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Preface

This is not a general introduction to either Minitab or SAS! It is merely an introduction to
generating the results in the book. As much as practicable, the chapters and sections of this guide
give commands to generate results in the corresponding chapters and sections of the book. You
should be able to copy the SAS code given here into a .sas file and run it. (At the moment, that is
quite questionable for anything from Chapter 19 on. Not guaranteed for anything.) An exception is
that you will need to modify the locations associated with data files.

As dismaying as I find the fact, it seems that relatively few students of statistics read books from
beginning to end. Even I do not expect students to read a computing manual from beginning to end.
As a result, I have made a positive effort to be repetitive between chapters about ideas that I think
are particular important. My ideal is that people would read the first three chapters and then skip
around as needed. Chapter 3 contains the core ideas.

Ronald Christensen
Albuquerque, New Mexico

July, 2015
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Chapter 1

Introduction

There is not a lot of computing associated with Chapter 1 of the book. This chapter introduces some
elementary tools related to probability and graphing and some other features that are useful.

1.1 Getting started

There was a lot of Minitab and some SAS code in the previous version of the book, which
is also available on the website where this manual is located (https://www.stat.unm.edu/
~fletcher/anreg.pdf). I haven’t had time to work on the Minitab and SAS code as much as
I have on the R code. The plan was to construct this material by combining the material from the
earlier version and adapting the material from the R manual in order to illustrate Minitab and SAS.
It was my intention to convert the R code that was actually used into SAS code. That has been done,
but the results have not been tested. Minitab requires far less explication.

1.1.1 Minitab

The first order of business is to obtain access to the program. For academic users, relatively inex-
pensive copies of Minitab can be rented for six months or a year. Go to estore.onthehub.com or
just search for the Minitab website.

A key virtue of Minitab is that it is extremely easy to use. It is menu driven and very intuitive, but,
of course, the menus construct the commands needed to run the program. The command language
is itself quite simple to use. As of 2021 the newest version of Minitab runs off the net and is being
continually improved, hence no version numbers. The current version displays five windows. On the
left is a Navigator window for selecting the output to look at in the the Session window at the center
top. The center bottom displays the Worksheet containing the data. The worksheet operates rather
like a spreadsheet. On the top right is a Command Line window for entering and running commands.
The bottom right is a History window of the commands run. If you use the menu structure, the
History window shows you the commands that the menus generated.

In the Worksheet, variables (columns of numbers) are labeled C1, C2, etc. They can also be
given alpha-numeric names like y or x1. Variable names can be typed into the worksheet or read
in as part of data files. The name for, say, column C10 could also be specified with a command as
name c10 ’var-name’. Commands can reference either the column number or the variable name.
I often prefer to use column numbers.

For Minitab we present two different techniques for obtaining results. Sometimes we describe
menu choices and sometimes we give actual Minitab commands. (Everything carried over from the
previous 1996 version of the book consists of commands.) Note that when using subcommands,
individual commands are separated with a semicolon and the string of commands must end with
a period. One command per line. A period is not needed if subcommands are not specified. Older
versions of Minitab prompted one for a command with MTB > and if a semicolon indicated that a
subcommand was coming, Minitab provided a SUBC> prompt until a period was entered.

Prior to its current online existence, Minitab had a checkered history relative to directly entering

1
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2 1. INTRODUCTION

commands. The oldest versions of Minitab used to provide prompts to enter commands into the
Session window. As Minitab became more menu oriented, Minitab’s Session window generally hid
the commands that the menus were generating but you could get Minitab to display the commands.

To enter commands in Minitab 18, with the cursor in the Session window, select the Editor

menu and click on Show Command Line. This opens a third window (there were no Navigator or
History windows) that allows you to type in commands and that shows the commands associated
with menu selections.

In Minitab 16, prior to making menu choices, with the cursor in the Session window, select the
Editor menu and check Enable Commands. The commands generated by Minitab menus will then
appear in the session window prior to the display of output. The Minitab code (commands) are the
lines that start with MTB > or . This option also allows one to type commands directly into Minitab.
Sometimes, especially when performing repetitive operations, it is easier to type commands than go
through a series of menus.

This work was originally done on Minitab 16 for Windows, a program I really like! I cannot
recommend Minitab 18 for unbalanced ANOVA. It often refuses to fit the models that you ask it to
fit. Minitab 18 also made it harder read in my data files and harder to specify models. More on these
issues in the appropriate places. I have no experience with Minitab 17 and 19. Since Minitab 16 is
not readily available anymore, I have little intention of ever updating or improving the Minitab
commands given here. However, I have made a few modifications based on getting access to the
web based version in 2021.

1.1.2 SAS

The first order of business is to obtain access to the program. For academic users, most universities
provide access to SAS either through mainframe batch computing or through rental of PC versions
of the program.

I only have access to SAS in batch mode, so the commands will all take the form of
filename.sas files. In batch mode, I type in sas filename (NOT sas filename.sas) and
SAS produces two new files, filename.log and filename.lst. The .log file contains informa-
tion about how SAS worked — including error messages. The .lst file contains the SAS output.

The SAS code usually starts with
options ps=60 ls=80 nodate;

followed by a data statement and always involves lines starting with proc.
The work was done on SAS 9.2 for linux.

1.2 Plots and probabilities

1.2.1 Minitab

Minitab plots are very easy, but somewhat restrictive. The plots in the book were all constructed in
R.

Menu choices to generate something like Figure 1.2

graph

probability distribution plot

vary parameters

select t distribution from list

list degrees of freedom as 3 8 3000

multiple graphs

overlaid on same graph

3000 is used as an approximation to∞
Menu choices to generate something like Figure 1.3
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graph

probability distribution plot

two distributions

distribution 1: select Chi-Square from list

degrees of freedom: enter 8 in box

distribution 2: select F from list

numerator df: enter 3

denominator df: enter 18

multiple graphs

in separate panels

same scales for graphs

deselect both Same Y and Same X

1.2.2 SAS

SAS graphics are very powerful but I do not have access to them. The only plots I have produced in
SAS are crude things that could have been produced by a dot matrix printer – if you remember that
ancient equipment.

1.3 Reading data

This section is pretty much restricted to reading the data files for the book. The data files are avail-
able from my website (www.stat.unm.edu/~fletcher).

1.3.1 Minitab

Minitab is not good at reading my data files. The problem is that their standard method no longer
allows “free format.” To read the data files for the book, open them in some editor, count the number
of columns of data, and remove any variable names. The data for Table 12.3 is in tab12-3.dat.
The file has 6 columns, so use the command
read c1-c6;

file "c:\path\tab12-3.dat".

My “path” is
e-drive\books\anreg2\newdata

Yours will be different. If you are copying commands from a .pdf file, some characters do not always
copy appropriately, like ˜ and -. You may have to delete and retype them.

Small data files can also be copied and pasted directly into the worksheet.
Generally one would go to the File menu on the top left and choose Open. In the new window

find the appropriate folder and file and open it. Check the preview and, for my data files, change the
Field delimiter to Space. Typically, uncheck the Data has column names box but you can
see whether to do that from the preview. If the preview looks ok, hit OK. On my data files this rarely
works because I included extra spaces to make them look good in an editor.

One advantage of Minitab is that deleting outliers is easy. Just go into the worksheet and change
the value to an asterisk. You might want to copy the data vector to a new vector before deleting
outliers, in case you forget the original values.

The remainder of this subsection can be skipped if you are working with the current version of
Minitab.

Minitab 18 and 19 work pretty much like the current online version except you have to open
the Command Line window to enter the commands.

Minitab 16 and earlier versions did read my data files because they allowed “free format.” On
the top row, click File and choose Open Worksheet. This opens a new menu page. Near the

www.stat.unm.edu/~fletcher


4 1. INTRODUCTION

bottom of this page, locate Files of Type, hit the down arrow and choose Data. This activates
the Options button; click it. Within this page of options make two changes. For Variable Names,
check None. For Field Definition, check Free Format. Click the OK button. Now either write
in the complete file name or browse to find the .dat file that you want and hit the Open button.

Check the worksheet to see that the data are correct! In the Worksheet, variables (columns of
numbers) are labeled C1, C2, etc. Variable names can be added near the top of the Worksheet. The
labels Ci continue to work, even if variable names have been defined.

To summarize the menu choices for Minitab 16:

File

Open Worksheet

Files of Type: Data

Options

Variable Names: None

Field Definition: Free Format

Enter the file name in the dialog box and hit Open. Check the worksheet to see that the data are
correct. (I cannot imagine typing in commands to read the data.)

1.3.2 SAS

Read and print the data from Example 2.1.1 of the book.

options ps=60 ls=80 nodate;

data Koop;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\ex2-1-1.dat’;

input y ;

proc print data=Koop;

var y;

run;

The proc print command is there so you can check that the data were read properly!
SAS is much more touchy about reading files than R and Minitab. To get tab14-1.dat to read

correctly I had to add spaces to several of the last rows. Incidentally, reading tab14-1.dat (in
Chapter 14 of course) provides an example of reading alpha-numeric data.

1.4 Elementary transformations

1.4.1 Minitab

Use the Calc menu or

name c1 ’y’

let c2 = loge(c1)

let c3 = sqrt(c1)

let c4 = asin(sqrt(c1))

let c5 = c1**(1/3)

The cubed root is just to illustrate a power transformation.
In older versions of Minitab that prompted one for commands, this would have looked like

MTB > name c1 ’y’

MTB > let c2 = loge(c1)

MTB > let c3 = sqrt(c1)

MTB > let c4 = asin(sqrt(c1))

MTB > let c5 = c1**(1/3)
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1.4.2 SAS

Transformations need to be specified in the data statement, after reading the data, but before any
proc statements. The following program illustrates syntax.
options ps=60 ls=80 nodate;

data Koop;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\ex2-1-1.dat’;

input y ;

x = (4*y + y - 3*y)/2;

y1=log(x);

y2=exp(x);

y22=sqrt(x);

y3=sin(x);

y4=cos(x);

y5=x**(1/3);

y6=arsin(x);

proc print ;

var y x y1 y2 y5;

run;

For more help google sas data functions and call routines

1.5 Housekeeping

1.5.1 Minitab

Minitab is easy to use but it is often not very clear about exactly what it is doing. I frequently use
the Help menu an select Methods and Formula to learn about the exact procedures.

Some commands are easier to type than have menu generated. Get rid of column 1: erase c1.
Copy column 1 into column 2: copy c1 c2. Copy columns 1 and 2 into matrix m1: copy c1 c2

m1.
One advantage of Minitab is that deleting outliers is easy. Just go into the Worksheet and change

the value to an asterisk. You might want to copy the data vector to a new vector before deleting
outliers, in case you forget the original values.

A particularly nice feature of Minitab is that when you close a session it will prompt you to save
it as a Minitab project. I usually use the File menu to be sure of where I am saving it and what I
am calling it. By double clicking a project file, you go back to the exact state in which you left your
work.

1.5.2 SAS





Chapter 2

One-Sample

2.1 Read book data files

See Subsection 1.3.1 for reading data files into Minitab. See Subsection 1.3.2 for reading data files
into SAS.

2.2 Parametric Inference

2.2.1 Minitab

Choose Stat from the top line and within the menu options choose Basic Statistics. This
provides options for one sample t (1-Sample t) and z inferences. (1-Sample z). z inferences are
based on the normal distribution, i.e., d f =∞.

You can also trick greg into doing this,

let c11 = Y + 1 - Y

name c11 ’J’

GReg ’Y’ = J;

NoConstant;

Confidence 95.0;

PContinuous 1;

TPrediction;

TCoef;

TANOVA.

2.2.1.1 P Values

To find a P value using Minitab when the reference distribution is a t, start with the number −|tobs|,
where tobs is the observed value of the test statistic. In other words, find the observed test statistic
and make it a negative number. Then simply use this number with the ‘cdf’ command, specifying
the t distribution and the degrees of freedom in the subcommand. The procedure for tobs = 1.51 is
illustrated below. The probability given by the cdf command must be doubled to get the appropriate
P value.

cdf -1.51;

t 35.

As simple as this is, the menus are even easier – because you don’t have to remember anything.

Calc

Probability Distributions

t

enter the Degrees of freedom, check Input constant, and enter −1.51 in the box.

7
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2.2.2 SAS

There is probably specialized software in SAS for this. Below is a general linear model approach.
data Koop;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\ex2-1-1.dat’;

input y ;

J = y + 1 - y;

proc glm data=Koop;

model y = J/ solution noint;

run;

2.3 Prediction intervals

2.3.1 Minitab

let c11 = Y + 1 - Y

name c11 ’J’

GReg ’Y’ = J;

NoConstant;

Confidence 95.0;

PContinuous 1;

TPrediction;

TCoef;

TANOVA.

2.3.2 SAS

There is probably one line to add to proc glm to get a prediction interval. Alas, I don’t know it.
data Koop;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\ex2-1-1.dat’;

input y ;

J = y + 1 - y;

proc glm data=Koop;

model y = J/ solution noint;

output out=new LCL = plow UCL= phigh LCLM= clow UCLM=chigh alpha=.01;

proc print data=new;

run;

2.4 Model testing

2.5 Normal plots

2.5.1 Minitab

Use the menus
graph

probability plot

single

Specify the variable for the plot in the appropriate place. This defaults to a normal plot, other options
are available. These menu selections generate the following code
PPlot ’y’;

Normal;

Symbol;
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FitD;

Grid 2;

Grid 1;

MGrid 1.

As mentioned earlier, Minitab is easy to use but it is often not very clear about exactly what it is
doing. (Not that any program really is.) For example, the normal plot produced by these commands
includes a P value. For what? By going to the Help menu, selecting StatGuide, Graphs, and
Probability Plot we find that the plot is using the Anderson-Darling statistic and giving the
associated P value.

A computer program is necessary for finding the normal scores and convenient for plotting the
data and computing W ′. The following Minitab commands provide a normal plot and the W ′ statistic
for a variable in c1.

name c1 ’y’

nscores c1 c2

plot c1*c2

corr c1 c2

note The correlation is printed out, e.g., 0.987.

note This correlation is used in the next command.

let k1=.987**2

note k1 is W’

print k1

2.5.2 SAS

A crude normal plot can be obtained as follows.

data Koop;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\ex2-1-1.dat’;

input y ;

proc rank data=new normal=blom;

var y;

ranks nscores;

proc plot;

plot y*nscores/vpos=16 hpos=32;

run;

To get higher quality graphics you might try.

data Koop;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\ex2-1-1.dat’;

input y ;

ods graphics on;

proc rank data=new normal=blom;

var y;

ranks nscores;

proc plot;

plot y*nscores/vpos=16 hpos=32;

run;

ods graphics off;

2.6 Transformations

See Section 1.4.
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2.7 Inference about σ2

2.7.1 Minitab

Choose Stat from the top line and within the menu options choose Basic Statistics. This
provides an options for testing a variance: 1 Variance.

2.7.2 SAS



Chapter 3

Defining Linear Models in Minitab

This chapter examines the syntax of Minitab models from the most elementary models to the quite
sophisticated. We begin with an example, to remind those users who are already familiar with the
statistical concepts, of the syntaxes used to specify models in Minitab, R, and SAS. On a first reading
of the manual, you can skip this first example.

EXAMPLE 3.0.1. Modeling Cheat Sheet. We provide model syntax for models defined in Section
16.1 of the book. All three programs can fit the first form of the model. Minitab ONLY fits the first
form. The R and SAS commands given below are for fitting the second form of the model.

[ABC] ∼= yi jkm = G+Ai +B j +Ck +[AB]i j +[AC]ik +[BC] jk +[ABC]i jk + ei jkm
∼= yi jkm = [ABC]i jk + ei jkm.

[AB][BC] ∼= yi jkm = G+Ai +B j +Ck +[AB]i j +[BC] jk + ei jkm
∼= yi jkm = [AB]i j +[BC] jk + ei jkm.

[AB][C] ∼= yi jkm = G+Ai +B j +Ck +[AB]i j + ei jkm
∼= yi jkm = [AB]i j +Ck + ei jkm.

[A0][A1][A2][C] ∼= yi jkm = G+Ai0 + γ1x j + γ2x2
j +Ai1x j +Ai2x2

j +Ck + ei jkm.

∼= yi jkm = Ai0 +Ai1x j +Ai2x2
j +Ck + ei jkm.

Model Minitab R SAS
[ABC] A|B|C A:B:C-1 A*B*C / noint
[AB][BC] A|B B|C A:B+B:C-1 A*B B*C / noint
[AB][C] A|B C A:B+C-1 A*B C / noint
[A0][A1][A2][C] A|X A|X2 C A+A:X+A:X2+C-1 A A*X A*X2 C / noint

To fit different models, one needs to modify the part of the code that specifies the model. In Minitab’s
glm, models are usually specified in the model dialog box (or on the command line) and X and
X2 have to be specified as covariates. In R, specifying models involves changes to, say, lm(y ∼
A:B+C-1) where A, B, and C all have to be prespecified as factor variables. In SAS’s proc

glm, modeling involves changes to model y = A*B C/noint; where A, B, and C all have to be
prespecified as class variables.

I think the following statements are true. In R the model A*B*C is equivalent to
A+B+C+A:B+A:C+B:C+A:B:C. In Minitab and SAS the model A|B|C is equivalent to A B A*B C

A*C B*C A*B*C. 2

11
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This chapter describes general approaches to specifying fixed effect linear models in Minitab.
Chapter 3 in the book describes general approaches to statistical inference with Section 3.9 introduc-
ing various linear models that are particularly useful. Most of this chapter is devoted to a discussion
of how to specify those linear models in Minitab. The chapter goes beyond those models because I
think it is useful to consolidate in one place the fundamental ideas of specifying Minitab models. It
does not, however, discuss the random effects models that appear in Chapter 19.

