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Preface

“Critical assessment of data is the essential task of the educated mind.”
Professor Garrett G. Fagan, Pennsylvania State University.
The last words in his audio course The Emperors of Rome, The Teaching Company.

“Statistical Learning is the uncritical assessment of data.”
Professor Ronald Christensen, University of New Mexico.
The last words in his ignominious career prior to retirement.

“In the beginning was the Linear Model. And the Linear Model was with Statistics.
And the Linear Model was Statistics.”
Professor Fletcher Christensen, University of New Mexico.

“There are essentially only two worthwhile things anybody knows how to do in
Statistics: linear approximations and simulations.”
Professor Ronald Christensen, University of New Mexico. (Previous, less accurate,
version was ~’Linear Models and MCMC.”)

Preface to the First and Last Edition

Due to the current (overwhelming?) popularity of statistical learning, 1 decided to
consolidate the statistical learning material from some of my other books into one
source, independent of the other books, and to add in some additional statistics top-
ics that get designated as statistical learning. This came about because I recently
completed new editions of three books: Christensen (2015), Analysis of Variance,
Design, and Regression: Linear Models for Unbalanced Data (ANREG-II), Chris-
tensen (2020), Plane Answers to Complex Questions: The Theory of Linear Models

vii



viii Preface

(PA or for the fifth edition PA-V) and Christensen (2019) Advanced Linear Model-
ing: Statistical Learning and Dependent Data (ALM-III). The new editions include
material on statistical learning as it applies to traditional topics in Statistics but (de-
spite the subtitle for one of them) none of those books really focus on statistical
learning. The most efficient way to perform the consolidation seemed to be by as-
suming that the reader had already been exposed to a course in regression analysis.
The book does not presuppose that the reader knows linear model theory. Consoli-
dating all of this material into a cogent whole turned out to be far more work than
I was expecting. Although this book should be accessible without any of the other
books, I frequently refer to the other books for details and theory not contained in
this one. I like to point out that the number of references to my other work is at least
as much about sloth as it is about ego.

This book’s computer code http://www.stat.unm.edu/~fletcher/
R-SL.pdf is being pieced together from that of the applications book ANREG-
II, http://www.stat .unm.edu/~fletcher/Rcode.pdf, as well as that
for ALM-III, http://www.stat.unm.edu/~fletcher/R-ALMIII.pdf,
with additions for the topics covered here that were not included in either of those
other books. The data files for this book can be downloaded from https://www.
stat.unm.edu/~fletcher/SL-Data.zip with the data in Table x.y ap-
pearing in file SLx-y .dat.

After reviewing standard linear regression in Chapters 1 and 2 we observe that
most methods of nonparametric regression are merely applications of standard lin-
ear regression but that they often employ estimates of the regression parameters
that are alternatives to the traditional least squares estimates. After doing standard
regression, we introduce binomial and binary regression. These methods include
(regularized, nonparametric) logistic regression and support vector machines. Fi-
nally, we introduce some topics from multivariate analysis that are commonly used
in statistical learning.

The presentation assumes that the reader has encountered basic ideas of proba-
bility such as expected values, variances, covariances, and, for some topics near the
end of the book, conditional expectations and densities of multivariate distributions.
(Any calculus based statistics course should be sufficient but perhaps not necessary
background.) We do not do any sophisticated probability, the reader needs merely
not to be freaked out by the concepts. An extensive background in analysis of vari-
ance (ANOVA) is not necessary but I find ANOVA unavoidable when discussing a
few of the topics. The whole idea of generalized additive models is based on an anal-
ogy with multifactor ANOVA and the discussion of regression trees also requires
some knowledge of multifactor ANOVA. Moreover, there exist strong relationships
between one-way multivariate ANOVA (MANOVA) and one of the discrimination
procedures discussed, namely, linear discriminant analysis (LDA). For readers with-
out an extensive ANOVA background, Appendix B contains an example of a three-
factor ANOVA and Appendix C contains an example of a three-factor MANOVA.
Starting with three-factor examples is really dumping you into the deep end of the
pool, so each three-factor analysis is introduced using its equivalent one-factor anal-
ysis.


http://www.stat.unm.edu/~fletcher/R-SL.pdf
http://www.stat.unm.edu/~fletcher/R-SL.pdf
http://www.stat.unm.edu/~fletcher/Rcode.pdf
http://www.stat.unm.edu/~fletcher/R-ALMIII.pdf
https://www.stat.unm.edu/~fletcher/SL-Data.zip
https://www.stat.unm.edu/~fletcher/SL-Data.zip

Preface ix

I would like to thank Carlos Torres Inga and Kevin J. Kloeppel for comments
that led to improvements in the discussion of cluster analysis. Penny Darsey caught
a number of typos. Also, I forgot to thank Andrew Ng in ALM-III for posting a video
that helped me to understand support vector machines, namely “Support Vector Ma-
chines — Optimization Objective.”
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Chapter 1
Linear Regression

Abstract This chapter reviews basic ideas of linear regression.

Regression involves predicting values of a dependent variable from a collection
of other (predictor) variables. Linear regression employs a prediction function that
is a linear combination of the values of the predictor variables. Most forms of non-
parametric regression are actually linear regression methods. The complete set of
predictor variables can include not only whatever original predictor variables that
were measured but nonlinear transformations of those original predictor variables.
This allows predictor functions that are complicated nonlinear functions of the orig-
inal measured predictors while still being linear combinations of the complete set of
predictors.

Traditionally, all observed variables in regression were measurement variables
in the sense that they resulted from measurements taken on objects. As such, these
variables typically have measurement units associated with them like millimeters,
grams, inches, pounds, etc. It can also be useful to incorporate as predictor variables
factor/categorical variables that are used to indicate group membership. To incor-
porate categorical predictors into a linear regression, they need to be replaced by a
collection of 0-1 indicators that identify each of the various group categories. Trans-
formations of categorical predictors serve no useful purpose unless they change the
group structure. (For example, if we think that two groups act alike, we can trans-
form the categorical predictor so that they become the same group.)

For simplicity, in this chapter we review linear regression methods using illus-
trations that employ only the original measured variables. Later chapters discuss
systematic methods for defining transformations of the original predictors. Nonethe-
less, the essential behavior of linear regression models in no way depends on how
the predictor variables are obtained, so this review really applies equally well to
nearly all of our approaches to nonparametric regression.



