.6.3) or (21.6.4) does an
adequate job of explaining the data. This conclusion was based on looking at A∗ values, but would
also be obtained by doing formal tests of models.

Christensen (1997, Section 4.4) discusses how to perform best subset selection, similar to Sec-
tion 10.2, for logistic regression. His preferred method requires access to a standard best subset
selection program that allows weighted regression. He does not recommend the score test proce-
dure used by SAS in PROC LOGISTIC.

21.6.1 Computer Commands

Below are SAS commands for obtaining a logistic regression. The data are in a file ’chapman.dat’
with eight columns: the case index, Ag, S, D, Ch, H, W , and CN. The file looks like this.

1 44 124 80 254 70 190 0

2 35 110 70 240 73 216 0

3 41 114 80 279 68 178 0

4 31 100 80 284 68 149 0

data continue

199 50 128 92 264 70 176 0

200 31 105 68 193 67 141 0

A simple way to fit the logistic regression model (21.6.4) in SAS is to use PROC GENMOD.
The first line controls printing. The next four lines involve defining and reading the data and creating
a variable “n” that gives the total number of possible successes for each case. The remaining lines
specify the model and that a logistic regression is to be performed.

options ps=60 ls=72 nodate;

data chapman;

infile ’chapman.dat’;

input ID Ag S D Ch H W CN;

n = 1;

proc genmod data=chapman ;

model CN/n = Ag Ch W / link=logit dist=binomial;

run;

A more powerful program for logistic regression (but one that pools cases for goodness-of-fit
tests and diagnostics) is PROC LOGISTIC.

options ps=60 ls=72 nodate;

data chapman;

infile ’chapman.dat’;

input ID Ag S D Ch H W CN;

proc logistic data=chapman descending;

model CN=Ag Ch W ;

run;

On the line with “proc logistic”, one specifies the data being used and the command “descending”.
The command “descending” is used so that the program models the probabilities of events coded
as 1 rather than events coded as 0. In other words, it makes the program model the probability of a
coronary incident rather than the probability of no coronary incident.

21.7 ANOVA Type Logit Models

In this section analysis of variance–type models for the log odds of a two-category response variable
are discussed. For ANOVA models, binary data can often be pooled to obtain reasonably large group
sizes. More often, the data come presented in groups. We begin with a standard example.
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Table 21.9: Muscle tension change data.

Drug (k)
Tension (h) Weight (i) Muscle ( j) Drug 1 Drug 2

High Type 1 3 21
Type 2 23 11

High
Low Type 1 22 32

Type 2 4 12
High Type 1 3 10

Type 2 41 21
Low

Low Type 1 45 23
Type 2 6 22

EXAMPLE 21.7.1. A study on mice examined the relationship between two drugs and muscle
tension. Each mouse had a muscle identified and its tension measured. A randomly selected drug
was administered to the mouse and the change in muscle tension was evaluated. Muscles of two
types were used. The weight of the muscle was also measured. Factors and levels are as follow.

Factor Abbreviation Levels
Change in muscle tension T High, Low

Weight of muscle W High, Low
Muscle type M Type 1, Type 2

Drug D Drug 1, Drug 2

The data in Table 21.9 are counts (rather than proportions) for every combination of the factors.
Probabilities phi jk can be defined for every factor combination.

Change in muscle tension is a response factor. Weight, muscle type, and drug are all predictor
variables. We model the log odds of having a high change in muscle tension (given the levels of
the explanatory factors), so the observed proportion of, say, high change for Weight = Low, Muscle
= 2, Drug = 2 is, from Table 21.9, 4/(4+ 6). The most general ANOVA model (saturated model)
includes all main effects and all interactions between the explanatory factors, i.e.,

log(p1i jk/p2i jk) = G+Wi +M j +Dk (21.7.1)
+(WM)i j +(WD)ik +(MD) jk

+(WMD)i jk .

As usual, this is equivalent to a model with just the highest order effects,

log(p1i jk/p2i jk) = (WMD)i jk .

As introduced in earlier chapters, we denote this model [WMD] with similar notations for other
models that focus on the highest order effects.