We assume that y is a measurement random variable and that x is some predictor variable or
that x ≡ (x1, . . . ,xp)

′ is a vector of predictor variables. In a computer file all of the observations on
y consist of a column of numbers and the x observations are either a single column of numbers or
p different columns of numbers, one column for each component of the vector x. The components
of the vector x can either be measurement (continuous) variables, classification (categorical, factor,
discrete) variables, or some combination of the two. We assumed in Section 3.9 of the book that

E(y) = m(x)

for some function m and described a number of different, commonly used, examples. When x con-
tains only measurement variables, we construct regression models, when x contains only classi-
fication variables, we construct ANOVA models, when x contains a combination of the two, we
construct ACOVA models.

Of course we have to tell the computer program whether any component of the vector x is a
measurement or classification variable. Most computer programs have a default setting that, unless
a variable is specified to be one thing, it is assumed to be the other. In SAS and R, the default is that
any numeric variable is a measurement variable. In Minitab, the default changes with the specific
program being used. Any variable that takes nonnumeric values is automatically taken as a classifier.

The modeling capabilities of Minitab are not as flexible as those in R and SAS. We can fit
any model we need in Minitab but our choices for parameterizations of models are more limited.
(Minitab requires hierarchical models, something we will discuss later.) Our modeling in Minitab
will be focused on the glm (general linear model) command which is an option under the Stat menu
and its ANOVA submenu. The General Regression (GReg or greg) command, found under the
Stat menu’s Regression submenu, is quite similar to the glm command and will also be a primary
focus. One difference between these programs is that glm, by default, assumes that variables are
categorical so that covariates must be specifically identified, whereas GReg, by default, assumes that
numeric variables are measurements (continuous, covariates) so that categorical variables must be
specifically identified. Both glm and GReg default to include an intercept term (grand mean) in every
model, only GReg allows the intercept to be removed.

The fundamental form of these programs follow. For glm the core commands are

glm y = model;

covariates list;

brief 3.

list is really a list of variable names that are measurement variables in the model. If there are
no covariates, the subcommand can be dropped. If all of the predictor variables are covariates,
the brief 3 subcommand can be dropped. It is only needed to obtain estimates associated with
categorical variables. When using the glm menu, y goes in the “Responses” dialog box and model

goes in the “Model” dialog box. The list of covariates is specified on the Covariates submenu.
To specify brief 3, go to the Results submenu and check the last circle under Display of

Results.
For greg the core commands are

greg y = model;

categorical list;

tcoef;

tanova.
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list is really a list of variable names that are categorical variables in the model. If there are no
categorical variables, the subcommand can be dropped. The subcommands tcoef and tanova are
needed to get the table of coefficients and the ANOVA table printed. When using the GReg menu, y
goes in the “Response” dialog box, model goes in the “Model” dialog box, and the list goes in the
“Categorical predictors” dialog box. The two other subcommands are produced by default.

In Minitab, commands and subcommands are separated by semicolons and the entire string of
commands must terminate with a period. The standard diagnostic quantities that were discussed in
Chapter 7 and Section 10.1 of the book are obtained using the following subcommands.

Resid ’ehat’;

SResid ’r’;

TResid ’t’;

Hi ’lev’;

CookD ’C’;

These subcommands apply to both glm and greg and other Minitab programs as well. When using
the menus, these are all choices available to check on the Storage submenu.

We now return to the real subject of this chapter, how to define “model” appropriately in
Minitab.

3.1 One sample

Most statistics programs have specialized software for data in which all the observations have the
same mean value, like Minitab’s 1 Sample t.

Linear models programs often do not allow fitting only a common mean to all observations but
you can generally trick them into fitting such a model by defining a predictor variable that is always
1 and not fitting a constant to the model.

let c20 = y+1-y

GReg y = c20;

NoConstant;

TCoef;

TANOVA.

With these commands sitting in front of you, it is probably easiest just to type them, but you can
also use the menus. You could use the Calc menu to create c20. In the Reg menu, select GReg. After
specifying the response and the model, in the Options submenu deselect Fit intercept. I do not
think you can get this analysis out of glm.

3.2 Two samples

For two samples, x should be a categorical variable with only two categories. Use

glm y = x;

Brief 3.

The subcommand Brief 3 is necessary to get a table of coefficients. To specify brief 3 in the
glm menu, go to the Results submenu and check the last circle under Display of Results.
Alternatively, use

GReg y = x;

Covariate x;

TCoef;

TANOVA.
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In either case, the first group mean is the sum of the two coefficients and second group mean is
the difference in the two coefficients. The t test for the second coefficient is the test for equality of
means.

Chapter 4 of the book also considers some extensions, i.e., paired comparisons and unequal
variances. The glm and greg commands assume equal variances, so they do not apply to the latter.
As discussed in Chapter 4, paired comparisons can be treated as either one-sample that consists of
the differences between the pairs or as a two-way ANOVA without interaction.

3.3 Regression

In regression we assume that the vector x contains only measurement variables.

3.3.1 Simple linear regression

With a single predictor x, simple linear regression is

m(x) = β0 +β1x

or
yh = β0 +β1xh + εh, h = 1, . . . ,n.

It is fitted in glm as
glm y = x;

Covar x.

or in greg as
GReg y = x;

TCoef;

TANOVA.

Notice that the intercept term is not specified and that this has the same model structure as used for
two samples. The key point is that x is a measurement variable not a categorical variable. We will
see later that this same Minitab structure is used for one-way ANOVA when x is a classification
variable with more than two categories.

If we wanted to force the regression through the origin the model becomes

yh = β1xh + εh, h = 1, . . . ,n

and is modeled in greg as
GReg y = x;

NoCon;

TCoef;

TANOVA.

The model in question does not contain an intercept and the NoConstant subcommand is used to
stop an intercept being fitted. I do not know how to keep glm from from fitting an intercept.

3.3.2 Polynomial regression

A cubic polynomial model
m(x) = β0 +β1x+β2x2 +β3x3

or
yh = β0 +β1xh +β2x2

h +β3x3
h + εh, h = 1, . . . ,n,

is modeled in glm as
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glm y = x x*x x*x*x;

covar x.

or in greg as

greg y = x x*x x*x*x;

tcoef;

tanova.

3.3.3 Multiple regression

Now suppose x is a vector of measurement variables with p = 3, i.e., x = (x1,x2,x3)
′. The multiple

regression model is
m(x) = β0 +β1x1 +β2x2 +β3x3

or
yh = β0 +β1xh1 +β2xh2 +β3xh3 + εh, h = 1, . . . ,n.

Typically, when programming it is safer not to define variables using subscripts, so we write x j as
xj and the model is written in glm as

glm y = x1 x2 x3;

covar x1 x2 x3.

or in greg as

greg y = x1 x2 x3;

tcoef;

tanova.

Notice that the intercept term is never specified.

3.3.4 Offsets

Suppose in the multiple regression model we knew that β2 = 5 so that the model becomes

yh = β0 +β1xh1 +5xh2 +β3xh3 + εh, h = 1, . . . ,n.

As far as I know, there is no direct way to model this in Minitab. However, for a linear model like
this, we can rewrite the linear model as

yh−5xh2 = β0 +β1xh1 +β3xh3 + εh, h = 1, . . . ,n

which can be handled in Minitab as

let yoff = y - 5*x2

glm yoff = x1 x3;

covar x1 x2 x3.

GReg works similarly.
It is not much of a problem that Minitab does not make provision for offset terms in linear

models. It is a much larger problem that Minitab has no “offset” capability in its programs to treat
the “generalized linear models” examined near the end of the book.

3.4 ANOVA

We begin by assuming that x is a single classification variable and then move to vectors of classifi-
cation variables. Glm assumes that all predictor variables are categorical unless otherwise specified.
GReg assumes that numeric predictor variables are covariates unless otherwise specified.
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3.4.1 One-way ANOVA

A typical one-way ANOVA model is written

yi j = µi + εi j, i = 1,2, . . . ,a, j = 1, . . . ,Ni.

In this context, the generic predictor variable x should really be thought of as i, the subscript in the
model that identifies the groups. It is more trouble than it is worth to get Minitab to fit this model.

The alternative form of the one-way model that contains a grand mean (intercept) is what most
programs are designed to fit,

yi j = µ +αi + εi j, i = 1,2, . . . ,a, j = 1, . . . ,Ni.

The Minitab analysis is obtained from

glm y = x;

brief 3.

or

greg y = ii;

Categorical x;

TCoef;

TANOVA.

For estimation Minitab uses the side condition ∑
a
i=1 αi = 0 and reports estimates α̂1, . . . , α̂a−1 with

the understanding that −α̂a = ∑
a−1
i=1 α̂i.

Alternatively, the code

greg y = x;

Categorical x;

Coding 1;

TCoef;

TANOVA.

gets Minitab to use the side condition α1 = 0 (like R) which forces the estimate of µ to be the
sample mean of group 1 and the estimate of αr to be the difference between the sample mean of
group r and the sample mean of group 1, r = 1, . . . ,a. From the GReg menu, this option involves
opening the Options submenu and checking the (1,0) choice for “Type of coding for categorical
predictors”.

Regardless of side conditions, µ̂ + α̂r = ȳr· for any r.
The one-way ANOVA with a = 2 model is identical to the model for two independent samples

with equal variances and the model specification in Minitab is the same.

3.4.2 Two-way ANOVA

Now suppose x is a vector of classification variables with p = 2, i.e., x = (x1,x2)
′. As illustrated

earlier, rewrite x j as xj. Because x1 and x2 are classification variables (but more than anything, to
be consistent with the R and SAS presentations), throughout this entire subsection we relabel x1
and x2 as ii and jj, respectively, via

let c11 = x1

copy x2 c12

names c11 ’ii’ c12 ’jj’.

(The columns c11 and c12 were selected haphazardly.)
Models similar to those discussed below also hold for p > 2 but get exponentially more compli-

cated. The book examines in detail some cases with p = 3 and p = 4. Section 8 below also contains
some discussion of higher-order models.
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3.4.2.1 Interaction

The model
yi jk = µi j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j,

is not readily fit by Minitab. Some of the output can be obtained by treating the model as a one-way
ANOVA and using specialized software, see Chapter 12.

The equivalent interaction model can be written

yi jk = µ +αi +η j +(αη)i j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j.

and the glm or greg analysis is obtained using
y = ii jj ii*jj

or, incorporating Minitab’s shorthand for hierarchical models,
y = ii|jj

Henceforth, we will use this shorthand as much as possible. For estimation Minitab uses the default
side conditions

a

∑
i=1

αi = 0;
b

∑
j=1

η j = 0;
b

∑
j=1

(αη)i j = 0, i = 1, . . . ,a;
a

∑
i=1

(αη)i j = 0, j = 1, . . . ,b.

For example, if j 6= b Minitab reports estimates ̂(αη)1 j, . . . ,
̂(αη)a−1, j with the understanding that

−̂(αη)a, j = ∑
a−1
i=1

̂(αη)i j. Similar computations must be made with the other side conditions to find
the complete set of estimates.

Alternatively, we could use the script
greg y = ii|jj;

Categorical ii jj;

Coding 1;

TCoef;

TANOVA.

With the subcommand Coding 1, the estimated parameters for this overspecified model incorporate
(like R) the side conditions,

α1 = 0; η1 = 0; (αη)1 j = 0, j = 1, . . . ,b; (αη)i1 = 0 i = 1, . . . ,a.

From the GReg menu, this option involves opening the Options submenu and checking the (1,0)
choice for “Type of coding for categorical predictors”.

3.4.2.2 Additive effects

The additive effects model is

yi jk = µ +αi +η j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j.

and is written in glm or greg as
y = ii jj

For estimation Minitab uses the default side conditions

a

∑
i=1

αi = 0;
b

∑
j=1

η j = 0.

Alternatively, we could use the script
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greg y = ii jj;

Categorical ii jj ;

Coding 1;

TCoef;

TANOVA.

With the subcommand Coding 1, the estimated parameters for this overspecified model use (like
R) the side conditions,

α1 = 0; η1 = 0.

From the GReg menu, this option involves opening the Options submenu and checking the (1,0)
choice for “Type of coding for categorical predictors”.

3.4.2.3 Sequential fitting

As discussed in the book, although the models themselves are equivalent, some computer output
changes depending on whether one specifies the two-way interaction model as y = ii jj ii*jj

(y = ii|jj) or as y = jj ii jj*ii (y = jj|ii). Although the end models are the same, the
process of getting to the end model is different and the sequential sums of squares (SeqSS) output
contains information from the process in addition to information from the end result. For unbal-
anced data, these models typically give different numbers for the SeqSS, cf. Section 9.4 and Sub-
section 14.1.2 of the book. For balanced data, only the order of presentation changes. Parameter
estimation depends only on the end model and does not change materially with different orderings
of terms.

In particular, when you ask glm or greg to fit y = ii jj ii*jj, or equivalently ii|jj, they
sequentially fit the models
y = ii

y = ii jj

y = ii jj ii*jj

In general, they fit a sequence of models determined by the order in which you added terms of the
larger model! This is reflected in the sequential sums of squares. Incidentally, as long as the main
effect ii comes before jj, it is irrelevant in these models whether you specify ii jj ii*jj or
specify ii jj jj*ii.

Although this discussion has focused on the two-way with interaction model, issues of sequential
fitting are pervasive with unbalanced data (including regression). This is not so much a problem as
an opportunity. The extra computer output can save you from the chore of fitting some models. It
never does any harm unless you misinterpret the results.

As discussed in Section 14.1 of the book, there is also a concept of adjusted sums of squares.
In general, adjusted sums of squares are meant to be sums of squares for fitting terms last. In the
additive effects model, the adjusted sums of squares for each main effect is the sequential sum of
squares for that term when the term is being fitted to the model after the other main effect. However,
in the interaction model, most of the adjusted sums of squares are worthless. The interaction adjusted
sum of squares is fine, it is just the sum of squares for adding the interaction after both of the main
effects. However, the sum of squares for a main effect fitted after an interaction should be zero, not
the arbitrary numbers reported for main effects as adjusted sums of squares. The reported numbers
are arbitrary because they depend on the choice of side conditions being used by the program to
determine estimates. The side conditions are arbitrary choices, so these adjusted sums of squares
are also arbitrary. An illustration of this phenomenon appears in Subsubsection 14.1.1.1 of this
guide.

3.5 ACOVA and interaction

The following models were not discussed in Section 3.9 of the book but rather are discussed in
Chapter 15. They involve a classification variable x1 written as x1 that denotes a group i and a
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measurement variable x2 written as x2 or equivalently as z (to make the notation more similar to
the book). Throughout the section we
let c11 = x2

let c12 = x1

name c11 ’z’ c12 ’ii’.

3.5.1 ACOVA: parallel lines

Minitab will not readily fit the nicest ACOVA model,

yi j = µi + γzi j + εi j, i = 1,2, . . . ,a, j = 1, . . . ,Ni.

but it will happily fit the alternative model

yi j = µ +αi + γzi j + εi j

as
y = ii z;

In glm, z has to be specified as a covariate and in greg, ii has to be specified as a “Categorical
predictor”. For estimation Minitab uses the default side condition

a

∑
i=1

αi = 0.

Alternatively, we could use the script
greg y = ii z;

Categorical ii;

Coding 1;

TCoef;

TANOVA.

With the subcommand Coding 1, the estimated parameters for this overspecified model use (like R)
the side condition α1 = 0. From the GReg menu, this option involves opening the Options submenu
and checking the (1,0) choice for “Type of coding for categorical predictors”.

Note that this Minitab model is essentially the same form as that used for the two-way additive
effects model in Subsubsection 3.4.2.2 except now one of the predictor variables is a measurement
variable and the other is a classification variable.

3.5.2 Interaction: skew lines

We now consider ways of fitting lines to each group that can have different slopes as well as different
intercepts. The simplest model to interpret is

yi j = µi + γizi j + εi j.

Minitab doesn’t like this. The version most similar to generalizing the traditional ACOVA model is

yi j = µ +αi + γizi j + εi j.

Again, Minitab doesn’t like this.
Minitab likes to specify a “hierarchical” version of the model (which I generally think is pretty

silly but admittedly gives some useful computer output),

yi j = µ +αi +β zi j + γizi j + εi j

written in Minitab as
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y = ii z ii*z

or, even more simply, as
y = ii|z

Again, in glm, z has to be specified as a covariate and in greg, ii has to be specified as a categorical
predictor. Also, glm will not print out coefficient estimates for the ii effects without being asked
(the brief 3 subcommand). But then greg will not print out anything without being asked.

For estimation Minitab uses the side conditions
a

∑
i=1

αi = 0 =
a

∑
i=1

γi.

It reports estimates α̂1, . . . , α̂a−1 with the understanding that −α̂a = ∑
a−1
i=1 α̂i and estimates

γ̂1, . . . , γ̂a−1 with the understanding that −γ̂a = ∑
a−1
i=1 γ̂i.

Alternatively, we could use the script
greg y = ii|z;

Categorical ii;

Coding 1;

TCoef;

TANOVA.

With the subcommand Coding 1, the estimated parameters for this overspecified model incorporate
(like R) the side conditions,

α1 = 0; γ1 = 0.

From the GReg menu, this option involves opening the Options submenu and checking the (1,0)
choice for “Type of coding for categorical predictors”.

3.6 Interaction in multiple regression

The multiple regression model with p = 2 and continuous predictors x = (x1,x2) has

m(x) = β0 +β1x1 +β2x2

or
yh = β0 +β1xh1 +β2xh2 + εh, h = 1, . . . ,n.

This is an additive model in x1 and x2, cf. Section 9.9 of the book. As we have already seen, the
glm and greg model for this is y = x1 x2. It is essentially the same as that used for the two-way
ANOVA additive effects model and the parallel lines ACOVA model except that now both of the
predictor variables are measurement variables. Moreover, the effects of the two predictors simply
add together.

