4. Multiple Logistic Regression

EXAMPLE Los Angeles Heart Study (200 men)
Abbreviation Variable Units
Ag Age: in years
S Systolic Blood Pressure: millimeters of mercury
D Diastolic Blood Pressure: millimeters of mercury
Ch Cholesterol: milligrams per DL
H Height: inches
W Weight: pounds
CNT Coronary incident: 1 if an incident had

occurred in the previous
ten years; 0 otherwise

Of the 200 cases, 26 had coronary incidents.



log|pi/ (1 —ps)] = Bo+ B1Agi+ B2Si+ BsD;+ BuCh; + B H; + Bs Wi,
i—1,....200.

Variable Estimate Std. Error z

Intercept —4.5173 7.451 —0.61
Ag 0.04590  0.02344 1.96

S 0.00686  0.02013 0.34

D —0.00694 0.03821 —0.18

Ch 0.00631  0.00362 1.74

H —0.07400  0.1058 —0.70

W 0.02014  0.00984 2.05

G*=134.9,  df =193

G? has no basis for comparison to a standard.



Prediction

log[pi/(1—p:)] = Bo+ B1Agi+ 2Si+ BsDi+ B1sChi + Bs Hi + BsW;

60-year-old man,

blood pressure: 140 over 90,
cholesterol: 200,

height: 69 inches,

weight: 200 pounds,

Estimated log odds of a coronary incident:

log[p/(1 — p)] = —4.5173 + .04590(60) + .00686(140) — .00694(90)
+.00631(200) — 0.07400(69) + 0.02014(200) = —1.2435.

—1.2435

e
1+ ¢ 12435 =.224.

D=

Plots



4.1 Informal Model Selection

Akaike’s Information Criterion — AIC
Similar to C), regression.

A* = (G* —134.9) — (T — 2p).

134.9 is G? for the full model

7 degrees of freedom full model

p degrees of freedom submodel
Information in A — ¢ and A* is identical:

A* =258.14 (A —q)

(258.1 = number of cells — G?[full model] — g[full model] =
400 — 134.9 — 7.)



Model
Variables df

G2 A—q A

AgSDChHW 193

Ag 198
W 198
H,W 197
Ch 198

S,D 197
Intercept 199

1349 —251.1 7

1427 —253.3 4.8
150.1 —245.9 12.2
146.8 —247.2 10.9
146.9 —249.1 9.0
1479 —246.1 12.0
154.6 —243.4 14.7

loglpi/(1 — pi)] = %0 + M Ag:
Tests Against Full Model

Model df G?
Ag b 7.8
W 5 15.2%*
HW 4 11.9*%
Ch 5 12.0%
SD 4 13.0%
Intercept 6 19.7¢*



Ag and one or two other explanatory variables.

Model
Variables df G? A*
AgSDChHW 193 1349 7.0
AgSD 196 1414 75
AgSCh 196 1393 54
AgSH 196 1419 80
AgSW 196 1384 45
AgDCh 196 139.0 5.1
AgDH 196 1414 75
AgDW 196 1385 4.6
AgChH 196 1399 6.0
AgChW 196 1355 1.6*
AgHW 196 138.1 4.2
AgS 197 141.9 6.0
Ag.D 197 1414 5.5
AgCh 197 1399 4.0
AgH 197 1427 6.8
AgW 197 1388 2.9*
Ag 198 1427 48



log[pi/(1 — pi)] = Y0 + M Agi + 12W;
Variable Parameter Estimate SE

Intercept Yo —7.513 1.706
Ag Y1 0.06358 0.01963
W 07 0.01600 0.00794

loglpi/(1 — pi)] = no + mAg; +m2W; + n3Ch,;

Variable Parameter Estimate SE
Intercept Mo —9.255 2.061
Ag ™ 0.05300 0.02074
W Mo 0.01754  0.003575
Ch 73 0.006517 0.008243

Ag and W coefficients quite stable.

Ag, W, and Ch coefficients all positive, so

small increase in age, weight, or cholesterol associated with a small
increase in the odds of having a coronary incident.

Association, not causation!
Correlations between predictor variables can make interpretations
of individual regression coefficients almost impossible.



Estimated full model:
Variable FEstimate Std. Error z

Intercept —4.5173 7.451 —0.61
Ag 0.04590  0.02344 1.96

S 0.00686  0.02013 0.34

D —0.00694 0.03821 —0.18

Ch 0.00631  0.00362 1.74

H —0.07400  0.1058 —0.70

W 0.02014  0.00984 2.05

G*=1349, df =193

Coeflicient for D is —.00694, coefficient for S is .00686.
Use difference S — D as a predictor?

log[pi/(1 —pi)] = Yo+ 71Agi +72(Si — D;) + v3Chi + v H; 4+ v Wi,

G? = 134.9 on df = 194.
test against full model

G? =134.9—134.9 =0
df =194 — 193 = 1.



Hy: 5= —p
10%[2%‘/(1 — ;)]
= Bo+ B1Agi + B2S; + (=P2)D; + B4Ch; + BsH; + B W
= Bo+ BiAgi + B2(Si — D;) + B4sChi + BsH; + BsW;

4.2 Checking Lack of Fit

Tsiatis (1980), Landwehr, Pregibon, and Shoemaker (1984), and
Fienberg and Gong (1984) approaches based on clustering near
replicates of the regression variables



5. Logistic Regression Diagnostics

Usually: residuals for detecting outliers.
What is an outlier for 0 — 1 data?

