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Preface

This online book is an R companion to Statistical Learning: A Second Course in
Regression (SL). SL was largely compiled from material in Christensen (2015),
Analysis of Variance, Design, and Regression: Linear Models for Unbalanced
Data (ANREG-II), Christensen (2020), Plane Answers to Complex Questions:
The Theory of Linear Models (PA or for the fifth edition PA-V) and Christensen
(2019) Advanced Linear Modeling: Statistical Learning and Dependent Data
(ALM-11I). Similarly this computer code book was largely compiled from the R
code for the first and last of those books: R Commands for — Analysis of Vari-
ance, Design, and Regression: Linear Modeling of Unbalanced Data (http:
//www.stat.unm.edu/~fletcher/Rcode.pdf) and R Commands for —
Advanced Linear Modeling III (http://www.stat.unm.edu/~fletcher/
R-ALMIII.pdf). The data files used in these programs are data files that cor-
respond either to ANREG-II or ALM-III and can be downloaded from https:
//www.stat.unm.edu/~fletcher/newavdr_data.zip or https://
www.stat.unm.edu/~fletcher/ALM-III-DATA. zip, respectively. The
data files for SL can also be downloaded directly from https://www.stat.
unm.edu/~fletcher/SL-Data.zip with the data in Table x.y appearing in
file SLx-y.dat.

This book presupposes that the reader is already familiar with downloading R,
plotting data, reading data files, transforming data, basic housekeeping, loading R
packages, and specifying basic linear models. That is the material in Chapters 1 and
3 of the R commands for ANREG-II. Two other tools that I have found very useful
are Tom Short’s R Reference card,
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
and Robert I. Kabacoff’s Quick-R website,
http://www.statmethods.net/index.html.

An overview of packages in R for statistical learning is available at https://
cran.r-project.org/web/views/MachinelLearning.html and https:
//CRAN.R-project.org/view=MachineLearning.

This is not a general introduction to programming in R! It is merely an intro-

duction to generating the results in the book. As much as practicable, the chapters
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and sections of this guide give commands to generate results in the corresponding
chapters and sections of the book. You should be able to copy the code given here
and run it in R. An exception is that you will need to modify the locations associated
with data files. Also, if you are copying R code from a pdf file into R, “tilde”, i.e.,

will often copy incorrectly so that you may need to delete the copied version of
tilde and retype it.

Programming is not of great interest to me. I did not even bother to learn R until
the late aughts and only then because I was editing an appendix on R largely written
by Adam Branscum. (Thank you Adam.) I know lots of people who could create a
much better introduction to programming in R than me, but there was no one else to
perform the particular task of writing code for this book.

Ronald Christensen
Albuquerque, New Mexico
March, 2019

List of libraries used (so you can install them all at once). Install all the pack-
ages indicated in http://www.stat.unm.edu/~fletcher/Rcode.pdf
and http://www.stat.unm.edu/~fletcher/R-ALMIII.pdf aswell as

install.packages ("neuralnet")
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Chapter 1
Linear Regression

1.1 An Example

In most chapters the section structure will reflect the section structure of the cor-
responding chapter in SL. As Chapter 1 is just a review of regression, that seems
unnecessary.

I find that the easiest way to program things is to find some initial code that works
and modify it. The code given below generates the basic results for analyzing the
Coleman Report data from the book. It starts by reading in the data and printing it
out in order to verify that it has been read correctly.

The #Summary tables section of the code starts the analysis by using the
1m command to fit the linear regression. It then prints out the table of coefficients
and a table that gives all the pieces of the standard three line ANOVA table. It then
gives another ANOVA table that contains the sequential sums of squares. Finally
it prints out confidence intervals for the regression coefficients. The middle section
#Predictions gives both the confidence interval for a point on the regression
surface and the corresponding prediction interval. The last section #Diagnostics
produces a table of diagnostic quantities that includes the observations, fitted values,
standardized and ¢ residuals, and Cook’s distances. It then produces the normal plot
of the standardized residuals with the Sharpiro-Francia statistic W’ and the plot of
the standardized residuals against the fitted values.

coleman <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",

sep="",col.names=c ("School", "x1", "x2", "x3", "x4","x5","y"))

attach (coleman)

coleman

#Summary tables

co <- Im(y 7 x1+x2+x3+x4+x5)
cop=summary (co)

cop
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anova (lm(y~1),co)
anova (co)
confint (co, level=0.95)

#Predictions

new = data.frame(x1=2.07, x2=9.99,x3=-16.04,x4= 21.6, x5=5.17)
predict (Im(y " x1+x2+x3+x4+x5) ,new, se.fit=T, interval="confidence")
predict (Im(y " x1+x2+x3+x4+x5) ,new, interval="prediction")

#Diagnostics
infv = c(y,co$fit,hatvalues (co),rstandard(co),
rstudent (co), cooks.distance (co))

inf=matrix (infv, I (cop$df[l]l+cops$df[2]),6,dimnames = list (NULL,
C("y"[ "yhat"’ "leV","r","t","C")))

inf

ggnorm (rstandard(co),ylab="Standardized residuals")

# Wilk-Francia

rankit=gnorm (ppoints (rstandard(co),a=I(3/8)))

ys=sort (rstandard(co))

Wprime= (cor (rankit,ys)) "2

Wprime

plot (co$fit, rstandard(co),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")

1.2 Inferential Procedures

See Section 1.

1.3 General Statement of Model

No computing.

1.4 Regression Surfaces and Prediction

See Section 1.
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1.5 Comparing Regression Models

In Section 1.5 of the book we perform F tests to compare two specific models. The
results can be generated using the following code.

cr <- Im(y = x1+x2+x3+x4+x5)
summary (cr)
anova (cr)

cr34 <- 1lm(y ~ x3+x4)
anova (cr34,cr)

crl34 <- Im(y = x1+x3+x4)
anova (cr34,crl34)
anova (cr34,crl34,cr)

The last call of anova gives the alternate version of the F test.

1.6 Sequential Fitting

See Section 1.

1.7 Reduced Models and Prediction

No computing.

1.8 Collinearity

One of the first things we did in the chapter was print the correlations between y and
the x;s. One can do that by running cor (y, x3j) for j=1,...,5 but, if we form a
matrix of predictor variables Z, we can get them all at once

co = Im(y 7 x1+x2+x3+x4+x5)
Z <- model.matrix (co) [,-1]
cor(y,2)}.

Similarly, the correlations given in Example 1.8.1 are produced by cor (Z).
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1.9 More on Model Testing

This section is about turning hypotheses into reduced models, many of which in-
volve an offset term. The code is just for reading in the new data and fitting the
reduced models.

rm(list = 1ls())
chap <- read.table ("C:\\E-drive\\Books\\ANREG2\\newdata\\chapman.dat"
Sep:" ", Col .names=c ("Case", "Ag", "S"’ "D", "Ch"’ "Ht", "Wt", Hcoronary") )

attach (chap)
chap.mlr
#summary (chap)
ii=Case

x1=Ag

x2=5

x3=D

x4=Ch

x5=Ht

y=Wt

#Model (1.9.1)
ml=Ilm(y " x1+x2+x3+x4+x5)
summary (ml)

anova (ml)

#Model (1.9.2)
bsum=x2+x3
m2=1m(y~x1+bsum+x4+x5)
summary (m2)

anova (m2)

#Model (1.9.3)
bdif=x2-x3

m3=1m(y x1+bdif+x4+x5)
summary (m3)

anova (m3)

#Model (1.9.4)

bsum=x2+x3

m4=Im(y offset (.5%x3) + xl+bsum+x4+x5)
summary (m4)

anova (m4)

#Model (1.9.5)
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bsum=x2+x3

mS=1m((y-.5*x3) 7~ xl+bsum+x4+x5)
summary (m5)

anova (mb)

#Model (1.9.6)

mé6=1Im((y—-3.5*x5) 7 x1+x2+x3+x4)
summary (mé)

anova (m6)

#Model (1.9.7)

bsum=x2+x3

m7=lm((y-.5*x3-3.5%x5) 7 xl+bsum+x4)
summary (m7)

anova (m7)

# or equivalently

m7=lm(y =~ offset (.5*x3+3.5%x5) + xl+bsum+x4)
summary (m7)
anova (m7)

1.10 Diagnostics

This section looks at the diagnostic quantities produced earlier but it also goes on to
look at refitting models after deleting some observations. To delete cases 18 and 3
use the following code. Then rerun the earlier code except the diagnostic table needs
to be modified.

# Read data.

y[18]=NA

y [3]=NA

# Fit model here

infv = c(co$fit,hatvalues (co), rstandard(co),

rstudent (co), cooks.distance (co))
inf=matrix (infv, I (cop$df[l]+copS$df[2]),5,dimnames = list (NULL,
c( "yhat", "levll’"r","t",llcll)))
inf

I’m not sure I have actually fixed the diagnostic table.
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1.11 Other Useful Tools

ANREG-II, Chapter 7 discusses transformations to deal with nonnormality and het-
eroscedasticity with R code in Chapter 7 of its online code book. In addition, the
package library (1mtest) includes versions of the Durbin-Watson test for se-
rial correlation and the Breusch-Pagan/Cook-Weisberg test for heteroscedasticity.
Both are introduced in PA-V, Chapter 12.

I don’t remember why I have these commands here other than that they have
some unusual syntax worth noting. The last command is very useful in that it will
center the variable(s) (subtract the means) and/or rescale them variable. It also works
on the columns of matrices.

plot (x3+x4"y,data=colman)

plot (x7y)

pairs (co)

scale(x, center = TRUE, scale = TRUE)



Chapter 2
Matrix Formulation

In this chapter we use R’s matrix methods to produce results for multiple regression.
We produce the table of coefficients, the three line ANOVA table, and some diag-
nostic statistics. The commands are divided into sections but the sections depend
on results computed in previous sections. The methods used here are not good
computational procedures. Good programs for regression, or more general linear
models, use more sophisticated methods of computation.

2.1 Matrix Algebra

This section contains the computing commands that go along with Appendix A

except for those associated with the eigenvalues and eigenvectors, cf. Section A.8.
To produce multiple regression results, we use a collection of matrix commands
available in R.

# General matrix commands

rowsum (X)

sum of rows for a matrix-like object

X <- model.matrix (co) # Model matrix of fitted model "co"
7Z <—- model.matrix(co) [,-1] # Model matrix without intercept
t (X) # transpose of X
diag (A) # diag. vector from matrix A
diag (v, nrow=length (v)) # diag. matrix from vector v
$*% # matrix multiplication
solve (A, b) # solves A %$x% x = b for x
solve (A) # matrix inverse of A
#
#

rowSums (X)

colsum (X)

colSums (X)

rowMeans (X)

colMeans (X)

scale (X, center=T, scale=T)
rankMatrix (X)

This is a faster version

subtract col means,
Compute r(X). Can be dicey.

divide by col std.

dev
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2.2 Matrix Formulation of Models

The first order of business is constructing the model matrix from the data read in
and showing that it is the same as that used by 1m.

coleman <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",

sep="",col.names=c ("School", "x1", "x2", "x3", "x4","x5","y"))

attach (coleman)

coleman

# Create J, a column of ones.

J=x1+1-x1

# Create the model matrix from variables read.
X=matrix(c(J,x1,x2,x3,x4,x5),ncol=06)

X

# Extract the model matrix from 1lm.

co <— Im(y = x1+x2+x3+x4+x5)

XX=model .matrix (co)

XX

Note that X and XX are the same.

2.3 Least Squares Estimation

Now we compute the standard statistics. First we get the estimated regression pa-
rameters, then fill out the ANOVA table, finally we get the standard errors and ¢
statistics. In the process we find the perpendicular projection operator (ppo) but in
practice the ppo is an unwieldy creature to have saved in a computer’s memory. For
example, if n = 1000, M contains a million numbers.

# Find the vector of least squares estimates
Bhat=(solve (t (X) $*x%X) ) $*x3t (X) $*x3y

Bhat

# library (MASS) allows a more general method
# Bhat=(ginv (t (X) $*%X) ) $*%t (X) $*x%y

#Find the perpendicular projection operator
M = X%*x%solve (t (X)%*%X) $*%t (X)
# M=X%$+%$ (ginv (t (X) $*%X) ) $*x%t (X)

# Compute the ANOVA table statistics.
vhat = M%*%y #This is more efficiently computed as X%$x%Bhat
ehat = y - vhat
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SSE = t (ehat) %$*% ehat
n = length (y)

p = ncol (X) # p = rankMatrix (X)

dfE <- n - p #Computing the rank of a matrix can be dicey
MSE = SSE/JfE

MSE = as.numeric (MSE)

#I got an error for Cov[Bhat] if I didn’t do this
SSReg = t (yhat)%$*x%yhat - nxmean(y) "2
# Or t(y)%$+%yhat - n*mean(y) "2
dfReg = p-1
MSReg = SSReg/dfReg
SSTot = t(y)%*%y — nxmean(y) " "2
dfTot = n-1
MSTot = SSTot/n-1
AOVTable = matrix (c(dfReg,dfE,dfTot,
SSReg, SSE, SSTot,
MSReg, MSE, MSTot) ,ncol=3)
AOVTable
co <= Im(y"X[,-11)
anova (co)

For comparison I included commands to print (most of) a three line ANOVA ta-
ble using R’s command anova. Normally anova does not print out a three line
ANOVA table but it comes close if you define the model using a matrix (without a
column of 1s) instead of using the modeling options discussed in Chapter 3.

2.4 Inference

Now construct the covariance matrix of B and compare it to the one given by 1m
before using it to obtain the standard errors and ¢ statistics.

Cov = MSEx* (solve (t (X)%$*%X))

Cov

vcov (co) # 1lm’s covariance matrix for model parameters
SE = sqgrt (diag(Cov))
TabCoef=matrix (c (Bhat, SE,Bhat/SE),ncol=3)

TabCoef
cop = summary (co)
cop

Again, for comparison, I included commands to print 1m’s table of coefficients. I
also needed to save the summary of the fit because I use it in the next series of
commands.
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2.5 Diagnostics

The book discusses how to compute two of our standard diagnostic quantities: the
leverages and the standardized residuals. PA discusses computing diagnostic statis-
tics. In particular, from the fit summary results “cop”, the leverages, and the stan-
dardized residuals we can compute ¢ residuals and Cook’s distance. The leverages
are just the diagonal elements of the ppo.

lev = diag (M)
# Computing M Jjust to get the diagonal elements is overkill

sr = ehat/sqrt (MSEx (1-1lev)) #Standardized residuals
tresid=sr*sqrt ((cop$df[2]1-1)/ (cop$df[2]-sr"2)) # t residuals
C = sr”2 *lev/ (px(l-lev)) #Cook’s distance
infhomemade=matrix (c (lev, sr,tresid,C),ncol=4)

infhomemade

infv = c(co$fit,hatvalues (co), rstandard(co),
rstudent (co), cooks.distance (co))
inf=matrix (infv, I (cop$df[l]+copSdf[2]),5,dimnames = 1list (NULL,
c( "yhat", "leV","r","t","c")))
inf
Again, for comparison, I have included our standard table of diagnostic values that
lets 1m do the heavy lifting of computations.

2.6 Basic Notation and Concepts

Nothing here.

2.7 Weighted Least Squares

This section needs checking. As with most programs for regression, weights can
be specified within the program. In 1m you specify a vector wt. In our example we
assume a weighting vector wt s has been specified.

# Fit WLS model

wlsfit <- Im(y 7 X, wt=wts)
summary (wlsfit)

anova (Im(y =~ 1,wt=wts),wlsfit)
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2.7.1 Generalized Least Squares

This section discusses an example of fitting models with a nondiagonal weighting
matrix. It still needs work.

Consider a random walk. Start with independent variables wy,...,wig with
E(wj) = u and Var(w;) = o2. From these define y; = wy and y; = wy +--- 4+ wj.
Now suppose you want to estimate (. If you can see the w;, you just average them.
If you see the y;s, you can reconstruct the w;s as wi = yj, wo =y —y1, w3 =y3 — 2,
etc. It is easy to see that w. = yj9/10. Linear model theory will give the same esti-
mate.

E(yi) = iu:  Var(yi) = io*:Cov(y;,yy) = min(i, )02,

sowith Y = (y1,...,y10)

R 1

1 1222 2

2 12 3 3 3
EW)=1.|m Col)=1; 5 3 4 4
10 T S S
123 4 - 10

Do an example to show that this generalized least squares estimate give the sample
mean w. = yj9/10.

# At some point you need to have run install.packages ("MASS")
library (MASS)

Im.gls (formula, data, W, subset, na.action, inverse = FALSE,
method = "gqr", model = FALSE, x = FALSE, y = FALSE,

contrasts = NULL, ...)

W=weight matrix, inverse=false

2.8 Variance-Bias Tradeoff

No new computing?






Chapter 3
Nonparametric Regression I

3.1 Simple Liner Regression

Nothing new here.

3.2 Polynomial regression

One way to fit the fifth degree polynomial to the Hooker data.

hook <- read.table (
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",

sep="",col.names=c ("Case", "Temp", "Pres"))
attach (hook)
hook

summary (hook)

# Fit model (8.1.2)

x=Temp-mean (Temp)

X2=X*X

X3=X2*X

X4=xX2*X2

x5=x3*x2

hk8 <- Im(Pres =~ =x+x2+x3+x4+x5)
summary (hk8)

anova (hk8)

To get the lack-or-fit test on simple linear regression, add

hk4 <- 1Im(Pres =~ Xx)
anova (hk4,hk8)

An alternative form of programming the polynomial model is

13
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Pres ~ poly(Temp, degree = 5, raw=TRUE).
Yet another form, that makes prediction easy, is

hkp <- Im(Pres ~ Temp + I(Temp~2) + I(Temp~3) + I(Temp“4) + I(Temp~5))
hkpp <- summary (hkp)

hkpp
anova (hkp)

With this form, to make predictions one need only specify Temp, not all the powers
of Temp.

Some computer programs don’t like fitting the fifth degree polynomial on these
data because the correlations are too high among the predictor variables. R is fine
with it. If the correlations are too high, the first thing to do would be to subtract
from the predictor variable its mean, e.g., replace x with x — mean (x), prior to
specifying the polynomial. If the correlations are still too high, you need to use
orthogonal polynomials.

3.2.1 Picking a polynomial

The following list of commands (in addition to reading the data and defining the
predictors as done earlier) give everything discussed in this subsection.

hk8 <- Im(Pres =~ =x+x2+x3+x4+x5)
anova (hk8)

hk7 <= 1Im(Pres =~ x+x2+x3+x4)
summary (hk7)

anova (hk7,hk8)

I’'m not sure this next group of commands couldn’t be replaced by anova (hk8).
While you already have everything for this subsection, you could finish fitting the
entire hierarchy and ask to test them all.

hk6 <- Im(Pres =~ x+x2+x3)

(
hk5 <- 1Im(Pres =~ x+x2)
hk4 <- 1Im(Pres =~ Xx)
hk3 <- Im(Pres ~ 1)

anova (hk3, hk4, hk5, hk6,hk7, hk8)

3.2.1.1 Orthogonal Polynomials

Orthogonal polynomials provide a way of getting the information for picking a poly-
nomial in the form of useful ¢ tests for all coefficients. Compare these results with
our sequential fitting results. In particular, square the ¢ tests and compare them to
our F tests.

To fit orthogonal polynomials use
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hko <- 1Im(Pres =~ poly(Temp, degree = 5))
summary (hko)
anova (hko)

The ¢ tests from the orthogonal polynomials should be equivalent to the F tests given
the command anova (hk3, hk4, hk5,hk6, hk7,hk8).

3.2.2 Exploring the chosen polynomial

These are just the standard regression commands applied to the quadratic model.

hk <- 1lm(Pres = Temp + I(Temp~2))
hkp=summary (hk)

hkp

anova (hk)

# Diagonstic table (not given in book)
infv = c(Pres,hk$fit,hatvalues (hk), rstandard (hk),
rstudent (hk), cooks.distance (hk))
inf=matrix (infv, I (hkp$Sdf[1]+hkp$df[2]),6,dimnames =
list (NULL, c("y", "yhat", "lev","x","t","C")))
inf

#Plots

plot (hk$fit, rstandard (hk),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")
gagnorm (rstandard (hk),ylab="Standardized residuals")

# Wilk-Francia
rankit=gnorm (ppoints (rstandard (hk),a=I(3/8)))

ys=sort (rstandard (hk))

Wprime= (cor (rankit,ys)) "2

Wprime

# More plots not given in book

plot (Temp, rstandard (hk) ,xlab="Temp",

ylab="Standardized residuals",main="Residual-Temp plot")
Leverage=hatvalues (hk)

plot (Case, Leverage,main="Case-Leverage plot")

#Predictions: ©Note that with this model specification,
#only define Temp

new = data.frame (Temp=205)

predict (hk, new,se.fit=T, interval="confidence")

predict (hk, new,se.fit=T, interval="prediction")
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#Lack-or—-fit test, using output from previous subsection.
anova (hk5, hk8) #Could also use anova (hk, hk8)

3.3 Overfitting Polynomial Regression

There are no new computing skills involved in this section.

3.4 Additional Spanning Functions

Most families of basis functions are defined on the unit interval. For the Hooker data
we normalize the temperatures by subtracting the minimum value and dividing by
the range to define a new predictor variable x.

hook <- read.table(
"c:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",

sep="",col.names=c ("Case", "Temp", "Pres"))
attach (hook)
hook

summary (hook)

#LPres=log (Pres)

range=30.5

min=180.5

x=(Temp-min) /range # More generally x=(Temp-min (Temp))/range (Temp)

Although nonlinear, the Hooker data is pretty straight so we only use four basis
functions

3.4.1 Sines and cosines

hk <- 1lm(Pres =~ Temp)
cl=cos (pi*1*xx
c2=cos (pi*2*xx
c3=cos
cd4=cos
sl=sin

)
)
pPi*3*xx)
pixdxx)
)
)

—~ o~ o~ —~

pixl*x

S2=sin (pix2+*x

hook.sc <= Im(Pres =~ Temp + cl + sl + c2 + s2)
summary (hook.sc)

anova (hk, hook.sc)
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hook.cos <- Im(Pres ~ Temp + cl + c2 + c3 + c4)
summary (hook.cos)
anova (hk, hook.cos)

3.4.2 Haar wavelets

hl=1l%as.logical (x<.25)

h2=1xas.logical (x>=.25 & x<.5)
h3=1xas.logical (x>= 5 & x<.75)
hd4=1xas.logical (x>=.75)

hook.haar <- lm(Pres " Temp + hl + h2 + h3 + h4)
summary (hook.haar)

hk <- 1lm(Pres =~ Temp)

anova (hk, hook.haar)

3.5 Partitioning

We give several methods of accomplishing the same thing. What is probably the
best is saved for last.

hook <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",

sep="",col.names=c ("Case", "Temp", "Pres"))
attach (hook)
hook

summary (hook)

#Fit the two lines separately

hkl <- 1lm(Pres[Temp<191] = Temp[Temp<191])
summary (hkl)

anova (hkl)

hkh <- Im(Pres|[Temp>=191] = Temp[Temp>=191])
summary (hkh)

anova (hkh)

#Fit the two lines at once

x=Temp

h <- Temp>=191 # h is an indicator for temp being 191 or more
h2=1-h

x1=xxh

xX2=x-x1

hkpt <- Im(Pres =~ h2+x2+h+x1-1)
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hkpart=summary (hkpt)
hkpart

#Fit the two lines at once with low group as baseline
hkpt2 <- 1lm(Pres =~ xth+x1)

hkpart2=summary (hkpt2)

hkpart2

#Fit two lines at once, Minitab-like
h3=h2-h

x3=x%h3

hkpt4 <- 1Im(Pres =~ x+h3+x3)
hkpart4=summary (hkpt4)

hkpart4

If you want to partition into 2 or more groups, the following is probably the
easiest. Create a variable h that identifies the groups

hfac=factor (h)

hkpt3 <- 1Im(Pres =~ Temp + hfac + hfac:Temp)
hkpart3=summary (hkpt3)

hkpart3

anova (hkpt3)

In terms of sequential fitting, this fits the single line first and then fits lines to each
partition set, so the sequential sums of squares for hfac and hfac: Temp go into
the numerator of the F test.

