Ronald Christensen

Department of Mathematics and Statistics
University of New Mexico

© 2019, 2022

R Commands for —
Log-Linear Models and
Logistic Regression,
Third Edition

Springer

Preface

This online book is an R companion to Log-linear Models and Logistic Regression,
Third Edition (LOGLIN3). This book presupposes that the reader is already famil-
iar with downloading R, plotting data, reading data files, transforming data, basic
housekeeping, loading R packages, and specifying basic linear models. That is the
material in Chapters 1 and 3 of my R Commands for — Analysis of Variance, Design,
and Regression: Linear Modeling of Unbalanced Data (R Code for ANREG-II)
which is available at http://www.stat.unm.edu/~fletcher/Rcode.
pdf. Much of the material here has just been modified/copied from the other vol-
ume (but placed appropriately for LOGLIN3). A tool that I have found very useful
for writing R code is Tom Short’s “R Reference Card,”
http://cran.r-project.org/doc/contrib/Short-refcard.pdf.
Like all of the other R code documents for my books, this is arranged to corre-
spond to the actual book. Thus the R code for performing the things in Chapter 1
of LOGLIN3 is contained in Chapter 1 of this book, etc. When using this book, all
the data can be obtained from http://www.stat.unm.edu/~fletcher/
LLM/DATA and are also available at http://stat.unm.edu/~fletcher/
11m_data.zip. The code can be obtained from http://www.stat.unm.
edu/~fletcher/LLM/Code. Programs listed here as Code x.y.x are filed as
Codex-y—z.txt. If you are copying R code from a pdf file into R, “tilde”, i.e.,

will often copy incorrectly so that you may need to delete the copied version of
tilde and retype it. This may also be true for other characters like “caret” ~.

At least on my computer it has become more difficult to install R packages of late,
so it is easier to install them all at once. This issue is discussed more in Section 1.6
of R code for ANREG-II. The packages (currently) used in this document are:

install.packages ("ca")

install.packages ("ggplot2")

install.packages ("leaps")

install.packages ("MASS")
(

install.packages ("psych")

vii

http://www.stat.unm.edu/~fletcher/Rcode.pdf
http://www.stat.unm.edu/~fletcher/Rcode.pdf
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://www.stat.unm.edu/~fletcher/LLM/DATA
http://www.stat.unm.edu/~fletcher/LLM/DATA
http://stat.unm.edu/~fletcher/llm_data.zip
http://stat.unm.edu/~fletcher/llm_data.zip
http://www.stat.unm.edu/~fletcher/LLM/Code
http://www.stat.unm.edu/~fletcher/LLM/Code
http://www.stat.unm.edu/~fletcher/Rcode.pdf

viii

install.packages ("R20penBUGS")
install.packages ("R2jags")

Packages currently discussed but not used are

install.
install.
install.
install.

install

install

install

packages
packages
packages
packages

.packages
install.
install.
install.
install.

packages
packages
packages
packages

.packages
install.
install.
install.
install.

packages
packages
packages
packages

.packages

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

"bestglm")
"clogit")
"exact2x2")
"exactLoglinTest")
"glmulti")
"gnm")
"kequate")
"logmult")
"MCMCpack")
"MSCquartets")
"nnet")
"R2WinBUGS")
"RTDE")
"StepReg")
"survey")

(CRAN has removed this.)

Contents

Preface vii
Tableof Contents. i ix
1 Introduction.......... 1
1.1 Conditional Probability and Independence 1

1.2 Random Variables and Expectations 1

1.3 The Binomial Distribution, 1

1.4 The Multinomial Distribution 1

1.4.1 Product-Multinomial Distributions. 2

1.5 The Poisson Distribution 2

2 Two-Dimensional Tables and Simple Logistic Regression 3
2.1 Two Independent Binomials............... 3

2.2 Testing Independenceina2x2Table 4

23 IxJTables ... 4

2.4 Maximum Likelihood Theory for Two-Dimensional Tables 5

2.5 Log-Linear Models for Two-Dimensional Tables 5

2.6 Simple Logistic Regressioncooiiiiiiiiin.... 7

2.7 EBXEICISES ..ottt ettt e e 8

3 Three-Dimensional Tables..................... 11
3.1 Simpson’s Paradox and the Need for Higher-Dimensional Tables... 11

3.2 Independence and Odds Ratio Models 11
3.2.1 The Model of Complete Independence 11

3.2.2 Models with One Factor Independent of the Other Two 12

3.2.3 Models of Conditional Independence.................... 12

3.2.4 A Final Model for Three-Way Tables.................... 13

3.3 Tterative Computation of Estimates 13

3.4 Log-Linear Models for Three-Dimensional Tables 14
340 Estimationoouieint i 14

Contents

342 TestingModelsoo i 14
3.5 Product-Multinomial and Other Sampling Plans 16

3.5.1 Other SamplingModels.................. ..., 16
3.6 Model Selection Criteria.covuiuieneie e, 16
3.7 Higher-Dimensional Tables i, 18
3.8 EXeICISES .\ttt ettt e e 19
Logistic Regression.......... 21
4.1 Multiple Logistic Regressioncooiviiinviinennn... 21
4.2 Measuring Model Fit i 23
4.3 Logistic Regression Diagnostics oo, 23
4.4 Model Selection Methods i 24

4.4.1 Stepwise logistic 1€ZresSionoveeeeunnn.... 24

4.4.2 Best subset logistic regressionc..0..... 25
4.5 ANOVA Type Logit Models., 26
4.6 Logit Models For a Multinomial Response 30
4.7 Logistic Discrimination and Allocation 33
4.8 EXEICISES ..ottt t ettt e e 35
Independence Relationships and Graphical Models 37
5.1 Model Interpretationscouuiiitniiinnneineenn.. 37
5.2 Graphical and Decomposable Models.......................... 37
5.3 Collapsing Tablesttt 37
5.4 Recursive Causal Models, 37
5.5 EXEICISES ..ttt e e 37
Model Selection Methods and Model Evaluation 39
6.1 Stepwise Procedures for Model Selection 39
6.2 Initial Models for Selection Methods 39

6.2.1 Alls-Factor Effects 39

6.2.2 Examining Each Term Individually 40

6.2.3 Tests of Marginal and Partial Association 40

6.2.4 Testing EachTerm Last iiiiin. .. 40
6.3 Example of Stepwise Methods. i, 42

6.3.1 Forward Selection. i, 42

6.3.2 Backward Elimination 42
6.4 Aitkin’s Method of Backward Selection 43
6.5 Model Selection Among Decomposable and Graphical Models 44
6.6 Use of Model Selection Criteriaccovuuneunenn... 44
6.7 Residuals and Influential Observations 45
6.8 Drawing Conclusionsouuuiieeiiiiineeeennnn .. 46

0.9 EXEICISES vttt e 46

Contents xi

7

10

11

12

Models for Factors with Quantitative Levels....................... 47
7.1 Models for Two-Factor Tables 47
7.2 Higher-Dimensional Tables 48
7.3 Unknown Factor Scores ...t ... 49
7.4 Logit Models with Unknown Scoresc.... 50
7.5 EXEICISES .o ovvtt ittt 50
Fixed and Random Zeros coiiiiiiiiiinnnnn... 51
8.1 FIXed Zerost e 51
8.2 Partitioning Polytomous Variables 52
8.3 Random Zerosuiiiiei i 54
8.4 EXEICISES .. viitii ittt e 57
Generalized Linear Models. 59
9.1 Distributions for Generalized Linear Models 59
9.2 Estimation of Linear Parameters 59
9.3 Estimation of Dispersion and Model Fitting 59
9.4 Summary and Discussionoiiiiiiin i 59
0.5 EXEICISES ..ttt ittt e 59
The Matrix Approach to Log-Linear Models 61
10.1 Maximum Likelihood Theory for Multinomial Sampling 61
10.2 Asymptotic Resultst i 61
10.3 Product-Multinomial Sampling 62
10.4 Inference for Model Parameters.con... 62
10.5 Methods for Finding Maximum Likelihood Estimates 62
10.6 Regression Analysis of Categorical Data 63
10.7 Residual Analysis and Outliers, 63
1O.8 EXEICISES vttt ettt it ettt et ettt 63
The Matrix Approach to Logit Models. 65
11.1 Estimation and Testing for Logistic Models..................... 65
11.2 Model Selection Criteria for Logistic Regression 65
11.3 Likelihood Equations and Newton-Raphson 65
11.4 Weighted Least Squares for Logit Models 65
11.5 Multinomial Response Modelscooiviinaon... 65
11.6 Asymptotic Resultsco i i 65
11.7 Discrimination, Allocations, and Retrospective Data 65
T1.8 EXOICISES . vt vee ettt ettt et ittt e e 65
Maximum Likelihood Theory for Log-Linear Models 67
12,1 NOtAON &« vttt ettt e e et et ettt 67
12.2 Fixed Sample Size Properties.coooiiiiii. .. 67
12.3 Asymptotic Properties. ... 67
12.4 APPHCAIONS .« o v vttt ettt e e e e 67

12.5 Proofs of Lemma 12.3.2 and Theorem 12.3.8 67

Xii

13

14

15

16

17

Contents

Bayesian Binomial Regression 69
13.1 Introductionttt e i 70
13.1.1 Alternative Specificationsc..couveeenn... 75

13.2 Bayesian Inference: O-ringData 75
13.2.1 Specifying the Prior and Approximating the Posterior. 75
13.2.2 Predictive Probabilities 95
13.2.3 Inference for Regression Coefficients 99
13.2.4 Inference for LDy,o oo 101
13.22Bayesian Inference: Trauma Data 101
13.22.1Specifying the Prior and Approximating the Posterior. 103
13.22.2Predictive Probabilities, 109
13.22.3Inference for Regression Coefficients 112

13.3 DIagnostiCs. . . .ottt 112
13.3.1 Case Deletion Influence Measures 112
13.3.2 Estimative and Predictive Influence: O-rings 113
13.3.3 Estimative and Predictive Influence: Trauma 115
13.3.4 Model Checkingooiiiuiniiin i 118
13.3.5 Link Selection.ot 122
13.3.6 Sensitivity Analysis ..., 126

13.4 Posterior COmMputationsc.uuuieeeuunnneeeennnnn... 132
13.5 A Log-Linear Model with Over Dispersion (Random Effects) 132
13.5.1 Contingency Tablescooiiiiiiiiiiinn... 135

13.6 OpenBUGS GUI i 137
Exact Conditional Tests 145
14.1 Two-Factor Tables 145
14.2 Three-Factor Tables 147
14.2.1 Testing [AC][BC] . vvvi e 147
14.2.2 Testing [B][AC] « .ot 148

14.3 General Theoryoiiii i i 151
14.4 Model TeSting . ..ovvviet ettt et 152
T4.5 NOES. . vttt e e e e 154
Correspondence Analysis i, 155
15.1 Introductionot iiiini i 155
15.2 Singular Value Decomposition Plot............................ 155
15.3 Correspondence Analysis Plot it 155
15.3.1 Nobel Prize Winnersciiiiinieennn... 158

15.4 Multiple correspondence analysisc.oovveiennnn.... 159
PolyaTrees oo 161
16.0.1 AlaS ..ttt 161
Pythagorian Theorem, 165

References. 167

Contents

Chapter 1
Introduction

1.1 Conditional Probability and Independence
1.2 Random Variables and Expectations

1.3 The Binomial Distribution

To evaluate Bin(N, p) densities, use dbinom (x, N, p) . The cdf F(u) can be eval-
uated as pbinom (u, N, p) where p in pbinom stands for probability.

1.4 The Multinomial Distribution

To evaluate Mult(N,p) densities for a vector p, at some vector of allow-
able scalars x, use dmultinom (x,N,p). The cdf F(u) can be evaluated as
pmultnom (u, N, p) where p in pmult inom stands for probability.

The probability for the table given in this section is given by

p=c(.12,.12,.04,.12,.18,.18,.06,.18)

x=c(5,7,4,6,8,7,3,10)

N=50

dmultinom(x,N,p)
This number is used in the 3rd edition (0.000002) but does not agree with the num-
ber in the 2nd edition (0.000007). I suspect I computed the 1997 book value on a
hand calculator canceling many of the terms in the factorials. The following code,
that I wrote with numerical stability in mind, does something similar and agrees
with dmultinom

Code 1.4.1.
a=c(50,47,46,11,43,42,41,39,

2 1 Introduction

38,37,34,33,31,29,
28,3,26,25,24,23,22,21,19,17,15,14,13,11)
b=c(.12°2,.1272,.12"2,.12°2,.12"2,.12"2,.12"2,.12,
.12,.12,.12, .04, .04, .04, .04, .06,.06,.06,.18"°3,
.18°3,.18°3,.1873,.1873,.18"3,.1873,.1872, .18, .18)
c=ax*b

prod(c)

1.4.1 Product-Multinomial Distributions

The probability for the table in this section can be computed as

Code 1.4.2.

pl=c(.3,.3,.1,.3)
p2=c(.3,.3,.1,.3)
x1=c(10,10,2,38)
x2=c(5,8,1,06)
N1=30

N2=20

dmultinom(x1l,N1,pl)*dmultinom (x2,N2,p2)

Again, dmultinom (x1,N1,pl) agreed with a numerically stable computation
but disagreed with what was in the second edition, so I revised the probability in the
book.

1.5 The Poisson Distribution

To evaluate Pois(A) densities, use dpois (x, lambda) . The cdf F(u) can be eval-
uated as ppois (u, lambda) where the first p in ppois stands for probability.

Chapter 2

Two-Dimensional Tables and Simple Logistic
Regression

2.1 Two Independent Binomials

A data file might contain three columns: supports, opposes, and the total number
surveyed but for this 2 x 2 table the simplest way to proceed is to just type in the
data.

Code 2.1.1.

Support=c (309, 319)

Oppose=c(191,281)

Total=Support+Oppose

prop.test (Support, Total, correct=FALSE)

The test statistic produced is the square of the test statistic in the book.
An alternative way to enter the data is to create a matrix of the admissions and
rejections.

Code 2.1.2.

OP <- matrix (c (Support, Oppose),ncol=2)
OP
prop.test (OP, correct=FALSE)

We could replace prop . test with chisqg. test (using the same arguments) and
get the same test but slightly different output and options. The chisqg.test pro-
cedure provides access to Pearson residuals and estimated expected values, things
that prop . test does not give.

Code 2.1.3.
fit <- chisqg.test (OP, correct=FALSE)
fit
fitSexpected
fitSresidual

4 2 Two-Dimensional Tables and Simple Logistic Regression

2.2 Testing Independence in a 2 x 2 Table

Although the sampling scheme differs from the previous section, so the theory is
different, the computations are exactly the same.

Code 2.2.1.

A=c(483,1101)

B=c(477,1121)

EX <— matrix(c(A,B),ncol=2)

EX

fit <- chisqg.test (EX, correct=FALSE)
fit

fitSexpected

fitSresidual

2.3 I x J Tables

EXAMPLE 2.3.0. With a table this small it is easy to type in the data values.
Code 2.3.0.

icu=c(3,36,29,30)

died=c(0,6,5,33)
oth=c(84,1069,228,286)

IJ <- matrix(c(icu,died, oth), ncol=3)
IJ

fit <- chisqg.test (IJ, correct=FALSE)
fit

fitS$Sexpected

fitSresidual

EXAMPLE 2.3.1. With a table this small it is easy to type in the data values.
Code 2.3.1.

E=c(21,3,7)

G=c(11,2,1)

F=c(4,2,1)

IJ <- matrix(c(E,G,F),ncol=3)

IJ

fit <- chisqg.test (IJ, correct=FALSE)
fit

fitSexpected

fitSresidual

2.5 Log-Linear Models for Two-Dimensional Tables 5

2.4 Maximum Likelihood Theory for Two-Dimensional Tables

2.5 Log-Linear Models for Two-Dimensional Tables

The only computing really done in this section is finding Figure 2.1. We begin with
the figure but we then fit the data as we previously have in this chapter and finally
fit the data using a log-linear model in glm. You should examine the output from
the two programs for fitting the data to identify that the fitted values and Pearson
residuals are identical.

Plot the figure.

Code 2.5.1.

rm(list = 1s())
cnt=c(34,31,19,23,61,19,23,39,16,17,16,12)
pa=c(,1,1,1,2,2,2,2,3,3,3,3)
clg=c(1,2,3,4,1,2,3,4,1,2,3,4)

LGCNT=matrix (log(cnt),nrow=4)

LGCNT

test=c (1,2, 3)

par (mfrow=c(1l,1))

plot (test,LGCNT[1,],type="n",ylab="1log(n)",ylim=c(2.5,4.25),
xaxt="n",xlab="Political Affiliation",lty=1, lwd=2)
axis(l,at=c(1,2,3),labels=c("Rep.","Dem.","Ind."))

lines (test,LGCNTI[1,],type="0o", 1lty=1, 1lwd=2)
lines (test,LGCNT[2,],type="0", 1lty=2, 1wd=2)
lines (test, LGCNT[3,], type="0",1lty=3, lwd=2)
lines (test,LGCNT [4,],type="0", 1lty=4, 1wd=2)
legend ("topright",c("College", "Letters",
"Engin.","Agri.","Educ."),lty=c(NA,1,2,3,4))

This is how we have previously fitted two-way tables in this chapter.

Code 2.5.2.

Rep=c(34,31,19,23)
Dem=c(61,19,23,39)
Ind=c(16,17,16,12)

CLG <- matrix (c (Rep,Dem, Ind),ncol=3)
CLG

fit <- chisqg.test (CLG, correct=FALSE)
fit

fitS$Sexpected

fitSresidual

This code fits an equivalent log-linear model. The count data are in one string
cnt with two other stings to identify the count’s political affiliation pa and col-

6 2 Two-Dimensional Tables and Simple Logistic Regression

lege c1g. The likelihood ratio test statistic G? (deviance) is listed as the “residual
deviance.” The data n, fitted values 71, and Pearson residuals are listed in a table
along with two things that the book does not introduce for some time, standardized
residuals and Cook’s distances. The code ends by illustrating a few useful (self-
explanitory once you see them) commands.

Code 2.5.3.

rm(list = 1ls())
cnt=c(34,31,19,23,61,19,23,39,16,17,16,12)
pa=c(1,1,1,1,2,2,2,2,3,3,3,3)
clg=c(1,2,3,4,1,2,3,4,1,2,3,4)

R assumes pa and clg contain real numbers. For glm,
we need to specify them as integers using "factor".
PA=factor (pa)

CLG=factor (clg)

Run glm and obtain summary tables

ts <- glm(cnt ~ PA + CLG,family = poisson)
tsp=summary (ts)

tsp

anova (ts)

Constructing additional output

rpearson=(cnt-ts$fit)/ (ts$Sfit) " (.5)
or rpearson = residuals (ts,type="pearson")
rstand=rpearson/ (1-hatvalues (ts)) " (.5)

infv = c(cnt,ts$fit,hatvalues (ts), rpearson,

rstand, cooks.distance (ts))
inf=matrix (infv, I (tsp$df[l]l+tspS$df[2]),6,dimnames =
list (NULL,c("n", "mhat","lev", "Pearson", "Stand.","C")))
inf

fitted(ts)

df.residual (ts)
sum(residuals (ts, type="pearson") "2)
deviance (ts)

residuals (ts,type="pearson")

The command residuals (ts) gives something called deviance residuals which
are the signed square roots of the components of the G? statistic. The com-
mand residuals (ts, type="response") gives the unstandardized resid-
uvals n - mhat. Yet another version of residuals are from the last stage
of the Newton-Raphson algorithm: residuals (ts, type="working") =
ts$residuals. Similarly, ts$fit = fitted(ts).

2.6 Simple Logistic Regression 7

2.6 Simple Logistic Regression

This code uses the logistic/logit model in glm and also includes the computation
of diagnostic quantities that are not discussed in Chapter 2. It computes two R’
values. One (R2) is the squared correlation between the observations and predicted
values rather than one based on G? statistics and the other (altR2) is based on using
deviances like error summs of squares in linear models.

Code 2.6.1.

rm(list = 1s())

oring.sllr <- read.table(
#"C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-3.DAT",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\tab2-1.dat",

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB2-1.dat"),

sep:" ", col .names=c ("Case", "Flt", "y", "S", "f", "nO"))

attach(oring.sllr)
oring.sllr
#summary (oring.sllr)

#Summary tables

or <- glm(y ~ x,family = binomial)
orp=summary (or)

orp

anova (or)

#prediction

new = data.frame (x=c(31,53))

predict (or, new, type="response")
rpearson=(y-or$fit)/ (orSfitx (l-ors$fit)) " (.5)
rstand=rpearson/ (1-hatvalues (or)) " (.5)

infv = c(y,or$fit,hatvalues (or), rpearson,

rstand, cooks.distance (or))
inf=matrix (infv, I (orp$df[l]+orpS$df[2]),6,dimnames =
list (NULL, c("y", "yhat","lev", "Pearson", "Stand.","C")))
inf

R2 = (cor(y,or$fit)) "2

R2

altR2=(or$Snull.deviance - or$deviance)/or$null.deviance
altR2

We now repeat the logistic regression computations by fitting a corresponding
log-linear model in glm.

Code 2.6.2.

8 2 Two-Dimensional Tables and Simple Logistic Regression

rm(list = 1ls())
oring.sllr <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB2-1.DAT"),

#"C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-3.dat",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\tab2-1.dat",
Sep:" "’ Col .nameSZc ("Case", "Flt", "f", "S", "X", "nO"))

attach (oring.sllr)
oring.sllr
#summary (oring.sllr)

Construct data for log-linear model

Sting out the failures followed by successes
cnt=c(f, s)

The temp for each element of cnt

XX=C (X, X)

The row of the table for each element of cnt
row=c (Case, Case)

The col. of the table for each element of cnt
For binary data, f+s=1

first 23 obs. are first col, 2nd 23 are 2nd col.
col=c (f+s,2« (f+s))

check that the table is correct

matrix (c(cnt, row,col),ncol=3)

Fit log-linear model

R=factor (row)

C=factor (col)

fit=glm(cnt ~ R + C + C:xx, family=poisson)
summary (fit)

anova (fit)

Compare the parameter estimates associated with C and C : xx to the logistic regres-
sion output. Also compare Gs.

2.7 Exercises

EXERCISE 2.7.4. Partitioning Tables. To perform Lancaster-Irwin partitioning,
you “need” to manipulate the data to create appropriate subtables. You can do that
in your favorite editor. In Exercise 8.4.3 and ANREG-II, Chapter 21 I discuss per-
forming Lancaster-Irwin partitioning by manipulating the subscripts used to define
log-linear models.

2.7 Exercises 9

EXERCISE 2.7.5. Fisher’s Exact Test.
Commands for performing this testinclude £isher.test and exact2x2. These
commands are also discussed in Chapter 14.

EXERCISE 2.7.6. Yule’s Q.
The data should be a 2 x 2 matrix of counts which can be inputed into the program
Yule of the library psych as Yule (data, Y=False).

EXERCISE 2.7.7. Freeman-Tukey Residuals.
You can compute these yourself, or use FTres from the package kequate. Alter-
natively, you should be able to use the packages from the next exercise.

EXERCISE 2.7.8. Power Divergence Statistics. Examine the program powerDivStat
from the package MSCquartets or the program MDPD from the package RTDE.

EXERCISE 2.7.10. Testing for Symmetry.
Use the command nominal SymmetryTest.

EXERCISE 2.7.12. McNemar’s Test.
Input a matrix of count values into mcnemar.test.

Chapter 3

Three-Dimensional Tables

For an analysis of Example 3.0.1, see Example 10.2.6.

3.1 Simpson’s Paradox and the Need for Higher-Dimensional

Tables

3.2 Independence and Odds Ratio Models

Although log-linear models are not introduced until the next section, we use soft-

ware for fitting them now.

3.2.1 The Model of Complete Independence

EXAMPLE 3.2.1.
Code 3.2.1.

cnt=c (716
ii=c (1,1,
kk=c (1, 2,
jj=c (1,1,
II=factor
JJ=factor
KK=factor
sv <- glm

~ o~~~ NP =~
~

fitted(sv)

II+JJ+KK, family

= poisson)

11

12

3 Three-Dimensional Tables

sum(residuals (sv, type="pearson") "2)
deviance (sv)

df.residual (sv)
residuals (sv, type="pearson")

You might also be interested in the output from summary (sv) and anova (sv),
both here and elsewhere.

3.2.2 Models with One Factor Independent of the Other Two

EXAMPLE 3.2.2.

Code 3.2.2.
cnt=c(l6,7,15,34,5,3,1,1,3,8,1,3)
ii=c(1,1,1,1,1,1,2,2,2,2,2,2)
jj=c(1,2,1,2,1,2,1,2,1,2,1,2)
kk=c(1,1,2,2,3,3,1,1,2,2,3,3)
II=factor (ii)

JJ=factor (37J)

KK=factor (kk)

sv <- glm(cnt 7 II+JJ:KK,family = poisson)
fitted(sv)

sum (residuals (sv, type="pearson") "2)

deviance (sv)
df .residual (sv)
gchisg(.95,5)

For more of an analysis of Example 3.2.2, also see Example 10.2.6.

3.2.3 Models of Conditional Independence

EXAMPLE 3.2.3.

Code 3.2.3.
cnt=c(716,79,207,25,819,67,186,22)
ii=c(1,1,1,1,2,2,2,2)
kk=c(1,2,1,2,1,2,1,2)
jj=c(1,1,2,2,1,1,2,2)
II=factor (ii)

3.3 Iterative Computation of Estimates 13

JJ=factor (j7j)
KK=factor (kk)
sv <— glm(cnt

IT:JJ+II1:KK, family = poisson)

fitted (sv)
sum(residuals (sv, type="pearson") "2)
deviance (sv)

df .residual (sv)

3.2.4 A Final Model for Three-Way Tables

EXAMPLE 3.2.4.

Code 3.2.4.
cnt=c(350,150,60,112,26,23,19,80)
ii=c(1,1,1,1,2,2,2,2)
jj=c(1,2,1,2,1,2,1,2)
kk=c(1,1,2,2,1,1,2,2)

II=factor (ii)
JJ=factor)
)

i
(J
KK=factor (k
sv <- glm(cnt 7 II:JJ+II:KK+JJ:KK, family = poisson)

i
]
k

fitted(sv)

df.residual (sv)

sum (residuals (sv, type="pearson") "2)
deviance (sv)

For further analysis of Example 3.2.4, see Example 10.2.4.

3.3 Iterative Computation of Estimates

The generalized linear model procedure glm uses Newton-Raphson (iteratively
reweighted least squares). [The output refers to it as Fisher Scoring.]

To use iterative proportional fitting replace the glm command with the MASS
package command loglm. In the 1oglm command there is no need to specify a
family.

library (MASS)

myout = loglm(y =~ model)

myout

myout $df

14 3 Three-Dimensional Tables

Here the command line myout gives a convenient summary. The other post-glm
commands from the previous section all still work (with different forms for the
output) except df . residual (myout) needs to be replaced by myout $df.

loglm employs a somewhat cruder program 1oglin which is not to be con-
fused with a completely different program LogLin. loglin does not accept a
model as input but rather requires the marginal totals that are to be fitted from the
contingency table. Apparently, 1oglm uses the model to figure out the appropriate
marginal totals. As such, 1oglm seems to work only with ANOVA type models
(even though iterative proportional fitting can be made to work for arbitrary log-
linear models). In particular, it does not work for ACOVA type models. Quantitative
effects seem to be treated as factors and, although the output from the command
myout seems to give the correct degrees of freedom for treating the quantitative
effect as a factor, using anova (myout) seems to have big problems with getting
the degrees of freedom correct

3.4 Log-Linear Models for Three-Dimensional Tables

3.4.1 Estimation

The discussion in the book focuses on estimation based on the estimated expected
cell counts. g1lm uses the summary () command to produce estimates of the actual
model parameters. These can be quite complicated to use but the pattern of their use
is analogous to their use with linear models which is explained in ANREG-II and its
related computing document.

3.4.2 Testing Models

We now add the anova command to our fitting including its use for comparing
models.

EXAMPLE 3.4.1. The last residual deviances are what we want.

Code 3.4.1.
cnt=c(le6,7,15,34,5,3,1,1,3,8,1,3)
ii=c(1,1,1,1,1,1,2,2,2,2,2,2)
jj=c(1,2,1,2,1,2,1,2,1,2,1,2)
kk=c(1,1,2,2,3,3,1,1,2,2,3,3)
II=factor (ii)
JJ=factor (j7j)
KK=factor (kk)
sv <- glm(cnt = II+JJ+KK+JJ:KK,family = poisson)

3.4 Log-Linear Models for Three-Dimensional Tables 15

anova (sv)

EXAMPLE 3.4.2.

Code 3.4.2.
cnt=c(716,79,207,25,819,67,186,22)
ii=c(1,1,1,1,2,2,2,2)
kk=c(1,2,1,2,1,2,1,2)
jj=c(1,1,2,2,1,1,2,2)
II=factor (ii)
JJ=factor (j7j)
KK=factor (kk)
sv7 <- glm(cnt ~ II:JJ+II:KK+JJ:KK, family = poisson)
sv6 <- glm T II:JJ+II:KK,family = poisson)

sv5 <- glm(cnt 7 II:JJ+JJ:KK, family = poisson)

cnt 7 II:KK+JJ:KK, family poisson)

svd <- glm

~ o~ o~ o~~~ o~ —~ A~ U
Q
o]
o+

svl <- glm(cnt II+JJ:KK, family = poisson)
sv2 <- glm(cnt = JJ+II:KK, family = poisson)
sv3 <- glm(cnt 7 II:JJ+KK, family = poisson)
sv0 <- glm(cnt 7 II+JJ+KK, family = poisson)

tab7=c(7,df.residual (sv7),
sum(residuals (sv7, type="pearson") "2),

deviance (sv7),l-pchisg(deviance (sv7),df.residual (sv7)))
tab6=c (6,df.residual (svo),
sum(residuals (sv6, type="pearson") "2),

deviance (sv6), l-pchisqg(deviance (sv6),df.residual (sv6)))
tabb=c (5,df.residual (sv5),

sum (residuals (sv5, type="pearson") "2),

deviance (sv5), l-pchisg(deviance (sv5),df.residual (sv5)))
tabd4=c (4,df.residual (sv4),
sum(residuals (sv4, type="pearson") "2),

deviance (sv4), l-pchisqg(deviance (sv4),df.residual (sv4)))
tabl=c(l,df.residual (svl),
sum(residuals (svl, type="pearson") "2),

deviance (svl), l-pchisg(deviance (svl),df.residual (svl)))
tab2=c (2,df.residual (sv2),
sum(residuals (sv2, type="pearson") "2),

deviance (sv2),l-pchisqg(deviance(sv2),df.residual (sv2)))
tab3=c (3,df.residual (sv3),
sum(residuals (sv3, type="pearson") "2),

deviance (sv3), l-pchisqg(deviance (sv3),df.residual (sv3)))
tab0=c (0,df.residual (sv0),

sum (residuals (sv0, type="pearson") "2),

16 3 Three-Dimensional Tables

deviance (sv0), l-pchisg(deviance (sv0),df.residual (sv0)))

t (matrix (c(tab7,tab6, tab5,tab4,tabl, tab2,tab3,tab0),5,8))

anova (sv0, sv6)
gchisg(0.95, 2
anova (sv3, svb6
gchisg(0.95,1
anova (sv3, sv7

)
)
)
)

3.5 Product-Multinomial and Other Sampling Plans

3.5.1 Other Sampling Models

For performing exact tests, the package https://cran.r-project.org/
web/packages/exactLoglinTest/index.html was developed but seems
to have been removed from CRAN for not fixing reported problems. Other software
is reported for Exercise 2.7.5 on Fisher’s Exact Test.