0-1 data, reasonable observations can have “unusually large”
residuals.

Too many Os or 1s in situations where we would not expect them
(e.g., too many 1s that we think have a small p;)

the problem is lack of fit.
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Leverages and influential observations.
“In what sense is this observation influential?”
Observations are not “influential” in a vacuum.

Influence for: 1) fitted probabilities, 2) estimated regression
parameters, 3) just about anything.

Identify important aspects of the model and examine influence
measures appropriate to those aspects.

Fitted probabilities: Kullback-Leibler (K-L) divergence measure

Regression coefficients: Cook’s distance
(Also an approximation to K-L and Cook and Weisberg’s (1982)
likelihood distance measure.)

Software dictates a focus on Cook’s distance.
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“Given some influential observations, what do you do about them?”
worry about them!

Ignore influence or eliminate influence by deleting and refitting the
model?

“Influential” depends on model being fitted.

Answers must depend on the data and the purpose of the analysis.
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Fitting
log[pi/(1 — p1)] = Bo + B1Agi + BCh; + BsW,
Standard diagnostic quantities:

e fitted probability: p;,

e leverage: a;;,

e large sample standard error of p;: \/ﬁi(l — pi)(1 — ay),

e standardized residuals:

A

_ Yi — Di
VBi(1 = pi)(1 — ais)

r;

e Pearson residuals: X
~ Y —Di

Fi= ,
Z VDi(1 = py)

the square of which is the ¢th component of Pearson’s

chi-square,

e deviance residuals:

i\/Q[yi log(yi/pi) + (1 — i) log((1 — w:)/(1 — pi))]

sign is the sign of y; — p;,
e Cook’s distance: C;

Formulae are for y; either 0 or 1,

Remember: residuals are not very interesting.
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Three predictor model: Ag, W, Ch
9 cases with the highest leverages:

Case 19 38 41 84 108 111 116 1583 157
Leverage .104 .081 .149 .079 .147 .062 .067 .090 .093

Case 41 has Ag = 40, W = 169, and C'h = 520.
Of 200 cases, only 9 have Ch values over 400.

Only 3 have Ch values over 428:
Case 116 with C'h = 453, Case 38 with Ch = 474, and Case 41.

Case 108 has Ag = 51, W = 262, and Ch = 2609.
262 pounds is extremely high within the data.

Of 9 cases with high leverage, only 19, 41, and 111 had coronary
incidents.
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Cook’s distances Cj: 32 cases with C; > .01.
Include all 26 coronary incidents.

Other 6 cases: 4 among highest leverage cases: 2 reasonably high
leverages.

Four cases with C; > .05.

Case C; Leverage
41 112 149
8 .078  .008

126 .079 042
192 .064 022

All had coronary incidents.

Case 41 easily the most influential.
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Delete 41 from the data.

Fitted p;’s are pretty similar.

Estimate Estimate SE
Variable with Case 41 without Case 41 without Case 41
Intercept  —9.255 —8.813 2.058
Ag 0.05300 0.05924 0.02138
Ch 0.006517 0.004208 0.003881
W 0.01754 0.01714 0.008216

Role of cholesterol.

Case 41 deleted, estimate over standard error is
.004208/.003881 = 1.08.
Case 41 included, .006517/.003575 = 1.82.

Cholesterol questionable before; without Case 41, forget about it.

Case 41 deleted: G*(Ag, Ch, W) = 132.8 on 195 df,
G*(Ag,W) = 134.0 on 196 df.

G? = 134.0 — 132.8 = 1.2 with 196 — 195 = 1 df.
No evidence for including cholesterol.
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Without Case 41

Variable Estimate SE
GM  —7.756  1.745
Ag 0.06675 0.02013
W 0.01625 0.008042

6. Model Selection Methods

Stepwise methods or finding best subsets.

Standard programs do stepwise e.g., BMDP-LR and SAS PROC
LOGISTIC.

These are similar to normal regression

Only standard program for best subset logistic regression is SAS

PROC LOGISTIC?

Procedure based on score tests. (Bad!)
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Do it yourself procedure:
ExaMpPLE All variables in Chapman data
o Get p;’s.

e Define two variables:
Weight:

RWT; = pi(1 — pi)
Dependent variable:
Y; =log[pi/(1 — pi)] + (yi — b))/ RWT;..
e Apply best subset regression program (e.g. BMDP-9R) to
Yi = Bo + B14gi + B2Si + B3 Di + BaChi + B Hi + BsWi + e,
using weights RW'T.

(Diagnostic statistics can be obtained from multiple regression
program in same fashion.)
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Based on the C), statistic, five best-fitting models

Variables Cy
Ag, Ch, W  1.66
Ag, W 2.88
Ag, Ch, H, W 3.13
Ag, S, Ch, W 3.49
Ag, D, Ch, W 3.59

Last three models add a worthless variable to Ag, Ch, and W
model.

C), statistics are based on one-step fits.

Variable MLE One-Step

Intercept —9.2559 —9.21822
Ag 0.053004 0.0529624
Ch 0.0065179  0.00647380

W 0.017539 0.0174699
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SAS PROC LOGISTIC uses score tests against intercept only
model.

