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Preface

“But to us, probability is the very guide of life.”
Joseph Butler (1736). The Analogy of Religion, Natural and Revealed, to the

Constitution and Course of Nature, Introduction.
https://www.loc.gov/resource/dcmsiabooks.

analogyofreligio00butl_1/?sp=41

“What is important is to spread confusion, not eliminate it.” Salvidor Dali.
Quoted on the PUZZLES page of the Albuquerque Journal, October 9, 2024.

Normally, I wouldn’t put anything this incomplete on the internet but I
wanted to make parts of it available to my Advanced Inference Class, and once
it is up, you have lost control.

Seymour Geisser was a mentor to Wes Johnson and me. He was Wes’s Ph.D.
advisor. Near the end of his life, Seymour was finishing his 2005 book Modes of
Parametric Statistical Inference and needed some help. Seymour asked Wes and
Wes asked me. I had quite a few ideas for the book but then I discovered that Sey-
mour hated anyone changing his prose. That was the end of my direct involvement.
The first idea for this book was to revisit Seymour’s. (So far, that seems only to
occur in Chapter 1.)

Thinking about what Seymour was doing was the inspiration for me to think
about what I had to say about statistical inference. And much of what I have to say
is inspired by Seymour’s work as well as the work of my other professors at Min-
nesota, notably Christopher Bingham, R. Dennis Cook, Somesh Das Gupta, Mor-
ris L. Eaton, Stephen E. Fienberg, Narish Jain, F. Kinley Larntz, Frank B. Martin,
Stephen Orey, William Suderth, and Sanford Weisberg. No one had a greater influ-
ence on my career than my advisor, Donald A. Berry. I simply would not be where
I am today if Don had not taken me under his wing.

The material in the beginning of this book is what I (try to) cover in the first
semester of a one year course on Advanced Statistical Inference. The other semester
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viii Preface

I use Ferguson (1996) and here I have felt free to reference (but not prove) many
results from his book. In addition to requiring a first course in Statistical Inference,
such as Casella and Berger (?), the course is for students who have had at least
Advanced Calculus and hopefully some Introduction to Analysis. The course is at
least as much about introducing some mathematical rigor into their studies as it is
about teaching statistical inference. (Rigor also occurs in our Linear Models class
but there it is in linear algebra and here it is in analysis.) I try to introduce just
enough measure theory for students to get an idea of its value (and to facility my
presentations). But I get tired of doing analysis, so occasionally I like to teach some
inference in the advanced inference course. The end of the book involves topics that
are of interest to me.

Many years ago I went to a JSM (Joint Statistical Meeting) and heard Brian
Joiner make the point that everybody learns from examples to generalities/theory.
Ever since I have tried, with varying amounts of success, to incorporate this dictum
into my books. (Plane Answers’ first edition preceded that experience.) This book
has four chapters of example based discussion before it begins the theory in Chapter
5. There are only three chapters of theory but they are tied to extensive appendices on
technical material. The first appendix merely reviews basic (non-measure theoretic)
ideas of multivariate distributions. The second briefly introduces ideas of measure
theory, measure theoretic probability, and convergence. Appendix C introduces the
measure theoretic approaches to conditional probability and conditional expecta-
tion. Appendix D adds a little depth (very little) to the discussion of measure theory
and probability. Appendix E introduces the concept of identifiability. Appendix F
merely reviews concepts of multivariate differentiation. Chapters 8 through 13 are
me being self-indulgent and tossing in things of personal interest to me. (They don’t
actually get covered in the class.)

References to PA and ALM are to my books Plane Answers and Advanced Linear
Modeling.



Preface ix

Recommended Additional Reading
Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Academic Press,

New York.
I would use this as a text if it were not out of print! I may have borrowed even more than I

realized from this.
Rao, C. R. (1973). Linear Statistical Inference and Its Applications, Second Edition. John Wiley

and Sons, New York.
Covers almost everything I want to cover. Not bad to read but I have found it impossible to

teach out of.
Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University Press, Princeton.