If you have a more general model that also includes predictors x1 and x2, you
have a couple of choices. Either you can test for nonlinearity (i.e. lack of fit) in
Temp, or you can test for lack of fit (nonlinearity) in the entire model. To test for
nonlinearity in just temperature,

hfac=factor (h)

hkpt3 <- 1Im(Pres = x1 + x2 + Temp + hfac + hfac:Temp)
hkpart3=summary (hkpt3)

hkpart3

anova (hkpt3)

If you are doing this, you probably want the partition sets to only depend on Temp.
Alternatively, to test the entire model for lack of fit with an arbitrary collection
of partition sets indexed by h,

hfac=factor (h)
hkpt3 <-
Im(Pres ~ xl+x2+Temp+hfacthfac:xl+hfac:x2+hfac:Temp)
hkpart3=summary (hkpt3)
hkpart3
anova (hkpt3)
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Again, the sequential sums of squares are what you need to construct the F'. Or you
could get R to give you the test with

hfac=factor (h)
hkpt4d <- 1Im(Pres =~ x1 + x2 + Temp)
hkpt5 <-
1lm(Pres hfac+hfac:xl+hfac:x2+hfac:Temp - 1)
anova (hkpt4, hkptb)

3.5.1 Utts’ method

It is possible to automate Utts’ procedure, particularly by fitting the linear model,
say,

rm(list = 1ls())

hook <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",
sep="",col.names=c ("Case", "Temp", "Pres"))

attach (hook)

hook

summary (hook)

hk <- 1lm(Pres ~ Temp)

and then defining an Utts subset of the data in terms of small values for
hatvalues (hk), for example,

k = .25
hkU <- 1lm(Pres[hatvalues (hk)<k] 7 Templ[hatvalues (hk)<k])
However, to reproduce what is in the book you would need to figure out the appro-

priate k values to obtain the 15 central points and the 6 central points. I created the
subsets by manual inspection of sort (hatvalues (hk) ). The commands

k = .05

hkU1l5 <- 1lm(Pres[hatvalues (hk)<k] 7 Templ[hatvalues (hk)<k])
summary (hkU15)

k = .035

hkU6 <- 1m(Pres[hatvalues (hk)<k] = Temp[hatvalues (hk)<k])

summary (hkU6)

produced what I needed for the plots.

Assuming you know the number of data points in a regression n, Minitab would
usek = (1.1)* (n-df.residual (hk)) /n. When the dependent variable y
has no missing observations,n = length (y).

Below is the code for the two figures for this subsection.

#Uttsl
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xx=seq(185.6,197, .05)

yyl=-62.38+.42843xxx

plot (Temp,Pres,xlim=c(180.5,211),type="p")
lines (xx,yyl, type="1")

#Utts2

xx=seq(189.5,193.6,.05)
yyl=-48.123+.35398+*xx

plot (Temp, Pres, x1im=c(180.5,211),type="p")
lines (xx,yyl, type="1")

The package 1ibrary (Imtest) includes a version of Utts’ Rainbow Test.

3.6 Splines

You would probably not want to do an entire spline fit without specialized software
such as library (splines). We begin illustrating computing the two spline
example from the book. We conclude with how to generalize that.

hook <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",

sep="",col.names=c ("Case", "Temp", "Pres"))

attach (hook)

hook

x=Temp

h <- Temp>=191
xsw = x*x(1-h) + 191 % h # The w in xsw is for "weird".
xXs=(x—-191) xh

# Nonstandard model derived from fitting separate lines.
hkpt <- Im(Pres =~ xsw+xs)

hkpart=summary (hkpt)

hkpart

anova (hkpt)

# Usual model derived from using first group as baseline.
hkpt2 <- 1lm(Pres = x+xs)

hkpart2=summary (hkpt2)

hkpart?2

anova (hkpt2)

#lack-or—-fit test
hk <- Im(Pres ~ x)
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anova (hk, hkpt2) # or anova (hk, hkpt)

..48:70931 2.25296 ..21:620 0.000
x 0.35571 0.01208 29.447 0.000
(x..191)+ 0:13147

#Partition

xx=seq(180.5,211,.2)

yyl=-48.70931+0.35571%xx
yy2=-48.70931+.35571xxx+.13147 (xx-191)

plot (Temp,Pres,xlim=c (180.5,211),type="p")

#I have to fudge the lines so they meet visually
lines (xx[xx<=191.25],yyl[xx<=191.25],type="1")
lines (xx[xx>=191],yy2[xx>=191], type="1")

To fit more than one linear spline term, say two, create two variables: h1 that is
1 if you are greater than the first knot k1 and 0 if you are less than the knot and also
h2 being 1 if you are greater than k2 and 0 if you are less than the knot.

hook <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",

sep="",col.names=c ("Case", "Temp", "Pres"))

attach (hook)

hook

k1=185

k2=195

x=Temp

hl <- Temp>=kl
xsl=(x-kl)*hl

h2 <- Temp>=k2
xs2=(x-k2) xh2

hkp <- 1Im(Pres xX+xsl+xs2)
hkpart=summary (hkpt2)
hkpart

anova (hkpt)

You should be able to fit a cubic spline with two interior knots using

hkp <- Im(Pres 7 x+I(x72)+I(x"3)+I(xsl”3)+I(xs2"°3))
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3.7 Fisher’s Lack-of-Fit Test

As is discussed in Chapter 12, this is just a test of the simple linear regression model
against a one-way ANOVA.

hook <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab7-1.dat",

sep="",col.names=c ("Case", "Temp", "Pres"))
attach (hook)

hook

y=Pres

x=Temp

fit <= Im(y ~ x)

grps = factor (x)

pe <- 1lm(Pres ~ grps)

anova (fit, pe)
If you have multiple predictors, say, x1, x2, x3,the procedure becomes

fit <- 1Im(y 7 x1+x2+x3)

xx1 = factor (x1)
xx2 = factor(x2)
xx3 = factor (x3)

pe <- Im(Pres =~ xx1:xx2:xx3)
anova (fit, pe)

Haven’t run an example of the generalization.

3.8 Additive Effects Versus Interaction

No new computing.

3.10 Generalized Additive Models

I have not really checked out any of the rest of this chapter. This first thing
looks especially questionable.
To fit the polynomial version of the book’s model (3.10.2)

Im(y ~ poly(xl,degree=R, raw=TRUE)
+ poly (x2,degree=S, raw=TRUE) )

To fit the polynomial version of the book’s model (3.10.3) when R = §
Im(y = poly(xl, x2, degree = R, raw=TRUE))



3.10 Generalized Additive Models

Of course R and S need to be numbers, not just symbols.
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Chapter 4
Alternative Estimates I

4.1 Principal Component Regression

Principal component regression using prcomp. The following commands repro-
duce the results in the book.

coleman <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",

sep="",col.names=c ("School", "x1", "x2", "x3", "x4","x5","y"))

attach (coleman)

coleman

fit <- prcomp(~ x1+x2+x3+x4+x5, scale=TRUE)
(fit$sdev) "2

summary (fit)

fitSrotation

co <- lm(y~fits$x)

cop <— summary (co)

cop

anova (co)

The book also gives the regression coefficients based on PC1, PC3, PC4 trans-
formed back to the scale of the x;s.

# Zero coef.s for PC2 and PC5
gam <- c(co$coef[2],0,co$Scoef[4],co$coef[5],0)

int = mean(y)-

(t (gam) $x% t (fitSrotation)) %*%(fitScenterx ((fit$scale) " (-1)))
PCbeta =c(int, (t (gam)%$*% t(fitSrotation))* ((fit$scale) " (-1)))
PCbeta

There is a section on eigenvalues and eigenvectors near the end of the book.

25
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4.2 Classical Ridge Regression

See Section 8.2.
One might also look at 1m. ridge in Venable and Ripley’s MASS package.

4.3 Lasso Regression

coleman <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",

sep="",col.names=c ("School", "x1", "x2", "x3", "x4","x5","y"))

attach (coleman)

coleman

summary (coleman)

#Summary tables

co <— Im(y 7 x1+x2+x3+x4+x5)
cop=summary (co)

cop

anova (co)

X <— model.matrix (co) [,-1]

#At some point you need to have run install.packages("lasso2")
library(lasso2)

tib <= llce(y 7~ x1+x2+x3+x4+x5,data=coleman,bound = 0.56348)
tib

tib <- llce(y 7 x1+x2+x3+x4+x5,
data=coleman, bound = 0.5+ (seq(1:10)/100))
tib

It is most natural to apply the lasso (and ridge regression) to predictor variables
that have been standardized by subtracting their mean and dividing by their standard
deviation. If we create a matrix of the predictor variables, R has a command scale
that does that.

coleman <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",

sep="",col.names=c ("School", "x1", "x2", "x3", "x4","x5","y"))

attach (coleman)

coleman
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X = coleman|[,2:6]
Xs = scale (X)

Or you could do the same thing by brute force using the matrix commands of Chap-
ter 2.

X=matrix (c(xl-mean (x1), x2-mean (x2),x3-mean (x3)
, x4-mean (x4) , x5-mean (x5) ,ncol=5)

Xs = X %$*x%
diag(c(sd(x1l),sd(x2),sd(x3),sd(x4),sd(x5)) " (=-1))
Xs

or Xs=scale( x1+x2+x3+x4+x5) or

X=matrix (c(x1l,x2,x3,x4,x5,ncol=5)
Xs = scale (X)
Xs

Or if you want, you could only center the variables or only rescale them without
centering them by modifying
scale(coleman[,2:6], center = TRUE, scale = TRUE)

4.3.0.1 Pollution data

rm(list = 1s{())

coleman <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab9-4.dat",

sep="",col.names=c ("x1", "x2","x3","al", "x4", "x5",
"xoe","x7","x8", "x9", "a2", "a3", "ad4", "ab", "x10","y"))

attach (coleman)

coleman

summary (coleman)

#Summary tables

co <—= Im(y 7 x1+x2+x3+x4+x5+x6+x7+x8+x9+x10)
cop=summary (co)

cop

anova (co)

X <— model.matrix(co) [,-1]
#At some point you need to have run install.packages("lasso2")
library (lasso2)

tib <= llce(y 7 x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=coleman, standardize=FALSE,
tib
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4.3.1 Cross-validation for tuning parameter

The following code originally written by my colleague Yan Lu includes options for
cross-validatory selection of the lasso bound. It uses the 1ars package.

##Lasso for coleman data
install.packages ("lasso2")
install.packages ("lars")
library(lasso?2)

library (lars)

coleman<- read.table (
file="C:\\E-drive\\Books\\ANREG2\\newdata\\TAB6-4.DAT",
sep="",col.names=c ("School", "x1", "x2", "x3", "x4", "x5","y"))

X <- as.matrix(coleman[,c(2,3,4,5,6)])

y<-coleman$y

# Run cross-validated lasso out of lars.

ans.cv <- cv.lars(X, y,type="lasso",K=10,index=seq(from = 0, to = 1, length =20))
# type=lasso is the default,

index=seq(from = 0, to = 1, length =100) is the default

K=10 K-fold cross validation is the default

cv.lars produces the CV curve at each value of index

+H= H H

seid0 <- order (ans.cv$Scv) [1l] #id number for the minumum CV MSE

lambdamin <- ans.cv$index[seid0] #find \lambda that is associated with minimum CV

lambdamin #0.6842

minPLUSoneSE <- ans.cvS$Scv[seid0] +ans.cv$Scv.error[seid0] # one SE from the minimum CV value
abline (minPLUSoneSE, 0, 1ty=2) #looks like \lambda=0.45 is within the one SE from the minimum
# last command adds a horizontal line to plot produced by cv.lars command

lasso3 <- llce(y " x1+x2+x3+x4+x5, data=coleman, bound=lambdamin)

coef (lasso3)

# (Intercept) x1 x2 x3 x4 x5

#15.0571948207 -1.1061254764 0.0008558439 0.5357023738 0.8508239046 0.0000000000

4.4 Robust Estimation and Alternative Distances

For doing L' regression you can use the program 11fit from the package
Llpack. Another option might be rq (y model, tau=0.5)) in package
quantreg seems to do it.

Program rlm from the MASS package will use Tukey’s bi-weight loss func-
tion as well as those attributed to Huber and Hampel. r1m(y model, psi =
psi.bisquare, init = "lts")



Chapter 5
Variable Selection

5.1 Best Subset Selection

To do a best subsect selection, start by running the full model.

rm(list = 1s())

coleman <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",

sep="",col.names=c ("School", "x1", "x2", "x3", "x4","x5","y"))

attach (coleman)

coleman

#Summary tables

co <— Im(y 7 x1+x2+x3+x4+x5)
cop=summary (co)

cop

anova (co)

We will extract from this the model matrix in the next group of commands.
At some point you need to have run install.packages ("leaps"). Then,
to get the, say, nb=3 best models for every number of predictors, run

# Best subset selection Table 10.11 in book.
library (leaps)

x <= model.matrix(co) [,-1]

# assign number of best models and number of predictor variables.
nb=3

xp=copS$df[l]-1

dfe=length(y)- 1- c(rep(l: (xp—-1),each=nb), xp)
g <- regsubsets (x,y,nbest=nb)

gg = summary (g)

tt=c(gg$rsq, ggSadjr2,ggsScp, sqrt (ggsSrss/dfe))
ttl=matrix (tt,nbx (xp-1)+1,4,

29
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dimnames = list (NULL,c("R2", "AdjR2", "Cp", "RoOtMSE")))
Cp.tab=data.frame (ttl, gg$Soutmat)
Cp.tab

Construction of the table uses the previously generated output from co and cop.
regsubsets can also be used to perform stepwise regression as discussed in the
next section.

If you want to force some variables into all regressions, which would be reason-
able if they had large ¢ statistics in the full model, the following commands should
work. You need to changen f i x to be the number of variables being forced in. As be-
fore you need to determine the number of best models being fit, nb. regsubsets
also needs you to specify the variables being forced in.

library (leaps)
X <— model.matrix(co) [,-1]
# assign number of best models and number of predictor variables.
nb=2
xp=copsdf[1]-1
nfix=2
dfe=length(y)- 1- nfix -c(rep((nfix+1l): (xp-1),each=nb), xp)
g <- regsubsets (x,y,nbest=nb, force.in=c ("x3","x4"))
gg = summary (g)
gg$outmat
tt=c(gg$rsqg,gg$adjr2,ggScp, sqrt (ggSrss/dfe))
ttl=matrix (tt,nbx (xp-nfix-1)+1, 4,
dimnames = list (NULL,c("R2", "AdjR2", "Cp", "RootMSE")))
Cp.tab=data.frame (ttl, ggSoutmat)
Cp.tab

You can also do this for logistic regression by setting up the inputs correctly,
see (Christensen 1997, Section 4.4). Subsection 20.6.1 of the R code for ANREG-II
illustrates the method. In my opinion this is a clearly better method than ones based
on score tests.

5.2 Stepwise Variable Selection

R’s step command is useful in many places, not just with 1m. It chooses models
based on the AIC criterion. Plane Answers-V contains a discussion of AIC. Another
option is stepAIC from the MASS library.

First we fit the full model and then request the stepwise procedure.

rm(list = 1s{())

coleman <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",

Sep=" ", COl .nameS:C ("SChOOl", "Xl", "X2 ", "X3", "X4", "XS", "y") )
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attach (coleman)
coleman

#Summary tables

co <— Im(y 7 x1+x2+x3+x4+x5)
cop=summary (co)

cop

anova (co)

# This is the default backward elimination procedure.
col <- step(co, direction="backward")

copl=summary (col)

copl

anova (col)

# Forward selection is a little more complicated.
null = Im(y~1)
step(null, scope=list (lower=null, upper=co),direction="forward")

Actual stepwise uses direction="both".
regsubsets from the previous section can also be used to perform stepwise
regression. It provides more options on rules for dropping and adding variables.

5.3 Variable Selection and Case Deletion

Nothing new here.

5.4 Discussion

5.5 Modern Forward Selection: Boosting, Bagging, and Random
Forests

This is a simulation program I wrote before deciding that I could just discuss the
three observation example to make clear the pluses and minuses of bagging. The
simulation is also for one-sample problems and I believe is consistent with the re-
sults expressed in the example. For heavy tailed distributions, the median should
work best, followed by (in order) the bagged median, the sample mean, the bagged
midrange, and the midrange. For thin tailed distributions the midrange should be the
best followed by the bagged midrange, the sample mean, the bagged median, and
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the median. For normal distributions (and many others) the sample mean should be
the best.

For the Laplace distribution (and many other slightly unusual distributions) the
package of repeated measures utilities rmut i1 is handy.

We generate n training observations and ntst test observations. Want to es-
timate the expected value of the distribution. Compute the sample mean, sample
median, and sample midrange and compute the average of the bootstrap means,
medians, and midranges as out estimates. Mean is optimal for normal and nonpara-
metrically.

For normal data, sample mean is optimal and bootstrap cannot improve. For uni-
form data, midrange is optimal and bootstrap cannot improve. For laplace data,
median is optimal and bootstrap cannot improve. (Nearly true for t(3).) For non-
parametric data, sample mean is optimal. But bootstrap can improve the suboptimal
estimates by averaging them.

The sample mean and the bootstrapped sample mean should be almost identi-
cal. See how close bootstrap is to optimal and how much better bootstrap is than
suboptimal estimates.

This first program is for comparing estimates on a single data set. The following
program evaluates things of many sets of data.

rm(list = 1ls())

#Determine sample sizes for test and training data
nfull=200

ntst=100

n=nfull-ntst

#Generate random test and training data.

#Compute mean, median, and midrange
Tst=rnorm(ntst,0,1)

Trn=rnorm(n, 0, 1)

#Will want to change those distributions

#Long tailed distributions include t (df) and Laplace
#Short tailed distributions include uniform(a,b)
xbar=mean (Trn)

xtld=median (Trn)

mid=(max (Trn)+min (Trn)) /2

#Set up variables to save results from bootstrap samples.
B=1000

Bxbar=seq(1l,B)

Bxtld=Bxbar

Bmid=Bxbar

#B bootstrap samples from training data
#B point estimates
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for(k in 1:B)

{

Temp=sample (Trn,n, replace=T)
Bxbar[k]=mean (Temp)
Bxtld[k]=median (Temp)
Bmid[k]=(max (Temp)+min (Temp) ) /2
}

#Mean predictive sums of squares error
#From both regular and bootstrapped estimates.
PredSS=seqg(1l:9)

PredSS[1]=sum((Tst— xbar)A ) /ntst
PredSS[2]=sum( (Tst—- xtld ) /ntst
PredSS[3]=sum( (Tst—- mid) /ntst
PredSS[4]=sum((Tst— mean(Bxbar)) 2)/ntst
PredSS[5]=sum( (Tst- mean(thld ~2)/ntst
PredSS[6]=sum( (Tst— mean (Bmid) 2)/ntst
PredSS[7]=sum( (Tst- 0) "2 /ntst
PredSS[8]=8

PredSS[9]=9

#PredSS=

matrix (PredSSs, 3, 3)

The idea is to see that for normal data the sample mean does well (bootstrap mean
is about the same as the mean), but they do reasonably well no matter what distri-
bution you use. For short tailed distributions, the midrange does well, bootstrap of
midrange less well, median poor, bootstrap median better. For long tailed distribu-
tions, the median does well, bootstrap of median less well, midrange poor, bootstrap
midrange better.

This program repeats the previous program many (SS) times.

m(list = 1s())

# set size of full data, test data, and implicitly training data.
nfull=200

ntst=100

n=nfull-ntst

# Define simulation size and bootstrap sample size.

35=3000 # No. of data sets generated.

B=1000 # No. of boot samples from data

# Define sizes for vectors.
PredSS=seq(1:9)
APress=c(0,0,0,0,0,0,0,0,0)
Bxbar=seq(1l,B)

Bxtld=Bxbar

Bmid=Bxbar
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# Simulation

for(kk in 1:88)

{

# Generate data

Tst=rt (ntst, 3)
Trn=rt (n, 3)
#install.packages ("rmutil")
#library (rmutil)
#Tst=rlaplace(ntst,0,1)
#Trn=rlaplace(n,0,1)
#Compute estimates.
xbar=mean (Trn)
xtld=median (Trn)

mid= (max (Trn)+min (Trn)) /2

# Obtain estimates from bootstrapping
for(k in 1:B)

{

Temp=sample (Trn, n, replace=T)
Bxbar[k]=mean (Temp)
Bxtld[k]=median (Temp)

Bmid[k]=(max (Temp)+min (Temp) ) /2

}

# Prediction error variance for each estimate.

PredSS[1l]=sum( (Tst—- xbar) )/ntst
PredSS[2]=sum((Tst— xtld ) /ntst
PredSS[3]=sum( (Tst— mid) /ntst
PredSS[4]=sum( (Tst— mean(Bxbar "2)/ntst
PredSS[5]=sum( (Tst—- mean (Bxtld)) "2)/ntst
PredSS[6]=sum( (Tst— mean (Bmid)) " 2)/ntst
PredSS[7]=sum( (Tst— 0) "2)/ntst

APress=APress+PredSS

}
APress=APress/SS
matrix (APress, 3, 3)

5.5.1 Extreme Gradiant Boosting

I haven’t explored this yet.

# check whether need install "drat"
#install.packages ("egboost")
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library (egboost)

bst <- xgboost (data = x, label = y, max.depth = 2,
eta = 1, nthread = 2, nround = 2,
objective = "binary:logistic")

# the software appears to prefer input like

# data = train$data, label = train$label,

# objective = "binary:logistic" or "reg:linear"

# I think from CART, Class and Reg Trees

To use options from following program may need to use params=list().
This program is more advanced and specifies how xgboost “trains.”

xgb.train (params = list (), data, nrounds, watchlist = list(), obj = NULL,
feval = NULL, verbose = 1, print.every.n = 1L,
early.stop.round = NULL, maximize = NULL, ...)

booster = gbtree (default) or gblinear

#parameters for gblinear are for lasso/ridge regularization
#parameters for gbtree are for trees

#objective specifies learning task

objective = reg:linear, reg:logistic, binary:logistic

[no idea how logistics differ but binary seems more common],
multi:softmax (see NN appendix)






Chapter 6
Multiple Comparisons

These methods are all easy to apply. I'm looking around for software that applies
them quite generally. So far, these commands look like they are only for one-way
ANOVA. In SL one-way ANOVA is discussed in Chapter 2, alluded to relative to
Fisher’s lack-of-fit test in Chapter 3, is the first model addressed in Appendix B and
also mentioned in Appendix C.