Similar method, but! — For example,

Score test for dropping all of Ag, S, D, Ch, H, and W,

Fit regression model as indicated — except score test p;’s are mle’s
from intercept only model.

p;’s: Use mle’s from full model or mle’s from intercept only model?

Exact score tests — or — one-step C, statistics?
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6.1 Computer Commands

SAS commands for logistic regression.
www.stat.unm.edu/"fletcher/LLM

Data in file ’chapman.dat’
Eight columns: case index, Ag, S, D, Ch, H, W, and Cnt.

The file looks like:

1 44 124 80 254 70 190

2 35 110 70 240 73 216

3 41 114 80 279 68 178

4 31 100 80 284 68 149
data continue

199 50 128 92 264 70 176

200 31 105 68 193 67 141

o O O O

o O
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PROC GENMOD: program for generalized linear models

options ps=60 1s=72 nodate;
data chapman;
infile ’chapman.dat’;
input ID Ag S D Ch H W Cnt;
n=1;
proc genmod data=chapman ;
model Cnt/n = Ag Ch W / link=logit
dist=binomial;
run;

The first line controls printing.

The next four lines involve defining and reading the data and
creating a variable “n” that gives the total number of possible
successes for each case.

The remaining lines specify the model and that a logistic regression
is to be performed.
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PROC LOGISTIC: more specialized features

options ps=60 1ls=72 nodate;
data chapman;
infile ’chapman.dat’;
input ID Ag S D Ch H W Cnt;
proc logistic data=chapman descending;
model Cnt=Ag Ch W / waldcl waldrl plcl
influence iplots lackfit rsq;
output out=chdiag predicted=phat;
run;
proc print data=chdiag;
run;
proc logistic data=chapman descending;
model Cnt=Ag S D Ch H W / selection = score
best = 3 details;
run;

Two calls of PROC LOGISTIC:
1) standard procedure, 2) model selection.

“proc logistic”, specify data being used and “descending”.
“descending” makes program model probabilities of events coded as
1 (rather than events coded as 0).

“descending” makes program model the probability of a coronary
incident rather than the probability of no coronary incident.
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Standard output:

e estimated regression coefficients,
e standard errors,

e values of 2% = [Est/SE(FEst)]?,
e P values,

o s,
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Model statement specifies dependent and predictor variables.
After / on model line, options are specified.

e “waldcl” gives intervals By & 1.96 SE(Bk);
call the interval (a,b).

o “waldrl” gives e and intervals (e%, e?).

e “plcl” gives confidence intervals for §;’s based on profile
likelihoods.

e “influence” causes diagnostics to be presented,

e Char: (1 —ay;)C;.

e Index plots by specifying “iplots”.

o “lackfit”

o “rsq” gives some R? and Adj. R? values,
“output” creates SAS data set of diagnostics,
“selection” option: “forward”, “backwards”, “stepwise”, or “score”.

“score” and “best = 3”: three one-variable models with the best
score statistics, the three best two-variable models, the three best
three-variable models, etc.
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7. ANOVA Type Logit Models

EXAMPLE: Muscle tension data.
Factor Abbreviation Levels
Change in muscle tension T High, Low
Weight of muscle W High, Low
Muscle type M Type 1, Type 2
Drug D Drug 1, Drug 2
Drug (k)
Tension (h) Weight (i) Muscle (j) | Drug 1 Drug 2
High Type 1 3 21
Type 2 23 11
High
Low Type 1 22 32
Type 2 4 12
High Type 1 3 10
Type 2 41 21
Low
Low Type 1 45 23
Type 2 6 22

Change in tension — response factor.
Weight, muscle type, drug — explanatory.
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Saturated model

log(pije/p2ij) = G+ Wi+ M, + Dy,
+(WM);; + (WD), + (MD)
+ (WMD);j, .

log(p1iji/p2iji) = (WMD),p .

log(mniji) = (Twd)niji
In general,
plz’jk/p%jk = mlz’jk/m2z'jk .
Reduced model
log(piji/D2iji) = Wi+ (MD)

log(mupiji) = (TwW)hi + (TH0)njk + (Wd)iji, -
(wpd);jr included to deal with sampling scheme
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Table 1: Correspondence Between Some Logit and Log-Linear Models

Logit Model Log-Linear Model

1) {WMH{WDHMD}  [WMD][TWM]TWD][TMD]
2) {WM}HWD} [WMD][TWM][TWD]
3) {WM}{MD} [WMD][TWM][TMD]
4) {WD}MD} [WMD][TWD][TMD]
5) {WM}{D} [WMD][TWM][TD]
6) {WD}{M} [WMD][TWD][TM]
7) {MD}{W} [WMD][TMD][TW]
8) {WHMHD} [WMD][TW][TM][TD)]
9) {WHM} [WMD][TW][TM]
10) {WHD} [WMD][TW][TD]
11) {M}H{D} [WMD][TM][TD]

Line 3 of table:
log(pujk/p%jk) =G+ W;+ Mj + Dy + (WM)Z] + (MD)]k
is equivalent to

log(mpijk) = v+ wi+ pj + 0k + (wp)ij + (Wd)ig + (10) 5 + (Wd)ijk
+ 7h 4+ (Tw)pi + (T + (T) i
+ (Twpe)pij + (Tw) hik-

or
log(munijr) = (whd)ijk + (TW)hij + (TwWO)hit -
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Logit models obtained from log-linear models by subtraction.

log(priji/D2ijk) = log(muiijr/maiji)
log(mlijk) — log(m%jk>
= (Tw)1i + (Tp6)1jk + (whd)ijk
— (Tw)2i — (Tp0)2jk — (Whd)ijk
= |(Tw)1i — (Tw)ai] + [(T10)1k — (T140)2;4]
= Wi+ (MD)y

Wi = [(twhi — (Tw)ai] (M D) = [(T10)1jr — (T0)2k]-

Logits model data as two factor table.