For survey data the key R package seems to be survey which includes a pro-
gram svyglm that is similar to glm. UCLA Survey Data Analysis with R nicely
explicates the use of survey with the later material being more relevant to our
tasks.

3.6 Model Selection Criteria

When the book was originally written, software did not readily compute AIC
so A — g = AICq was used because it was easy to compute by hand from the
output df and G2. In R, for a fitted model, say svm, the computation below is
AICg=deviance (svm)-2xdf.residual (svm). Now AIC is part of R’s
standard output and can be manipulated as AIC (svm). The key point to notice
is that, for various models, differences between R’s AIC agree with the corre-
sponding differences between A — g, so they lead to the same ordering of models.

Code 3.6.1.

cnt=c(716,7
ii=c(1,1,
kk=c (1, 2,
ji=c (1,1,
II=factor
JJ=factor
KK=factor
sv7l <- gl

819,67,186,22)

[= G \ QST
~

IT:JJ+I1:KK+JJ:KK, family = poisson)

https://cran.r-project.org/web/packages/exactLoglinTest/index.html
https://cran.r-project.org/web/packages/exactLoglinTest/index.html
https://stats.oarc.ucla.edu/r/seminars/survey-data-analysis-with-r/

3.6 Model Selection Criteria

sv6 <- glm(cnt
sv5 <- glm(cnt
sv4d <- glm(cnt

(IT:JJ+I1:KK, family = poisson)
(
(
svl <- glm(cnt
(
(
(

IT:JJ+JJ:KK, family poisson)
IT:KK+JJ:KK, family = poisson)
II+JJ:KK, family = poisson)
JJ+IT:KK, family poisson)
IT:JJ+KK, family = poisson)
II+JJ+KK, family = poisson)

sv2 <- glm(cnt
sv3 <- glm(cnt
sv0 <- glm(cnt

tab7=c(7,df.residual (sv7), deviance(sv7),
deviance (sv7)-2xdf.residual (sv7),

((deviance (sv0)-deviance (sv7))/ (deviance (sv0))),
(1- (deviance (sv7) xdf.residual (svO0) /

(deviance (sv0) xdf.residual (sv7)))))

tab6=c (6,df.residual (sv6), deviance(svb6),
deviance (sv6)-2xdf.residual (svb6),

((deviance (sv0) -deviance (sv6))/ (deviance (sv0))),
(1- (deviance (sv6) *df.residual (svO0) /

(deviance (sv0) » df.residual (svo6)))))

tabb5=c (5,df.residual (sv5), deviance(sv)),
deviance (sv5) -2xdf.residual (sv5),

((deviance (sv0) -deviance (sv5)) / (deviance (sv0))),
(1- (deviance (sv5) *df.residual (svO0) /

(deviance (sv0)x df.residual (svb)))))

tabd4=c (4,df.residual (sv4), deviance(svi4),
deviance (sv4d)-2xdf.residual (svi4),

((deviance (sv0) -deviance (sv4)) / (deviance (sv0))),
(1- (deviance (sv4) xdf.residual (svO0) /

(deviance (sv0)x df.residual (sv4)))))
tabl=c(l,df.residual (svl), deviance(svl),
deviance (svl)-2xdf.residual (svl),

((deviance (sv0) -deviance (svl)) / (deviance (sv0))),
(1- (deviance (svl) xdf.residual (svO0) /

(deviance (sv0)x df.residual (svl)))))

tab2=c (2,df.residual (sv2), deviance(sv2),
deviance (sv2)-2xdf.residual (sv2),

((deviance (sv0) -deviance (sv2)) / (deviance (sv0))),
(1- (deviance (sv2) *df.residual (svO0) /

(deviance (sv0) x df.residual (sv2)))))

tab3=c (3,df.residual (sv3), deviance(sv3),
deviance (sv3)-2xdf.residual (sv3),

((deviance (sv0) —-deviance (sv3))/ (deviance (sv0))),
(1-(deviance (sv3) xdf.residual (sv0) /

(deviance (sv0) x df.residual (sv3)))))

tab0=c (0,df.residual (sv0), deviance (sv0),

18 3 Three-Dimensional Tables

deviance (sv0)-2+xdf.residual (sv0),

((deviance (sv0) —deviance (sv0))/ (deviance (sv0))),
(1- (deviance (sv0) xdf.residual (sv0) /

(deviance (sv0) * df.residual (sv0)))))

t (matrix (c(tab7,tab6, tab5,tab4,tabl, tab2,tab3,tab0),6,8))

In retrospect, I probably should have created an R function for computing A —g. R
functions are used in Chapter 13.

3.7 Higher-Dimensional Tables

Muscle tension changes.

Code 3.7.1.

rm(list = 1s())

tense <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/Example3-7-1.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-10a.dat",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Example3-7-1.dat",

Sep:" "’ COl .nameS:C ("y", "Tn", "wt", "MS", "Dr"))
attach (tense)
tense

#summary (tense)

W
M
D

W=factor
M=factor
D=factor
T=factor

(
(
(
(T
m7 <- glm(

(

(

)
)
)
)
T T:W:M+T:W:D+T:M:D+W:M:D, family = poisson)
T:W+T:M+T:D+W:M+W:D+M:D, family poisson)
T+ W+ M + D, family = poisson)

t
S
r
n
Yy
md <- glm(y
m0 <- glm(y
df=c (m7$df.residual, m4$df.residual, m0Sdf.residual)
G2=c (m7Sdeviance,m4S$Sdeviance, m0Sdeviance)
A2g=G2— (2+df)
modelm=c (df, G2,A2q)
model=matrix (modelm, 3, 3,
dimnames=1ist (NULL,c ("df","G2", "A-g")))
model

You can also get the key statistics from the following commands

Code 3.7.2.

3.8 Exercises 19

m7 <- glm(y T+WxM+T*WxD+T+*MxD+WxM+D, family=poisson)
m7p=summary (m7)

m7p

anova (m7)

What you want is in the last 2 columns. R is fitting the models sequentially, adding
in each term of the model.

See Section 4.6 for the Abortion Opinion data.

3.8 Exercises

EXERCISE 3.8.9. The Mantel-Haenszel Statistic.
Use mantelhaen.test.

Chapter 4
Logistic Regression

The base R program g1m fits generalized linear models including logistic/logit mod-
els. We will focus on that.

Christensen (2015, Chapter 20) discusses some of the specialized features avail-
able from some software written specifically for logistic regression. In particular, he
has code for the SAS and Minitab logistic regression programs. His corresponding
R code is at R-ANREGII

The text does not include discussion of incorporating penalty functions (regular-
ization) as discussed in Christensen (2019, Chapter 13). glm does not incorporate
this option except through augmenting the data. Support vector machines are an al-
ternative to logistic regression and are also discussed in Christensen (2019, Chapter
13) and its R companion R-ALMIII

4.1 Multiple Logistic Regression

This code includes diagnostic quantities that are not discussed until a few sections
later. This fits the full model, the other fitted models are easy.

Code 4.1.1.

rm(list = 1ls())

chap.mlr <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/CHAPMAN.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\chapman.dat",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\chapman.dat",
sep="",col.names=

c("Case","Ag","s","D","Ch","H", "W","y"))

attach (chap.mlr)

chap.mlr
#summary (chap.mlr)

21

https://www.stat.unm.edu/~fletcher/MinitabCode.pdf
https://www.stat.unm.edu/~fletcher/Rcode.pdf
https://www.stat.unm.edu/~fletcher/R-ALMIII.pdf

22

4 Logistic Regression

#Summary tables

cm <- glm(y =~ Ag+S+D+Ch+H+W, family = binomial)
cmp=summary (cm)

cmp

#anova (cm)

Diagnostics
rpearson=(y-cm$fit)/ (cm$Sfit* (1-cm$fit)) " (.5)
rstand=rpearson/ (1-hatvalues (cm)) " (.5)
infv = c(y,cm$fit, hatvalues (cm), rpearson,

rstand, cooks.distance (cm))
inf=matrix (infv, I (cmp$df[l]+cmpS$df[2]),6,dimnames =
list (NULL,c("y","yhat","lev", "Pearson", "Stand.","C")))
inf

Tests against Model (1)
cmAg <- glm(y ~ Ag,family = binomial)
anova (cmAg, cm)

#Variations on AIC

g=400=200%*2

Ag=AIC (cmAg)-400
Agl=deviance (cmAg) -2+xdf.residual (cmAg)

c (Ag,Aql)

Astar=258.1+Aqg

out=

c(df.residual (cmAg) ,deviance (cmAg) ,Aq,Astar,AIC (cmAg))
matrix (out,1,5,dimnames =

list (NULL,c ("df","G2", "A-2g", "Ax", "AIC")))

The rest of the output is just reapplying modifications of the fitting code and apply-
ing the formulas

Code for Figure 4.1 follows.

Code 4.1.2.

x=seq (20,70, .5)

w =-4.5173+(0.04590%x)+(0.00686%x140)+(-0.00694%90) +
(0.00631%200)+(-0.07400%69)+(0.02014%200)

wl=-4.5173+(0.04590%x)+(0.00686%140)+(-0.00694%x90) +
(0.00631x300)+(-0.07400%69)+(0.02014%200)

y=exp (w) / (1+exp (w))

yl=exp (wl)/ (1+exp (wl))

plot (x,yl,type="1",xlim=c (20,70),ylim=c(0,.5),
ylab="Fitted", xlab="Age", lty=2)

lines (x,y,type="1",1ty=1)

4.3 Logistic Regression Diagnostics 23

legend ("topleft",c("Chol","300","200"),1lty=c(NA,2,1))

4.2 Measuring Model Fit

This section of the book does not propose a formal test but it is quite similar to the
widely programmed Hosmer and Lemshow lack-of-fit test, which doesn’t work (at
least not when compared to a x as it is usually programmed).

4.3 Logistic Regression Diagnostics

A table of diagnostics was given in Section 1. We can demonstrate the one-step
algorithms.

First we give the standard fitting algorithm. Note that this gives slightly different
standard errors than the software I used for the book.

Code 4.3.1.

rm(list = 1s{())

chap.mlr <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/CHAPMAN.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\chapman.dat",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\chapman.dat",
sep="",col.names=

c("case","Ag","s","D","Ch", "H", "W", "y"))

attach (chap.mlr)
chap.mlr
#summary (chap.mlr)

#Summary tables

cm <- glm(y =~ Ag+Ch+W, family = binomial)
cmp=summary (cm)

cmp

#anova (cm)

Diagnostics
rpearson=(y-cm$fit)/ (cm$fit* (1-cm$Sfit)) " (.5)
rstand=rpearson/ (l1-hatvalues (cm)) " (.5)
infv = c(y,cm$fit, hatvalues (cm), rpearson,

rstand, cooks.distance (cm))
inf=matrix (infv, I (cmpS$df[l]+cmpS$df[2]),6,dimnames =
list (NULL, c("y", "phat","lev", "Pearson", "Stand.","C")))

24 4 Logistic Regression
inf

Now we construct the one-step model. Remember that this program is only for
binary counts. Although there were some slight differences in the glm fit, these agree
with the table in the book.

Code 4.3.2.

RWT=cmS$fit* (1-cm$fit)

YO=log(cm$fit/ (1-cm$fit))

Y=Y0+ (y—cm$fit) /RWT

The following # command should be and is a
nearly perfect fit.

#summary (Im (Y0 ~ Ag+Ch+W,weight=RWT))
one=1lm (Y ~ Ag+Ch+W,weight=RWT)

The following gives the leverages and Cook’s distances from the one-step procedure
and compares them to the values from the glm procedure for the 4 cases discussed
in the book.

Code 4.3.3.

rtMSE=summary (one) $sigma

levone=hatvalues (one)
cookone=(cooks.distance (one) *xrtMSE"~2)
c(levone[41],levone[86],levone[126],levone[192])

c (hatvalues (cm) [41], hatvalues (cm) [86],

hatvalues (cm) [126], hatvalues (cm) [192])

c (cookone[41], cookone[86], cookone[126], cookone[192])
c(cooks.distance(cm) [41], cooks.distance (cm) [86],
cooks.distance (cm) [126], cooks.distance (cm) [192])

To delete case 41 and refit, use v [41] =NA although you might want to do this
on a copy of y rather than on vy itself.

4.4 Model Selection Methods

4.4.1 Stepwise logistic regression

This chooses models based on the AIC criterion, so they may be a bit different from
the book. As illustrated earlier, read in the data and obtain the g1m output.

Code 4.4.1.

ch = glm(y Ag+S+D+Ch+H+W, family=binomial)
chstep <- step(ch, direction="backward")
chstep

4.4 Model Selection Methods 25

Other “directions” include both and forward but forward requires additional
commands, see Section 10.3. You get similar results by replacing the g1lm output in
ch with the 1m output from

chl = Im(yy =~ Ag+S+D+Ch+H+W,weights=rtw)

where yy and rtw are defined in the next subsection. The R package StepReg
can use P values rather than AIC.

4.4.2 Best subset logistic regression

Sources for performing best subset logistic regression include the packages
bestglm (by A.L. McLeod, Changjiang Xu and Yuanhao Lai) and glmulti,
cf. Calcagno and de Mazancourt (2010). Both seem to do full, rather than one-
step, fits of the models although glmulti can use a genetic algorithm. StepReg
currently uses a method similar to SAS based on Score tests.

The method in the book is a faster approximate method that uses the Leaps and
Bounds algorithm used with standard regression. The method starts with the full
model and performs only one step of the Newton-Raphson/Iteratively Reweighted
Least Squares algorithm to determine the best models. This is a far better procedure
than the score test method used by SAS Proc Logistic because it starts from the full
model, which should be a good model, rather than the intercept-only model used by
the score test.

Code 4.4.2.

rm(list = 1s())

chap <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/CHAPMAN.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\chapman.dat",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\chapman.dat",
sep="",col.names=

c("Case","Ag","3","D","Ch", "H","W","y"))

attach (chap)

chap

summary (chap)

#Summary tables

ch = glm(y ~ Ag+S+D+Ch+H+W, family=binomial)
chp=summary (ch)

chp

#anova (ch)

rwt=ch$fitx (1l-ch$fit)
yy=log (ch$fit/ (1-ch$fit))+ (y-chs$fit) /rwt

26 4 Logistic Regression

If Bin(n_i,p_1i)s have n_i different from 1,
multiply rwt and second term in yy by by n_1i

chl <- Im(yy =~ Ag+S+D+Ch+H+W,weights=rwt)
chlp=summary (chl)

chlp

anova (chl)

Note the agreement between the glm and 1lm fits!!!

assign number of best models and number of
predictor variables.

#install.packages ("leaps")

library (leaps)

x <= model.matrix(chl) [,-1]

nb=3

xp=chlps$df[1]-1

dfe=length(y)- 1- c(rep(l: (xp—1),each=nb), xp)
g <- regsubsets (x,yy,nbest=nb,weights=rwt)

gg = summary (g)

tt=c(gg$rsq, ggSadjr2,ggsScp, sqrt (ggSrss/dfe))
ttl=matrix (tt,nbx (xp-1)+1,4,

dimnames = list (NULL,c ("R2","AdjR2","Cp", "RoOtMSE")))
tabl=data.frame (ttl, gg$Soutmat)

tabl

4.5 ANOVA Type Logit Models

The R code below gives slightly different answers than were given in the 1997
version of the book. While I presume the R code is probably more accurate than
the book (I presume that software accuracy has improved over the last 25 years), I
decided not to change the numbers in the book as an object lesson. Regardless of the
program used, the results are from an iterative procedure, and are subject to arbitrary
criteria such as what it means for a sequence to have converged. Getting slightly
different numbers from different software is to be expected. Substantive conclusions
about the data should never be so precise as to depend on such slight differences.
We now generate Table 4.2.

Code 4.5.1.

tense <- read.table

url ("http://stat.unm.edu/ fletcher/LLM/DATA/
Example3-7-1-logistic.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-10.dat",

4.5 ANOVA Type Logit Models 27

#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Example3-7-1-logistic.dat",
sep="",col.names=c ("High", "Low", "Wt", "Ms", "Dr"))

attach (tense)

tense

#summary (tense)

W=factor (Wt)
M=factor (Ms)
D=factor (Dr)
T=cbind (High, Low)
sv7 <-= glm(T ~ W:M+W:D+M:D, family = binomial)
sve <- glm(T = W:M+W:D, family binomial)
sv5 <- glm(T W:M+M:D, family = binomial)
svd <- glm(T ~ W:D+M:D, family = binomial)
svl <- glm(T ~ W+M:D, family = binomial)
sv2 <— glm(T ~ M+W:D,family = binomial)
sv3 <— glm(T ~ W:M+D,family = binomial)

T)

T

T

T

(
(
(
(
(
(
sv0 <- glm(T ~ W+M+D, family = binomial
svd <- glm(T =~ W+M, family = binomial)

svm <- glm(T = W+D, family = binomial)

svw <- glm(T ~ M+D,family = binomial)
tab7=c(7,df.residual (sv7),deviance (sv7),
l-pchisg(deviance (sv7),df.residual (sv7)),
-2+df.residual (sv7)+deviance (sv7))

tab6=c (6,df.residual (sv6),deviance (sv6),
l-pchisqg(deviance (sv6),df.residual (sv6)),
-2+xdf.residual (sv6)+deviance (svb6))

tab5=c (5,df.residual (sv5),deviance (svb),
l-pchisg(deviance (sv5),df.residual (sv5)),
—-2+«df.residual (sv5)+deviance (sv5))
tabd=c(4,df.residual (sv4),deviance (svd),
l-pchisqg(deviance (sv4) ,df.residual (sv4d)),
-2+xdf.residual (sv4) +deviance (sv4))
tabl=c(1l,df.residual (svl),deviance (svl),
l-pchisqg(deviance (svl) ,df.residual (svl)),
-2+«df.residual (svl)+deviance (svl))
tab2=c(2,df.residual (sv2),deviance (sv2),
l-pchisqg(deviance (sv2),df.residual (sv2)),
—-2+df.residual (sv2)+deviance (sv2))

tab3=c (3,df.residual (sv3),deviance (sv3),
l-pchisqg(deviance (sv3),df.residual (sv3)),
-2+«df.residual (sv3)+deviance (sv3))

tab0=c (0,df.residual (sv0),deviance (sv0),

28 4 Logistic Regression

l-pchisqg(deviance (sv0),df.residual (sv0)),
—-2+xdf.residual (sv0)+deviance (sv0))

tabd=c (2,df.residual (svd),deviance (svd),

l-pchisg(deviance (svd),df.residual (svd)),
—-2xdf.residual (svd) +deviance (svd))

tabm=c (3,df.residual (svm),deviance (svm),

l-pchisqg(deviance (svm) ,df.residual (svm)),
-2+xdf.residual (svm)+deviance (svm))

tabw=c (0,df.residual (svw),deviance (svw),

l-pchisqg(deviance (svw) ,df.residual (svw)),
-2+«df.residual (svw) +deviance (svw))

t (matrix (c(tab7,tab6, tab5, tab4, tab3,
tab2,tabl, tab0, tabd, tabm, tabw),5,11))

anova (sv0, svo6)
gchisqg(0.95,2)
anova (sv3, svb)
gchisqg(0.95,1)
anova (sv3,sv7)

Generate Tables 4.3 and 4.4.

Code 4.5.2.

m(list = 1s¢())

tense <- read.table(
url ("http://stat.unm.edu/ fletcher/LLM/DATA/Example3-7-1.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-10a.dat",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Example3-7-1.dat",

Sep:" Il, COl .names=c ("y", "Tnll, "Wt", "MS", "Dr"))
attach (tense)
tense

#summary (tense)

W=factor (Wt)

M=factor (Ms)

D=factor (Dr)

T=factor (Tn)

m6 <- glm(y 7 T:W + T:M:D + W:M:D,family = poisson)
fitted (mo6)

c(fitted(m6) [1]/fitted(m6) [9], fitted(m6) [2]/
fitted(mo6) [10], fitted (m6) [3]/fitted(m6) [11],
fitted(m6) [4]/fitted(m6) [12], fitted (m6) [5]/
fitted(m6) [13], fitted(m6) [6]/fitted(m6) [14],
fitted(m6) [7]/fitted (m6) [15], fitted(m6) [8]/
fitted(mo6) [16], fitted(m6) [1]/fitted(m6) [9])

4.5 ANOVA Type Logit Models 29

This obtains Table 4.4 directly from the logit model.

Code 4.5.3.

rm(list = 1s{())

tense <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/Example3-7-1-logistic.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-10a.dat",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Example3-7-1-logistic.dat",

sep="",col.names=c ("High", "Low", "Wt", "Ms", "Dx"))
attach (tense)
tense

#summary (tense)

W=factor (Wt)

M=factor (Ms)

D=factor (Dr)

T=cbind (High, Low)

ts <- glm(T ~ W + M«D, family = binomial)
tsp=summary (ts)

tsp

anova (ts)

fitted(ts)/(l-fitted(ts))
This obtains Tables 4.5 and 4.6 directly from the logit model.

Code 4.5.4.

rm(list = 1s())

tense <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/Example3-7-1-logistic.DAT"),

#"C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-10a.dat",

#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Example3-7-1-logistic.dat",
sep="",col.names=c ("High", "Low", "Wt", "Ms", "Dr"))

attach (tense)

tense

#summary (tense)

W=factor (Wt)

M=factor (Ms)

D=factor (Dr)

T=cbind (High, Low)

ts <- glm(T ~ W:M + M*D,family = binomial)
tsp=summary (ts)

tsp

anova (ts)

30 4 Logistic Regression

fitted(ts)/ (1-fitted(ts))

4.6 Logit Models For a Multinomial Response

This code analyzes the data in Table 3.1 to obtain Table 4.7.
Code 4.6.1.

rm(list = 1s{())

abt <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB3-1.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\TAB21-4.DAT",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\ABORT.DAT",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TAB3-1.DAT",

Sep:" l|’ COl .nameszc ("RH, "Sll’ "A", "O", I'y"))
attach (abt)
abt

#summary (abt)

r=factor (R)

o=factor (0)

s=factor (S)

a=factor (4)

ml5 <- glm(y ~ r:s:atr:s:otr:o:a+s:o:a ,family = poisson)
ml4 <- glm(y 7 r:s:a + r:s:o + r:o:a ,family = poisson)
ml3 <- glm(y 7 r:s:a + r:s:o + s:o0:a ,family = poisson)
ml2 <- glm(y 7 r:s:a + r:o:a + s:o0:a ,family = poisson)
mll <- glm(y ~ r:s:a + r:s:o + o:a ,family = poisson)
ml0 <- glm(y ~ r:s:a + r:o:a + s:o ,family = poisson)
m9 <- glm(y ~ r:s:a + s:o0:a + r:o ,family = poisson)
m8 <- glm(y ~ r:s:a + r:o + s:0 + o:a,family = poisson)
m7 <- glm(y 7 r:s:a + r:o + s:o ,family = poisson)

mé6 <- glm(y ~ r:s:a + r:o + o:a ,family = poisson)

m5 <- glm(y ~ r:s:a + s:o + o:a ,family = poisson)

m4 <- glm(y ~ r:s:a + r:o ,family = poisson)

m3 <- glm(y 7 r:s:a + s:o ,family = poisson)

m2 <- glm(y 7 r:s:a + o:a ,family = poisson)

ml <- glm(y 7 r:s:a + o ,family = poisson)

df=c (ml15$df.residual,ml4s$df.residual, ml3$df.residual,
ml2$df.residual, mll1$df.residual, ml0s$df.residual,
m9Sdf.residual, m83$df.residual,

m7$df.residual, m6$df.residual, m5$df.residual,

4.6 Logit Models For a Multinomial Response 31

m4S$df.residual, m3$df.residual, m2$df.residual,
mlS$Sdf.residual)

G2=c (ml5%deviance,ml4Sdeviance, ml3Sdeviance,
ml2Sdeviance,mll$Sdeviance,ml0Sdeviance, m9$deviance,
m8S$Sdeviance,m75deviance, m6Sdeviance, mbSdeviance,
m4Sdeviance, m3$deviance, m2Sdeviance, ml$deviance)

A2g=G2- (2*df)

modelm=c (df, G2,A2q)

model=matrix (modelm, 15, 3, dimnames =
list (NULL,c("df","G2","A-qg")))

model

We now get the output for Table 4.8 of the book. When looking at the estimated
expected cell counts and Pearson residuals associated with the next group of com-
mands, it is important to notice that in the data file the White Males are listed in a
different order than the other race-sex groups.

Code 4.6.2.

rm(list = 1s())

abt <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB3-1.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\TAB21-4.DAT",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Tab3-1.dat",

Sep:" ll’ COl .names=c ("RH, "Sll’ "A", "O", I'y"))
attach (abt)
abt

#summary (abt)

R
o
S

r=factor (
o=factor (
s=factor (
a=factor (A
mll <- glm(y 7 r:s:a + r:s:o + o:a ,family = poisson)

)
)
)
)

mlls=summary (mll)
mlls
anova (mll)

rpearson=(y-ml1$fit)/ (ml11$fit) " (.5)

rstand=rpearson/ (1-hatvalues (mll)) " (.5)

infv = c(y,ml1$fit, hatvalues(mll), rpearson, rstand,
cooks.distance (mll))

inf=matrix (infv, I (mllsS$Sdf[1]+mllsS$df[2]),6,dimnames =
list (NULL,c("y","yhat","lev", "Pearson", "Stand.","C")))

32 4 Logistic Regression
inf
To fit log-linear models to the data with “undecided”s eliminated, use the data
file Tab3-1del. To fit logistic models to either the data with “undecided”s elimi-
nated or to the “decided-undecided” data, use the data file Tab3-1-logistic.It
contains column labels that need to be removed before this code will work. For

the “decided-undecided” data you need to construct a new variable for the number
of trials, Total2=Total+Und and use that as the weight variable in, say,

yy=Total/Total2
abd <- glm(yy "R:S+A, family=binomial,weights=Total2)

We now examine fitting the logistic models (4.6.5) through (4.6.7) from the book
to the data with “undecideds” eliminated.

Code 4.6.3.

rm(list = 1ls())

abop <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB3-1-logistic.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-15.dat",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\tab3-1-logistic.dat",
sep="",col.names=
c("Case","Race", "Sex", "Age", "Yes", "No", "Total", "Und"))

attach (abop)

abop

#summary (abop)

#Summary tables

R=factor (Race)

S=factor (Sex)

A=factor (Age)

y=Yes/Total

Model (4.6.5)

ab <- glm(y"R:S+A, family=binomial,weights=Total)
abp=summary (ab)

abp

odds=abs$fit/ (1-ab$fit)
odds

Model (4.6.6)

ab6 <- glm(y "R:S+Age, family=binomial,weights=Total)
abp=summary (abb6)

abp

anova (ab6, ab5)

Model (4.6.7)

4.7 Logistic Discrimination and Allocation 33

Men=Racex* (Sex—-1)

m=factor (Men)

ab7 <- glm(y " m+tA, family=binomial, weights=Total)
abp=summary (ab7)

abp

anova (ab7, abb)

Model (4.6.8)

ab8 <- glm(y m+Age, family=binomial,weights=Total)
abp=summary (ab8)

abp

anova (ab8, ab5)

odds=ab8sfit/ (1-ab8$fit)
oddstable=matrix (odds, 6,4, dimnames =

list (NULL,c ("Male", " White Female",
" Male"," Nonwhite Female")))
oddstable

Also see multinomin library nnet and polr in MASS

4.7 Logistic Discrimination and Allocation

The first thing we have to do is create the 3 x 21 table illustrated in the book. We
then fit the model and finally we get the entries for the book’s Tables 4.11 and 4.12.

Code 4.7.1.

rm(list = 1s{())

cush <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB4-11.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\TAB21-11.DAT",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TAB4-11.DAT",

sep="",col.names=c ("Syn", "Tetra", "Preg"))
attach (cush)
cush

#Create a 3 x 21 table of 0-1 entries,

feach row has 1’s for a different type of syndrome
j=rep(seq(l,21),3)
i=c(rep(1l,21),rep(2,21),rep(3,21))

Tet=c (Tetra, Tetra, Tetra)

Pre=c (Preg, Preg, Preq)

y=c (Syn, Syn, Syn)

y[l:6]=1

4 Logistic Regression

]

]
38:58]=
y[59:63]=
datal=c(y,1i, j, Tet,Pre)
datl=matrix (datal, 63,5, dimnames =

list (NULL,c("y", "i", "3","Tet™", "Pre")))
datl

#Fit the log-linear model for logistic discrimination.
i=factor (i)

j=factor (j)

lp=log (Pre)

lt=1log (Tet)

1d <= glm(y " 1 + j + i:1t +i:lp ,family = poisson)
ldp=summary (1d)

1ldp

anova (1d)

Table 4.12

g=1d$fit

Divide by sample sizes
pl=1dS$fit[1:21]/6
p2=1d$fit[22:42]/10
p3=1d$fit[43:63]/5

Produce table

estprob = c(Syn,pl,p2,p3)
EstProb=matrix(estprob,21,4,dimnames =
list (NULL,c ("Group", "A", "B","C")))
EstProb

Table 4.13 Proportional prior probabilities.
post = c(Syn,1ds$fit)

PropProb=matrix (post,21,4,dimnames =

list (NULL, c ("Group", "A", "B","C")))

PropProb

Table 4.13 Equal prior probabilities.
p=pl+p2+p3

ppl=pl/p

pp2=p2/p

pp3=p3/p

post = c(Syn,ppl,pp2,pp3)
EgProb=matrix (post, 21, 4,dimnames=

4.8 Exercises

liSt (NULL, c("Group", "A", "B", "C")))
EgProb

4.8 Exercises

35

Chapter 5

Independence Relationships and Graphical
Models

There is no computing in this entire chapter.

5.1 Model Interpretations

5.2 Graphical and Decomposable Models
5.3 Collapsing Tables

5.4 Recursive Causal Models

5.5 Exercises

37

Chapter 6
Model Selection Methods and Model Evaluation

6.1 Stepwise Procedures for Model Selection

No computing.