Models can be fitted by maximum likelihood. Reduced models can be tested. Estimates and
asymptotic standard errors can be obtained. The analysis of model (21.7.1) is similar to that of an
unbalanced three-factor ANOVA model as illustrated in Chapter 16.

Table 21.10 gives a list of ANOVA type logit models, deviance d f , deviance G2, P values
for testing the fitted model against model (21.7.1), and A− q values. Clearly, the best fitting logit
models are the models [MD][W] and [WM][MD]. Both involve the muscle type—drug interaction
and a main effect for weight. One of the models includes the muscle type—weight interaction. Note
that P values associated with saturated model goodness-of-fit tests are appropriate here because we
are not dealing with 0-1 data. (The smallest group size is 3+3 = 6.)

The estimated odds for a high tension change using [MD][W] are given in Table 21.11. The
estimated odds are 1.22 times greater for high weight muscles than for low-weight muscles. For
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Table 21.10: Statistics for Logit Models

Logit Model d f G2 P A−q
[WM][WD][MD] 1 0.111 0.7389 −1.889
[WM][WD] 2 2.810 0.2440 −1.190
[WM][MD] 2 0.1195 0.9417 −3.8805
[WD][MD] 2 1.059 0.5948 −2.941
[WM][D] 3 4.669 0.1966 −1.331
[WD][M] 3 3.726 0.2919 −2.274
[MD][W ] 3 1.060 0.7898 −4.940
[W ][M][D] 4 5.311 0.2559 −2.689
[W ][M] 5 11.35 0.0443 1.35
[W ][D] 5 12.29 0.0307 2.29
[M][D] 5 7.698 0.1727 −2.302

Table 21.11: Estimated Odds of High Tension Change for [MD][W]

Drug
Weight Muscle Drug 1 Drug 2
High Type 1 .625 1.827

Type 2 .590 .592
Low Type 1 .512 1.496

Type 2 .483 .485

example, in Table 21.11, .625/.512 = 1.22 but also 1.22 = .590/.483 = 1.827/1.495 = .592/.485.
This corresponds to the main effect for weight in the logit model. The odds also involve a mus-
cle type—drug interaction. To establish the nature of this interaction, consider the four estimated
odds for high weights with various muscles and drugs. These are the four values at the top of Ta-
ble 21.11, e.g., for muscle type 1, drug 1 this is .625. In every muscle type—drug combination
other than type 1, drug 2, the estimated odds of having a high tension change are about .6. The
estimated probability of having a high tension change is about .6/(1+ .6) = .375. However, for
type 1, drug 2, the estimated odds are 1.827 and the estimated probability of a high tension change
is 1.827/(1+ 1.827) = .646. The chance of having a high tension change is much greater for the
combination muscle type 1, drug 2 than for any other muscle type—drug combination. A similar
analysis holds for the low weight odds p̂12 jk/(1− p̂12 jk) but the actual values of the odds are smaller
by a multiplicative factor of 1.22 because of the main effect for weight.

The other logit model that fits quite well is [WM][MD]. Tables 21.12 and 21.13 both contain
the estimated odds of high tension change for this model. The difference between Tables 21.12 and
21.13 is that the rows of Table 21.12 have been rearranged in Table 21.13. This sounds like a trivial
change, but examination of the tables shows that Table 21.13 is easier to interpret. The reason for
changing from Table 21.12 to Table 21.13 is the nature of the logit model. The model [WM][MD]
has M in both terms, so it is easiest to interpret the fitted model when fixing the level of M. For
a fixed level of M, the effects of W and D are additive in the log odds, although the size of those
effects change with the level of M.

Table 21.12: Estimated Odds for [WM][MD]

Drug
Weight Muscle Drug 1 Drug 2
High Type 1 .809 2.202

Type 2 .569 .512
Low Type 1 .499 1.358

Type 2 .619 .557
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Table 21.13: Estimated Odds for [WM][MD]

Drug
Muscle Weight Drug 1 Drug 2
Type 1 High .809 2.202

Low .499 1.358
Type 2 High .569 .512

Low .619 .557

Looking at the type 2 muscles in Table 21.13, the high weight odds are .919 times the low weight
odds. Also, the drug 1 odds are 1.111 times the drug 2 odds. Neither of these are really very striking
differences. For muscle type 2, the odds of a high tension change are about the same regardless of
weight and drug. Contrary to our previous model, they do not seem to depend much on weight and
to the extent that they do depend on weight, the odds go down rather than up for higher weights.