Smallest interesting log-linear model is independence:
log(muijr) = Th + (Wd)iji -
Looking at log(p1ijr/p2ijr) = log(maiji) — log(masi),

log(prijk/p2ij) =1 — T2 =G

Saturated model for two-factor table is the interaction model

log(mhijk) =Ty + (w,uc?),-jk + (TWM5)hijk )

log(p1iji/D2ijk) = G+ (WMD)
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e Interesting logit models correspond to modeling the interaction
in this two-way table.

e More interaction than complete independence.

e [.ess interaction than the saturated model.
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Table 2: Statistics for Logit Models

Logit Model df G? P A—q
{WMHWD}MD} 1 0111 .7389 —1.889

{WM}{WD} 2 2810 2440 —1.190
{WM}{MD} 2 01195 .9417 —3.8805
{WD}{MD} 2 1.059 5948 —2.941
{WM}{D} 3 4669 .1966 —1.331
{WD}{M} 3 3726 2919 —2.274
{MD}{W} 3 1.060 .7898 —4.940
{WHM}D} 4 5311 .2559 —2.689
{(WH{M} 5 11.35 0443  1.35
{W}{D} 5 1229 0307  2.29
5

{M}{D} 7.698 1727 —2.302

A closer look at logit model {MD}{W}.
Actual fitted log-linear models corresponding logit models.
{MD}{W} corresponds to [WMD][TMD]|[TW].

Logit model terms becomes interactions with response factor T
interaction between all of the explanatory factors.
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Table 3: Estimated Expected Cell Counts for the Log-Linear Model [WMD]|[TMD][TW]

Drug (k)
Tension (h) Weight (¢) Muscle (j) | Drug 1 Drug 2
High Type 1 2.31  20.04
Type 2 23.75  11.90

High
Low Type 1 22.68  32.96
Type 2 3.26  11.10
High Type 1 3.69  10.97
Type 2 40.24  20.10
Low

Low Type 1 44.32  22.03
Type 2 6.74 2290

Ratio of high tension change to low tension change gives estimated
odds.
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Table 4: Estimated Odds of High Tension Change for the Logit Model {MD}{W}

Drug
Weight Muscle | Drug 1 Drug 2
High Typel| .625  1.827
Type 2| .590 092
Low Typel| .512  1.496
Type 2| .483 485

Main Effect:

High tension change odds are 1.22 times greater for high-weight
muscles than for low-weight muscles.

625/.512 = 1.22, 1.22 = .590/.483 = 1.827/1.495 = .592/.485.
M1jEM22ik/ Ta2jeMa k= 1.22.

Muscle type—drug interaction:
High weights: (top Table 4).

All about .6,
except type 1, drug 2.

Estimated probability about .6/(1 + .6) = .375.

For type 1, drug 2, estimated odds are 1.827
estimated probability change is 1.827/(1 4 1.827) = .646.

Similar for low-weight odds except smaller by factor of 1.22 because
of main effect for weight.
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Table 5: Estimated Odds for the Logit Model {WM}{MD}

Weight Muscle

Drug
Drug 1 Drug 2

High Typel
Type 2
Low Type 1
Type 2

.809
069
499
619

2.202
012
1.358
.0b7

Table 6: Estimated Odds for the Logit Model {WM}{MD}

Muscle Weight

Drug
Drug 1 Drug 2

Type 1 High
Low
Type 2 High
Low

809
499
069
619

Other good logit model is {WM}{MD}.

2.202
1.358
012
057

Type 2 muscles: About the same regardless of weight and drug.

Contrary to our previous model, do not depend much on weight,

(odds go down rather than up for higher weights).

Type 1 muscles, same dominant features as previous model.
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The difference between the models {MD}{W} and {WM}{MD} is
that:

In {MD}{W}, for type 2 muscles,

high weight should increase the odds,

{WMHMD} indicates little change for high weight

(any change is a decrease)

Reason for rewriting table:

{WM}{MD} has M in both terms,
fixed level of M, the effects of W and D are additive,
(size of effects change with the level of M).

This analysis at lowest level of technical sophistication.
Fitted values and likelihood ratio test statistics.

Conclusions drawn without standard errors.
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7.1 Computer Commands

File ‘tenslr.dat’ columns for number of high tension scores and low
tension scores, three columns of indices for weight (high is 1),
muscle type, and drug, respectively.

3 3111
21 101 1 2
23411 2 1
11 211 2 2
22 45 2 1 1
32 23 21 2

4 6221
12 22 2 2 2

Fit {WM}HWD}{MD} using SAS PROC GENMOD.
“n” is number of individuals with level of weight, muscle type, and
drug. “class” command distinguishes ANOVA type factors from

regression predictors.

options ps=60 1s=72 nodate;
data tension;
infile ’tenslr.dat’;
input HL W M D;

n = H+L;
proc genmod data=tension;
class WM D;

model H/n = WxM WxD MxD / link=logit
dist=binomial;
run;
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proc print data=chdiag;
run;

or fit log-linear model [WMDI|[TWM]|[TWD][TMD]. To fit

{WMHMD} or {WM}{D} in GENMOD, model statement uses
WxM MxD or WxM D, respectively.
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8. Logit Models for a Multinomial Response

Gneralizations of logistic regression for more than one response
category.