A useful way of incorporating some interaction into the model is to fit

m(x) = β0 +β1x1 +β2x2 +β3x1x2,

that is,
yh = β0 +β1xh1 +β2xh2 +β3xh1xh2 + εh, h = 1, . . . ,n.

This is no longer an additive model in the original variables x1 and x2 (although it is an additive
model in the variables x1, x2, x1x2). The main reason for introducing this model here is to illustrate
that the Minitab regression model has essentially the same structure as the Minitab models for
two-way ANOVA with interaction and the ACOVA interaction model with skew lines. The Minitab
model is
y = x1 x2 x1*x2
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or
y = x1|x2

With both variables being measurement variables there is yet another option for fitting the model.
Let c13 = x1*x2, name c13 ’x1x2’, then use the model y = x1 x2 x1x2.

3.7 Hierarchical and nested models

The model

yi jk = µ +αi +η j +(αη)i j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j.

is said to be hierarchical because the model includes not only the interaction terms (αη)i j but also
the lower order “main effect” terms αi and η j as well as the grand mean µ . A model is hierarchical
whenever a model that includes an mth order interaction between some variables also includes all
of the lower order interactions among those variables as well as all the main effects and the grand
mean. Thus, if a model contains (αηγ) terms, it must also include (αη) terms, (αγ) terms, (ηγ)
terms, and the main effect terms, the αs, ηs, and γs, as well as the grand mean µ . I have been
at some pains in the book to point out that for ANOVA models all of these lower order terms are
meaningless, so I have little regard for this concept of a hierarchical model. (The term “hierarchical”
takes on alternate meanings in alternate contexts, e.g., Bayesian statistics.)

As mentioned at the beginning of the chapter, Minitab assumes that all models are hierarchical.
It even uses a similar concept of hierarchy for measurement variables. (I should mention that when
using the rather artificial, but computationally very convenient, concept of interaction between con-
tinuous (measurement) variables employed by all of Minitab, R and SAS, the lower order terms are
NOT meaningless.) Glm refuses to fit models that are not hierarchical. GReg gives incorrect answers
for models that are not hierarchical. (GReg gives the correct answer for some model, it just is not the
model you wish it was and is not any model that is easy to determine.)

Minitab (like R) incorporates a special operator to simplify defining hierarchical models. With
x1 and x2 as classification variables that define i and j, respectively, in Minitab the model displayed
earlier can be written either as as
y = x1 x2 x1*x2

or
y = x1|x2

If you care about hierarchical models, you might care about nested models which are models
that are not quite hierarchical. For example,

yi jk = µ +αi +(αη)i j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j

is said to have the (αη)i j effects nested within the αi effects. Again, fixed αi effects are irrelevant in
this model, so I find it hard to care about this concept of nesting. Nonetheless, Minitab has specific
code for defining nested models. For factor variables x1 x2, the model above could be written
y = x1 x2(x1)

Ironically, even though the original model is already nonhierarchical, if you leave out the main effect
x1, glm complains that the model is not hierarchical.

3.8 Higher-order models

When discussing Minitab, we will consider “higher order” models to be those that involve p > 2,
although the distinction is probably more common only when the number of classification variables
is greater than 2. The reason we do this is because the methods in Minitab for defining higher order
models are pretty much interchangeable regardless of whether the predictors are measurements or



22 3. DEFINING LINEAR MODELS IN MINITAB

classifications. When used on measurement variables, the Minitab commands introduce interaction
similar to Section 3.6.

For example, the code
y = x1|x2|x3

can determine a variety of models. If all the predictors are measurements, the model is

yh = β000 +β100 xh1 +β010 xh2 +β001 xh3

+β110 xh1xh2 +β101 xh1xh3 +β011 xh2xh3 +β111 xh1xh2xh3 + εh, h = 1, . . . ,n.

When all the predictors are classifications with x1 ≡ i, x2 ≡ j, and x3 ≡ k the code means

yi jks = µ +αi +η j + γk +(αη)i j +(αγ)ik +(ηγ) jk +(αηγ)i jk + εi jks, s = 1, . . . ,Nhi j.

If only x1 is a measurement variable, it means

y jks = µ +β1 x jks1 +η j + γk

+β1 j x jks1 +β1k x jks1 +(ηγ) jk +β1 jk x jks1 + ε jks, s = 1, . . . ,N jk.

If both x1 and x2 are measurement variables, it means

yks = β00 +β10 xks1 +β01 xks2 + γk

+β11 xks1xks2 +β10kxks1 +β01kxks2 +β11k xks1xks2 + ε jks, s = 1, . . . ,Nk,

Minitab will also let us subtract out the three factor term
y = x1|x2|x3 - x1*x2*x3

to give us a second order interaction model. If all the predictors are measurements, the model is

yh = β000+β100 xh1+β010 xh2+β001 xh3+β110 xh1 xh2+β101 xh1xh3+β011 xh2xh3+εh, h= 1, . . . ,n.

When all the predictors are classifications with x1 ≡ i, x2 ≡ j, and x3 ≡ k the code means

yi jks = µ +αi +η j + γk +(αη)i j +(αγ)ik +(ηγ) jk + εi jks, s = 1, . . . ,Nhi j.

If only x1 is a measurement variable, it means

y jks = µ +β1 x jks1 +η j + γk +β1 j x jks1 +β1k x jks1 +(ηγ) jk + ε jks, s = 1, . . . ,N jk.

If both x1 and x2 are measurement variables, it means

yks = β00 +β10 xks1 +β01 xks2 + γk +β11 xks1xks2 +β10k xks1 +β01k xks2 + ε jks, s = 1, . . . ,Nk.

In fact, you can even write y = x1|x2|x3 - x1*x2*x3 - x2*x3 in place of y = x1|x2 x1|x3,
which is a somewhat redundant version (it includes the main effect x1 twice) of y = x1 x2 x3

x1*x2 x1*x3.
Similarly, we can fit third order interaction models for p = 4,

y = x1|x2|x3|x4 - x1*x2*x3*x4

The regression model with all measurement variables is

yh = β000 +β1000 xh1 +β0100 xh2 +β0010 xh3 +β0001 xh4

+β1100 xh1xh2 +β1010 xh1xh3 +β1001 xh1xh4 +β0110 xh2xh3 +β0101 xh2xh4 +β0011 xh3xh4

+β1110 xh1xh2xh3 +β1101 xh1xh2xh4 +β1011 xh1xh3xh4 +β0111 xh2xh3xh4 + εh, h = 1, . . . ,n.

The ANOVA model with all classification variables is

yhi jks = µ +αh +ηi + γ j +δk

+(αη)hi +(αγ)h j +(αδ )hk +(ηγδ )i j +(ηδ )ik +(γδ ) jk

+(αηγ)hi j +(αηδ )hik +(αγδ )h jk +(ηγδ )i jk + εhi jks, s = 1, . . . ,Nhi jk.

I will leave it to you to worry about the various kinds of ACOVA models that mix measurements
with classifications.
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This chapter examines the syntax of SAS models from the most elementary models to the quite
sophisticated. We begin with an example, to remind those users who are already familiar with the
statistical concepts, of the syntaxes used to specify models in Minitab, R, and SAS. On a first reading
of the manual, you can skip this first example.

EXAMPLE 3.8.1. Modeling cheat sheet. We provide model syntax for models defined in Section
16.1 of the book. All three programs can fit the first form of the model. Minitab ONLY fits the first
form. The R and SAS commands given below are for fitting the second form of the model.

[ABC] ∼= yi jkm = G+Ai +B j +Ck +[AB]i j +[AC]ik +[BC] jk +[ABC]i jk + ei jkm
∼= yi jkm = [ABC]i jk + ei jkm.

[AB][BC] ∼= yi jkm = G+Ai +B j +Ck +[AB]i j +[BC] jk + ei jkm
∼= yi jkm = [AB]i j +[BC] jk + ei jkm.

[AB][C] ∼= yi jkm = G+Ai +B j +Ck +[AB]i j + ei jkm
∼= yi jkm = [AB]i j +Ck + ei jkm.

[A0][A1][A2][C] ∼= yi jkm = G+Ai0 + γ1x j + γ2x2
j +Ai1x j +Ai2x2

j +Ck + ei jkm.

∼= yi jkm = Ai0 +Ai1x j +Ai2x2
j +Ck + ei jkm.

Model Minitab R SAS
[ABC] A|B|C A:B:C-1 A*B*C / noint
[AB][BC] A|B B|C A:B+B:C-1 A*B B*C / noint
[AB][C] A|B C A:B+C-1 A*B C / noint
[A0][A1][A2][C] A|X A|X2 C A+A:X+A:X2+C-1 A A*X A*X2 C / noint

To fit different models, one needs to modify the part of the code that specifies the model. In Minitab’s
glm, models are usually specified in the model dialog box (or on the command line) and X and
X2 have to be specified as covariates. In R, specifying models involves changes to, say, lm(y ∼
A:B+C-1) where A, B, and C all have to be prespecified as factor variables. In SAS’s proc glm

and proc genmod, modeling involves changes to model y = A*B C/noint; where A, B, and C
all have to be prespecified as class variables.

I think the following statements are true. In R the model A*B*C is equivalent to
A+B+C+A:B+A:C+B:C+A:B:C. In Minitab and SAS the model A|B|C is equivalent to A B A*B C

A*C B*C A*B*C. 2

This chapter describes general approaches to specifying fixed effect linear models in SAS. Chap-
ter 3 in the book describes general approaches to statistical inference with Section 3.9 introducing

23
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various linear models that are particularly useful. Most of this chapter is devoted to a discussion of
how to specify those linear models in SAS. The chapter goes beyond those models because I think
it is useful to consolidate in one place the fundamental ideas of specifying SAS models. It does not,
however, discuss the random effects models that appear in Chapter 19.

Modeling in SAS is pretty much the same for all of the procedures we will focus on:

proc glm /* Extensive ANOVA table output */

proc genmod /* Coefficients, SSE, dfE, MSE (Error=Deviance) */

proc logistic

and we will also examine proc reg.
We assume that y is a measurement random variable and that x is some predictor variable or

that x ≡ (x1, . . . ,xp)
′ is a vector of predictor variables. In a computer file all of the observations on

y consist of a column of numbers and the x observations are either a single column of numbers or
p different columns of numbers, one column for each component of the vector x. The components
of the vector x can either be measurement (continuous) variables, classification (categorical, factor,
discrete) variables, or some combination of the two. We assumed in Section 3.9 of the book that

E(y) = m(x)

for some function m and described a number of different, commonly used, examples. When x con-
tains only measurement variables, we construct regression models, when x contains only classi-
fication variables, we construct ANOVA models, when x contains a combination of the two, we
construct ACOVA models.

Of course we have to tell the computer program whether any component of the vector x is a
measurement or classification variable. Most computer programs have a default setting that, unless
a variable is specified to be one thing, it is assumed to be the other. SAS assumes that all numeric
variables are measurement variables, so classification variables taking on numeric values have to be
specified as such. Variables that take nonnumeric values are NOT automatically taken as classifiers.

Also, most computer programs for linear models default to include an intercept term (grand
mean) in every model.

A fairly generic glm program that illustrates most of the key features for three predictor vari-
ables, the first of which is a classifier, follows:

options ps=60 ls=80;

data Name;

infile ’filename’;

input y x1 x2 x3;

proc print;

run;

proc glm data=Name;

class x1

model y = x1 x2 x3/ solution noint;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc print data=new;

proc plot;

plot sr*yhat/ vpos=16 hpos=32;

run;

proc rank data=new normal=blom;

var sr;

ranks nscores;

proc plot;

plot sr*nscores/vpos=16 hpos=32;

run;
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This includes printing of the standard diagnostic quantities that were discussed in Chapter 7 and
Section 10.1 of the book, a crude plot of the standardized residuals versus the fitted values, and
a crude normal plot. With minor modifications, this program also works for prog genmod, proc
logistic, and proc reg. Most modifications will occur on the model line after the / with solu-
tion being unnecessary for other procedures and genmod requiring specifications of a link and a
distribution.

If you have a lot of observations you might want to skip the first proc print; However, one
should always check that the data have been read in correctly and SAS can be a little touchy about
reading things.

The primary subject of this chapter is what to put in the model statement before the /.

3.9 One sample

If all the observations have the same mean value, you often have to use specialized software for this
data structure, like SAS’s proc ??.

Often linear models programs do not allow fitting only a common mean to all observations but
you can generally trick them into fitting such a model by defining a predictor variable that is always
1 and not fitting a constant to the model. In SAS define the model via

J = y + 1 - y;

model y = J/noconst;

3.10 Two samples

For two samples, x should be a categorical variable with only two categories, specified by

class x;

To follow the discussion in Chapter 4 of the book, I recommend fitting the model

model y = x /noint;

The /noint in the model tells it not to fit an intercept, so that the parameter estimates become the
group sample means. You should compare this output to that obtained by fitting

model y = x;

in which the parameter estimates are typically one group sample mean and the difference between
the sample means of the two groups.

It turns out that if all you want is a test of whether the group means are equal and if the two
categories are coded as numbers, you do not need to specify that x defines categories. The usual
summary output for fitting

model y = x;

still gives the test of whether the groups differ. This trick does not work if there are more than two
categories!

Chapter 4 of the book also considers some extensions, i.e., paired comparisons and unequal
variances. The glm command assumes equal variances, so it does not apply to the latter. As discussed
in Chapter 4, paired comparisons can be treated as either one-sample that consists of the differences
between the pairs or as a two-way ANOVA without interaction.

3.11 Regression

In regression we assume that the vector x contains only measurement variables. In SAS, this is the
default.
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3.11.1 Simple linear regression

With a single predictor x, simple linear regression is

m(x) = β0 +β1x

or
yh = β0 +β1xh + εh, h = 1, . . . ,n.

It is modeled in SAS as

model y = x;

Notice that the intercept term is not specified and that this has the same structure as models used
for two samples. The key point is that x is a measurement variable not a categorical variable. We
will see later that this same SAS structure is used for one-way ANOVA when x is a classification
variable with more than two categories.

If we wanted to force the regression through the origin the model becomes

yh = β1xh + εh, h = 1, . . . ,n.

and is coded in SAS as

model y = x / noint;

The model in question does not contain an intercept and the / noint is used to stop an intercept
being fitted.

When x is a measurement variable, the two models

model model y = x / noint;

model model y = x;

are different models. It turns out that if x is a classification variable,

model y = x / noint;

model y = x;

are equivalent models.

3.11.2 Polynomial regression

A cubic polynomial model
m(x) = β0 +β1x+β2x2 +β3x3

or
yh = β0 +β1xh +β2x2

h +β3x3
h + εh, h = 1, . . . ,n,

is modeled in SAS as

model y = x x*x x*x*x;

or as

x2 = x*x;

x3 = x2*x;

model y = x x2 x3;

where the arithmetic needs to be done in the data step.
Does SAS also have an option for fitting orthogonal polynomials?
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3.11.3 Multiple regression

Now suppose x is a vector of measurement variables with p = 3, i.e., x = (x1,x2,x3)
′. The multiple

regression model is
m(x) = β0 +β1x1 +β2x2 +β3x3

or
yh = β0 +β1xh1 +β2xh2 +β3xh3 + εh, h = 1, . . . ,n.

Typically, when programming it is safer not to define variables using subscripts, so we write x j as
xj and the model is written in SAS as
model y = x1 x2 x3;

Notice that the intercept term is not specified.

3.11.4 Offsets

Suppose in the multiple regression model we knew that β2 = 5 so that the model becomes

yh = β0 +β1xh1 +5xh2 +β3xh3 + εh, h = 1, . . . ,n.

This can be modeled in proc genmod as
xoff = 5*x2

model y = x1 x3/ offset=xoff;

where the arithmetic needs to be done in the data step rather than the prog genmod step. This
will not work in proc glm. (It probably also works for proc logistic but probably not for proc
reg.)

We can rewrite the linear model as

yh−5xh2 = β0 +β1xh1 +β3xh3 + εh, h = 1, . . . ,n.

which can be modeled in proc glm, prog reg, or in proc genmod when using link=identity

as
yy = y - 5*x2

model yy = x1 x3;

Again, the arithmetic needs to be done in the data step.
For nonlinear “generalized linear models,” such as those treated near the end of the book, one

must use the “offset” command.

3.12 ANOVA

We begin by assuming that x is a single classification variable and then move on to vectors of
classification variables. By default, SAS assumes that x is a measurement variable, so we have to
specify that x is a classifier (even if x is nonnumerical). When x is a vector, we have to specify that
each variable in the vector is a classifier.

3.12.1 One-way ANOVA

A typical one-way ANOVA model is written

yi j = µi + εi j, i = 1,2, . . . ,a, j = 1, . . . ,Ni.

In this context, the generic predictor variable x should really be thought of as i, the subscript in the
model that identifies the groups. To specify that x is categorical, write
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class x;

But just to avoid any possible confusion, I prefer to define a new version of x that is categorical,
ii = x; class ii;

(In some contexts we might want to go back and forth between thinking of x as measurement or
classification in which case it is handy to have both versions.) Note that ii=x needs to go in the
data step, while class ii is part of the proc.

The model is specified as
model y = ii / noint;

The model in question does not contain an intercept with the / noint used to stop an intercept
from being fitted.

An alternative form of the one-way model that contains a grand mean (intercept) is what most
programs are designed to fit,

yi j = µ +αi + εi j, i = 1,2, . . . ,a, j = 1, . . . ,Ni.

The model is written as
model y = ii;

For estimation SAS uses the side condition αa = 0 which forces the estimate of µ to be the sample
mean of group a and the estimate of αr to be the difference between the sample mean of group r
and the sample mean of group a, r = 1, . . . ,a. As discussed in the book, other programs use other
side conditions and it is important to be able to interpret the different output.