Throughout the chapter we assume that the following commands have been run.
I think this is Mandel’s data with the various factors other than C2 being recodings
of treatment groups.

mand <- read.table(

"C:\\E-drive\\Books\\ANREG2\\newdata\\tabl2-4.dat",
sep="",col.names=c ("yy","c2","c3",""c4","c5","ce","Cc7","cg","Cco"))
attach (mand)

mand
ii = factor(C2)
y = log(yy)

fit <- lm(y ~ ii)

fitp <- summary (fit)
fitp
anova (fit)

C3 = factor (C3)
C4 = factor (C4)
C5 = factor (C5)
C6 = factor (Co)
C7 = factor (C7)
C8 = factor (C8)
C9 = factor (C9)

Need to double check that this agrees with ANREG-II Section 12.4.

37
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6.1 Bonferroni Corrections

Use appropriately adjusted quantiles. For pairwise comparisons in a one-way
ANOVA, you canuse pairwise.t.test (y, ii, p.adj = "bonf").

6.2 Scheffé’s method

No new commands, just some programming.

install.packages ("agricolae")

library (agricolae)

scheffe.test (fit,"ii", group=TRUE)

MSE = deviance (fit)/df.residual (fit)

MSE

Fc <- anova (fit) ["ii", 4]

scheffe.test (y, ii, df.residual (fit), fit$sigma”2,
Fc, alpha = 0.05, group=TRUE, main = NULL)

6.3 Least Significant Differences

Do the overall F test first. If and only if that is significant, do individ-
ual tests. For pairwise comparisons in a one-way ANOVA, you can use
pairwise.t.test (y, 1ii).

77 library(stats) 7?



Chapter 7
Nonparametric Regression 11

7.1 Linear Approximations
7.2 Simple Nonparametric Regression

7.3 Estimation

The big new computing issue with linear approximation nonparametric regression
is creating the model matrix. There is a good chance that you could find R packages
to help with these tasks. Frankly, it would be better if you programmed this stuff
yourself. As I used to argue with balanced ANOVA problems, you should stop doing
them on a hand calculator because it is is boring, not because you find it difficult.
Doing it the hard way helps you learn what you are doing. The time to start doing it
the easy way is when you know what you are doing.

7.3.1 Polynomials

We fit the polynomial model necessary for obtaining Figure 1.1.

rm(list = 1s{())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",

header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

xb=mean (x)
XC=X—-xb

39
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poly = 1Im(y 7 xc+I(xc"2)+I(xc”3)+I(xc"4))
polys = summary (poly)

polys

anova (poly)

xx=seq(0,1,.01)
yyl= (14.5804 + 7.673 x(xx—.5) - 63.424 % (xx-.5)"2 -
25.737 x(xx—.5)"3 + 166.418 x(xx—.5)"4)

plot (x,vy,type="p")
lines (xx,yyl,type="1")

14

12

10

Fig. 7.1 Cosine model

7.3.2 Cosines

€6 99

This produces Figures 7.2 and 7.3 by picking “p” appropriately. Currently has p = 6.

rm(list = 1ls())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",

header=TRUE,
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sep:" ll) #, col .names=c ("Case", "y", "t", "X") )
attach (battery)
battery

nf=length (x)
p=6
Phi=matrix (seq(l: (nf*p)),nf)

for(k in 1l:p)

{

Phi[, k]=cos (pixkxx)
#S=sin (pixk*x)

}

#Phi

cos = 1lm(y~Phi)

cCoss = summary (cos)
coss

anova (cos)
Bhat=coefficients (cos)

xx=seq (0,1, .01)

nff=length (xx)
Phinew=matrix (seqg(l: (nffx(p+l))),nff)
#Phinew

for(k in 1: (p+1l))

{

Phinew[,k]=cos (pix (k-1) *xx)

#S=sin (pixk*xx)

}

Phinew

yyl=Phinew%*%Bhat

plot (x,y,type="p")
lines (xx,yyl,type="1")
par (mfrow=c(1l,1))

# FOR SINES AND COSINES, CODE HAS NOT BEEN RUN
Phi=matrix{seq(l:nf*«2*p),p*2}

for(k in 1l:p)

{r=k

41
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Phi[2r]=cos (pixkxx)
Phi[2r+1l]=sin (pixk*x)
}

7.3.3 Haar wavelets

rm(list = 1s{())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

nf=length (x)

# p determines the highest level of wavelets used, i.e., m_{pk}
p=>5

pp=nfx (2"p-1)

Phi=matrix(seq(l:pp),nf)

#Phi is the Haar wavelet model matrix WITHOUT a column of 1s

Phi[,1]=((as.numeric(x<=.5)-as.numeric (x>.5))
*as.numeric (x<=1) *as.numeric (x>0)) #m_{1}

Phi[,2]=((as.numeric (x<=.25)-as.numeric(x>.25))
*as.numeric (x<=.5)*as.numeric (x>0)) #m_{21}

Phi[,3]=((as.numeric (x<=.75)-as.numeric(x>.75))
*as.numeric (x<=1l)*as.numeric(x>.5)) #m {22}

# this defines the rest
for(f in 3:p){

for(k in 1:(27(£-1)))

{

a=(2«k-2)/2"f
b=(2+xk-1)/2"f

c=2%k/2"°f
kk=2"(f-1)-1+k
Phi[,kk]=((as.numeric (x<=b)-as.numeric (x>b))

*as.numeric (x<=c)*as.numeric (x>a))

b}
Phi
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Haar = 1lm(y~Phi)
Haars = summary (Haar)
Haars

anova (Haar)

Bhat=coef (Haar)

# Plotting the fitted values for Haar wavelets.
xx=seq (0,1, .01)

nff=length (xx)

ppf=nff«*(2"p)

Phinew=matrix (seq(l:ppf),nff)

Phinew[,1]=1

Phinew[,2]=((as.numeric (xx<=.5)-as.numeric (xx>.5))
*as.numeric (xx<=1l) *as.numeric (xx>0))

Phinew[, 3]=((as.numeric (xx<=.25)-as.numeric (xx>.25))
*as.numeric (xx<=.5) as.numeric (xx>0))

Phinew[,4]=((as.numeric (xx<=.75)-as.numeric (xx>.75))
*as.numeric (xx<=1l) *as.numeric (xx>.5))

for(f in 3:p){

for(k in 1:(27 (£-1)))

{

=(2*xk-2)/2"f

=(2*«k-1)/2"f

c=2*k/2"f

kk=2" (f-1) +k

Phinew[, kk]=((as.numeric (xx<=b)-as.numeric (xx>b))
*as.numeric (xx<=c)+as.numeric (xx>a))

b}

Phinew

yyl=Phinew%*%Bhat

plot (x,y,type="p")
lines (xx,yyl,type="1")
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7.3.4 Cubic Splines

For constructing splines from scratch, the R-code for ANREG-II has a section on
splines. This is more systematic. There is another section later that discusses another
option.

rm(list = 1ls())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1~-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

nf=length (x)

#nk is the number of interior knots

nk=30 # or 4

# Create a matrix the correct size for the predictor variables.
Phi=matrix(seqg(l: (nfx (nk+3))),nf)

Phi

# Create matrix of predictor variables.

Phi[,1]=x
Phi[,2]=x"2

Phi[,3]=x"3

knot=seqg(l:nk)/ (nk+1)

knot

for(k in 1:nk)

{

Phi[, (k+3)]=(as.numeric (x>knot [k]) * (x-knot [k])) "3

}
Phi #Phi differs from book. It has no column of 1s.

spln = 1lm(y Phi)

splns = summary (spln)
splns

anova (spln)
Bhat=coefficients (spln)

xx=seq(0,1,.01)

nff=length (xx)
Phinew=matrix (seq(l: (nffx (nk+4))),nff)
Phinew[,1]=1

Phinew[, 2]=xx
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Phinew[, 3]=xx
Phinew[, 4]=xx
for(k in 1:nk)

{kk=k+4

Phinew[, kk]=(as.numeric (xx>knot [k]) * (xx-knot [k])) "3
}

Phinew

yyl=Phinew%*%Bhat

plot (x,y,type="p")

lines (xx,yyl,type="1")

"2
"3

7.4 Variable Selection

Just get the sequential sums of squares printed from 1m

7.5 Approximating-Functions with Small Support
7.5.1 Polynomial Splines

We already illustrated how to construct splines from scratch. The following is an
example that illustrates computationally that polynomial splines agree with properly
constructed bsplines.

7.5.1.1 Regular spline model

rm(list = 1s())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t","x"))

attach (battery)

battery

nf=length (x)

#nk = number of interior knots
nk=40 # or 4

# d=dimension of poly

d=3
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d=as.integer (d)
Phi=matrix (seq(l: (nf* (nk+d))),nf)
Phi

for(kk in 1:d)

{

Phi[, kk]=x"kk

}

knot=seqg(l:nk)/ (nk+1)

knot

for(k in 1:nk)

{

Phi[, (k+d) ]=(as.numeric (x>knot[k]) » (x—-knot [k])) "d

}
Phi

spln = 1lm(y Phi)

splns = summary (spln)
splns

anova (spln)
Bhat=coefficients (spln)

xx=seq (0,1, .01)
nff=length (xx)

Phinew=matrix(seqg(l: (nffx (nk+d+1))),nff)
for(k in 1:(d+1))
{kk=k-1

Phinew[, k]=xx"kk

}

for(k in 1:nk)

{kk=k+d+1

Phinew[, kk]=(as.numeric (xx>knot [k]) * (xx-knot [k])) "d
}

Phinew

yyl=Phinew%x%Bhat

plot (x,y,type="p")

lines (xx,yyl,type="1")

7.5.1.2 B-splines

B-splines for d = 2, 3. Currently set for d = 3. For d =2 change Phi [, k]=Psi3
toPhi[,k]=Psi2.

rm(list = 1s{())
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battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

nf=length (x)

#nk = m = number of interior knots +1
nk=31 # or 4

# d=dimension of poly

d=3

d=as.integer (d)
Phi=matrix(seqg(l: (nfx (nk+d))),nf)

for(k in 1: (nk+d))
{
Jj=k-1
u=nk*x-j+d
# d=2 mother
Psi2 = (as.numeric(u >= 0))* (as.numeric(u <= 1))x(u"2/2)-
(as.numeric(u > 1))*(as.numeric(u <= 2))x((u-1.5)"2-.75)+
(as.numeric (u>2)) * (as.numeric (u<=3) ) * ((3-u) "2/2)
# d=3 mother
Psi3 = (as.numeric(u >= 0))* (as.numeric(u <= 1))*(u~3/3)+
(as.numeric(u > 1)) *(as.numeric(u <= 2))*x(-u"3+4xu"2-4*u+4/3) -
((as.numeric(u>2)) * (as.numeric (u<=3))

* (= (4-u) "34+4* (4-u) "2-4x (4-u)+4/3)) +
(as.numeric (u>3)) * (as.numeric (u<=4)) * ((4-u) "3/3)
Phi[,k]=Psi3 #currently using d=3
}

bspln = 1lm(y~"Phi-1)
bsplns = summary (bspln)
bsplns

anova (bspln)
Bhat=coefficients (bspln)

#setup for plotting fitted curve
xx=seq (0,1, .01) #.01 determines grid
nff=length (xx)

#define matrix dimensions
Phinew=matrix(seq(l: (nffx (nk+d))),nff)
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for(k in 1: (nk+d))
{

j=k-1
u=nkxxx-j+d
Psi2 = (as.numeric(u >= 0))* (as.numeric(u <= 1))*x(u~2/2)+

(as.numeric(u > 1))+ (as.numeric(u <= 2))*((u-1.5)"2-.75)+
(as.numeric (u>2)) * (as.numeric (u<=3))* ((3-u) "2/2)
Psi3 = (as.numeric(u >= 0))* (as.numeric(u <= 1))x(u~3/3)+
(as.numeric(u > 1)) * (as.numeric(u <= 2))*(-u"3+4xu”"2-4xu+4/3)+
((as.numeric (u>2)) % (as.numeric (u<=3))

* (—(4-u) "3+4* (4-u) "2-4*x (4-u)+4/3) )+
(as.numeric (u>3)) * (as.numeric (u<=4))* ((4-u) "3/3)
Phinew[,k]=Psi3
}
yyl=Phinew%«*%Bhat
plot (x,y,type="p")
lines (xx,yyl, type="1")

Plot of ¥

xx=seq (0,1, .01) #.01 determines grid

u=xx*4-.5

Psi2 = (as.numeric(u >= 0))*(as.numeric(u <= 1))x(u"2/2)-
(as.numeric(u > 1))*(as.numeric(u <= 2))x((u-1.5)"2-.75)+
(as.numeric (u>2)) * (as.numeric (u<=3))* ((3-u) "2/2)

plot (u,Psi2, type="1")

Plot of ¥4

xx=seq(0,1,.01) #.01 determines grid

u=xx*5-.5

Psi3 = (as.numeric(u >= 0))x* (as.numeric(u <= 1))x(u~3/3)+

(as.numeric(u > 1)) * (as.numeric(u <= 2))*(-u"3+4xu"2-4xu+4/3)+

((as.numeric (u>2)) * (as.numeric (u<=3)
* (= (4-u) "3+4* (4-u) "2-4x (4-u)+4/3)

(as.numeric (u>3)) * (as.numeric (u<=4))

plot (u,Psi3, type="1")

)
) +
* ((4-u) "3/3)

7.5.1.3 More on B-splines

I have not yet checked out any of this.

Apparently a b-spline basis matrix for cubic splines can also be obtained using
ns (x, df = NULL, knots = NULL, intercept = FALSE, Boundary.knots
= range (x) ). Although ns stands for natural spline, it apparently uses b-splines.
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Also, you can do things other than cubic b-splines using bs (x, df = NULL,
knots = NULL, degree = 3, intercept = FALSE, Boundary.knots
= range (x)). Apparently, these are based on the command used below,
splineDesign, which requires the package splines.

Use this to try and reconstruct results of Subsection 3.4.

Bsplines were also discussed Christensen et al. (2010) (BIDA) and the following
code was written for their example. For the data in BIDA, 12 is much better although
the fit is too wiggly in the first section and misses the point of inflection. We now
create the B-spline basis. You need to have three additional knots at the start and
end to get the right basis. We have chosen to the knot locations to put more in
regions of greater curvature. We have used 12 basis functions for comparability to
the orthogonal polynomial fit. (I think this is from Tim Hanson.)

# At some point you need to have run

#install.packages ("splines")

library (splines)

knots <- ¢(0,0,0,0,0.2,0.4,0.5,0.6,0.7,0.8,0.85,0.9,1,1,1,1)

bx <- splineDesign (knots, x)

gs <- 1lm(y = bx)

matplot (x,bx,type="1",main="B-spline basis functions")

matplot (x,cbind(y,gs$fit), type="pl",ylab="y", pch=18,
lty=1,main="Spline fit")

# The basis functions themselves are shown

> gs <— 1lm(y ~ bx -1)

The package splines2 supposedly constructs b-spline model matrices.

7.5.2 Fitting Local Functions

7.5.3 Local regression

The default 1oess fit seems to oversmooth the data. It gives R> = 0.962.

rm(list = 1s{())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

lr = loess(y ~ x)
summary (1lr)
xx=seq(0,1,.01) #.01 determines grid
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lr2=predict (lr, data.frame(x = xx))
plot (x,Vv)

lines (xx,1lr2,type="1")
(cor(y,lr$Sfit)) "2

The package np does kernel smoothing.

7.6 Nonparametric Multiple Regression

The package gam fits generalized additive models using smoothing splines or local
regression

7.6.1 Redefining ¢ and the Curse of Dimensionality

7.6.2 Reproducing Kernel Hilbert Space Regression

EXAMPLE 7.6.1. I fitted the battery data with the R language’s 1m command using
the three functions R(u,v) = (u'v)*, R(u,v) = (1 +u'v)*, and R(u,v) = 5(7 +u'v)*.
I got identical fitted values ¥; to those from fitting a fourth degree polynomial.

rm(list = 1s())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

# obtain the X data matrix from the untransformed data
lin=lm(y =~ x)
X <— model.matrix (lin)

# fit the 4th degree polynomial regression 4 equivalent ways
xb=mean (x)

xCc=x—xb

poly = 1Im(y 7 xc+I(xc"2)+I(xc”3)+I(xc"4))

polys = summary (poly)

polys

anova (poly)
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Phi <- model.matrix (poly)
Z=Phil[,-1]

poly2 = 1lm(y = Z)

poly3 = 1lm(y ~ Phi - 1)

poly4 Im(y =~ (Phi%x%t (Phi))-1)

#create Rtilde

# Three options for R available

# Comment out the two you don’t want
d=4

nf=length (x)

Rtilde=matrix(seq(l: (nfxnf)),nf)

for(k in 1:nf)
{

u=X[k, ]

for(kk in 1l:nf)
{

=X[kk, ]

Rtilde [k, kk]=(1+t (u) $*%v) xxd # polynomial

#Rtilde [k k]: ( 1000+t (u-v)%$*% (u-v)) # Gaussian
#Rtilde [k, kk]= h(lx (t(u)%*%v) +0) # hyperbolic tangent

}

}

# Minor adjustments to the above
# needed to incorporate constants

# Fit the RKHS regression and compare fitted values
poly5 = Im(y ~ Rtilde-1)

# or lm(y ~ Rtilde)

poly5S$fit

polyS$fit

poly2S$fit

poly3$fit

poly4dsfit

# Check if Rtilde is nonsingular
eigen (Rtilde) $Svalues
Rtilde%$x%$solve (Rtilde)

# Fit hyperbolic tangent
# Rerun earlier code for
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# appropriate Rtilde
tanhh = 1lm(y ~ Rtilde-1)
summary (tanhh)

# Plot results
xx=seq (0,1, .01)

yyl=tanhh$coef[1] * tanh(lx (l+xx*x[1])+0)+
tanhhScoef[2] * tanh(l* (l+xx*x[2]) +0)+
tanhhScoef[3] * tanh(l* (l+xx*x[3])+0) +
tanhhScoef[4] * tanh (1* (1+xx*x[4])+0)+
tanhh$coef[ll]+tanh (1* (1+xx*x[11])+0) +
tanhhScoef[16]*tanh (1% (1+xx*x[16])+0) +
tanhh$coef[29}*tanh(l*(1+xx*x[29])+0) +
tanhhScoef[41] * tanh (1x (l+xxxx[41])+0)

plot(x,y,type="p")
lines (xx,yyl,type="1")

See Chapter 3.

7.7 Testing Lack of Fit in Linear Models

Not much new computing here.

7.8 Regression Trees

Also known as recursive partitioning
Package and program rpart.

coleman <- read.table(

"C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",

Sep:"",COl.nameS:C("SChOOl","Xl","X2","X3","X4"," 5" n H))
attach (coleman)
coleman

#install.packages ("rpart")
library (rpart)
fit=rpart (y " x3+x5,method="anova", control=rpart.control (minsplit=7))

#
#
#
#
#

minsplit=7 means that if a partition set contains less than 7 observations
a split will not be attempted

I set it at 7 so as to get a split based on x5

The default minimum number of observations in a partition set

is minsplit/3 rounded off.
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# The default minsplit is 20, so not very interesting for data with n=20.

printcp (fit)
plotcp (fit)
rsqg.rpart (fit)
print (fit)
summary (fit)
plot (fit)

text (fit)

post (fit, file="C:\\E-drive\\Books\\ANREG2\\newdatal\\colemantree.pdf") cr

par (mfrow=c(3,2))
plot (x3,x5,main="Recursive Partitioning")
lines(c(-11.35,-11.35),c(5,8),type="0", 1lty=1, lwd=1)
plot (x3,x5,main="Recursive Partitioning")
lines(c(-11.35,-11.35),c(5,8),type="0", 1lty=1, lwd=1)
lines (c(8.525,8.525),c(5,8),type="0",1lty=1, 1lwd=1)
plot (x3,x5,main="Recursive Partitioning")
lines(c(-11.35,-11.35),c(5,8),type="0", 1lty=1, lwd=1)
lines (c(8.525,8.525),c(5,8),type="0",1lty=1, 1lwd=1)
lines (c(6.235,6.235),c(5,8),type="0",1lty=1, lwd=1)
plot (x3,x5,main="Recursive Partitioning")
lines(c(-11.35,-11.35),c(5,8),type="0o", 1lty=1, lwd=1)
lines (c(8.525,8.525),c(5,8),type="0o",1lty=1, 1lwd=1)
lines(c(12.51,12.51),c(5,8),type="0o",1lty=1, 1lwd=1)
lines (c(6.235,6.235),c(5,8),type="0",1lty=1, 1lwd=1)
plot (x3,x5,main="Recursive Partitioning")
lines(c(-11.35,-11.35),c(5,8),type="0o", 1lty=1, lwd=1)
lines (c(8.525,8.525),c(5,8),type="0",1lty=1, 1lwd=1)
lines(
(

(
c(12.51,12.51),c(5,8),type="0o", 1lty=1,1lwd=1)
lines(c(6.235,6.235),c(5,8),type="0o", 1lty=1, lwd=1)
lines(c(-11.35,6.235),c(5.675,5.675),type="1", 1lty=1, lwd=1)

plot (x3,x5,main="Alternative Second Partition")
lines(c(-11.35,-11.35),c(5,8),type="0", 1lty=1, 1lwd=1)
lines(c(-11.35,20),c(6.46,6.46),type="1",1ty=1, lwd=1)
par (mfrow=c(1l,1))

#Summary tables

co <— Im(y 7 x1+x2+x3+x4+x5)
cop=summary (co)

cop
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anova (co)

# The default for anova gives sequential sums of squares.

# The following device nearly prints out the three line ANOVA table.
# See Chapter 11 for details

7Z <— model.matrix (co) [,—-1]

co <— lm(y ~ 2)

anova (co)

confint (co, level=0.95)

#Predictions

new = data.frame (x1=2.07, x2=9.99,x3=-16.04,x4= 21.6, x5=5.17)
predict (Im(y " x1+x2+x3+x4+x5) ,new,se.fit=T, interval="confidence")
predict (Im(y " x1+x2+x3+x4+x5) ,new, interval="prediction")

infv = c(y,co$fit,hatvalues (co),rstandard(co),
rstudent (co), cooks.distance (co))
inf=matrix (infv, I (cop$df[l]l+cops$df[2]),6,dimnames = list (NULL,
C("y", "yhat"’ "lev'l,"r","t","C")))
inf

ggnorm (rstandard(co),ylab="Standardized residuals")

# Wilk-Francia
rankit=gnorm (ppoints (rstandard(co),a=I(3/8)))
ys=sort (rstandard(co))
Wprime= (cor (rankit,ys)) "2

Wprime

plot (co$fit, rstandard(co),xlab="Fitted",
ylab="Standardized residuals",main="Residual-Fitted plot")

Do a regression tree on ANOVA data. Cookie Moisture

Regression trees don’t seem to be very good without “bagging” them into random
forests.

http://cran.r-project.org/web/packages/randomForest/index.
html.http://cran.r-project.org/web/packages/ranger/index.
html

Useful commands? natural splines ns, modcv ()

7.9 Regression on Functional Predictors


http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/ranger/index.html
http://cran.r-project.org/web/packages/ranger/index.html

Chapter 8
Alternative Estimates 11

8.1 Introduction

libraries
lasso2 program 11lce
glmnet library and program

8.2 Ridge Regression

Below are programs for fitting the augmented linear model. One might also look at
1m.ridge in Venable and Ripley’s MASS package.

rm(list = 1s{())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

nf=length (x)
p=10
Phi=matrix (seqg(l: (nfx(p+1l))),nf)

for(k in 1: (p+1))

{
Phi[,k]=cos (pi* (k-1) *x)
#S=sin (pi*k*x)

}
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#This section fits the p-1=6 model.