2 1 Linear Regression

1.1 An Example

The Coleman Report data were given in Mosteller and Tukey (1977). The data con-
sist of measurement variables from schools in the New England and Mid-Atlantic
states. The predictor variables are x1, staff salaries per pupil; x,, percentage of sixth
graders whose fathers have white-collar jobs; x3, a composite measure of socioeco-
nomic status; x4, the mean score of a verbal test given to the teachers; and xs, the
mean educational level of the sixth graders’ mothers (one unit equals two school
years). The dependent variable y is the mean verbal test score for sixth graders. The
data are given in Table 1.1. Figures 1.1 through 1.4 provide pairwise plots all of the
variables, i.e., a scatterplot matrix of the variables.

Table 1.1 Coleman Report data.

School y X X2 X3 X4 X5
1 37.01 3.83 28.87 7.20 26.60 6.19
2 26.51 2.89 20.10 —11.71 24.40 5.17
3 36.512.86 69.05 12.3225.70 7.04
4 40.70 2.92 65.40 14.28 25.70 7.10
5 37.10 3.06 29.59  6.31 25.40 6.15
6 3390207 44.82 6.16 21.60 6.41
7 41.802.52 77.37 12.70 24.90 6.86
8 33.4024524.67 —0.17 25.01 5.78
9 41.01 3.13 65.01 9.85 26.60 6.51
10 37.20 244 9.99 —0.05 28.01 5.57

11 23.30 2.09 12.20 —12.86 23.51 5.62
12 35202522255 092 23.60 5.34
13 34.90 222 1430  4.77 24.51 5.80
14 33.10 2.67 31.79 —0.96 25.80 6.19
15 22.70 2.71 11.60 —16.04 25.20 5.62
16 39.70 3.14 68.47 10.62 25.01 6.94
17 31.80 3.54 42.64  2.66 25.01 6.33
18 31.70 2.52 16.70 —10.99 24.80 6.01
19  43.10 2.68 86.27 15.03 25.51 7.51
20 41.01 2.37 76.73  12.77 24.51 6.96

It is of interest to examine the correlations between y and each of the predictor
variables.

| X1 X2 X3 X4 X5
Correlationwithy| 0.192 0.753 0.927 0334 0.733

Of the five variables, x3 has the highest correlation. It explains more of the y vari-
ability than any other single variable. Variables x, and x5 also have reasonably high
correlations with y. Low correlations exist between y and both x; and x4. Interest-
ingly, x; and x4 turn out to be more important in explaining y than either x; or xs.
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1.2 Inferential Procedures 5

However, the explanatory powers of x| and x4 only manifest themselves after x3 has
been fitted to the data.

1.2 Inferential Procedures

A basic linear model for the Colman Report data that does not involve transforming
the predictors is

yi = Bo + Bixi1 + Baxiz + Baxiz + Baxia + Bsxis + &, (1)

i=1,...,20, where the &s are unobservable independent N (0,62) random vari-
ables and the Bs are fixed unknown parameters. Fitting Model (1) with a computer
program typically yields a table of coefficients with parameter estimates, standard
errors for the estimates, 7 ratios for testing whether the parameters are zero, P values,
and a three line analysis of variance table.

Table of Coefficients: Model (1)
Predictor B SE(BY) t P
Constant 1995 13.63 1.46 0.165

X1 —1.793 1.233 —1.450.168
X2 0.04360 0.05326 0.82 0.427
x3 0.55576 0.09296 5.98 0.000
X4 1.1102 0.4338 2.56 0.023
X5 —1.811 2.027 —0.89 0.387

Analysis of Variance: Model (1)
Source df SS MS F P
Regression 5 582.69 116.54 27.08 0.000
Error 14 60.24 4.30
Total 19 642.92

From just these two tables of statistics much can be learned. In particular, the esti-
mated regression equation is

¥y=19.9—1.79x; +0.0436x2 + 0.556x3 + 1.11x4 — 1.81xs.

Substituting the observed values x;;, j = 1,...,5 for the x;s in the estimated regres-
sion equation gives the fitted (predicted) values §; and the residuals & = y; — .
The estimated regression equation describes the relationship between y and the
predictor variables for the current data; it does not imply a causal relationship. If
we go out and increase the percentage of sixth graders whose fathers have white-
collar jobs by 1%, i.e., increase x, by one unit, we cannot infer that mean verbal
test scores will tend to increase by 0.0436 units. In fact, we cannot think about any
of the variables in a vacuum. No variable has an effect in the equation apart from
the observed values of all the other variables. If we conclude that some variable can
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be eliminated from the model, we cannot conclude that the variable has no effect
on y, we can only conclude that the variable is not necessary to explain these data.
The same variable may be very important in explaining other, rather different, data
collected on the same variables. All too often, people choose to interpret the esti-
mated regression coefficients as if the predictor variables cause the value of y but the
estimated regression coefficients simply describe an observed relationship. Frankly,
since the coefficients do not describe a causal relationship, many people, including
the author, find regression coefficients to be remarkably uninteresting quantities.
What this model is good at is predicting values of y for new cases that are simi-
lar to those in the current data. In particular, such new cases should have predictor
variables with values similar to those in the current data.

The ¢ statistics for testing Hy : By = 0 were reported in the table of coefficients.
For example, the test of Hy : B4 = 0 has

Bs 1.1102
== —2.56.
0 SE(By) | 0.4338

The P value is
P =Pr|t(dfE)| > 2.56] = 0.023.

The value 0.023 indicates a reasonable amount of evidence that variable x4 is needed
in the model. We can be reasonably sure that dropping x4 from the model harms
the explanatory (predictive) power of the model. In particular, with a P value of
0.023, the test of the null model with Hy : B4 = 0 is rejected at the o = 0.05 level
(because 0.05 > 0.023), but the test is not rejected at the oo = 0.01 level (because
0.023 > 0.01). . .

A 95% confidence interval for 83 has endpoints f33 +¢(0.975,dfE) SE(3). From
at table, 7(0.975,14) = 2.145 and from the table of coefficients the endpoints are

0.55576 42.145(0.09296).

The confidence interval is (0.356,0.755), so the data are consistent with f3 being
between 0.356 and 0.755.

The primary value of the analysis of variance table is that it gives the degrees
of freedom, the sum of squares, and the mean square for error. The mean squared
error is the estimate of 62, and the sum of squares error and degrees of freedom for
error are vital for comparing various regression models. The degrees of freedom for
error are n — 1 — (the number of predictor variables). The minus 1 is an adjustment
for fitting the intercept fBo.