The one-way ANOVA with a = 2 model is identical to the model for two independent samples
with equal variances and the model specification in SAS is the same.

3.12.2 Two-way ANOVA

Now suppose x is a vector of classification variables with p = 2, i.e., x = (x1,x2)
′. As illustrated

earlier, rewrite x j as xj. Because x1 and x2 are classification variables, we specify
ii= x1; class ii;

jj= x2; class jj;

throughout this entire subsection. Models similar to those discussed below hold for p > 2 but get
exponentially more complicated. The book examines in detail some cases with p = 3 and p = 4.
Section 8 below also contains some discussion of higher-order models.

3.12.2.1 Interaction

The model
yi jk = µi j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j,

is written in SAS as
model y = ii * jj / noint;

Remember that this is essentially a one-way ANOVA model!
Alternatively, the equivalent interaction model can be written

yi jk = µ +αi +η j +(αη)i j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j.

and written in SAS as
model y = ii jj ii*jj;

SAS, unlike many programs, does not seem to have a shorthand way to specify the model. When
estimating parameters for this overspecified model, the following side conditions are used by SAS,

αa = 0; ηb = 0; (αη)a j = 0, j = 1, . . . ,b; (αη)ib = 0 i = 1, . . . ,a.
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3.12.2.2 Additive effects

The additive effects model is

yi jk = µ +αi +η j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j.

and is written in SAS as
model y = ii jj;

When estimating parameters, the following side conditions are used by SAS,

αa = 0; ηb = 0.

3.12.2.3 Sequential fitting: Type I sums of squares

SAS has inflicted upon the world the abomination of Types I, II, III, and IV sums of squares. Type
I sums of squares are sequential sums of squares. Type III sums of squares are adjusted sums of
squares. “Sequential” and “adjusted” are the (far more intuitive) terms used by Minitab.

As discussed in the book, although the models themselves are equivalent, some computer output
changes depending on whether one specifies the two-way interaction model as
model y = ii jj ii*jj;

or as
model y = jj ii jj*ii;

Although the end models are the same, the process of getting to the end model is different and
the proc glm Type I sums of squares output contains information from the process in addition to
information from the end result. For unbalanced data, these models typically give different numbers
for the proc glm Type I sums of squares. For balanced data, only the order of presentation changes.
Parameter estimation depends only on the end model and does not change materially with different
orderings of terms.

In particular, when you ask proc glm to fit
model y = ii jj ii*jj;

it sequentially fits the models
model y = ii;

model y = ii jj;

model y = ii jj ii*jj;

In general, proc glm fits a sequence of models determined by the order in which you added terms
of the larger model! This is reflected in the Type I sums of squares. Incidentally, it is irrelevant in
these models whether you specify ii jj ii*jj or specify ii jj jj*ii.

For Type I sums of squares, proc glm treats ii*jj ii jj as equivalent to ii*jj because
fitting an ii term or a jj term after an ii*jj term actually contributes nothing.

Although this discussion has focused on the two-way with interaction model, issues of sequential
fitting are pervasive with unbalanced data (including regression). This is not so much a problem as
an opportunity. The extra computer output can save you from the chore of fitting some models. It
never does any harm unless you misinterpret the results.

As discussed in Section 14.1 of the book, there is also a concept of adjusted sums of squares.
In proc glm these are known as Type III sums of squares. In general, adjusted sums of squares
are meant to be sums of squares for fitting terms last. In the additive effects model, the adjusted
sums of squares for each main effect is the sequential sum of squares for that term when the term
is being fitted to the model after the other main effect. However, in the interaction model, most of
the adjusted sums of squares are worthless. The interaction adjusted sum of squares is fine, it is
just the sum of squares for adding the interaction after both of the main effects. However, the sum
of squares for a main effect fitted after an interaction should be zero, not the arbitrary numbers
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reported for main effects as adjusted sums of squares. The reported numbers are arbitrary because
they depend on the choice of side conditions being used by the program to determine estimates.
The side conditions are arbitrary choices, so these adjusted sums of squares are also arbitrary. An
illustration of this phenomenon appears in Subsubsection 14.1.1.1 of this guide.

3.13 ACOVA and interaction

The following models were not discussed in Section 3.9 of the book but rather are discussed in
Chapter 15. They involve a classification variable x1 written as x1 and a measurement variable x2
written as x2 or equivalently as z (to make the notation more similar to the book). Throughout the
section we assume

z=x2; ii = x1; class ii;

The first two of these need to go in the data step of your SAS program.

3.13.1 ACOVA: parallel lines

The ACOVA model is

yi j = µi + γzi j + εi j, i = 1,2, . . . ,a, j = 1, . . . ,Ni.

written in SAS as

model y = ii z / noint;

The a lines associated with the groups have intercepts µi and a common slope γ .
The alternative model

yi j = µ +αi + γzi j + εi j.

is written in SAS as

model y = ii z;

When estimating parameters, the side condition αa = 0 is used by SAS so that µ is the intercept of
the line for the first group, αr is the intercept of the rth group minus the intercept of the last, in other
words, µ +αr is the intercept of the rth group, and again γ is the slope for all of the lines.

Note that this second SAS model is essentially the same form as that used for the two-way
additive effects model in Subsubsection 3.4.2.2 except now one of the predictor variables is a mea-
surement variable and the other is a classification variable.

3.13.2 Interaction: skew lines

We now consider ways of specifying lines for each group that can have different slopes as well as
different intercepts. The simplest model to interpret is

yi j = µi + γizi j + εi j.

In this model µi is the intercept and γi is the slope for the line associated with the i group. The model
in SAS is

model y = ii ii*z / noint;

The version most similar to generalizing the traditional ACOVA model is

yi j = µ +αi + γizi j + εi j

in which the line for the ith group has intercept µ +αi and slope γi. Written in SAS this model is

model y = ii z*ii;
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and uses the side condition αa = 0 for estimation. It does not matter if we write z*ii or ii*z.
Some folks like to specify a “hierarchical” version of the model (which I generally think is pretty

silly but admittedly gives some useful computer output),

yi j = µ +αi +β zi j + γizi j + εi j

written in SAS as
model y = ii z ii*z;

For this model SAS uses αa = 0 = γa. More on hierarchical models in Section 7.

3.14 Interaction in multiple regression

The multiple regression model with p = 2 and continuous predictors x = (x1,x2) has

m(x) = β0 +β1x1 +β2x2

or
yh = β0 +β1xh1 +β2xh2 + εh, h = 1, . . . ,n.

This is an additive model in x1 and x2, cf. Section 9.9 of the book. The SAS model for this
model y = x1 x2;

is essentially the same as that used for the two-way ANOVA additive effects model and the parallel
lines ACOVA model except that now both of the predictor variables are measurement variables.
Moreover, the effects of the two predictors simply add together.

A useful way of incorporating some interaction into the model is to fit

m(x) = β0 +β1x1 +β2x2 +β3x1x2,

that is,
yh = β0 +β1xh1 +β2xh2 +β3xh1xh2 + εh, h = 1, . . . ,n.

This is no longer an additive model in the original variables x1 and x2 (although it is an additive
model in the variables x1, x2, x1x2). The main reason for introducing this model here is to illustrate
that the SAS model has essentially the same structure as the SAS models for two-way ANOVA with
interaction and the ACOVA interaction model with skew lines. The SAS command is
model y = x1 x2 x1*x2;

(This may not work in proc reg.)
With both variables being measurement variables there is yet another option for fitting the model,

x1x2 = x1*x2;

model y = x1 x2 x1x2;

As usual, the arithmetic needs to be done in the data step.

3.15 Hierarchical and nested models

The model

yi jk = µ +αi +η j +(αη)i j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j.

is said to be hierarchical because the model includes not only the interaction terms (αη)i j but also
the lower order “main effect” terms αi and η j as well as the grand mean µ . A model is hierarchical
whenever a model that includes an mth order interaction between some variables also includes all
of the lower order interactions among those variables as well as all the main effects. Thus, if a
model contains (αηγ) terms, it must also include (αη) terms, (αγ) terms, (ηγ) terms, and the
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main effect terms, the αs, ηs, and γs, as well as the grand mean µ . I have been at some pains in
the book to point out that all of these lower order terms are meaningless, so I have little regard
for this concept of a hierarchical model. (The term “hierarchical” takes on alternate meanings in
alternate contexts, e.g., Bayesian statistics.) Some programs, like Minitab, insist that all models
be hierarchical, using a similar concept of hierarchy for measurement variables. Minitab and R
incorporate special operators to simplify defining hierarchical models. (As far as I know) SAS does
not! In SAS the model displayed earlier must be written as
model y = x1 x2 x1*x2

where x1 and x2 are the classification variables that define i and j, respectively.
I should point out that when using the rather artificial (but computationally very convenient) con-

cept of interaction between continuous (measurement) variables employed by all three of Minitab,
R, and SAS, the lower order terms are NOT meaningless.

If you care about hierarchical models, you might care about nested models which are models
that are not quite hierarchical. For example,

yi jk = µ +αi +(αη)i j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j

is said to have the (αη)i j effects nested within the αi effects. Again, fixed αi effects are irrelevant
in this model, so I find it hard to care about this concept of nesting. Nonetheless, SAS has specific
code for defining nested models. With class x1 x2; the model above could be written
model y = x1(x2); ????

which by definition is the same model as
model y = x1 x1*x2; ???

3.16 Higher-order models

This section has not been validated.
When discussing SAS, we will consider “higher order” models to be those that involve p > 2,

although the distinction is probably more common only when the number of classification variables
is greater than 2. The reason we do this is because the methods in SAS for defining higher order
models are pretty much interchangeable regardless of whether the predictors are measurements or
classifications. When used on measurement variables, the SAS commands introduce interaction
similar to Section 3.6 but do not introduce polynomial (power) terms.

For example, the code
model y = (x1 x2 x3)@2;

should fit something!
From the first two ways of writing the code you might be tempted to think that if all the predictors

are measurements the model is

yh =
2

∑
r=0

2

∑
s=0

2

∑
t=0

βrstxr
h1xs

h2xt
h3 + εh, h = 1, . . . ,n. (1)

It is not!? The model is actually

yh = β000+β100xh1+β010xh2+β001xh3+β110xh1xh2+β101xh1xh3+β011xh2xh3+εh, h= 1, . . . ,n.

When all the predictors are classifications with x1 ≡ i, x2 ≡ j, and x3 ≡ k the code means

yi jks = µ +αi +η j + γk +(αη)i j +(αγ)ik +(ηγ) jk + εi jks, s = 1, . . . ,Nhi j.

If only x1 is a measurement variable, it means

y jks = µ +β1x jks1 +η j + γk +β1 jx jks1 +β1kx jks1 +(ηγ) jk + ε jks, s = 1, . . . ,N jk
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If both x1 and x2 are measurement variables, it means

yks = β00 +β10xks1 +β01xks2 + γk +β11xks1xks2 +β10kxks1 +β01kxks2 + ε jks, s = 1, . . . ,Nk

The models
model y = (x1 x2 x3)@3

model y = x1*x2*x3

are also equivalent.
Similarly, we can fit mth order interaction models, where m is a positive integer no greater than

p using, say, for p = 4,
model y = (x1 x2 x3 x4)@m

With p = 4, the all measurement variable model is not

yh =
m

∑
r=0

m

∑
s=0

m

∑
t=0

m

∑
u=0

βrstuxr
h1xs

h2xt
h3xu

h4 + εh, h = 1, . . . ,n.

The actual model for m = 3 and p = 4 has third order interactions and is

yh = yh = β000 +β1000xh1 +β0100xh2 +β0010xh3 +β0001xh4

+β1100xh1xh2 +β1010xh1xh3 +β1001xh1xh4 +β0110xh2xh3 +β0101xh2xh4 +β0011xh3xh4

+β1110xh1xh2xh3 +β1101xh1xh2xh4 +β1011xh1xh3xh4 +β0111xh2xh3xh4 + εh, h = 1, . . . ,n.

The ANOVA model that use all classifications is

yhi jks = µ +αh +ηi + γ j +δk

+(αη)hi +(αγ)h j +(αδ )hk +(ηγδ )i j +(ηδ )ik +(γδ ) jk

+(αηγ)hi j +(αηδ )hik +(αγδ )h jk +(ηγδ )i jk + εhi jks, s = 1, . . . ,Nhi jk.

I will leave it to you to worry about the various kinds of ACOVA models that mix measurements
with classifications.





Chapter 4

Two Samples

There are two ways to specify the two samples of data. You can either have one vector for each
sample, say y1 and y2, or you can have one vector for all the data, say y, but also have an associated
classification variable, say x, that identifies the sample for each observation. To use use a linear
model program to analyze the data, the (x,y) data structure is needed (except for paired compar-
isons).

4.1 Two correlated samples: paired comparisons

You need to know not only what sample an observation is in but also what pair it is in, so the (x,y)
data structure is awkward for these problems. Using the y1 and y2 data structure, the vectors will
have to have the same length and it is just assumed that the ith entry of y1 is paired with the ith entry
of y2. One way to test equality of means is to use

4.1.1 Minitab

Enter the data from tab4-1.dat with variables Pair, y1, and y2. Choose Stat from the top line
and within the menu options choose Basic Statistics. This provides an option for paired t

that allows data to be entered either as two columns of numbers or one column of differences.
You can also handle this as a one sample problem on the differences using a regression program.

let c11 = y1 + 1 - y1

let c12 = y1 - y2

name c11 ’J’ c12 ’d’

GReg ’d’ = J;

NoConstant;

Confidence 95.0;

PContinuous 1;

TPrediction;

TCoef;

TANOVA.

GReg is easier to run from its menus.

4.1.2 SAS

There is probably specialized software available be we can use the following linear model approach.

data Weld;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\tab4-1.dat’;

input Pair y1 y2;

d = y1-y2

J = y1 + 1 - y1
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proc glm data=Weld;

model d = J/ solution noint;

run;

4.2 Two independent samples with equal variances

Both data structures work fine for this problem, but if you have unequal group sizes with the (y1,y2)
structure you might need to fill out the group having a smaller sample size with missing data symbols
to make the data vectors the same length.

4.2.1 Minitab

Enter the data from tab4-2.dat and name the first two columns x and y or enter the data from
tab4-2a.dat with variables Obs, y1, and y2. Choose Stat from the top line and within the menu
options choose Basic Statistics. This provides an option for 2 Sample t tests. To get an equal
variances analysis you need to check the appropriate box!

Alternatively, you could use the more general linear modeling methods to analyze the data.
Read tab4-2.dat with variables x and y. Choose Stat from the top line and within the menu
options choose ANOVA. This provides an option for fitting glm (general linear model). Specify y as
the dependent variable and x as the model. In fact, if all you care about is the t test, you could use
the regression menus rather than ANOVA’s glm.

For two samples, x should be a categorical variable with only two categories. Use
glm y = x;

Brief 3.

The subcommand Brief 3 is necessary to get a table of coefficients. To specify brief 3 in the
glm menu, go to the Results submenu and check the last circle under Display of Results.
Alternatively, use
GReg y = x;

Covariate x;

TCoef;

TANOVA.

In either case, the first group mean is the sum of the two coefficients and second group mean is
the difference in the two coefficients. The t test for the second coefficient is the test for equality of
means.

4.2.2 SAS

Before addressing specialized SAS software, we consider the linear models approach.
data pts;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\tab4-2.dat’;

input x y ;

proc glm;

class x;

model y = x / solution noint;

proc glm;

class x;

model y = x / solution;

run;

The following code does nothing more than read in the two data structures. I expect in the future
to figure out how to use specialized software from SAS on these.



4.3 TWO INDEPENDENT SAMPLES WITH UNEQUAL VARIANCES 37

data pts;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\tab4-2.dat’;

input x y ;

proc print;

run;

data pts;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\tab4-2a.dat’;

input Obs y1 y2 ;

proc print;

run;

4.3 Two independent samples with unequal variances

Assuming unequal variances, the linear models approach does not apply (unless you know a con-
stant of proportionality between the variances – are rare event). Specialized software is required.
As discussed in the book, testing equality of means when the variances are unequal is a far less
interesting thing to do than testing equality of means when the variances are equal.

4.3.1 Minitab

Enter the data from tab4-3.dat and name the first three columns Index, y1, and y2. Choose Stat
from the top line and within the menu options choose Basic Statistics. This provides options
for 2 Sample t tests. The default is unequal variances.

4.3.2 SAS

I am not familiar with the specialized software needed. The following code just reads in the data.

data turt;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\tab4-3.dat’;

input Index y1 y2;

proc print;

run;

4.4 Testing equality of the variances

4.4.1 Minitab

Enter the data from tab4-3.dat with variables Index, y1, and y2. Choose Stat from the top line
and within the menu options choose Basic Statistics. This provides an options for testing two
variances: 2 Variances.

The only thing a computer is needed for is to get the F percentiles reported in Example 4.4.1 of
the book. The commands are brief

invcdf .995;

f 23 23.

invcdf .005;

f 23 23.

The menu approach is actually easier because you do not have to remember syntax, even though
it takes much longer to describe.

Calc

Probability Distributions

F
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Once you are in the F menu, check the circle for Inverse cumulative probability. Enter the
numbers (23 and 23) into the dialog boxes for Numerator degrees of freedom Denominator

degrees of freedom. Check the circle for Input Constant and enter .995 (or .005) into the
dialog box.

4.4.2 SAS

I am not familiar with the specialized software required.



Chapter 5

Contingency Tables

5.1 One binomial sample

5.1.1 Minitab

Choose Stat from the top line and within the menu options choose Basic Statistics. This
provides an option for 1 Proportion.

5.1.2 SAS

5.2 Two independent binomial samples

5.2.1 Minitab

Choose Stat from the top line and within the menu options choose Basic Statistics. This
provides an option for 2 Proportions.