Excellent! All the analysis you need to do math stat? Limited because of age.
Lehmann, E. L. (1983) Theory of Point Estimation. John Wiley and Sons, New York. (Now

Lehmann and Casella.)
Lehmann, E. L. (1986) Testing Statistical Hypotheses, Second Edition. John Wiley and Sons, New

York. (Now Lehmann and Romano.)
Berger, J. O. (1993). Statistical Decision Theory and Bayesian Analysis. Revised Second Edition.

Springer-Verlag, New York.
We used to teach Advanced Inference out of above three books.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. Chapman and Hall, London.
More profound on ideas, less on math.

Manoukian, E. B. (1986), Modern Concepts and Theorems of Mathematical Statistics. Springer-
Verlag, New York.

SHORT! Usually the first book off my shelf. Statements, not proofs or explanations.
Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis, Third Edition. John

Wiley and Sons, New York.
For our purposes, a source for multivariate normal only. An alternative to PA for this.

Wilks, Mathematical Statistics; Zacks, Theory of Statistical Inference.
Both old but thorough. Wilks is great for order statistics and distributions related to discrete

data.
Wasserman, Larry (2004). All of Statistics. Springer, New York.

Statistical Inference
Cox, D.R. (2006). Principles of Statistical Inference. Cambridge University Press, Cambridge.
Fisher, R.A. (1956). Statistical Methods and Scientific Inference, Third Edition, 1973. Hafner

Press, New York.
Geisser, S. (1993). Modes of Parametric Statistical Inference. Wiley, New York.

Bayesian Books
de Finetti, B. (1974, 1975). Theory of Probability, Vols. 1 and 2. John Wiley and Sons, New York.
Jeffreys, H. (1961). Theory of Probability, Third Edition. Oxford University Press, London.
Savage, L. J. (1954). The Foundations of Statistics. John Wiley and Sons, New York.
DeGroot, M. H. (1970). Optimal Statistical Decisions. McGraw-Hill, New York.

First three are foundational. There are now TONS of other books, see mine for other references.

Large Sample Theory Books
Ferguson, Thomas S. (1996). A Course in Large Sample Theory. Chapman and Hall, New York. I

teach out of this. (Need I say more?)
Lehmann, E. L. (1999) Elements of Large-Sample Theory. Springer.
Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics, Wiley, (paperback,

2001)
I haven’t read either of the last two, but I hear they are good.



x Preface

Probability and Measure Theory Books
Ash, Robert B. and Doleans-Dade, Catherine A. (2000). Probability and Measure Theory, Second

Edition. Academic Press, San Diego.
I studied the first edition of this while in grad school and continue to use it as a reference.

Billingsley, Patrick (2012). Probability and Measure, Fourth Edition. Wiley, New York.
I haven’t read this, but I hear it is good. There are lots of others. There are also lots of good

books on probability alone.
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Chapter 1
Overview

1.1 Early Examples

The 12th century theologian, physician, and philosopher Maimonides used proba-
bility to address a temple tax problem associated with women giving birth to boys
when the birth order is unknown, see Geisser (2005) and Rabinovitch (1970).

One of the earliest uses of statistical testing was made by Arbuthnot (1710). He
had available the births from London for 82 years. Every year there were more male
births than females. Assuming that yearly births are independent and the probability
of more males is 1/2, he calculated the chance of getting all 82 years with more
males as (0.5)82. This being a ridiculously small probability, he concluded that boys
are born more often.

In the last half of the eighteenth century, Bayes, Price, and Laplace used what
we now call Bayesian estimation and Daniel Bernoulli used the idea of maximum
likelihood estimation, cf. Stigler (2007).

1.2 Testing

One of the famous controversies in statistics is the dispute between Fisher and
Neyman-Pearson about the proper way to conduct a test. Hubbard and Bayarri
(2003) give an excellent account of the issues involved in the controversy. Another
famous controversy is between Fisher and almost all Bayesians. In fact, Fienberg
(2006) argues that Fisher was responsible for giving Bayesians their name. Fisher
(1956) discusses one side of these controversies. Berger’s Fisher lecture attempted
to create a consensus about testing, see Berger (2003).