6.2 Initial Models for Selection Methods

6.2.1 All s-Factor Effects

Code 6.2.1.

rm(list = 1s())

tense <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/Example3-7-1.DAT"),

#"C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-10a.dat",

#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Example3-7-1.dat",
sep="",col.names=c("y","Tn", "Wt", "Ms", "Dxr"))

attach (tense)

tense

#summary (tense)

W=factor (Wt)
M=factor (Ms)
D=factor (Dr)

n)
y 7 T:W:M+T:W:D+T:M:D+W:M:D, family=poisson)
y 7 T:W+T:M+T:D+W:M+W:D+M:D, family=poisson)
y T+ W+ M+ D,family = poisson)

T=factor (T
m7 <- glm(
m4 <- glm(
m0 <- glm(

df=c (m7$df.residual,md4$df.residual, m0Sdf.residual)

39

40 6 Model Selection Methods and Model Evaluation

G2=c (m7S$deviance, m4$deviance,m0Sdeviance)
A2g=G2- (2*df)

modelm=c (df, G2, A2q)
model=matrix (modelm, 3, 3, dimnames=

list (NULL,c("df","G2","A-g")))

model

6.2.2 Examining Each Term Individually

No computing.

6.2.3 Tests of Marginal and Partial Association

The computations are simple but repetitive. The problem is identifying the models
you need to fit. The beauty of BMDP 4F is that it did these for you automatically. I
am not about to write a front end that determines all of these.

Apparently, some versions of SAS prior to SAS 9.4M2 (2014) allowed you
to run BMDP procedures, https://v8doc.sas.com/sashtml/unixc/
20397594 . htm. Since 2017 it seems that BMDP has been unavailable.

6.2.4 Testing Each Term Last

EXAMPLE 6.2.5.
Code 6.2.2.

rm(list = 1s())

tense <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/Example3-7-1.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-10a.dat",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Example3-7-1.dat",

Sep:" "’ COl .nameS:C ("yH, "Tn", "Wt", "MS", "Dr"))
attach (tense)
tense

#summary (tense)

W=factor (Wt)
M=factor (Ms)
D=factor (Dr)

https://v8doc.sas.com/sashtml/unixc/z0397594.htm
https://v8doc.sas.com/sashtml/unixc/z0397594.htm

6.2 Initial Models for Selection Methods 41

T=factor (Tn)
yy=log (y)

m00 = 1lm(yy TxWxM=*D)
mOa=anova (m00)

SS=mOa [, 2]
tab=c (4+sqrt (SS[-16]),4xsqrt (SS[-16]) /sqgrt (sum(1l/y)))

matrix (tab,15,2,dimnames = list (NULL,c("Est", "z")))

For all the weakness of using what is essentially a normal approximation for
count data, because the linear model is balanced, the results in the above table do
not depend on the order in which effects are fitted. R will very conveniently print out
a similar ANOVA table of G? values (deviance reductions) and for this example the
results are very similar. The only problem with the output for the code below is that
the model (T + W + M + D) "4 which is coded below gives different results
than the model (D + M + W + T) "4 or any other permutation of the factors.
(Check the higher-order interactions.) Still, for these data the basic story remains
pretty much the same regardless of the order. There is no guarantee that that will
always happen. (Similar to tilde’s, copying caret ~ from a pdf file to R may require
replacing the symbol.)

Code 6.2.3.

rm(list = 1s{())

tense <- read.table
url ("http://stat.unm.edu/ fletcher/LLM/DATA/Example3-7-1.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\tab20-10a.dat",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Example3-7-1.dat",

Sep:" ", col .names=c ("y", "'I‘n", "Wt", "MS", "Dr"))
attach (tense)
tense

fsummary (tense)

W=factor (
M=factor (
D=factor (
T=factor (
m8 <- glm(y ~ (T + W+ M + D) "4,family = poisson)
anova (m8)

42 6 Model Selection Methods and Model Evaluation

6.3 Example of Stepwise Methods

The examples in the book involve just fitting all of the models and accumulating
the results. The following subsections discuss the use of R’s step command. You
will notice that step applied to ANOVA type models does not eliminate redundant
terms.

6.3.1 Forward Selection

The following code runs and gives results not too dissimilar from the book. It is
hard for me to care enough about forward selection to worry about the differences.
The main differences are due to R basing decisions on AIC values rather than other
things. It can probably vary the results by changing the k parameter discussed in the
next subsection.

Code 6.3.1.

rm(list = 1s{())

abt <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB3-1.DAT"),

#"C:\\E-drive\\Books\\ANREG2\\newdata\\TAB21-4.DAT",

#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Tab3-1.dat",
sep="",col.names=c ("R","S","A","0O","y"))

attach (abt)

abt

#summary (abt)

R
O]
S

r=factor
o=factor
s=factor
a=factor

(R)
(0)
(8)
(A)

A

svr <- glm(y ~ r + s + o + a ,family = poisson)
step(svr,y ~ r*xsxoxa, direction="forward")

6.3.2 Backward Elimination

The book considers applying backward elimination to the initial model containing
all two-factor terms. R’s step command decides what to delete based on the AIC
criterion rather than the P values used in the book. The default step procedure drops
one less two-factor term than the procedure in the book. You can arrive at the same
model that the book gets by redefining AIC. R includes a k parameter for AIC where

6.4 Aitkin’s Method of Backward Selection 43

the default value (and the true definition of AIC) is k=2. If you reset k=2.5, you
arrive at the same final model as the book.

Code 6.3.2.

rm(list = 1s{())

abt <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB3-1.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\TAB21-4.DAT",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Tab3-1.dat",

Sep:" ll, COl .names=c (IIR", "Sll, IIA", "O", I'y“))
attach (abt)
abt

#summary (abt)

R
O]
S

r=factor
o=factor
s=factor
a=factor

(R)
(0)
(8)
(A)

A

svf <- glm(y - (r + s + o + a)”2 ,family = poisson)
svif <- step(svf, direction="backward")
svif.stp$anova

step(svf, direction="backward",k=2.5)

step(svf, direction="backward",test="LRT")

The test="LRT" command gets G>s printed but the process still stops based on
the (possibly modified) AIC. You could perhaps adjust the k= option to go past your
stopping point and then use the G? statistics to determine your stopping point.

You might find it interesting to see what the following code produces.

svif <- glm(y =~ r*sxoxa ,family = poisson)
svif.stp <- step(svff, direction="backward")
svif.stp$anova

6.4 Aitkin’s Method of Backward Selection

Computationally this is just fitting a lot of models and using pchisqg to obtain the
gammas.

44 6 Model Selection Methods and Model Evaluation

6.5 Model Selection Among Decomposable and Graphical
Models

Computationally this is just fitting a lot of models and perhaps using anova to
obtain differences. The trick is in selecting the models and I am not about to program
that for you.

6.6 Use of Model Selection Criteria

Code 6.6.1.

rm(list = 1s{())

abt <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB3-1.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\TAB21-4.DAT",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Tab3-1.dat",

Sep=" ", col .names=c ("R", "S", "A", "O"’ "y"))
attach (abt)
abt

#summary (abt)

r=factor (
o=factor (
s=factor(

(

sv6 <- glm(y r:s:o + o:a ,family = poisson)

sv5 <- glm(y 7 r:o + s:o + o:a ,family = poisson)
svd <- glm(y ~ r + s + o:a ,family = poisson)

sv3 <- glm(y ~ r:a + s + o:a ,family = poisson)
sv2 <- glm(y ~ r + s:o0 + o:a ,family = poisson)
svl <- glm(y ~ r:o + s + o:a ,family = poisson)
sv0) <- glm(y ~ r + s + o + a ,family = poisson)

tab6=c (6,df.residual (sv6), deviance(svb6),
deviance (sv6)-2+xdf.residual (svb6),

((deviance (sv0) —-deviance (sv6))/ (deviance (sv0))),
(1- (deviance (sv6) xdf.residual (sv0) /

(deviance (sv0) * df.residual (svo6)))))

tab5=c (5,df.residual (sv5), deviance (svbh),
deviance (sv5)-2xdf.residual (sv5),

((deviance (sv0) —deviance (sv5))/ (deviance (sv0))),

6.7 Residuals and Influential Observations 45

(1- (deviance (sv5) *df.residual (svO0) /

(deviance (sv0)x» df.residual (sv5)))))

tabd4=c (4,df.residual (sv4), deviance(svi4),
deviance (sv4)-2xdf.residual (svi4),

((deviance (sv0) —-deviance (sv4)) / (deviance (sv0))),
(1- (deviance (sv4) xdf.residual (svO0) /

(deviance (sv0)x df.residual (sv4)))))

tabl=c (3,df.residual (svl), deviance(svl),
deviance (svl)-2xdf.residual (svl),

((deviance (sv0) —-deviance (svl)) / (deviance (sv0))),
(1-(deviance (svl) xdf.residual (sv0) /

(deviance (sv0) » df.residual (svl)))))
tab2=c(2,df.residual (sv2), deviance (sv2),
deviance (sv2)-2xdf.residual (sv2),

((deviance (sv0)-deviance (sv2))/ (deviance (sv0))),
(1- (deviance (sv2) *df.residual (sv0) /

(deviance (sv0) x df.residual (sv2)))))
tab3=c(1l,df.residual (sv3), deviance(sv3),
deviance (sv3)-2xdf.residual (sv3),

((deviance (sv0)-deviance (sv3))/ (deviance (sv0))),
(1-(deviance (sv3) xdf.residual (sv0) /

(deviance (sv0) x df.residual (sv3)))))

t (matrix (c(tab6, tab5, tab4,tab3, tab2,tabl), 6,6))

6.7 Residuals and Influential Observations

Code 6.7.1.

rm(list = 1ls())

abt <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB3-1.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\TAB21-4.DAT",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Tab3-1.dat",

Sep:" "’ COl .nameSZC ("R", "Sll’ "A", "O", lly"))
attach (abt)
abt

#summary (abt)

R
o
S

r=factor
o=factor
s=factor

a=factor

(
(
(
(A

)
)
)
)

46 6 Model Selection Methods and Model Evaluation

mm <- glm(y 7 r:s:o + o:a ,family = poisson)
mms = summary (mm)

rpearson= (y-mm$fit) / (mm$fit) " (.5)

rstand=rpearson/ (1-hatvalues (mm)) " (.5)

infv = c(y,mm$fit, hatvalues (mm), rpearson, rstand,
cooks.distance (mm))

inf=matrix (infv, I (mms$df[1]+mmsS$Sdf[2]), 6,dimnames =

list (NULL,c("n", "mhat","lev", "Pearson", "Stand.","C")))

inf

index=c (1:72)

plot (index, hatvalues (mm), ylab="Leverages",
xlab="Index")

boxplot (rstand, horizontal=TRUE,
xlab="Standardized residuals")

plot (index, rstand, ylab="Standardized residuals",
xlab="Index")

ggnorm (rstand, ylab="Standardized residuals")

boxplot (cooks.distance (mm), horizontal=TRUE,
xlab="Cook’s distances")

plot (index, cooks.distance (mm), ylab="Cook’s distances",
xlab="Index")

6.8 Drawing Conclusions

Table 6.7 can be obtained with the code of Section 4.6.

6.9 Exercises

Chapter 7
Models for Factors with Quantitative Levels

7.1 Models for Two-Factor Tables

Code 7.1.1.

rm(list = 1s())

abt <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/Example7-1-1.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\EX21-5-1.DAT",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Example7-1-1.dat",

Sepzll ", COl .nameszc ("c", "p", "y"))
attach (abt)
abt

C=factor (c)
P=factor (p)

m3 <— glm(y C+P+C:p, family=poisson) #[C][P][C_1]
m2 <- glm(y C+P+c:P, family=poisson) #[C][P][P_1]
ml <- glm(y C+P+c:p, family=poisson) #I[C][P] [gamma]
m0 <- glm(y C+P, family=poisson) #[C][P]

df=c (m3$df.residual, m2$df.residual, mlS$df.residual,

m0Sdf.residual)
G2=c (m3Sdeviance,m2$deviance,ml$Sdeviance, m0Sdeviance)
A2g=G2— (2*df)
modelm=c (df, G2,A2q)
model=matrix (modelm, 4, 3, dimnames =
list (NULL, c("df","G2","A-q")))
model

mls=summary (ml)

47

48 7 Models for Factors with Quantitative Levels

mls
anova (ml)

rpearson=(y-ml$fit)/ (ml$fit) " (.5)

rstand=rpearson/ (1-hatvalues (ml)) " (.5)

infv = c(y,ml$fit,hatvalues (ml), rpearson, rstand,
cooks.distance (ml))

inf=matrix (infv, I (mls$df[1]+mls$Sdf[2]),6,dimnames =

list (NULL,c("y","yhat","lev", "Pearson", "Stand.","C")))

inf

mOSfit

7.2 Higher-Dimensional Tables

Code 7.2.1.

rm(list = 1s())

abt <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB3-1.DAT"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\TAB21-4.DAT",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TAB3-1.DAT",

Sep:" ll’ COl .names=c ("RH, "Sll’ "A", "O", "y"))
attach (abt)
abt

#summary (abt)

R
o
S

r=factor
o=factor
s=factor
a=factor
A2=A*A
#[RSO] [OA]

ab <- glm(y 7 r:s:o + o:a ,family = poisson)
abp=summary (ab)

abp

anova (ab)

(R)
(0)
(8)
(A)

A

#[RSO] [A][O_1]1[0_2]

ab2 <- glm(y ~ r:s:o + a + o:A + 0:A2,family = poisson)
abp2=summary (ab2)

abp2

anova (ab2)

7.3 Unknown Factor Scores 49

#[RSO] [A] [O_1]

ab3 <- glm(y " r:s:o + a + o:A ,family = poisson)
abp3=summary (ab3)
abp3

anova (ab3)

rpearson=(y-ab3$fit) / (ab3$fit) " (.5)
rstand=rpearson/ (1-hatvalues (ab3)) " (.5)
infv = c(y,ab3$fit,hatvalues (ab3), rpearson,

rstand, cooks.distance (ab3))
inf=matrix (infv, I (abp3$df[l]+abp3$df[2]),6,dimnames =
list (NULL,c("y", "yhat", "lev","Pearson","Stand.","C")))
inf

7.3 Unknown Factor Scores

Code 7.3.1.
rm(list = 1s{())
ct=c(43,16,3,6,11,10,9,18,16)
L=c(1,2,3,1,2,3,1,2,3)
Vv=c(1,1,1,2,2,2,3,3,3)

l=factor (L)
v=factor (V)
ind=glm(ct ~ v + 1,family=poisson)
summary (ind)
t=log(ind$fit)
t2=t«t
mll=glm(ct ~ v + 1 + v:t,family=poisson)
summary (ml1l)
ml2=glm(ct ~ v + 1 + 1l:t,family=poisson)
(
(
(

=

summary (ml2)
ml3=glm(ct ~ v + 1 + t2,family=poisson)
summary (ml3)

summary (ml1l)
t

Also see package Logmult which runs things from package gnm.

50 7 Models for Factors with Quantitative Levels

7.4 Logit Models with Unknown Scores

I must have gotten the maximum likelihood fits in Table 7.3 from Chuang (1983)
because I have no idea how I would have computed them.
Code 7.4.1.

rm(list = 1s{())

High=c (245,330,388,100,77,51,28,89,102,67,87,62,
125,234,233,109,197,90)

Low=c(115,152,153,40,37,19,11,37,35,18,12,13,068,
91,173,47,82,32)

R=c(1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3)

E=c(1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6)

r=factor (R)

e=factor (E)

T=cbind (High, Low)

m4=glm(T ~ r + e, family=binomial)

summary (m4)

t=log(m4S$fit/ (1-m4S$fit))

t2=txt

mS=glm(T ~ r + e + r:t,family=binomial)

summary (m5)

mé6=glm(T ~

summary (m6)

m7=glm(T ~ r + e + t2,family=binomial)

summary (m7)

4 4

r + e + e:t,family=binomial)

7.5 Exercises

Chapter 8
Fixed and Random Zeros

8.1 Fixed Zeros

This just involves leaving some cells out of the table.

EXAMPLE 8.1.1. Brunswick (1971) reports data on the health concerns of
teenagers.

Code 8.1.1.

rm(list =
ct=c (4,42,

a=c(1,1,1
h=c(1,3,4
S=factor (
A=factor (
H=factor (
m7=glm (ct S:A + S:H + A:H, family=poisson)
summary (m7)

mé=glm(ct = S:H + A:H,family=poisson)
summary (m6)

mS=glm(ct ~ S:A + A:H,family=poisson)
summary (m5)

m4=glm(ct = S:A + S:H ,family=poisson)
summary (m4)

m3=glm(ct - S:A + H,family=poisson)

summary (m3)

m2=glm(ct ~ S:H + A, family=poisson)

summary (m2)

ml=glm(ct = S + A:H, family=poisson)

summary (ml)

mO=glm(ct ~ S + A + H,family=poisson)

oo on s

51

52 8 Fixed and Random Zeros

summary (m0)

tab7=c(7,df.residual (m7),
deviance (m7), l-pchisg(deviance (m7),df.residual (m7)))
tab6=c (6,df.residual (m6),
deviance (m6), l-pchisqg(deviance (m6) ,df.residual (m6)))
tab5=c (5,df.residual (m5),
deviance (m5), 1-pchisg(deviance (m5) ,df.residual (m5)))
tabd=c (4,df.residual (m4),
deviance (m4), l-pchisg(deviance (m4) ,df.residual (m4)))
tabl=c(1l,df.residual (ml),
deviance (ml), l-pchisqg(deviance (ml),df.residual (ml)))
tab2=c(2,df.residual (m2),
deviance (m2), l-pchisg(deviance (m2),df.residual (m2)))
tab3=c (3,df.residual (m3),
deviance (m3), l-pchisg(deviance (m3),df.residual (m3)))
tab0=c (0,df.residual (m0),
deviance (m0), l-pchisqg(deviance (m0) ,df.residual (m0)))

t (matrix (c(tab7,tab6,tab5,tab4,tab3, tab2,tabl, tab00),4,8))

8.2 Partitioning Polytomous Variables

Code 8.2.1.
rm(list = 1s{())
ct=c(104,165,65,100,4,5,13,32,42,142,44,130,3,6,6,23)
s=c(1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2)
y=c(1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2)
r=c(l1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4)

S=factor (s)
Y=factor (y)
R=factor (r)

m7=glm(ct - R:Y + R:S + Y:S5, family=poisson)
summary (m7)

mS=glm(ct -~ R:Y + Y:S, family=poisson)
summary (m5)

m4=glm(ct ~ R:Y + R:S ,family=poisson)
summary (m4)

m3=glm(ct ~ R:Y + S, family=poisson)

summary (m3)

8.2 Partitioning Polytomous Variables

tab7=c(7,df.residual (m7),

deviance (m7), 1-pchisqg(deviance (m7),
tab5=c (5,df.residual (m5),

deviance (m5), 1-pchisg(deviance (m5)
tab4=c (4,df.residual (m4),

deviance (m4), l-pchisqg(deviance (m4)
tab3=c (3,df.residual (m3),

df.

,df

,df.

residual (m7)))

.residual (m5)))

residual (m4)))

53

deviance (m3), l-pchisg(deviance (m3),df.residual (m3)))

t (matrix (c(tab7,tab4, tab5,tab3),4,4))

=c(1,1,2,2,1,1,4,4, ,1,1,4,4)
h=c(1,1,1,1,3,3,1,1, ,3,3,1,1)

G=factor (g)

H=factor (h)

egq2=glm(ct ~ G:H:Y + G:H:S + Y:S,family=poisson)
summary (eg2)

eg3=glm(ct G:H:Y + G:S + Y:S,family=poisson)

(

summary (eqg3)

~
~
~

~
~
~

~
~

NI—‘I\)[\)U)
N}—“[\)[\)w
}—‘NE\)[\)»&
HN\RJ[\).&

~
~

~

O NN -
H\\

N~~~ DD NN
~

—_— — — — DN NN
~

O uw . Q'v ~

O=factor

eg4=glm(c
summary
egb=glm(c
summary
egb6b=glm(c

(c
(eq4)
(ct -
(eq5
(c
summary(eq6)
(c
(eq7
(c
(eq8
(c
(eq9

)

eq’/=glm(c
summary
eg8=glm(c
summary
eg9=glm
summary

)
)

)

[\)I—‘:R)[\)(A)
N =D DN W
HNI\)Nb
}—‘l\J\l\)[\).b

:C:J:0:S + Y:S3, family=poisson)
:S + Y:S, family=poisson)
:S + Y:S, family=poisson)
:S + Y:S,family=poisson)
:S + Y:S,family=poisson)

:S, family=poisson)

54 8 Fixed and Random Zeros

tab4d=c(4,df.residual (eq4),deviance (eqg4),
l-pchisqg(deviance (eg4) ,df.residual (eg4)))
tab5=c(5,df.residual (eqgb),deviance (eqgb),
l-pchisqg(deviance (eg5),df.residual (eg5)))
tab6=c(6,df.residual (eqgb),deviance (egb6),
l-pchisqg(deviance (eg6) ,df.residual (eg6)))
tab7=c(7,df.residual (eq7),deviance (eq7),
l-pchisg(deviance (eq7) ,df.residual (eq7)))
tab8=c(8,df.residual (eqg8),deviance (eg8),
l-pchisqg(deviance (eg8),df.residual (eg8)))
tab9=c (9,df.residual (eq9),deviance (eq9),
l-pchisqg(deviance (eq9),df.residual (eg9)))

t (matrix (c(tab4, tab5,tab6,tab7,tab8,tab9),4,6))

8.3 Random Zeros

EXERCISE 8.1. Modify the code of Example 2.5.3 to include the SWP.

EXAMPLE 8.3.1.

In the book it indicates that 3 rows of the 24 x 3 table are zeros as can be seen in
Table 8.3 of the book. If you just fit the entire data, the corresponding 9 fitted values
iy j are converging to 0. The way the data are read below, those cases turn out to
be9,11,19,33,35,43,57,59,67.h1@p0rmthesanu?Gztwinthebook,butdoes
not give the book’s degrees of freedom.

Code 8.3.1.

rm(list = 1s())

knee <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB8-3.DAT"),

#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TAB8-3.DAT",
sep="",col.names=c ("hh","ii","J3", "kk", "ct"))

attach (knee)

knee

#summary (knee)

T=factor (

S=factor (ii

A=factor (

R=factor(

art=glm(ct ~ T:A:S + T:R + A:R, family=poisson)

8.3 Random Zeros 55

summary (art)
arts$fit

art=glm(ct ~ T:A:S + T:A:R,family=poisson)
summary (art)

Note also the much larger than usual number of iterations the computations take.
Technically, there are no maximum likelihood estimates because some estimates
are converging to 0 and 0 is not an allowable MLE.

Now we drop the offending cells, refit the models, and get the same G? values
but the degrees of freedom from the book.

Code 8.3.2.
ctt=ct
ctt [9]=NA
ctt[11]=NA
ctt[19]=NA
ctt [33]=NA
ctt [35]=NA
ctt [43]=NA
ctt [57]=NA
ctt[59]=NA
ctt [67]=NA

artt=glm(ctt = T:A:S + T:R + A:R,family=poisson)
summary (artt)

artt=glm(ctt - T:A:S + T:A:R,family=poisson)
summary (artt)

EXAMPLE 8.3.2.

In the book it indicates that 3 rows of the 24 x 3 table are zeros as can be seen
in Table 8.4 of the book. If you just fit the entire data, the 12 cases identified in
the book have fitted values 7, x are converging to 0. The way the data are read
below, those cases turn out to be 3, 4, 12, 13, 14, 15, 19, 21, 28, 30, 31, 34. Also as
indicated in the book, this is a saturated model, so the other cases have 7, jx = ny; ji.
The program reports G> = 0 on 4 degrees of freedom which, again, is too many
degrees of freedom

Code 8.3.3.

rm(list = 1s{())
mel <- read.table(
url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB8-4.DAT"),

56

8 Fixed and Random Zeros

#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TAB8-4 .DAT",
sep="",col.names=c ("hh","ii", "J9", "kk","ct"))

attach (mel)

mel

#summary (mel)

G=factor (hh)
(i1)

Im=factor (jj)

S=factor (kk)

out=glm(ct"G:R:Im+G:R:S+G:Im:S+R:Im:S, family=poisson)

summary (out)

out$fit

ct

Again note the much larger than usual number of iterations the computations take.
Technically, there are no maximum likelihood estimates because some estimates are
converging to 0 and 0 is not an allowable MLE.

Now we drop the offending cells and refit the model, we get the same G* = 0

value but O degrees of freedom as in the book.

Code 8.3.4.
ctt=ct
ctt[3]=NA
ctt[4]=
ctt[lZ]
ctt[l3]=NA
ctt[14]=NA
ctt[15]=NA
ctt [19]=NA
ctt [21]=NA
ctt [28]=NA
ctt [30]=NA
ctt [31]=NA
ctt [34]=NA

out=glm(ctt "G:R:Im+G:R:S5+G:Im:S+R:Im:S, family=poisson)
summary (out)

out$fit

ct

8.4 Exercises 57

8.4 Exercises

It would seem that at some point I intended to give some computational advice on
these exercises.

EXAMPLE 8.4.3. Fartitioning Two-Way Tables. Lancaster (1949) and Irwin
(1949)

EXAMPLE 8.4.4. The Bradley-Terry Model.

Chapter 9
Generalized Linear Models

No computing in this chapter.

9.1 Distributions for Generalized Linear Models
9.2 Estimation of Linear Parameters

9.3 Estimation of Dispersion and Model Fitting
9.4 Summary and Discussion

9.5 Exercises

Generalizations of Poisson log-linear models with additional variability can be ob-
tained from two forms of negative binomial regression. Both have mean m but
have variance either (NB1) ¢m = m + am or (NB2) m + 6m>. NB1 can be fit-
ted in glm with family = quasipoisson. NB2 involves a modified form
of glm, glm.nb. See https://www.rdocumentation.org/packages/
MASS/versions/7.3-57/topics/glm.nb

59

https://www.rdocumentation.org/packages/MASS/versions/7.3-57/topics/glm.nb
https://www.rdocumentation.org/packages/MASS/versions/7.3-57/topics/glm.nb

Chapter 10
The Matrix Approach to Log-Linear Models

10.1 Maximum Likelihood Theory for Multinomial Sampling

10.2 Asymptotic Results

EXAMPLE 10.2.3. In the abortion opinion data of Table 3.1 and the model
[RSO][OA] (cf. book Table 6.7 generated by the code in Sectiong 4.6), examine
the cell for nonwhite males between 18 and 25 years of age who support abortion.

EXAMPLE 10.2.4. Automobile Injuries
Code 10.2.1.

rm(list = 1s())

sb <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/Example3-2-4.dat"),

#"C:\\E-drive\\Books\\ANREG2\\newdata\\EX21-3-1.dat",

#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Example3-2-4.dat",
Sep:" "’ COl .nameS=C("nuLL", “i", "j", "k"’ "y"))

attach (sb)

#summary (sb)

I=factor (i)

J=factor (j)

K=factor (k)

m7 <- glm(y 7~ I:J + I:K + J:K,family = poisson)
m7s=summary (m7)

rpearson=(y-m7$fit)/ (m7$fit) "~ (.5)

rstand=rpearson/ (1-hatvalues (m7)) " (.5)
infv = c(y,m7$fit,hatvalues (m7), rpearson, rstand,

61

62 10 The Matrix Approach to Log-Linear Models

cooks.distance (m7))
inf=matrix (infv, I (m7s$df[1]+m7s$df[2]), 6,dimnames =
llSt (NULL, c("y"’ "yhat", "leV", "PearSOD", "Stand. "’ "C")))
inf

EXAMPLE 10.2.6. Classroom behavior.
Code 10.2.2.

rm(list = 1s{())
sb <- read.table(
url ("http://stat.unm.edu/ " fletcher/LLM/DATA/Example3-2-4.dat"),
#"C:\\E-drive\\Books\\ANREG2\\newdata\\EX21-3-2.dat",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\Example3-2-4.dat",

sep="", col .names=c ("yvv, "i", "j", "k

attach (sb)

#summary (sb)

I=factor (i)

J=factor (3j)

K=factor (k)

m7 <— glm(y I + J+ K+ J:K,family = poisson)
m7s=summary (m7)

vcov (m7)
rpearson=(y-m7$fit)/ (m7$fit) " (.5)
rstand=rpearson/ (1-hatvalues (m7)) " (.5)

infv = c(y,m7$fit,hatvalues (m7), rpearson, rstand,
cooks.distance (m7))

inf=matrix (infv, I (m7s$df[1]+m7s$df[2]), 6,dimnames =

list (NULL, c("y", "yhat","lev", "Pearson", "Stand.","C")))

inf

10.3 Product-Multinomial Sampling

10.4 Inference for Model Parameters

10.5 Methods for Finding Maximum Likelihood Estimates

See Section 3.3.

10.8 Exercises 63

10.6 Regression Analysis of Categorical Data

EXAMPLE 10.6.1. Drug Comparisons.
Code 10.6.1.

rm(list = 1s())
cnt=c(6,16,2,4,2,4,6,6)
a=c(1,1,1,1,2,2,2,2)
A=3-2xa
b=c(1,1,2,2,1,1,2,2)
B=3-2xb
c=c(1,2,1,2,1,2,1,2)
AB=A%*B

C=3-2%cC

y=log (cnt)

ts <- Ilm(y A+B+AB+C,weights = cnt)
tsp=summary (ts)

tsp

anova (ts)

new standard errors
coef (tsp) [,2]/tspSsigma

new z scores
coef (tsp) [, 3] *tspS$Ssigma

10.7 Residual Analysis and Outliers

10.8 Exercises

Chapter 11
The Matrix Approach to Logit Models

There is no computing in this chapter.

11.1 Estimation and Testing for Logistic Models

11.2 Model Selection Criteria for Logistic Regression
11.3 Likelihood Equations and Newton-Raphson

11.4 Weighted Least Squares for Logit Models

11.5 Multinomial Response Models

11.6 Asymptotic Results

11.7 Discrimination, Allocations, and Retrospective Data

11.8 Exercises

65

Chapter 12

Maximum Likelihood Theory for Log-Linear
Models

There is no computing in this chapter.

12.1 Notation

12.2 Fixed Sample Size Properties
12.3 Asymptotic Properties

12.4 Applications

12.5 Proofs of Lemma 12.3.2 and Theorem 12.3.8

67

Chapter 13
Bayesian Binomial Regression

The book concerns itself with using a discrete approximation to the posterior distri-
bution: Pr[= "|Y] = G,, r=1,...,t. Only in Section 4 does it discuss importance
sampling as a method for obtaining a discrete approximation. (Ed Bedrick did al-
most all the Bayesian computing in the second edition for joint papers we wrote
with Wes Johnson.) Here we focus on Markov chain Monte Carlo (McMC) methods
and use the entire chapter to gradually introduce the computations needed. McMC
(ideally) provides a sample from the posterior distribution so the discrete approxi-
mation is taken as Pr[= B"|Y] = 1/t, r = 1,...,r. Most of the computations are in
R and are based on saved samples from the posterior distribution. Such samples can
be obtained from a number of packages. We focus on OpenBUGs but also illustrate
JAGS. (JAGS seems to be a better option for Apple users.) Another viable option is
STAN. In an extra section at the end of the chapter we discuss the benefits of using
the OpenBUGS GUI to interactively determine whether a Markov chain has con-
verged so that it provides samples from the posterior. SAS’s proc genmod also
has an option for fitting Bayesian models.