Looking at the type 1 muscles, we see the dominant features of the previous model reproduced.
The odds of high tension change are 1.622 times greater for high weights than for low weights. The
odds of high tension change are 2.722 times greater for drug 2 than for drug 1.

Both models indicate that for type 1 muscles, high weight increases the odds and drug 2 in-
creases the odds. Both models indicate that for type 2 muscles, drug 2 does not substantially change
the odds. The difference between the models [MD][W] and [WM][MD] is that [MD][W] indicates
that for type 2 muscles, high weight should increase the odds, but [WM][MD] indicates little change
for high weight and, in fact, what change there is indicates a decrease in the odds.

21.7.1 Computer Commands

The muscle tension data are listed in the file ‘tenslr.dat’ with one column for the number of high
tension scores, one column for the low tension scores, and three columns of indices that specify the
level of weight (high is 1), muscle type, and drug, respectively.

3 3 1 1 1

21 10 1 1 2

23 41 1 2 1

11 21 1 2 2

22 45 2 1 1

32 23 2 1 2

4 6 2 2 1

12 22 2 2 2

The following commands fit the model [WM][WD][MD] using SAS PROC GENMOD. Note
that the variable “n” is the total number of individuals with each level of weight, muscle type, and
drug. The “class” command is used to distinguish ANOVA type factors from regression predictors.

options ps=60 ls=72 nodate;

data tension;

infile ’TAB21-9.DAT’;

input H L W M D;

n = H+L;

proc genmod data=tension;

class W M D;

model H/n = W*M W*D M*D / link=logit dist=binomial;

run;

proc print data=chdiag;

run;
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Table 21.14: Abortion Opinion Data

AGE
RACE SEX OPINION 18-25 26-35 36-45 46-55 56-65 66+

Male Yes 96 138 117 75 72 83
No 44 64 56 48 49 60

White
Female Yes 140 171 152 101 102 111

No 43 65 58 51 58 67

Male Yes 24 18 16 12 6 4
No 5 7 7 6 8 10

Nonwhite
Female Yes 21 25 20 17 14 13

No 4 6 5 5 5 5

21.8 Ordered Categories

In dealing with ANOVA models, when one or more factors had quantitative levels, it was useful to
model effects with polynomials. Similar results apply to logit models.

EXAMPLE 21.8.1. Consider data in which there are four factors defining a 2× 2× 2× 6 table.
The factors are

Abbrev-
Factor iation Levels
Race (h) R White, Nonwhite
Sex (i) S Male, Female
Opinion ( j) O Yes = Supports Legalized Abortion

No = Opposed to Legalized Abortion
Age (k) A 18-25, 26-35, 36-45, 46-55, 56-65, 66+ years

Opinion is the response factor. Age has ordered categories. The data are given in Table 21.14.
The probability of a Yes opinion for Race h, Sex i, Age k is phik ≡ phi1k. The corresponding No
probability has 1− phik ≡ phi2k.

As in the previous section, we could fit a three-factor ANOVA type logit model to these data.
From the deviances and A−q in Table 21.15 a good fitting logit model is

log[phik/(1− phik)] = (RS)hi +Ak. (21.8.1)

Fitting this model gives the estimated odds of supporting relative to opposing legalized abortion that
follow.