Phi6=Phi[,c(2,3,4,5,6,7)]

cos6 = 1lm(y Phi6)

cossb = summary (cos6)
cossb

anova (cosb6)
Bhat6=coefficients (cosb)
Bhat 6=c (Bhat6,0,0,0,0)
Bhato6

8 Alternative Estimates 11

Create and fit the augmented Ridge model

w=seq(1:10)
zip=w-w

wW=w

W=W*W
Dw=.2xdiag (w)
Dwx=cbind (zip, Dw)
Dwx

XR=rbind (Phi, Dwx)
XR

YR=c (y, zip)
cosr=1lm(YR =~ XR-1)
BhatR=coefficients (cosr)
BhatR

(cor (y,Phi%«%Bhat6) "2)
(cor (y,Phi%«%BhatR) "2)

xx=seq (0,1, .01)
nff=length (xx)

Phinew=matrix (seq(l: (nffx (p+1l))),nff)

for(k in 1:11)

{
Phinew[, k]=cos (pix* (k=1) xxx)
#S=sin (pi*k*xx)

}

Phinew

yyl=Phinew%*%Bhat6
yyr=Phinew%$x%BhatR

plot (x,y,type="p")
lines (xx,yyl,type="1",1lty=5)
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lines (xx,yyr,type="1")
par (mfrow=c(1l,1))

It is most natural to apply ridge regression (and the lasso) to predictor variables
that have been standardized by subtracting their mean and dividing by their standard
deviation. If we create a matrix of the predictor variables, R has a command scale
that does that.

rm(list = 1s())
coleman <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-4.dat",

Sep:" ", COl.I’lameS=C ("Schooll', "xl", "X2", "X3", "X4", "X5", "y") )

attach (coleman)
coleman

X = coleman|,2:6]
Xs = scale (X)

Or you could do the same thing by brute force using the matrix commands of Chap-
ter 11.

X=matrix (c(xl-mean (x1), x2-mean (x2),x3-mean (x3),
x4-mean (x4) ,x5-mean (x5) ,ncol=5)

Xs = X %*% diag(c(sd(xl),sd(x2),sd(x3),sd(x4),sd(x5))
Xs

If you want, you could only center the variables or rescale them without centering
them.
scale(coleman[,2:6], center = TRUE, scale = TRUE)

8.3 Lasso Regression

You can get a lot information on lasso from Rob Tibshirani’s website: http://
statweb.stanford.edu/~tibs/lasso.html. There is another example
in the R code for Section 10.2 of ANREG-II. This is for comparing the p = 30
cosine lasso fit with with the p = 6 cosine least squares fit.

rm(list = 1ls())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,
sep="")#,col.names=c ("Case", "y","t", "x"))

attach (battery)

battery

nf=length (x)
p=30

“(=1))


http://statweb.stanford.edu/~tibs/lasso.html
http://statweb.stanford.edu/~tibs/lasso.html
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Phi=matrix (seq(l: (nf* (p+1l))),nf)

for(k in 1:(p+1))

{
Phi[,k]=cos (pi* (k-1) *x)
#S=sin (pi*k+*x)

}

8 Alternative Estimates 11

#This section fits the p-1=6 model.

Phié=Phi[,c(2,3,4,5,6,7)]

cos6 = 1lm(y~"Phio6)

coss6 = summary (cos6)
cossb

anova (cosb6)
Bhat6=coefficients (coséb)
Bhat6=c (Bhat6, rep (0, 24))
Bhat6

cos = Ilm(y Phi-1)

coss = summary (cos)
coss

anova (cos)
Bhat=coefficients (cos)

# install.packages ("lasso2")
library(lasso2)
tib <= llce(y ~
# This is the default boundary.

Phi[,-1],data=battery, standardize=FALSE, bound=.5)

# Generalized lasso requires weights=

BhatL=coef (tib)

#tib <- llce(y 7 Phi[,-1],bound =
tib

BhatL

(cor (y,Phi%*«%Bhat6) "2)
(cor (y,Phi%«%Bhat) "2)
(cor (y,Phi%«%BhatL) "2)

xx=seq (0,1, .01)

nff=length (xx)
Phinew=matrix (seqg(l: (nffx(p+tl))),n
#Phinew

0.5+ (seq(1:10)/100))

ff)
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for(k in 1: (p+1l))

{
Phinew[,k]=cos (pix (k-1) *xx)
#S=sin (pixk*xx)

}

#Phinew

yy6=Phinew%*%Bhat6
yyL=Phinew%*%BhatL
yy30=Phinew$%$*%Bhat

plot (x,y,type="p")

lines (xx,yy6,type="1",1ty=5)
lines (xx,yy30,type="1", 1ty=4)
lines (xx,yyL, type="1")

par (mfrow=c(1l,1))

8.4 Geometry

#install.packages ("ellipse") #Do this only once on your computer
library(ellipse)
#SHRINKAGE, NO ZEROS

bl=1

b2=2

A = matrix(c(1,.9,.9,2),2,2, dimnames = list (NULL, c("b1l", "b2")))
A

E <- ellipse(A, centre = c(bl, b2), t = .907, npoints = 100)
El <- ellipse(A, centre = c(bl, b2), t = .5, npoints = 100)
x=seq(0,1,.05)

y=1-x

yl=-1+x

x1=-x

y2=1+x1

y3=-1-x1

plot (E,type = "1’ ,ylim=c(-1,3),xlim=c (-1, 3),
xlab=expression(“betall]),

yvlab=expression("betal[2]),main=expression(~delta==1))
text ((bl+.1), (b2-.15),expression (hat ("beta)), lwd=1l, cex=1)
#plot (E,type = "1',ylim=c (-1, 3),xlim=c (-1, 3),
#xlab=expression (beta[l]),ylab=expression (beta[2]))

lines (E1,type="1", 1ty=1)

lines (x,y,type="1", 1ty=1)

lines (x,yl,type="1", 1ty=1)
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lines (x1,y2,type="1",1ty=1)
lines (x1,y3,type="1",1ty=1)
lines (0,0, type="p", 1ty=3)
lines (bl,b2,type="p", 1lty=3)
(

#text ((b1l+.1), (b2-.15)," (bl,b2)",1lwd=1, cex=1)

8.5 Two Other Penalty Functions



Chapter 9
Classification

See Chapter 20 of ANREG-II for a more extensive discussion of logistic regression
and associated code. The ANREG-II discussion and code includes:

* Goodness of fit tests.
Don’t use the Hosmer-Lemeshow chi-squared test. Only use the Pearson and
Likelihood ratio tests when you have binomial data with all the N;s reasonably
large!

* Assessing predictive probabilities.

» Case diagnostics.

* Model testing.

e Multiple logistic regression.

» Best subset logistic regression.

» Stepwise logistic regression.

*  ANOVA models.

* Ordered categories.

glm fits generalized linear models but it does not incorporate penalties except
through augmenting the data.

Library LiblineaR has program LiblineaR that performs logistic regres-
sion and SVM with both L! (lasso) and L2 (ridge) regularization (penalties).

9.1 Binomial Regression

9.1.1 Simple Linear Logistic Regression

mice.sllr <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-1.dat",
sep="",col.names=c("x", "Ny", "N","y"))
attach(mice.sllr)
mice.sllr
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summary (mice.sllr)

#Summary tables

mi <- glm(y =~ x,family = binomial,weights=N)
mip=summary (mi)

mip

anova (mi)

rpearson=(y-mis$fit)/ (misfit* (1-mi$fit) /N) " (.5)

rstand=rpearson/ (1-hatvalues (mi)) "~ (.5)

infv = c(y,mi$fit,hatvalues (mi), rpearson,
rstand, cooks.distance (mi))

inf=matrix (infv, I (mip$df[l]+mipS$df[2]),6,dimnames = list (NULL,
c("y", "yhat", "lev","Pearson","Stand.","C")))

inf

# Note: delete y from table if it contains missing observations

#compute confidence intervals

R=mip$cov.unscaled

se <- sqgrt (diag(R))

ci=c (mi$coef-gnorm(.975) xse, miS$coef+gnorm(.975) xse)
CI95 = matrix(ci,mip$dfll],2)

CI95

9.1.2 Data Augmentation Ridge Regression

Go to last section of this chapter.

9.2 Binary Prediction

O-ring data analysis.

rm(list = 1ls())
oring.sllr <- read.table(
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-3.dat",
Sep:" ", COl .nameS:C ("Case", "Flt", "y", "S", "X"’ "no") )

attach (oring.sllr)
oring.sllr

#summary (oring.sllr)

#Summary tables
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or <- glm(y ~ x,family = binomial)
orp=summary (or)

orp

anova (or)

#prediction
new = data.frame (x=c(31,53))
predict (or, new, type="response")
rpearson= (y-or$fit)/ (orSfit* (l-ors$fit)) " (.5)
rstand=rpearson/ (1-hatvalues (or)) " (.5)
infv = c(y,or$fit,hatvalues (or), rpearson,
rstand, cooks.distance (or))
inf=matrix (infv, I (orp$df[l]+orpSdf[2]),6,dimnames = list (NULL,
c("y", "yhat", "lev","Pearson","Stand.","C")))
inf
R2 = (cor(y,ors$fit)) "2
R2

9.2.1 Figure Construction

In order to construct the figures, I had to fit the models. So the information on fitting
the models is embedded in the code for the figures.

Figure 9.1 involves fitting logistic and probit regressions and an SVM classifier.
The linear structures are By + i TL+ B, PL, i.e., linear in TL and PL.

rm(list = 1s{())

cush <- read.table(

"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM12-1c.DAT",
sep="",col.names=c ("Type", "Tetra", "Preg"))

attach (cush)

cush

TL = log(Tetra)

PL log (Preqg)

Tp=Type-2

Tp2=3-Type

# Tp2 is 1 for Bilat hyp and 0 for Carcin

# Plot of points and discrimination curves

xx2=c( 8.3, 3.8, 3.9, 7.8, 9.1, 15.4, 7.7, 6.5, 5.7, 13.6)
yy2=c(l1.00, .20, .60, 1.20, .60, 3.60, 1.60, .40, .40, 1.60)
xx3=c(10.2, 9.2, 9.6, 53.8, 15.8)

yy3=c(6.40, 7.90, 3.10, 2.50, 7.60)
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x2=10g (xx2
x3=1log (xx3
y2=log (yy2
y3=log(yy3
plot (x2,y2, pch=16, ylab="log(Pregnanetriol)",
ylim=c(-2,3),xlim=c(1,4.5),xlab="1og(Tetrahydrocortisone)")
points (x3, y3, pch=22)
legend ("bottomright",c("Bilateral Hyperplasia", "Carcinoma"),
pch=c(16,22))

)
)
)
)

# LOGISTIC REGRESSION

ac2 = glm(Tp2 ~ TL + PL, family=binomial)

#summary (ac2)

#anova (ac2)

fpost=c (Type,ac2$fit, 1-ac2$fit)

#PropProb=

# matrix(post,15,3,dimnames = list (NULL,c ("Group","B","C")))
#PropProb

xl=seq(l,4.5,.01)

b=ac2$coef

y2=(b[1]+b[2]*x1)/-b[3]

lines (x1,y2,type="1")

legend ("topright",c("Logistic", "Probit","SVM"),lty=c(1,2,5))

# PROBIT REGRESSION

ac3=glm(Tp2 ~ TL + PL,family=binomial (link="probit"))
b=ac3S$coef

y3=(b[1]+b[2]*x1)/-b[3]

lines (x1,y3,type="1",1lty=2)

# SVM

#install.packages ("el071")
library(el071)

T=factor (Type)

# Typically you would want to have

# \texttt{scale=T} in \texttt{svm}.
fit <- svm(T ~ TL + PL,kernel="linear", scale=F)
fitssv

fitS$Scoefs

fitSrho

x1l=seq(l,4.5,.005)

b=t (£it$SV) $+%fitS$Scoefs
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#solve <(x1l,ySVM)’'b>=fits$rho
ySVM= (-fit$rho+b[1]*x1l)/-b[2] # = (fit$rho - b[l]lxxl)/b[2]
lines (x1,ySVM, type="1", 1ty=b)

9.2.2 Generalized Linear Models

This produces Figures 9.2 and 9.4 that compares the logistic and probit loss func-
tions and the logistic and SVM loss functions, respectively.

rm(list = 1ls())
par (mfrow=c(1l,2))
x=seq(-3.5,3.5,.05)

# Logit

y=2+1log ((l+exp (-x)))

# SVM

##y2=(1l-x)*as.numeric ((1l-x)>0)
# Probit

y2=-2+*1log (pnorm(x))

# This gives HALF of a SVM

#y2=—2+log (l-pexp (-.5*x+.5))

plot (x,y,type="1", xlab=expression (x"T "beta),ylab="Loss")
lines (x,vy2,,1lty=5)

#legend ("topright", c("Logistic","SVM"),lty=c(1,5))
legend ("topright",c("Logistic", "Probit"),1lty=c(1,5))
legend ("bottomleft",c("y=1"))

# Logit

y=-2x1log (1/ (1+exp (x)))

# SVM

##y4=(x+1) xras.numeric ( (x+1)>0)
# Probit

y4=-2xlog (l-pnorm(x))

# This does NOT give the other half SVM
#yd=-2+x1log (pexp (—.5*x+.5))

plot (x,y,type="1", xlab=expression (x"T beta),ylab="Loss")
lines (x,v4,,1lty=5)

#legend ("topleft",c("Logistic","SVM"), lty=c(1,5))

legend ("topleft",c("Logistic", "Probit"),lty=c(1,5))
legend ("bottomright",c("y=0"))

par (mfrow=c(1l,1))
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9.3 Binary Generalized Linear Model Estimation

9.4 Linear Prediction Rules

This 3-part program produces Figures 9.3? and 9.5?. They involves fitting logistic
and probit regressions and an SVM classifier. The linear structures are quadratic in
TL and PL. Part 1 plots the data. Part 2 plots the two regressions. Part 3 fits the
default SVM classifier and has commented out the SVM classifier with the tuning
parameter reduced by a factor of 100 (cost increased to 100).

9.4.0.1 Plotting the data

rm(list = 1ls())
cush <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM12-1c.DAT",
sep="", col.names=c ("Type", "Tetra", "Preg"))
attach (cush)
cush
T=factor (Type)
TL = log(Tetra)
PL = log(Pregq)
plot (TL[T==2], PL[T==2], pch=16, ylab="log(Pregnanetriol)",
ylim=c(-2,3),xlim=c(1,4.5),xlab="1og(Tetrahydrocortisone)™")
points (TL[T==3], PL[T==3], pch=22)
legend ("bottomright",c("Bilateral Hyperplasia","Carcinoma"),
pch=c(1l6,22))
legend ("topleft",c("Logistic", "Probit", "SVM"),lty=c(1,2,5))

9.4.0.2 Quadratic Logistic and Probit Regression

This is a continuation of the previous plotting program.

TL2=TL*TL

PL2=PL*PL

TPL=PL*TL

Tp=Type-2

Tp2=3-Type

# Tp2 is 1 for Bilat hyp and 0 for Carcin

ac2 = glm(Tp2 ~ TL + PL + TL2 + PL2 + TPL,
family=binomial)
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#solve quadratic equation
xl=seq(l,4.5,.1)
bb=ac2$coef

prior=.5
c=bb[1l]+bb[2]*x1+bb[4]*x1"2
b= bb[3] + bb[6]*x1

a=bb[5]

delta=b " 2-4xaxc

yLR = (-b+sqgrt (delta))/ (2*a)
yLR2 = (-b-sqgrt (delta))/ (2+*a)
lines (x1,yLR,type="1",1ty=1)

(
lines (x1,yLR2,type="1", 1lty=1)

ac3 = glm(Tp2 ~ TL + PL + TL2 + PL2 + TPL,

family=binomial (1link="probit"))

#solve quadratic equation
xl=seq(l,4.5,.1)
bb=ac3$coef

prior=.5
c=bb[l]+bb[2]*x1+bb[4]*x1"2
b= bb[3] + bb[6]*x1

a=bb[5]

delta=b " 2-4xaxc

yPR = (-b+sqgrt (delta))/ (2+*a)
yPR2 = (-b-sqgrt (delta))/ (2*a)

lines (x1, yPR, type="1",1ty=1)
lines (x1,yPR2, type="1", 1ty=1)

9.4.0.3 Quadratic SVM

This is a continuation of the previous program. Typically you would want to have
scale=T in svm, which is the default.

#install.packages ("el071")

library(el071)

T=factor (Type)

# define SVM and display outputs

fit <= svm(T = TL + PL,kernel="polynomial",degree=2,
gamma=1, coef0=1, scale=F)

# Next line reduces tuning parameter, i.e., increases cost.

#fit <= svm(T ~ TL + PL,kernel="polynomial",degree=2,
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gamma=1, coef0=1, scale=F, cost=100)
fitssv
fit$Scoefs
fit$rho
fit$fitted # shows groups that each case was allocated to
# fitted shows that my parabolic solution is reasonable.
# predict (fit)

# define and solve quadratic equation.

# add curves to previous plot

# must solve matrix equation that involves inner products

x1l=seq(l,4.5,.01)

w=fit$coefs

c=—fitSrho + sum(w)+2+xsum(wx£itSSV[,1]) x1
+sum (w* (£1it$SSV[,1]) "2) *x1"2

b=2+sum (wxfitS$SSV[,2]) + 2*sum(wxfit$SV[,1]*«fit$SV[,2]) rx1

a=sum (wx (£1it$SV[,2]) "2)

delta=b"2-4xax*c

ySVM = (-b+sqgrt (delta))/ (2«*a)
ySVM2 = (-b-sqgrt (delta))/ (2«*a)
lines (x1, ySVM, type="1", 1ty=5)
lines (x1,ySVM2, type="1", 1ty=5)

# A plot that svm provides
plot (fit, cush)

We now illustrate how to get the SVM prediction results from output (in R, £it
= svm(...)) that provides the matrix of d — 1 dimensional support vectors Xg
(£1t$5V) which is s x (d — 1) and extracted from X, the negative intercept K
(fit$rho), and the coefficients w (£ it $coe£) that are the nonzero coefficients of
i( 11> —Mo)- The elements of the vector w are positive for one group and negative
for the other. The two groups are identified as positive and negative. As in Chapter 3
of ALM-III, the kernel function (specified in the program) defines the inner product
between two vectors. To predict the group of a new vector x, evaluate the matrix
expression

< X,xs1 >
: w—K.
< X,Xs5 >

The sign of result determines the group allocation. Note that this simplifies greatly
when using the standard Euclidean inner product.

Exercise: Manually scale the variables, run svm with scale=F and compute
B« and By as discussed in the book. Now run svm with scale=T and compute
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3* and 30. How do you transform [3’* and ﬁ'o computed with scale=T into an
appropriate vector 3 on the original scale of the data?

9.5 Support Vector Machines

The computations were made in the previous section.
http://svms.org/tutorials/

9.6 A Simple Example Not in ALM-111

This example is not in the book. It was used for classroom discussion.
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Fig. 9.1 Simple Binary Data.

m(list = 1s())

c(1,1,1,1,1,0,0,0,0,0)
TT=factor (T)
Yyl=c(1,1,1,1,-1,-1,-1,-1,-1,-1)
Y2=c(.9 .8,.7,.6,-1.1,-.9,-.8,-.7,-.6,-.5)
Y11=Y1

[T 1]
Y10=Y1[T==0]


http://svms.org/tutorials/
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Fig. 9.3 Logistic Discrimination and R default SVM.
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Fig. 9.4 Logistic Discrimination, R default SVM, LR augmented data ridge.
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Fig. 9.5 Logistic Discrimination and SVM with C=100.
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Y21=Y2[T==1]

Y20=Y2[T==0]

plot (Y11l,Y21, pch=16, ylab="y2",xlab="y1l")
#ylim=c (-2,3),xlim=c(1,4.5),

points (Y10, Y20, pch=22)

xl=seq(-1.1,1.1,.05)

#lines (x1,x1)

ac2 = glm(T Y1l + Y2, family=binomial)

prior=.5 #prior probability for first group (coded as 1)
n=length (T)

nl=5 4#number of observations in first group

n2=n-nl

b=ac2$coef

yLR=(b[1]+log(n2/nl)+log(prior/ (1l-prior))+b[2]xx1)/-b[3]
lines (x1, yLR, type="1")

legend ("topleft", c("LogReg", "Log Ridge", "SVM"),lty=c(1,2,5))

#install.packages ("el071")

library (el071)

fit <-= svm(TT Yl + Y2,kernel="linear", scale=F)
# add cost=100 and get LR. Default is cost=l
fit$sv

fitScoefs

fitS$rho

b=t (£fit$SV) $+x%fitScoefs

ySVM= (-fit$Srho+b[1]*x1)/-b[2]

# = (fitSrho - b[1l]*x1)/b[2]

lines (x1, ySVM, type="1", 1ty=5)

# No new software logistic ridge
k=1
TR=c (T, .5, .5)
Y1IR =c(Y1,1,0)
Y2R =c(Y2,0,1)
W=c(Y1l/Y1l,Xk,k)
J=c(Y1/Y1,0,0)
acR = glm(TR ~ J + Y1IR + Y2R -1, family=binomial, weights=W)
prior=.5 #prior probability for first group (coded as 1)
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n=length(T)
nl=5 4#number of observations in first group
n2=n-nl

b=acR$coef
yLRR=(b[l]+log(n2/nl)+log(prior/ (l-prior))+b[2]*x1)/-b[3]
lines (x1, yLRR, type="1", 1ty=2)






Chapter 10

Discrimination and Allocation

An overview of R procedures for multivariate analysis is available at https://
cran.r-project.org/web/views/Multivariate.html.

EXAMPLE 10.0.1. Read in the data and plot the data as follows.

rm(list = 1s())
cush <- read.table(

"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM12-1.DAT",

sep="",col.names=c ("Type", "Tetra", "Preg"))

attach (cush)
cush

#summary (cush)
TL = log(Tetra)
PL = log(Preqg)

The plot from ANREG-II

1.00,
10.2,
yy3=c(6.40,
x1l=log (xx1)
x2=10g (xx2)
x3=10g (xx3)
yl=log(yyl)
y2=1log (yy2)
y3=log (yy3)
plot (x1,vy1l,

3.0,
1.30,
3.8,

0.20,
9.2,
7.90,

pch=3,

1.9, 3.8, 4.1, 1.9)
0.10, 0.04, 1.10, 0.40)
3.9, 7.8, 9.1, 15.4, 7.7,
0.60, 1.20, 0.60, 3.60, 1.60,
9.6, 53.8, 15.8)
3.10, 2.50, 7.60)

ylab="log (Pregnanetriol)",

0.