The Fisherian approach is referred to as significance testing. The Neyman-
Pearson approach is called hypothesis testing. The Bayesian approach to testing
is an alternative to Neyman and Pearson’s hypothesis testing. A quick review and
comparison of these approaches is given in Christensen (2005). Here we cover much
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2 1 Overview

of the same material but go into more depth with Chapter 2 examining significance
testing, Chapter 3 discussing hypothesis testing, and Chapter 4 drawing compar-
isons between the methods. These three chapters try to introduce the material with
a maximum of intuition and a minimum of theory.

1.3 Decision Theory

Chapter 5 introduces decision theory. Chapters 6 and 7 particularize decision theory
into the subjects of estimation and hypothesis testing, respectively. My first course
in statistical inference was out of Lindgren (1968). That edition of Lindgren’s book
took a decision theoretic approach to statistical inference and I have never been able
to view statistical inference (other than significance testing) except through the lens
of decision theory.

von Neumann and Morgenstern (1944) developed game theory and in particu-
lar the theory of two person zero sum games. (In a zero sum game whatever you
win, I lose.) Wald (1950) recognized that Statistics involved playing a game with
god. Blackwell and Girshick (1954) presented the early definitive work on decision
theory. Raiffa and Schlaiffer (1961) systematized the Bayesian approach. Ferguson
(1966), DeGroot (1970), and more recently Parmigiani and Inoue (2009) all make
notable contributions.

The Likelihood Principal is that whenever two likelihoods are proportional, all
statistical inference should be identical, cf. Barnard (1949). Berger and Wolpert
(1984) have written a fascinating book on the subject. Royball (1997) has argued
for basing evidentiary conclusions on relative values of the likelihood function. Hill
(1987) questions the validity of the likelihood principal.

1.4 Some Ideas about Inference

Chapters 8 through 11 contain various ideas I have had about statistical inference.

1.5 The End

The last two chapters are easy going. The first of these contains edited reprints of
my JASA reviews for two books on statistical inference by great statisticians: D. R
Cox and Erich Lehmann. The last chapter is as a reprint. It is a short biography of
Seymour Geisser.
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1.6 The Bitter End

The absolute end of the book is a series of appendices that cover multivariate dis-
tributions, an introduction to measure theory and convergence, a discussion of how
the Radon-Nikodym theorem provides the basis for measure theoretic conditional
probability, some additional detail on measure theory, and finally a summary of
multivariate differentiation.





Chapter 2
Significance Tests

In his seminal book The Design of Experiments, R.A. Fisher (1935) illustrated sig-
nificance testing with the example of “The Lady Tasting Tea,” cf. also Salsburg
(2001). Briefly, a woman claimed that she could tell the difference between whether
milk was added to her tea or if tea was added to her milk. Fisher set up an experiment
that allowed him to test that she could not.

Fisher (1935, p.14) says, “In order to assert that a natural phenomenon is exper-
imentally demonstrable we need, not an isolated record, but a reliable method of
procedure. In relation to the test of significance, we may say that a phenomenon is
experimentally demonstrable when we know how to conduct an experiment which
will rarely fail to give us a statistically significant result.”

The fundamental idea of significance testing is to extend the idea of a proof by
contradiction into probabilistic settings.

Fisher (1925, p.80) says, “The term Goodness of Fit has caused some to fall into
the fallacy that the higher the value of P the more satisfactorily is the hypothesis
verified. Values over .999 have sometimes been reported which, if the hypotheses
were true, would only occur in only once in a thousand trials. ... In these cases the
hypothesis considered is as definitely disproved as if P had been.001.”

2.1 Generalities

The idea of a proof by contradiction is that you start with a collection of (antecedent)
statements, you then work from those statements to a conclusion that cannot possi-
bly be true, i.e., a contradiction, so that you can conclude that something must be
wrong with the original statements. For example if I state that “all women have blue
eyes” and that “Sharon has brown eyes” but then I observe the data that “Sharon
is a woman,” it follows that either the statement that “all women have blue eyes”
and/or the statement that “Sharon has brown eyes” must be false. Ideally, I would
know that all but one of the antecedent statements are correct, so a contradiction
would tell me that the final statement must be wrong. Since I happen to know that

5



6 2 Significance Tests

the antecedent statement “Sharon has brown eyes” is true, it must be the statement
“all women have blue eyes” that is false. I have proven by contradiction that “not all
women have blue eyes,” but to do that I needed to know that both of the statements
“Sharon has brown eyes” and “Sharon is a woman” are true.