The analysis of variance table also gives the test for whether any of the x variables
help to explain y, i.e., of whether y; = By + ¢&; is an adequate model. This test is rarely
of interest because it is almost always highly significant. It is a poor scholar who
cannot find any predictor variables that are related to the measurement of primary
interest. (Ok, I admit to being a little judgmental here.) The test of

Hy:By=-=Bs=0
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is based on
MSReg  116.5

MSE ~— 4.303

and (typically) is rejected for large values of F. The numerator and denominator
degrees of freedom come from the ANOVA table. As suggested, the corresponding
P value in the ANOVA table is infinitesimal, i.e., zero to three decimal places. Thus
these x variables, as a group, help to explain the variation in the y variable. In other
words, it is possible to predict the mean verbal test scores for a school’s sixth grade
class from the five x variables measured. Of course, the fact that some predictive
ability exists does not mean that the predictive ability is sufficient to be useful.

The coefficient of determination, R?%, measures the predictive ability of the model.
It is the squared correlation between the (¥;,y;) pairs and also is the percentage of
the total variability in y that is explained by the x variables. If this number is large,
it suggests a substantial predictive ability. In this example

Fops = =27.08

R — SSReg  582.69
T SSTot  642.92

=0.906,

s0 90.6% of the total variability is explained by the regression model. This large
percentage suggests that the five x variables have substantial predictive power. How-
ever, we will see that a large R? does not imply that the model is good in absolute
terms. It may be possible to show that this model does not fit the data adequately. In
other words, this model is explaining much of the variability but we may be able to
establish that it is not explaining as much of the variability as it ought. Conversely,
a model with a low R? value may be the perfect model but the data may simply have
a great deal of variability. Moreover, even an R” of 0.906 may be inadequate for the
predictive purposes of the researcher, while in some situations an R> of 0.3 may be
perfectly adequate. It depends on the purpose of the research. Finally, a large R> may
be just an unrepeatable artifact of a particular data set. The coefficient of determina-
tion is a useful tool but it must be used with care. When using just x3 to predict y, R>
is the square of the correlation between the two variables, so R> = (0.927) = 0.86.

1.2.1 Computing commands

Performing multiple regression without a computer program is impractical. Mintab’s
reg command is menu driven, hence very easy to use. SAS’s regression procedures
are a bit more complicated, but example commands are easily followed, as are the
commands for Minitab, most of which can be avoided by using the menus. (Minitab
and SAS code for ANREG-II can be found at http://www.stat .unm.edu/
~fletcher/MinitabCode.pdf.) I have little personal experience with pro-
grams like SPSS, SYSTAT, and JMP. R, on the other hand, is not a program but a
programming language and is more complicated to use. Because multiple linear re-
gression is the fundamental model considered in this book, we present some R code
for it. The link to R code for this book was given in the Preface.
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The following R code should work for computing most of the statistics used in
this chapter and the next. Of course you have to replace the location of the data file
C:\\tabl-1.dat with the location where you stored the data. For completeness,
this code includes some procedures not yet discussed but that should have been
discussed in a first course on regression.

coleman <- read.table("C:\\tabl-1.dat", sep="",
col.names=c ("School", "x1", "x2","x3","x4","x5","y"))

attach (coleman)

coleman

summary (coleman)

#Coefficient and ANOVA tables
co <- Im(y 7 x1+x2+x3+x4+x5)
cop=summary (co)

cop

anova (co)

#Confidence intervals
confint (co, level=0.95)

#Predictions

new = data.frame (x1=2.07, x2=9.99,x3=-16.04,x4= 21.6, x5=5.17)
predict (co,new, se.fit=T, interval="confidence")

predict (co,new, interval="prediction")

# Diagnostics table
infv = c(y,co$fit,hatvalues (co),rstandard(co), rstudent (co),
cooks.distance (co))
inf=matrix (infv, I (cop$df[l]+cop$df[2]),6,dimnames =
list (NULL,c("y", "yhat", "lev","zr","t","C")))
inf

# Normal and fitted values plots
ggnorm(rstandard(co),ylab="Standardized residuals")
plot (co$fit, rstandard(co),xlab="Fitted",

ylab="Standardized residuals",main="Residual-Fitted plot")

#Wilk-Francia Statistic
rankit=gnorm (ppoints (rstandard(co),a=I(3/8)))
ys=sort (rstandard (co))
Wprime= (cor (rankit,ys)) "2

Wprime

1.3 General Statement of Model

In general we consider a dependent variable y that is a random variable of interest.
We also consider p — 1 nonrandom predictor variables xi,...,x,_1. These can be
original measurements or transformations of original measurements. The general
multiple (linear) regression model relates 7 observations on y to a linear combination
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of the corresponding observations on the x;s plus a random error €. In particular, we
assume

yi = Bo+ Bixit + -+ Bp—1Xi p—1 + &,

where the subscripti = 1, ...,n indicates different observations and the g;s are inde-
pendent N (0, 62) random variables. The ;s and o2 are unknown constants and are
the fundamental parameters of the regression model.

Estimates of the f3;s are obtained by the method of least squares. The least
squares estimates are those that minimize

(i — Bo — Brxit — Baxiz — -+ — Bp—1%ip-1)”

-

I
-

14

In this function the y;s and the x;;s are all known quantities. Least squares estimates
have a number of interesting statistical properties. If the errors are independent with
mean zero, constant variance, and are normally distributed, the least squares esti-
mates are maximum likelihood estimates (MLEs) and minimum variance unbiased
estimates (MVUEs). If we keep the assumptions of mean zero and constant vari-
ance but weaken the independence assumption to that of the errors being merely
uncorrelated and stop assuming normal distributions, the least squares estimates are
best (minimum variance) linear unbiased estimates (BLUEs). For proofs of these
statements, see PA.

In checking assumptions we often use the predictions (fitted values) ¥ corre-
sponding to the observed values of the predictor variables, i.e.,

$i = Po+Prxit +- -+ Bp—1xi p—1,
i=1,...,n. Residuals are the values
&=yi— 9

The other fundamental parameter to be estimated, besides the 8 S, is the variance
o2. The sum of squares error is

and the estimate of 62 is the mean squared error (residual mean square)
MSE = SSE/(n—p).

The MSE is an unbiased estimate of 62 in that E(MSE) = o2. Under the standard
normality assumptions, MSE is the minimum variance unbiased estimate of &2.
However, the maximum likelihood estimate of 62 is 62 = SSE /n, We will never
use the MLE of 2. (Some programs for fitting generalized linear models, when
used to fit standard linear models, report the MLE rather than the MSE.)