5.2.2 SAS

5.3 One multinomial sample

5.4 Two multinomial samples

5.4.1 Minitab

Check out

Stat

Tables

Otherwise, Minitab commands for generating the analysis of Swedish birth rates are given be-
low. Column c1 contains the observations, the Oi js. Column c2 contains indices from 1 to 12 indi-
cating the month of each observation and c3 contains indices for the two sexes. The subcommand
‘colpercents’ provides the proportions discussed in the analysis. The subcommand ‘chisquare 3’
gives the observations, estimated expected values, and Pearson residuals along with the Pearson test
statistic.

read ’tab5-3a.dat’ c1 c2 c3

table c2 c3;

frequencies c1;

colpercents;

chisquare 3.

5.4.2 SAS

options ps=60 ls=80 nodate;

data tab8-3;
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infile ’tab5-3a.dat’;

input O M S;

proc genmod data=tab8-3;

class M S;

model O = M S / link=log obstats dist=poisson;

run;

5.5 Several independent multinomial samples

5.5.1 Minitab

Check out
Stat

Tables

5.5.2 SAS



Chapter 6

Simple Linear Regression

6.1 An example

6.1.1 Minitab

We can do this in glm or GReg as illustrated in Chapter 3 but this code is for Regress.
Commands given below generate the table of coefficients and the analysis of variance table.

Column c3 contains the test scores y and column c2 contains the composite socioeconomic statuses
x. The primary command is to regress c3 on 1 predictor variable, c2. This same command allows
for more predictor variables and we will use that capability in subsequent chapters on regression.
In our example, the subcommand ‘predict −16.04’ was used; this subcommand gives the estimate
of the line (prediction) when x = −16.04, the standard error for the estimate of the line, the 95%
confidence interval for the value of the line at x = −16.04, and the 95% prediction interval when
x =−16.04.

name c2 ’test’ c3 ’socio’

regress c3 1 c2;

predict -16.04.

Below are the complete commands (generated by the menus) for reading in the data and getting
the table of coefficients, ANOVA table, a prediction, and the primary diagnostic statistics defined in
Chapters 7 and 9.

WOpen "C:\E-drive\Books\ANREG2\NewData\TAB6-1.DAT";

FType;

Text;

VNames;

None;

DecSep;

Period;

TDelimiter;

DoubleQuote.

Name c4 "RESI1" c5 "SRES1" c6 "TRES1" c7 "HI1" c8 "COOK1"

Regress ’y’ 1 ’x’;

Residuals ’RESI1’;

SResiduals ’SRES1’;

Tresiduals ’TRES1’;

Hi ’HI1’;

Cookd ’COOK1’;

GFourpack;

RType 1;

Constant;

Predict -16.04;

Brief 2.
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Columns 4, 5, 6, 7 and 8 contain the residuals ε̂i, the standardized residuals ri, the standardized
deleted residuals ti, the leverages hi (or mii)m and Cook’s distances Ci.

6.1.1.1 Regression through the origin

The Minitab commands for fitting a regression through the origin are given below.

name c1 ’test’ c2 ’socio’

regress c1 1 c2;

noconstant.

The subcommand noconstant can be replaced by nocon.

6.1.2 SAS

SAS has at least three different procedures that will do this. The following does NOT display proc

reg.
options ps=60 ls=80 nodate;

data coleman;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-1.dat’;

input School x y ;

print coleman;

proc glm data=coleman;

model y = x;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc plot;

plot ehat*yhat/ vpos=16 hpos=32;

proc rank data=new normal=blom;

var sr;

ranks nscores;

proc plot;

plot sr*nscores/vpos=16 hpos=32;

run;

proc genmod data=coleman;

model y = x/link=identity dist=normal obstats;

run;

Regression through the origin
options ps=60 ls=80 nodate;

data coleman;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-1.dat’;

input School x y ;

proc glm data=coleman;

model y = x/ noint;

6.6 An alternative model

6.6.1 Minitab

6.6.2 SAS

6.7 Correlation

6.7.1 Minitab

corr c2 c3}
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6.7.2 SAS

6.8 Two sample problems

6.8.1 Minitab

6.8.2 SAS

6.9 A multiple regression

6.9.1 Minitab

This is easy. Read in tab6-4.dat with variables input School x1 x2 x3 x4 x5 y. See Sub-
section 3.3.3 for a general description. If you want to use regress,you need to specify the number of
predictor variables:
Regress ’y’ 5 ’x1’ x2 x3 x4 x5

As far as I can tell the single quotes do not seem to matter (outside of the name command). In fact,
I cannot even figure out when Minitab uses them and when it doesn’t.

6.9.2 SAS

options ps=60 ls=80 nodate;

data coleman;

infile ’tab6-4.dat’;

input School x1 x2 x3 x4 x5 y ;

proc print;

run;

proc glm data=coleman;

model y = x1 x2 x3 x4 x5;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc print data=new;

proc plot;

plot sr*yhat / vpos=16 hpos=32;

proc rank data=new normal=blom;

var sr;

ranks nscores;

proc plot;

plot sr*nscores/vpos=16 hpos=32;

run;

proc genmod data=coleman;

model y = x1 x2 x3 x4 x5/link=identity dist=normal obstats;

proc print data=obstats;

run;





Chapter 7

Model Checking

7.1 Recognizing Randomness

7.1.1 Minitab

The plots and sample correlations similar to these can be obtained with the Minitab commands given
below.

random 25 c10-c15;

normal 0 1.

plot c11*c15

plot c12*c15

plot c13*c15

plot c14*c15

plot c11*c12

plot c13*c12

plot c14*c12

plot c14*c13

note OBTAIN SAMPLE CORRELATION MATRIX

corr c11-c15

7.1.2 SAS

7.2 Checking assumptions: residual analysis

7.2.1 Minitab

The beginning of Chapter 3 discusses general commands for glm and greg including storage of
diagnostic statistics. It is very easy to plot the stored residuals etc. using the Graph menu but it is
even easier to ask for residual plots on the various menus like glm, greg, and regress.

The following are older commands based on regress. We now illustrate the Minitab commands
necessary for obtaining the leverages and standardized deleted residuals for the Coleman Report
data. Both sets of values are obtained by using subcommands of the regress command. The ‘hi’
subcommand gives leverages, while the ‘tresid’ subcommand gives standardized deleted residuals.
The last command gives the index plot for leverages.

names c1 ’test’ c2 ’socio’

regress c1 1 c2;

hi c13;

tresid c14.

tsplot c13

We now illustrate the Minitab commands necessary for the analysis in Example 7.2.1.

names c1 ’test’ c2 ’socio’

regress c1 1 c2;
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sresid c11;

fits c12.

names c11 ’r’ c12 ’yhat’

note PLOT STD. RESIDS AGAINST PRED. VALUES

plot c11*c12

note PLOT STD. RESIDS AGAINST x

plot c11*c2

note COMPUTE NORMAL SCORES (RANKITS) FOR THE

note STANDARDIZED RESIDUALS

nscores c11 c10

note MAKE NORMAL PLOT

plot c11*c10

note COMPUTE W’ STATISTIC

corr c11 c10

note CORR PRINTS OUT A NUMBER LIKE 0.978

let k1=.978**2

print k1

7.2.2 SAS

This is just the standard program from Chapter 3 applied to the data of Section 6.1.
options ps=60 ls=80 nodate;

data coleman;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\tab6-1.dat’;

input School x y ;

print coleman;

proc glm data=coleman;

model y = x;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc plot;

plot ehat*yhat sr*R/ vpos=16 hpos=32;

proc rank data=new normal=blom;

var sr;

ranks nscores;

proc plot;

plot sr*nscores/vpos=16 hpos=32;

run;

proc genmod data=coleman;

model y = x/link=identity dist=normal obstats;

run;

7.3 Transformations

We talked about basic transformations in Chapters 1 and 2. We focus on Box-Cox.

7.3.1 Minitab

Check out the Box-Cox menu in GReg. Glm doesn’t really do it. But you can always brute force it
as follows.

Below are given Minitab commands for performing the Box–Cox transformations and the con-
structed variable test. To perform multiple regression using the ‘regress’ command, you need to
specify the number of predictor variables, in this case 2.
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name c1 ’temp’ c2 ’press’

note CONSTRUCT THE GEOMETRIC MEAN

let c9 = loge(c2)

mean c9 k1

MEAN = 2.9804

let k2 = expo(k1)

note PRINT THE GEOMETRIC MEAN

print k2

K2 19.6960

note CONSTRUCT THE z VARIABLES

note FOR DIFFERENT LAMBDAS

let c20=(c2**.5-1)/(0.5*k2**(.5-1))

let c21=(c2**.25-1)/(.25*k2**(.25-1))

let c22=(c2**.333333-1)/(.333333*k2**(.333333-1))

let c23=loge(c2)*k2

let c24=(c2**(-.5) - 1)/(-.5*k2**(-1.5))

let c25=(c2**(-.25) -1)/(-.25*k2**(-1.25))

note REGRESS z FOR LAMBDA = 0.5 ON c1

regress c20 1 c1

note 4 MORE REGRESSIONS ARE NECESSARY

note

note CONSTRUCT THE VARIABLE w

let c3=c2*(c9-k1-1)

note PERFORM THE MULTIPLE REGRESSION ON x AND THE

note CONSTRUCTED VARIABLE w

regress c2 2 c1 c3

7.3.2 SAS

This program is NOT doing Box-Cox.
options ps=60 ls=80;

data hook;

infile ’tab7-1.dat’;

input Case Temp Pres;

proc print;

run;

proc glm data=hook;

model Pres = Temp/ solution;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc print data=new;

proc plot;

plot sr*yhat/ vpos=16 hpos=32;

run;

proc rank data=new normal=blom;

var sr;

ranks nscores;

proc plot;

plot sr*nscores/vpos=16 hpos=32;

run;





Chapter 8

Lack of Fit and Nonparametric Regression

8.1 Polynomial regression

8.1.1 Minitab

The cubic model in glm is
glm y = x x*x x*x*x;

covar x3.

The quartic model in greg is
greg y = x x*x x*x*x x*x*x*x;

tcoef;

tanova.

Specialized program for fitting polynomials up to degree 3 is
Fitline y x;

Poly 2.

In what follows we illustrate regress commands for fitting quadratic, cubic, and quartic mod-
els. These include the prediction subcommand used with the quadratic model for x = 205. Note that
the prediction subcommand requires us to enter both the value of x and the value of x2 when using
the quadratic model.

names c1 ’y’ c2 ’x’

note FIT QUADRATIC MODEL

let c22=c2**2

regress c2 2 c2 c22;

pred 205 42025.

note FIT CUBIC MODEL

let c23=c2**3

regress c1 3 c2 c22 c23

note FIT QUARTIC MODEL

let c24=c2**4

regress c1 4 c2 c22-c24

8.1.2 SAS

options ps=60 ls=80;

data hook;

infile ’tab7-1.dat’;

input Case Temp Pres;

proc print;

run;

proc glm data=hook;

model Pres = Temp Temp*Temp/ solution;
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output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc print data=new;

proc plot;

plot sr*yhat/ vpos=16 hpos=32;

run;

proc rank data=new normal=blom;

var sr;

ranks nscores;

proc plot;

plot sr*nscores/vpos=16 hpos=32;

run;

8.2 Polynomial regression and leverages

There are no new computing skills involved in this section.

8.3 Other basis functions

8.3.1 SAS

SINES AND COSINES

options ps=60 ls=80;

data hook;

infile ’tab7-1.dat’;

input Case Temp Pres;

rg=30.5;

mn=180.5;

x=(Temp-mn)/rg;

c1=cos(pi*1*x);

c2=cos(pi*2*x);

s1=sin(pi*1*x);

s2=sin(pi*2*x);

run;

proc glm data=hook;

model Pres = Temp c1 s1 c2 s2/ solution;

run;

COSINES

options ps=60 ls=80;

data hook;

infile ’tab7-5.dat’;

input Temp Pres;

rg=30.5;

mn=180.5;

x=(Temp-mn)/rg;

c1=cos(pi*1*x);

c2=cos(pi*2*x);

c3=cos(pi*3*x);

c4=cos(pi*4*x);

run;
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proc glm data=hook;

model Pres = Temp c1 c2 c3 c4/solution;

run;

HAAR WAVELETS Laura Kapitula from Grand Valley State University contributed the fol-
lowing (because I did not know how to do it).

Laura writes, “ I used arrays below, but you do not have to use arrays, I also kept in the equivalent
code commented out. Note that SGPLOT is an ODS graphics procedure and is available with BASE
SAS and as part of SAS Univ. edition if anyone uses that.”

/*Indicator Variables in SAS*/

data hook;

set hook;

rg=30.5;

mn=180.5;

x=(Temp-mn)/rg;

array h(4);

do i=1 to 4;

h(i)=((i-1)/4 <=x <i/4);

end;

/* above is equivalent to*/

/*

h1=(0<=x<.25);

h2=(.25<=x<.5);

h3=(.5<=x<.75);

h4=(x>=.75);

*/

run;

ods graphics;

proc glm plots=all;

model Pres = Temp h1 h2 h3 ;

output out=fits predicted=pred residual=resid;

run;

proc sgplot data=fits;

scatter x=temp y=pres;

series x=temp y=pred;

label pres= "Pressure" pred="Fit from Haar Wavelet"

x="Temperature";

run;

proc sgplot data=fits;

scatter x=temp y=resid;

label pres= "Pressure" pred="Fit from Haar Wavelet"

x="Temperature";

run;
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8.4 Partitioning methods

8.4.1 Minitab

We give three different sets of Minitab commands that provide the last of our analyses. In the text
we discussed the output from fitting the regression command. Alternatively, one can fit this model
using a general linear model procedure like Minitab’s glm.

regress Pres 3 x h x1

glm c2 = h h*x;

covar x.

glm Pres = h x h*x;

covar x.

Note that in the glm commands, there does not exist a variable called ‘h*x’. This is a term that
we are telling glm to construct out of two variables that do exist. The only difference between the
two “glm” commands, is that when the model does not specify an x term, glm fits x before fitting
h. The table of coefficients provided by the two glm commands are the same but different from that
provided by regress. The glm command by default only gives results for the intercept and terms that
involve the covariate x.

8.4.2 SAS

Have an alternate data file with the partitioning variable.
options ps=60 ls=80 nodate;

data lsq;

infile ’tab7-1a.dat’;

input Case h x y ;

proc print data=lsq;

var h x y;

proc glm data=lsq;

class h;

model y = x h h*x ;

proc genmod data=lsq;

class h;

model y = h x h*x/ link=id dist=normal;

run;

The following seems to be R code that needs to be straightened out for SAS. The first command
is just an R logical command to create the variable h that was read in from tab7-5a.dat.
H1=1*as.logical(Temp>=191)

H2=1-H1

TH1=Temp*H1

TH2=Temp*H2

8.4.3 Utt’s Method



Chapter 9

Multiple Regression and Diagnostics

9.1 Example

9.1.1 Minitab

Of course you can also do this in glm and greg.
To obtain the statistics in this section, use the Minitab command ‘regress.’ The form of the

command has regress, the y variable, the number of predictors (excluding the intercept), and a list
of the predictor variables.

names c1 ’x1’ c2 ’x2’ c3 ’x3’ c4 ’x4’ c5 ’x5’ c6 ’y’

regress c6 on 5 c1-c5

Below are given the Minitab commands for obtaining the diagnostics. On the ‘regress’ line,
5 predictors are specified, so the next 5 columns are taken to contain the predictor variables. The
standardized residuals are placed in the next column listed and the predicted values are placed in
the column listed after that. Thus the standardized residuals are in c21 and the predicted values are
in c22. The subcommands ‘tresid’, ‘hi’, and ‘cookd’ indicate the standardized deleted residuals,
leverages, and Cook distances, respectively. The t statistics are in c23. The leverages are in c24. The
Cook distances are in c25.

regress c8 on 5 c2-c6 c21 c22;

tresid c23;

hi c24;

cookd c25.

To delete a case in Minitab, just replace the dependent variable value in the worksheet with an
asterisk.

9.1.2 SAS

options ps=60 ls=80 nodate;

data coleman;

infile ’tab6-4.dat’;

input School x1 x2 x3 x4 x5 y ;

proc print;

run;

proc glm data=coleman;

model y = x1 x2 x3 x4 x5;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc print data=new;

proc plot;

plot sr*yhat / vpos=16 hpos=32;

proc rank data=new normal=blom;

var sr;
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ranks nscores;

proc plot;

plot sr*nscores/vpos=16 hpos=32;

run;

or
proc genmod data=coleman;

model y = x1 x2 x3 x4 x5/link=identity dist=normal obstats;

proc print data=obstats;

run;

9.2 Predictions

9.2.1 Minitab

To obtain the predictions in this section, use the Minitab subcommand ‘predict.’

names c1 ’x1’ c2 ’x2’ c3 ’x3’ c4 ’x4’ c5 ’x5’ c6 ’y’

regress c6 on 5 c1-c5;

predict 2.07 9.99 -16.04 21.6 5.17 .

9.2.2 SAS

This is still R
#Predictions

new = data.frame(x1=2.07, x2=9.99,x3=-16.04,x4= 21.6, x5=5.17)

predict(lm(y~x1+x2+x3+x4+x5),new,se.fit=T,interval="confidence")

predict(lm(y~x1+x2+x3+x4+x5),new,interval="prediction")

If response is a matrix a linear model is fitted separately by least-squares to each column of the
matrix.



Chapter 10

Diagnostics and Variable Selection

Probably do these things in proc reg

10.1 Diagnostics

We did this in the last chapter.

10.2 Best subset model selection

10.2.1 Minitab

You can do this through the Regression menu.
Below are given Minitab commands for obtaining Table 10.8.

breg c8 on c2-c6;

best 2.