75
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ylim=c(-4,4),xlim=c (0, 5),xlab="1og(Tetrahydrocortisone)")
points(x2, y2, pch=16)
points (x3, y3, pch=22)

legend ("bottomright", c ("Adenoma",

"Bilateral Hyperplasia","Carcinoma"),pch=c(3,16,22))

10.1 The General Allocation Problem

10.1.1 Figure 2

rm(list = 1s())

par (mfrow=c(2,1))

x=seq(-1,8,.1)

y=dnorm(x, 2, 1)

yl=dnorm(x,5,1)

plot (x,y,xlab="y",ylab="f (y)",type="1",1lty=1,xlim=c (-1, 8))
lines (x,yl,lty=1)

points( 3.5, 0, pch=16)

x=seq(-1,11,.01)

y=dnorm(x,2,1)

yl=dnorm(x, 5, 3)

plot (x,v,,ylab="f(y)",xlab="y", type="1",1lty=1,xlim=c(-1,11))
lines (x,vy1l,1lty=1)

c= 11

b= -26

a=8

delta=b " 2-4xaxc

M1l = (-b+sqgrt(delta))/ (2xa)
M2 = (-b-sqgrt(delta))/ (2xa)

points( c(M1,M2),c(0,0), pch=16)

points( c¢(-.31,3.595),c(0,0), pch=22)

lines( ¢(-.31,-.31),c(0,.0277))

lines( ¢(3.595,3.595),c(0,.114))

legend ("topright", c ("QDA", "Mahalanobis"),pch=c(22,16))
cbind(x,v,vyl)

par (mfrow=c(1l,1))
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10.1.2 One dimensional plots

rm(list = 1s())

par (mfrow=c(2,1))

x=seq(-1,8,.1)

y=dnorm(x,2,1)

yl=dnorm(x,5,1)

plot (x,y,type="1", 1lty=1,xlim=c (-1, 8))
lines (x,y1l,1lty=1)

points( 3.5, 0, pch=16)

x=seq(-1,11,.01)

y=dnorm(x, 2, 1)

yl=dnorm(x, 5, 3)

plot (x,y,type="1",1lty=1,xlim=c(-1,11))
lines (x,y1l,1lty=1)

c= 11
b= -26
a=8

delta=b " 2-4xaxc

M1 = (-b+sqgrt (delta))/ (2+*a)

M2 = (-b-sqgrt (delta))/ (2+*a)

points( c(M1,M2),c(0,0), pch=16)

points( c¢(-.31,3.595),c(0,0), pch=22)

lines( c¢(-.31,-.31),c(0,.0277))

lines( ¢(3.595,3.595),c(0,.114))

legend ("topright", c ("QDA", "Mahalanobis"),pch=c(22,16))
cbind(x,y,vyl)

par (mfrow=c(1l,1))

It is surprisingly futzy to transform from Cartesian to polar coordinates. I actually
drew the plots by generating the data in polar coordinates and making the simpler
transformation to Cartesian. The library useful has programs for doing both.

rm(list = 1s{())

nl=200

n2=200
ytll=runif(nl,1.5,1.75)
ytl2=runif (nl,0,2xpi)
yt21l=runif (n2,2.25,2.45)
yt22=runif (n2,0,2xpi)
yll=ytllxsin(ytl2)
yl2=ytll*cos(ytl2)
y21l=yt2lxsin(yt22)
y22=yt21l+cos (yt22)
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plot (y21,vy22,xlab=expression(y[1l]),
ylab=expression(y[2]),main="Discriminant Analysis")
lines(yll,vyl2,type="p",pch=4)

plot(ytll,yt22,xlim=c(1.5,2.5))
lines (yt21,yt22, type="p", pch=4)

In ALM-III the Examples are accumulated into Section 5 but here we give the
linear the examples in sections that describe the theory. Don’t think this is still
true.

10.2 Estimated Allocation and QDA

The following commands reproduce Table 10.3 associated with Example 10.5.1.

m(list = 1s¢())
cush <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM12-1.DAT",

sep="",col.names=c ("Type", "Tetra", "Preg"))
attach (cush)
cush

#summary (cush)
TL = log(Tetra)
PL = log(Preqg)
T=factor (Type)

library (MASS)

fit <- gda(T ~ TL + PL,prior=c(1/3,1/3,1/3))
fit

pfit=predict (fit)

pfit

ct <- table(pfit$class, T)

ct

fit2 <- gda(T -~ TL + PL,prior=c(1/3,1/3,1/3),CV=TRUE)
fit2

pfit2=fit2S$posterior

pfit2

ct2 <- table(fit2Sclass,T)

ct2
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10.3 Linear Discriminant Analysis: LDA

The following commands reproduce Table 10.2 associated with Example 10.5.1.

rm(list = 1ls())

cush <- read.table(

"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM12-1.DAT",
sep="",col.names=c ("Type", "Tetra", "Preg"))

attach (cush)

cush

#summary (cush)

TL = log(Tetra)

PL = log(Preq)

T=factor (Type)

library (MASS)

fit <= 1lda(T ~ TL + PL,prior=c(1/3,1/3,1/3))
fit

pfit=predict (fit)

pfit

ct <- table(pfit$class, T)

ct

fit2 <- 1da(T ~ TL + PL,prior=c(1/3,1/3,1/3),CV=TRUE)
fit2

pfit2=fit2S$posterior

pfit2

ct2 <- table(fit2S$class,T)

ct2

10.4 Cross-Validation

Commands for cross-validation were contained in the two previous sections.
For K-fold cross validation look up the following which relies on the association
between discrimination and one-way MANOVA as discussed in the next section.

# K-fold cross-validation
library (DAAG)
cv.lm(df=mydata, fit, m=3) # 3 fold cross-validation
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10.5 Discussion

No computing

10.6 Stepwise LDA

Does the step command apply to LDA?

To find the summary statistics by species, use the following.

rm(list = 1s{())

beetles <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\Exampl2-2-2.dat",
sep="",col.names=c ("y1l","y2", "y3", "y4",  "y5", "y6","s"))
attach (beetles)

beetles

Spec=factor(s)

rl2=yl/y2

y=cbind(yl,v2,y3,v4,y5,y6,rl2)

colMeans (y[Spec==1,1)
cov (y[Spec==1,],y[Spec==1,1])
colMeans (y[Spec==2,1)
cov (y[Spec==2,1,y[Spec==2,1)
colMeans (y[Spec==3,1)

cov (y[Spec==3,],y[Spec==3,1)

To compute the statistics for the forward stepwise discriminant analysis, use the
following.

rm(list = 1s())

beetles <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\Exampl2-2-2.dat",
sep="",col.names=c ("yl1l","y2", "y3","y4", "y5","y6","s"))
attach (beetles)

beetles

Spec=factor (s)

rl2=yl/y2

y=cbind(yl,y2,vy3,v4,y5,vy6,rl2)

#Step 1: Look at the F statistics for Spec
beat <- 1lm(rl2 ~ Spec)

anova (beat)

beat <- 1lm(yl =~ Spec)
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anova (beat)
beat <- 1lm(y2
anova (beat)
beat <- 1Im(y3
anova (beat)
beat <- 1lm(y4
anova (beat)
beat <- 1lm(y5
anova (beat)
beat <- 1Im(y6
anova (beat)

Spec)

Spec)

Spec)

Spec)

Spec)

#Step 2: Look at the

beat <- 1m(yl
anova (beat)
beat <- 1m(y2
anova (beat)
beat <- 1m(y3
anova (beat)
beat <- 1m(y4
anova (beat)
beat <- 1lm(y5
anova (beat)
beat <- 1lm(y®6
anova (beat)

rlz +

rl2 +

rlz +

rlz +

rl2 +

rlz +

#Step 3: Look at the

beat <- 1lm(yl
anova (beat)
beat <- 1lm(y2
anova (beat)
beat <- 1lm(y3
anova (beat)
beat <- 1lm(y5
anova (beat)
beat <- 1Im(y6
anova (beat)

rlz +

rlz +

rl2 +

rlz +

rlz +

Further steps follow similarly.
Constructing Table 12.5 (SL 10.4). Desired numbers are in Column “Wilks” and

row “Spec”.

rm(list = 1s{())

beetles <- read.table(

F statistics for Spec

Spec)

Spec)

Spec)

Spec)

Spec)

Spec)

F statistics for Spec

v4d +

vd +

y4 +

v4d +

v4 +

Spec)

Spec)

Spec)

Spec)

Spec)
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"C:\\E-drive\\Books\\LINMOD23\\DATA\\Exampl2-2-2.dat",

Sep=" ", COl .names=c ("yl ", "y2 ", "y3", "y4", "y5", "y6", "S

"))
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attach (beetles)

beetles

Spec=factor (s)

rl2=y1/y2
y=cbind(yl,vy2,vy3,v4,y5,y6,rl2)

# Enties from bottom up

# Relevant output is the Wilks statisic for Spec
ya=cbind(y2,y3,v4,vy5,y6,rl2)

beat <- 1lm(ya =~ Spec)

anova (beat,test = c("Wilks"))

ya=cbind(y2,y3,vy4,y5,rl2)
beat <- 1lm(ya =~ Spec)
anova (beat,test = c("Wilks"))

The remaining entries in the Table follow the same pattern except that the entry
for 1 comes from fitting the univariate one-way ANOVA on Spec with A,p; =
SSE /[SSE 4 SS(Spec)] and with the P value being that from testing Spec.

10.7 Linear Discrimination Coordinates

rm(list = 1ls())

resp <- read.table(

"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM10-2.dat",
sep="",col.names=c ("yyl", "yy2", "yy3","yy4", "Drug"))

attach (resp)

resp

D=factor (Drug)

library (MASS)

re <- lda(D ~

re

rep = predict (re)

rep

yyl+yy2+yy3+yy4)

Eigenvectors are are not unique.

The following commands transform the MASS
output to agree with the book.

It is not important to do this!

YAl = (-1.9245) «repS$x[,1]

YA2 = (=1.9245) xrep$x|[,2]

H o 4
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# Relabel X axis. Makes the plots look nicer.

Drr=c ("Placebo", "Placebo","Placebo", "Placebo", "Placebo",
"Placebo","Placebo", "Placebo", "Placebo","Placebo",

"A", "A", nAu, "A", nAu, "A", "A", "A", "A", "A",

"R WRNM NWRNM MRN MRN Mpn mpn mpn mpn npn)

Dr=factor (Drr)

# Create plots

#dotchart (YAl, groups=Dr)

par (mfrow=c(1l,2))

plot (Drug, YAl,xlab="Drug Index")

plot (Dr, YAl,ylab="YAl")

plot (Drug, YA2, xlab="Drug Index")

plot (Dr, YA2,ylab="YA1l")

par (mfrow=c(1l,1))

#dotchart (YA2, groups=Dr)

plot (YA2 [D==1],YAl[D==1]
xlab="YA2",ylab="YAl")

lines (YA2 [D==2],YAl[D==2],pch=16,type="p")

lines (YA2 [D==3], YAl [D==3],pch=22, type="p")

legend ("bottomright",c("Placebo", "A","B"),pch=c(3,16,22))

,pch=3,ylim=c(-9,8),xlim=c (-5, 8),

An alternate way to do the linear discrimination.

y=cbind(yyl,yy2,yy3,yy4)
#a matrix with individual dependent variables as columns.

Yy
re <- lda(y,D)

10.7.1 Discrimination plot

library(ellipse)

b3=-.8320503*d

b4=.5547002*d

A = matrix(c(1,1.2,1.2,2),2,2, dimnames = list (NULL, c("bl", "b2")))
E <- ellipse (A, centre = c(bl, b2), t = .95, npoints = 100)

El <- ellipse(A, centre = c (b3, b4), t = .95, npoints = 100)
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plot (E,type = "1’ ,ylim=c(-1.5,2),xlim=c(-2,1.5),xlab=expression(y[l]),
ylab=expression(y[2]),main="Discriminant Analysis")

lines (El,type="1", 1lty=1)

text ((b1l+.1), (b2-.15),expression(mu[l]), lwd=1l, cex=1)

lines (bl,b2,type="p",pch=16)

text ((b3+.1), (b4-.15),expression(mu[2]),lwd=1l, cex=1)

lines (b3,b4,type="p", pch=19)

10.7.2 Discrimination Coordinates

Copied from ANREG commands
Get H and E from a one-way manova. Perhaps from fitted.values or
residuals and df.residuals from Im or

b3=-.8320503*d

b4=.5547002*d

A =.5%x matrix(c(1,1.2,1.2,2),2,2, dimnames = list (NULL, c("bl", "b2")))
E <- ellipse (A, centre = c(bl, b2), t = .95, npoints = 100)

El <- ellipse (A, centre = c (b3, b4), t = .95, npoints = 100)

The following plots 20 random data points over the ellipse.

library (mvtnorm)

T= rmvnorm(20,c(bl,b2),A)

plot (T, type = "p’,ylim=c(-1.5,2),xlim=c(-2,1.5),xlab=expression(y[1l]),
ylab=expression(y[2]),main="Discriminant Analysis")

Tl= rmvnorm (20, c(b3,b4),A)

lines (T1, type="p", pch=4)

TT=rbind (T, T1)
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10.8 Linear Discrimination
10.9 Modified Binary Regression

10.9.1 Linearly Inseparable Groups: Logistic discrimination, LDA,
and SVM

First we produce ALM-III Figure 10.6. In the book I treated Carcinoma as the “1”
group and bilateral hyperplasia as the “0” group. In the code, that is reversed.

rm(list = 1s())

cush <- read.table(

"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM12-1c.DAT",
sep="",col.names=c ("Type", "Tetra", "Preg"))

attach (cush)

cush

TL = log(Tetra)

PL = log(Preq)

Tp=Type-2

Tp2=3-Type

# Tp2 is 1 for Bilat hyp and 0 for Carcin

ac2 = glm(Tp2 TL + PL, family=binomial)
summary (ac2)
anova (ac?2)
post=c (Type,ac2$fit, l1-ac2$fit)
PropProb=matrix (post, 15,3, dimnames =

list (NULL, c ("Group", "B","C")))
PropProb
# Without adjustment,
# logistic regression uses prior probabilities

# proportional to sample sizes.

# Estimated posterior probabilities
prior=.5 #prior probability for first group (coded as 1)
n=length (Tp)
nl=10 #number of observations in first group
n2=n-nl
PostOdds= (ac2$fit/ (1-ac2$fit))* (n2/nl) x (prior/ (1-prior))
PostProb=PostOdds/ (1+PostOdds)
posttab=c (Type, PostProb, 1-PostProb)
PosteriorTable=matrix (posttab, 15, 3, dimnames =

list (NULL, c ("Group","B","C")))
PosteriorTable
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# Plot of points and discrimination curves

xx2=c (8.3, 3.8, 3.9, 7.8, 9.1, 15.4, 7.7, 6.5, 5.7, 13.6)
yy2=c(l1.00, .20, .60, 1.20, .60, 3.60, 1.60, .40, .40, 1.60)
xx3=c(10.2, 9.2, 9.6, 53.8, 15.8)

yy3=c(6.40, 7.90, 3.10, 2.50, 7.60)

x2=10g (xx2)
x3=10g (xx3)

y2=log(yy2)
y3=log (yy3)
plot (x2,y2, pch=16, ylab="log(Pregnanetriol)",
ylim=c(-2,3),xlim=c(1,4.5),xlab="1og (Tetrahydrocortisone)")
points (x3, y3, pch=22)
legend ("bottomright",c("Bilateral Hyperplasia","Carcinoma"),
pch=c(16,22))

xl=seq(l,4.5,.01)

b=ac2$coef

y2=(b[1l]+log(n2/nl)+log(prior/ (l-prior))+b[2]*x1)/-b[3]
lines (x1,y2,type="1")

legend ("topright", c("Logistic", "LDA","SVM"), 1lty=c(1,2,5))

T=factor (Type)

library (MASS)

fit <- 1lda(T ~ TL + PL,prior=c(1/2,1/2))
fit

summary (fit)

pfit=predict (fit)

pfit

ct <- table(pfit$class, T)

ct

md=fitSmeans[1l, ]+fitSmeans[2, ]

bb=fit$scaling

yLDA= (log (prior/ (1-prior))—.5+sum(md*bb)+bb[1]xx1) /-bb[2]
lines (x1, yLDA, type="1", 1ty=2)

#install.packages ("el071")
library (el071)
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fit <- svm(T ~ TL + PL,kernel="linear", scale=F)

fitssv

fitS$Scoefs

fit$rho

x1l=seq(l,4.5,.005)

b=t (fit$SV) $+%fitScoefs

#solve < (x1,ySVM)’'b>=fitS$Srho

ySVM= (-fit$Srho+log (prior/ (l-prior))+b[1l]*x1)/-b[2]
# = (fitSrho — b[l]*x1)/b[2]

lines (x1,ySVM, type="1", 1ty=5)

10.9.1.1 ANREG-II, Subsection 21.9: Modified

ANREG-II, Subsection 21.9 uses a loglinear model to perform logistic discrimina-
tion for all three groups in the Cushing Syndrome data. To double check my earlier
logistic two-group regression work, I modified the ANREG-II code to handle just 2
groups: Bilateral hyperplasia and Carcinoma.

rm(list = 1s())

cush <- read.table("C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM12-1c.DAT",
sep="",col.names=c ("Syn", "Tetra", "Preg"))

attach (cush)

cush

#Create a 2 x 15 table of 0-1 entries,
#each row has 1’s for a different type of syndrome
j=rep(seq(l,15),2)
i=c(rep(1,15),rep(2,15))
Tet=c (Tetra, Tetra)
Pre=c (Preg,Preq)
y=c (Syn, Syn)
y[1:10]=1
y[11:15]
y[16:25]
y[26:30]
datal=c(y,1i, j, Tet,Pre)
datl=matrix (datal, 30,5, dimnames =

list (NULL,c("y", "i", "3j","Tet","Pre")))

0
0
1

datl

#Fit the log-linear model for logistic discrimination.
i=factor (i)
j=factor (J)
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lp=log (Pre)

lt=log (Tet)

1d <= glm(y = 1 + j + i:1t +i:1lp ,family = poisson)
ldp=summary (1d)

1ldp

anova (1d)

# Table 21.12

g=1d$fit

# Divide by sample sizes

pl=1d$fit[1:15]/10

p2=1d$fit[15:30]/5

# Produce table

estprob = c(Syn,pl,p2)

EstProb=matrix (estprob, 15, 3,dimnames =
list (NULL, c ("Group","B","C")))

EstProb

# Table 21.13 Proportional prior probabilities.
post = c(Syn,1ldsfit)
PropProb=matrix (post, 15,3, dimnames =

list (NULL, c ("Group", "B","C")))
PropProb

# Table 21.13 Equal prior probabilities.
p=pl+p2
ppl=pl/p
pp2=p2/p
post = c(Syn,ppl,pp2)
EgProb=matrix (post, 15, 3,dimnames =

list (NULL, c("Group", "B","C")))
EgProb

10.9.2 Quadratically Separable Groups: Logistic discrimination,

ODA, and SVM

We now produce ALM-III Figures 10.7 and 10.8. The only difference is in the choice
of the tuning parameter for SVM and the SVM fits are unchanged from ALM-III
Figures 10.3 and This begins a four part program. It creates the data plot and draws
the QDA discrimination lines. First I borrowed the plot of the data points from
ANREG-II and added a legend
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10.9.2.1 Enter and plot data

Entering the data:

xx2=c (8 3.8, 3.9, 7.8, 9.1, 15.4, 7.7, 6.5, 5.7, 13.6)
yy2=c(l OO .20, .60, 1.20, .60, 3.60, 1.60, .40, .40, 1.60)
xx3=c(10.2, 9.2, 9.6, 53.8, 15.8)
yy3=c(6.40, 7.90, 3.10, 2.50, 7.60)
x2=10g (xx2)
x3=10g (xx3)
y2=log(yy2)
y3=log(yy3)
plot (x2,y2, pch=16, ylab="log(Pregnanetriol)"
ylim=c(-2,3),xlim=c(1,4.5),xlab="1og(Tetrahydrocortisone)")
points (x3, y3, pch=22)
legend ("bottomright",c("Bilateral Hyperplasia","Carcinoma"),
pch=c(16,22))
legend ("topleft", c("Logistic", "QDA", "SVM"), 1lty=c(1,2,5))

Reading in the data:

m(list = 1s())

cush <- read.table(

"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM12-1c.DAT",
sep="", col.names=c ("Type", "Tetra", "Preg"))

attach (cush)

cush

==2], PL[T==2], pch=16, ylab="log(Pregnanetriol)"
ylim=c(-2,3),xlim=c(1,4.5),xlab="1og(Tetrahydrocortisone)")
points (TL[T==3], PL[T==3], pch=22)
legend ("bottomright",c("Bilateral Hyperplasia","Carcinoma"),
pch=c(16,22))
legend ("topleft",c("Logistic", "QDA","SVM"),1lty=c(1,2,5))

10.9.2.2 Quadratic Logistic Discrimination

TL2=TL*TL

PL2=PL*PL

TPL=PL*TL

Tp=Type-2

Tp2=3-Type

# Tp2 is 1 for Bilat hyp and 0 for Carcin
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ac2 = glm(Tp2 ~ TL + PL + TL2 + PL2 + TPL, family=binomial)
summary (ac2)
anova (ac2)
post=c (Type,ac2s$fit, 1-ac2S$fit)
PropProb=matrix (post, 15, 3,dimnames =
list (NULL, c ("Group", "B","C")))
PropProb
#Without adjustment, logistic regression uses prior probabilities
#proportional to sample sizes.

# Estimated posterior probabilities
prior=.5 #prior probability for first group (coded as 1)
n=length (Tp)
nl=10 #number of observations in first group
n2=n-nl
# Correct for sample sizes
PostOdds=(ac2$fit/ (1-ac2$fit))* (n2/nl) x (prior/ (1-prior))
PostProb=PostOdds/ (1+PostOdds)
posttab=c (Type, PostProb, 1-PostProb)
PosteriorTable=matrix (posttab,15,3,dimnames =

list (NULL, c ("Group", "B","C")))
PosteriorTable

#solve quadratic equation

x1l=seq(l,4.5,.1)

bb=ac2$coef

prior=.5

c=log (n2/nl)+log(prior/ (1l-prior))+bb[1]+bb[2]*x1+bb[4]*x1"2
b= bb[3] + bb[6]*x1

a=bb[5]

delta=b"2-4xaxc

yLR = (-b+sqgrt (delta))/ (2*a)
yLR2 = (-b-sqgrt (delta))/ (2*a)
lines (x1, yLR, type="1", 1ty=1)

(
lines (x1,yLR2, type="1", 1lty=1)

10.9.2.3 Quadratic Discriminant Analysis

This is a continuation of the previous program.

T=factor (Type)
library (MASS)
fit <- gda(T
fit

TL + PL,prior=c(.5,.5))
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summary (fit)
pfit=predict (fit)
pfit

#simplify notation.

# 01 is a nonsymmetric square root of
# the sample covariance matrix in group i
mul=fit$means[1, ]

mu2=fitSmeans([2, ]

Ql=fitS$scalingl[,,1]
Q2=fit$scalingl,, 2]

01=t (Q1)

02=t (Q2)

QIml=Q1%*%mul

Q2m2=0Q2%*%smu?2

# define and solve quadratic equation.
# add curves to previous plot
prior=.5

c=log(prior/ (l-prior)) —(fit$ldet[2] - fit$ldet[1l]) +
5% (sum (Q2m2+Q2m2) —sum (QIml+xQlml) ) +
(sum (QIml1*Q1[,1]) — sum(Q2m2*Q2[,1]1))*x1 +
Sx (sum(Q2[,11%Q2[,1])— sum(QLl[,1]xQ1[,1]))*x1"2
b= (sum(Q1lmlxQ1[,2]) - sum(Q2m2*Q2[,2])) +
(sum (Q2[,1]1xQ2[,2])— sum(QLl[,1]xQ1[,2]))*x1
a=.5x (sum(Q2[,2]x02[,2]) - sum(Ql[,2]*Q1[,2]))

delta=b " 2-4xaxc

yQDA = (-b+sqgrt (delta))/ (2*a)

yQDA2 = (-b-sgrt (delta))/ (2+*a)
lines (x1,yQDA, type="1", 1lty=2)

lines (x1, yOQDA2, type="1", 1lty=2)

10.9.2.4 Quadratic SVM

This is a continuation of the program for . Typically you would want to have
scale=T in svm, which is the default. This is exactly the same SVM program
as given earlier.