Odds of Support versus Opposed: Model (21.8.1)
Age

Race Sex 18-25 26-35 36-45 46-55 56-65 65+
White Male 2.52 2.14 2.09 1.60 1.38 1.28

Female 3.18 2.70 2.64 2.01 1.75 1.62
Nonwhite Male 2.48 2.11 2.06 1.57 1.36 1.26

Female 5.08 4.31 4.22 3.22 2.79 2.58

The deviance G2 is 9.104 with 15 d f . The G2 for fitting [R][S][A] is 11.77 on 16 d f . The difference
in G2’s is not large, so the reduced logit model log[phik/(1 − phik)] = R(h) + S(i) + A(k) may fit
adequately but we continue to examine model (21.8.1).
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Table 21.15: Logit Models for the Abortion Opinion Data

Model d f G2 A−q
[RS][RA][SA] 5 4.161 −5.839
[RS][RA] 10 4.434 −15.566
[RS][SA] 10 8.903 −11.097
[RA][SA] 6 7.443 −4.557
[RS][A] 15 9.104 −20.896
[RA][S] 11 7.707 −14.23
[SA][R] 11 11.564 −10.436
[R][S][A] 16 11.772 −20.228
[R][S] 21 40.521 −1.479
[R][A] 17 21.605 −12.395
[S][A] 17 14.084 −19.916
[R] 22 49.856 5.856
[S] 22 43.451 −0.549
[A] 18 23.799 −12.201
[] 23 52.636 6.636

The odds suggest two things: 1) odds decrease as age increases and 2) the odds for males are
about the same, regardless of race. We fit models that incorporate these suggestions. Of course,
because the data are suggesting the models, formal tests of significance will be even less appropriate
than usual but G2s still give a reasonable measure of the quality of model fit.

To model odds that are decreasing with age we incorporate a linear trend in ages. In the absence
of specific ages to associate with the age categories we simply use the scores k = 1,2, . . . ,6. These
quantitative levels suggest fitting the ACOVA model

log[phik/(1− phik)] = (RS)hi + γk . (21.8.2)

The deviance G2 is 10.18 on 19 d f , so the linear trend in coded ages fits very well. Recall that
model (21.8.1) has G2 = 9.104 on 15 d f , so a test of model (21.8.2) versus model (21.8.1) has
G2 = 10.18−9.104 = 1.08 on 19−15 = 4 d f .

To incorporate the idea that males have the same odds of support, recode the indices for races
and sexes. The indices for the (RS)hi terms are (h, i) = (1,1),(1,2),(2,1),(2,2). We recode with
new indexes ( f ,e) having the correspondence

(h, i) (1,1) (1,2) (2,1) (2,2)
( f ,e) (1,1) (2,1) (1,2) (3,1)

The model
log[p f ek/(1− p f ek)] = (RS) f e +Ak

gives exactly the same fit as model (21.8.1). Together, the subscripts f , e and k still distinguish all of
the cases in the data. The point of this recoding is that the single subscript f distinguishes between
males and the two female groups but does not distinguish between white and nonwhite males, so
now if we fit the model

log[p f ek/(1− p f ek)] = (RS) f +Ak, (21.8.3)

we have a model that treats the two male groups the same. To fit this, you generally do not need to
define the index e in your data file, even though it will implicitly exist in the model.

Of course, model (21.8.3) is a reduced model relative to model (21.8.1). Model (21.8.3) has
deviance G2 = 9.110 on 16 d f , so the comparison between models has G2 = 9.110−9.104 = .006
on 16−15 = 1 d f . We have lost almost nothing by going from model (21.8.1) to model (21.8.3).

Finally, we can write a model that incorporates both the trend in ages and the equality for males

log[p f ek/(1− p f ek)] = (RS) f + γk . (21.8.4)

This has G2 = 10.19 on 20 d f . Thus relative to model (21.8.1), we have dropped 5 d f from the
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model, yet only increased the G2 by 10.19−9.10 = 1.09. Rather than fitting model (21.8.4), we fit
the equivalent model that includes an intercept (grand mean) µ . The estimates and standard errors
for this model, using the side condition (RS)1 = 0, are

Table of Coefficients: Model related to (21.8.4)
Parameter Est SE t

µ 1.071 0.1126 9.51
(RS)1 0 — —
(RS)2 0.2344 0.09265 2.53
(RS)3 0.6998 0.2166 3.23

γ −0.1410 0.02674 −5.27

All of the terms seem important. With this side condition, (R̂S)2 is actually an estimate of (RS)2 −
(RS)1, so the t score 2.53 is an indication that white females have an effect on the odds of support
that is different from males. Similarly, (R̂S)3 is an estimate of the difference in effect between
nonwhite females and males.