10.2.2 SAS

options ps=60 ls=80 nodate;

data coleman;

infile ’tab6-4.dat’;

input School x1 x2 x3 x4 x5 y ;

proc print;

run;

proc reg data=coleman;

model y = x1 x2 x3 x4 x5/selection=rsquare best=2;

proc reg data=coleman;

model y = x1 x2 x3 x4 x5/selection=Cp best=2;

proc reg data=coleman;

model y = x1 x2 x3 x4 x5/selection=adjrsq;

proc reg data=coleman;

model y = x1 x2 x3 x4 x5/selection= backward;

proc reg data=coleman;

model y = x1 x2 x3 x4 x5/selection=forward;

proc reg data=coleman;

model y = x1 x2 x3 x4 x5/selection=stepwise;

run;
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10.3 Stepwise model selection

10.3.1 Minitab

You can do this through the Regression menu.

Minitab’s ‘stepwise’ command provides stepwise variable selection with a default in which
variables are only added if the greatest F statistic is greater than 4 and only removed if the smallest
F statistic is less than 4. There are options for forcing variables out of the model, forcing variables
into the model, specifying an initial model, and setting the comparison values for the F statistics.
Backwards elimination is obtained by entering all the variables into the initial model and resetting
the F value for entering a variable to a very large number, say, 100000. Forward selection is obtained
by setting the F value for removing a variable to 0. The commands are given below.

names c2 ’x1’ c3 ’x2’ c4 ’x3’ c5 ’x4’ c6 ’x5’ c8 ’y’

note STEPWISE: starting with full model

stepwise c8 on c2-c6;

enter c2-c6.

note STEPWISE: starting with intercept model

stepwise c8 on c2-c6

note BACKWARDS ELIMINATION

stepwise c8 on c2-c6;

enter c2-c6;

fenter = 100000.

note FORWARD SELECTION

stepwise c8 on c2-c6;

fremove = 0.

10.3.2 SAS

options ps=60 ls=80 nodate;

data coleman;

infile ’tab6-4.dat’;

input School x1 x2 x3 x4 x5 y ;

proc print;

run;

proc reg data=coleman;

model y = x1 x2 x3 x4 x5/selection= backward sls=.05;

proc reg data=coleman;

model y = x1 x2 x3 x4 x5/selection=forward sle=.05;

proc reg data=coleman;

model y = x1 x2 x3 x4 x5/selection=stepwise sle=.05 sls=.05;

run;

sls is the significance level needed to stay in the model sle is the significance level needed to enter
the model.

10.4 Model Selection and Case Deletion

Nothing new here.
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10.5 LASSO

10.5.1 Minitab

Minitab has a “predictive modeler” add-on that can be purchased to do LASSO as well as some
other penalized (regularized) regressions, splines, CART, random forests,

10.5.2 SAS

Use Proc GLMSELECT. “GLM” is a reference to “general linear model” not to “generalized linear
model.”

options ps=60 ls=80 nodate;

data coleman;

infile ’tab6-4.dat’;

input School x1 x2 x3 x4 x5 y ;

proc print;

run;

proc glmselect data=coleman;

model y = x1 x2 x3 x4 x5/selection=lasso;

run;

This procedure allows other selection methods (but not best subset selection) and some stopping
rules, not all of which we discussed.





Chapter 11

Multiple Regression: Matrix Formulation

Introduce reading matrices and simple computations.

11.3 Least squares estimation of regression parameters

11.3.1 Minitab

read m1

read m11

let m2=tran(m1)

let m3= prod m2 m1

let m4 = inverse(m3)

let m5= prod m4 m2

let m6=prod m5 m11

print m6

11.3.2 SAS

Figuring this out is one of my lowest priorities.

11.5 Residuals, standardized residuals, and leverage

11.6 Principal Component Regression

11.6.1 Minitab

You can do this through the Regression menu. This is an up to date version generated by the
menus.

PCA ’x1’ ’x2’ ’x3’ ’x4’ ’x5’;

NComponents 5;

Coefficients c17;

Scores c11-c15.

Regress ’y’ 5 C11 C12 C13 C14 C15 ;

Constant;

Brief 2.

This is an older version.
Minitab commands for the principal components regression analysis are given below. The basic

command is ‘pca.’ The ‘scores’ subcommand places the principal component variables into columns
c12 through c16. The ‘coef’ subcommand places the eigenvectors into columns c22 through c26. If
one wishes to define principal components using the covariances rather than the correlations, simply
include a pca subcommand with the word ‘covariance.’
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pca c2-c6;

scores c12-c16;

coef c22-c26.

regress c8 on 5 c12-c16 c17 c18

plot c17 c18



Chapter 12

One-Way ANOVA

12.1 Example

12.1.1 Minitab

Besides glm and greg, Minitab has specialized programs for fitting one-way ANOVA:

Oneway y ii

and another program AOVOneway for when the data consist of a columns of numbers, one for each
group.

12.1.2 SAS

SAS code:

options ps=60 ls=80 nodate;

data anova;

infile ’tab12-1.dat’;

input A R;

LA = log(A);

proc glm data=anova;

class R ;

model LA = R / solution noint;

means R / lsd alpha=.01 ;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc plot;

plot ehat*yhat sr*R/ vpos=16 hpos=32;

proc rank data=new normal=blom;

var sr;

ranks nscores;

proc plot;

plot sr*nscores/vpos=16 hpos=32;

run;

proc genmod data=anova;

class R ;

model LA = R / noint;

run;
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12.2 Theory

12.3 Regression analysis of ANOVA data

12.4 Modeling contrasts

12.5 Polynomial regression and one-way ANOVA

12.5.1 Minitab

12.5.2 SAS

options ps=60 ls=80;

data asi;

infile ’tab12-9.dat’;

input x y;

proc print;

run;

proc glm data=Name;

class x

model y = x / solution noint;

run;

proc glm data=Name;

model y = x / solution noint;

run;

proc glm data=Name;

model y = x x*x x*x*x x*x*x*x x*x*x*x*x / solution noint;

run;

12.6 Weighted Regression

12.6.1 Minitab

Options menu in glm or greg.
To get the weighted regression from Minitab, suppose that c1 contains the plate lengths, c2

contains the sample sizes, and c3 contains the means. The commands are as follows:

regress c3 on 1 c1;

weights c2.

A complete set of commands for generating an analysis such as this are given for the next example.
The Minitab commands for this analysis are given below. To obtain pure error and lack of fit

from the full data one fits both the simple linear regression and the one-way ANOVA. The ages from
Table 7.14 are in c1 and the costs are in c2.

regress c2 on 1 c1

note THE AGES IN c1 ARE NOT INTEGERS, SO WE

note MULTIPLY THEM BY TWO TO MAKE INTEGER

note GROUP LABELS FOR THE ONE-WAY

let c3=2*c1

oneway c2 c3

note PUT THE MEANS FROM THE ONE-WAY INTO c6, THE

note AGES INTO c7, AND THE SAMPLE SIZES INTO c8.

set c6

172.5 664.333333 633 900.3333333 1202 987 1068.5

end

set c7
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.5 1 4 4.5 5 5.5 6

end

set c8

2 3 3 3 3 1 2

end

note DO THE WEIGHTED REGRESSION

regress c6 on 1 c7;

weight c8.

12.6.2 SAS

Not done
options ps=60 ls=80;

data Name;

infile ’filename’;

input y x1 x2 x3;

proc print;

run;

proc glm data=Name;

class x1

model y = x1 x2 x3/ solution noint;

run;





Chapter 13

Multiple Comparisons

13.0.1 Minitab

Check out Comparisons menu in glm. GReg doesn’t really do it.
Minitab will do Tukey on unbalanced anova - no idea why the method would be reasonable.
Minitab can be used to obtain the F and t percentage points needed for Bonferroni’s method. In

this section we have used t(0.99881,39), t(0.9997,39), and F(0.9916̄,1,39). To obtain these, use
Minitab’s inverse cumulative distribution function command.

invcd \! f .99881;

t 39.

invcd \! f .9997;

t 39.

invcd \! f .9916666;

f 1 39.

13.0.2 SAS

Need to examine the means line within proc glm. I plan to google it when I have time. This is
clearly set up to do LSD and other options should be available.
options ps=60 ls=80 nodate;

data anova;

infile ’tab6-1.dat’;

input S LAB ;

LS = log(S);

proc glm data=anova;

class LAB;

model LS = LAB;

means LAB / lsd alpha=.01 lines;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=r;

proc plot;

plot ehat*yhat r*LAB / vpos=16 hpos=32;

proc rank data=new normal=blom;

var r;

ranks nscores;

proc plot;

plot r*nscores/vpos=16 hpos=32;

run;
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Chapter 14

Two-Way ANOVA

14.1 Unbalanced two-way ANOVA

Minitab commands

The rat data are contained in Table 14.1. An appropriate data file might look like the first four
columns of Table 14.4 and we use C1, C2, C3, and C4 to indicate those columns. Below are Minitab
commands for the initial analysis of variance and the ANOVA tables in Table 14.1.

names c1 ’Index" c2 ’Litters’ c3 ’Mothers’ c4 ’Weight’

glm c4 = c2|c3;

fits c5;

sresid c6;

cookd c7;

hi c8;

tresid c9.

glm c4 = c3|c2;

In the ‘glm’ command, c2|c3 could be replaced by c2 c3 c2∗ c3. The c2 and c3 terms indicate main
effects for Litters and Mothers, respectively. Litter by Mother interaction is indicated by c2∗ c3.

Minitab’s glm command reports both sequential and adjusted sums of squares for each effect
and by default performs tests with the adjusted sums of squares. This should be changed in the
“Options” menu, especially when fitting interaction. The adjusted tests for main effects in models
that contain interaction are just silly. Adjusted tests are for fitting a term last, and the main effects add
nothing to a model that already contains the “interaction” parameters. The reported tests depend on
the peccadillos of the programming. We have reported and analyzed the sequential sums of squares.

To delete the outlier in Minitab, just replace the 68.0 for case 12 with an asterisk (∗) and repeat
the commands given above.

14.1.0.1 Adjusted sums of squares

I have often stated that in an interaction model, adjusted sums of squares for main effects are worth-
less. We have earlier discussed that GReg allows two different sets of side conditions when fitting
ANOVA models. Below I have fitted the rat data using both sets of side conditions. Note that se-
quential sums of squares all agree and that all four of the interaction sum of squares are the same
(sequential vs adjusted and two different sets of side conditions).

This is GReg’s default set of side condtions (and glm’s only side conditions).

GReg ’Weight’ = Mother| Litter;

Categorical ’Mother’ ’Litter’;

Coding -1;

TCoef;

TANOVA.

These side conditions give this ANOVA table.
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Analysis of Variance

Source DF Seq SS Adj SS Adj MS F P

Regression 15 1659.31 1659.31 110.621 2.03945 0.033327

Mother 3 771.61 671.74 223.913 4.12815 0.011416

Litter 3 63.63 27.66 9.219 0.16996 0.916118

Mother*Litter 9 824.07 824.07 91.564 1.68811 0.120053

Error 45 2440.82 2440.82 54.240

Total 60 4100.13

The other side conditions are used below
GReg ’Weight’ = Mother| Litter;

Categorical ’Mother’ ’Litter’;

Coding 1;

TCoef;

TANOVA.

They give this ANOVA table
Analysis of Variance

Source DF Seq SS Adj SS Adj MS F P

Regression 15 1659.31 1659.31 110.621 2.03945 0.033327

Mother 3 771.61 582.25 194.083 3.57821 0.020993

Litter 3 63.63 591.69 197.232 3.63625 0.019675

Mother*Litter 9 824.07 824.07 91.564 1.68811 0.120053

Error 45 2440.82 2440.82 54.240

Total 60 4100.13

The adjusted sums of squares for Mother and Litter are completely different! In truth, all
four of those numbers should be 0 because main effects never add any explanatory power when
fitted after an interaction term that involves them.

14.1.1 SAS

options ps=60 ls=80 nodate;

data anova;

infile ’tab14-1.dat’;

length Litter $1 Mother $1 ;

input Litter Mother Weight;

proc print;

run;

proc glm data=anova;

class Litter Mother ;

model Weight = Litter Mother Litter*Mother / solution;

means Litter / lsd alpha=.01 ;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc print data=new;

proc plot;

plot ehat*yhat sr*Litter/ vpos=16 hpos=32;

run;

proc rank data=new normal=blom;

var sr;

ranks nscores;

proc plot;

plot sr*nscores/vpos=16 hpos=32;

run;
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proc glm data=anova;

class Litter Mother ;

model Weight = Litter Mother Mother*Litter / solution;

proc glm data=anova;

class Litter Mother ;

model Weight = Mother Litter Litter*Mother / solution;

proc glm data=anova;

class Litter Mother ;

model Weight = Litter*Mother Litter Mother / solution;

run;

had to modify the data file with blank spaces to get it to read correctly.

14.2 Modeling contrasts

14.2.1 Minitab

14.2.2 SAS

14.3 Regression modeling

14.3.1 Minitab

14.3.2 SAS

14.4 Homologous factors

14.4.1 Minitab

14.4.2 SAS

Not done!!! Need to specify correct models.

options ps=60 ls=80 nodate;

data anova;

infile ’tab14-1.dat’;

length Litter $1 Mother $1 ;

input Litter Mother Weight;

proc print;

run;

proc glm data=anova;

class Litter Mother ;

model Weight = Litter Mother Litter*Mother / solution;

run;





Chapter 15

ACOVA and Interactions

15.1 One covariate example

Minitab commands

The following code looks out of date. I do not see ancova in the Minitab 16 menus.
The following Minitab commands were used to generate the analysis of these data. The means

given by the ‘ancova’ subcommand ‘means’ are the adjusted treatment means.

names c1 ’body’ c2 ’heart’ c3 ’sex’

note Fit model (\thesection.1).

oneway c2 c3

note Fit model (\thesection.2).

ancova c2 = c3;

covar c1;

resid c10;

fits c11;

means c3.

plot c10 c11

plot c10 c3

note Split the data into females and males and

note perform two regressions to fit model (\thesection.5).

copy c1 c2 to c11 c12;

use c3=1.

regress c12 on 1 c11

copy c1 c2 to c21 c22;

use c3=2.

regress c22 on 1 c21

15.1.1 SAS

options ps=60 ls=80 nodate;

data acova;

infile ’tab15-1.dat’;

input B H S;

proc glm data=acova;

class S ;

model H = B S;

lsmeans S;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=r;

proc plot;

plot ehat*yhat r*S r*B / vpos=16 hpos=32;

proc rank data=new normal=blom;
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var r;

ranks nscores;

proc plot;

plot r*nscores/vpos=16 hpos=32;

proc genmod data=acova;

class S;

model H = S B/ link=id dist=normal ;

proc glm data=acova;

class S ;

model H = S S*B;

lsmeans S ;

proc genmod data=acova;

class S;

model H = S S*B/ link=id dist=normal noint;

run;

15.2 Regression modeling

15.2.1 Minitab

15.2.2 SAS

15.3 ACOVA and two-way ANOVA

15.3.1 Minitab

15.3.2 SAS

15.4 Near replicate lack-of-fit tests

15.4.1 Minitab

15.4.2 SAS

15.5

15.5.1 Minitab

15.5.2 SAS



Chapter 16

Multifactor Structures

All of the computational issues can be illustrated from Section 1 alone.

16.1 Unbalanced three-factor analysis of variance

16.1.1 Minitab

Unlike R and SAS, Minitab requires that models be hierarchical. A B A*B is equivalent to A|B but
the model A*B is not allowed unless preceded by its individual terms.

A|XA|X2 tells Minitab to fit A twice.

GLM ’Y’ = A|X X2 A*X2;

Covariates ’X’ ’X2’;

Brief 2 .

16.1.2 SAS

options ps=60 ls=80 nodate;

data anova;

infile ’tab16-13.dat’;

input y a b c;

z=b;

proc glm data=anova;

class a b c ;

model y = a*b*c /solution;

run;

proc glm data=anova;

class a b c ;

model y = a b c a*b a*c b*c a*b*c /solution;

run;

proc glm data=anova;

class a b c ;

model y = a*b + c/noint solution;

means a*b c/ bon;

run;

prog genmod data=anova;

class a b c ;

model y = c a a*z a*z*z / link=identity dist=normal obstats;

run;

prog data=anova;

class a b c ;

model y = c a a*z / solution noint;

run;
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Table 16.1: Moisture data, indices, and predictors.

A B C X X2 A2 A B C X X2 A2
y i j k x x2 y i j k x x2

8 1 1 1 1 1 1 11 1 2 2 2 4 1
17 1 2 1 2 4 1 16 1 3 2 3 9 1
22 1 3 1 3 9 1 3 2 1 2 1 1 2
7 2 1 1 1 1 2 17 2 2 2 2 4 2

26 2 2 1 2 4 2 32 2 3 2 3 9 2
34 2 3 1 3 9 2 5 3 1 2 1 1 2
10 3 1 1 1 1 2 16 3 2 2 2 4 2
24 3 2 1 2 4 2 33 3 3 2 3 9 2
39 3 3 1 3 9 2 4 1 1 2 1 1 1
13 1 2 1 2 4 1 10 1 2 2 2 4 1
20 1 3 1 3 9 1 15 1 3 2 3 9 1
10 2 1 1 1 1 2 5 2 1 2 1 1 2
24 2 2 1 2 4 2 19 2 2 2 2 4 2
9 3 1 1 1 1 2 29 2 3 2 3 9 2

36 3 3 1 3 9 2 4 3 1 2 1 1 2
5 1 1 2 1 1 1 34 3 3 2 3 9 2

16.2

Because it is the easiest program I know, most of the analyses in this book were done in Minitab. We
now present and contrast R and SAS code for fitting [AB][C] and discuss the fitting of other models
from this section. Table 16.7 illustrates the variables needed for a full analysis. The online data file
contains only the y values and indices for the three groups. Creating X and X2 is generally easy.
Creating the variable A2 that does not distinguish between salts 2 and 3 can be trickier. If we had a
huge number of observations, we would want to write a program to modify A into A2. With the data
we have, in Minitab it is easy to make a copy of A and modify it appropriately in the spreadsheet.
Similarly, it is easy to create A2 in R using A2=A followed by A2[(A2 == 3)] = 2. For SAS, I
would probably modify the data file so that I could read A2 with the rest of the data.