Details of the estimation procedures are given in Chapter 2.
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1.4 Regression Surfaces and Prediction

One of the most valuable aspects of regression analysis is its ability to provide good
predictions of future observations. Of course, to obtain a prediction for a new value y
we need to know the corresponding values of the predictor variables, the x;s. More-
over, to obtain good predictions, the values of the x;s need to be similar to those on
which the regression model was fitted. Typically, a fitted regression model is only an
approximation to the true relationship between y and the predictor variables. These
approximations can be very good, but, because they are only approximations, they
are not valid for predictor variables that are dissimilar to those on which the approx-
imation was based. Trying to predict for x; values that are far from the original data
is always difficult. Even if the regression model is true and not an approximation, the
variance of such predictions is large. When the model is only an approximation, the
approximation is typically invalid for such predictor variables and the predictions
can be utter nonsense.

The regression surface for the Coleman data is the set of all values z that satisfy

2= Po+ Bix1 + Poxz + B3xz + Paxa + Psxs

for some values of the predictor variables. The estimated regression surface is

= Bo + Bm + Bzxz + 33X3 + B4X4 + BSXS-

There are two problems of interest. The first is estimating the value z on the re-
gression surface for a fixed set of predictor variables. The second is predicting the
value of a new observation to be obtained with a fixed set of predictor variables. For
any set of predictor variables, the estimate of the regression surface and the predic-
tion are identical. What differs are the standard errors associated with the different
problems.

Consider estimation and prediction at

(x1 ,X2,X3,X4,X5) = (2.07,9.99, —16.04721.675.17).

These are the minimum values for each of the variables, so there will be substantial
variability in estimating the regression surface at this point. The estimator (predic-
tor) is

PN

$=Po+ Y Bixj =19.9—1.79(2.07) +0.0436(9.99)
j=1

N agl

+0.556(—16.04) + 1.11(21.6) — 1.81(5.17) = 22.375.

For constructing 95% t intervals, the percentile needed is £(0.975, 14) = 2.145.
The 95% confidence interval for the point By + 23:1 Bjx; on the regression sur-
face uses the standard error for the regression surface, which is
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SE(Surface) =1.577.

The standard error is obtained from the regression program and depends on the
specific value of (xy,x2,x3,%4,xs). The formula for the standard error is given in
Section 2.4. This interval has endpoints

22.375+2.145(1.577),
which gives the interval
(18.992,25.757).
The 95% prediction interval is

(16.785,27.964).

This is about 4 units wider than the confidence interval for the regression surface.
The standard error for the prediction interval can be computed from the standard
error for the regression surface.

SE(Prediction) = \/MSE + SE(Surface)?.

In this example,

SE(Prediction) = 1/4.303 + (1.577)% = 2.606,

and the prediction interval endpoints are
22.375+£2.145(2.606).

We mentioned earlier that even if the regression model is true, the variance of
predictions is large when the x; values for the prediction are far from the original
data. We can use this fact to identify situations in which the predictions are unre-
liable because the locations are too far away. Let p — 1 be the number of predictor
variables so that, including the intercept, there are p regression parameters. Let n
be the number of observations. A sensible rule of thumb is that we should start
worrying about the validity of the prediction whenever

SE(Surface) S /2p
vVMSE n

and we should be very concerned about the validity of the prediction whenever

SE(Surface)> /3p
VMSE —V n’
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Recall from regression analysis that the leverage for a case is a number between
0 and 1 that measures the distance between the predictor variables for the case in
question and the average of the predictor variables from the entire data. Leverages
greater than 2p/n and 3p/n cause similar levels of concern to those mentioned in
the previous paragraph. We are comparing SE(Sur face) /v MSE to the square roots
of these guidelines because, for cases in the data, the ratio in question is the square
root of the leverage. In our example, p = 6 and n = 20, so

SE(Surface) _ 1577 0760 < 0775 — /27p.
VMSE v4.303 n

The location of this prediction is near the boundary of those locations for which we
feel comfortable making predictions.

1.5 Comparing Regression Models

A frequent goal in regression analysis is to find the simplest model that provides an
adequate explanation of the data. In examining the full model with all five x vari-
ables, there is little evidence that any of x;, x2, or x5 are needed in the regression
model. The ¢ tests reported in Section 1.2 for the corresponding regression param-
eters gave P values of 0.168, 0.427, and 0.387. We could drop any one of the three
variables without significantly harming the model. While this does not imply that
all three variables can be dropped without harming the model, dropping the three
variables makes an interesting point of departure.
Fitting the reduced model

yi = Bo+ Baxiz + Baxia + &
gives

Table of Coefficients
Predictor B SE(B) ¢t P
Constant  14.583  9.175 1.59 0.130
X3 0.54156 0.05004 10.82 0.000
X4 0.7499 0.3666 2.05 0.057

Analysis of Variance
Source df S§SS MS F P
Regression 2 570.50 285.25 66.95 0.000
Error 17 7243 4.26
Total 19 642.92

We can test whether this reduced model is an adequate explanation of the data as
compared to the full model. The sum of squares for error from the full model was
reported in Section 1.2 as SSE (Full) = 60.24 with degrees of freedom dfE (Full) =
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14 and mean squared error MSE (Full) = 4.30. For the reduced model we have
SSE(Red.) = 72.43 and dfE(Red.) = 17. The test statistic for the adequacy of the
reduced model is

_ [SSE(Red.) — SSE(Full)] / [dfE(Red.) — dfE (Full)]
obs = MSE (Full)

[72.43 — 60.24] /[17 — 14]
= =0.94.
430

F has [dfE(Red.) — dfE(Full)] and dfE(Full) degrees of freedom in the numerator
and denominator, respectively. Here F' is about 1, so it is not significant. In partic-
ular, 0.94 is less than F(0.95,3,14), so a formal o = 0.05 level one-sided F test
does not reject the adequacy of the reduced model. In other words, the 0.05 level
one-sided test of the null model with Hy : 1 = B> = B5 = 0 is not rejected. (I also
ignored the fact that I looked at the data and let that guide my choice of a reduced
model. It is not surprising when dropping variables that seem unimportant turns out
to be ok but the criterion that guided my choice did not assure that the variables
would be unimportant.)

This test lumps the three variables xi, x>, and x5 together into one big test. It
is possible that the uselessness of two of these variables could hide the fact that
one of them is (marginally) significant when added to the model with x3 and x4. To
fully examine this possibility, we need to fit three additional models. Each variable
should be added, in turn, to the model with x3 and x4. We consider in detail only one
of these three models, the model with x;, x3, and x4. From fitting this model, the ¢
statistic for testing whether x; is needed in the model turns out to be —1.47. This
has a P value of 0.162, so there is little indication that x; is useful. We could also
construct an F statistic as illustrated previously. The sum of squares for error in the
model with x1, x3, and x4 is 63.84 on 16 degrees of freedom, so

[72.43 — 63.84]/[17 — 16]

=2.16.
63.84/16

Fops =

Note that, up to round-off error, F = >. The tests are equivalent and the P value
for the F statistic is also 0.162. F tests are only equivalent to a corresponding ¢ test
when the numerator of the F statistic has one degree of freedom. Methods similar
to these establish that neither x, nor x5 are important when added to the model that
contains x3 and xy4.