Abortion opinions given order: Yes, No, Undecided.
e Odds of consecutive categories (good for ordered categories)
log(m;/ms1), i=1,...,R—1,
equivalently,
log(pi/Diz1), i=1,...,R—1.

— odds of Yes to No,
— odds of No to Undecided.
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e Compare each level to a particular level;
log(m;/mg), i=1,...,R—1.

— odds of Yes to Undecided,
— odds of No to Undecided.

Rearrange order of levels to make more interesting.
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Both sets of models equivalent to a log-linear model.
Example:
log(miji/Mit1 ji) = Waj) + Wa(k), i=1,...,R—1,
and
log(mijr/MRjk) = Va(j) + V3k), i=1,...,R—1,
are equivalent. (w and v parameters depend on 3.)

Both are equivalent to

log(mijr) = was(jk) + Uia(ij) + Wi3(ik) -

e Pool response levels, compare each level to total of all others,

log( i ), 1=1,...,R.
Lhti M,

— odds of Yes to not Yes,
— odds of No to not No,
— odds of Undecided to not undecided (Decided).
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e Continuation ratios: usually for ordered categories

log(ernlz), 221,,R—1
Lh=i+1Mh
— odds of Yes to not Yes,

— odds of No to Undecided.

Rearrange ordering: Undecided, Yes, No.

— odds of Undecided to Decided.
— odds of Yes to No.

o Cumulative logits,

s
log(}{’lmh), 1=1,...,R—1.
Lh=i+1 Mh

Abortion opinions: Undecided, Yes, No.

— odds of Undecided to Decided.
— odds of not opposed to opposed.
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Table 7: Log-Linear Models for the Abortion Opinion Data

Model df G° A—q
[RSA][RSO][ROA][SOA] 10  6.12 —13.88
[RSA][RSOJ][ROA] 20  7.55 —32.45
[RSAJ[RSOJ[SOA] 20 1329 —26.71
[RSA][ROA][SOA] 12 16.62 —7.38
[RSA][RSO][OA] 30 14.43 —45.57
[RSAJ[ROA][SO] 22 1779 —26.21
[RSA][SOA][RO] 22 23.09 —20.91
[RSA][RO][SO][OA] 32 24.39 —39.61
[RSA][RO][SO] 42  87.54 3.54
[RSA][RO][OA] 34 34.41 —33.59
[RSA][SO][OA] 34 39.63 —28.37
[RSA][RO] 44 9706  9.06
[RSA][SO] 44 1019 139
[RSAJ[OA] 36 49.37 —22.63
[RSAJ[O] 46 1111 191

EXAMPLE Abortion data.

Opinions as a response variable, so [RSA] in all models.

Table 7 has fits for all ANOVA type logit models with [RSA].
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The best fitting model [RSA|[RSOJ[OA] determines consecutive
categories

log(mhﬂk/mhi%) = wll%S(hz') + wzl‘l(R) ’
1og(mh7;2k/mhi3k) = w%zs(hz') + w?‘l(k) ’
or fixed level
log(Mupitk/Mnizk) = vlllBS(hi) +r"il(/f)
l0g(Mniok/Mhisk) = Vks(hi) T Vi) -

First pair: odds of support to opposing legalized abortion; odds of
opposing to being undecided.

The second pair: odds of support to undecided; odds of opposing to
undecided.

Choosing “undecided” as the standard level is particularly
unintuitive. That undecided is the last category is no reason to
chose it as the standard.
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Table 8: Fitted Values for [RSA|[RSO][OA]

Age
Race Sex Opinion 18-25 26-35 36-45 46-55 56-65 65+
Support 100.1 137.2 117.5 75.62 70.58 80.10
Male Oppose  39.73 64.23 56.17 47.33 50.99 62.55
Undec. 1.21 259 536 5.0 543 835
White
Support 138.4 172.0 1524 101.8 101.7 110.7
Female Oppose 43.49 63.77 57.68 50.44 58.19 68.43
Undec. 2.16 4.18 896 876 10.08 14.86
Support 21.19 16.57 15.20 11.20 8.04 7.80
Male Oppose 854 7.88 738 T7.11 590 6.18
Undec. 1.27 154 342 3.69 3.06 4.02
Nonwhite
Support 21.40 26.20 19.98 16.38 13.64 12.40
Female Oppose 424  6.12 477 5.12 492 483
Undec. 0.36 0.68 1.25 1.50 144  1.77
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Table 9: Estimated Odds of Support versus Oppose

Legalized Abortion
(Based on the log-linear model [RSA][RSO][OA])
Age

Race Sex 1825 26-35 36-45 46-55 5H6-65 65+

White Male 2952 214 209 160 1.38 1.28
Female | 3.18 2.70 264 2.02 175 1.62

Nonwhite Male 248 210 206 157 1.36 1.26
Female | 5.05 4.28 419 320 277 2.57
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Continuation ratios with ordering: Undecided, Yes, No.
e 0dds of Undecided to Decided.

e 0dds of Yes to No.