Bayesian computation has made huge strides since the second edition of this
book in 1997. McMC methods provide a sequence of simulated observations on the
parameters. Two particular tools in this approach are Gibbs sampling (named by Ge-
man and Geman, 1984, after distributions that were introduced by, and named after,
the greatest American physicist of the 19th century) and the Metropolis-Hastings
algorithm (named after the the alphabetically listed authors of Metropolis, Rosen-
bluth, Rosenbluth, Teller, and Teller, 1953, and the person who introduced the tech-
nique to the statistics community [and made a simple but very useful improvement]
Hastings, 1970). For more about McMC see Christensen et al. (2010, Chapter 6),
the references therein, the references in the text, and also Tierney (1994) gives a
good brief presentation the the underlying theory. Henceforth Christensen et al. is
referred to as BIDA.

Unlike importance samples, McMC samples are not naturally independent and
they only become (approximate) samples from the posterior distribution after the
Markov chain has been running quite a while, i.e., after one is deep into the se-
quence of observations. Computationally, we need to specify a burn-in period for

69

70 13 Bayesian Binomial Regression

the samples to get close to the posterior and then we throw away all of the obser-
vations from the burn-in period. Among the samples we use, we tend to take larger
samples sizes to adjust for their lack of independence. When averaging (functions
of) sample observations to estimate some quantity (including probabilities of events)
the lack of independence is rarely a problem (due to the Ergodic theorem). When
applying more sophisticated techniques than averaging to the samples, if indepen-
dence is important to the technique, we can often approximate independence by
thinning the sample, i.e., using, say, only every 10th or 20th observation from the
Markov chain. Of course in any program we need to specify the sample size and the
rate at which any thinning occurs. The default is typically no thinning.

BUGS (Bayesian inference Using Gibbs Sampling) provides a language for
specifying Bayesian models computationally, cf. http://www.mrc-bsu.cam.
ac.uk/software/bugs/. OpenBUGS (https://www.mrc-bsu.cam.
ac.uk/software/bugs/openbugs/) and JAGS (http://mcmc-jags.
sourceforge.net/) implement that language to actually analyze data. We il-
lustrate running BUGS code using OpenBUGS through R via R20penBUGS. An
alternative package for this is BRugs. The use of JAGS will be illustrated in R
with R2jags. JAGS has somewhat different input and output commands from Open-
BUGS. A more recent BUGS oriented platform is NIMBLE. Also, Plummer (2023)
reviews Bayesian simulations methods.

Although we present results using OpenBUGS, its newest version is called
MultiBUGS, which is designed to increase speed using parallel processing. Multi-
BUGS should have an identical interface to OpenBUGS. An outdated version
of OpenBUGS is WinBUGS, cf. https://cran.r-project.org/web/
packages/R2WinBUGS/index.html. WinBUGS was used in BIDA but the
commands given in BIDA should almost all work with OpenBUGS. (Some data
entry is different.) STAN is an alternative McMC program but does not use
the BUGS programming language for specifying models. STAN will not be il-
lustrated but can also be run in R through RStan. R also has tools for doing
McMCs directly, cf. https://cran.r-project.org/web/packages/
MCMCpack/index.html. Again, most of the code given here does not depend
on how you obtained your posterior samples.

My goal is to get you through an McMC version of the computations in the book.
For a general tutorial on BUGS see http://www.openbugs.net/Manuals/
Tutorial.html orthe book by Lunn et al. (2013). Fletcher Christensen provided
code to illustrate computations performed in BIDA on the O-ring and Trauma data.
His code has been substantially modified and expanded. Penny Darsey made sub-
stantial contributions and Davis Dotson got JAGS running for me.

13.1 Introduction

There are three things you need to do in using OpenBUGS or JAGS:

http://www.mrc-bsu.cam.ac.uk/software/bugs/
http://www.mrc-bsu.cam.ac.uk/software/bugs/
https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
https://cran.r-project.org/web/packages/R2OpenBUGS/index.html
https://cran.r-project.org/web/packages/BRugs/BRugs.pdf
https://cran.r-project.org/web/packages/R2jags/index.html
https://r-nimble.org/
https://www.annualreviews.org/doi/pdf/10.1146/annurev-statistics-122121-040905
ttps://github.com/MultiBUGS/R2MultiBUGS
https://cran.r-project.org/web/packages/R2WinBUGS/index.html
https://cran.r-project.org/web/packages/R2WinBUGS/index.html
https://mc-stan.org/rstan/
https://cran.r-project.org/web/packages/rstan/index.html
https://cran.r-project.org/web/packages/MCMCpack/index.html
https://cran.r-project.org/web/packages/MCMCpack/index.html
http://www.openbugs.net/Manuals/Tutorial.html
http://www.openbugs.net/Manuals/Tutorial.html

13.1 Introduction 71

* Specify the Bayesian model. This involves specifying both the sampling distri-
bution and the prior distribution.

* Enter the data. Depending on how you specified the model, this includes speci-
fying any “parameters” in the model that are known.

* Identify and give starting values for the unknown parameters.

There are a lot of similarities between the R and BUGS languages but before
proceeding we mention a couple oddities of the BUGS language. First,

y~Bin(N, p)

is written as
y ~ dbin(p,N)

with the order of N and p reversed. Also,
y ~N(m,v)

is written as
y ~ dnorm(m,1/v)

where the variance v is replaced in BUGS by the precision, 1/v. Replacing normal
variances with precisions is a very common thing to do in Bayesian analysis because
it simplifies many computations.

The main thing is to specify the model inside a statement: mode 1{}. For simple
problems this is done by specifying a sampling distribution and a prior distribution.
In Subsection 13.2.1 of the book we mentioned that the standard approach has been
to use either a normal distribution for 8 or the improper “noninformative” diffuse
prior () = 1, so we begin using those.

The sampling model for the O-ring data with failures y; and temperatures 7; is

yi ~ Bin(1, p;),

pi):&+&q,i:LmJ&
—Di

For programming convenience we have relabeled the intercept as 3; and the slope
as f3,. In the BUGS language this can be specified as

logit(p;) = log (l

for(i in 1:23){
y[i] ~ dbin(p[il, 1)
logit(p[i]) <- beta[l] + betal[2]*tauli]
}

The parameters of primary interest are beta[1] and beta [2]. We also need to
specify initial values for the unknown parameters but that is not part of specifying
the model. Remember if you copy the tilde symbol ~ from a .pdf file into a program
like R or OpenBUGS, you may need to delete and replace the symbol.

72 13 Bayesian Binomial Regression

The standard approach has been to specify normal priors or flat priors. For ex-
ample, we might specify independent priors

ﬁ/NN(aj71/bj)7 j=12,

for some specified values, say, a; = 10, by = 0.001, a; = 0, b, = 0.004. The b;s are
precisions (inverse variances). I have heretically put almost no thought into this prior
other than making the precisions small. In BUGS the prior model is most directly
specified as

betall] 7~ dnorm (10, .001)
betal2] 7 dnorm (0, .004)

In my opinion one should always explore different priors to examine how sensitive
the end results are to the choice of prior. It is also my opinion that one of those priors
should be your best attempt to quantify your prior knowledge about the unknown
parameters.

All together the model is

model {
for(i in 1:23){

y[i] 7 dbin(p[i], 1)
logit (p[i]) <- betal[l] + betal[2]xtaulil]
}
betal[l] ~ dnorm(10, .001)
beta[2] ~ dnorm(0, .004)

}

The model is only a part of an overall program for OpenBUGS or JAGS. To
run BUGS models within R, we need to place this model into a .txt file, say,
Oring.txt.

More generally we could use a multivariate normal prior on 8 by using R to pre-
specify a mean vector and a precision matrix (the inverse of the covariance matrix).
In our example,

a = c¢(10,0)
B=matrix(c(.001,0,0,.004),ncol=2)

and then write the model as

model {
for(i in 1:23){
y[i] = dbin(p[il, 1)
logit (p[i]) <- betall] + betal[2]xtauli]
}
beta[l:2] ~ dmnorm(al],BI[,])
}

The improper “noninformative” diffuse prior 7(f8) = 1 mentioned in Subsection
13.2.1 can be specified in the model as

13.1 Introduction 73

model {
for(i in 1:23){
y[i] 7 dbin(p[i], 1)

logit(p[i]) <- beta[l] + betal[2]*tauli]
}
beta[l] ~ dflat ()
beta[2] ~ dflat()
}

Producing a functional program involves identifying the model, specifying the
data, and specifying initial values for all of the unknown parameters. We have two
choices on how to run this. We can run it through R or we can run it through the
OpenBUGS GUI. We begin by running it through R because that requires a more
transparent specification of the various steps involved. The GUI is more flexible and
is discussed in the last section of this chapter. I recommend you learn to use it before
doing serious data analysis.

What follows is an R program for an analysis of the O-ring data. The various
parts are explained using comments within the program.

Code 13.1.1.

Clear previous work
rm(list = 1s())

Enter O-ring Data
y=c(1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0)
tau=c(53,57,58,63,66,67,67,67,68,69,70,70,70,70,72,
73,75,75,76,76,78,79,81)

Call the R20penBUGS library.

Set paths so that R20penBUGS can find and store

the files it needs, including the model file Oring.txt

and where you have stored OpenBUGS on your computer.

library (R20penBUGS)

BUGS_path <-

"c:\\Program Files (x86)\\OpenBUGS\\OpenBUGS323\\0OpenBUGS.exe"
setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")

myworking_dir <- "c:\\E-drive\\Books\\LOGLIN3\\BAYES\\"

+ 4 e

Define the McMC sample characteristics.

This code gives (we hope) 10,000 nonindependent
observations from the posterior distribution.
iterates <- 10000

burn_in <- 1000

Identify the data
data <- list("y", "tau")

74 13 Bayesian Binomial Regression

Identify the parameters
parameters <- list ("beta")

Identify parameter initial values in a list of lists.
inits <- list(list (beta=c(0,0)))

The program is designed to run more than one McMC chain.
This is a list of lists to allow different initial

values for different chains.

Easier than the list of lists is to generate

initial values via a function.

inits <- function () { list(beta = c(0,0)) }

It would be redundant to run both inits <- commands

Putting all the pieces together:

Oring <- bugs(data, inits, parameters,
model.file=
"c:\\E-drive\\Books\\LOGLIN3\\BAYES\\Oring.txt",
n.chains=1, n.iter=iterates+burn_in,
n.thin=1, n.burnin=burn_in,
OpenBUGS . pgm=BUGS_path,
working.directory=myworking_ dir,
debug=F)

Oring$summary

The following command tells you what info

is contained in Oring

summary (Oring)

For example

Oring$mean

Oring$sd

Oring$median

Rather than defining y and t au separately you could also write the dat a statement
as

data <- list(
y=c(1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0),
tau=c(53,57,58,63,66,67,67,67,68,69,70,70,70,70,72,
73,75,75,76,76,78,79,81)

)

If you change the last command in bugs to debug=T, R will actually open an
OpenBUGS GUI and you can manipulate the process manually.

13.2 Bayesian Inference: O-ring Data 75

13.1.1 Alternative Specifications

Sometimes it is more convenient to define the prior more obliquely. Rather than the
direct specification we used, we can specify

for(j in 1:2){ betal[j] ~ dnorm(aljl,b[j]) }

where at this point in the code it is not clear whether the a[j]s and b[j]s are
unknown parameters or not. In either case we have to specify values for them in a
11ist statement, say,

list (a=c(10,0), b=c(.001,.004))

Including these list entries as part of the dat a list, rather than as initial values, com-
pletes our prior specification (and implicitly defines them as not being parameters).

13.2 Bayesian Inference: O-ring Data

To this point we have introduced Bayesian computation for logistic regression but
we have not yet reproduced any results from the book. We now do that and also
produce the new graphics used in the third edition.

Whereas the book goes back and forth between the O-ring and Trauma data sets,
for computational simplicity, in this section we only deal with the O-ring data. The
next section, tentatively marked as 13.22, will deal with the Trauma data. Section 3
(immediately after Section 22), deals with Section 3 of the book, diagnostics.

13.2.1 Specifying the Prior and Approximating the Posterior

Section 1 illustrates Bayesian computations using a normal prior. The main addition
in this section is that we demonstrate how to program the induced prior on the
regression coefficients as discussed in the book. This involves modifications to the
BUGS model. But we also fill out many details of the analysis.

13.2.1.1 Constructing Figures 13.1 through 13.4

Figures 13.1 through 13.4 are constructed analytically and do not involve any sim-
ulations from the posterior distribution. Future subsubsections provide estimated
versions of these plots derived from OpenBUGS simulations, so we show all of the
plots for your comparison. The estimated versions are much less smooth.

The bivariate densities need to be evaluated on a grid. Visually, we only care
about the shape of the bivariate densities so we rescale them to suit our convenience.

76 13 Bayesian Binomial Regression

FIGURE 13.1 (PRIOR). We evaluate the density on a B x B grid of points and con-
struct a contour plot.

Code 13.2.1.

rm(list = 1s())

plot the density function pi ()

B=1000 #size of square grid

initialize pi as a B by B matrix of 1s
pi=rep(l,Bx*B)

pi=matrix (pi, B, B)

Grid domain
betal = seq(-15,25, length=B)
betaz seq(-.4, .2,length=B)

evaluate prior density on grid
rk=2 f#rank of X

eta=rep (1,Bx*rk)
eta=matrix(eta, B, rk)
tautilde=c (55, 75)
ytilde=c (1, .577)
Ntilde=c(1.577,1.577)

for(j in 1:B)
{
for(k in 1l:rk)
{

etal,k] = betal + beta2[j]lx(tautildelk])
pil, 3] = pil, 3] * ((exp(etal,k])/(l+exp(etal,k])))**ytilde[k])x
((1-(exp(etal,k])/ (1+exp(etal,k]))))** (Ntilde[k]-ytildel[k]))

}
}

rescale because we only care about
shape of density
pi=pi*1000 #/ (sum(pi)/ (60%.8))

contour (betal,beta2,pi,nlevels=8,
ylab=expression (betal["1"]),xlab=expression (betal0]))

FIGURE 13.2 (POSTERIOR). Pretty much the same as the previous plot except com-
puting the kernel of the posterior is more involved since it involves contributions
from both the prior density and the likelihood function.

Code 13.2.2.

13.2 Bayesian Inference: O-ring Data

0.0 0.1 0.2
|

By
-01
|

80

-04
\

—10 o 10 20

Bo

Fig. 13.1 Book Figure 13.1; O-Ring Data: Contour shapes of prior on f3.

rm(list = 1ls())

plot density pi

B=1000 #size of square grid
#pi a B by B matrix of 1s
pi=rep(l,B*B)
pi=matrix (pi, B, B)

Grid domain --- changed from previous plot
betal = seq(0,25,1length=B)
beta2 = seqg(-.4,.0,length=B)

contribution of prior density
rk=2 #rank of X

eta=rep (1l,Bxrk)
eta=matrix (eta, B, rk)
tautilde=c (55, 75)
ytilde=c(1,.577)
Ntilde=c(1.577,1.577)

for(j in 1:B)
{
for(k in 1:rk)
{

78 13 Bayesian Binomial Regression

etal,k] = betal + beta2[j]lx(tautildelk])

pil, 31 = pil, 3] * ((exp(etal,k])/(l+exp(etal,k])))**ytilde[k])x
((1-(exp(etal,k])/ (1+texp(etal,k]))))** (Ntilde[k]-ytildel[k]))

}

}

contribution of likelihood

y=c(1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0)
N=c(1,1)
tau=c(53,57,58,63,66,67,67,67,68,69,70,70,70,70,72,

73,75,75,76,76,78,79,81)
mt=mean (tau)
n=length (y)

etaD=rep (1,B*n)

etaD=matrix (etaD, B, n)

for(j in 1:B)

{

for(k in 1:n)

{

etaD[,k] = betal + beta2[j]lx(taulk])

pil,J] = pil, 3] » ((exp(etaD[,k])/ (1+exp(etaD[,k])))*xy[k])*
((1-(exp(etaD[,k])/ (l+exp(etaD[,k]))))*x (N[k]l-y[k]))
}

}

pi=pi*«10000000 #/ (sum(pi)/ (60%x.8))

contour (betal,beta2,pi,nlevels=8,
vlab=expression(betal["1"]),xlab=expression (beta[0]))

FIGURE 13.3 (MEAN ADJUSTED PRIOR). The number 69.565 is the mean of the
23 1; values. Instead of fitting logit(p;) = B + Bo7; we are fitting logit(p;) = B +
B2 (7 — 69.565). Otherwise, pretty much the same as Fig. 13.1

Code 13.2.3.

rm(list = 1s())

plot density pi

B=1000 #size of square grid
#pi a B by B matrix of 1s
pi=rep(l,B*B)
pi=matrix (pi, B, B)

Grid domain
betal = seq(-5,5,1length=B)

13.2 Bayesian Inference: O-ring Data 79

0.0

By
-02
|

Bo

Fig. 13.2 Book Figure 13.2; O-Ring Data: Contour shapes of posterior on 3.

betaz2 = seq(-.5,.3,length=B)

#prior density

rk=2 4#rank of X
eta=rep(l,Bxrk)
eta=matrix(eta, B, rk)
tautilde=c (55, 75)
ytilde=c (1, .577)
Ntilde=c (1.577,1.577)

for(j in 1:B)

{

for(k in 1l:rk)

{

etal,k] = betal + beta2[j]lx(tautilde[k]-69.565)

pil,J] = pil,J] * ((exp(etal,k])/ (l+exp(etal,k])))»*xytildelk])*
((1-(exp(etal,k])/ (1l+exp(etal,k]))))** (Ntilde[k]-ytildel[k]))

}

}

pPi=pi*10004#/ (sum(pi)/ (60x.8))

80 13 Bayesian Binomial Regression

contour (betal,beta2,pi,nlevels=8,
yvlab=expression (betal["1"]),xlab=expression (betal0]))

02

B
00

-02

-04

-4 -2 o 2 a

Fig. 13.3 Book Figure 13.3; O-Ring Data: Contour shapes of centered prior on f3.

FIGURE 13.4 (MEAN CORRECTED POSTERIOR). Pretty much the same as Figure
13.2 except mean corrected like Figure 13.3.

Code 13.2.4.

rm(list = 1s())

plot density pi

B=1000 4#size of square grid
#pi a B by B matrix of 1s
pi=rep(l,B*B)
pi=matrix (pi, B, B)

Grid domain
betal = seq(-3,1,length=B)
beta2 = seqg(-.4,.0,length=B)

#prior density

rk=2 f#rank of X
eta=rep (1l,Bxrk)
eta=matrix(eta,B, rk)

13.2 Bayesian Inference: O-ring Data 81

tautilde=c (55, 75)
ytilde=c(1,.577)
Ntilde=c(1.577,1.577)

for(j in 1:B)

{

for(k in 1:rk)

{

etal,k] = betal + beta2[]j]l*(tautildel[k]-69.565)

pil, 31 = pil, 3] = ((exp(etal,k])/(l+exp(etal,k])))**xytilde[k])x*
((1-(exp(etal,k])/ (1texp(etal,k]))))*x*(Ntilde[k]-ytilde[k]))

}

}

y=c(,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0)
N=c(1,1)
tau=c(53,57,58,63,66,67,67,67,68,69,70,70,70,70,72,

73,75,75,76,76,78,79,81)
mt=mean (tau)
n=length (y)

etaD=rep (1l,Bx*n)

etaD=matrix (etaD, B, n)

for(j in 1:B)

{

for(k in 1:n)

{

etaD[,k] = betal + beta2[j]lx(taulk]-69.565)

pil, 3] = pil, 3] * ((exp(etaD[,k])/(l+exp(etaD[,k])))*xyl[k])*
((1-(exp(etaD[,k])/ (1+exp(etaD[,k]))))**x(N[k]l-yI[k]))
}

}

pi=pi*«10000000#/ (sum(pi)/ (60%.8))
contour (betal,beta2,pi,nlevels=8,
ylab=expression (beta["1"]),xlab=expression (betal0]))

Instead of doing direct computations from the prior and posterior, we can sample
B and use the samples to estimate the prior and posterior. Figures 13.5 and 13.6 are
based on such estimates. The computations for them are given later.

82 13 Bayesian Binomial Regression

0.0

-0.1

By
-02

-0.3

5

-04

Bo

Fig. 13.4 Book Figure 13.4; O-Ring Data: Contour shapes of centered posterior on f3.

Approximate posterior for B1, Bz

—io) 1o 2o

[N

Fig. 13.5 Book Figures 13.1 and 13.2; O-Ring Data: Estimated contours of prior and posterior on

B.

13.2 Bayesian Inference: O-ring Data 83

Approximate posterior for centered Bi, Bz

Fig. 13.6 Book Figures 13.3 and 13.4; O-Ring Data: Estimated contours of centered prior and

posterior on f3.

84 13 Bayesian Binomial Regression

13.2.1.2 Induced Prior

The book elicits independent priors on the probabilities p; and p, of O-ring failure
associated with the temperatures ¥; = %) = 55 and ¥, = %, = 75. It then induces a
prior on the regression coefficients from the elicited prior. The elicited prior consists
of independent Beta distributions,

ﬁijeta(aj7bj)7]:1,2

(a1,a2) = (1,0.577) (b1,b2) = (0.577,1)

Sampling from the induced prior on f is actually easier than determining the prior
analytically. For the logistic model,

e[%) 3]

B1-03) Toa] = [o] [eenies]

The equality allows us to transform samples from the p;s directly into samples of
the B;s. In BUGS this is easily programmed as

SO

Elicited Prior
for(j in 1:2){ ptilde[]j] = dbeta(aljl,bl[3j]) }
Induced prior on the regression coefficients
beta[l] <- (75/20)*logit (ptilde[1])
- (55/20)*logit (ptilde[2])
betal2] <= (-1/20)«logit (ptilde[1])
+ (1/20) *logit (ptilde[2])

Thevaluesa[1], al[2], b[l], b[2] allneed to be specified as part of a data
1ist statement. (Note that the prior used in this book is different than the similar
prior used in BIDA.) This code is a large part of our model which is specified in the
next subsubsection.

In general we define an invertible square matrix of predictor variables X and
elicit distributions for a vector of probabilities j associated with the rows of X. The
probabilities are related to the coefficients via

F(XB)=p or B=X"'F'(p).

In logistic regression, F~! is just the function that maps each probability to its logit.
For models with an intercept and more than one predictor variable (like the Trauma
data), we will want to invert X in R, but in this code we have inverted the matrix
X analytically, since it is only 2 x 2. Samples from the distribution of j are easily
transformed into samples of the regression coefficients.

13.2 Bayesian Inference: O-ring Data 85
13.2.1.3 BUGS Preliminaries

As inputs to an overall R program Fletch produced a .csv data file and two .txt model
files, one for the uncentered and one for centered data. Both incorporate the induced
prior information but with the actual parameters of the beta distributions yet to be
specified. (These would work for completely different priors as long as the priors
were specified at 55 and 75 degrees.)

The model for the uncentered data is saved as O-ring.model_a.txt and
consists of

model {

for(i in 1:n){

y[i] = dbin(pl[i], 1)

logit (pl[i]) <- betal[l] + betal[2] * temp[i]

}
for(j in 1:2) {
ptilde[]j] =~ dbeta(aljl, bl[]j]l)
}
betal[l] <= (75/20) % logit(ptilde[l])
- (55/20) * logit(ptilde[2])
beta[2] <= (-1/20) * logit(ptilde[l])
+ (1/20) * logit(ptilde[2])
}

Actually, you can even create the model file in R with the commands

Oring_model_a<-cat ("model {
for(i in 1:n) {
y[i] 7 dbin(p[i], 1)
logit (pli]) <- betal[l] + betal[2] * templi]
}
for(j in 1:2){
ptilde([j] ~ dbeta(aljl, bl3i])
}
betal[l] <- (75/20) % logit(ptilde[l])
- (55/20) * logit(ptilde[2])
betal[2] <- (-1/20) * logit(ptilde[1l])
+ (1/20) = logit(ptilde([2])}",
file="Oring_model_a.txt")

The model for the centered data was saved as O-ring model b.txt With
the centered data, the invertible square matrix X is more complicated. In particular,

| 027174 0.72826

o {—0.0SOOO 0.05000 |

% - 1 55-69.56522| |1 —14.56522 51
1 75-69.56522| |1 543478 |’

The centered model involves the variable

86 13 Bayesian Binomial Regression

c.temp[i]
which is essentially
temp[1i]-69.56522

It will need to be defined in the R program before running OpenBUGS. The centered
model becomes,

model {
for(i in 1:n){
y[i] 7 dbin(plil, 1)

logit (pli]) <- betal[l] + betal[2] * c.templ[i]
}
for(j in 1:2){
ptilde[j] = dbeta(aljl, b[J])
}
beta[l] <= 0.2717391 % logit(ptildell])
+ 0.7282609 % logit(ptilde[2])
beta[2] <= -0.05 % logit(ptilde[l])
+ 0.05 *« logit (ptilde([2])
}

The data file, which is ordered by Flight Number rather than Temperature (cf., book
Table 2.1), is called O-ring_data.csv and looks like

"Temperature", "Failure"
66,0
70,1
69,0
68,0
67,0
72,0
73,0
70,0
57,1
63,1
70,1
78,0
67,0
53,1
67,0
75,0
70,0
81,0
76,0
79,0
75,1

13.2 Bayesian Inference: O-ring Data 87

76,0
58,1

Unlike the book, Fletch has not ordered the temperatures from smallest to largest.
The book draws special attention to case 18 which is case 21 in Fletch’s data file.
Thus, to delete case 18, I will incorporate a command y [21] =NA.

13.2.1.4 Generate and Save Posterior samples: OpenBUGS

This subsubsection is the only place in this section that we will use the bugs pro-
gram from the R20penBUGS package. Everything else is simply R programming.

Fletch wrote one large program but I have broken it into more compact indepen-
dent pieces. The first piece generates and saves the 3" samples, r = 1,...,¢. In the
code ¢ is denoted interates. These saved iterates will be read back into later
pieces of code.

Uncentered Data: We need to run this 3 times with minor variations to store
posterior samples from three conditions: the original code, a larger McMC sample
that is heavily thinned, and the original code with case 18 deleted.

We begin by using bugs to produce the posterior samples " as row vectors
concatenating them into a ¢ X k matrix with k = 2. We transpose this into a k x ¢
matrix before saving them.

Code 13.2.5.

it s RS E S SRS E
##

O-Ring Analysis

##

rm(list = 1s())

library (R20penBUGS)

BUGS_path <-

"c:\\Program Files (x86)\\OpenBUGS\\OpenBUGS323\\0penBUGS.exe"
setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")

working_dir <- "c:\\E-drive\\Books\\LOGLIN3\\BAYES\\"
model_a_filename <- "O-ring_model_a.txt"

model_b_filename <- "O-ring_model_b.txt"

iterates <— 10000 # "t" from book, later =5000
burn_in <- 1000

FHEFFRHA R AA AR SRR

88

13 Bayesian Binomial Regression
O-ring data

ORing_data <-
read.csv (url ("http://stat.unm.edu/ fletcher/LLM/DATA/O-ring_data

n <- dim(ORing_data) [1]
y <- ORing_dataS$Failure
temp <- ORing_dataS$Temperature

Delete case 18 in book
which is case/flight 21 in Fletch’s file
#y[21]=NA

Fletch used BIDA not LOGLIN Priors
so I have changed them

#a <- c(1.6, 1)

#b <= c¢c(1, 1.6)

LOGLIN priors

a <-c(1, .577)

b <- c(.577, 1)

data <— list("n", "y", "temp", "a", "b")

inits <- function() {
list(ptilde = c(0.5, 0.5))

parameters <- list("beta")

ORing.sim <- bugs(data, inits, parameters,
model.file=model_a_filename,
n.chains=1, n.iter=iterates+burn_in,
n.thin=1, n.burnin=burn_in,
OpenBUGS . pgm=BUGS_path,
working.directory=working_ dir,
debug=F)

ORing.sim$summary

beta <- t (ORing.sim$sims.list$beta)

save 2 x t matrix of posterior beta iterates for later use

save (beta, file="post-samp.Rda")

save case 18 deleted beta

save (beta,file="post-samp-18.Rda")

save thinned samples of beta

.csv"))

13.2 Bayesian Inference: O-ring Data 89

save (beta,file="post-samp-thin.Rda")

Now beta is the 2 x ¢ matrix of posterior samples with columns ”. Again, t =
interates. In subsequent programs we will use Load ("post-samp.Rda")
to return beta for us. We will also need to run this code uncommenting
vy [21]=NA and save the posterior samples as post-samp-18.Rda. Finally, for
producing Figure 13.10, we will want to rerun this code (for all the data) with
interates=5000 and within the bugs command n.thin=100 and save the
results in post—samp-thin.Rda. (The number of iterates are those reported af-
ter the thinning has occurred.)

Centered Data:

To analyze the centered model run this modified program. At the very end of the
program there are lines to comment and uncomment for running the data without
case 18 and saving the results.

Code 13.2.6.

rm(list = 1s{())
library (R20penBUGS)

BUGS_path <-
"c:\\Program Files (x86)\\0penBUGS\\OpenBUGS323\\0penBUGS.exe"
setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")

working_dir <- "c:\\E-drive\\Books\\LOGLIN3\\BAYES\\"
model_a_filename <- "O-ring_model_a.txt"

model_b_filename <- "O-ring_model_b.txt"

iterates <- 10000
burn_in <- 1000

iEE ST
O-ring data

ORing_data <- read.csv("O-ring_data.csv", header=T)

<- dim(ORing_data) [1]

<- ORing_dataS$Failure

To rerun the analysis without obs. 18
uncomment the line following the next

case 18 in book is case 21 in Fletch’s data
y[21]=NA

temp <- ORing_dataS$Temperature

centered_temp <- scale(temp, scale=F)

S

90

13 Bayesian Binomial Regression

c.temp <- centered_templ,1]
temp
c.temp

Fletch used BIDA not LOGLIN3 Priors
so I have changed them

#a <— c(1.6, 1)

#bo <- c(1, 1.6)

LOGLIN3 priors

a <-c(1, .577)

b <= c(.577, 1)

data <— list("n", "y", "C.temp", "a", "b")

inits <- function() {
list(ptilde = c(0.5, 0.5))

parameters <- list("beta")

ORing.c.sim <- bugs(data, inits, parameters,
model.file=model_b_filename,
n.chains=1, n.iter=iterates+burn_in,
n.thin=1, n.burnin=burn_in,
OpenBUGS . pgm=BUGS_path,
working.directory=working dir,
debug=F)

save 2 x t matrix of posterior iterates

beta.c <- t(ORing.c.sim$sims.listS$beta)

save (beta.c, file="post-c—-samp.Rda")

#save (beta.c, file="post-c-samp-18.Rda")

These posterior samples are used for constructing estimated versions of the bi-

variate posterior density plots for . We will also use the centered results to con-
struct plots of predictive distributions. These prediction plots could have been pro-
duced from the uncentered results but Fletch used the centered results.