Here we are testing two models: the full model with x;, x3, and x4 against a re-
duced model with only x3 and x4. Both of these models are special cases of a biggest
model that contains all of xi, x, x3, x4, and x5. In ANREG-II Subsection 3.1.1, for
cases like this, we recommended an alternative F statistic,

[72.43 — 63.84]/[17 — 16]
430

= 2.00,

obs —
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where the denominator MSE of 4.30 comes from the biggest model (as would the
denominator degrees of freedom).

In testing the reduced model with only x3 and x4 against the full five-variable
model, we observed that one might miss recognizing a variable that was (marginally)
significant. In this case we did not miss anything important. However, if we had
taken the reduced model as containing only x3 and tested it against the full five-
variable model, we would have missed the importance of x4. The F statistic for this
test turns out to be only 1.74.

In the model with xy, x3, and x4, the ¢ test for x4 turns out to have a P value of
0.021. As seen in the table given previously, if we drop x; and use the model with
only x3, and x4, the P value for x4 goes to 0.057. Thus dropping a weak variable, x1,
can make a reasonably strong variable, x4, look weaker. There is a certain logical
inconsistency here. If x4 is important in the x1, x3, x4 model or the full five-variable
model (P value 0.023), it is illogical that dropping some of the other variables could
make it unimportant. Even though x; is not particularly important by itself, it aug-
ments the evidence that x4 is useful. The problem in these apparent inconsistencies
is that the x variables are all related to each other; this is known as the problem of
collinearity. One reason for using the alternative F tests that employ MSE (Big.) in
the denominator is that it ameliorates this phenomenon.

Although a reduced model may be an adequate substitute for a full model on a
particular set of data, it does not follow that the reduced model will be an adequate
substitute for the full model with any data collected on the variables in the full
model.

1.5.1 General discussion

Suppose that we want to compare two regression models, say,

yi=PBo+Bixit +-+Byixig 1+ Bpo1Xip-1 T & (D

and
yi = Po+Pixit + -+ + Bg-1Xig-1 +&- @

The key fact here is that all of the variables in Model (2) are also in Model (1). In
this comparison, we dropped the last variables x; 4, ...,x; 1 for notational conve-
nience only; the discussion applies to dropping any group of variables from Model
(1). Throughout, we assume that Model (1) gives an adequate fit to the data and
then compare how well Model (2) fits the data with how well Model (1) fits. Before
applying the results of this subsection, the validity of the model (1) assumptions
should be evaluated.

We want to know if the variables x;g,...,x; ,—1 are needed in the model, i.e.,
whether they are useful predictors. In other words, we want to know if Model (2)
is an adequate model; whether it gives an adequate explanation of the data. The
variables x,,...,x,_1 are extraneous if and only if B; = --- = B,_ = 0. The test we
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develop can be considered as a test of

H()Z ﬁqz---Zﬁp_lzo.

Parameters are very tricky things; you never get to see the value of a parameter. I
strongly prefer the interpretation of testing one model against another model rather
than the interpretation of testing whether 8, = --- = f,_1 = 0. In practice, useful
regression models are rarely correct models, although they can be very good approx-
imations. Typically, we do not really care whether Model (1) is true, only whether
it is useful, but dealing with parameters in an incorrect model becomes tricky.

In practice, we are looking for a (relatively) succinct way of summarizing the
data. The smaller the model, the more succinct the summarization. However, we
do not want to eliminate useful explanatory variables, so we test the smaller (more
succinct) model against the larger model to see if the smaller model gives up sig-
nificant explanatory power. Note that the larger model always has at least as much
explanatory power as the smaller model because the larger model includes all the
variables in the smaller model plus some more.

Applying model testing procedures to this problem yields the following test: Re-
ject the hypothesis

Ho: By=-=Bp1=0

at the a level if

[SSE(Red.) — SSE(Full)] /(p —q)

F=
MSE(Full)

>F(l—a,p—q,n—p).

The notation SSE(Red.) — SSE(Full) focuses on the ideas of full and reduced
models. Other notations that focus on variables and parameters are also commonly
used. One can view the model comparison procedure as fitting Model (2) first and
then seeing how much better Model (1) fits. The notation based on this refers to the
(extra) sum of squares for regressing on x,, ...,Xp_| after regressing on xi,...,Xy 1
and is written

SSR(xg, . Xp—t1|X1,...,xX4—1) = SSE(Red.) — SSE (Full).

This notation assumes that the model contains an intercept. Alternatively, one can
think of fitting the parameters B, ..., B,—1 after fitting the parameters fy,...,B,—1.
The relevant notation refers to the reduction in sum of squares (for error) due to
fitting B,,..., Bp—1 after Py, ..., B,—1 and is written

R(Bys--.Bp-11Bos- -+ By—1) = SSE(Red.) — SSE(Full).

Note that it makes perfect sense to refer to SSR(xy,...,xp—1|x1,...,X4—1) as the
reduction in sum of squares for fitting x,,...,x,_1 after xi,...,x,_1.

It was mentioned earlier that the degrees of freedom for SSE(Red.) — SSE (Full)
is p — q. Note that p — g is the number of variables to the left of the vertical bar
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in SSR(xg,...,xp—1|x1,...,X4—1) and the number of parameters to the left of the
vertical bar in R(By, ..., Bp—1]Bo,- - By—1)-

A point that is quite clear when thinking of model comparisons is that if you
change either model, (1) or (2), the test statistic and thus the test changes. This point
continues to be clear when dealing with the notations SSR(xy, ..., xp—1|x1,...,X4—1)
and R(By, ..., Bp—1|Po,---,By—1). If you change any variable on either side of the
vertical bar, you change SSR(xy,...,Xp—1|x1,...,x4—1). Similarly, the parametric
notation R(By,...,By—1|Bo,--.,By—1) is also perfectly precise, but confusion can
easily arise when dealing with parameters if one is not careful. For example, when
testing, say, Ho : B1 = B3 = 0, the tests are completely different in the three models

yi = Po+ Bixit + B3xiz + &, 3
yi = Bo + Bixit + Baxiz + Baxiz + &, 4)

and
yi = Bo+ Bixit + Boxio + Baxiz + Paxia + & Q)

In Model (3) the test is based on SSR(x1,x3) = R(B1, B3/Bo), i.e., the sum of squares
for regression (SSReg) in the model with only x; and x3 as predictor variables. In
Model (4) the test uses

SSR(x1,x3|x2) = R(B1, B3| Po, B2)-

Model (5) uses SSR(x1,x3|x2,x4) = R(B1, B3|Bo, B2, Ba)- In all cases we are testing
B1 = B3 = 0 after fitting all the other parameters in the model. In general, we think
of testing Hy : B, = --- = B,—1 = 0 after fitting Bo, ..., By—1.