Odds of Support versus Opposed
undecideds excluded
Age

Race Sex 18-25 26-35 36-45 46-50 56-60 65+

White Male 252 214 209 160 1.38 1.28
Female | 3.18 2.70 264 2.01 175 1.62
Nonwhite Male 248 211 206 1.57 1.36 1.26
Female | 5.08 4.31 422 322 279 2.58

Except for nonwhite females, the odds of support are essentially
identical to those obtained with undecideds included.
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Table 10: Estimated Expected Cell Counts with Undecideds Eliminated

Age
Race Sex Opinion 18-25 26-35 36-45 46-55 56-65 65+
Male  Support 100.2 137.7 117.0 75.62 70.22 80.27
Oppose  39.78 64.35 55.98 47.38 50.78 62.73
White
Female Support 139.2 172.2 152.3 101.6 101.7 109.9
Oppose 43.78 63.77 57.71 50.41 58.28 68.05
Male Support 20.67 16.96 1548 11.00 8.07 7.81
Oppose 833 804 752 7.00 593 6.19
Nonwhite
Female Support 20.84 25.17 20.21 16.78 13.98 12.97
Oppose 411 584 479 522 5.02 5.03

G? without undecideds is 9.104 on 15 df.

G* for [RSA]J[RO][SO][OA] is 11.77 on 16 df .

Difference is not large, so log(muiix/Muniok) = Ry + Sa) + A

may fit.
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Pool support and oppose categories: 2 x 2 X 2 X 6 table.
[RSA][RSO][OA] fitted

Odds of Being Decided on Abortion

Age

Race Sex 18-25 26-35 36-45 46-55 56-65 65+

White Male |116.79 78.52 32.67 24.34 22.26 16.95
Female | 83.43 56.08 23.34 17.38 15.90 12.11

Nonwhite Male 2376 1597 6.65 4.95 453 345
Female | 68.82 46.26 19.25 14.34 13.12 9.99

Odds decrease with age; older people are less likely to take a
position.

White males most likely to state a position.
Nonwhite males least likely to state a position.

White and nonwhite females have similar odds of being decided.

The G? for [RSA][RSO][OA] is 5.176 on 15 df. The G for the
smaller model [RSA][RO][SO][OA] is 12.71 on 16 df. The difference
is very large.

Model was [RSA][RSO][OA], equivalently
log (it /Mniar) = (RS)ni + Ay
G* = 9.104 on 15 df, same as [RSA][RSO][OA].
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Table of support versus oppose odds suggests:
(1) odds decrease as age increases (2) the odds for males are about
the same.

Fit models that incorporate these.
Data suggesting models, formal tests less appropriate.

G?’s still measure quality of model fit.
Linear trend in ages. Codes ages as k =1,2,...,6. Fit

log(mnitk/Muior) = (RS )ni + vk .

G? is 10.18 on 19 df, fits very well.

{RS}{A} has G* = 9.104 on 15 df,

Difference is G* = 10.18 — 9.104 = 1.08 on 19 — 15 = 4 df.
Incorporate males having same odds of support. Recode

(h,7) (1,1) (1,2) (2,1) (2,2)
g 1 2 3 4

log(mgix/mgar) = (RS), + A

Same model, same fit.
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Recode again

wm wf nm nf
g 1 2 3 4

f 1 2
e 1 1

log(mseik/mgear) = (RS) fe + Ai

Same model, same fit.

Now model
log(mfelk/mfegk) = (RS)f + A .

Male groups are distinguished by e, and e does not appear.

This has G? = 9.110 on 16 df.

Compare to {RS}{A}: G* =9.110 — 9.104 = .006 on 16 — 15 = 1
df .
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Incorporate both trend in ages and equality for males
log(mfeir/Mpear) = (RS) s + k.

G? = 10.19 on 20 df.

Only increased the G? by 10.19 — 9.10 = 1.009.

For
log(meir/myear) = p+ (RS); + 7k,
side condition (RS); =0

Parameter Estimate SE  Est./SE

0 1071 1126 951
(RSN 0 — —
(RS), 2344 09265  2.53
(RS); 6998 2166  3.23

y —.1410 02674 —5.27

All terms seem important.

With side condition, (RS)y actually estimates (RS)s — (RS);.
z score 2.53 indicates white females differ from males.

(RS)3 estimates difference between nonwhite females and males.
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The estimated odds of support are

Age
Race-Sex 1825 26-35 36-45 46-55 56-65 65+
Male 2.535 2.201 1.912 1.661 1.442 1.253

White female 3.204 2.783 2.417 2.099 1.823 1.583
Nonwhite female | 5.103 4.432 3.850 3.343 2.904 2.522

Same general characteristics as discussed earlier.

Transform into (conditional) probabilities of support.
(Easier to interpret than odds.)

Estimated probability that white female between 46 and 55 years
supports legalized abortion

2.099/(1 + 2.099) = .677.