The estimated odds of support are

Odds of Support: Model (21.8.4).
Age

Race-Sex 18-25 26-35 36-45 46-55 56-65 65+
Male 2.535 2.201 1.912 1.661 1.442 1.253
White female 3.204 2.783 2.417 2.099 1.823 1.583
Nonwhite female 5.103 4.432 3.850 3.343 2.904 2.522

The odds can be transformed into probabilities of support. To most people, probabilities are easier
to interpret than odds. The estimated probability that a white female between 46 and 55 years of age
supports legalized abortion is 2.099/(1+2.099) = .677. The odds are about 2, so the probability is
about twice as great that such a person will support legalized abortion rather than oppose it.

21.8.1 Computer Commands

To fit the data in Table 21.14 they need to be manipulated. In Minitab, the data are read into columns
c1 through c5. The following commands allow for fitting model (21.8.1). Here “EPRO2” gives the
fitted probabilities from which the odds can be computed and placed into a separate column.

MTB > names c1 "h" c2 "i" c3 "k" c4 "j" c5 "count"

sort the data so that all the yes counts are together

and all the no counts are together

MTB > sort c4 c1 c2 c3 c5 c11 c12 c13 c14 c15

Now c11=j, c12=h, c13=i, c14=k, and c15=count

separate the yes data from the no data into a new worksheet

MTB > Unstack (C12 C13 C14 C15);

SUBC> Subscripts C11;

SUBC> NewWS;

SUBC> VarNames.

Now c4 has the yes counts and c8 has the no counts with

c1=c5=h, c2=c6=i, c3=c7=k

MTB > let c10=c4+c8

MTB > Name c13 "EPRO2"

MTB > Blogistic C4 C10 = c1|c2 c3;

SUBC> ST;

SUBC> Factors c1 c2 c3;

SUBC> Logit;
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Table 21.16: French convictions

Year Convictions Accusations
1825 4594 7234
1826 4348 6988
1827 4236 6929
1828 4551 7396
1829 4475 7373
1830 4130 6962

Table 21.17: Heights and chest circumferences

Heights
Chest 64–65 66–67 68–69 70–71 71–73 Total
39 142 442 341 117 20 1062
40 118 337 436 153 38 1082
Total 260 779 777 270 58 2144

SUBC> Eprobability ’EPRO2’;

SUBC> Brief 2.

MTB > Name c14 "Odds"

MTB > let c14 = c13/(1-c13)

21.9 Exercises

EXERCISE 21.9.1. Fit a logistic model to the data of Table 21.16 that relates probability of
conviction to year. Is there evidence of a trend in the conviction rates over time? Is there evidence
for a lack of fit?

EXERCISE 21.9.2. Stigler (1986, p. 208) reports data from the Edinburgh Medical and Surgical
Journal (1817) on the relationship between heights and chest circumferences for Scottish militia
men. Measurements were made in inches. We concern ourselves with two groups of men, those
with 39 inch chests and those with 40 inch chests. The data are given in Table 21.17. Test whether
the distribution of heights is the same for these two groups, cf. Chapter 5.

Is it reasonable to fit a logistic regression to the data of Table 21.17 Why or why not? Explain
what such a model would be doing. Whether reasonable or not, fitting such a model can be done.
Fit a logistic model and discuss the results. Is there evidence for a lack of fit?

EXERCISE 21.3. Chapman, Masinda, and Strong (1995) give the data in Table 21.18. These are
the number out of 150 popcorn kernels that fail to pop when microwaved for given amount of time.
There are three replicates. Fit a logistic regression with time as the predictor.

EXERCISE 21.1. Reanalyze the chloracetic acid data using the log of the dose as a predictor
variable. Which model gives a smaller deviance?
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Table 21.18: Unpopped Kernels

Trials
Time 1 2 3

30 144 145 141
45 125 125 118
60 101 138 119

120 197 112 92
150 109 101 61
165 64 54 78
180 34 23 50
210 25 31 36
225 25 27 8
240 11 12 27
255 3 0 2