13.2.1.5 Generate and Save Posterior samples: JAGS

We run the uncentered results in JAGS, the commands are very similar to Open-
BUGS but you employ jags rather than bugs. Thanks to Davis Dotson for work-
ing on this. Again, the posterior samples " are saved in the 2 X t matrix beta.

13.2 Bayesian Inference: O-ring Data 91

Code 13.2.7.

rm(list = 1s())
library (R2jags)

setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")
working_dir <- "c:\\E-drive\\Books\\LOGLIN3\\BAYES\\"
ORing_data <- read.csv("O-ring_data.csv", header=T)

iterates <- 10000
burn_in <- 1000

n <- dim(ORing_data) [1]

y <- ORing_dataS$Failure

temp <- ORing_dataS$Temperature

The next two commands are only needed
for running the centered model
centered_temp <- scale(temp, scale=F)
c.temp <- centered_templ,1]

a <-c(1, .577)
b <= c¢c(.577, 1)
inits <- function () {

list(ptilde = c(0.5, 0.5))

sim.dat. jags<—list (nyu, "1’1", nan’ "b", "temp")
ORing.params<-c ("beta")

ORing.fit <- jags(data = sim.dat.jags, 1inits = inits,
parameters.to.save = ORing.params, n.chains = 1, n.thin=1,

n.iter = iterates+burn_in, n.burnin = burn_in,

model.file = "O-ring_model_a.txt")

beta <- t (ORing.fit$BUGSoutput$sims.listS$Sbeta)
#save (beta, file="post-samp.Rda")
summary (ORing.fit$BUGSoutput$sims.listS$beta)

To run the centered data, within the jags command, just switch to
model.file = "O-ring_model_b.txt"
and in the penultimate line, change the save command to

save (beta, file="post-c-samp.Rda")

92 13 Bayesian Binomial Regression
13.2.1.6 Estimated Bivariate Density Plots

Fletch wrote a program constructing estimated versions of Figures 13.1 through
13.4. Fletch used the plotting package ggplot which is very popular but unfamiliar
to me.

Uncentered data

Fletch’s program produces estimated versions of Figures 13.1 and 13.2 in a single
plot. Figures 13.1 and 13.2 display the prior and posterior (uncentered) distributions
analytically, but Fletch sampled the prior and saved both the prior samples and the
posterior samples into one data frame. First we reload the posterior sample matrix
beta. Then we create the prior samples and a data frame that contains both samples
for uncentered data.

To this point we have freely used the 1ogit function in defining BUGS models.
Another difference between BUGS and R is that R does not have a predefined logit
function, so we need to define one.

Code 13.2.8.

rm(list = 1s{())

Set working directory and read posterior samples
setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")

load ("post—samp.Rda")

respecify number of iterates

iterates=length (betall,])

respecify prior parameters

a <-c(1, .577)

b <= c(.577, 1)

define logit function

logit <- function (p)

{

1lg = log(p/ (1-p))

return (lg) }

Sample from prior ptildes and transform to betas
prior_pl <- rbeta(iterates, alll, bIll])

prior_p2 <- rbeta(iterates, al[2], b[2])
prior_betal <-

(75/20) * logit(prior_pl) - (55/20) * logit(prior_p2

prior_beta2 <-

(1/20) * logit(prior_p2) - (1/20) * logit(prior_pl

Save prior and posterior samples
for later use in a data frame.
beta_frame <- data.frame(cbind(prior_betal,

prior_beta2, betall,], betal2,])

)

13.2 Bayesian Inference: O-ring Data 93

names (beta_frame) <-
c("prior_betal", "prior_betaz2",
"posterior_betal", "posterior_betal")
save (beta_frame, file="beta-samples.Rda")

Although the posterior samples in bet a were previously saved in post —samp . Rda,
Fletch’s new data frame beta_frame, saved in beta-samples.Rda, has given
them a new name to distinguish them from them prior samples that are also in the
data frame. Once we obtain Fletch’s estimated figures, we will revert to using our
saved version of beta.

We begin the plotting program by reloading the prior and posterior samples of 3.

Code 13.2.9.

rm(list = 1s())
setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")
load ("beta-samples.Rda")
library (ggplot?2)
library (boot) #this was part of Fletch’s program
but I don’t see it being used anywhere
"boot" is a bootstrapping library
ggplot (beta_frame) +
geom_density2d(aes (x=prior_betal, y=prior_beta2),
color="#000066", linetype=2) +
geom_density2d(aes (x=posterior_betal, y=posterior_beta2),
color="#0000cc") +
theme_bw () +
xlab (expression(betal0])) +
ylab (expression(betall])) +
ggtitle (expression (
paste("Approximate prior and posterior for ",
beta(0], ", ", betall]l)))

Centered data

This is Fletch’s code to obtain an estimated version of Figures 13.3 and 13.4ina
single plot.

We begin by reloading the posterior samples from the centered data and creating
the prior samples. We then create a data frame that contains both for centered data.
The primary change is that centering changes the second column of X and thus
changes X 1.

Code 13.2.10.

rm(list = 1s{())
setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")
load ("post—-c—samp.Rda")

94 13 Bayesian Binomial Regression

When running without case 18
comment previous "load" and uncomment next line
load ("post—-c-samp-18.Rda")
iterates=length (beta.c[1,])

a <-c¢c(1, .577)

b <= c(.577, 1)

define logit function

logit <- function (p)

{

lg = log(p/(1-p))

return (1lqg) }

prior_pl <- rbeta(iterates, alll, bIll])
prior_p2 <- rbeta(iterates, al[2], b[2])
prior_beta_c_1 <- 0.2717391 * logit(prior_pl) +
0.7282609 * logit (prior_p2)
prior_beta_c_2 <- -0.05 % logit(prior_pl) +
0.05 » logit(prior_p2)

beta_c_frame <- data.frame(cbind(prior_beta_c_1,
prior_beta_c_2, beta.c[l,], beta.c[2,]))

When running without case 18

comment out next 2 commands

names (beta_c_frame) <- c("prior_beta_c_1",
"prior_beta_c_2","posterior_beta_c_1", "posterior_beta_c_2")

save (beta_c_frame, file="beta-c-samp.Rda")

When running without case 18 uncomment next 2 commands (4 lines)
#names (beta_c_frame) <- c("prior_beta_c_18_1",
#"prior_beta_c_18_2","posterior_beta_c_18_1",

"posterior_beta_c_18_2")

#save (beta_c_frame, file="beta-c-samp-18.Rda")

Reloading the centered prior and posterior samples, Fletch again uses ggplot.

Code 13.2.11.

rm(list = 1ls())

setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")

load ("beta—-c—-samp.Rda")

library (ggplot2)

ggplot (beta_c_frame) +
geom_density2d(aes (x=prior_beta_c_1, y=prior_beta_c_2),
color="#000066", linetype=2) +
geom_density2d(aes (x=posterior_beta_c_1,
y=posterior_beta_c_2),
color="#0000cc") +

13.2 Bayesian Inference: O-ring Data 95

theme_bw () +

xlab (expression(betalO])) +

vlab (expression(betall])) +

ggtitle(expression(paste(

"Approximate prior and posterior for centered ",
beta(l0], ", ", betalll)))

The program involves doing density estimation from random samples of the
prior. Just to warn you, I have two slightly different versions of this plot and Penny
Darsey also got a different version.

13.2.2 Predictive Probabilities

We use the posterior § samples to generate samples of predictive probabilities at dif-
ferent temperatures. These allow us to produce Figures 13.7 and 13.8. Figure 13.7
involves the MLEs from Chapter 2 and the Bayesian results both with and without
case 18. The credible intervals of Figure 13.8 require finding percentiles of the dis-
crete approximation to the posterior of F (x'f3). Using McMC, finding percentiles of
the discrete approximation simplifies to finding percentiles of the posterior sample
F(X'B"). In Section 13.5 we illustrate a somewhat different approach in which we
program the predictive probabilities into the BUGS model rather then compute them
from the saved posterior samples of the model parameters.

Using the previously generated posterior samples ", r = 1,...,1, to find predic-
tive probabilities at locations xg;, i = 1,...,ny, We compute F(x}iﬁr), r=1,...,1,
i=1,...,ny and average over r. Here F is the cumulative distribution function that

defines our binomial sampling model.
To be more succinct, create matrices

x}l
Xr=1| and B=[B', -, P'].
x’fnf
We need to compute
F(XrB),

where the one-dimensional cdf F is being applied to each number in the matrix X¢B.
We then compute the row means of this ny x t matrix to compute the predictive
probabilities and find percentiles of these samples to find the credible interval. In
the code below we have B identified as beta.

I have greatly modified Fletch’s program for constructing Figure 13.8 and also
produce Figure 13.7. Fletch used the centered Bayesian model for predictions but
I incorporated uncentered MLEs. Prediction results should be equivalent for the
centered and uncentered models.

96 13 Bayesian Binomial Regression

Code 13.2.12.

rm(list = 1s{())

setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")
load ("post—-c—samp.Rda")

beta.c

Range of predictions
prediction_temps <- (300:800)/10

Center prediction times
tau=c(53,57,58,63,66,67,67,67,68,69,70,70,70,70,72,
73,75,75,76,76,78,79,81)
temp_center=prediction_temps - mean (tau)
Prediction Model Matrix

Create a vector of 1s

J=1l+temp_center - temp_center

Create matrix X_f

Xf=c (J, temp_center)

Xf=matrix (Xf,ncol=2)

Xf

compute posterior mean predictions
Pr=Xf %$x% beta.c
Pr=exp (Pr)/ (1+exp (Pr))
MP=rowMeans (Pr)

look at prediction probabilities
matrix (c (prediction_temps,MP),ncol=2)

posterior predictive probabilities:
%, 95% quantiles and median
prediction_guantiles <- apply(Pr, 1,

quantile, probs=c(0.05,0.5,0.95))

Now prepared to do Fig 13.8 because it is
all based on the basic sample of 10000 betas
Easy to replace posterior means
(MP) with posterior medians (Median)
Fig 13.8, Fletch
predictions <- data.frame (
prediction_temps, t(prediction_quantiles), MP)

names (predictions) <-

c("Temp", "Lower", "Median", "Upper","MP")
library (ggplot2)
ggplot (predictions) +
geom_line(aes (x=Temp, y=Lower),

H= o o 3 3

13.2 Bayesian Inference: O-ring Data 97

color="#aa0000", linetype=2) +
geom_line(aes (x=Temp, y=MP),

color="#aa0000", linetype=1) +
geom_line (aes (x=Temp, y=Upper),
color="#aal0000", linetype=2) +

coord_cartesian(ylim=c(0,1)) +
theme_bw () +
xlab ("Temperature") +

ylab ("Failure Probability") +
ggtitle(expression(paste(
"O-Ring failure probability by temperature")))

Additional computations for Fig 13.7

Case 18 deleted, mean predictions
load ("post—-c—-samp-18.Rda")

Pr=Xf %$x% beta.c
Pr=exp (Pr)/ (1+exp (Pr))
MP_18=rowMeans (Pr)

MLE predictions from Chap 2
betalmle=15.0429

betazmle=-.2322

#funcentered MLEs

lp= betalmle + prediction_tempsx*betaZmle
mle_predictions <- exp(lp) / (1 + exp(lp))

Fig 13.7
plot (prediction_temps,mle_predictions, type="1",
x1lim=c (30, 85),
ylab="Probability", xlab="Temperature", 1ty=3)
lines (prediction_temps,MP, type="1", 1ty=1)
lines (prediction_temps,MP_18,type="1",1lty=2)
legend ("bottomleft",
c("MLE", "Bayes: full data","Bayes: no case 18"),
lty=c(3,1,2))

98

Probabilty

Fig. 13.7

10

08

06

04

02

0.0

13 Bayesian Binomial Regression

MLE
Bayes: full data
Bayes: no case 18

T
40

50

T
60

Temperature

O-Ring Data: Predictive Probabilities and MLE Predictions

13.2 Bayesian Inference: O-ring Data

O—Ring failure probability by temperature

99

Failure Probability

30 40

50

Temperature

60 70 80

Fig. 13.8 O-Ring Data: Predictive Probabilities and 90% Intervals

13.2.3 Inference for Regression Coefficients

This involves merely summarizing our posterior samples. We used the uncentered

version.

Table 13.1 Posterior Marginal Distribution from importance sampling: O-Rings

Full Data Case 18 Deleted

Bo Bi| Bo Bi
Bi=E(Bi|Y) 12.97 —0.2018| 16.92 —0.2648
Std. Dev.(B;|Y) | 5.75 0.0847| 7.09 0.1056
5% 4.56 —0.355 6.85 —0.459

25% 9.04 —0.251 | 11.98 —0.324

50% 1244 —0.194 | 16.13 —0.252

75% 16.20 —0.144 | 20.86 —0.191

95% 23.38 —0.077 | 29.96 —0.114

Code 13.2.13.

rm(list = 1ls())

setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")

100 13 Bayesian Binomial Regression

load ("post—samp.Rda")

rowMeans (beta)

apply (beta, 1, mean) # Redundant command

sdv=c (sd (beta[l,]),sd(betal2,1]1))

sdv

#apply (beta, 1, sd) # Redundant command

apply (beta, 1, quantile,
probs=c(0.025,.25,0.5,.75,0.975))

Repeat on post-samp-18.Rda and post-samp-thin.Rda. To reproduce
the book modify Subsubsection 13.2.1.4 to create another file with # = 1000000

in
cat

sic

terates and with 10,000 iterates change the prior to the BIDA prior as indi-
ed in the code.

To get Figure 13.10 as similar as possible to the second edition I reran the ba-
code but reduced the iterates to interates=5000 while imposing severe

thinning with n.thin=100. I saved the new posterior iterates in the data file

ro

st-samp-thin.Rda, so we begin by reading them back in.

Code 13.2.14.

Density

Fig.

rm(list = 1s{())

setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")
load ("post-samp-thin.Rda")

post_slope=density (betal[2,])

plot (post_slope,main="")

T T T T
—-0.6 —-0.4 —-0.2 0.0

N = 5000 Bandwidth = 0.01309

13.10 O-Ring Data: (Estimated) Marginal Posterior Density for 3; (slope not intercept).

13.22 Bayesian Inference: Trauma Data 101

13.2.4 Inference for LD,

We begin by reading in the previously saved posterior samples " from
post-samp.Rda as the 2 X matrix beta. We need to repeat the process with
posterior samples obtained when deleting case 18.

Code 13.2.15.

setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")
load ("post—-samp.Rda")

load ("post-samp-18.Rda")

#create a placeholder matrix for the output
out=rep(l,15)

out=matrix (out,ncol=3)

af=c(.9,.75,.5,.25,.1)

for(k in 1:5){
lda=(log(af[k]/(1-af[k]))-betall,])/betal2,]
out [k,]=quantile(lda,c(.05,.5,.95))

}

out

Table 13.2 Posterior Summaries for LDg’s

Full Data Case 18 Deleted
Percentiles Percentiles
a | 5% 50% 95%|| a | 5% 50% 95%
0.90130.2 52.9 60.4({0.90|39.8 55.1 61.2
0.75|43.4 58.5 64.0||0.75|48.9 59.4 64.0
0.50|55.9 64.2 68.5|(0.50|57.5 63.8 67.5
0.25165.1 69.8 76.4||0.25|64.1 68.1 73.0
0.10]70.3 75.4 88.3||0.10|68.3 72.4 80.9

13.22 Bayesian Inference: Trauma Data

Whereas the book goes back and forth between the O-ring and Trauma data sets,
for computational simplicity, in this section we only deal with the Trauma data. It is
tentatively marked as 13.22. Section 3 follows and deals with Section 3 of the book:
Diagnostics.

The trauma data file is coded with 1 as survived. The book treats 1 as death.
TRAUMAa .DAT is a version of TRAUMA . DAT without the column names.

We begin by creating the box plots of book Figure 13.5.

102 13 Bayesian Binomial Regression

Code 13.22.1.

rm(list = 1s())

Trauma <—- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TRAUMAa .DAT"),

#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TRAUMAa .DAT",
sep="",col.names=c("ID", "Death","ISS","TI", "RTS", "AGE"))

Alternative file read

#"url ("http://stat.unm.edu/ fletcher/LLM/DATA/TRAUMA.DAT"),

sep="", header=T)

attach (Trauma)

summary (Trauma)

From the summary, 0.93 percent "die" in the ER

It is labeled backwards.

Death=1-Death

par (mfrow=c(2,2))
boxplot (ISS"Death,ylab="ISsS")
boxplot (RTS Death)
boxplot (AGE"Death)
par (mfrow=c(1l,1))

S O A —
8 - o g
°
: :
°
2 9 - ° — 2o s
B - 1 - 8
J
S : : ~ °
_ !
— s !
P e — o [—
T T T T
(o] 1 o 1
Death Death
—
s - 8 1
3 - i
w '
) .
<< - !
< 4
S T T
! _
- L
T T
o 1

Death

Fig. 13.11 Trauma Data: Box Plots, 1 indicates death.

13.22 Bayesian Inference: Trauma Data 103
13.22.1 Specifying the Prior and Approximating the Posterior
13.22.1.1 Creating the BUGS model files

The model with flat priors on the regression coefficients is pretty easy. Save this as
trauma_flat.txt.

model {
for(i in 1:n){
Death[i] ~ dbern(pl[i])

logit(p[i]) <- betall]
+ beta[2]*ISS[1i] + beta[3]*RTS[1]
+ beta[4]«AGE[i] + betal[5]*TI[1i]
+ betal[6]*AGE[1]*TI[1]
}
for(i in 1:6){ beta[i] ~ dflat () }
}
It takes more work to define the model with the informative prior. The infor-
mative prior is determined by Table 13.3. In particular, we need to deal with the

X matrix and find its inverse. We will use R to compute X!, called Xt inv, and
include it as data for the BUGS model.

Table 13.3 Trauma Data: Prior Specification

Design for Prior |Beta (3;,N; — ¥;)
i % i Ni—Ji
11125784600 0] 1.1 8.5
2125334100 0] 3.0 11.0
3/ 14133460160]| 5.9 1.7
4114178410110 1.3 12.0
5133574350 0] 1.1 4.9
6/13357435135]| 1.5 5.5

Save the following model as trauma.model.txt The BUGS command
inprod (x,y) computes x'y.

model {
for(i in 1:n){
Death[i] = dbern(plil)
logit(p[i]) <- beta[l] + betal[2]+*ISS[i]
beta[3]1*RTS[1]
+ beta[4]*AGE[1]
+ betalS5]*TI[1]
+ beta[6]*AGE[1]1+TI[1]

+

104 13 Bayesian Binomial Regression

for(i in 1:6){

ptilde[i] = dbeta(alil,bl[i])

v[i] <= log(ptilde[i]/ (l-ptilde[i])) }
for(i in 1:06){

beta[i] <- inprod (Xtinv[i,1:6], v[1:6])

13.22.1.2 Generate and Save Posterior samples

This subsubsection is the only place in this section that we will use the bugs pro-
gram from the R20penBUGS package. Everything else is simply R programming.

Informative prior
Code 13.22.2.

rm(list = 1ls())

enter hyperparameters of priors
and data size

n=300
a=c(1.1,3,5.9,1.3,1.1,1
b=c(8.5,11,1.7,12,4.9,5
iterates=80000
burn_in=5000

library (R20penBUGS)
BUGS_path <-
"c:\\Program Files (x86)\\OpenBUGS\\OpenBUGS323\\0penBUGS.exe"
setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")

working_dir <- "c:\\E-drive\\Books\\LOGLIN3\\BAYES\\"

)

.5
.5)

Enter data

Trauma <- read.table (

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TRAUMAaA.DAT"),

#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TRAUMAa.DAT",
sep="",col.names=c ("ID", "Death","ISS","TI", "RTS", "AGE"))

attach (Trauma)

Death=1-Death

#Enter Xtilde
Xtp=c (

1, 25, 7.84, 60, 0, O,
1, 25, 3.34, 10, 0, O,
1, 41, 3.34, 60, 1, 60,
1, 41, 7.84, 10, 1, 10,

13.22 Bayesian Inference: Trauma Data 105

1, 33, 5.74, 35, 0, O,
1, 33, 5.74, 35, 1, 35)
Xtilde=t (matrix (Xtp, 6,6))

Xtilde

Find inverse of Xtilde
Xtinv=solve (Xtilde)
Xtinv

data <— list("n"["Death", "a"’ "b" ,"XtinV","ISS","RTS","AGE","TI")

inits <- function() {
list (ptilde=c(0.5,0.5,0.5,0.5,0.5,0.5))

parameters <- list("beta")

Trauma.sim <- bugs(data, inits, parameters,
model.file="trauma_model.txt",
n.chains=1, n.iter=iterates+burn_in,
n.thin=1, n.burnin=burn_in,
OpenBUGS . pgm=BUGS_path,
working.directory=working dir,
debug=F)

Trauma.sim$Ssummary

save p x t matrix of gamma posterior iterates

beta <- t(Trauma.sim$sims.list$beta)

save (beta, file="trauma_samp.Rda")

#save (beta, file="trauma-samp-thin.Rda")

Results of code with 80,000 samples, 5000 burnin.

mean sd 2.5% 25%

betal[l] -1.85438137 1.11013140 -4.06900 -2.587000
betal2] 0.06594937 0.02103582 0.02677 0.051320
betal[3] -0.59752132 0.14364672 -0.89260 -0.691725
betal[4] 0.04811565 0.01410091 0.02165 0.038550
betal[5] 1.10883893 1.08537427 -1.05500 0.404875
betal6] -0.01696064 0.02783206 -0.07249 -0.035500
deviance 105.28460500 2.82950050 101.30000 103.300000

50% 75% 97.5%

betal[l] -1.82600 -1.092000 0.30610000
betal2] 0.06562 0.079660 0.10990000
betal3] -0.59380 -0.498300 -0.32779750
betal4] 0.04761 0.057360 0.07641025

106 13 Bayesian Binomial Regression

betal[5] 1.11600 1.820000 3.24200000
betal6] -0.01642 0.001655 0.03716050
deviance 104.80000 106.800000 112.20000000

Results of code with only 8,000 samples, 5000 burnin, but thining of 100.

mean sd 2.5% 25%
beta[l] -1.78115435 1.13648017 -4.06107500 -2.5172500
betal2] 0.06540472 0.02127947 0.02396875 0.0509575
beta[3] -0.59949944 0.14455717 -0.89090250 -0.6944000
betal[4] 0.04736977 0.01374953 0.02196975 0.0380600
beta[5] 1.09652375 1.11537470 -1.12207500 0.3635250
beta[6] -0.01714907 0.02834145 -0.07347225 -0.0365325
deviance 105.37631250 2.82022240 101.30000000 103.3000000

50% 75% 97.5%

betal[l] -1.783500 -1.01100000 0.42111750
betal2] 0.065290 0.07952250 0.10720250
betal[3] -0.596900 -0.50167500 -0.31839750
betal4] 0.046925 0.05643250 0.07528025
betal[5] 1.099500 1.85000000 3.21200000
betal6] -0.016445 0.00236125 0.03776025
deviance 1104.900000 06.90000000 112.00000000

To obtain results with the flat prior we change the model file within the bugs
program and we change the inits command and delete extraneous material in-
cluding extraneous data inputs. (OpenBUGS likes you to use all the data you
input to it.)

Code 13.22.3.

rm(list = 1s())

enter data size

n=300

iterates=80000

burn_in=5000

library (R20penBUGS)

BUGS_path <-

"c:\\Program Files (x86)\\OpenBUGS\\OpenBUGS323\\0penBUGS.exe"
setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")

working_dir <- "c:\\E-drive\\Books\\LOGLIN3\\BAYES\\"

Enter data

Trauma <- read.table (

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TRAUMAa.DAT"),

#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TRAUMAa .DAT",
sep="",col.names=c("ID", "Death","ISS","TI", "RTS", "AGE"))

attach (Trauma)

Death=1-Death

13.22 Bayesian Inference: Trauma Data

data <- list(

"n", "Death", "ISS", "R'I‘S", "AGE", "'I‘I")

inits <-= function () {
list (beta=c(0.5,0.5,0.5,0.5,0.5,0.5))

parameters <- list("bet

a")

Trauma.sim <- bugs(data, inits, parameters,

model.file="trauma_flat.txt",

n.cha
n.thi

Trauma.sim$summary

save p x t matrix of gamma posterior iterates

107

ins=1, n.iter=iterates+burn_in,
n=1, n.burnin=burn_in,
OpenBUGS . pgm=BUGS_path,

working.directory=working dir,
debug=F)

beta <- t(Trauma.sim$sims.listS$Sbeta)

save (beta, file="trauma_flat_samp.Rda")

results of code

betall] -2
betal2] 0
betal[3] -0
betal4] 0
betal[5] 1
betalo6] -0.
deviance 106.
betall] -2
betal2] 0
betal[3] -0
betal4] 0
betal[5] 1
betal6] -0.

deviance 105

.767992112
.086004325
.596305548
.056607392
.461678521

mean

009483645
349330000
50%

w ok OO o

.762000 -1.
.085420 0.
.590500 -0.
.056220 0.
.467000 2

008191 0.

.700000 108.

13.22.1.3 Estimated Density Plots

sd
.69088184
.02936731
.17785257
.01698826
.42021297
.03494240
.64375233
75%
61500 0.
10500 0.
47540 -0.
06775 0.
4.
0.
5.

.39800

01421
20000 11

-6.
0.
-0.
0.
.35900000
-0.
101.

-1

2.5%
07500000
03000000
96880000
02431975

08136150

-0.

40000000 103

97.5%
5095000
1457025
2627000
0912800
2180000
0566900
2000000

25%
.893000
.066150
.709100
.045180
.515875
032150
.700000

We now create Figure 13.6, the estimated trauma density plots of the book. The code
samples from the prior each time it is run, so the prior densities change slightly with

108 13 Bayesian Binomial Regression

each run of the code. The posterior samples were saved and are read, so they do not
change.

Code 13.22.4.

rm(list = 1s{())

#Read posterior samples of beta

Assumes they are in a p x t matrix

setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")
load ("trauma-samp-thin.Rda")

#load ("trauma_samp.Rda")

beta

establish t (number of iterates)
iterates=length (betall,])

define prior hyperparameters
a=c(1.1,3,5.9,1.3,1.1,1.5)
b=c(8.5,11,1.7,12,4.9,5.5)

#Enter Xtilde

Xtp=c(
1, 25, 7.84, 60, 0, O,
1, 25, 3.34, 10, 0, O,
1, 41, 3.34, 60, 1, 60,
1, 41, 7.84, 10, 1, 10,
1, 33, 5.74, 35, 0, O,
1, 33, 5.74, 35, 1, 35)

Xtilde=t (matrix (Xtp, 6,6))

Xtilde

generate posterior samples of ptildes

Compute posterior linear predictors and probabilities
ptilde_posterior= Xtilde %*% beta

ptilde_posterior=exp (ptilde_posterior)/ (l+exp (ptilde_posterior))

Matrix for plots
par (mfrow=c (2, 3))

plot
generate prior sample within 2nd call of density
for(i in 1:6){
post_p=density (ptilde_posterior[i,])
prior_p=density (rbeta(iterates,al[i],b[i]))
plot (prior_p,main=c (i), xlab="ptilde", ylim=c(0,10), xlim=c(0,1))
lines (post_p, 1lty=5)
legend ("topright", c("prior", "post"),lty=c(1,5))

13.22 Bayesian Inference: Trauma Data 109

}

In general, the posterior densities can be obtained by sampling from the discrete
approximate posterior and smoothing those samples. That would be, perhaps not ab-
solutely necessary, but certainly convenient if the discrete approximation was from,
say, importance sampling where the probabilities in the discrete approximation are
not all the same.

13.22.2 Predictive Probabilities

Using the posterior samples ", r = 1,...,t, to find predictive probabilities at loca-
tions xs;, i = 1,...,ny we compute F(x’ﬂﬁ’), r=1,...,t,i=1,...,ny and average
over r. Here F is the cumulative distribution function that defines our binomial sam-
pling model.
To be more succinct, create
)c’f1
Xy = = [Xp1 Xp]
x/fnf
and .
by
B=[p! Bl=]:
/
by
We need to compute
F(X;B),

where the one-dimensional cdf F is being applied to each number in the matrix X¢B.
We then compute the row means of this ny X t matrix.
Computationally, we have a couple ways we can get X¢B. Obviously,

XiB=[X/B" -+ XiPB']

which is basically what we did with the O-ring data. For the trauma data we do the
computation as

P
XB=Y Xpb'.
j=1

In R notation, we have B identified as beta so b; is beta[j,]. The computation
X fjb’j is the outer product of the vectors Xy; and b;, so we would program it some-
thing like outer (Xfj,beta[],]), except we use alternative notations for the
columns of Xy, notations based on the names of the variables involved.

Book Figure 13.9 involves 8 curves which would require 8 X matrices but many
of the entries are redundant, which is why we chose this alternative form for com-

110 13 Bayesian Binomial Regression

puting XB. Again, the command outer (x,y) computes xy'. As always J (or J)
is a column of 1s.