If the reduced model is obtained by dropping out only one variable, e.g.,if g— 1 =
p —2, the parametric hypothesis is Ho : B,—1 = 0. We have just developed an F test
for this and we have earlier used a ¢ test for the hypothesis. In multiple regression
the F' test is equivalent to the ¢ test. It follows that the ¢ test must be considered
as a test for the parameter after fitting all of the other parameters in the model. In
particular, the ¢ tests reported in the table of coefficients when fitting a regression
tell you only whether a variable can be dropped relative to the model that contains
all the other variables. These ¢ tests cannot tell you whether more than one variable
can be dropped from the fitted model. If you drop any variable from a regression
model, all of the ¢ tests change. It is only for notational convenience that we are
discussing testing 8, = 0; the results hold for any f3.

The SSR notation can also be used to find SSEs. Consider models (3), (4), and
(5) and suppose we know SSR(x2|x1,x3), SSR(x4|x1,x2,x3), and the SSE from Model
(5). We can easily find the SSE's for models (3) and (4). By definition,

SSE(4) = [SSE(4) — SSE(5)] + SSE(5)
= SSR(x4|x1,x2,x3) +SSE(5).

Also
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SSE(3) = [SSE(3) — SSE(4)] 4+ SSE(4)
= SSR()C2|)C17X3) + {SSR()C4|X1,X2,X3) +SSE(5)} .

Moreover, we see that

SSR(x2,x4|x1,x3) = SSE(3) — SSE(5)
= SSR(x2|x1,x3) + SSR(xa|x1,x2,x3).

Note also that we can change the order of the variables.

SSR(x2,x4|x1,x3) = SSR(x4]x1,x3) + SSR(x2|x1,X3,x4).

1.6 Sequential Fitting

Multiple regression analysis is largely impractical without the aid of a computer.
One specifies a regression model and the computer returns the vital statistics for
that model. Many computer programs actually fit a sequence of models rather than
fitting the model all at once.

EXAMPLE 1.6.1.  Suppose you want to fit the model

yi = Po+ Bixit + Poxio + B3xiz + Paxia + &

Many regression programs actually fit the sequence of models

yi = Bo+Bixi + &,

yi = Bo+ Bixii + Boxio + €,

yi = Bo+ Bixit + Baxia + Bxiz + &,

vi = Bo+ Bixit + Boxiz + Baxiz + Paxia + €.

The sequence is determined by the order in which the variables are specified. If the
identical model is specified in the form

yi = Po + Bsxiz + Pixit + Paxia + Boxio + €,

the end result is exactly the same but the sequence of models is

yi = Po+Baxiz + &,

yi = Bo+ Bsxiz + Brxi + &,

vi = Bo+ Bsxiz + Bixi1 + Paxia + &,

yi = Bo+ Bsxiz + Pixit + Baxia + Poxio + €.
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Frequently, programs that fit sequences of models also provide sequences of sums
of squares. Thus the first sequence of models yields

SSR(xl), SSR(X2|X1), SSR()C3|X1,)C2), and SSR(X4|)C1,)C2,X3)
while the second sequence yields
SSR(x3), SSR(x1|x3), SSR(x4|x3,x1), and SSR(x2|x3,X1,%4).

These can be used in a variety of ways. For example, as shown at the end of the
previous section, to test

yi = Bo+ Bixit + Baxis + &

against
yi = Po+ Bixit + Baxiz + Baxiz + Paxia + &

we need SSR(x7,x4|x3,x1 ). This is easily obtained from the second sequence as

SSR(x,x4|x3,x1) = SSR(x4]x3,%1) + SSR(x2|x3,%1,%4). m|

EXAMPLE 1.6.2. If we fit the model

yi = Bo+ Bixit + Poxiz + Baxiz + Paxia + Psxis + &

to the Coleman Report data, we get the sequential sums of squares listed below.

Source df Seq SS Notation

X1 1 2377 SSR(x1)

X2 1 343.23 SSR()C2|X1)

X3 1 186.34 SSR()C3 |x1 ,XQ)

X4 1 2591 SSR()C4|X] ,xz,x3)

X5 1 343 SSR(xs|xy,x,x3,%1)

Recall that the MSE for the five-variable model is 4.30 on 14 degrees of freedom.

From the sequential sums of squares we can test a variety of hypotheses related
to the full model. For example, we can test whether variable x5 can be dropped
from the five-variable model. The F statistic is 3.43/4.30, which is less than 1, so
the effect of xs is insignificant. This test is equivalent to the ¢ test for xs given in
Section 2 when fitting the five-variable model. We can also test whether we can
drop both x4 and x5 from the full model. The F statistic is

(25.91+3.43)/2

=3.41.
4.30

Fops =

F(0.95,2,14) = 3.74, so this F statistic provides little evidence that the pair of vari-
ables is needed. (The relative importance of x4 is somewhat hidden by combining
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it in a test with the unimportant xs.) Similar tests can be constructed for dropping
X3, X4, and xs, for dropping x», x3, x4, and xs, and for dropping x1, x2, x3, x4, and xs
from the full model. The last of these is just the ANOVA table F test.

We can also make a variety of tests related to ‘full’ models that do not include
all five variables. In the previous paragraph, we found little evidence that the pair
x4 and x5 help explain the data in the five-variable model. We now test whether x4
can be dropped when we have already dropped xs. In other words, we test whether
x4 adds explanatory power to the model that contains xj, xo, and x3. The numer-
ator has one degree of freedom and is SSR(x4|x1,x2,x3) = 25.91. The usual de-
nominator mean square for this test is the MSE from the model with xi, x2, x3,
and xq4, i.e., {14(4.303) +3.43} /15. (For numerical accuracy we have added an-
other significant digit to the MSE from the five-variable model. The SSE from the
model without x5 is just the SSE from the five-variable model plus the sequen-
tial sum of squares SSR(xs|x,x2,x3,x4).) Our best practice would be to construct
the test using the same numerator mean square but the MSE from the five-variable
model in the denominator of the test. Using this second denominator, the F statistic
is 25.91/4.30 = 6.03. Corresponding F percentiles are F(0.95,1,14) = 4.60 and
F(0.99,1,14) = 8.86, so x4 may be contributing to the model. If we had used the
MSE from the model with x;, x5, x3, and x4, the F statistic would be equivalent to
the ¢ statistic for dropping x4 that is obtained when fitting this four-variable model.