SAS code for fitting [AB][C] follows. The code assumes that the data file is the same directory
(folder) as the SAS file.

options ps=60 ls=80 nodate;

data anova;

infile ’tab16-1.dat’;

input y A B C;

X = B;

X2=X*X;

proc glm data=anova;

class A B C ;

model y = A*B C ;

means C / lsd alpha=.01 ;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc plot;

plot ehat*yhat sr*R/ vpos=16 hpos=32;

proc rank data=new normal=blom;

var sr;

ranks nscores;

proc plot;

plot sr*nscores/vpos=16 hpos=32;

run;
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16.3 Comparison of model definitions

Consider the following models

[ABC] ∼= yi jkm = G+Ai +B j +Ck +[AB]i j +[AC]ik +[BC] jk +[ABC]i jk + ei jkm
∼= yi jkm = [ABC]i jk + ei jkm.

[AB][BC] ∼= yi jkm = G+Ai +B j +Ck +[AB]i j +[BC] jk + ei jkm
∼= yi jkm = [AB]i j +[BC] jk + ei jkm.

[AB][C] ∼= yi jkm = G+Ai +B j +Ck +[AB]i j + ei jkm
∼= yi jkm = [AB]i j +Ck + ei jkm.

[AB][C] ∼= yi jkm = G+Ai +B j +Ck +[AB]i j + ei jkm
∼= yi jkm = [AB]i j +Ck + ei jkm.

[A0][A1][A2][C] ∼= yi jkm = G+Ai0 + γ1x j + γ2x2
j +Ai1x j +Ai2x2

j +Ck + ei jkm.

∼= yi jkm = Ai0 +Ai1x j +Ai2x2
j +Ck + ei jkm.

All three programs can fit the first form of the model. Minitab ONLY fits the first form. The R
and SAS commands given below are for fitting the second form of the model.

Model Minitab R SAS
[ABC] A|B|C A:B:C-1 A*B*C / noint
[AB][BC] A|B B|C A:B+B:C-1 A*B B*C / noint
[AB][C] A|B C A:B+C-1 A*B C / noint
[A0][A1][A2][C] A|X A|X2 C A+A:X+A:X2+C-1 A A*X A*X2 C / noint
[A0][A1][C], A21 = A31 A A2|X C A+A2:X+C-1 A A2*X C / noint
[A0][A1][C], A21 = A31, A20 = A30 A2 A2|X C A2+A2:X+C-1 A2 A2*X C noint

To fit different models, one needs to modify the part of the code that specifies the model. In Minitab’s
glm, models are usually specified in the model dialog box (or on the command line) and X and
X2 have to be specified as covariates. In R, specifying models involves changes to, say, lm(y ∼
A:B+C-1) where A, B, and C all have to be prespecified as factor variables. In SAS’s glm, model-
ing involves changes to model y = A*B C/noint; where A, B, and C all have to be prespecified
as class variables. 2

16.4 Balanced three factors

16.4.1 Minitab

16.4.2 SAS

options ps=60 ls=80 nodate

data abraid;

infile ’tab16-8.dat’;

input y,S,F,P,rep;
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pp=P;

p2=pp*pp;

proc print;

run;

proc glm data=abraid;

class S F P;

model y = S*F*P;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc glm data=abraid;

class S F P;

model y = S*F F*P / noconstant;

proc glm data=abraid;

class S F P;

model y = S*F F*pp F*p2 / noconstant;

proc glm data=abraid;

class S F P;

model y = S*F F*pp / noconstant;

proc print data=new;

proc plot;

plot sr*yhat / vpos=16 hpos=32;

proc rank data=new normal=blom;

var sr;

ranks nscores;

proc plot;

plot sr*nscores/vpos=16 hpos=32;

run;

To finish the analysis we need to figure out how to define two additional variables in SAS,

p0 = (1,2,3,1,2,3,0,0,0,0,0,0,1,2,3,1,2,3,0,0,0,0,0,0)′

and

SF = c(11,11,11,11,11,11,12,12,12,12,12,12,21,21,21,21,21,21,21,21,21,21,21,21)′.

We can then add the following commands to the previous ones.
proc glm data=abraid;

class S F P;

model y = S*F p0 / noconstant;

proc glm data=abraid;

class S F P SF;

model y = SF p0 / noconstant;

run;

16.5 Higher order structures

Nothing to do.
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Basic Experimental Design

17.4 Randomized complete block designs

17.4.1 Minitab

The following Minitab commands generate the analysis of variance. Column c1 contains the spec-
trometer data, while column c2 contains integers 1 through 4 indicating the appropriate treatment,
and c3 contains integers 1 through 3 that indicate the block. The predicted values are given by the
‘fits’ subcommand.

names c1 ’y’ c2 ’Trts’ c3 ’Blks’

glm c1 = c3 c2;

Pairwise Treatment;

Bonferroni;

sresid c10;

fits c11.

Get out all pairwise comparisons

17.4.2 SAS

options ps=60 ls=80 nodate;

data rcb;

infile ’tab17-1.dat’;

input B T Y ;

proc glm data=rcb;

class B T;

model Y = B T;

means B T / lsd alpha=.01 lines;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=r;

proc plot;

plot ehat*yhat r*B r*T / vpos=16 hpos=32;

proc rank data=new normal=blom;

var r;

ranks nscores;

proc plot;

plot r*nscores/vpos=16 hpos=32;

run;
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17.5 Latin squares

17.5.1 Minitab

The following Minitab commands will give the sums of squares, means, and residuals necessary
for the analysis. Here c1 is a column containing the mangold root yields, c2 has values from 1 to 5
indicating the row, c3 has values from 1 to 5 indicating the column, and c4 has values from 1 to 5
indicating the treatment.

names c1 ’y’ c2 ’Rows’ c3 ’Cols’ c4 ’Trts’

glm c1 = c2 c3 c4;

17.5.2 SAS

options ps=60 ls=80 nodate;

data lsq;

infile ’tab17-6.dat’;

input Y Row Col T ;

proc glm data=lsq;

class Row Col T;

model Y = Row Col T;

means Row Col T / Tukey alpha=.05 lines;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=r;

proc plot;

plot ehat*yhat r*Row r*Col r*T / vpos=16 hpos=32;

proc rank data=new normal=blom;

var r;

ranks nscores;

proc plot;

plot r*nscores/vpos=16 hpos=32;

run;

17.6 Balanced incomplete blocks

Detergents

17.6.1 SAS

options ps=60 ls=80 nodate;

data bib;

infile ’TAB17-7A.DAT’;

input row blk trt y det amt ctl;

a=amt;

a2=a*a;

a3=a2*a;

proc glm data=bib;

class det amt ctl blk trt;

model y = blk trt;

proc glm data=bib;

class det amt ctl blk trt;

model y = blk ctl det amt det*amt;

proc glm data=bib;

class det amt ctl blk trt;
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model y = blk ctl det det*a det*a2 /noint solution;

proc genmod data=bib;

class det amt ctl blk trt;

model y = blk ctl det det*a det*a2 /noint link=identity dist=normal;

run;

17.7 Youden squares

17.7.1 Minitab

The Minitab commands for the mangold root analysis are given below.
names c1 ’y’ c2 ’Rows’ c3 ’Cols’ c4 ’Trts’

glm c1 = c2 c3 c4;

means c4;

fits c11;

sresids c12;

tresids c13;

hi c14;

cookd c15.

17.7.2 SAS

Not done
options ps=60 ls=80;

data Name;

infile ’filename’;

input y x1 x2 x3;

proc print;

run;

proc glm data=Name;

class x1

model y = x1 x2 x3/ solution noint;

run;
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Factorial Treatments

18.1 RCB Analysis

18.1.1 Minitab

The following Minitab commands generate this analysis of variance. Here c1 is a column containing
the spectrometer data, c2 has values from 1 to 4 indicating the treatment, c3 has values from 1 to
3 indicating the block, c4 has values 1 and 2 indicating the disk type, and c5 has values 1 and 2
indicating the window type.

names c1 ’y’ c2 ’Trts’ c3 ’Blks’ c4 ’Disk’ c5 ’Window’

glm c1 = c3 c4|c5;

In the ‘glm’ command, c4|c5 could be replaced by c4 c5 c4∗ c5. The c4 and c5 terms indicate main
effects for disks and windows, respectively. Disk by window interaction is indicated by c4∗ c5.

18.1.2 SAS

Not done
options ps=60 ls=80;

data Name;

infile ’filename’;

input y x1 x2 x3;

proc print;

run;

proc glm data=Name;

class x1

model y = x1 x2 x3/ solution noint;

run;

18.4 Interaction in a Latin square

18.4.1 Minitab

18.4.2 SAS

Trts = (4,1,0,5,3,2,1,2,4,3,0,5,5,3,2,4,1,0,0,4,1,2,5,3,2,5,3,0,4,1,3,0,5,1,2,4)′

options ps=60 ls=80;

data potato;

infile ’tab18-2.dat’;

input R C N P y;

Trts=10*N+P;

pp=P;

p2=pp*pp;
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proc print;

run;

proc glm data=potato;

class R C N P Trts

model y = R C Trts/ solution noint;

run;

18.5 A balanced incomplete block design

18.5.1 SAS

options ps=60 ls=80 nodate;

data bib;

infile ’tab18-5A.DAT’;

input row blk trt y det amt ctl;

a=amt;

a2=a*a;

a3=a2*a;

proc glm data=bib;

class det amt ctl blk trt;

model y = blk trt;

proc glm data=bib;

class det amt ctl blk trt;

model y = blk ctl det amt det*amt;

proc glm data=bib;

class det amt ctl blk trt;

model y = blk ctl det det*a det*a2 /noint solution;

proc genmod data=bib;

class det amt ctl blk trt;

model y = blk ctl det det*a det*a2 /noint link=identity dist=normal;

run;
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Dependent Data

At the moment, I would not completely trust anything in this chapter except the Minitab projects.
Most of it should work or be close to working. Certainly they are not complete analyses.

19.1 The analysis of split plot designs

In longitudinal data analysis these models are known as random intercept models because every
individual has a separate random effect associated with it.

19.1.1 Minitab

Because of the missing whole plot in this version of Garner’s data, Minitab 18 refuses to fit the
appropriate model. Minitab 16 only gives the degrees of freedom and the sums of squares for the
effects but that is the hard work. You can easily construct the ANOVA table from those. Error 1 is
the Rep by Laundry interaction and it has 2 rather than the usual 3 degrees of freedom because of
the missing whole plot.

names c1 ’Rep’ c2 ’L’ c3 ’T’ c4 ’y’;’’

glm c4=c1|c2 c3 c2*c3

See also the Minitab project SEC19-1UNBAL.MPJ although since this was constructed in 16 I
don’t think 18 reads it.

Equivalently we can use the constructed interaction column “inter” to fit

glm c4=c1|c2 c5

The interaction column just treats each of the 16 combinations of a Laundry and a Test as a separate
group. Fitting the model with C5 in Minitab gives reduced output but yields the appropriate dfE
and SSE.

To get the dfE and SSE for the model that sets A = D in Laundry 1 fit

glm c4=c1|c2 c6

To fit the other models (for Laundry 1 or the interaction) just replace C6 with a different column.

19.1.2 SAS

data garn;

infile ’tab19-1.dat";

var Rep L T y;

proc glm;

class Rep L T;

model y = Rep L Rep*L T T*L/solution;

No idea if the following model is going to work.
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data garn;

infile ’tab19-1.dat";

var Rep L T y;

proc glm;

class Rep L T;

model y = (Rep L)@2 T T*L;

This SAS program was in my files. Not sure about it.

proc mixed data=DUMMYALL;

class Time A B WholePlot Subplot;

model y = Time A B A*B Time*A Time*B Time*A*B / ddfm=kr

random WholePlot / group=Time;

repeated Time / subject=Subplot type=ARH(1);

lsmeans Time*A / slice=Time;

lsmeans Time*B / slice=Time;

lsmeans Time*A*B / slice=Time;

run;

19.1.3 Whole Plot Analysis

19.1.3.1 SAS

data garnw;

infile ’tab19-1w.dat";

var Rep L y;

proc print;

run;

proc glm;

class Rep L;

model y = Rep L/solution;

run;

19.2 A four factor example

Use the data in file TAB19-6.DAT.

19.2.1 Minitab

Using the clunky Minitab 18 method for reading my data files,

read c1-c6;

file "c:\e-drive\books\anreg2\newdata\tab19-6.dat".

names c1 ’y’ c2 ’surf’ c3 ’fill’ c4 ’prop’ c5 ’rep’ c6 ’rota’

GLM c1 = c2|c3|c4 c5(c2 c3 c4) c6 c6*c2 c6*c3 c6*c4 c6*c2*c3 c6*c2 &

CONT> *c4 c6*c3*c4 c6*c2*c3*c4;

Random c5.

The term c5(c2 c3 c4) tells Minitab to fit rep nested within surf, fill, and prop. The
whole plots are a completely randomized design, so there is no blocking in the whole plots and the
nested term is needed to get Error 1 computed (but not called Error 1). The subcommand to treat
reps as random gets Minitab to construct the whole plot F tests correctly.
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19.2.2 SAS

This should give the proper ANOVA table. Treat the S*F*P*RP as Error 1 and construct whole plot
the F tests yourself

data abraid;

infile ’tab19-5.dat’;

var y S F P RP RoT ;

pp = P;

p2=pp*pp;

proc glm;

class S F P RoT RP;

model y = S F P S*F S*P F*P S*F*P S*F*P*RP RoT RoT*S RoT*F RoT*P RoT*S*F RoT*S*P RoT*F*P RoT*S*F*P;

This might also work.

data abraid;

infile ’tab19-5.dat’;

var y S F P RP RT ;

pp = P;

p2=pp*pp;

proc glm;

class S F P RT RP;

model y = (S F P)@3 S*F*P*RP RT*(S F P)@3;

19.2.3 Whole Plot Analysis with Error 1 residual plots

data abraid;

infile ’C:\\E-drive\\Books\\ANREG2\\newdata\\tab19-5a.dat’;

var yy1 yy2 yy3 S F P rep;

yw=(yy1+yy2+yy3)/3;

pp = P;

p2=pp*pp;

proc glm;

class S F P RT RP;

model yw = S F P S*F S*P F*P S*F*P;

proc glm;

class S F P RT RP;

model yw = (S F P)@3;

19.2.4 Final Models

This has a lot of funky logical stuff (from R) that needs to be redone for SAS.

data abraid ;

infile ’tab19-5.dat";

var y s f p rep rot;

mtilde = 2*rot/rot

mtilde = mtilde - (rot<2)
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mtildea=mtilde[f==1]

mtildeb=mtilde[f==2]

ya = y[f==1]

sa = s[f==1]

pa = p[f==1]

repa = rep[f==1]

rota = rot[f==1]

Mtildea=factor(mtildea);

Sa=factor(sa);

Pa=factor(pa);

RTa=factor(rota);

RPa=factor(repa);

p2a=pa*pa;

r2a=rota*rota;

proc glm;

class Sa F P RTa Mtildea RP;

model ya = Sa pa RTa Sa*Mtildea;

yb = y[f==2]

sb = s[f==2]

pb = p[f==2]

repb = rep[f==2]

rotb = rot[f==2]

Mtildeb=factor(mtildeb)

Sb=factor(sb)

Pb=factor(pb)

RTb=factor(rotb)

RPb=factor(repb)

p2b=pa*pb

r2b=rotb*rotb

proc glm; class S F P RT RP;

bsfpb model yb = Sb RTb Sb*Mtildeb)

anova(bsfpb)

coefb=summary(bsfpb)

coefb

bsfpb$fit

19.2.5 Unbalanced SubPlots

The key point in this subsection is that every model needs to have S*F*P*RP in it!

proc glm;

class S F P RT RP;

model yw = S*F*P*RP RT RT*(S F P)@3;
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19.3 Multivariate analysis of variance

Use the data in file TAB19-6A.DAT.

19.3.1 Minitab

Minitab commands for obtaining Tables 19.14 through 19.18 and the corresponding residuals and
predicted values are given below. The three columns c1, c2, and c3 contain y1, y2, and y3, respec-
tively. Columns c4, c5, and c6 contain indices for S, F , and P. Some older versions of Minitab do not
allow the last three subcommands that provide the multivariate analysis of variance. Incidentally,
Minitab uses T 2/dfE as its definition for the Lawley–Hotelling trace.

glm c1-c3 = c4|c5|c6;

means c4 c5 c6 c4*c5 c4*c6 c5*c6 c4*c5*c6;

resid c11 c12 c13;

fits c21 c22 c23;

manova c4 c5 c6 c4*c5 c4*c6 c5*c6 c4*c5*c6;

sscp;

eigen.

When using the menus choose Stat, then AVOVA, then MANOVA (even though it is just using glm

with a manova subcommand). The subcommands can be generated by various menu options.