Code 13.22.5.

rm(list = 1s{())

#Read posterior samples of beta

Assumes they are in a p x t matrix

setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")
load ("trauma_samp.Rda")

establish t (number of iterates)
iterates=length (betall,])

Matrix for plots
par (mfrow=c(2,2))

determine where predictions are made
ISS=seq(0,75,1)

create a column of 1s

J=1+ISS-ISS

AGE= 60

RTS=3.34

TI=0, blunt linear predictor

the command outer computes xy’

w<—- outer (J,betal[l,]) + outer(ISS,betal2,]) +

outer (RTS*J, betal[3,]) + outer (AGE+J, betal4,])
#TI=1, linear predictor

ww= w+ outer(J, betal5,]) + outer (AGE+J,betal[6,])

turn linear predictors into probabilities
w=exp (w) / (L+exp (w))
ww=exp (ww) / (1+exp (ww))

compute posterior means of predictive probabilities
y=rowMeans (w)
yy=rowMeans (ww)

Plot for Age=60 and RTS=3.34

plot (ISS,y,type="1",xlim=c(0,80),ylab="Pr (death)",
x1lab="ISS",main="a. AGE=60 and RTS=3.34",1lty=1)

lines (ISS,yy,type="1",1lty=2)

legend ("bottomright",c ("Blunt", "Penetrating"),lty=c(1,2))

13.22 Bayesian Inference: Trauma Data 111

AGE=10
RTS=3.34

TI=0, blunt linear predictor

w<— outer(J,betal[l,]) + outer (ISS,betal2,]) +

outer (RTS*J, betal[3,]) + outer (AGExJ, betal4,])
#TI=1, linear predictor

ww= w+ outer(J, betalb5,]) + outer (AGE+J,betal[6,])

w=exp (w) / (1+exp (w))

ww=exp (ww) / (1+exp (ww))

compute posterior means of predictive probabilities

y=rowMeans (w)

yy=rowMeans (ww)

plot (ISS,vy,type="1",x1lim=c (0,80),ylab="Pr (death)",
xlab="ISS",main="b. AGE=10 and RTS=3.34",1lty=1)

lines (ISS,vyy,type="1",1ty=2)

legend ("bottomright",c ("Blunt", "Penetrating"),lty=c(1,2))

AGE= 60
RTS=5.47

TI=0, blunt linear predictor

w<—- outer (J,betall,]) + outer(ISS,betal2,]) +

outer (RTS*J, beta[3,]) + outer (AGExJ, betal4,])
#TI=1, linear predictor

ww= w+ outer(J, betal5,]) + outer (AGE+J,betal[6,])

w=exp (w) / (1+exp (w))

ww=exp (ww) / (1+exp (ww))

compute posterior means of predictive probabilities

y=rowMeans (w)

yy=rowMeans (ww)

plot (ISS,y,type="1",x1im=c(0,80),ylab="Pr (death)",
xlab="ISS",main="c. AGE=60 and RTS=5.47",1lty=1)

lines (ISS,yy,type="1",1lty=2)

legend ("bottomright",c ("Blunt", "Penetrating"),lty=c(1,2))

AGE= 10
RTS=5.47

TI=0, blunt linear predictor

112 13 Bayesian Binomial Regression

w<—- outer (J,betall,]) + outer(ISS,betal2,]) +

outer (RTS*J, betal[3,]) + outer (AGExJ, betal4,])
#TI=1, linear predictor

ww= w+ outer(J, betal5,]) + outer (AGExJ,betal[6,])

w=exp (w) / (l+exp (w))

ww=exp (ww) / (1+exp (ww))

compute posterior means of predictive probabilities

y=rowMeans (w)

yy=rowMeans (ww)

plot (ISS,vy,type="1",x1lim=c (0, 80),ylab="Pr (death)",
xlab="ISS",main="d. AGE=10 and RTS=5.47",1lty=1)

lines (ISS,yy,type="1",1ty=2)

legend ("topleft",c("Blunt", "Penetrating"), lty=c(1,2))

13.22.3 Inference for Regression Coefficients

This is almost identical to the code for the O-ring data. We just use a different set of
saved posterior samples.

Code 13.22.6.

setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")
load ("trauma_samp.Rda")

rowMeans (beta)

apply (beta, 1, mean) # Redundant command
#sdv=c (sd (betal[l,]),sd(betal2,]))

#sdv

apply (beta, 1, sd) # Redundant command

apply (beta, 1, quantile, probs=c(0.05,0.95))

13.3 Diagnostics

13.3.1 Case Deletion Influence Measures

This subsection merely sets notation. LC is an R function for evaluating the likeli-
hood contribution L(f|y). It gets applied as LC (beta [, r],x[i,],N[1],y[i]) =
L(B",y;) where beta is the k X ¢ matrix with columns ", x is the n x k model ma-
trix X, so x[1,] =x}, with N = (N,...,N,) and y = (y1,...,y,) being n vectors

of the number of trials and successes for case i

13.3 Diagnostics 113

Table 13.4 Fitted Trauma Model

Informative Posterior Summaries |[Maximum Likelihood
Based on informative prior
Variable |Estimate Std. Error 0.05% 0.95%|Estimate Std. Error

Intercept | —1.79 .10 -3.54 0.02| -2.73 1.62
1SS 0.07 0.02 0.03 0.10] 0.08 0.03
RTS —0.60 0.14 —0.82 —0.37| —0.55 0.17
AGE 0.05 0.01 0.03 0.07 0.05 0.01
TI 1.10 1.06 —-0.66 287 134 1.33
AGE x TI| —0.02 0.03 —-0.06 0.03] —0.01 0.03

Posterior Summaries
Based on diffuse prior
Variable |Estimate Std. Error 0.05% 0.95%
Intercept | —2.81 1.60 —5.34 —0.18

ISS 0.09 0.03 0.05 0.13
RTS —0.59 0.17 —0.86 —0.32
AGE 0.06 0.02 0.03 0.09
TI 1.46 136 —-0.79 3.69

AGE x TI| —0.01 003 —0.07 0.05

lcisat vector with values L(f"|y;) =LC (betal,r],x[i,],N[i],y[i]).
qti isat vector of g,(; values. To reduce memory use, the indexing on i is implicit.

13.3.2 Estimative and Predictive Influence: O-rings

This subsection corresponds to both Subsections 13.3.2 and 13.3.3 of the text, but
only for the O-ring data.

D1, D2, and D are n vectors of Df i Dgi, Df3 values. Dp and Df are n vectors of
DP, D! values.

EXAMPLE 13.3.1. O-ring Data.
Begin by reading in the k X r matrix with columns .

Code 13.3.1.

rm(list = 1s())

setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")
load ("post—samp.Rda")

enter data

n=23

y=c(l1,1,1,1,09,0,0,0,0,09,0,0,1,1,0,0,0,1,0,0,0,0,0)
N=c(1,1)
tau=c(53,57,58,63,66,67,67,67,68,69,70,70,70,70,72,

73,75,75,76,76,78,79,81)

114 13 Bayesian Binomial Regression

iterates=length (betall,])

define likelihood contribution function

LC <- function (beta,x,N,vVy)

{

LP = sum(betax*x)

le=((exp (LP)/ (1+exp (LP))) **y) * ((1- (exp (LP) / (1+exp (LP)))) ** (N-y))
return(lc) }

Find s dim. vector Pr(y=1|Y,x_1i"f)

Xf is predictive model matrix
Xf=matrix (c(rep(l,11),seq(31,51,2)),11)
JJf=exp (Xf %$x% beta)

JJf=JJf/ (1+JJf)

PPf=rowMeans (JJf)

Find n vector Pr(y=11]Y,x_1)

X is model matrix

X=matrix (c(rep(l,n),tau),nrow=n)
JJ=exp (X %*% beta)

JJ=JJ/ (1+J3J)

PP=rowMeans (JJ)

Define dummy vectors for diagnostics
to be redefined below

Dl=rep(l,n)

D2=rep(l,n)

D=rep(l,n)

Dp=rep(l,n)

Df=rep(l,n)

lc=rep(l,iterates)

gti=rep(l,iterates)

Diagnostics

outer "for" loop finds diagnostics for each i

for(i in 1:n)

{

inner "for" loop creates "iterates" length vectors of
L(\beta"r|y_1i) and unstandardized \gtilde_{r (i)} values,
with i fixed. Note \gtilde_{r} = 1/t

for(r in l:iterates)

{

lc[r]=LC (betal,r],X[i,],N[1],y[i])

gtilr]l=1/1lclr]

}

13.3 Diagnostics 115

standardize \gtilde_{r (i)}

gti=qgti/sum(gti)
Dl[i]=log(sum(lcxgti))-sum(log(lc)*xqgti)

D2[i]=mean (log(lc))-log(sum(lcxgti))

D[1]=D1[i]+D2[1i]

PPi=JJ%+% qgti

PPfi=JJf%+% gti

Dp[i]=sum((PP-PPi)=x (log(PP/(1-PP)) - log(PPi/ (1-PPi)))

Df[i]=sum((PPf-PPfi)« (log(PPf/(1-PPf)) - log(PPfi/ (1-PPfi)))

}

Figure 13.11 in text
par (mfrow=c(2,1),mar=c(5, 5, 4, 2) + 0.1)
plot (seq(1:23),Dp,xlab="index",
ylab=expression (italic(D[i] "p)),cex.lab=1.5)
plot (seg(1:23),Df,xlab="index",
ylab=expression(italic(D[i] " f)),cex.lab=1.5)
#mtext (expression(D[1] "beta),side=2,cex=1.5,at=1.1)
par (mfrow=c(l,1),mar=c(5, 4, 4, 2) + 0.1)

Figure not included in text

par (mfrow=c(2,2),mar=c(5, 5, 4, 2) + 0.1)

plot (seq(l:23),D1l,ylab=expression(D["1i"] "beta),
xlab="index")

plot (seg(1:23),D2,ylab=expression(D["2i"] "beta),
xlab="index")

plot (seq(1:23),D,ylab=expression(D[i] "beta),
xlab="index")

par (mfrow=c(1l,1))

13.3.3 Estimative and Predictive Influence: Trauma

This subsection corresponds to both Subsections 13.3.2 and 13.3.3 of the text, but
only for the Trauma data. Coding notation is similar to the previous subsection.

EXAMPLE 13.3.2. Trauma Data.

Figure 13.12 contains an index plot of the difference in the predictive probabilities
of death, p(y = 1]Y,x;) — p(y = 1|¥(s2),x;). We also need to compute the D}’s for
this example. The numerical values of the Df-’ s from this code differ from the 10,000
importance sample values in the previous edition. (The two larger are similar to
the 2,000 importance sample numbers reported in Subsection 13.3.5). I have great
faith in the importance sample computations reported in the second edition. Ed is
a far better programmer than I am. But I haven’t been able to find an error in my

)

)

116 13 Bayesian Binomial Regression

computations, so it remains an open question whether the difference in posterior ap-
proximations could cause the difference in diagnostic values. The main thing is that
these methods all identified the same observations as being potentially influential.
Similarly, the actual numbers in Figure 13.12 differ from the previous edition, but
the relative sizes look the same.

We begin by changing all of n, a, b, Xtilde, X from their values in the
corresponding O-ring data program.

Code 13.3.2.

rm(list = 1s{())

Enter data

Trauma <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TRAUMAa.DAT"),

#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TRAUMAa.DAT",
sep="",col.names=c("ID", "Death","ISS","TI","RTS", "AGE"))

attach (Trauma)

n=length (ISS)

y=1-Death

N=1+ISS-ISS

setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")
load ("trauma_samp.Rda")

iterates=length (betall,])

define likelihood contribution function

LC <- function (beta,x,N,vy)

{

LP = sum(betax*x)

le=((exp (LP)/ (l+exp (LP))) *xy) * ((1- (exp (LP) / (1+exp (LP)))) x* (N-y))
return(lc) }

Find n vector Pr(y=11]Y,x_1)

X is model matrix

X=matrix (c(rep(l,n),ISS,RTS,AGE,TI,AGE*TI),nrow=n)
JJ=exp (X %$*% beta)

JJ=JJ/ (1+JJ)

PP=rowMeans (JJ)

Define dummy vectors for diagnostics
to be redefined below

13.3 Diagnostics 117

Dl=rep(l,n)

D2=rep (l,n)
D=rep(l,n)
Dp=rep(l,n)
Pdiff=rep(1l,n)
lc=rep(l,iterates)
gti=rep(l,iterates)

Diagnostics

outer "for" loop finds diagnostics for each i

for(i in 1:n)

{

inner "for" loop creates "iterates" length vectors of
L(\beta"r|y_i) and unstandardized \gtilde_{r (i)} values, 1 fixed
Note \gtilde_{r} = 1/t

for(r in l:iterates)

{

lcl[r]=LC (betal,r],XI[1,],N[1i],yI[i])

gqtil[r]=1/1lclr]

}

standardize \gtilde_{r (i)}

gti=gti/sum(gti)
#D1[i]l=log(sum(lc*gti))-sum(log(lc) »qti)

#D2[i]=mean (log(lc))-log(sum(lcxgti))

#D[i]1=D1[1i]+D2[1]

PPi=JJ%x% qgti

Dp[i]l=sum((PP-PPi)=* (log(PP/(1-PP)) - log(PPi/ (1-PP1i))))
#Pdiff[i]=sum(PP-PP1i)

}

matrix(c(seq(l:n),Dp),ncol=2)

cases with the highest Dp values

seq(l:n) [Dp>.3]

This plot does not appear in the book
plot (seqg(l:n),Dp,xlab="index",ylab=expression(italic(D[i] "p)),cex.lab=.85)

Figure 13.12

i=52

for(r in l:iterates)

{

lc[r]=LC (betal,r],X[1,],N[1],y[1])
gtilr]l=1/lclr]

}

standardize \gtilde_{r (i)}

118 13 Bayesian Binomial Regression

gti=qgti/sum(qgti)

PPi=JJ%*% qgti

par (mfrow=c(l,1),mar=c(5, 5, 4, 2) + 0.1)
plot (seq(l:n),PP-PPi,xlab="index",ylab=
expression (paste (Pr," (", "y=1","|",

¥, x[31, M), P, (T, =1, T,
YI(52)1,", ", x[31,"M)")))

13.3.4 Model Checking

Computationally, this is more difficult than the next subsection, so you would be
well advised to examine that first. The next section involves computing the density
P(Y) = P(Y|M) for known Y and three different models M. This section involves
not only computing P(Y|M) for known Y (and just one model) but also sampling
from the distribution of P(Y) when Y is random.

We sample from the prior as discussed in the book. BIDA discusses a more ef-
ficient but more convoluted method for these computations that uses samples from
the posterior distribution rather than samples from the prior. When integrating the
likelihood over the prior, the prior may put most of its probability on places where
the likelihood is close to zero. The numerical value of the integral is largely de-
termined by the range of values where the likelihood is not close to zero. To get an
accurate evaluation of the integral one needs to sample the nonzero areas of the like-
lihood extensively. It may take an extremely large sample size from the prior to get
a sufficient number of parameter values in the nonzero likelihood areas. Sampling
from the posterior should not have that problem but requires some mathematical
gymnastics to get an appropriate evaluation for turning a sample from the posterior
into an evaluation of a prior integral.

We sample 3", r = 1,...,¢ from the prior to evaluate the marginal density. Back
in Subsubsection 13.2.1.6 we saved such samples in the file beta-samples.Rda
as the data frame

beta_frame

We construct beta as our k X ¢t matrix of prior samples. We also need to sample
Y. k=1,...,M from the marginal density. It simplifies matters to have t = M?

We begin with the full data model check for the logistic model. The code is
written so that a single change near the end will allow model checks for the probit
and complementary log-log models. This is so because of similarities between this
code and the Link Selection code of the next subsection.

Code 13.3.3.

rm(list = 1s())
While only doing the computation for logistic
models, we include some code for probic and

13.3 Diagnostics 119

complementary log-log
logit <- function (p)

{

1lg = log(p/(1-p))
return (1lqg) }

logistic <- function (w)
{
lg = exp

(w) / (1+exp (w))
return (lg

W)
) }
Gum <- function (w)

{

lg = 1-(exp(-exp(w)))
return (1lg) }

cll <- function (p)
{

lg = log(~log(l-p))
return (1lg) }

Fletch used BIDA not LOGLIN3 Priors
so I have changed them

#a <- c(1.6, 1)

#b <- c(1, 1.6)

LOGLIN3 priors

a <-c¢c(1, .577)

b <= c¢c(.577, 1)

iterates=2000 # increase

ptildel <- rbeta(iterates, aflll, bll])
ptilde2 <- rbeta(iterates, al2], b[2])
either

ptildea=t (cbind(ptildel,ptilde2))

or

ptilde=c(ptildel,ptilde?2)
ptilde=t (matrix (ptilde,ncol=2))

Xtilde=matrix(c(1,1,55,75),ncol=2)
Xtildeinv=solve (Xtilde)

enter data

n=23
y=c(1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0)
N=c(1,1)

14 14

120 13 Bayesian Binomial Regression

tau=c(53,57,58,63,66,67,67,67,68,69,70,70,70,70,72,
73,75,75,76,76,78,79,81)
X=matrix(c(rep(l,23),tau),ncol=2)

X

pprobit=pnorm(X %*% Xtildeinv %*x% gnorm(ptilde))
plogit=logistic (X %*% Xtildeinv %*% logit (ptilde))

pcll=Gum (X %$x% Xtildeinv %*% cll (ptilde))

define likelihood function

den <- function(p,y,N)

{

fp = prod(c(p’y, (1-p)" (N-y)))

For nonbinary data

#fp = prod(c(p”y, (1-p)” (N-y),choose(N,vy)))

return (fp) }

#choose (N, y) or factorial (N)/ (factorial (y)*«factorial (N-y))

Marginal density function
In Link Selection, computed but not a function
marg <- function (y,N)

{

Mprobitd=rep(l,iterates)
Mlogitd=rep(l,iterates)
Mclld=rep(l,iterates)

for(r in l:iterates) {
Mprobitd[r]=den (pprobit([,r],y,N)
Mlogitd[r]=den (plogit[,r],vy,N)
Mclld[r]=den(pcll[,r],y,N)}

Mprobit=mean (Mprobitd)

Mlogit=mean (Mlogitd)

Mcll=mean (Mclld)

change "return" statement for testing

alternative links

return (Mlogit)

}

Everything up to this point has been similar to
the link selection program

13.3 Diagnostics 121

Full data model check

For different links, also change "plogit" term
Yf=rep(l,n)

c=0

for(r in l:iterates){

for(i in 1:n){

Yf[i] = rbinom(l,N[i],plogit[i,r])}

if (marg(Yf,N) <= marg(y,N)) c =c + 1}
Pvalue=c/iterates

Pvalue

On my computer, this program involves waiting a little bit.

To incorporate the outlier tests, replace the ”Full data model check” paragraph at
the end of the previous program with the following code. On my computer this code
took a bit under 30 minutes to run.

Code 13.3.4.

Full data model and outlier check

For different links, also change "plogit" term
Yf=rep(l,n)

c=0

cc=rep (0,n)

for(r in l:iterates){

for(i in 1:n){

Yf[i] = rbinom(l,N[i],plogit[i,r])}

for(k in 1:n){

if (marg(Yf[k],N[k]) <= marg(y[k],N[k])) cclk] = ccl[k] + 1}
if (marg(Yf,N) <= marg(y,N)) c =c + 1}

Pvalue=c/iterates
Pvalue
PV=cc/iterates

PV

Because it takes so long to run, my output was

> Pvalue

[1] 0.542
> PV=cc/iterates
> PV

[1] 0.6615 0.6210 0.5995 0.5255 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
[11] 1.0000 1.0000 0.4180 0.4390 1.0000 1.0000 1.0000 0.3475 1.0000 1.0000
[21] 1.0000 1.0000 1.0000

122 13 Bayesian Binomial Regression

13.3.5 Link Selection

This code is similar to the previous subsection in that it again involves sampling
from the prior. BIDA discusses a more efficient, but more convoluted, method for
these computations that uses samples from the posterior distribution rather than
samples from the prior. When integrating the likelihood over the prior, the prior
may put most of its probability on places where the likelihood is close to zero. The
numerical value of the integral is largely determined by the range of values where
the likelihood is not close to zero. To get an accurate evaluation of the integral one
needs to sample the nonzero areas of the likelihood extensively. It may take an ex-
tremely large sample size from the prior to get a sufficient number of parameter
values in the nonzero likelihood areas. Sampling from the posterior should not have
that problem but requires some mathematical gymnastics to get an appropriate eval-
uation for turning a sample from the posterior into an evaluation of a prior integral.
An easy way to check whether sampling from the prior is working is to gradually
increase the number of iterates and see if the Bayes Factor computation remains
stable.
In Subsection 13.3.4 for a single model M we discussed finding

P(Y) =P(Y|M),
where 1
PYIM) = [L(BIY)w(B) = L LL(B'IY).
with B1,..., B’ a random sample from the prior. Here both the likelihood function

L and the prior 7 depend on the model M. In this subsection, we find P(Y |M;) for
three models M because in Subsection 13.3.5 of the text we found Bayes factors
P(Y|M;
sy — PO,
P(Y |My)
Throughout this computation, Y is fixed.
The likelihood is

L(B|Y) = f[(N’) w1 —m)Nii = F(xB).

i=1 \Ji

This can be rewritten using vectors where we redefine 7 from the density 7(-) into
an n vector of probabilities,

L(B|Y) =exp [Y'log(m) + (N —Y) log(1 —)] ﬁ (];]l), T=F(XB),
i=1 \ Vi

where N = (Ny,...,N,)’ and functions on real numbers are applied to matrices ele-
mentwise. For 0-1 data, N = J, (a column of 1s) and (1;") =1 forall i.

13.3 Diagnostics 123

The prior on f3 is determined from the prior on j as f = X ' F~!(}), so the prior
distribution of 7 in our likelihood computation is determined by

n=FXX'F'(p)).

In computing we begin by creating a k X ¢t matrix ptilde with each column a
sample from the prior on p and then create a version of 7 as an n X ¢t matrix with
each column a sample from the prior on 7. Depending on the choice of F these
are called plogit, pprobit, or pcl1l. We then evaluate the likelihood for each
column of these matrices and average to get P(Y |My).

EXAMPLE 13.3.1 CONTINUED. O-ring Data.
BIDA gives different (more efficient) code that samples from the posterior rather
than from the prior.

Code 13.3.5.

rm(list = 1s())
logit <- function (p)
{

lg = log(p/(1-p))
return(lqg) }

logistic <- function (w)
{

1lg = exp(w
return (1lg)

)/ (1+exp (w))
}

Gum <- function (w)

{

lg = 1-(exp(-exp(w)))
return (1lg) }

cll <- function (p)
{

1lg = log(-log(l-p))
return (1lqg) }

Fletch used BIDA not LOGLIN3 Priors
so I have changed them

#a <- c(1.6, 1)

#b <- c(1, 1.6)

LOGLIN3 priors

a <-c¢c(1, .577)

b <= c¢(.577, 1)

iterates=12000 # increase

124 13 Bayesian Binomial Regression

ptildel <- rbeta(iterates, alll, b[1l])
ptilde2 <- rbeta(iterates, al[2], b[2])
either

ptildea=t (cbind(ptildel,ptilde2))

or

ptilde=c(ptildel, ptilde2)
ptilde=t (matrix (ptilde,ncol=2))

Xtilde=matrix(c(1,1,55,75),ncol=2)
Xtildeinv=solve (Xtilde)

enter data
n=23

y=c(1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0)
N=c(1,1)
tau=c(53,57,58,63,66,67,67,67,68,69,70,70,70,70,72,

73,75,75,76,76,78,79,81)
X=matrix(c(rep(l,23),tau),ncol=2)
X

o L0 [T}

pprobit=pnorm(X %*% Xtildeinv %*% gnorm(ptilde))

[

plogit=logistic (X %%% Xtildeinv %*% logit (ptilde))

pcll=Gum(X %$x% Xtildeinv %x% cll(ptilde))

define likelihood function

den <- function(p,y,N)

{

fp = prod(c(p’y, (1-p)~ (N-y)))

For nonbinary data

#fp = prod(c(p”y, (1-p)~ (N-y),choose(N,y)))

return (fp) }

#choose (N, y) or factorial(N)/ (factorial (y)+*factorial (N-y))

Mprobitd=rep(l,iterates)
Mlogitd=rep(l,iterates)
Mclld=rep(l,iterates)

for(r in l:iterates) {
Mprobitd[r]=den (pprobit[,r],y,N)
Mlogitd[r]=den (plogit[,r],vy,N)
Mclld[r]=den(pcll[,r],y,N)}

13.3 Diagnostics 125

Mprobit=mean (Mprobitd)
Mlogit=mean (Mlogitd)
Mcll=mean (Mclld)

Mprobit/Mlogit #1.086 importance sampling
Mcll/Mlogit #1.403 1i.s.
Mlogit #4.398109 -6

This part of code runs fast enough even with iterates=552000 but such a large
number might be inappropriate with the case deletions about to be addressed.

Figure 13.13 (book Figure 13.13) contains a simultaneous plot of BF ;) versus i
and BF3;(;) versus i with i = 1, ---,23 for the O-ring data. The full data Bayes factors
are given by the intercept at case index 0. To do case deletions, add this to the end
of previous program

Code 13.3.6.

Mprobit=rep(l,n+1)
Mlogit=rep(l,n+1)
Mcll=rep(l,n+1l)

Mprobit [1l]=mean (Mprobitd)
Mlogit[1l]=mean (Mlogitd)
Mcll[l]=mean (Mclld)

for(i in 1:n){
yy=y[-1]
NN=N[-1]

pprobit=pnorm(X[-1
plogit=logistic (X[
pcll=Gum (X[-1i,] %~

$*% Xtildeinv %$%% gnorm(ptilde))
i,]1 %$%x% Xtildeinv %x% logit (ptilde))
t

for(r in l:iterates) {
Mprobitd[r]=den (pprobit [, r], yy,NN)
Mlogitd[r]=den (plogit[,r],yy,NN)
Mclld[r]=den(pcll[,r],vy,NN)

}

Mprobit [i+1]=mean (Mprobitd)
Mlogit [i+1]=mean (Mlogitd)
Mcll[i+1l]=mean (Mclld)

}

Figure 13.13 in text

126 13 Bayesian Binomial Regression

plot (seq(0,n),Mcll/Mlogit, xlab="Index",ylab="Bayes Factor",
ylim=c(1l,1.5),type="1",1lty=2)

lines (seq(0,n),Mprobit/Mlogit)

legend ("left",c("Log-Log", "Probit"),lty=c(2,1))

wn
-
=<
-
o
S — 7
S
o e Log—Log
B —— Probit
=3
5] o~
< i
v
—
=
o
S -
T T T T T
o 5 10 15 20

Index

Fig. 13.12 O-Ring Data: Bayes Factors with Case Deletion

EXAMPLE 13.3.2 CONTINUED. Trauma Data.
From textbook: BFp; = 1.05, BFi3 = 20.72. It is left as an exercise to modify the
code as necessary. In particular change the vector and matrices X and X.

13.3.6 Sensitivity Analysis

The following code merely illustrates a theoretical fact. Since our prior is a DAP
(data augmentation prior), we begin by repeating the code for fitting with flat priors
but augment our data with the prior observations. This begins with changing the
BUGS model file trauma_flat.txt into trauma_-flat binomial.txt to
allow for binomial sampling rather than Bernoulli sampling.

model {
for(i in 1:n){
Death[i] 7 dbin(p[i],N[1i])
logit(p[i]) <- betal[l] + beta[2]xISS[i] + beta[3]+RTS[i]

13.3 Diagnostics 127

+ beta[4]«AGE[i] + betal[5]*TI[1i]
+ betal[6]*AGE[1]*TI[1]
}
for(i in 1:6){ beta[i] ~ dflat () }
}
In the code for running this BUGS program in R we need to define the binomial

sample size variable N, augment the data statement with N, change the input file
in bugs, and augment the data.

Code 13.3.7.
rm(list = 1s())
enter data size
n=300

iterates=80000

burn_in=5000

library (R20penBUGS)

BUGS_path <-

"c:\\Program Files (x86)\\0OpenBUGS\\OpenBUGS323\\0penBUGS.exe"
setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")

working_dir <- "c:\\E-drive\\Books\\LOGLIN3\\BAYES\\"

Enter data

Trauma <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TRAUMAa.DAT"),

"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TRAUMAa.DAT",
sep="",col.names=c("ID", "Death","ISS","T1I", "RTS", "AGE"))

attach (Trauma)

Death=1-Death

Enter prior information
a=c(1.1,3,5.9,1.3,1.1,1.5)
b=c(8.5,11,1.7,12,4.9,5.5)

#Enter Xtilde

Xtp=c(
1, 25, 7.84, 60, 0, O,
1, 25, 3.34, 10, O, O,
1, 41, 3.34, 60, 1, 60,
1, 41, 7.84, 10, 1, 10,
1, 33, 5.74, 35, 0, O,
1, 33, 5.74, 35, 1, 35)

Xtilde=t (matrix (Xtp, 6,6))

Xtilde

Turn prior into augmented data

128 13 Bayesian Binomial Regression

N=rep(1l,n)

n=n+6

N=c (N, b+a)
Death=c (Death, a)
ISS=c (ISS,Xtilde[
RTS=c (RTS,Xtilde |
AGE=c (AGE, Xtilde [
TI=c(TI,Xtildel[,5

;21)
,31)
,47)

1)

new "data" includes "N"

data <_ list("n"’"N", "Death"’"ISS","RTS","AGE"’"TI")

inits <- function() {
list (beta=c(0.5,0.5,0.5,0.5,0.5,0.5))

parameters <- list("beta")

Change "model.file"
Trauma.sim <- bugs(data, inits, parameters,
model.file="trauma_flat_binomial.txt",
n.chains=1, n.iter=iterates+burn_in,
n.thin=1, n.burnin=burn_in,
OpenBUGS . pgm=BUGS_path,
working.directory=working_dir,
debug=F)
Trauma.sim$Ssummary
save p x t matrix of gamma posterior iterates
#beta <- t(Trauma.sim$sims.list$beta)
#save (beta, file="trauma_flat_samp.Rda")

Theoretically, this program should give the same results as our informative prior and
the actual results to be within sampling variation of the results given earlier.

mean sd 2.5% 25%
beta[l] -1.76639352 1.13577270 -4.01202500 -2.531000
betal[2] 0.06516500 0.02156228 0.02350000 0.050620
betal[3] -0.60002985 0.14309518 -0.88840000 -0.694025
betal4] 0.04743730 0.01380904 0.02070000 0.038100
betal5] 1.09188298 1.09893998 -1.08600000 0.351000
betal6] -0.01726508 0.02786374 -0.07196025 -0.036010
deviance 121.39621875 3.55173482 116.50000000 118.800000
50% 75% 97.5%
betall] -1.75900 -0.9964000 0.4328025
betal2] 0.06484 0.0794700 0.1082000

betal3] -0.59770 -0.5024000 -0.3264000

13.3 Diagnostics 129

betal4] 0.04726 0.0566300 0.0753700
betal[5] 1.09900 1.8400000 3.2240000
betal[6] -0.01695 0.0018155 0.0363400

deviance 120.70000 123.3000000 130.0000000

Now that we know this works, we can delete the augmented data, one at a time, to
check the sensitivity of the analysis to each prior observation.

Since the DAP is equivalent to adding data with a flat prior, we can check the
sensitivity of the analysis by deleting, in turn, the augmenting observations, just like
we did the real observations in Figure 13.12 of the book. The following code is
just a modification of code for Figure 13.12 that in turn drops out each of the six
prior observations. (The code also eliminates some diagnostic computations from
the earlier program that are not needed here.)