In significance testing we collect data that we take to be true (“Sharon is a
woman”) but we rarely have the luxury of knowing that all but one of our antecedent
statements are true. In practice, we do our best to validate all but one of the state-
ments (we look at Sharon’s eyes and see that they are brown) so that we can have
some idea which antecedent statement is untrue.

In a significance test, we start with a probability model for some data, we then
observe data that are supposed to be generated by the model, and if the data are
impossible under the model, we have a contradiction, so something about the model
must be wrong. The extension of proof by contradiction that is fundamental to sig-
nificance testing is that, if the data are merely weird (unexpected) under the model,
that gives us a philosophical basis for questioning the validity of the model. In the
Lady Tasting Tea experiment, Fisher found weird data suggesting that something
might be wrong with his model, but he designed his experiment so that the only
thing that could possibly be wrong was the assumption that the lady was incapable
of telling the difference.

EXAMPLE 2.1.1. One observation from a known discrete distribution.
Consider the probability model for a random variable y

r 1 2 3 4
Pr(y = r) 0.980 0.005 0.005 0.010

If we take an observation, supposedly from this distribution, and see anything other
than y equal to 1, 2, 3, or 4, we have an absolute contradiction of the model. The
model must be wrong. More subtly, if we observe y equal to 2, 3, or 4, we have
seen something pretty weird because 98% of the time we would expect to see y = 1.
Seeing anything other than y= 1 makes us suspect the validity of this model for such
datum. It isn’t that 2, 3, or 4 cannot happen, it is merely that they are so unlikely to
happen that seeing them makes us suspicious.

Note that we have used the probability distribution itself to determine which data
values seem weird and which do not. Obviously, observations with low probabilities
are those least likely to occur, so they are considered weird. In this example, the
weirdest observations are y = 2,3 followed by y = 4. 2

The crux of significance testing is that you need somehow to determine how
weird the data are. Arbuthnot (1710) found it suspicious that for 82 years in a row,
more boys were born in London than girls. Suspicious of what? The idea that male
and female births are equally likely. Many of us would find it suspicious if males
were more common for merely 10 years in a row. If birth sex has a probability
model similar to coin flipping, each year the probability of more males should be
0.5 and outcomes should be independent. Under this model the probability of more
males 10 years in a row is (0.5)10 .

= 0.001. Pretty weird data, right? But no weirder
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than seeing ten years with more boys the first year then alternating with girls,
i.e. (B,G,B,G,B,G,B,G,B,G), and no weirder than any other specific sequence,
say (B,B,G,B,B,G,B,G,G,G). What seems relevant here is the total number of
years with more boys born, not the particular pattern of which years have more boys
and which have more girls.

Therein lies the rub of significance testing. To test a probability model you need
to summarize the observed data into a test statistic and then you need to determine
the relative weirdness of the possible values of the test statistic as determined by the
model. Typically, we would choose a test statistic that will be sensitive to the kinds
of things that we think most likely to go wrong with the model (e.g, one sex might
be born more often than the other). If the distribution of the test statistic is discrete,
it seems pretty clear that a good measure of weirdness is having a small probability.
If the distribution of the test statistic is continuous, it seems that a good measure of
weirdness is having a small probability density, but we will see later that there are
complications associated with using densities.

For our birth sex problem, the coin flipping model implies that the probabil-
ity distribution for the number of times boys exceed girls in 10 years is binomial,
specifically, Bin(10,0.5). The natural measure of weirdness for the outcomes in this
model is the probability of the outcome. The smaller the probability, the weirder the
outcome.