Odds about 2, probability about twice as great for support than
oppose.
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SOME EQUIVALENCES

log(m fe1k/Mfear) = (RS)ni + vk

corresponds to

log(mpijr) = (RS A)nik + (RSO)pij + ik

log(mfe1r/Myear) = (RS)y + Ay

corresponds to

log(m fejr) = (RSA) fer + (RSO) 45 + (OA) i1

log(m fe1r/Mfear) = (RS)f + vk

corresponds to

log(myejr) = (RSA)fer + (RSO)s; + ik

Asmussen and Edwards (1983) allow fitting models that do not
always include a term for the interactions among the explanatory
factors. They argue that log-linear models are appropriate for
response factors as long as the model allows for collapsing
over the response factors onto the explanatory factors.
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9. Logistic Discrimination and Allocation

How can you tell Swedes and Italians apart?
How can you tell different species of irises apart?

How can you identify people who are likely to have a heart attack
or commit a crime?

Collect data on individuals who in each populations.
Discriminate between the populations.

To identify Swedes and Italians, data on height, hair color, eye
color, and skin complexion?

To identify irises, measure petal length and width and sepal length
and width.
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Typically, data on several variables combined to identify the
likelihood that someone belongs to a particular population.

Independent samples from each population.
Use samples to characterize the populations (discrimination).

Allocation identifies population for an individual when only variable
values are known.

Typically
Discrimination data arises from a retrospective study.
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Table 11: Cushing’s Syndrome Data

Case Type TETRA PREG |Case Type TETRA PREG
1 A 3.1 11.70 | 12 B 15.4 3.60
2 A 3.0 1.30 | 13 B 7.7 1.60
3 A 1.9 0.10 | 14 B 6.5 0.40
4 A 3.8 0.04 | 15 B 5.7 0.40
5 A 4.1 1.10 | 16 B 13.6 1.60
6 A 1.9 040 | 17 C 10.2 6.40
7 B 8.3 1.00 | 18 C 9.2 7.90
8 B 3.8 0.20 | 19 C 9.6 3.10
9 B 3.9 0.60 | 20 C 53.8 2.50
10 B 7.8 1.20 | 21 C 15.8 7.60
11 B 9.1 0.60

EXAMPLE 21 people with Cushing’s syndrome (Aitchison and
Dunsmore, 1975).

Overproduction of cortisol by the adrenal cortex.
A—adenoma

B —bilateral hyperplasia
C—carcinoma

Data:
TETRA — Tetrahydrocortisone

and
PREG — Pregnanetriol.

26



Figure 1: Cushing’s Syndrome Data

Data determine 3 x 21 table

Case
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TL =log(TETRA)
PL = log(PREG)
Independent samples from three populations: A, B, and C.

Product-multinomial sampling.
Observations are intrinsically discrete.

Observations only within 4-.05 mg and 4-.005 mg of respective
nominal values.

Categories are all observable combinations of T'L and PL.
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Huge number of possible categories, say, S.

Sparsely sampled 3 x .S table.

Most column totals are 0, so MLEs do not exist because
estimated column totals> 0

must equal
observed column totals= 0.

Analysis conducted on observed 3 x 21 table.
Works well even though sampling scheme is clearly wrong.

True product-multinomial sampling allows for col. totals of 0,
which cannot happen in 3 x 21 table.

Fit
log(mi;) = a; + B + (T L); + 72 (PL);,
i: 1,2,37j: 1,721

Similar to log-linear version of logit /logistic models.

B; for each combination of variables.

log(myj/maj) = (a1 — ag) + (y11 — 712)(T'L); + (Y21 — Y22)(PL);

or
log(m1/ma;) = a4 01(T'L);j + 05(PL); .

Looks like a logistic regression model but is not,

log (mlj) =# log (2?1]) :
ma; D2;
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p1j/p2; is NOT odds of A to B.

Probabilities are from different populations.

p1j/Do; s a likelihood ratio.

pi; 1s the likelihood within population ¢ of observing category j.

Estimate of “log likelihood ratio” is

log (Iflj) = log (77:111j/n1.) = log (belj) — log (n_1> :
D2; mgj/?’bg. may; No.

Asymp. variances more complicated than logistic regression.

Although odds depend on the sampling scheme, odds ratios do
not.

Odds ratios handled exactly as in logistic regression.
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log(mij) = Q; + Bj + ')/1i<TL)j + 7273(PL>J' g
G? = 12.30 on 36 df.

G? cannot be compared to a x?, but can test reduced models.

log(m;) = a; + B + vu(TL);
G? = 21.34 on 38 df

log(mij) =y + ﬁj + ’YQi(PL)j
G? = 37.23 on 38 df

Neither reduced model provides an adequate fit.

(x? tests of model comparisons are valid.)

Use
log(m;) = a; + Bj + v1(TL); + v2(PL);

in remainder.
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Table 12: Estimated Probabilities: p;; = m;;/n;..

Group Group

Case A B C |Case A B C
1 .1485 .0012 .0195| 12 .0000 .0295 .1411
2 .1644 .0014 .0000| 13 .0000 .0966 .0068
3 .1667 .0000 .0000| 14 .0001 .0999 .0000
4 0842 .0495 .0000| 15 .0009 .0995 .0000
5 .0722 .0565 .0003| 16 .0000 .0907 .0185
6 .1667 .0000 .0000| 17 .0000 .0102 .1797
7 .0000 .0993 .0015| 18 .0000 .0060 .1879
8 .1003 .0398 .0000| 19 .0000 .0634 .0733
9 .0960 .0424 .0000| 20 .0000 .0131 .1738
10 .0000 .0987 .0025| 21 .0000 .0026 .1948
11 .0000 .0999 .0003

Table 12 contains estimated probabilities for the three populations.
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Bayes theorem .
Py (i)

7(t|Data) = SOk

Two choices of prior probabilities

e probabilities proportional to sample sizes 7 (i) = n;./n..

e equal probabilities m(¢) = 3.