Code 13.3.8.
rm(list = 1ls())

Enter data

Trauma <- read.table (

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TRAUMAa.DAT"),

#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TRAUMAa.DAT",
sep="",col.names=c("ID", "Death","ISS","T1I","RTS", "AGE"))

attach (Trauma)

n=length (ISS)

y=1-Death

N=1+ISS-ISS

setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")
load ("trauma_samp.Rda")

iterates=length (betall,])

Enter prior information
a=c(1.1,3,5.9,1.3,1.1,1.5)
b=c(8.5,11,1.7,12,4.9,5.5)

#Enter Xtilde

Xtp=c (
1, 25, 7.84, 60, 0, O,
1, 25, 3.34, 10, O, O,
1, 41, 3.34, 60, 1, 60,
1, 41, 7.84, 10, 1, 10,
1, 33, 5.74, 35, 0, O,
1, 33, 5.74, 35, 1, 35)

Xtilde=t (matrix (Xtp, 6,6))

Xtilde

130 13 Bayesian Binomial Regression

define likelihood contribution function

LC <- function (beta,x,N,vy)

{

LP = sum(betax*x)

lc=((exp(LP)/ (1+exp (LP))) xxy) * ((1- (exp (LP) / (1+exp (LP)))) xx (N-y))
return(lc) }

Find n vector Pr(y=11]Y,x_1)

X is model matrix

X=matrix (c(rep(l,n),ISS,RTS,AGE,TI,AGE*TI),nrow=n)
JJ=exp (X %*% beta)

JJ=JJ/ (1+J3J)

PP=rowMeans (JJ)

Define dummy vectors for diagnostics
to be redefined below

Pdiff=rep(l,n)

lc=rep(l,iterates)

gti=rep(l,iterates)

Figure 13.14

par (mfrow=c(3,2)) #,mar=c (5, 5, 4, 2) + 0.1)
i=1

for(r in l:iterates)

{

lc[r]=LC (betal[,r],Xtilde[i,],b[i]l+al[i],ali])
gtifr]l=1/lc[r]

}

standardize \gtilde_{r (i)}
gti=gti/sum(gti)

PPi=JJ%+% qgti

plot (seq(l:n),PP-PPi,xlab="index",ylab=

expression (paste (Pr, " (", "y=1","|",

Y, ",",X[j],",",tilde(Y),")"’_Pr’ "(","y:l","|",
Y,",",x[31,",",tilde(Y) [(1)],")")),main="0Omit location 1")
i=2

for(r in l:iterates)

{

lc[r]=LC (betal[,r],Xtilde[i,],b[i]+ali],ali])
gtil[r]=1/1lclr]

}

13.3 Diagnostics 131
standardize \gtilde_{r (i)}
gti=qgti/sum(gti)
PPi=JJ%*% qti

plot (seg(l:n),PP-PPi, xlab="index",ylab=

expression (paste (Pr," (", "y=1","|",
Y,",",X[j],",",tilde(Y),")",7Pr,"(","y=l","|",
Y,",",x[j1,",",tilde(¥Y) [(2)],")")),main="0Omit location 2")

i=3

for(r in l:iterates)

{

lc[r]=LC (betal[,r],Xtilde[i,],b[i]l+ali]l,ali])
gtif[r]l=1/1lc(r]

}

standardize \gtilde_{r (i)}
gti=qgti/sum(gti)

PPi=JJ%*% qti

plot (seg(l:n),PP-PPi, xlab="index",ylab=

expression (paste (Pr, " (", "y=1","|",
Y,",",X[j],",",tilde(Y),")",*Pr,"(","yzl","l",
Y,",",x[31,",",tilde(¥Y) [(3)],")")),main="0Omit location 3")

i=4

for(r in l:iterates)

{
lc[r]=LC(betal,r],Xtildel[i,],bli]l+alil,ali])
qtil[r]=1/1lclr]

}

standardize \gtilde_{r (i)}
gti=qgti/sum(qgti)

PPi=JJ%+% qgti

plot (seq(l:n),PP-PPi,xlab="index",ylab=

expression (paste (Pr, " (", "y=1","|",

Y, ",",X[j],",",tilde (Y),")"’_Pr, "("["y:1"["|"[
Y,",",x[31,",",tilde(¥Y) [(4)],")")),main="0Omit location 4")
i=5

for(r in l:iterates)

{

lc[r]=LC (betal[,r],Xtilde[i,],b[i]l+al[i],ali])
gtifr]=1/lc[r]

132 13 Bayesian Binomial Regression

}

standardize \gtilde_{r (i)}
gti=qgti/sum(gti)

PPi=JJ%*% qgti

plot (seg(l:n),PP-PPi, xlab="index",ylab=

expression (paste (Pr," (", "y=1","|",
Y,","’X[j],",",tilde(Y),")"’_Pr,"(","y:l",lllll,
Y,",",x[(j],",",tilde(Y) [(5)],")")),main="0Omit location 5")

i=6

for(r in l:iterates)

{

lc[r]=LC (betal[,r],Xtilde[i,],b[i]l+ali]l,ali])
gtif[r]l=1/1lc(r]

}

standardize \gtilde_{r (i)}
gti=qgti/sum(gti)

PPi=JJ%*% qti

plot (seg(l:n),PP-PPi, xlab="index",ylab=
expression (paste (Pr," (", "y=1","|",
Y,",",x[(31,",",tilde(¥y),")", P, " (", "y=1","|",
Y,",",x[j1,",",tilde(¥Y)[(6)],")")),main="0Omit location 6")

13.4 Posterior Computations

No importance sampling code was written for R.

13.5 A Log-Linear Model with Over Dispersion (Random
Effects)

For ease of programming in the log-linear model for Aché hunting, (Bo, B1,52) =
(betall],betal2],betal[3]). The following BUGS model for the Aché
hunting data was saved as ache—-m. txt.

model {
for(k in 1:38) {
kills[k] 7 dpois(lambdal[k]*trials([k])
Jtbetal[2] * (age[k]-mean (age[]))+
[]

)) x*x2+etalk] }

log(lambdalk]) <- betall
beta[3] * (age[k] -mean (age

13.5 A Log-Linear Model with Over Dispersion (Random Effects) 133

for(i in 1:38){ etali] = dnorm(0,tau) }

for(i in 1:11) {
log(ExKill[i]) <- Dbetal[l] + betal2]«*(pages[i]-mean(agel])) +
beta[3]* (pages[i]-mean(age[]))**2 + 1/ (2xtau)
d[i] ~ dnorm(0,tau)

log(r[i]) <- betall] + betal[2]x(pages[i]-mean(age[])) +
beta[3]* (pages[i]l-mean(agel[]))*x2 + d[i]

[1] dnorm (0, 0.0001)
betal2] 7 dnorm(0,0.0001)
[3] dnorm (0,0.0001)

}

The “prediction” for loop that goes from 1 to 11 near the end could have been
performed in R from the simulated values for beta and tau be we decided to
incorporate the predictions into the BUGS model.

What follows is my program (modified from BIDA) to save the posterior sam-
ples, give the standard summaries and produce Figures 13.15 and 13.16 in the book.
I decided to use JAGS for this simulation. Most of my data files do not contain col-
umn names but this one does, so the read. table command includes header=T
rather than a col.names command.

Code 13.5.1.

rm(list = 1s())

Enter data

Ache <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB13-5.DAT"),
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TAB13-5.dat",

sep="", header=T)
attach (Ache)
Ache

library (R2jags)

setwd ("c:\\E-drive\\Books\\LOGLIN3\\BAYES\\")
working_dir <- "c:\\E-drive\\Books\\LOGLIN3\\BAYES\\"

Larger burn_in and iterates for
highly correlated data

iterates <- 50000

burn_in <- 10000

inits <- function () {
list(beta = c¢(0, 0, 0),tau=1l)

134 13 Bayesian Binomial Regression

ache.dat. jags<-list ("kills","age","trials", "pages")
ache.params<-c ("beta", "tau", "ExKill","z")

ache.fit <- jags(data = ache.dat.jags, inits = inits,
parameters.to.save = ache.params, n.chains = 1, n.thin=1,

n.iter = iterates+burn_in, n.burnin = burn_in,

model.file = "ache-m.txt")

Rename Output

beta.a <- t(ache.fit$BUGSoutput$sims.listSbeta)
tau.a = ache.fit$BUGSoutput$sims.listStau
ExKill.a = ache.fit$BUGSoutput$sims.listSExKill
r.a = ache.fit$BUGSoutputS$sims.listsSr

Save Output

save (beta.a, file="ache-beta.Rda")
save (tau.a, file="ache-tau.Rda")

save (ExKill.a, file="ache-ExKill.Rda")
save (r.a, file="ache-lambda.Rda")

#Table of Coefficients for Model Parameters

in book Table 13.6.

rowMeans (beta.a)

apply (beta.a, 1, mean) # Redundant command

apply (beta.a, 1, sd)

t (apply (beta.a, 1, quantile, probs=c(.5,0.025,0.975)))

sigma.a=1/sqgrt (tau.a)

mean (sigma.a)

apply (sigma.a, 2, mean) # Redundant command

sd(sigma.a)

apply (sigma.a, 2, sd) # Redundant command

t (apply(sigma.a, 2, quantile, probs=c(.5,0.025,0.975)))

Standard jags Summaries

summary (ache.fit $BUGSoutput$sims.listSbeta)
t (beta.a))
ache.fit$BUGSoutput$sims.listStau)
ache.fit$BUGSoutput$sims.istSExKill)
ache.fit$BUGSoutput$Ssims.listSr)

summary
summary
summary
summary

—~ o~ o~ —~

Code for Figure 13.15
Aplot = t(apply(ExKill.a,2 , quantile, probs=c(.5,0.025,0.975)))
plot (pages,Aplot [, 3],type="1",1lty=1, lwd=2, x1lab="Age",

13.5 A Log-Linear Model with Over Dispersion (Random Effects) 135

ylab="Expected Kills",ylim=c (0, .8))
lines (pages,Aplot[,1],1lty=2, 1lwd=2)
lines (pages,Aplot[,2],1lty=1, 1lwd=2)

Code for Figure 13.16
AAplot = t(apply(r.a,2 , quantile, probs=c(.5,0.025,0

yvlab="Latent Variable",ylim=c(0,1.3))
lines (pages,AAplot[,1],1lty=2,1lwd=2)
lines (pages,AAplot[,2], 1lty=1, lwd=2)

Again, we could have computed Figures 13.16 and 13.17 from the saved val-
ues in beta.a and tau.a but we programmed them into the BUGS model in
ache-m.txt

13.5.1 Contingency Tables

Specifying priors for contingency tables can get complicated. Actually fitting the
models is similar to the methods illustrated.

One simplistic approach is to create a DAP (data augmentation prior) by essen-
tially adding prior observations to every entry in the table. For a multinomial data
sample a DAP can be accomplished by using a Dirichlet prior for the cell proba-
bilities with Dirichlet parameters that are the number of prior observations. (Just as
the multinomial generalizes the binomial, the Dirichlet generalizes the beta.) For
product-multinomial sampling, one could put independent Dirichlet priors on the
probabilities of the independent multinomials. Simple Dirichlet priors have been
found quite limiting by many people in that the cell prior probabilities have to be
“almost” independent. (You get Dirichlet probabilities by generating independent
Gamma distributions and dividing by their sum.) More sophisticated priors can be
developed by making conditional statements about the probabilities within a multi-
nomial.

Example 15.1.1 and Table 15.1 of the book, as well as Christensen (1996, Sec-
tion 8.5; 2015, Section 5.5) considers data from Lazerwitz (1961) on occupations
and religions. The actual frequentist analysis differs little between whether the data
are considered one multinomial sample or three independent samples, one for each
religious group, but the interpretation of that analysis depends on the sampling
scheme because the meanings of the parameters depend on the sampling scheme.
The prior distributions also depend on the meaning of the parameters. For product
multinomial sampling, we need a prior distribution for each probability of a Roman
Catholic falling into the four occupation categories. Incorporating old prejudices
about large numbers of Italian and Irish immigrants being RC and lower class, we
might use a Dirich(0.5,0.5,1.5,2.5) associated with 5 prior observations and best
prior guesses for the category probabilities of (0.1,0.1,0.3,0.5). Again, using old
stereotypes, we might use a prior for Protestants of Dirich(1,1,1.5,1.5) associated

.975)))
plot (pages,AAplot[,3],type="1",1ty=1, lwd=2,x1lab="Age",

136 13 Bayesian Binomial Regression

with 5 prior observations and best prior guesses for the category probabilities of
(0.2,0.2,0.3,0.3) and for Jewish folks, prior guesses of (0.32,0.33,0.25,0.1) with
2 prior observations for a Dirich(0.64,0.66,0.5,0.2).

BUGS model. Work out a simple program occupation-m.tex

model {
or[] ~ dmult (pr[],Nr)
opl] 7 dmult(pjl],Np)
ojl[]l 7 dmult(pjl],N7)
pr[] ~ ddirich(ar[])
ppl]l 7 ddirich(apl[])
pill ~ ddirich(ajll) }
Code 13.5.2.

lazer <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB15-1.DAT"),
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab5-6.dat",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TAB15-1.dat",

sep="",col.names=c("O","Rel", "Occ"))
attach (lazer)
lazer
laz <- xtabs (0O"Rel+Occ)
laz

burn_in=1000
iterates=10000

or=0[Rel==1]
op=0[Rel==2]
0J=0[Rel==3]
Nr=sum (or)

Np=sum (op)

Nj=sum(oj)
ar=c(0.5,0.5,1.5,2.5)
ap=c(1,1,1.5,1.5)
aj=c(0.64,0.66,0.5,0.2)

occ.dat.jags<-list ("or","op","o3j","ar","ap","aj", "Nr", "Np", "NJ")
occ.params<-c ("pr", "pp", "pi")
inits <-= function () {

list (pr = ar/sum(ar), pp = ap/sum(ap), pj = aj/sum(aj))

occ.fit <- jags(data
parameters.to.save = occ.params, n.chains = 1, n.thin=1,

occ.dat.jags, inits = inits,

13.6 OpenBUGS GUI 137

n.iter = iterates+burn_in, n.burnin = burn_in,
model.file = "occupation-m.txt")

x[]
pl
dd

for
x[1,

}

yr[]

mode
for
k

1

b
for
for

d

1

b
}
bet
bet
bet
tau

13.6 O

The reas

" dmulti(pl[], N)
] 7 ddirich(alphall)
irch
(i in 1:I) {
1:K] 7 dmnorm(mul[], taul,])

“ dmulti(pr[],

1{

(k in 1:38) {

ills[k] 7 dpois(lambdalk]*trials([k])

og (lambdal[k]) <- beta[l]+beta[2]* (age[k]-mean(age[]))+
etal[3]*(age[k]-mean(age[])) »x2+etalk] }

(1 in 1:38){ eta[i] =~ dnorm(0,tau) }

(1 in 1:11){

log(ExKill[i]) <- Dbetal[l] + betal[2]*(pages[i]-mean(agel]))

beta[3]* (pages[i]-mean(age[]))**2 + 1/ (2xtau)

[i] 7 dnorm (0, tau)

og(r[i]) <- betal[l] + betal[2]*(pages[i]-mean(agel])) +
eta[3]* (pages[i]-mean(age[]))**2 + d[i]

all]l] = dnorm(0,0.0001)
al2] 7 dnorm(0,0.0001)

[3] 7 dnorm(0,0.0001)
~d

gamma (0.0001,0.0001)

a

penBUGS GUI

on for running the GUI (Graphical User Interface) is that it makes de-

termining Markov chain convergence easier and provides flexibility in determining
chain size.

The price you pay for the added flexibility of using the OpenBUGS GUI is that
you have to know how to identify the model, the data, the parameters, and the pa-

rameters

> initial values within the GUI (by clicking appropriate buttons) whereas

+

138 13 Bayesian Binomial Regression

all these things are explicit in R20penBUGS. You still have to write a program to
run OpenBUGS through the GUI but you only specify the pieces in the program
whereas you identify what the pieces are/mean in the GUI rather than the program.
In a program written for the OpenBUGS GUI the statement of the model is ex-
actly as before and we need to add statements to identify the data and specify initial
values.

The GUI process will require trips to the menu options Model, then
Inference, back to Model, then back to Inference. To specify all the parts of
the model, you will need to highlight parts of the program before hitting appropriate
buttons.

Having copied the code into OpenBUGS, the next step is to open the Model
menu and select the Specification tool. You will need to hit the buttons

. check model,

. load data,

. compile,

. load inits (for initial values)

AW =

but before hitting the check model button or a 1oad button you need to high-
light the appropriate model or 11ist statement in your GUI program!

Our goal here is to reproduce the Uncentered Data results from from Sub-
section 13.2.1.4. This uses the model in Oring.model_a.txt from Subsec-
tion 13.2.1.3. In particular, we need to copy the data and initial values into
the GUI (we cannot read the data in). To facilitate that, I constructed the file
Oring-model_a_GUI.txt as follows:

model from Oring_model_a.txt

model {
for(i in 1:23) {
y[i] 7 dbin(p[i], 1)

logit (pl[i]) <- beta[l] + beta[2] * templ[i]
}
for(j in 1:2){
ptilde[j] ~ dbeta(aljl, blj])
}
beta[l] <= (75/20) * logit(ptilde[l])
- (55/20) * logit(ptilde[2])
betal[2] <- (-1/20) % logit(ptilde[l])
+ (1/20) * logit(ptilde[2])}

data redefined
list(y=c(0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,
0,0,1,0,1),

temp=c (66,70, 69,68,67,72,73,70,57,63,70,78,67,
53,67,75,70,81,76,79,75,76,58),
a=c(1.000,0.577), b=c(0.577,1.000))

13.6 OpenBUGS GUI 139

initial values (inits) redefined
list (ptilde = c(0.5, 0.5))

Note that in the statement model for (1 in 1:23) Ihave replaced n with 23
because I do not have the luxury of having R tell me how many observations I have.
To create this file I reran the earlier R code, printed out relevant items, edited them,
and saved the results.

Having installed OpenBUGS, click or double click the OpenBugs icon.

1. Go to the File menu and click on New. This opens a window entitled
untitledl. Within the File menu, hit Save As and save the file as
Oring_GUI.odc in an appropriate folder, see Figure 13.13.

% CpenbU3s - a8 X
fle Edi Afrbuts Took Info Model Infersce Dcodle Mo Tt Window bamples Werucls

Fig. 13.13 Screenshot of OpenBUGS GUIL.

2. Inthe Oring_GUI window, copy the contents of Oring_model_a_GUI.txt,
see Figure 13.14. (I did some other things like make the window larger and in-
crease the type size.)

3. Open the Model menu and click on Specification. .. This opens a new
“Specification Tool” window, see Figure 13.15.

140 13 Bayesian Binomial Regression

% CpenBUSS.
Fle Edt Mpibuts Tooks Info Model Ifersace Ceodle Mso Ted Window Bamples Weruel: lp

model from Oring_model_a.txt
modeK
for(iin 1:23¢
ylil ~dbin(p(i], 1)
logit(pli]) <- beta[1] + beta[2] * templi]

}
for(jin 12
ptilde[j] ~ dbeta(a[j], b[j])

}
beta[1] <- (75/20) * logit(ptilde[1])
- (55/20) * logit(ptilde[2])
beta[2] <- (-1/20) * logit(ptilde[1])
+(1/20) * logit(ptilde[2])}
data redefined
list(y=c(0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,
0,0,1,0,1),
temp=c(66,70,69,68,67,72,73,70,57 63,70,78 67,
53,67,75,70,81,76,79,75,76,58),
a=6(1.000,0.577), b=c(0.577,1.000))
initial values (inits) redefined
list(ptilde =¢(0.5,0.5))

Fig. 13.14 OpenBUGS screenshot of GUI with modeling information.

i Cpntuss
File Edit Aftributss Tools Info Model Infersnce Ccodle Mao Tt Window Evamples Weruels

model from Oring_model_a txt
model{
for(iin 1:23Y
y[i] ~ dbin(p[], 1)
logit(p[i]) <- beta[1] + beta[2] * temp]i]
}

for(jin 12
ptilde[j] ~ dbeta(a[j], b[j])
}

beta[1] <- (75/20) * logit(ptilde[1])
- (55/20) * logit(ptilde[2])

beta[2] <- (-1/20) * logit(ptilde[1]) [bns o [TF]
+(1/20) * logit(ptilde[2])} =k
data redefined
list(y=c(0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,
0,0,1,0,1),

temp=c(66,70,69,68,67,72,73,70,57,63,70,78,67,
53,67,75,70,81,76,79,75,76,58),
a=0c(1.000,0.577), b=¢(0.577,1.000))

initial values (inits) redefined

B ptilde =¢(05,05))

Fig. 13.15 OpenBUGS screenshot of GUI with Specification Tool window.

13.6 OpenBUGS GUI 141

We will need to go back and forth between the “Specification Tool” and
Oring_GUI windows. In the bottom left of the OpenBUGS window, it will
tell you what is going on, that is, whether things are working properly and, if
not, what OpenBUGS thinks is going wrong. OpenBUGS uses a vertical line
as a cursor, and if something is wrong, OpenBUGS puts a box around where
it thinks the problem exists. (We frequently manage to fool OpenBUGS with
our errors.)

4. Double click in the middle of the word “model” in Oring_GUTI then click on
in the “Specification Tool” window.

5. Double click in the middle of the word “1ist” in the line that contains the
data in Oring_GUT then click on in “Specification Tool.”

6. Click on in “Specification Tool.”

7. Double click in the middle of the word “1ist” in the line with the initial
values in Oring_GUI then click on in “Specification Tool.”

8. Normally you can kill the “Specification Tool” window at this point.

9. Back in the OpenBUGS window, open the Inference menu and choose

Samples. .. which opens the “Sample Monitor Tool” window, see Fig-
ure 13.16.

|2 CpenBUSS - 9 X
File Edit Attibtss Took Info Model Infersacz Dcodle Mso Tect Window Examples Weruels Help

B Oing 61 ===
model from Oring_model_a.txt |
model{

for(iin 1:23){

ylil ~dbin(p(i], 1)

logit(p[i]) <- beta[1] + beta[2] * templi]

}

for(jin1:2 X
ptilde[j] ~ dbeta(a[j], b[j])

}
beta[1] <- (75/20) * logit(ptilde[1])
- (55/20) * logit(ptilde[2])
beta[2] <- (-1/20) * logit(ptilde[1])
+(1/20) * logit(ptilde[2])}
data redefined
list(y=c(0,1,0,0,0,0,0,0.1,1,1,0,0,1,0,0,0,0,
0,0,1.0,1),
temp=c(66,70,69,68,67,72,73,70,57,63,70,78,67,
53,67,75,70,81,76,79,75,76,58),
a=c(1.000,0.577), b=¢(0.577,1.000))
initial values (inits) redefined
fist(ptilde = ¢ 0.5,0.5))

sl dewy | bordsy histry

e

Fig. 13.16 OpenBUGS screenshot of GUI with “Sample Monitor Tool” window.

142

10.

11.

12.

e cpns

Fie Edit Atrbuts Toos Info Model Infersce Ceodle Mao Tet Window Biamples Werudl: lp

13 Bayesian Binomial Regression

In the box by node enter beta and click on the button. This box tells
OpenBUGS what quantities (parameters) you want to evaluate in your analysis.
To tell OpenBUGS you are done entering nodes, put an asterisk in the box.
Go back to the Model menu and choose Update. .. to open the “Update
Tool” window.

Go to “Update Tool,” cf., Figure 13.17. In the box next to updates change
the number to 11000 which is the number of iterates plus the burn-in that we
want. Click the button in “Update Tool.” When the number in the box
next to iteration reaches 11000, go back to the “Sample Monitor Tool.”

B oing 6

=EE]

model
logit(
}

ptilde

data

st pi

for(iin 1:23)}
y(il ~dbin(p(i], 1)

for(jin1:2

}
beta[1] <- (75/20) * logit(ptilde[1])

beta[2] <- (-1/20) * logit(ptilde[1])
listly=c(0,1,0.0,0,0,0,0.1,1,1,0,0.1,0,0,0,0,

53,67,75,70,81,76,79,75,76,58),
a=c(1.000,0.577), b=c(0.577,1.000))
initial values (inits) redefined

model from Oring_model_a.txt |

pli]) <- beta[1] + beta[2] * temp[i]

{il ~ dbeta(a], bl])

- (55/20) * logit{ pilde[2])

+(1/20) * logit(ptilde[2])}
redefined

Ide = 6(0.5,05))

11030 pdts ook 65

Fig. 1

13.

14.

15.

3.17 OpenBUGS screenshot of GUI with “Update Tool” window.

A “burn in” value can be specified in the beg box of the “Sample Monitor
Tool.” Type “1001” in this box. We are throwing out the first 1000 iterates to
eliminate any effect of our starting values on posterior inferences.

In the “Sample Monitor Tool” click on and . I moved the win-

dows before taking the screen shot in Figure 13.18.

In the “Sample Monitor Tool” click on and | auto cor|. I deleted the

“Node statistics” and “Posterior density” windows and moved the windows
before taking the screen shot in Figure 13.19.

13.6 OpenBUGS GUI 143

#: CpenBU3S - 2 X
File Edit Atribt=s Tooks Info Model Infersscz Ceodle Mso Tect Window Examples Weruel Help

B 0iing 61
model from Oring_model_a.txt —
model{ wil Be S N sin e muom e |

beZl 0201¢ 003319 0CO305 03047 L1351 -DOENE 100D

for(iin 1:23)Y

y[i] ~ dbin(p[i], 1)

logit(p[i]) <- beta[1] + beta[2] * temp]i]
}

for(jin1:2
ptilde[j] ~ dbeta(a[j], b[j])

}
beta[1] <- (75/20) * logit(ptilde[1])
- (55/20) * logit(ptilde[2]) o [o e
beta[2] <- (-1/20) * logit(ptilde[1]) o .
+(1/20) * logit(ptilde[2])}
data redefined
list(y=c(0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,
0,0,1,0,1),
temp=c(66,70,69,68,67,72,73,70,57,63,70,78 67,
53,67,75,70,81,76,79,75,76,58),
a=c(1.000,0.577), b=c(0.577,1.000))
initial values (inits) redefined
fist(ptilde = ¢(0.5,0.5))

stis | dnsty | bordsy | histry || acept

ok quanties Ed

etal] saToe: 10001

Ea
e

Pibeta1n
0 obiops

AN

20 w0 MW 45 04 2 SHEAT 02

Fig. 13.18 OpenBUGS screenshot of GUI with table of coefficients and densities.

1 Cpentuss
File Edit Aftributss Tools Info Model Infersnce Ccodle Mao Tet Window Evamples Merucls Help
B 0iing 61 ===
s8¢ Histor
model from Or| £
model{

for(iin 1:23){
yli] ~dbin(p[i]
logit(p[i]) <

}

betar1]
200 0,0 200 400
betutz)

e Y

for(jin 1:2)}
tl|de i1~ dbeta a +) b 5 & Smple Mericor Tool
;) fl (afil, bll]) e enpep
beta[1] <- (75/20) * logit(ptilde[1]) o e L
- (55/20) * logit(ptilde[2]) e

bata[2] <- (-1/20) * logit(ptilde[1])

+(1/20) * logit(ptilde[2])}
data redefined
list(y=c(0,1,0.0,0,0,0,0.1,1,1,0,0,1,0,0,0,0,
0,0,1.0,1),
temp=c(66,70,69,68,67,72,73,70,57,63,70,78,67,
53,67,75,70,81,76,79,75,76,58),
a=0c(1.000,0.577), b=¢(0.577,1.000))
initial values (inits) redefined
fist(ptilde = ¢(0.5, 0.5))

shis | dsty | bods histry | acopt

b auarties aiozo

Fig. 13.19 OpenBUGS screenshot of GUI with diagnostics.

144 13 Bayesian Binomial Regression

16. If you want to save your results, go to the File menu and Save them.

In our opinion (you can guess who “we” are), the two most important things the
GUI adds is the ability to click on the history and the auto cor buttons in the
Sample Monitor Tool. For the McMC process to be working, we need the
Markov chain to converge to a stationary process in the standard sense of stationarity
used for Time Series Analysis, e.g. Christensen (2019, Section 6.1 and Chapter 7).
The command history plots the McMC time series so you can look to see if it
seems stationary after a suitable burn-in period. “Stationary” intuitively means that
the the process stays the same. No matter where in the sequence you start to look
at it, the past should always look the same and the future should always look the
same. Of course, this is a property of the theoretical random process. We only get
one, or perhaps a few, looks at the process from which to decide if it looks close
enough to being stationary. For these applications, with large sample sizes from the
chain, one way to think of it is that the history should pretty well fill up a rectangular
box. The autocorrelation function (ACF) needs to pass what I think of as the “ink
test.” If you see a lot of red ink (or pixels or toner) in OpenBUGS’ auto cor plot,
you likely have a problem with stationarity. Problems with high correlations (like
the uncentered O-ring data), typically require larger sample sizes, which extends
the horizontal axis of the ACF which typically reduces the amount of ink needed to
graph it in the same horizontal length. So if the process is stationary, even with a lot
of correlation, if you run the process long enough, the ACF should pass the ink test.
If the ink reduces linearly, rather than exponentially (even with large correlations),
you likely have a problem with stationarity.

While thinning the Markov chain is typically not necessary for most inferential
procedures, it seems to me that thinning can be a valuable tool in checking whether
the Markov chain has converged to a stationary process. If the entire (converged)
process is stationary, any thinned process has to be stationary. If you can find a
thinned process that does not look stationary, the entire process is unlikely to be
stationary. With large sample sizes, the history plot can get so compressed as to
lose the detail necessary for detecting nonstationarity. With sufficient thinning, a
stationary chain should look similar to white noise (i.e., independent and identically
distributed).

Chapter 14
Exact Conditional Tests

The section General Theory has some discussion of general computing.

14.1 Two-Factor Tables

Exact conditional tests for two-way tables can be performed in R using
fisher.test. As shown in the next section, [used fisher.test to check my
algebra on the 2 x 4 example table (and found some mistakes to correct). Some in-
consistencies of method for 2 x 2 tables that exist in fisher.text are addressed
by the new package exact2x2.

I computed the probabilities for the 3 x 3 example by hand but code for comput-
ing the test statistics follows.