#install.packages ("el071")

library(el071)

T=factor (Type)

# define SVM and display outputs

fit <- svm(T ~ TL + PL,kernel="polynomial",degree=2,
gamma=1, coef0=1, scale=F)
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# Next line reduces tuning parameter, i.e., increases cost.
#fit <- svm(T ~ TL + PL,kernel="polynomial",degree=2,

gamma=1, coef0=1, scale=F, cost=100)
fit$sv
fitS$Scoefs
fit$rho
fit$fitted # shows the groups that each case was allocated to
# fitted -establishes that my parabolic solution is reasonable.
# predict (fit)

# define and solve quadratic equation.
# add curves to previous plot
# must solve matrix equation that involves inner products
x1l=seq(l,4.5,.01)
w=fit$coefs
c=—fitSrho + sum(w)+2+sum(wxfit$SSV[,1]) »x1+
sum (wx (£1t$SV[,1]) "2) *x1"2
b=2+sum (wx£it$SV[,2]) + 2xsum(wxfitSSV[,1]+r£itS$SSVI[,2]) *x1
a=sum (wx (£1it$SV[,2]) "2)

delta=b"2-4xaxc

ySVM = (-b+sqgrt (delta))/ (2+*a)
ySVM2 = (-b-sqgrt (delta))/ (2+*a)
lines (x1,ySVM, type="1", 1ty=5)
lines (x1,ySVM2, type="1", 1ty=5)

# A plot that svm provides
plot (fit, cush)



Chapter 11
Dimension Reduction

https://cran.r-project.org/web/views/Multivariate.html con-
tains an overview of R procedures for multivariate analysis.

11.1 Theory

This code is for showing an ellipse along with its major and minor axes. While
the code is correct, you have to futz with the axes lengths in R or latex to get the
orthogonal axes to actually look perpendicular. The main thing is that that in R,
since the plot appears as a square, the lengths of the plotted x and y axes have to be
the same to get the vectors to look approximately orthogonal. However, latex also
allows you to stretch the axes, so you again need the figure’s height and width to be
the same. But even then, if you want the axes to really look orthogonal, you need to
futz a bit.

library(ellipse)

rm(list = 1ls())

bl=1

b2=2

A = matrix(c(1,.9,.9,2),2,2, dimnames=list (NULL, c("b1l","b2")))
A

E <- ellipse(A,centre = c(bl, b2),t=.95, npoints=100)

b=seqg(0,1.52,.01)
x=1+.507128+b
y=2+.8618708%b
bg=seq(-.65,0, .01)
x1=1+(.8618708+*bq)
y1=2-(.507128+*bq)

K=5
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bbl=1+(.8618708%K)

bb2=2-(.507128%K)

AA = matrix(c(1,.9,.9,2),2,2, dimnames=1list (NULL, c("bbl", "bb2")))
AA

EE <- ellipse (AA,centre = c(bbl, bb2),t=.95, npoints=100)

bb=seq(0,1.52,.01)
x=1+.507128+bb
y=2+.8618708«*bb
bb=seq(-.65,0,.01)
x1=1+(.8618708+*bb)
y1=2-(.507128+bb)

plot (E,type = "1’,ylim=c(.5,3.5),xlim=c(-.5,2.5),
xlab=expression(y[1l]),

ylab=expression(y[2]),main="Principal Components")
text ((b1+.01), (b2-.1),expression(mu), lwd=1l, cex=1)
lines (EE, type="1", 1ty=1)

lines (b1, b2, type="p",pch=19)

lines (x,vy,type="1", 1ty=1)

lines (x1,yl,type="1",1ty=1)

text ((b1l+.5), (b2+.53),expression(all]), lwd=1, cex=1)
text ((b1l-.3), (b2+.12),expression(al2]),1lwd=1l,cex=1)

# The following plots 20 random data points over the ellipse.
library (mvtnorm)

T= rmvnorm(20,c(1,2),A)

lines(T[,1]1,T[,2],type="p")

11.1.1 Normal Density Plot for PA-V

#install.packages ("ellipse")
#Do this only once on your computer
library(ellipse)

bl=1

b2=2

A = matrix(c(1,.9,.9,2),2,2, dimnames = list (NULL, c("bl", "b2")))
A

E <- ellipse(A,centre = c(bl, b2),t=.95,npoints = 100)

El <- ellipse(A,centre c(bl, b2),t=.5 ,npoints 100)



11.2 Sample Principal Components
E2 <- ellipse(A,centre = c(bl, b2),t=.75,npoints =

plot (E,type = "1’ ,ylim=c(.5,3.5),x1lim=c(0,2),
xlab=expression(y[1l]),
ylab=expression(y[2]),main="Normal Density")
text ((b1+.01), (b2-.1),expression (mu), lwd=1, cex=1)
lines (E1l, type="1", 1ty=1)
lines (E2, type="1", 1ty=1)
lines (bl,b2,type="p", 1lty=3)

11.2 Sample Principal Components

95

100)

There is a section of commands in the R code for ANREG-II for doing principal

component regression.

There are three data files available for the turtle shell data: combined, females,

and males. This example uses the males.

rm(list = 1s())
turtm <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM10-3m.dat",

Sep=" ", COl .names=c ("L", "W", "H") )
attach (turtm)
turtm

x3=10"(3/2) x1log (L)
x2=10"(3/2) *1log (W)
x1=10"(3/2) x1log (H)

n=length (L)

X = matrix(c(x1l,x2,x3),n,3)

S=var (X)

S

R=cor (X)

R

# two equivalent ways of specifying the data
fit <- prcomp(~ x1+x2+x3, scale=F)
summary (fit)

fitSrotation

fit <- prcomp (X, scale=F)

summary (fit)

fitSrotation

e <- eigen(S, symmetric=TRUE)
e$values
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e$vectors
PC <- X %*% eS$Svec #Matrix of principal component scores

11.2.1 Using Principal Components

A = matrix(c(1,.9,.9,2),2,2, dimnames=list (NULL, c("b1l","b2")))
A
E <- ellipse(A,centre = c(bl, b2),t=.95, npoints=100)

b=seqg(0,1.52,.01)
x=1+.507128xb
y=2+.8618708+*b
bg=seqg(-.65,0, .01)
x1=1+(.8618708xbq)
y1=2-(.507128+*bq)

K=-.8

bbl=1+(.507128+K)

bb2=2-(.8618708*K)

AA = matrix(c(1l,.9,.9,2),2,2, dimnames=1list (NULL, c("bbl","bb2")))
AA

EE <- ellipse(AA,centre = c(bbl, bb2),t=.95, npoints=100)

bb=seq(0,1.52,.01)
x=1+.507128+bb
y=2+.8618708+*bb
bb=seq(-.65,0,.01)
x1=1+(.8618708*bb)
y1=2-(.507128«bb)

plot (E,type = "1’,ylim=c(0,5),xlim=c(-1,2.5),
xlab=expression(y[1l]),
ylab=expression(y[2]),main="Principal Components")
lines (bl,b2,type="p",pch=19)
text ((b1+.02), (b2-.15),expression(mu[l]),lwd=1l, cex=1)
lines (EE, type="1", 1ty=1)
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lines (bbl,bb2, type="p", pch=19)
text ((bbl-.1), (bb2),expression(mu[2]), lwd=1, cex=1)

11.2.2 Kernel PCA

11.3 Multidimensional Scaling

You have some measure of the distances between items and you want to find where
these points are located relative to one another. We are going to reconsider the school
test data on which we did factor analysis. We don’t have the data on the 225 students
but we do have the correlation matrix which is something like the opposite of a
distance matrix. Correlations are large when things are close and small when they
are far away.

11.3.1 Classical MDS

First we do the examples in the book. Then do an extra example. Then do other
forms of multidimensional scaling.
Example 11.3.1

rm(list = 1s{())
cush <-read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM12-1.DAT",

sep="",col.names=c ("Syn", "Tetra", "Preg"))
attach (cush)
cush

ID = list ("al","a2","a3","a4","ab","a6",

"b1l", "b2","b3", "b4", "b5", "be", "b7", "b8", "bO", "b10",
"cl","c2","c3","c4","c5")

TL=log (Tetra)

PL=1log (Preq)

CS=cbind (TL,PL)
CSd=dist (CS) # default is

CSfit <- cmdscale(CSd,eig=TRUE, k=2)
Csfit

x <—- CSfitS$points|[,1]
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y <- CSfit$points([, 2]

plot (y, x, xlab="Coordinate 2", ylab="Coordinate 1",
main="Classical Multidimensional Scaling", type="n")

text (y, x, labels = ID, cex=.9)

Example 11.3.2

rm(list = 1ls())

ID = list("Gaelic", "English", "History",
"Arithmetic", "Algebra", "Geometry")

= matrix(c(1.000,0.439,0.410,0.288,0.329,0.248,

.439,1.000,0.351,0.354,0.320,0.329,

.410,0.351,1.000,0.164,0.190,0.181,

.288,0.354,0.164,1.000,0.595,0.470,

.329,0.320,0.190,0.595,1.000,0.4¢64,

0.248,0.329,0.181,0.470,0.464,1.000),6,6)

#R=-10g (R)

R2=R*R

D=1-R

D2=1-R2

par (mfrow=c(2,1))

Dfit <- cmdscale(D,eig=TRUE, k=2)

Dfit

x <—- DfitS$points[,1]

y <- DfitS$points(, 2]

plot (x, y, xlab="Coordinate 1", ylab="Coordinate 2",

xlim=c(-.46, .35),ylim=c(-.26, .26),

main="CMDS: Correlations", type="n")

text (x, y, labels = ID, cex=.9)

o oo ow

D2fit <- cmdscale (D2,eig=TRUE, k=2)

D2fit

x2 <—- D2fit$points[, 1]

y2 <- D2fit$points[, 2]

plot (x2, y2, xlab="Coordinate 1", ylab="Coordinate 2",
xlim=c(-.4, .46),ylim=c(-.46, .46),

main="CMDS: Squared Correlations", type="n")

text (x2, y2, labels = ID, cex=.9)

11.3.1.1 Application to Heart Rate Data

Find distances from MANOVA heart rate data and plot CMDS coordinates.

rm(list = 1s{())
resp <- read.table(
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"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM10-2.dat",
sep="",col.names=c("Y1l","yY2","y3","y4", "Drug"))

attach (resp)

resp

Y=cbind(Y1l,Y2,Y3,Y4)

ID=seq (1, 30)
Yd=dist (Y) # default is

Yfit <- cmdscale(Yd,eig=TRUE, k=2) # k is the number of dim

Yfit

x <- Yfit$points[, 1]

y <- YfitS$points[, 2]

plot (x, y, xlab="Coordinate 1", ylab="Coordinate 2",
main="Metric MDS", type="n")

text (x, y, labels = ID, cex=.9)

Metric MDS
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Fig. 11.1 Multidimensional Scaling: Heart Data.
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11.3.2 Nonmetric MDS

This is not discussed in the text!

For cases in which “distance” is nothing more than an ordering. Generally, a
building 10 miles away is twice as far away as a building that is 5 miles away. A
true distance measure has that property, but often we want to apply multidimen-
sional scaling to “discrepencies” rather than distances. The program below uses the
Classical solution as a starting point.

Nonmetric MDS

N~ a1l c2 s
cl
b6 c4
P c3
bio
b7

o b4bl
; a2 as
£ bs
=
g b3
ST bo b8

a6
b2
o -
a3
o™ _|
1
a4
T T T T T T T
—-1.5 —-1.0 —0.5 0.0 0.5 1.0 1.5

Coordinate 2

Fig. 11.2 Nonmetric Multidimensional Scaling: Cushing Syndrome Data.

rm(list = 1ls())

cush <-

read.table ("C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM12-1.DAT",
sep="",col.names=c ("Syn", "Tetra", "Preg"))

attach (cush)

cush

ID = list("alll,"aZH,"a3","a4","a5","a6",

"bl", "b2", "b3"’ "b4", "b5", "b6", "b7 "’ "b8", "b9", "blO",
"Cl","Cz","C3","C4","C5")

TL=log (Tetra)

PL=1log (Preq)

CS=cbind (TL, PL)
CSd=dist (CS) # default is
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library (MASS)
CSfit <- 1soMDS (CSd,k=2) # k is the number of dim
Csfit

x <— CSfitS$points|[,1]

y <- CSsfitS$points([, 2]

plot (y, —-x, xlab="Coordinate 2", ylab="-Coordinate 1",
main="Nonmetric MDS", type="n")

text (y, —-x, labels = ID, cex=.9)

rm(list = 1s())

resp <- read.table(

"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM10-2.dat",
sep="",col.names=c("Y1l","Y2","y3","y4", "Drug"))

attach (resp)

resp

Y=cbind (Y1,Y2,Y3,Y4)

ID=seq (1, 30)

Yd=dist (Y) # default is

library (MASS)

Yfit <- 1soMDS (Yd,k=2) # k is the number of dim

Yfit

x <— YfitS$points[,1]

y <— Yfit$points|[,2]

plot (x, y, xlab="Coordinate 1", ylab="Coordinate 2",
main="Nonmetric MDS", type="n")

text (x, y, labels = ID, cex=.9)

11.3.3 Example 11.3.2

This is our factor analysis example on correlations between 6 tests. All we have is a
correlation matrix.

1.000 0.439 0.410 0.288 0.329 0.248
0.439 1.000 0.351 0.354 0.320 0.329
0.410 0.351 1.000 0.164 0.190 0.181
0.288 0.354 0.164 1.000 0.595 0.470
0.329 0.320 0.190 0.595 1.000 0.464
0.248 0.329 0.181 0.470 0.464 1.000
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Nonmetric MDS
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Fig. 11.3 Nonmetric Multidimensional Scaling: Heart Data.

Not looking at how far apart the 225 people are, looking at how far apart the 6
tests are. Y would be 6 x 225 with 225 objects measured on every item of interest.
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Fig. 11.4 Multidimensional Scaling: Test Data, D = 1 — R.
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11.3.3.1 Code

CMDS

rm(list = 1s())

ID = list ("Gaelic", "English", "History",
"Arithmetic", "Algebra", "Geometry")

= matrix(c(1.000,0.439,0.410,0.288,0.329,0.248,

.439,1.000,0.351,0.354,0.320,0.329,

.410,0.351,1.000,0.164,0.190,0.181,

.288,0.354,0.164,1.000,0.595,0.470,

.329,0.320,0.190,0.595,1.000,0.4064,

.248,0.329,0.181,0.470,0.464,1.000),6,6)

#R=-10g (R)

R2=R*R

D=1-R

D2=1-R2

par (mfrow=c(2,1))

Dfit <- cmdscale(D,eig=TRUE, k=2)

Dfit

x <— Dfit$points[, 1]

y <- DfitS$points][, 2]

plot (x, y, xlab="Coordinate 1", ylab="Coordinate 2",

xlim=c(-.46, .35),ylim=c(-.26, .26),

main="CMDS: Correlations", type="n")

text (x, y, labels = ID, cex=.9)

coocoocooow

D2fit <- cmdscale (D2,eig=TRUE, k=2)

D2fit

x2 <— D2fitS$points[, 1]

y2 <- D2fit$points], 2]

plot (x2, y2, xlab="Coordinate 1", ylab="Coordinate 2",
xlim=c(-.4, .46),ylim=c(-.46, .46),

main="CMDS: Squared Correlations", type="n")

text (x2, y2, labels = ID, cex=.9)

Other approaches.
library (MASS)

Rfit <- isoMDS(R,k=2) # k is the number of dim
Rfit

x <— RfitS$points[,1]
y <- Rfit$points][, 2]
plot (x, y, xlab="Coordinate 1", ylab="Coordinate 2",
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main="Nonmetric MDS", type="n")
text (x, y, labels = ID, cex=.9)

11.4 Data Compression

Singular value decomposition as data compression.

Reproduce a black and white photo gray scale matrix from singular value decom-
position.

It looks like the twitter.png file below no longer exists so I have substituted
one of my own. My .png files have much larger dimensions. His seem to be 28 x
28 x 4. Also, I have had no luck with downloading my . png files from the internet
(as indicated in the program) and getting them recognized. If I read them from my
hard drive, I have no problem.

No idea if any of this works. I borrowed it from Dr. Achim Zeileis but I no
longer remember how or when. Achim Zeileis, Department of Statistics, Faculty
of Economics and Statistics, Universitdt Innsbruck, Austria. https://eeecon.
uibk.ac.at/~zeileis/

download.file (
#"http://www.greenmountaindiapers.com/skin/common_files/
#modules/Socialize/images/twitter.png",destfile = "twitter.png")
"http://www.stat.unm.edu/ fletcher/ml0.png", destfile="ml0.png")
library ("png")

library ("colorspace")

#x <—- readPNG("twitter.png")

x <— readPNG("mlO0.png")

dim (x)

## [1] 28 28 4

#Now we can transform this into various other formats:

#y is a vector of hex character strings,

#specifying colors in R. yg is the corresponding

#desaturated color (again as hex character)

#with grayscale only. yn is the numeric amount #of gray.

#A1l three objects are arranged into 28 x 28 matrices at the end
y <- rgb(x[,,11, x[,,2]1, xI[,,3], alpha = x[,,41])

yg <- desaturate (y)

yn <- col2rgb(yg) [1, ]1/255

dim(y) <- dim(yg) <- dim(yn) <- dim(x) [1:2]

I hope that at least one of these versions is what you are looking for.
#To check the pixel matrices I have written a

#small convenience function for visualization:


https://eeecon.uibk.ac.at/~zeileis/
https://eeecon.uibk.ac.at/~zeileis/
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pixmatplot <- function (x, ...) {
d <= dim(x)
xcoord <- t(expand.grid(l:d[1], 1:d[2]))
xcoord <- t (xcoord/d)

par (mar = rep(l, 4))
plot (0, 0, type = "n", xlab = "", ylab = "", axes = FALSE,
xlim = c¢(0, 1), ylim = c(0, 1), ...)

rect (xcoord[, 2L] - 1/d[2L], 1 - (xcoord[, 1L] - 1/d[1Ll),

xcoord[, 2L], 1 - xcoord[, 1lL], col = x, border = "transparent")

}

#For illustration let’s look at:
pixmatplot (y)
pixmatplot (yqg)

The following is an R package for image processing: https://dahtah.
github.io/imager/imager.html.

11.5 Factor Analysis

An overview of R procedures for multivariate analysis is available at https://
cran.r-project.org/web/views/Multivariate.html.

11.5.1 Terminology and Applications

This section uses only the base function factanal. A subsection of the next sec-
tion uses the facilities from the library psych.

The example presents maximum likelihood estimation from correlation matrix
(rather than raw data). Unrotated factor loadings.

R = matrix(c(1.000,0.439,0.410,0.288,0.329,0.24s8,
0.439,1.000,0.351,0.354,0.320,0.329,
.410,0.351,1.000,0.164,0.190,0.181,
.288,0.354,0.164,1.000,0.595,0.470,
.329,0.320,0.190,0.595,1.000,0.464,
.248,0.329,0.181,0.470,0.464,1.000),6,6)

test=factanal (covmat=R, n.obs=220, factors=2, rotation="none")
test

testS$Sunique

test$loadings([, 1:2]

o O O o

IMlustration of maximum likelihood estimation from raw data: male turtle shell
data with one factor. Not in book.


https://dahtah.github.io/imager/imager.html
https://dahtah.github.io/imager/imager.html
https://cran.r-project.org/web/views/Multivariate.html
https://cran.r-project.org/web/views/Multivariate.html
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rm(list = 1ls())

turtm <-

read.table ("C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM10-3m.dat",
sep="",col.names=c ("L","W","H"))

attach (turtm)

turtm

x3=10"(3/2) *1log (L)

x2=10"(3/2) *1log (W)

x1=10"(3/2) x1log (H)

n=length (L)

X = matrix(c(x1l,x2,x3),n,3)
test=factanal (X, factors=1, rotation="none")
test=factanal ("x1+x2+x3, factors=1, rotation="none")

11.5.2 Maximum Likelihood Theory

The following illustrates the varimax rotation and the three plots for the “test” data.
factanal does not do quartimax, but the next subsubsection uses a different pro-
gram that allows quartimax rotation.

plot (test$loadings([,1l],test$loadings(, 2],
xlim=c(-1,1),ylim=c(-1,1),
type="n", xlab="Factor 1",ylab="Factor 2")
x=seq(-1,1,.01)
lines (x, 0xx)
lines (0*x, x)
text (test$loadings([,1],testS$loadings(, 2],
labels=c(1,2,3,4,5,6))

test=factanal (covmat=R, n.obs=220, factors=2,
rotation="varimax")

# wvarimax is the default rotation

test

test$unique

test$loadings[, 1:2]

plot (test$loadings([,1l],test$loadings(, 2],
xlim=c(-1,1),ylim=c(-1,1),
type="n", xlab="Factor 1",ylab="Factor 2")

lines (x, 0xx)

lines (0*x, x)

text (test$loadings[,1l],test$loadings(, 2],
labels=c(1,2,3,4,5,6))
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# I read the quartimax loadings from the book
# factanal does not do quartimax
f1=c(0.260,0.344,0.111,0.777,0.731,0.580)
f2=c(0.650,0.536,0.587,0.139,0.184,0.188)
test$loadings=matrix (c(fl,f2),6,2)
test$loadings
plot (test$loadings([,1l],test$loadings(, 2],
xlim=c(-1,1),ylim=c(-1,1),
type="n", xlab="Factor 1",ylab="Factor 2")
lines (x, 0xx)
lines (0*x, x)
text (test$loadings[,1l],test$loadings(, 2],
labels=c(1,2,3,4,5,6))

The above code to plot two factors will not work on the turtle data because with
only g = 3 variables, factanal will only fit one factor.

11.5.2.1 Psych-ed out

Everything done thus far and more can be done using the library psych. To get the
quartimax rotation, another library is also needed.

R = matrix(c(1.000,0.439,0.410,0.288,0.329,0.248,
.439,1.000,0.351,0.354,0.320,0.329,
.410,0.351,1.000,0.164,0.190,0.181,
.288,0.354,0.164,1.000,0.595,0.470,
.329,0.320,0.190,0.595,1.000,0.464,
.248,0.329,0.181,0.470,0.464,1.000),6,6)

O O O O o

#install.packages ("psych")
library (psych)

#install.packages ("GPArotation")
library (GPArotation)

fit <- fa(R, fm="ml",nfactors=2,n.0bs=220,
rotate="none")

fit

fit <- fa(R, fm="ml",nfactors=2,n.0bs=220,
rotate="varimax")

fit

fit <- fa(R, fm="ml",nfactors=2,n.0bs=220,
rotate="quartimax")

fit
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fit <- fa(R, fm="pa",nfactors=2, rotate="none")

11.5.3 ??

Still need to check these out.