If we wanted to test whether x; and x3 can be dropped from the model that con-
tains xp, X2, and x3, the usual denominator is [14(4.303) +25.91+3.43]/16 = 5.60.
(The SSE for the model without x4 or xs is just the SSE from the five-variable model
plus the sequential sum of squares for x4 and x5.) Again, we would alternatively use
the MSE from the five-variable model in the denominator. Using the first denomi-
nator, the test is
(343.23+186.34) /2

5.60

which is much larger than F(0.999,2,16) = 10.97, so there is overwhelming evi-
dence that variables x, and x3 cannot be dropped from the x1, x5, x3 model.

The argument for basing tests on the MSE from the five-variable model is that it is
less subject to bias than the other MSEs. In the test given in the previous paragraph,
the MSE from the usual ‘full’ model incorporates the sequential sums of squares
for x4 and xs. A reason for doing this is that we have tested x4 and x5 and are not
convinced that they are important. As a result, their sums of squares are incorporated
into the error. Even though we may not have established an overwhelming case for
the importance of either variable, there is some evidence that x4 is a useful predictor
when added to the first three variables. The sum of squares for x4 may or may not
be large enough to convince us of its importance but it is large enough to change the
MSE from 4.30 in the five-variable model to 5.60 in the x1, x3, x3 model. In general,
if you test terms and pool them with the Error whenever the test is insignificant, you
are biasing the MSE that results from this pooling. |

Fops = =47.28,

In general, when given the ANOVA table and the sequential sums of squares, we
can test any model in the sequence against any reduced model that is part of the
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sequence. We cannot use these statistics to obtain a test involving a model that is not
part of the sequence.

1.7 Reduced Models and Prediction

Fitted regression models are, not surprisingly, very dependent on the observed val-
ues of the predictor variables. We have already discussed the fact that fitted re-
gression models are particularly good for making predictions but only for making
predictions on new cases with predictor variables that are similar to those used in fit-
ting the model. Fitted models are not good at predicting observations with predictor
variable values that are far from those in the observed data. We have also discussed
the fact that in evaluating a reduced model we are evaluating whether the reduced
model is an adequate explanation of the data. An adequate reduced model should
serve well as a prediction equation but only for new cases with predictor variables
similar to those in the original data. It should not be overlooked that when using a
reduced model for prediction, new cases need to be similar to the observed data on
all predictor variables and not just on the predictor variables in the reduced model.

Good prediction from reduced models requires that new cases be similar to ob-
served cases on all predictor variables because of the process of selecting reduced
models. Predictor variables are eliminated from a model if they are not necessary
to explain the data. This can happen in two ways. If a predictor variable is truly
unrelated to the dependent variable, it is both proper and beneficial to eliminate that
variable. The other possibility is that a predictor variable may be related to the de-
pendent variable but that the relationship is hidden by the nature of the observed
predictor variables. In the Coleman Report data, suppose the true response depends
on both x3 and x5. We know that x3 is clearly the best single predictor but the ob-
served values of x5 and x3 are closely related; the sample correlation between them
is 0.819. Because of their high correlation in these data, much of the actual depen-
dence of y on x5 could be accounted for by the regression on x3 alone. Variable x3
acts as a surrogate for xs. As long as we try to predict new cases that have values of
xs and x3 similar to those in the original data, a reduced model based on x3 should
work well. Variable x3 should continue to act as a surrogate. On the other hand, if
we tried to predict a new case that had an x3 value similar to that in the observed
data but where the pair x3, x5 was not similar to x3, x5 pairs in the observed data,
the reduced model that uses x3 as a surrogate for x5 would be inappropriate. Pre-
dictions could be very bad and, if we thought only about the fact that the x3 value
is similar to those in the original data, we might expect the predictions to be good.
Unfortunately, when we eliminate a variable from a regression model, we typically
have no idea if it is eliminated because the variable really has no effect on y or be-
cause its effect is being masked by some other set of predictor variables. For further
discussion of these issues see Mandel (1989a, b).

Of course there is reason to hope that predictions will typically work well for re-
duced models. If the data come from an observational study in which the cases are
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some kind of sample from a population, there is reason to expect that future cases
that are sampled in the same way will behave similarly to those in the original study.
In addition, if the data come from an experiment in which the predictor variables
are under the control of the investigator, it is reasonable to expect the investigator to
select values of the predictor variables that cover the full range over which predic-
tions will be made. Nonetheless, regression models give good approximations and
good predictions only within the range of the observed data and, when a reduced
model is used, the definition of the range of the observed data includes the values
of all predictor variables that were in the full model. In fact, even this statement is
too weak. When using a reduced model or even when using the full model for pre-
diction, new cases need to be similar to the observed cases in all relevant ways. If
there is some unmeasured predictor that is related to y and if the observed predictors
are highly correlated with this unmeasured variable, then for good prediction a new
case needs to have a value of the unmeasured variable that is similar to those for the
observed cases. In other words, the variables in any model may be acting as surro-
gates for some unmeasured variables and to obtain good predictions the new cases
must be similar on both the observed predictor variables and on these unmeasured
variables.

Prediction should work well whenever (x;1,x2,...,Xip—1,¥i), i =1,...,n consti-
tutes a random sample from some population and when the point we want to predict,
say yo, corresponds to predictor variables (xo1,X02, . - . , X0, p— 1) that are sampled from
the same population. In practice, we rarely have this ideal, but the ideal illuminates
what can go wrong in practice.

1.8 Collinearity

Collinearity exists when the predictor variables x1,...,x, 1 are correlated. We have
n observations on each of these variables, so we can compute the sample corre-
lations between them. Typically, the x variables are assumed to be fixed and not
random. For data like the Coleman Report, we have a sample of schools so the
predictor variables really are random. But for the purpose of fitting the regression
we treat them as fixed. (Probabilistically, we look at the conditional distribution
of y given the predictor variables.) In some applications, the person collecting the
data actually has control over the predictor variables so they truly are fixed. If the
x variables are fixed and not random, there is some question as to what a correla-
tion between two x variables means. Actually, we are concerned with whether the
observed predictor variables are orthogonal, but that turns out to be equivalent to
having sample correlations of zero between the x variables. Nonzero sample cor-
relations indicate nonorthogonality, thus we need not concern ourselves with the
interpretation of sample correlations between nonrandom samples. (Technically, for
orthogonal and uncorrelated predictors to mean the same thing, the predictor vari-
ables should have their sample means subtracted from them. I tend to use the terms
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interchangeably in this book because of my perception that “uncorrelated” is a less
daunting term to people in a second course on regression.)