19.3.2 SAS

Not really sure how to do MANOVA in SAS. Should be a minor generalization of proc glm.

abraid = data ; infile ’tab19-5a.dat",

var yy1 yy2 yy3 S F P RP;

pp = P;

p2=pp*pp;

proc glm;

class S F P ;

model yy1 yy2 yy3 = S F P S*F S*P F*P S*F*P/ noconstant ;

manova h= S F P S*F S*P F*P S*F*P/ printh printe summary;

proc glm;

class S F P RT RP;

model yy1 yy2 yy3 = (S F P)@3;

manova;

proc glm;

class S F P RT RP;

model yy1 yy2 yy3 = S*F F*P / noconstant ;

manova h= S*F F*P ;

proc glm;

class S F P RT RP;

model yy1 yy2 yy3 = S*F F*p F*p2 / noconstant ;

manova;

proc glm;

class S F P RT RP;

model yy1 yy2 yy3 = S*F + F*p / noconstant ;

manova;
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We need to define

p0 = (1,2,3,1,2,3,0,0,0,0,0,0,1,2,3,1,2,3,0,0,0,0,0,0)

SF = (11,11,11,11,11,11,12,12,12,12,12,12,21,21,21,21,21,21,21,21,21,21,21,21)

Now also run
proc glm;

class S F P RT RP;

model yy1 yy2 yy3 = S*F p0 / noconstant ;

manova;

proc glm;

class S F P RT RP SF;

model yy1 yy2 yy3 = SF p0 / noconstant ;

manova;

19.4 Random effects models

19.4.1 Minitab

19.4.2 SAS
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Logistic Regression

20.1 Models for binomial data

No real computing.

20.2 Simple linear logistic regression

20.2.1 Minitab

names c1 ’dose’ c2 ’died’ c3 ’trials’ c4 ’y’

let c4=c2/c3

let c11=loge(c1)

Name c12 "PRES2" c13 "SPRE2" c14 "HI2" c15 "EPRO2"

Blogistic ’died’ ’trials’ = C11;

ST;

Logit;

Presiduals ’PRES2’;

Spresiduals ’SPRE2’;

Hi ’HI2’;

Eprobability ’EPRO2’;

Brief 2.

20.2.2 SAS

SAS contains a powerful program for logistic regression, PROC LOGISTIC, but it pools cases for
goodness-of-fit tests and diagnostics. The first line below controls printing. The next four lines
involve defining and reading the data. The remaining lines specify the model and that a logistic
regression is to be performed.

options ps=60 ls=80 nodate;

data mice;

infile ’tab21-1.dat’;

input x Ny N y;

proc logistic data=mice descending;

model y=x ;

run;

Alternatively, to get usable deviance values from SAS, we can use the generalized linear model
program PROC GENMOD. To perform logistic regression one must specify an appropriate link and
distribution. One also specifies the number of deaths for each case (Ny) divided by the number of
trials for each case (N).

options ps=60 ls=80 nodate;

data mice;
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infile ’tab21-1.dat’;

input x Ny N y;

proc genmod data=mice ;

model Ny/N = x / link=logit dist=binomial;

run;

20.3 Model testing

20.3.1 Minitab

20.3.2 SAS

20.4 Fitting logistic models

20.4.1 Minitab

20.4.2 SAS

20.5 Binary data

20.5.1 Minitab

The data are in a file TAB21-3.DAT that contains six columns similar to Table 20.3. ID indicates the
case, flt is the flight, f indicates failure of any O-rings, and temp is temperature. The fourth column
s is one minus f. The last column in the file contains the actual number of O-rings that failed on a
flight.

names c1 ’Case’ c2 ’Flt’ c3 ’F’ c4 ’S’ c4 ’Temp’ c6 ’no’

Blog ’F’ = Temp;

Logit;

Brief 2.

20.5.2 SAS

The data are in a file TAB21-3.DAT that contains six columns similar to Table 20.3. ID indicates the
case, flt is the flight, f indicates failure of any O-rings, and temp is temperature. The fourth column
s is one minus f. The last column in the file contains the actual number of O-rings that failed on a
flight.

The following commands are for the generalized linear model procedure in SAS, GENMOD.

options ps=60 ls=80 nodate;

data oring;

infile ’TAB21-3.dat’;

input ID flt f s temp no;

n = 1;

proc genmod data = oring;

model f/n = temp / link=logit dist=binomial;

run;

The first line controls printing of the output. The next four lines define the data. The variable “n”
is used to specify that there is only one trial in each of the 23 binomials. PROC GENMOD needs
the data specified: “data = oring”. GENMOD also needs information on the model. “link = logit”
and “dist = binomial” both are needed to specify that a logistic regression is being fitted. “model
f/n = temp” indicates that we are modeling the number of failures in “f” out of “n” trials using the
predictor “temp” (and implicitly an intercept).

As displayed in Subsection 20.2.4, the SAS program for logistic regression, PROC LOGISTIC,
provides more specialized output.



20.6 MULTIPLE LOGISTIC REGRESSION 91

options ps=60 ls=80 nodate;

data oring;

infile ’tab21-3.dat’;

input ID flt f s temp no;

n = 1;

proc genmod data = oring;

model f/n = temp / link=logit dist=binomial;

run;

20.6 Multiple logistic regression

The data are in chapman.dat. They do not appear as a table in the book.

20.6.1 Minitab

Multiple logistic regression not very different from the simple. Best to do variable selection by
appropriately modifying breg or step. Will show an example when I get around to it. Also see
book.

The data are in a file ’chapman.dat’ with eight columns: the case index, Ag, S, D, Ch, H, W , and
CN. The file looks like this.

1 44 124 80 254 70 190 0

2 35 110 70 240 73 216 0

3 41 114 80 279 68 178 0

4 31 100 80 284 68 149 0

data continue

199 50 128 92 264 70 176 0

200 31 105 68 193 67 141 0

20.6.2 SAS

Below are SAS commands for obtaining a multiple logistic regression. The data are in a file ’chap-
man.dat’ with eight columns: the case index, Ag, S, D, Ch, H, W , and CN. The file looks like this.
1 44 124 80 254 70 190 0

2 35 110 70 240 73 216 0

3 41 114 80 279 68 178 0

4 31 100 80 284 68 149 0

data continue

199 50 128 92 264 70 176 0

200 31 105 68 193 67 141 0

A simple way to fit the logistic regression model (20.6.4) in SAS is to use PROC GENMOD.
The first line controls printing. The next four lines involve defining and reading the data and creating
a variable “n” that gives the total number of possible successes for each case. The remaining lines
specify the model and that a logistic regression is to be performed.
options ps=60 ls=80 nodate;

data chapman;

infile ’chapman.dat’;

input ID Ag S D Ch H W CN;

n = 1;

y = CN;

proc genmod;

model y/n = Ag S D Ch H W/ dist = binomial;
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proc genmod data=chapman ;

model CN/n = Ag Ch W / link=logit dist=binomial;

run;

A more powerful program for logistic regression (but one that pools cases for goodness-of-fit
tests and diagnostics) is PROC LOGISTIC.
options ps=60 ls=80 nodate;

data chapman;

infile ’chapman.dat’;

input ID Ag S D Ch H W CN;

proc logistic data=chapman descending;

model CN=Ag Ch W ;

run;

On the line with “proc logistic”, one specifies the data being used and the command “descending”.
The command “descending” is used so that the program models the probabilities of events coded
as 1 rather than events coded as 0. In other words, it makes the program model the probability of a
coronary incident rather than the probability of no coronary incident.

proc logistic can do backward elimination, forward selection, and an inferior form of best
subset selection. It is better to do best subset selection using prog reg with input from a previous
proc logistic run. Sometime I will give an example. Also see book.

20.7 ANOVA type logit models

The muscle tension data are listed in the file ‘tab21-10.dat’ with one column for the number of high
tension scores, one column for the low tension scores, and three columns of indices that specify the
level of weight (high is 1), muscle type, and drug, respectively.
3 3 1 1 1

21 10 1 1 2

23 41 1 2 1

11 21 1 2 2

22 45 2 1 1

32 23 2 1 2

4 6 2 2 1

12 22 2 2 2

20.7.1 Minitab

Blog accepts classifiers.

20.7.2 SAS

The following commands fit the model [WM][WD][MD] using SAS PROC GENMOD. Note that
the variable “n” is the total number of individuals with each level of weight, muscle type, and drug.
The “class” command is used to distinguish ANOVA type factors from regression predictors.
options ps=60 ls=80 nodate;

data tension;

infile ’TAB21-9.DAT’;

input H L W M D;

n = H+L;

proc genmod data=tension;

class W M D;

model H/n = W*M W*D M*D / link=logit dist=binomial;
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run;

20.8 Ordered categories

20.8.1 Minitab

To fit the data in Table 20.15 they need to be manipulated. In Minitab, the data are read into columns
c1 through c5. The following commands allow for fitting model (20.8.1). Here “EPRO2” gives the
fitted probabilities from which the odds can be computed and placed into a separate column.

names c1 "h" c2 "i" c3 "k" c4 "j" c5 "count"

sort the data so that all the yes counts are together

and all the no counts are together

sort c4 c1 c2 c3 c5 c11 c12 c13 c14 c15

Now c11=j, c12=h, c13=i, c14=k, and c15=count

separate the yes data from the no data into a new worksheet

Unstack (C12 C13 C14 C15);

Subscripts C11;

NewWS;

VarNames.

Now c4 has the yes counts and c8 has the no counts with

c1=c5=h, c2=c6=i, c3=c7=k

let c10=c4+c8

Name c13 "EPRO2"

Blogistic C4 C10 = c1|c2 c3;

ST;

Factors c1 c2 c3;

Logit;

Eprobability ’EPRO2’;

Brief 2.

Name c14 "Odds"

let c14 = c13/(1-c13)

20.8.2 SAS

data abop;

infile ’tab21-14a.dat";

var Case R S A Yes No Total;

class R S A;

y=Yes/Total

proc genmod;

model y = R*S + A/ dist = binomial,weights=Total;





Chapter 21

Log-Linear Models

Minitab has programs for fitting logistic regression but none for generalized linear models.

21.1 Models for two-factor tables

21.1.1 Minitab

21.1.2 SAS

The following SAS code fits models (21.1.2), (21.1.4), and (21.1.5) and gives fitted values and Pear-
son residuals. By comparing the fitted values and Pearson residuals for models (21.1.2) and (21.1.4)
with each other and results from Section 5.5 you can see that both models fit the independence
model. Similarly, the fitted values and Pearson residuals confirm that fitting model (21.1.5) fits the
Roman Catholics and Protestants like Table 5.11 while leaving the Jewish entries untouched.

data occ;

infile ’tab21-2.dat’;

var y R O RCP Q;

proc genmod;

class R O RCP Q;

model y = R O/dist = poisson;

proc genmod;

class R O RCP Q;

model y = O RCP*Q/dist = poisson;

proc genmod;

class R O RCP Q;

model y = O*RCP RCP*Q / dist = poisson;
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21.2 Models for three-factor tables

21.2.1 Minitab

21.2.2 SAS

21.3 Estimation and odds ratios

21.3.1 Minitab

21.3.2 SAS

21.4 Higher dimensional tables

21.4.1 Minitab

21.4.2 SAS

The muscle tension data are listed in file tab21-9a.dat as counts for each cell with indices for
tension, weight, muscle type, and drug, respectively. The file is as given below.

3 1 1 1 1

21 1 1 1 2

23 1 1 2 1

11 1 1 2 2

22 1 2 1 1

32 1 2 1 2

4 1 2 2 1

12 1 2 2 2

3 2 1 1 1

10 2 1 1 2

41 2 1 2 1

21 2 1 2 2

45 2 2 1 1

23 2 2 1 2

6 2 2 2 1

22 2 2 2 2

This file is different from that used in Chapter 21, Tab21-9.dat. We can fit the log-linear model
[WMD][TWM][TWD][TMD] using SAS PROC GENMOD.

options ps=60 ls=80 nodate;

data tension;

infile ’tab21-9a.dat’;

input y T W M D;

proc genmod data=tension;

class T W M D;

model y = W*M*T T*W*M T*W*D T*M*D / link=log

dist=poisson;

run;

The “class” command specifies that a variable is not acting like a predictor variable in regression,
but rather that it gives indices for specifying the levels of an analysis of variance type factor. To
fit other specific models such as [TM][WM][MD] or [T][WM][D], the model statement uses T∗M
W∗M M∗D or T W∗M D, respectively.

For the abortion data, the data file ‘abort.dat’ has five columns, the first four being indices for
race, sex, age, and opinion, and the last being the cell counts. To fit [RSO][RSA][ROA][SOA] with
GENMOD use
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options ps=60 ls=80 nodate;

data abort;

infile ’tab21-4.dat’;

input R S A O y;

proc genmod data=abort;

class R S A O;

model y = R*S*O R*S*A R*O*A S*O*A / link=log

dist=poisson;

run;

The BMDP-4F commands for fitting the model [RSO][RSA][ROA][SOA] are

/ INPUT FILE = ’C:\tab21-4.dat’.

FORMAT = FREE.

VARIABLES = 5.

/ VARIABLE NAMES = R, S, A, O, N.

/ TABLE INDICES = R, S, A, O.

COUNT = N.

/ STAT ALL.

/ FIT MODEL = RSO, RSA, ROA, SOA.

/ PRINT LINE = 79.

/ END

21.5 Ordered categories

21.5.1 Minitab

21.5.2 SAS

Models with quantitative factors can be fit easily using several computer packages, e.g., R and SAS
PROC GENMOD. For example the model log(µhi jk) = uRSO(hi j)+uA(k)+O1 jk+O2 jk2 can be fitted
using SAS PROC GENMOD as given below.

options ps=60 ls=80 nodate;

data abort;

infile ’tab21-4.dat’;

input R S A O y;

A1 = A;

A2 = A * A;

proc genmod;

class R O S A;

model y = R*S*O O*A / dist = poisson;

proc genmod data=abort;

class R S O A;

model y = R*S*O A O*A1 O*A2 / link=log dist=poisson;

run;

proc genmod;

class R O S A;

model y = R*S*O A O*A1 / dist = poisson;

run;

The terms O1 jk and O2 jk2 are really interactions between the factor O and the predictor variables
age and age squared. In the model statement, they are simply specified as interactions.
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21.6 Offsets

21.6.1 Minitab

Minitab doesn’t seem to do offsets.

21.6.2 SAS

SAS GENMOD commands for fitting models (21.6.3) and (21.6.2) are, respectively,

options ps=60 ls=80 nodate;

data bis;

infile ’tab22-5.dat’;

input index l y;

ll = log(l);

J=y+1-y;

proc genmod data=bis;

model y = ll / link=log dist=poisson;

run;

proc genmod data=bis;

model y = J/ link=log dist=poisson noconstant offset=ll;

run;

21.7 Relation to logistic models

21.7.1 Minitab

21.7.2 SAS

21.8 Multinomial responses

21.8.1 Minitab

Ordinal logistic regression menu. OLog
Nominal logistic regression menu. NLog

21.8.2 SAS

21.9 Logistic discrimination and allocation

21.9.1 Minitab

21.9.2 SAS



Chapter 22

Exponential and Gamma Regression: Time to
Event Data

Minitab doesn’t really do these.
Might do exponential as regression with life data. Mostly does accelerated failure time and

incorporates censoring.

22.1 Exponential regression

22.1.1 Minitab

22.1.2 SAS

The data file contains h, the case number; y, the survival time in weeks; w, the white blood cell
count; lw, the log to base 10 of the white blood cell count; and a, the AG score. SAS GENMOD
commands that deliver all the necessary deviances except the one for model (3) are

To fit the model involving the offset, use the GENMOD commands

\begin{verbatim}

options ps=60 ls=80 nodate;

data feigl;

infile ’tab22-1.dat’;

input y w a;

lw = log10(w)

nlw = -lw;

run;

proc genmod data=feigl;

class a;

model y = a a*lw/ link=log

dist=gamma

noscale noint;

run;

proc genmod data=feigl;

class a;

model y = a lw / link=log

dist=gamma type1 noscale;

run;

proc genmod data=feigl;

class a;

model y = nag a*lw / link=log dist=gamma noscale noint;

run;

In the model statement, the link specifies that the log of the expected value is given a linear structure.
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The pair “dist=gamma’ and “noscale” together specify the exponential distribution for the data. The
command “noint” indicates that the linear model is fitted without an intercept term. The command
“type1” in the second call of proc genmod provides deviances for models (1) and (2) as well as
model (4).

22.2 Gamma regression

22.2.1 Minitab

22.2.2 SAS

The SAS GENMOD commands are exactly as in Subsection 22.1.1 except that one no longer in-
cludes the “noscale” command.

To fit the model involving the offset, use the GENMOD commands
options ps=60 ls=80 nodate;

data feigl;

infile ’tab22-1.dat’;

input y w a;

lw = log10(w)

nlw = -lw;

run;

proc genmod data=feigl;

class a;

model y = a / link=log dist=gamma

offset=nlw;

run;
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Nonlinear Regression

23.1 Minitab

See

NLinear;

Response C1;

Continuous C2;

Parameter "Theta1" 1;

Parameter "Theta2" 1;

Expectation Theta1 * C2 / ( Theta2 + C2 );

NoDefault;

GFCurve;

TMethod;

TStarting;

TConstraints;

TEquation;

TParameters;

TSummary;

TPredictions.

23.2 SAS
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More Stuff

data oakes;

infile ’oakes.dat’;

var n I J;

proc genmod;

class I J;

model n = I + J + I*j/ distribution = poisson;
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Bsplines

12 is much better although the fit is too wiggly in the first section and misses the point of inflection.
We now create the B-spline basis. You need to have three additional knots at the start and end to get
the right basis. I have chosen to the knot locations to put more in regions of greater curvature. I have
used 12 basis functions for comparability to the orthogonal polynomial fit.
> library(splines)

> knots = c(0,0,0,0,0.2,0.4,0.5,0.6,0.7,0.8,0.85,0.9,1,1,1,1)

> bx = splineDesign(knots,x)

> gs model y = bx)

> matplot(x,bx,type="l",main="B-spline basis functions")

> matplot(x,cbind(y,gs$fit),type="pl",ylab="y",pch=18,lty=1,main="Spline fit")

The basis functions themselves are shown

> gs model y = bx / noconstant ;
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