# Determine Number of Factors to Extract

library (nFactors)

ev <- eigen(cor (mydata)) # get eigenvalues

ap <- parallel (subject=nrow (mydata), var=ncol (mydata),
rep=100, cent=.05)

nS <- nScree (x=ev$values, aparallel=ap$eigen$Sgevpea)

plotnScree (nS)

# PCA Variable Factor Map
library (FactoMineR)
result <- PCA(mydata) # graphs generated automatically
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Clustering

12.1 Pointwise Distance Measures

For an n x ¢ data matrix ¥, compute Euclidean distances using dist (Y).L! dis-
tances are obtained from dist (Y, "manhattan"). L? distances are obtained
using for, say, p = 1.5 the command dist (Y, "minkowski", p=1.5).L" dis-
tances are obtained using "maximum". A couple of other options are also available.
Apparently the library ecodist computes Mahalanobis squared distances with
distance (Y, "mahal"). The dist command creates an object of the dist
type that is required for input into the hierarchical clustering program hclust used
in Section 2.

In the code below I use the Cushing’s syndrome data to illustrate getting the Eu-
clidean distance matrix (CSd), the L! distances, and also construct the Mahalanobis
squared distance matrix (D) using the command mahalanobis and then turn D
into a dist object.

rm(list = 1s())

cush <-

read.table ("C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM12-1.DAT",
sep="",col.names=c ("Syn", "Tetra", "Preg"))

attach (cush)

cush

ID = list("al","a2","a3","a4","ab5","ao6",

"b1", "b2", "b3", "b4", "b5", "be", "b7", "b8", "bo", "b10",
"cl","c2","c3","c4","c5")

TL=log (Tetra)

PL=1log (Preq)

# Euclidean distance matrix
CS=cbind (TL,PL)

CSd=dist (CS)

Ccsd

109
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dist (CS, "manhattan")

# setup for computing Mahal
n=length (TL)

S=cov (CS)

# create dummy D matrix
d=seq(l,n=*n)

D=matrix (d,n)

# compute Mahal sqg. distance matrix

for(i in 1:n)

{

D[i,] = mahalanobis(CS,CS[i,],9)
}

# Turn distance matrix into R object of class

D=as.dist (D)

12 Clustering

"dist"

Alternatively, to get Mahalanobis, I think that you can, (1) find s = o0, (2
transform the data matrix Y into YQ, and (3) compute Euclidean distances on the

transformed matrix. To find a matrix Q you can use
dc <- svd(9)
phi <- dc$d
D <- diag(sqgrt (1/phi))
P <- dcSu

12.2 Hierarchical Cluster Analysis

Having found the distance matrix as in the previous section, the actual clustering
is done in hclust. Specifying the linkage method is straightforward except that
R seems to think that the old ward.D is wrong and the new version ward.D2
is correct. According to Murtagh and Legendre (2014), it is merely that ward.D
requires inputs that are Euclidean squared distances while ward.D2 takes inputs

that are Euclidean distances.

par (mfrow=c(2,1))

CS1 =hclust (CSd, method = "single")

plot (CS1, labels=ID, main=NULL)

groups <- cutree(CS1l, k=5) # cut tree into 5 clusters

rect.hclust (CS1, k=5, border="red")

CS1 =hclust (CSd, method = "complete")

plot (CS1, labels=ID, main=NULL)
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groups <- cutree(CSl, k=5) # cut tree into 5 clusters
rect.hclust (CS1, k=5, border="red")

par (mfrow=c(2,1))

CS1 =hclust (CSd, method = "average")

plot (CS1, labels=ID, main=NULL)

groups <- cutree(CS1l, k=5) # cut tree into 5 clusters
rect.hclust (CS1, k=5, border="red")

CS1 =hclust (CSd, method = "centroid")

plot (CS1, labels=ID, main=NULL)

groups <- cutree(CS1l, k=5) # cut tree into 5 clusters
rect.hclust (CS1, k=5, border="red")

# These 2 Ward methods should be the same

par (mfrow=c(2,1))

CS1 =hclust (CSd, method = "ward.D2")

plot (CS1, labels=ID)

groups <- cutree(CS1l, k=5) # cut tree into 5 clusters
rect.hclust (CS1, k=5, border="red")

CS1 =hclust (CSd"2, method = "ward.D")

plot (CS1, labels=ID)

groups <- cutree(CS1l, k=5) # cut tree into 5 clusters
rect.hclust (CS1, k=5, border="red")

par (mfrow=c(1l,1))

# Inputing distances to ward.d gives Ward

# based on root distances

CS1 =hclust (CSd, method = "ward.D")

plot (CS1, labels=ID)

groups <- cutree(CS1l, k=5) # cut tree into 5 clusters
rect.hclust (CS1, k=5, border="red")

12.3 K-means Clustering

The kmeans program uses the raw data as input rather than the distance matrix
and seems to only use Euclidean distances. It might make sense to scale the data
before apply the algorithm or even transform it so that Euclidean distances on the
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transformed data are Mahalanobis distances on the original data, see the end of
Section 1.

rm(list = 1s())

cush <-

read.table ("C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM12-1.DAT",
sep="",col.names=c ("Syn", "Tetra", "Preg"))

attach (cush)

cush

ID = list("alll,"aZH,"a3","a4","a5","a6",

"bl", "b2", "b3"’ "b4", "b5"’ "b6", "b7 ", "b8", "b9", HblO",
"clll,lvczll’ "C3","C4", "c5|l)

TL=log (Tetra)

PL=1log (Preq)

CS=cbind (TL,PL)

fit <- kmeans(CS, 5)

# get cluster means

aggregate (CS,by=1list (fit$cluster), FUN=mean)

# append cluster assignment

Clust=fit$cluster

data.frame (cbind(TL,PL, ID,Clust))

data.frame (cbind (ID[order (Clust) ], Clust [order (Clust)]))

The default algorithm is algorithm = "Hartigan-Wong". Other choices
are "MacQueen", "Lloyd", "Forgy" although the last two names define the
same algorithm.

12.4 Spectral Clustering

Cluster the principal components.



Appendix A
Matrices

Commands for matrix algebra where given at the beginning of Chapter 2.

A.8 Eigenvalues; Eigenvectors

Eigenvalues and eigenvectors were discussed in Appendix Section A.8. We now
perform principal component regression using eigen.

Z=coleman|[,2:6] #Define predictor matrix from data frame
e <- eilgen(cor(Z),symmetric=TRUE)

eSvalues

eSvectors

Zs <- scale(Z) #Centers and scales the matrix %

PC <- Zs %*% eSvec #Matrix of principal component scores

co <- Im(y = PC)

cop = summary (co)

cop

anova (co)

Proposition A.8.2 presented the singular value decomposition. The presentation
was for a matrix A that was symmetric however the R function works for nonsym-
metric matrices. When A is symmetric, P = PP below. The following code repro-
duces Example A.8.3.

A = matrix(c(3,1,-1,1,3,-1,-1,-1,5),ncol=3)

dc <= svd(A)
phi <- dcsd

phi

D <- diag(phi)
P <- dcSu

P

PP <- dc$v

113
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PP
P %+«% D %x% t(PP) # A =P D P/
t (PP) %x% A %+«% P # D =P’ AP

As in the book, the eigenvalues in phi are 6, 3, 2. The columns of P and PP are
decimal representations of those in the book.
The command svd also works for nonsquare matrices.



Appendix B
Three-Factor ANOVA

The following code shows how to fit a variety of the models used in this section. At
the end, for the full interaction model it also includes output from stepAIC. The
stepAIC output drops the three-factor interaction, then it checks to drop a two-factor
interaction, then with only one two-factor in the model it checks to see if it can drop
that two-factor or the main effect not in the two-factor at which point it stops.

scheffe <- read.table("C:\\E-drive\\Books\\ANREG2\\newdata\\tabl6-1.dat",
sep="",col.names=c("y","a","b","c"))

attach (scheffe)

scheffe

summary (scheffe)

#Summary tables
A=factor (a)
B=factor (b)
C=factor (c)

b2=b*b

sabc <= Im(y =~ A:B:C)
coef=summary (sabc)
coef

anova (sabc)

sabc <= Im(y =~ AxBx*C)
#coef=summary (sabc)
#coef

anova (sabc)

sabc <- Im(y ~ A:B + C-1)
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#coef=summary (sabc)
#coef
anova (sabc)

sabc <= Im(y A/ (b+I(b"2))+C -1)
#coef=summary (sabc)

#coef

anova (sabc)

sabc <- Im(y - A + A:b + C - 1)
coef=summary (sabc)

coef

anova (sabc)

sabc <= Im(y ~ A/b + C - 1)
coef=summary (sabc)

coef

anova (sabc)

# Generate the variable A2 discussed in the text.
A2=A
A2 [ (A2 == )] <- 2

sabc <- Im(y =~ AxBx*C)
library (MASS)
stepAIC (sabc)

B.0.1 Computing

Because it is the easiest program I know, most of the analyses in ANREG-I were
done in Minitab. We now present and contrast R and SAS code for fitting [AB][C]
and discuss the fitting of other models from this section. Table B.7 illustrates the
variables needed for a full analysis. The online data file contains only the y values
and indices for the three groups. Creating X and X2 is generally easy. Creating the
variable A2 that does not distinguish between salts 2 and 3 can be trickier. If we had
a huge number of observations, we would want to write a program to modify A into
A2. With the data we have, in Minitab it is easy to make a copy of A and modify it
appropriately in the spreadsheet. Similarly, it is easy to create A2 in R using A2=A
followedby A2 [ (A2 == 3)] <- 2.For SAS,Iwould probably modify the data
file so that I could read A2 with the rest of the data.
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Table B.1 Moisture data, indices, and predictors.

A B C|X X2(A2 A B C|X X2(A2
y i jk|lx ¥ y i jk|lx ¥
81 1 1|1 11111222 4]1
1712 1|2 4]1]16132(3 9|1
2213113 9132121 1|2
72111 1]2]|17222]2 4|2
2622 1|2 4(2]32232(3 9|2
3423113 9(2]5312[1 1]2
103111 1|2]16322(2 4|2
2432 1|2 4(12133332(3 9|2
39033113 9(2|4112(1 1]1
1312112 4111012 2(2 4]1
201 31|13 9(1{[15132(3 9|1
102111 1252121 1|2
2422 1|2 4(2]19222(2 4|2
93111 1|2]29232(3 9|2
3633113 9243121 1]2
51121 1|1]34332(3 9|2

An R script for fitting [AB][C] follows. R needs to locate the data file, which in
this case is located at E: \Books \ANREG2\DATA2\tabl6-1.dat.

scheffe <- read.table ("E:\\Books\\ANREG2\\DATA2\\tabl6-1.dat",
sep=" n, col .names=c (ny", vva", "b", "C") )

attach (scheffe)

scheffe

summary (scheffe)

#Summary tables
A=factor (a)

B=factor (b)

C=factor (c)

X=b

X2=X#*X

sabc <- 1m(y A:B + C)
coef=summary (sabc)

coef

anova (sabc)

SAS code for fitting [AB][C] follows. The code assumes that the data file is the
same directory (folder) as the SAS file.

options ps=60 1s=72 nodate;
data anova;
infile "tabl6-1.dat’;
input y A B C;
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X = B;

X2=X*X;
proc glm data=anova;

class A B C ;

model y = AxB C ;

means C / 1lsd alpha=.01 ;

output out=new r=ehat p=yvhat cookd=c h=hi rstudent=tresid student=sr;
proc plot;

plot ehat+xyhat sr*R/ vpos=16 hpos=32;
proc rank data=new normal=blom;

var sr;

ranks nscores;
proc plot;

plot srxnscores/vpos=16 hpos=32;
run;

To fit the other models, one needs to modify the part of the code that specifies
the model. In R this involves changes to “sabc <- 1lm(y ~ A:B + C)” and

in SAS it involves changes to “model y = AxB C;”. Alternative model specifi-
cations follow.

Model [Minitab R |SAS

[ABC] A[BIC AB:C-1 AFB*C

[AB][BC] AlB B|C A:B+B:C-1 A*B  B*C
[AB][C] AB C A:B+C-1 A*B  C
[A0][A1][A2][C] AlX A|X2 C|A+AX+A:X2+C|A  A*X  A*X2C
[40][A1][C], Az1 = A3 A A2]X C |A+A2:X+C-1 |A A2*X C/noint

[Ao][A1][C], Aa1 = A31, Agp = A3p|A2  A2|X C |A2+A2:X+C-1 |A2 A2*X C
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MANOVA

The multivariate analysis presents terms that combine each whole plot term with its
corresponding subplot interaction. It is a simple matter to separate those back out
into whole plot terms and whole plot term by subplot term interactions. The whole
plot terms will be equivalent to the corresponding split-plot whole plot analysis.
The multivariate approach to looking at whole plot by subplot interactions will not
be equivalent to the corresponding split-plot analysis. Since these issues are not
discussed in the book, the R code is on my website in R Code for ALM-IIl at http:
//www.stat.unm.edu/~fletcher/R-ALMIII.pdf.

This illustration uses a different data file than that used for the split plot analysis.
Near the end we illustrate how ro construct the necessary data from the split plot
data file.

rm(list = 1s())

abraid <- read.table ("C:\\E-drive\\Books\\ANREG2\\newdata\\tabl9-6a.dat",
sep="",col.names=c ("yyl", "yy2", "yy3","s","£", "p", "rep"))

attach (abraid)

abraid

y=cbind(yyl,yy2,yy3)
vy #y is a matrix with individual dependent variables as columns.

#Summary tables
S=factor (s)
F=factor (f)
P=factor (p)

p2=p*p

bsfp <— 1lm(y =~ S*xF=*P)
coef=summary (bsfp)
coef

anova (bsfp,test = c("Wilks"))
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anova (bsfp,test = c("Roy"))

anova (bsfp, test c("Hotelling-Lawley"))
(
(

anova (bsfp) # Default is Pillai
c("Spherical")) #Similar to split plot analysis

anova (bsfp, test

# Nicer output comes from the "car" package.
library (car)

bsfp.manova=Manova (bsfp)

summary (bsfp.manova)

# To obtain the E and H(S*F%P) matrices,

# H(S*xF«xP) 1is the 7th of the H matrices,
bsfp.manova$SSPE

bsfp.manova$SSP[7]

par (mfrow=c(2,2))

ggnorm (rstudent (bsfp) [,1],ylab="Standardized residuals y1")
ggnorm (rstudent (bsfp) [, 2], ylab="Standardized residuals y2")
ggnorm (rstudent (bsfp) [, 3], ylab="Standardized residuals y3")

par (mfrow=c(2,2))

plot (bsfp$fit[, 1], rstudent (bsfp) [,1],xlab="Fitted y1",
ylab="Standardized residuals yl",main="Residual-Fitted plot")
plot (bsfp$fit[,2], rstudent (bsfp) [,2],xlab="Fitted y2",
yvlab="Standardized residuals y2",main="Residual-Fitted plot")
plot (bsfp$fit[, 3], rstudent (bsfp) [,3],xlab="Fitted y3",
vlab="Standardized residuals y3",main="Residual-Fitted plot")

Constructing the MANOVA variables from the split plot variables. Notice that I
have changed the names of the effects being read in.

rm(list = 1s())

abraid <- read.table ("C:\\E-drive\\Books\\ANREG2\\newdata\\tabl9-6.dat",
sep="",col.names=c ("yy", "surf","£fill", "prop", "Rep", "rot"))

attach (abraid)

abraid

yyl=yy[rot==1]
yy2=yy[rot==2]
yy3=yylrot==
s=surf [rot==
f=fill[rot==

[

]
]
]
p=proplrot==1]



C.1 Notation

rep=Rep[rot==1]

For the effects, e.g., f=fil1l [rot==3] would have worked just as well.

C.1 Notation

Multivariate data

Yixg=M,....Y] =

The y;s are independent but Cov(y;) = X.

Multivariate linear model as a collection of univariate models,

Y, :Xﬁh—i—eh, E(eh) =0, Cov(eh) =oul, h=1,...

Combine these into a multivariate model

[Yl,...,Yq] :X[ﬁl,...,ﬁq] = [61,...,eq]

or
Y =XB+e
Similarly to Y write,
X
Xosp = [X1,.. ., Xp] = | |,
X
€
enxg =[e1,...,eq] = | :
€,

Write the multivariate model in terms of individuals,

vi=xB+e¢/, E(g)=0, Cov(g)=ZX, i=1,...,n.

Change X and B notation. J is an n vector of 1s,

Xoxp = [L,X1,.. . Xp1] = [],X.].
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In terms of individuals i = 1,...,n, the model y; = x/B+ €/ becomes,

Vi=u +x,B.+€ (C.1.4)



Appendix D

Neural Networks and Deep Learning as
Nonparametric/Nonlinear Regression

The R neural net programs that we will consider are neuralnet and nnet. We also use
the nonlinear least squares program nls.

After writing this I became aware of another R NN program neuralnetwork in
a package ANN2 (anomaly detection NN). It easily incorporates ridge and LASSO
penalties. There is also a package/program nls2 that will fit nonlinear regression
with a grid search. The package nlsr has a nonlinear regression program nlxb that
may deal better with collinearity. Another nonlinear regression option is the package
gslnls

The machine learning “task view” https://cran.r-project.org/
web/views/MachineLearning.html mentions other programs (and does
not mention neuralnet).

I wonder how steepest descent algorithms with random starting points would
work with overparameterized linear models.

D.1 Univariate Neural Networks

We present code for running neuralnet on the battery data.

EXAMPLE D.1.1.  Battery Data.

This particular example is for D = 3, r = 2 as indicated by the neuralnet option
hidden=c (2, 2), which is a D — 1 vector containing the value of r for each level.
The default fitting algorithm is resilient backpropagation with weight backtracking.

## Clear R and read the data

rm(list = 1s{())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)
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battery

##Run neuralnet

library (neuralnet)

batneu = neuralnet(y ~ x,hidden=c(2,2),act.fct =
"logistic",data=battery, linear.output=T)

## Plot NN model diagram with estimates
plot (batneu)

## Additional neuralnet output commands
# batneu

# summary (batneu)
#batneu$generalized.weight
#batneuSresult.matrix

## Plot data and fitted values

## compute R"2

vhat=batneu$net.result[[1]]

R2=cor (yhat,y) "2

plot (x,y,main=bquote (R"2== . (round (R2, 5))))
lines (x, yhat)

## extract and print the Bk matrices and beta vector
## from the batneu$Sweights list of lists
Bl=batneuSweights[[1]1]1[[1]]
B2=batneuSweights[[1]1]1[[2]]
beta=batneu$weights[[1]]1[[3]]

B1

B2

beta

batneuwts=c (B1l,B2, beta)

The last part of the code is only for D = 3. If you define D in the code, the estimated
B is always,

beta=batneus$weights[[1]][[D]]

The number of Bj; matrices to be extracted depends on D. I was not ambitious
enough to write code that would work for any D,
The book defines

B = [ﬁl7 VeC(BD—l )/, ce 7\/eC(Bl)]/
but NN software tends to list things in reverse order,

B1,Bs,...,Bp_1,B.
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In particular my code from above, batneuwts=c (B1l,B2,beta), equals
[Vec(B1)', Vec(B,)', B’]. For D =2 my code would be batneuwt s=c (B1l, beta)
= [Vec(B;)', B] and can be used as starting values for nnet, which expects its start-
ing values in this order.

Error: 46.554934 Steps: 673

Fig. D.1 Battery data neural net fits: D =2, r = 5.

The plot (batneu) command gives the NN diagram and parameter esti-
mates. Figure D.1 here provides another example with hidden=5, or equivalently
hidden=c(5). O

D.1.1 Relation to Spanning Functions

No computing.

D.2 Nonlinear Regression

Ideally, n1s should be able to fit any NN. While nls might have been written
with the idea that the model would be identifiable and have unique least squares

estimates, it should take a starting value and search for a local minimim to SSE(f3).
This should be true even for the nonidentifiable models assoociated with » > 2. As
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discussed in the book, collinearity seems to be a bigger problem. When r = 1, there
seems to be no reason to doubt the identifiability of the NN models but it does not
seem particularly easy to prove that they are identifiable.

EXAMPLE D.2.1. This is the only case (D = 2, r = 1) where we can easily com-
pare all three of neuralnet, nnet, and nls. The code introduces running both
nnet and nls.

The book presented parameter estimates from four neuralnet and nnet runs as
given below. They are presented here with their names from the code that gen-
erated them. The estimates batnnet$wts are nnet estimates (ﬁ rearranged as
discussed earlier). The neuralnet estimates (B rearranged) are accumulated into
batneuwts. The estimates seem to have converged but to slightly different values.

> batnnet$wts

[1] -7.685779 28.468946 7.711415 4.984809
> batneuwts

[1] —-7.594703 28.163069 7.702761 4.994409
> batnnetS$wts

[1] —-7.684596 28.463871 7.711285 4.985015
> batneuwts

[1] -7.598368 28.173712 7.703679 4.993587
> batnnet$wts

[1] =7.687263 28.472109 7.711415 4.984930
> batneuwts

[1] -7.599077 28.177550 7.703560 4.993619
> batnnet$wts

[1] -7.684437 28.463444 7.711252 4.985046
> batneuwts

[1] -7.582689 28.122157 7.701728 4.995634

Rerunning the code should give similar, but not exactly the same values (due to
random starting values).
To get similar values, run the following code four times.

## Clear R and read the data

rm(list = 1s{())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

##Run neuralnet

library (neuralnet)

batneu = neuralnet(y ~ x,hidden=c(l),act.fct =
"logistic",data=battery, linear.output=T)
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## extract and print the Bk matrices and beta vector
## from the batneu$weights list of lists
Bl=batneus$weights [[1]1]1[[1]]
beta=batneus$weights[[1]1]1[[2]]

B1

beta

batneuwts=c (B1l, beta)

## Run nnet
library (nnet)
batnnet = nnet(y ~ x,size=1,linout=T)

#summary (batnnet)

## Print out both sets of weights for visual comparison
batnnet$wts

batneuwts

The next code shows that for D =2, r = 1, nls converges to the nnet solu-
tion, essentially immediately. The sets of starting values are copied from the book.
Similar results are obtained when not specifying starting values, i.e. by eliminating
the start=c () option from nls.

## Clear R and read the data

#rm(list = 1s{())

#par (mfrow=c(4,2))

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

betatilde=c(-7.582689, 28.122157, 7.701728, 4.995634)
betatilde=c(-7.684437, 28.463444, 7.711252, 4.985046)
batnls = nls(y ~ betal

+ beta2 * (exp(blll + bll2+*x)/ (l+texp (b111+b112xx))),
start=c (betal=betatilde[3],beta2=betatilde[4],
blll=betatilde[l],bll2=betatilde[2])

)

#summary (batnls)

batnls

#coef (batnls)
#coef (summary (batnls))
#fitted (batnls)
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#anova (batnls)
This n1s code also works and has the convenience of using the logistic function.

\begin{verbatim}

## Clear R and read the data

frm(list = 1s())

#par (mfrow=c(4,2))

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

betatilde=c(-7.582689, 28.122157, 7.701728, 4.995634)
betatilde=c(-7.684437, 28.463444, 7.711252, 4.9850406)
logistic <- function (w)

{

lg = exp(w)/ (1+exp(w))

return (1lg) }

batnls = nls(y ~ betal

+ beta2 x logistic(blll + bll2xx),

start=c (betal=betatilde[3],beta2=betatilde[4],
blll=betatilde[l],bll2=betatilde[2])

)

fsummary (batnls)

# Parameters listed in order of appearance
batnls

vhatnls=predict (batnls, x)

R2=cor (yhatnls,y) "2

plot (x,y,main=c (R2))

lines (x, yhatnls)

EXAMPLED.2.2. D=3,r=1.