In regression, it is almost unheard of to have x variables that display no collinear-
ity (correlation) [unless the variables are constructed to have no correlation]. In other
words, observed x variables are almost never orthogonal. The key ideas in dealing
with collinearity were previously incorporated into the discussion of comparing re-
gression models. In fact, the methods discussed earlier were built around dealing
with the collinearity of the x variables. This section merely reviews a few of the
main ideas.

1. The estimate of any parameter, say Bz, depends on all the variables that are in-
cluded in the model.

2. The sum of squares for any variable, say x;, depends on all the other variables
that are included in the model. For example, none of SSR(x2), SSR(x2|x;), and
SSR(x3|x3,x4) would typically be equal.

3. Suppose the model

yi = Bo+ Bixit + Boxio + Paxiz + &

is fitted and we obtain ¢ statistics for each parameter. If the ¢ statistic for testing
Hy : B; = 0 is small, we are led to the model

yi = Po + Baxiz + B3xiz + €.

If the ¢ statistic for testing Hy : B, = 0 is small, we are led to the model

yi = Bo+ Bixit + Baxiz + &

However, if the ¢ statistics for both tests are small, we are not led to the model

yi = Bo+ Baxiz + &

To arrive at the model containing only the intercept and x3, one must at some
point use the model containing only the intercept and x3 as a reduced model.

4. A moderate amount of collinearity has little effect on predictions and therefore
little effect on SSE, R?, and the explanatory power of the model. Collinearity in-
creases the variance of the s, making the estimates of the parameters less reli-
able. (I told you not to rely on parameters anyway.) Depending on circumstances,
sometimes a large amount of collinearity can have an effect on predictions. Just
by chance, one may get a better fit to the data than can be justified scientifically.

The complications associated with points 1 through 4 all vanish if the sample corre-
lations between the x variables are all zero.

Many computer programs will print out a matrix of correlations between the
variables. One would like to think that if all the correlations between the x variables
are reasonably small, say less than 0.3 or 0.4, then the problems of collinearity
would not be serious. Unfortunately, that is simply not true. To avoid difficulties
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with collinearity, not only do all the correlations need to be small but all of the
partial correlations among the x variables must be small. Thus, small correlations
alone do not ensure small collinearity.

EXAMPLE 1.8.1. The correlations among predictors for the Coleman data are given
below.

X1 X2 X3 X4 X5

x1(1.000 0.181 0.230 0.503 0.197
x2(0.181 1.000 0.827 0.051 0.927
x3(0.230 0.827 1.000 0.183 0.819
x4/0.503 0.051 0.183 1.000 0.124
x5(0.197 0.927 0.819 0.124 1.000

A visual display of these relationships was provided in Figures 1.1-1.4.

Note that x3 is highly correlated with x, and x5. Since x3 is highly correlated with
v, the fact that x, and x5 are also quite highly correlated with y is not surprising.
Recall that the correlations with y were given in Section 1. Moreover, since x3 is
highly correlated with x, and xs, it is also not surprising that x, and x5 have little to
add to a model that already contains x3. We have seen that it is the two variables x|
and x4, i.e., the variables that do not have high correlations with either x3 or y, that
have the greater impact on the regression equation.

Having regressed y on x3, the sample correlations between y and any of the other
variables are no longer important. Having done this regression, it is more germane to
examine the partial correlations between y and the other variables after adjusting for
x3. (Recall that the sample partial correlation between, say, x4 and y given x3 is the
just sample correlation between the residuals from fitting y on x3 and the residuals
from fitting x4 on x3.) However, as we will see in our discussion of variable selection
in Chapter 5, even this has its drawbacks. |

As long as points 1 through 4 are kept in mind, a moderate amount of collinear-
ity is not a big problem. For severe collinearity, there are four common approaches:
a) classical ridge regression, b) generalized inverse regression, ¢) principal com-
ponents regression, and d) canonical regression. Classical ridge regression is prob-
ably the best known of these methods, cf. Section 4.2. The other three methods
are closely related and seem quite reasonable. Principal components regression is
discussed in Section 4.1. While these methods were originally developed for deal-
ing with collinearity, they are now often used to deal with overfitting, i.e., fitting
so many predictor variables that prediction becomes unreliable. Another procedure,
lasso regression, is becoming increasingly popular for dealing with overfitting but
it is considerably more difficult to understand how it works, cf. Section 4.3.
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1.9 More on Model Testing

In this section, we take the opportunity to introduce various methods of defining
reduced models. To this end we introduce some new data, a subset of the Chapman
data.

EXAMPLE 1.9.1. Dixon and Massey (1983) report data from the Los Angeles
Heart Study supervised by J. M. Chapman. The variables are y, weight in pounds;
X1, age in years; xp, systolic blood pressure in millimeters of mercury; x3, diastolic
blood pressure in millimeters of mercury; x4, cholesterol in milligrams per dl; xs,
height in inches. The data from 60 men are given in Table 1.2.

Table 1.2 L. A. heart study data.

I X] Xp X3 X4 X5 Y| ixg X2 X3 X4 X5 Y
144 124 80 254 70 190|131 42 136 82 383 69 187
235110 70240 73 216(32 28 124 82 360 67 148
341 114 80 279 68 178|133 40 120 85 369 71 180
4 31 100 80 284 68 149|34 40 150 100 333 70 172
561 190 110 315 68 182|135 35 100 70 253 68 141
6 61 130 88 250 70 185(36 32 120 80 268 68 176
7 44 130 94 298 68 161|137 31 110 80 257 71 154
8 58 110 74 384 67 175|138 52 130 90 474 69 145
952 120 80 310 66 144|139 45 110 80 391 69 159
10 52 120 80 337 67 130|140 39 106 80 248 67 181
11 52 130 80 367 69 162|41 40 130 90 520 68 169
12 40 120 90 273 68 175(42 48 110 70 285 66 160
13 49 130 75 273 66 155|143 29 110 70 352 66 149
14 34 120 80 314 74 156|44 56 141 100 428 65 171
1537 115 70243 65 151|145 53 90 55 334 68 166
16 63 140 90 341 74 168|46 47 90 60 278 69 121
17 28 138 80 245 70 185|47 30 114 76 264 73 178
18 40 115 82 302 69 225|48 64 140 90 243 71 171
19 51 148 110 302 69 247|49 31 130 88 348 72 181
20 33 120 70 386 66 146|50 35 120 88 29