Code 14.1.1.

rm(list = 1s())

indices for fitting glm
row=c(1,1,1,2,2,2,3,3,3)
col=c(1,2,3,1,2,3,1,2,3)
row=factor (row)
col=factor (col)

These are the 12 tables
I read them in by row

tl=c(1,0,0,0,0,2,0,2,1)
t2=c(1,0,0,0,1,1,0,1,2)
t3=c(1,0,0,0,2,0,0,0,3)
t4=c(0,0,1,0,0,2,1,2,0)
t5=c(0,0,1,0,1,1,1,1,1)
t6=c(0,0,1,0,2,0,1,0,2)
t7=c(0,1,0,0,0,2,1,1,1)
t8=c(0,1,0,0,1,1,1,0,2)

145

146 14 Exact Conditional Tests

t9=c(0,0,1,1,0,1,0,2,1)
t10=c(0,0,1,1,1,0,0,1,2)
tll=c(0,1,0,1,1,0,0,0,3)
tl2=c(0,1,0,1,0,1,0,1,2)

"matrix" reads by column

so they need to be transposed

for each group of three commands

first fits the model in glm to compute G2
second fits the model in chisg.test to compute X2
then prints out the numbers X"2, G"2

fitl = glm(tl ~ row + col, poisson)
fl=chisqg.test (t (matrix(tl,3,3)),correct=F)
c(fl$stat, fitlSdev)

fitl = glm(t2 ~ row + col, poisson)
fl=chisqg.test (t (matrix(t2,3,3)),correct=F)
c(fl$stat, fitlsdev)

fitl = glm(t3 ~ row + col, poisson)
fl=chisqg.test (t (matrix(t3,3,3)),correct=F)
c(fl$stat, fitlSdev)

fitl = glm(t4 ~ row + col, poisson)
fl=chisqg.test (t (matrix(t4,3,3)),correct=F)
c(fl$stat, fitlsdev)

fitl = glm(t5 ~ row + col, poisson)
fl=chisqg.test (t (matrix(t5,3,3)),correct=F)
c(fl$stat, fitlsdev)

fitl = glm(t6 ~ row + col, poisson)
fl=chisqg.test (t (matrix(t6,3,3)),correct=F)
c(fl$stat, fitlsdev)

fitl = glm(t7 = row + col, poisson)
fl=chisqg.test (t (matrix(t7,3,3)),correct=F)
c(fl$stat, fitlsdev)

fitl = glm(t8 ~ row + col, poisson)
fl=chisqg.test (t (matrix(t8,3,3)),correct=F)
c(fl$stat, fitlsSdev)

fitl = glm(t9 ~ row + col, poisson)
fl=chisqg.test (t (matrix(t9,3,3)),correct=F)
c(fl$stat, fitlsdev)

fitl = glm(tl0 ™ row + col, poisson)
fl=chisqg.test (t (matrix(t10,3,3)),correct=F)
c(fl$stat, fitlSdev)

fitl = glm(tll ° row + col, poisson)
fl=chisqg.test (t (matrix(tll,3,3)),correct=F)
c(fl$stat, fitlsdev)

fitl = glm(tl2 ~ row + col, poisson)

P

14.2 Three-Factor Tables 147

fl=chisqg.test (t (matrix(tl1l2,3,3)),correct=F)
c(fl$stat, fitlsdev)

14.2 Three-Factor Tables

14.2.1 Testing [AC|[BC|

This code does not address the difficult problem of identifying the tables. It merely
computes G? for the 9 listed tables.

Code 14.2.1.
t00=c(1,2,2,0,0,2,3,0)
t0l=c(1,2,2,0,1,1,2,1)
t02=c(1,2,2,0,2,0,1,2)
t10=c(2,1,1,1,0,2,3,0)
tll=c(2,1,1,1,1,1,2,1)
tl2=c(2,1,1,1,2,0,1,2)
t20=c(3,0,0,2,0,2,3,0)
t21=c(3,0,0,2,1,1,2,1)
t22=c(3,0,0,2,2,0,1,2)
i=c(1,2,1,2,1,2,1,2)
j=c(1,1,2,2,1,1,2,2)
k=c(1,1,1,1,2,2,2,2)
i=factor (i)
j=factor (j)
k=factor (k)
fit=glm(t00 =~ i:k + j:k, poisson)
fitSdev
fit=glm(t01l ~ i:k + j:k, poisson)
fitSdev
fit=glm(t02 = i:k + j:k, poisson)
fitSdev
fit=glm(t10 ~ i:k + j:k, poisson)
fitSdev
fit=glm(tll ~ i:k + Jj:k, poisson)
fitSdev
fit=glm(tl2 =~ i:k + j:k, poisson)
fitS$dev
fit=glm(t20 ~ i:k + j:k, poisson)
fitSdev
fit=glm(t21 ~ i:k + j:k, poisson)
fitSdev

fit=glm(t22 =~ i:k + j:k, poisson)

148

fit$dev

14.2.2 Testing [B][AC]

This provides code for G?s in [AC][B].
I found the following tabulation listing half the tables to be very useful.

14 Exact Conditional Tests

Table
(na1,n021,m000) [Tl iju! | 144/ i nie! | G*
300 48 3 10.04
301 8 18 3.45
302 16 9 6.22
310 24 6 7.27
311 4 36 0.68
312 8 18 3.45
320 144 1 13.86
321 24 6 7.27
322 48 3 10.04
402 16 9 6.22
411 36 4 8.32
401 24 6 7.27
412 24 6 7.27
502 144 1 13.86

The other 14 tables reverse C1 and C2, have the same probabilities (which are the
entries in the third column divided by twice the third column total, i.e., 252) and the
same G2s. The tables are identified by (n.11,n221,n222). Notice that all nine tables
obtained from Table 14.1 by choosing one from the left and one from the right have
n.11 = 3. All nine tables obtained from Table 14.1 by choosing one from the left and
one from the right but then reversing the right and left have n.;; = 2. The five tables
from Table 14.4 have n.;; = 4,5 and reversing right and left give n.1; = 1,0.

There are redundancies in the following computations of G? because I wanted
to list all 28 of the tables which is not necessary. First are G2 for tables defined by

Table 14.1.

Code 14.2.2.
t300=c(1,2,2,0,0,2,3,
t301=c(1,2,2,0,1,1,2,
t302=c(1,2,2,0,2,0,1,
t310=c(2,1,1,1,0,2,3,
t311=c(2,1,1,1,1,1,2,
t312=c(2,1,1,1,2,0,1,
t320=c(3,0,0,2,0,2,3,
t321=c(3,0,0,2,1,1, 2,

R ONRFE ODNRFE O

14.2 Three-Factor Tables 149

t322=c(3,0,0,2,2,0,1,2)
i=c(1,2,1,2,1,2,1,2)
j=c(1,1,2,2,1,1,2,2)
k=c(1,1,1,1,2,2,2,2)

i=factor (i)

j=factor (3j)

k=factor (k)

fit=glm(t300 ~ i:k + j, poisson)
fitsdev

fit=glm(t301 ~ i:k + j, poisson)
fitsdev

fit=glm(t302 ~ i:k + j, poisson)
fitsdev

fit=glm(t310 ~ i:k + j, poisson)
fitsdev

fit=glm(t311 ~ i:k + j, poisson)
fitsdev

fit=glm(t312 ~ i:k + j, poisson)
fitSdev

fit=glm(t320 = i:k + j, poisson)
fitsdev

fit=glm(t321 ~ i:k + j, poisson)
fitsdev

fit=glm(t322 7 i:k + j, poisson)
fitsdev

That gave us 9 of the 28 G? values

To compute the next 9 G?s for tables defined by reversing right and left sides of
Table 14.1, essentially the same code is used but the new tables need to be listed.
However, you do not need to run this code because the reversed tables give the
same G’s.

Code 14.2.3.
t200=c(0,2,3,0,1,2,2,0)
t210=c(1,1,2,1,1,2,2,0)
t220=c(2,0,1,2,1,2,2,0)
t201=c(0,2,3,0,2,1,1,1)
t211=c(1,1,2,1,2,1,1,1)
t221=c(2,0,1,2,2,1,1,1)
t202=c(0,2,3,0,3,0,0,2)
t212=c(1,1,2,1,3,0,0,2)
t222=c(2,0,1,2,3,0,0,2)

150

i=factor (i)
j=factor (j)
k=factor (k)
fit=glm(t20
fitS$dev

fit=glm(t210 ~ i:

fit$dev

fit=glm(t220 ~ 1i:

fitSdev

fit=glm(t201 ~ i:

fitSdev

fit=glm(t211 ~ i:

fit$dev

fit=glm(t221 = 1i:

fitsSdev

fit=glm(t202 ~ i:

fit$dev

fit=glm(t212 ~ 1i:

fitS$Sdev

fit=glm(t222 = 1i:

fitSdev

0 ™ 1i:

Js
Ji
Js
Js
3
3s
i
30

s

poisson)
poisson)
poisson)
poisson)
poisson)
poisson)
poisson)
poisson)

poisson)

14 Exact Conditional Tests

The final 10 G?s require entering the five tables defined by Table 14.2.4 and the

5 tables that reverse the right and left sides of those.

Code 14.2.4.

tables from Table 16.4
t402=c(2,2,1,0,1,0,

t401=c(2,2,1,0,0
t411=c(3,1,0,1,0
t412=c(3,1,0,1,1
t502=c(3,2,0,0,0

reverse sides of Table 16.4

G*2 same as first 5

t120=c(1,0,2,2,2
t110=c(0,1,3,1,2
t1l11=c(0,1,3,1,3
t121=c(1,0,2,2,3
t020=c(0,0,3,2,3
i=c(1,2,1,2,1,2,
j=c(1,1,2,2,1,1,
k=c(1,1,1,1,2,2,
i=factor (i)
j=factor (j)
k=factor (k)
fit=glm(t40

2~ i:k + 9,

poisson)

14.3 General Theory 151

fitsdev
fit=glm(t401 ~ i:k + j, poisson)
fitSdev
fit=glm(t41ll =~ i:k + j, poisson)
fitsdev
fit=glm(t4l2 ~ i:k + j, poisson)
fitsdev
fit=glm(t502 7 i:k + j, poisson)
fitsdev
fit=glm(t120 ~ i:k + j, poisson)
fitsdev
fit=glm(t11l0 ~ i:k + j, poisson)
fitsdev
fit=glm(tlll =~ i:k + j, poisson)
fitsdev
fit=glm(tl21 ~ i:k + j, poisson)
fitsdev
fit=glm(t020 ~ i:k + j, poisson)
fitSdev

To run fisher.test on these, I need to rearrange how the table is entered.
Recall that earlier we had £320=c (3,0,0,2,0, 2,3, 0), which was written in
as rows within layers. Now, writing the table by columns,

Code 14.2.5.
T320=matrix(c(3,0,0,2,0,3,2,0),2)
T320

fisher.test (T320)

I chose to run the table 320 because it is one of 4 tables that gives the highest G*
value. Thus I could compare my probability of seeing this G* to fisher.exact’s
P value to see if they agree. (The first time I did it they did not which lead me to
find some mistakes in algebra. I had actually been more concerned that I might have
missed some of the possible tables, but my corrected algebra corresponded to the
program, so I am confident I found all the tables.)

14.3 General Theory

The R program exactLoglinTest gave approximate exact P values for quite
general log-linear models by sampling from the allowable tables but it has been
removed from the CRAN repository from June 20, 2022 because reported problems
were not corrected. The program clogit from the survival package does exact
logistic regression.

152 14 Exact Conditional Tests

I am not aware of any R packages or programs that enumerate all of the appropri-
ate tables for general log-linear models. StatXact and LogXact are not R packages
but they enumerate all the appropriate tables for many interesting special cases until
the tables get too large for that to be practical.

14.4 Model Testing

The exact inference aspects of the program LogXact seems to focus on model com-
parisons that involve dropping one parameter out of a model. Although the program
allows fitting factor terms, it seems to require the specific parameterization that the
group with the largest index has its parameter set to 0.

The work of identifying tables for the example was done without a computer.
This discussion is only about finding the G?s.

Earlier I indexed the tables by (n.11,1221,1222). Every table with the same value
of n.11 has the same marginal table 7. j; because the 2 x 2 marginal table has fixed
margins n.;. and 7., so the entry n.1; determines the entire 7. j table. (This would
get much harder if 7. was not 2 x 2.) To illustrate that all tables with a fixed n.1;
have the same G2, I have done the computation on two such tables.

Code 14 .4..

fit=glm(t300 ~ i:k + j, poisson)
fitl=glm(t300 = i:k + J:k, poisson)
fit$Sdev-fitlsSdev

fit=glm(t322 ~ i:k + j, poisson)
fitl=glm(t322 ~ i:k + j:k, poisson)
fitSdev-fitlsdev

t201=c(0,2,3,0,2,1,1,1)
1,1,2,1,2,1,1,1

t211=c(1,1,2,1,2,)

4 4

fit=glm(t201 ~ i:k + j, poisson)

14.4 Model Testing

fitl=glm(t201 ~ i:k + J:
fitsdev-fitlsdev

fit=glm(t211 ~ i:k + 7,
fitl=glm(t211 ~ i:k + 3J:
fit$Sdev-fitls$dev

t402=c(2,2,1,0,1,0,2,2)
t412=c(3,1,0,1,1,0,2,2)
t502=c(3,2,0,0,0,0,3,2)

fit=glm(t402 ~ i:k + 7,
fitl=glm(t402 = i:k + J:
fitSdev-fitlsSdev

fit=glm(t412 ~ i:k + 73,
fitl=glm(t41l2 ~ i:k + 7J:
fit$Sdev-fitlsSdev

fit=glm(t502 ~ i:k + 7,
fitl=glm(t502 ~ i:k + 7J:
fit$Sdev-fitls$dev

£110=c(0,1,3,
tlll=c(0,1,3,
t020=c(0,0,3

)
)
)

14 4 4 4

4 4 4 4

S e
w w N
N RN
o O
o~ O

4 4 14 14 4 4 4

fit=glm(t11l0 ~ i:k + 7J,
fitl=glm(t11l0 = i:k + J:
fitSdev-fitlsdev

fit=glm(t1ll ~ i:k + 73,
fitl=glm(tlll =~ i:k + 7J:
fit$Sdev-fitlsSdev

fit=glm(t020 ~ i:k + 7,
fitl=glm(t020 ~ i:k + 7J:
fitSdev-fitls$dev

k, poisson)

poisson)
k, poisson)

poisson)
k, poisson)

poisson)
k, poisson)

poisson)
k, poisson)

poisson)
k, poisson)

poisson)
k, poisson)

poisson)
k, poisson)

153

The huge issue is finding all of the tables that give a fixed set of sufficient statis-

tics.

154 14 Exact Conditional Tests

14.5 Notes

fisher.test implements the network algorithm developed by Mehta and Patel
(1983, 1986) and improved by Clarkson, Fan and Joe (1993). Two-sided tests are
based on the probabilities of the tables, and take as ‘more extreme’ all tables with
probabilities less than or equal to that of the observed table, the P-value being the
sum of such probabilities. Agresti, Mehta, and Patel (1990) discuss exact tests for
ordered categories.

Chapter 15
Correspondence Analysis

15.1 Introduction

15.2 Singular Value Decomposition Plot

See next section

15.3 Correspondence Analysis Plot

R code for both the SVD and CA plots.
Code 15.3.1.

lazer <- read.table(

url ("http://stat.unm.edu/ fletcher/LLM/DATA/TAB15-1.DAT"),
"C:\\E-drive\\Books\\ANREG2\\newdata\\tab5-6.dat",
#"C:\\E-drive\\Books\\LOGLIN3\\DATA\\TAB15-1.dat",

sep="",col.names=c("O","Rel", "Occ"))
attach (lazer)
lazer
laz <- xtabs (0O"Rel+Occ)
laz

fit indep/homogen model to table
fit <- chisqg.test (laz, correct=FALSE)
fit

fitSexpected

fit$residual

Singular Value Decomp of sqgrt(n) x residual matrix

155

156 15 Correspondence Analysis

caa=svd (fit$residual)
L=diag (caa$d)

L

U=caasu

U

V=caa$v

\

#This should reproduce fitSresidual
PR=U%*%L%*%t (V)

PR

Pearson Chi-square
X2=PR%*%t (PR)
sum (diag (X2))

#Look at how closely 2-dim SVD reproduces residual matrix
PRca=U[,1:2]%*%L[1:2,1:2]1%*%t(V[,1:2])
PRca

#Figure 1
par (mfrow=c(2,1))
#SVD Plot
Ut=U%*%sqrt (L)
Vt=V%x%sqrt (L)
If done correctly the next line should be
the residual matrix.
Ut%s+%t (Vt)
plot(Ut([,1],U0t[,2],
xlim=c(-2.5,2.5),ylim=c(-2.5,2.5),
xlab="Factor 1",ylab="Factor 2",main="SVD Plot")
text (ULt [,1],U0t[,2]-.4,1labels=c("Protest", "RomCath", "Jewish"))
lines(Vt([,1]1,Vt[,2],pch=15, type="p")
text (Vt[,1]-.125,vt[,2],labels=c("A","B","C","D"))
text (0,0, labels=c ("+"))

#Correspondence Analysis Plot
Pr=rowSums (laz) /sum(laz)
Pc=colSums (laz)/sum(laz)
Dr=diag (l/sqrt (Pr))
Dc=diag (1/sqrt (Pc))
Fr=Dr%+%U%*%L/sqgrt (sum(laz))
Fc=Dc%*%V%*%L/sqgrt (sum(laz))
plot (Fr[,1],Fr[,2],
xlim=c(-.7,.3),ylim=c(-.3,.3),
xlab="Factor 1",ylab="Factor 2",main="CA Plot")

15.3 Correspondence Analysis Plot 157

text (Fr[,1],Fr[,2]-.06,labels=c ("Protest", "RomCath", "Jewish"))
lines (Fcl[,1]1,Fcl[,2],pch=15,type="p")

text (Fc[,1]1-.03,Fc[,2],labels=c("A","B","C","D"))

text (0,0, labels=c ("+"))

par (mfrow=c(1l,1))

Figure 2
#SVD Plot
Ut=U%*%$sqrt (L)
Vt=V%x%sqgrt (L)
If done correctly the next line should be
the residual matrix.
Ut$+%t (Vt)
plot (Ut[,1],Ut[,2],
xlim=c(-2.5,2.5),ylim=c(-2.5,2.5),
xlab="Factor 1",ylab="Factor 2",main="SVD Plot")
text (Ut [,1]1,U0t[,2]-.15,labels=c("Protest", "RomCath", "Jewish"))
lines(Vt([,1]1,Vt[,2],pch=15,type="p")
text (Vt[,1]1-.15,vt[,2],labels=c("A","B","C","D"))
text (0,0, labels=c("+"))

Figure 3 is from ANREG2.

oc=c ("A","B","C","D")

i=seq(l,4)

P=c(.185,.244,.224,.347)

RC=c(.157,.216,.196, .431)

J=c(.252,.420,.210,.119)

plot (i,P, type="b",xlab="0Occupation",ylab="Proportion", at=F,ylim=c(0.10,0.47))
lines (i,RC, type="b", 1lty=2)

lines (i, J, type="b", 1ty=3)

axis (side=1,at=1i, labels=oc)

axis (side=2)

legend ("topleft",c("Protest", "RomCath", "Jewish"), lty=c(1,2,3))

Figure 4
plot (Fr([,1],Fr[,2],
xlim=c(-.575,.23),ylim=c(-.575,.23),
xlab="Factor 1",ylab="Factor 2",main="CA Rows Plot")
text (Fr[,1],Fr[,2]-.03,labels=c("Protest", "RomCath", "Jewish"))
text (0,0, labels=c("+"))

#Figure 5

158 15 Correspondence Analysis

plot (Fc[,1],Fcl,2],

xlim=c(-.25, .25),ylim=c(-.25,.25),

xlab="Factor 1",ylab="Factor 2",main="CA Columns Plot")
text (Fc[,1]-.015,Fc([,2],labels=c("A","B","C","D"))
text (0,0, labels=c("+"))

#Figure 6
plot (Fr([,1],Fr[,2],
xlim=c(-.575, .23),ylim=c(-.575, .23),
xlab="Factor 1",ylab="Factor 2",main="CA Plot")
text (Fr[,1],Fr[,2]-.03,labels=c ("Protest", "RomCath", "Jewish"))
lines (Fcl[,1],Fc[,2],pch=15, type="p")
text (Fc[,1]-.03,Fc[,2],labels=c("A","B","C","D"))

Or you could just use the ca package
#install ("ca")

library (ca)

fitt=ca(laz)

plot (fitt)

par (mfrow=c(1l,1))

15.3.1 Nobel Prize Winners

An example on Nobel prize winners by GS8 countries from 1901 to 2015
from a Youtube video by Francois Husson, www.youtube.com/watch?v=
7Z5Lo1lhvZz9fA Code is incomplete or wrong. I just liked the data.

Code 15.3.2.

rm(list = 1s())

nobel = matrix(c(
4, 3, 2, 4, 1, 4,
8, 3, 11, 12, 10, 9,

24, 1, 8, 18, 5, 24,
i, 1, 6, 5, 1, 5,
6, 0, 2, 3, 1, 11,
4, 3, 5, 2, 3, 10,

23, 6, 7, 26, 11, 20,

51, 43, 8, 70, 19, 66),6,38)

nobel=t (nobel)

nobel

rowSums (nobel)

colSums (nobel)

rownames Canada France Germany Italy Japan Russia UK USA

www.youtube.com/watch?v=Z5Lo1hvZ9fA
www.youtube.com/watch?v=Z5Lo1hvZ9fA

15.4 Multiple correspondence analysis 159

colnames Chem Econ Lit Med Peace Physics

fit indep/homogen model to table
fit <- chisqg.test (nobel, correct=FALSE)
fit

fitSexpected

fitSresidual

Singular Value Decomp of residual matrix
ca=svd (fitSresidual)

L=diag (cas$d)

L

U=cas$u %*% sqrt (L)

U

V=ca$v %$x% sqrt (L)

\

#This should reproduce fitS$Sresidual
PR=U%*%L%*%t (V)

PR

Pearson Chi-square
X2=PR%*%t (PR)
sum (diag (X2))

#SVD Plot
plot (U[,1],U0[, 2],
xlim=c(-1,1),ylim=c(-1,1),
,xlab="Factor 1",ylab="Factor 2")
text (U[,1]1,U0[,2]1-.075, labels=
c("Canada", "France", "Germany",
"Italy", "Japan", "USSR", "UK", "USA"))
lines (V[,1]1,V[,2],pch=15, type="p")
text (V[,1]+.075,V[,2],labels=
c("Chen", "Econ", "Lit", "Med", "Peace", "Phys"))

15.4 Multiple correspondence analysis

You can check my algebra by running the following code for the example. Heaven
knows I spent enough time checking my algebra.

Code 15.4.1.

rm(list = 1ls())
laz=matrix (c(

15 Correspondence Analysis

160

IllOIO’OIOIOIOIO’OIOIOI
Iollll’l’llllllolololol

$1,1,1,1
,0,0,0,0

1
0

0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,1),16,7)
laz

fit indep/homogen model to table
fit <- chisqg.test (laz,correct

1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,
6,1,1,0,0,0,0,1,1,0,0,0,0,1,0,0,
o,o,0,1,090,09,09,09,0,1,1,0,0,0,1,0,
fit

0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,

FALSE)

fitSexpected
fitSresidual

fitSresidual

0.0
TkT

t (fitSresidual)

*%laz
t(laz)%$*%laz

t(laz)
XtX

=F)

chisg.test (XtX[1:3,4:7],correct

fitt

fittSresidual

Chapter 16
Polya Trees

No, there will be no chapter on Polya trees in this book. Someone just wanted these
plots.

16.0.1 Alas

U-20 u u+20

Fig. 16.1 OpenBUGS screenshot.

161

162

011

012

16 Polya Trees

Uu-20

Fig. 16.2 OpenBUGS screenshot.

011621

011622012023

H+20

U-20

Fig. 16.3 OpenBUGS screenshot.

u

16 Polya Trees 163

Uu-20 u U+20

Fig. 16.4 OpenBUGS screenshot.

Chapter 17
Pythagorian Theorem

The outer square has area C> which equals the area of the four triangles and the inner
square. The inner square has area (B—A)? = B> +A? —2AB and the 4 triangles have
an area of 4%AB, so the total area is A% + B2. When I was a graduate student, some
undergrad in a computing lab showed this to me.

C
A
B
C B-A C
A
A
C

165

References

Agresti, Alan, Mehta, C.R., and Patel, N.R. (1990). Exact inference for contingency tables with
ordered categories. Journal of the American Statistical Association, 85, 453-458.

Brunswick, A.F. (1971). Adolescent health, sex, and fertility. American Journal of Public Health,
61, 711-720.

Calcagno, Vincent and de Mazancourt, Claire (2010). glmulti: An R Package for Easy Automated
Model Selection with (Generalized) Linear Models, Journal of Statistical Software, 34(12).

Christensen, Ronald (2015). Analysis of Variance, Design, and Regression: Linear Modeling for
Unbalanced Data, Second Edition. Boca Raton, FL: Chapman and Hall.

Christensen, Ronald (2019). Advanced Linear Modeling: Statistical Learning and Dependent
Data, Third Edition. New York: Springer-Verlag.

Christensen, Ronald (2020). Plane Answers to Complex Questions: The Theory of Linear Models,
Fifth Edition. New York: Springer-Verlag.

Christensen, R.; Johnson, W.; Branscum, A.; and Hanson, T. E. (2010). Bayesian Ideas and Data
Analysis: An Introduction for Scientists and Statisticians. Chapman and Hall/CRC Press, Boca
Raton, FL.

Chuang, Christy (1983). Multiplicative-interaction logit models for / x J x 2 three-way tables.
Communications in Statistics, Theory and Methods, 12, 2871-2885.

Clarkson, D. B., Fan, Y. and Joe, H. (1993) A Remark on Algorithm 643: FEXACT: An Algo-
rithm for Performing Fisher’s Exact Test in r x ¢ Contingency Tables. ACM Transactions on
Mathematical Software, 19, 484-488.

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6
(6), 721-741.

Irwin, J.O. (1949). A note on the subdivision of 2 into components. Biometrika, 36, 130-134.

Lancaster, H.O. (1949). The derivation and partition of xz in certain discrete distributions.
Biometrika, 36, 117-129.

Lunn, David; Jackson, Christopher; Best, Nicky; Thomas, Andrew; and Spiegelhalter, David
(2013). The BUGS Book: A Practical Introduction to Bayesian Analysis. CRC Press: Boca
Raton.

Mehta, C. R. and Patel, N. R. (1986). Algorithm 643: FEXACT, a FORTRAN subroutine for
Fisher’s exact test on unordered r x ¢ contingency tables. ACM Transactions on Mathematical
Software, 12, 154-161.

Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). Equations of
state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1092.

Tierney, L. (1994). Markov Chains for Exploring Posterior Distributions. Annals of Statistics, 22,
1701-1728. (A good source on the underlying theory of McMC.)

167

Index

A—qvs AlIC, 16
~, 71

ANREG-II, vii, 14
BIDA, 69

L, vil, 41

, Vil

A-qvs AIC, 16
AICvsA—gq, 16
ANREG-II, vii, 14
attach, 118

BIDA, 69
burn-in, 70

caret

copying problem, 41
column names in data file, 133
copying commands

problems, vii, 41

DAP, 126
data frame, 118

Fisher scoring, 13

graphical user interface, 137
GUI, 137

inner product, 103

JAGS, 70, 90, 133

Markov chain Monte Carlo, 69
McMC, 69

MultiBUGS, 70

OpenBUGS, 70
outer product, 109

precision, 71
thinning, 70
tilde, 71

copying problem, vii

WinBUGS, 70

169

	Preface
	Table of Contents
	Introduction
	Conditional Probability and Independence
	Random Variables and Expectations
	The Binomial Distribution
	The Multinomial Distribution
	Product-Multinomial Distributions

	The Poisson Distribution

	Two-Dimensional Tables and Simple Logistic Regression
	Two Independent Binomials
	Testing Independence in a 2 2 Table
	I J Tables
	Maximum Likelihood Theory for Two-Dimensional Tables
	Log-Linear Models for Two-Dimensional Tables
	Simple Logistic Regression
	Exercises

	Three-Dimensional Tables
	Simpson's Paradox and the Need for Higher-Dimensional Tables
	Independence and Odds Ratio Models
	The Model of Complete Independence
	Models with One Factor Independent of the Other Two
	Models of Conditional Independence
	A Final Model for Three-Way Tables

	Iterative Computation of Estimates
	Log-Linear Models for Three-Dimensional Tables
	Estimation
	Testing Models

	Product-Multinomial and Other Sampling Plans
	Other Sampling Models

	Model Selection Criteria
	Higher-Dimensional Tables
	Exercises

	Logistic Regression
	Multiple Logistic Regression
	Measuring Model Fit
	Logistic Regression Diagnostics
	Model Selection Methods
	Stepwise logistic regression
	Best subset logistic regression

	ANOVA Type Logit Models
	Logit Models For a Multinomial Response
	Logistic Discrimination and Allocation
	Exercises

	Independence Relationships and Graphical Models
	Model Interpretations
	Graphical and Decomposable Models
	Collapsing Tables
	Recursive Causal Models
	Exercises

	Model Selection Methods and Model Evaluation
	Stepwise Procedures for Model Selection
	Initial Models for Selection Methods
	All s-Factor Effects
	Examining Each Term Individually
	Tests of Marginal and Partial Association
	Testing Each Term Last

	Example of Stepwise Methods
	Forward Selection
	Backward Elimination

	Aitkin's Method of Backward Selection
	Model Selection Among Decomposable and Graphical Models
	Use of Model Selection Criteria
	Residuals and Influential Observations
	Drawing Conclusions
	Exercises

	Models for Factors with Quantitative Levels
	Models for Two-Factor Tables
	Higher-Dimensional Tables
	Unknown Factor Scores
	Logit Models with Unknown Scores
	Exercises

	Fixed and Random Zeros
	Fixed Zeros
	Partitioning Polytomous Variables
	Random Zeros
	Exercises

	Generalized Linear Models
	Distributions for Generalized Linear Models
	Estimation of Linear Parameters
	Estimation of Dispersion and Model Fitting
	Summary and Discussion
	Exercises

	The Matrix Approach to Log-Linear Models
	Maximum Likelihood Theory for Multinomial Sampling
	Asymptotic Results
	Product-Multinomial Sampling
	Inference for Model Parameters
	Methods for Finding Maximum Likelihood Estimates
	Regression Analysis of Categorical Data
	Residual Analysis and Outliers
	Exercises

	The Matrix Approach to Logit Models
	Estimation and Testing for Logistic Models
	Model Selection Criteria for Logistic Regression
	Likelihood Equations and Newton-Raphson
	Weighted Least Squares for Logit Models
	Multinomial Response Models
	Asymptotic Results
	Discrimination, Allocations, and Retrospective Data
	Exercises

	Maximum Likelihood Theory for Log-Linear Models
	Notation
	Fixed Sample Size Properties
	Asymptotic Properties
	Applications
	Proofs of Lemma 12.3.2 and Theorem 12.3.8

	Bayesian Binomial Regression
	Introduction
	Alternative Specifications

	Bayesian Inference: O-ring Data
	Specifying the Prior and Approximating the Posterior
	Predictive Probabilities
	Inference for Regression Coefficients
	Inference for LD

	Bayesian Inference: Trauma Data
	Specifying the Prior and Approximating the Posterior
	Predictive Probabilities
	Inference for Regression Coefficients

	Diagnostics
	Case Deletion Influence Measures
	Estimative and Predictive Influence: O-rings
	Estimative and Predictive Influence: Trauma
	Model Checking
	Link Selection
	Sensitivity Analysis

	Posterior Computations
	A Log-Linear Model with Over Dispersion (Random Effects)
	Contingency Tables

	OpenBUGS GUI

	Exact Conditional Tests
	Two-Factor Tables
	Three-Factor Tables
	Testing [AC][BC]
	Testing [B][AC]

	General Theory
	Model Testing
	Notes

	Correspondence Analysis
	Introduction
	Singular Value Decomposition Plot
	Correspondence Analysis Plot
	Nobel Prize Winners

	Multiple correspondence analysis

	Polya Trees
	Alas

	Pythagorian Theorem
	References
	Index