Prior probabilities proportional to sample sizes are rarely
appropriate, but relate simply to standard output,

so they get more prominence than they deserve.
Proportional probabilities are m;; values.

Equal probabilities: divide p;; in Table 12 by the sum of the three
probabilities for each case.
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Table 13: Probabilities of Classification

Proportional Equal Prior
Prior Probabilities  Probabilities
Case Group A B C A B C(C
1 A 89 .01 10 | .88 .01 .12
2 A 99 .01 00 | 99 .01 .00
3 A 100 .00 .00 |1.00 .00 .00
4 A o0 b0 .00 | .63 .37 .00
5 * A 43 57 .00 | 56 .44 .00
6 A 100 .00 .00 [1.00 .00 .00
7 B 00 99 .01 00 .99 .01
8 ** B 60 40 .00 | .72 28 .00
9 ** B bH8 42 .00 | 69 .31 .00
10 B 00 99 .01 00 .97 .03
11 B 00 1.00 .00 | .00 1.00 .00
12 * B 00 29 .71 00 .17 .83
13 B 00 97 .03 | .00 .93 .07
14 B .00 1.00 .00 | .00 1.00 .00
15 B 01 99 .00 | .01 .99 .00
16 B 00 91 09 | .00 .83 .17
17 C 00 .10 .90 | .00 .05 .95
18 C 00 .06 .94 | .00 .03 97
19 * ( 00 63 37 | .00 .46 .54
20 C 00 .13 .87 | .00 .07 .93
21 C 00 .03 .97 | .00 .01 .99
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Table 14: Summary of Classifications

Proportional Equal Prior

Prior Probabilities  Probabilities

Allocated True Group True Group
to Group| A B C A B C(C

A 5 2 0 6 2 0

B 1 7 1 0 7 0

C 0 1 4 0 1 5

Allocation

Model includes separate (3, for each case.
Not clear how to use model to allocate future cases.

Begin with log-linear model, develop logit models, work back to an
allocation model.
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log(mij) = + Bj +71(TL)j + 72i(PL);
1=1,2,3, 5 =1,...,21 has 30 parameters, only 9 of interest.

Of these nine, only six are estimable.

Log probability ratio of type A relative to type B

log(p1;/p2;)
= log(m;/my;) — log(n1./ns.)
= (a1 —a2) + (y11 — M12)(T'L); + (y21 — v22)(PL); — log(ny./na.) -

The log-likelihoods of A relative to C' are

log(p1;/P3;)
= log(my;/ms;) — log(ni./ns.)
= (a1 —as) + (v — 13)(TL); + (v21 — 723)(PL); — log(n1./ms.) -

These models eliminate B; which we won’t know for a new
case.
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Estimated parameters:

Par. Est. |Par. Est. |Par. Est.
071 0.0 Y11 —16.29 Y21 —3.359
ay —20.06| y12 —1.865| 99 —3.604
as —2891| v3 0.0 Y23 0.0

Values of 0 are side conditions.
New case with T'L and PL,
log(p1/p2) = 20.06+(—16.29+1.865)T L+(—3.359+3.604) P L—log(6/10)
and
log(p1/p3) = 28.91 — 16.29(T'L) — 3.359(PL) — log(6/5) .

TETRA = 4.1, PREG = 1.10, then log(p;/p2) = .24069 and
log(p1/ps) = 5.4226. The likelihood ratios are

Pr/Pe = 1.2721
Pi/Ps = 226.45

and by division,
Po/P3 = 226.45/1.2721 = 178.01..

Type A is a bit more likely than B.
Both are much more likely than type C

66



Estimated posterior probabilities for a new case.

Posterior odds are
7(1|Data) mr(l) _

= =0
#(2|Data) ~ pam(2) ~ °
and
7(1|Data)  pi7(l) _ O
#(3|Data)  psw(3)
Also,

#(1|Data) + 7(2|Data) + 7(3|Data) = 1.

Three equations in three unknowns,

solve for 7(i|Data), i = 1,2, 3.

1 117" 0,0
7(1|Data) = {1+A+A] =3
02 03 0203+03+02
1 S B T O
7(2|Data) = — |1+ —+ = S —
Os | 0O, O3] 09203 + O3 + Oy
1 1 17! O
#(3|Data) = — |14+ <+ | =—<x—o— .
O;s | Oy Os] 0503 + O3 + Oy
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TETRA = 4.10 and PREG = 1.10.
For 7(i) = n;./n.

7w(1|Data) = .433

7(2|Data) = .565

7(3|Data) = .002.
Assuming (i) = 1/3

7w(1|Data) = .560

7w(2|Data) = .438

7(3|Data) = .002.

Values of TETRA and PREG are identical to those for case 5; thus,
7(¢|Data)’s are identical to those listed in Table 13 for case 5.
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It is easy to just fit log-linear or logistic models to
discrimination data to get my;’s or pi;’s, respectively.

If you treat these values as estimated probabilities for being in
the various populations, you are doing a Bayesian analysis
with prior probabilities proportional to sample sizes.

This is rarely an appropriate methodology.
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