Iprogrammed D = 3, r = 1 which is an identifiable nonlinear regression. The follow-
ing code establishes that even with good starting values obtained from neuralnet,
nls cannot find an answer due, usually, to a “singular gradient” but occasionally
due to “Error in numericDeriv ... Missing value or an infinity produced when eval-
uating the model” or the step factor getting below the minimum. Run it multiple
times to see the various error messages.

## Clear R and read the data
rm(list = 1ls())
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battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

logistic <- function (w)
{

1lg = exp(w
return (1lg)

)/ (1+exp (w))

}

##Run neuralnet

library (neuralnet)

h=c(1,1)

D=length (h)+1

batneu = neuralnet(y ~ x,hidden=h,act.fct =
"logistic",data=battery, linear.output=T)

## extract Bl, B2 and beta vector from the
## batneuSweights list of lists

# for(k in 1:D){

Bl=batneu$weights [[1]1]1[[1]]

B1

B2=batneuSweights[[1]1]1[[2]]

B2

beta=batneus$weights[[1]][[D]]

beta

batnls = nls(y = betal

+ beta2 * logistic( b211l + b221xlogistic(blll + bl21xx)),
start=c (betal=beta[l],beta2=betal[2],b211=B2[1,1],
b221=B2[2,1],b111=B1([1,1],b121=B1[2,1])

)

nls uses a default Gauss-Newton algorithm but allows other options. In my
experience, the other options do not work any better for this problem. The package
and program n1s2 has additional algorithms including a grid search.

The reason nls is not converging is probably because the linear model approxi-
mation to the nonlinear model is displaying severe collinearity. The nonlinear model
has the approximating linear model

Y —F(Bo) =W(Bo)S +e, W(Bo) = dBF(ﬁo) = [, Wi].
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The severe collinearity is demonstrated by the following code that gives the eigen-
values of the covariance matrix computed from the “data matrix” W,. Here B() is
being determined by a neuralnet run. I determined the nature of the W (-) func-
tion and programmed it. In fact, columns 3 and 4 of W are highly collinear which
makes even back propagation difficult.

## Clear R and read the data

rm(list = 1s{())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

# define logistic function
logistic <- function (w)

{

1lg = exp(w
return (1lg)

)/ (1+exp (w))
}

# define derivative of the logistic function
dlogistic <- function (w)

{

dlg = exp(w)/ ((1l+exp(w)) "2)

return (dlg) }

##Run neuralnet to get starting values

library (neuralnet)

h=c(1,1)

D=length (h)+1

batneu = neuralnet(y ~ x,hidden=h,act.fct =
"logistic",data=battery, linear.output=T)

## extract Bl, B2 and beta vector from the
## batneuSweights is a list of lists
Bl=batneu$weights [[1]1]1[[1]]

B1

B2=batneuSweights[[1]1]1[[2]]

B2

beta=batneu$weights[[1]][[D]]

beta

# construct
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betatilde=c (beta,B2,B1l)

betatilde

# to reprodice book, use

# betatilde=c(5.2801397,7.8749274,-0.806934¢,
3.5837052,-7.1122252,24.2575694)

# notation for nls starting values
betal=betatilde[1l]
beta2=betatilde[2]
b21ll=betatilde[3]
b221=betatilde[4]
blll=betatildel[5] #B1[1,1]
bl2l=betatilde[6] #B1[2,1]

# model matrix W for approximating linear model

# W evaluated at neuralnet parameter estimates

W=c(rep(l,41), logistic( b211 + b221xlogistic(blll + bl21xx)),

beta2xdlogistic( b211 + b221lxlogistic(blll + bl21lxx)),

beta2xdlogistic( b211 + b221lxlogistic(blll + bl21xx))x*
logistic(blll + bl21+*x),

beta2xdlogistic( b211 + b221xlogistic (111l + bl21xx))*
b221xdlogistic(blll + bl21lxx),

beta2xdlogistic( b211l + b221lxlogistic(blll + bl21xx))*
b221xdlogistic(blll + bl21xx) *x)

W=matrix (W, 41, 6)

# print out the approximate model matrix

W

#Eigenvalues and vectors for the covariance matrix of the
# nonintercept predictors in the
eigen(cov(W[,2:6]1))

# This code is for the continuation of the

# example in the Back Propagation subsection.
eigen(cov(W[,3:4]))

eigen(cov(W[,5:6]))

As is, this code will not reproduce the book because it generates a “random” BO- The
book’s By is in the code as a comment. a
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D.2.0.1 Other nls fits.

I wrote down nls code for D = 3, r = 2 just to get my head around how to write nls
models. It employs the logistic function that I coded elsewhere.

batnls = nls(y ~ betal

+ beta2 x logistic( b211 + b212*logistic(blll + bll2xx)
+ b213 x logistic(bl21l + bl22xx))

+ beta3 » logistic(b221 + b222+logistic(blll + bll2xx)
+ b223 x logistic(bl2l + bl22xx))

)

I then used this as a basis for simpler models that I fitted (or not, because they failed
to run). In particular, I used this as the basis for programming nls to fit D = 2,
r =2 which is a nonidentifiable nonlinear regression. I used starting values obtained
from neuralnet. Once again, nls couldn not find an answer due, usually, to a
“singular gradiant”.

## Clear R and read the data

rm(list = 1s{())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

##Run neuralnet
library (neuralnet)

h=c (2)
D=length (h)+1
batneu = neuralnet(y ~ x,hidden=h,act.fct =

"logistic",data=battery, linear.output=T)

## extract Bl, B2 and beta vector from the
## batneuSweights list of lists

# for(k in 1:D){
Bl=batneu$weights[[1]1]1[[1]]

Bl

beta=batneus$weights[[1]][[D]]
beta
plot (batneu)

logistic <- function (w)
{
1g = exp(w)/ (1l+exp (w))
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return(lg) }

batnls = nls(y ~ betal

+ beta2 » logistic(blll + bl21%x) + beta3 x logistic(bll2 + bl22xx),
start=c (betal=beta[l],beta2=betal[2],beta3=beta[3],bl11=B1[1,1],
bl121=B1[2,1],b112=B1[1,2],b122=B1[2,2])

)

D.2.1 Back Propagation

EXAMPLE D.2.2 CONTINUED. Code for this was given in Example D.2.2.

D.2.1.1 Pseudo back propagation

This is some exploratory work I did with trying to get n1s Gauss-Newton to work
by partitioning the fitting procedure. None of it succeeded in get nls to work.

This first code is for illustration and not intended to be run. It illustrates a vari-
ation on back propagation. There are three sets of parameters, B, By, and 3. Back
propagation holds two of them fixed and finds the third so as to minimize the SSE,
so it requires 3 runs to modify all the parameters. In this code we hold only one of
them fixed and find the other two. In the practical code that appears later, we hold
either By or B, fixed, so 8 gets modified in each run. We did this because n1s would
not run when we fixed . The code simply shows the calls for the overall nls run
and then three calls each with one of the parameters fixed.

#neuralnet (x,y,hidden=c(1,1))

batnls = nls(y = betal

+ beta2 x logistic( b211 + b221lxlogistic(blll + bl21xx)),
start=c (betal=beta[l],beta2=betal2],b211=B2[1,1],
b221=B2[2,1],bl111=B1[1,1],b121=B1[2,1])

)

## These next three pieces explore back propagation
## They run nls after fixing some of the parameters
## to equal their neuralnet values.

betal=betal[l]
betal2=betal[2]
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batnls = nls(y = betal

+ beta2 x logistic( b211 + b221lxlogistic(blll + bl21xx)),
start=c (betal=beta[l],beta2=betal2],b211=B2[1,1],
b221=B2([2,1],bl111=B1[1,1],b121=B1([2,1])

)

batnls

b211=B2[1,1]
b221=B2[2,1]
batnls = nls(y ” betal

+ beta2 x logistic( b211 + b221lxlogistic(blll + bl21xx)),
start=c (betal=betall],beta2=betal2],
b111=B1([1,1],bl121=B1[2,1])

)

batnls

bl11=B1[1,1]
b121=B1[2,1]
batnls = nls( " betal

+ beta2 x logistic( b211 + b221xlogistic(bl1ll + bl21xx)),
start=c (betal=beta[l],beta2=betal[2],b211=B2[1,1],b221=B2[2,1])
)

batnls

To see that even this code is not converging, run the code and then rerun the
code inside the for loop, which runs from a betatilde to another betatilde
and contains a third betatilde. The fact that the three betatildes are not
converging is the problem. This routine uses the notation ' = (B, B, B")’

## Clear R and read the data

m(list = 1s())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

logistic <- function (w)
{

lg = p(w) / (l+exp (w))
return (lg) }

##Run neuralnet
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library (neuralnet)

h=c(1,1)
D=length (h)+1
batneu = neuralnet(y = x,hidden=h,act.fct =

"logistic",data=battery, linear.output=T)

## extract Bl, B2 and beta vector from the
## batneuSweights list of lists

# for(k in 1:D){
Bl=batneuSweights[[1]1]1[[1]]

B1

B2=batneu$weights[[1]1]1[[2]]

B2

beta=batneus$weights[[1]][[D]]

beta

betatilde=c (B1l,B2,beta)

# perform iter steps of pseudo back propagation
iter=40
for(i in 1l:iter) {

betatilde

b211l=betatilde[3] #B2[1,1]

b221l=betatilde[4] #B2[2,1]

batnls = nls(y = betal

+ beta2 x logistic( b211 + b221lxlogistic(blll + bl21lxx)),
start=c (betal=betatilde[5],beta2=betatilde[6],
blll=betatilde[l],bl2l=betatilde([2])

)

betatilde[5:6]=coef (batnls) [1:2]
betatilde[l:2]=coef (batnls) [3:4]

betatilde
blll=betatilde[1] #B1[(1,1]
bl2l=betatilde[2] #B1[2,1]

batnls = nls(y = betal

+ beta2 x logistic( b211 + b221lxlogistic(blll + bl21lxx)),
start=c (betal=betatilde[5],beta2=betatilde[6],
b21l1l=betatilde[3],b221=betatilde[4])

)

betatilde[5:6]=coef (batnls) [1:2]
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betatilde[3:4]=coef (batnls) [3:4]
betatilde
}

I revised the code to actually do one step of back propagation, i.e, where two of
the matrices By, By, and 3 are held fixed.

## Clear R and read the data

rm(list = 1s())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t","x"))

attach (battery)

battery

##Run neuralnet

library (neuralnet)

h=c(1,1)

D=length (h)+1

batneu = neuralnet(y ~ x,hidden=h,act.fct =
"logistic",data=battery, linear.output=T)

## extract Bl, B2 and beta vector from the
## batneu$Sweights list of lists

# for(k in 1:D){
Bl=batneu$weights[[1]1]1[[1]]

B1

B2=batneuSweights[[1]1]1[[2]]

B2

beta=batneus$weights[[1]][[D]]

beta

logistic <- function (w)
{
lg = exp

(w) / (1+exp (w))
return(lg) }

## These next three pieces explore back propagation
## They run nls after fixing some of the parameters
## to equal their neuralnet values.

b211=B2[1,1]
b221=B2[2,1]
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batnls = nls(y ~ betall]

+ betal[2] x logistic( b211 + b221xlogistic(blll + bl21lxx)),
start=c (betal=beta[l],betaz2=betal2],b211=B2[1,1],b221=B2[2,1],b111=B1[1,1],
b121=B1([2,1])

)

b211=B2[1,1]

b221=B2[2,1]

batnls = ls(y "~ betall]

+ betal[2] x logistic( b211 + b221xlogistic(blll + bl21lxx)),
start=c (betal=beta[l],beta2=beta(2],bll11=B1[1,1],
b121=B1[2,1])

)

bl11=B1[1,1]

bl121=B1[2,1]

batnls = nls(y ~ betal

+ beta2 % logistic( b211l + b221xlogistic(blll + bl21xx)),
start=c (betal=beta[l],beta2=betal[2],b211=B2[1,1],b221=B2[2,1])
)

D.3 Computational Issues

EXAMPLE D.3.1.  Program for running (D = 3,r = 1) 1000 times and computing
mean vector and covariance matrix.

## Clear R and read the data
m(list = 1s())
battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,
sep="")#,col.names=c ("Case","y","t", "x"))
attach (battery)
battery

logistic <- function (w)
{
lg =

p(w)/ (1+exp (w))
return( g

w
)

)
}

YY=rep(1l,1000%6)
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YY=matrix (YY, 1000, 6)

for(i in 1:1000) {

##Run neuralnet

library (neuralnet)

h=c(1,1)

D=length (h)+1

batneu = neuralnet(y ~ x,hidden=h,act.fct =
"logistic",data=battery, linear.output=T)

## extract Bl, B2 and beta vector from the

## batneuSweights list of lists

# for(k in 1:D) {

Bl=batneu$weights [[1]1]1[[1]]

Bl

B2=batneuSweights[[1]][[2]]

B2

beta=batneu$weights[[1]][[D]]

beta

YY[i, ]=c (beta,B2,Bl)

}

cov (YY)
colMeans (YY)

It is very obvious from the following covariance matrix that the answers are not
consistent.

colMeans (YY)

> cov (YY)

[,1] [,2] [,3] [,4]
[1,] 0.5753809 -0.4894115 -0.7770350 1.764040 -0
[2,] -0.4894115 2.3579861 -0.3857658 -3.043234 -1
[3,] -0.7770350 -0.3857658 4.9928132 -10.716670 5.
[4,1] 1.7640404 -3.0432339 -10.7166696 36.456578 -12
[5,]1 -0.2246971 -1.3709014 5.7829443 -12.409935 8
[6,] —-0.3047345 4.4923470 -6.3938296 7.118954 -10
>
[

D.3.0.1 Fitting neuralnet and feeding into nnet

EXAMPLE D.3.2 The code below is for producing figures like Figure D.3. It
works for D = 2 and any r. Figure D.3 is a 4 by 2 matrix of plots. This code produces
two plots, so it needs to be run 4 times. On the first run, you should uncomment the
rm and par commands near the top, but for the next 3 runs, they should both be
commented. Subsequent sets of 4 runs can follow to you hearts content.

[,35]

.2246971
.3709014

7829443

.4099353
.4313529
.5456531

-0.
4
-6.
7.
-10.
20.

[,6]
3047345

.4923470

3938296
1189539
5456531
6282824

1] 5.7503597 6.9913594 -0.5063129 17.9064310 -4.7870357 11.7851015
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You can pick any value of r to put into neuralnet’s hidden option but then
nnet’s size command needs to take the same r value. Since neuralnet and
nnet are in different libraries, you need to run Library () quite a bit. Within the
code ## indicates comments about this code and other valuable options for exploring
NN that are not needed to produce the plot.

## Clear R and read the data

#rm(list = 1s())

#par (mfrow=c(4,2))

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

##Run neuralnet

library (neuralnet)

batneu = neuralnet(y ~ x,hidden=5,act.fct =
"logistic",data=battery, linear.output=T)

## Command for specifying starting weights

## within neuralnet ()

#startweights = c(1, 1, 1, 1)

## These commands would, if uncommented,
## give the fitted value plot from neuralnet

vhat=batneuS$net.result[[1]]

## compute R"2 and NN diagram, if uncommented
R2=cor (yhat,vy) "2

#plot (x,y,main=paste0 ("R"2=", round(R2, 5)))
plot (x,y,main=bquote (R"2== . (round (R2, 5))))
lines (x, yvhat)

#plot (batneu)

## Additional neuralnet output
# summary (batneu)

# batneu
#batneuSgeneralized.weight
#batneuSresult.matrix

#predict (batneu,battery)

## extract the Bl matrix and beta vector from the
## batneuSweights list of lists
Bl=batneuSweights [[1]][[1]]
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beta=batneu$weights[[1]1]1[[2]]

## create a vector of starting value

## weights for input to nnet

# Note: batneuwts is betatilde rearranged
batneuwts=c (Bl, beta)

## Run nnet using the

## neuralnet output weights "batneuwts"
## as starting values for nnet

library (nnet)

batnnet = nnet(y ~ x,size=5,linout=T,
Wt s=batneuwts)

#summary (batnnet)

## Print out both sets of weights for visual comparison
#batnnetS$Swts

#batneuwts

##Compute square root of sum of squared

##prediction/fitted-value differences between

f#neuralnet and nnet and similar for parameter differences

b=c (sqgrt (sum( (yhat-batnnet$fitted.values) "2)),

sgrt (sum( (batneuwts—-batnnets$wts) "2)))

## Plot for Fig. D.1

plot (x,y,main=pastel ("fit diff=", round(b[l], 3),
" " ,"par diff=", round(b[2], 3)))

lines (x,batnnet$fitted.values)

## compute R"2

cor (batnnet$fitted.values,y) "2

Use [31 and ﬁg to denote vectors of (estimated) parameters from neuralnet and
nnet, respectively. Similarly define fitted value vectors ¥, and ¥,. The numbers
over the nnet plots are ||¥; — ¥5|| and ||B; — B2 ]|.

To get a better look at the effects of starting values, you could comment out
plot (x,y,main=c (R2)) and lines (x, yhat) affer the neuralnet run,
so you get 8 graphs with 2 numbers above them all from nnet. That gives 8§, instead
of 4, looks at how often the procedure goes bad.

Figure D.2 gives an illustration for D = 2, r = 1 The R’s are very close indicating
the neuralnet fits are very close. ||¥; — ¥3|| and || ; — 32| are small but from looking
at examples there are naturally (very) slight differences in the “converged” values of
ﬁl and Bg but the values they are converging to are consistently (slightly) different.
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0.0291573671205102

0.6440869378048 0.319776072814829

0.0315252810804561
0.342707434659286

0.00909188718055875
0.00544347206713502

0.0311030605293878
0.345279393577701

Fig. D.2 Battery data neural net fits: D = 2, r = 1, neuralnet feeding nnet.

D.3.0.2 Fitting nnet and feeding into neuralnet

This code produces plots similar to book Figure D.3 except the initial fit is from
nnet and those values are used as starting values for neuralnet. Sometimes neuralnet
does not change the nnet values and sometimes it changes the nnet converged valued
considerably. And that happens regardless of whether the model is being fitted well
or not. This was discussed but no figures were presented in the book.

## Clear R and read the data

#rm(list = 1s())

#par (mfrow=c(4,2))

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,
sep="")#,col.names=c ("Case", "y","t", "x"))

attach (battery)

battery

## Run nnet using the

## neuralnet output weights "batneuwts"
## as starting values for nnet

library (nnet)

batnnet = nnet(y ~ x,size=5,linout=T)
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R"2=0.64409 fit diff=0 par diff=0

y
8 12
ALl

3
y
8 12
ALl

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x x
R”"2=0.01428 fit diff=16.021 par diff=2654.414
Pt N ,
o P | ]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x x
R"2=0.5603 fit diff=0 par diff=0
o P — o Pt w—
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x x
R”"2=0.48089 fit diff=0 par diff=0
- —] - -1 Er—
o P — o P —
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x x

Fig. D.3 Battery data neural net fits: D = 2, r = 5, nnet feeding neuralnet.

## compute R"2 and NN diagram, if uncommented
R2=cor (batnnetS$fitted.values,y) "2

plot (x,y,main=paste0 ("R"2=", round(R2, 5)))
lines (x,batnnetS$fitted.values)

##Run neuralnet

library (neuralnet)

batneu = neuralnet(y ~ x,hidden=5,act.fct =
"logistic",data=battery, linear.output=T,
startweights = batnnetSwts)

yhat=batneuS$net.result[[1]]

## extract the Bl matrix and beta vector from the

## batneuSweights list of lists

Bl=batneu$weights[[1]1]1[[1]]

beta=batneu$weights[[1]]1[[2]]

## create a vector of starting value

## weights for input to nnet

batneuwts=c (B1l, beta)

#summary (batnnet)
## Print out both sets of weights for visual comparison
batnnet$wts
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batneuwts

##Compute square root of sum of squared

##prediction/fitted-value differences between

##neuralnet and nnet and similar for parameter differences

b=c (sqgrt (sum( (yhat-batnnet$fitted.values) "2)),

sgrt (sum( (batneuwts—-batnnet$wts) "2)))

## Plot for Fig. D.1

plot (x,y,main=pastel ("fit diff=", round(b[l], 3),
" " ,"par diff=", round(b[2], 3)))

lines (x, yhat)

## compute R"2

#cor (yhat,y) "2

D.3.0.3 Miscellany for neuralnet with D > 2

This is not very different. I was just looking at some neuralnet fits with D =4

## Clear R and read the data

#rm(list = 1s())

#par (mfrow=c(4,2))

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

##Run neuralnet

library (neuralnet)

h=c(1,1,1)

D=length (h)+1

batneu = neuralnet(y ~ x,hidden=h,act.fct =
"logistic",data=battery, linear.output=T)

vhat=batneu$net.result[[1]]

## compute R"2 and NN diagram, if uncommented
R2=cor (yhat,y) "2

plot (x,y,main=c (R2))

lines (x, yhat)

#plot (batneu)
## Additional neuralnet output
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# summary (batneu)

# batneu
#batneuSgeneralized.weight
#batneu$result.matrix
#predict (batneu, battery)

## extract the Bl matrix and beta vector from the
## batneuSweights list of lists

# for(k in 1:D){

# B3 will not exist unless h is a 3-vector.

Bl=batneu$Sweights[[1]1]1[[1]]
B1
B2=batneu$weights[[1]1]1[[2]]
B2
B3=batneuSweights[[1]][[3]]
B3
beta=batneu$weights[[1]][[D]]
beta

I did some comparisons of how similar the fitted values were when D =2, 3.
With D =4, r = 1, sometimes the fitted parameter values give an essentially
constant fit of §; = 11.32251. In particular, these estimates do that.

> Bl=batneuSweights[[1]][[1]]
> Bl
[,1]
[1,] -1.475321
[2,1] 2.045264
> B2=batneuSweights[[1]][[2]]
> B2
[,1]
[1,] 4.192253
[2,] 2.778969
> B3=batneuS$weights[[1]][[3]]
> B3
[,1]
[1,] 4.157848
[2,] 6.312652
> beta=batneu$Sweights[[1]][[D]]
> beta
[,1]
[1,] 6.068829
[2,] 5.253832
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Fig. D.4 Battery dataneural netfits: D=4, ri =rn=r=1,r=1,5.

D.4 Classification

No illustrations were given in the book but fitting logistic models can be
accomplished for 0-1 y data by using the neuralnet subcommand/option
linear.output=FALSE or by the nnet subcommand/option 1 inout=FALSE
(which is the default).

D.5 Generalized Weights

These are a standard part of neuralnet output. For the neuralnet object
batneu, they are available as batneu$generalized.weight.

## Clear R and read the data

rm(list = 1s{())

battery <- read.table(
"C:\\E-drive\\Books\\LINMOD23\\DATA\\ALM1-1.dat",
header=TRUE,

sep="")#,col.names=c ("Case","y","t", "x"))

attach (battery)

battery

##Run neuralnet
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library (neuralnet)
batneu = neuralnet(y ~ x,hidden=c(2,2),act.fct =
"logistic",data=battery, linear.output=T)

batneu$generalized.weight

D.6 Multivariate Neural Networks

No computational illustrations.

D.7 Diagrams

My relatively lame attempts to create my own NN diagrams using the picture
command in LATEX. (Before I found that neuralnet happily and easily creates
diagrams.)
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