Traditionally, a P value is employed to quantify the idea of weirdness. The P
value is defined as the probability of seeing something as weird or weirder than you
actually saw. It measures how consistent the data are with the hypothesized model.
If there is little consistency with the model, that provides evidence that something is
wrong with the model. We won’t know what in particular is wrong with the model
unless we can validate all of the assumptions in the model except one.

EXAMPLE 2.1.1 CONTINUED.
One observation from a known discrete distribution.
In this example, the weirdest observations are 2 and 3 and they are equally weird.
The probability of seeing something as weird as seeing a 2 is the probability of
seeing a 2 or 3, which is 0.005+0.005 = 0.01. Similarly, the P value when observ-
ing 3 is also 0.01. If you see y = 4, both 2 and 3 are weirder, so the probability of
seeing something as weird or weirder than y = 4 is Pr(y = 2 or 3 or 4) = 0.02. The
following table presents all of the possible P values for this model.

r 1 2 3 4
Pr(y = r) 0.980 0.005 0.005 0.010

P value 1.00 0.01 0.01 0.02

What we expect to see is y = 1 and, in this model, seeing it is fully consistent with
the model as illustrated by having a P value of 1.

Actually, the weirdest things to see here are values of y other than 1, 2, 3, 4
because such values have (collectively) zero probability. Observing any such data
gives a P value of 0, and a complete contradiction of the model. Moreover, their
collective probability of 0 adds nothing to the P values for observing 1, 2, 3, 4. 2
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Anything with a P value of 0 is something that cannot happen and gives an abso-
lute contradiction to the assumed probability model. In practice, one rarely obtains
P values of 0 but often encounters P values being rounded off to 0.

EXAMPLE 2.1.2. Birth sex P values.
Our coin flipping model for birth sex implies the Bin(10,0.5) model for the number
of years in which boys births exceed girl births. The probability distribution and
possible P values are given below.

r 0 1 2 3 4 5 6 7 8 9 10
Pr(y = r) .001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001

P value .002 .022 .110 .344 .754 1.000 .754 .344 .110 .022 .002

Note that seeing all girls is just as weird as seeing all boys, so the P for seeing
10 out of 10 boys is twice the probability of that outcome. The datum that is most
consistent with the model is seeing 5 boys. If we do see 10 out of 10 boys, that
suggests that the Bin(10,0.5) model is wrong but does not itself suggest why the
model is wrong or what about the model is wrong. 2

In a significance test there is only one probability model being tested so there
is no real need to give that model a label. But historically, significance tests have
been confounded with the hypothesis tests discussed in the next chapter, and it has
become common to refer to the probability model being tested as the “null model”
or as the “null hypothesis.” In many situations it makes sense to think of there being
an overall model for the data and a specific claim about that model (called the null
hypothesis) which, together, define the null model. If the data are inconsistent with
the null model, we do not know if (the data are just weird or if) the overall model is
wrong or if the null hypothesis is wrong. In practice, we do our best to validate the
overall model, so that it makes some sense to claim that the null hypothesis may be
wrong (cf. the Duhem-Quine thesis).

In significance testing, the P value is the fundamental concept but it can be useful
to discuss α level tests. Technically, an α level is simply a decision rule as to which
P values will cause one to reject the null model. In other words, it is merely a
decision point as to how weird the data must be before rejecting the null model. In
an α level significance test, if the P value is less than or equal to α , the null model
is rejected. Implicitly, an α level determines what data would cause one to reject the
null model and what data will not cause rejection. The α level rejection region is
defined as the set of all data points that have a P value less than or equal to α .

Note that in Example 2.1.1, an α = 0.01 test is identical to an α = 0.0125 test.
Both reject when observing either r = 2 or 3. Moreover, the probability of rejecting
an α = 0.0125 test when the null model is true is not 0.0125, it is 0.01. However,
significance testing is not interested in what the probability of rejecting the null
hypothesis will be, it is interested in what the probability was of seeing weird data.

If an α level is chosen, for any semblance of a contradiction to occur, the α level
must be small. On the other hand, making α too small will defeat the purpose of
the test, making it extremely difficult to reject the test for any reason. A reasonable
view would be that an α level should never be chosen; that a scientist should simply
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evaluate the evidence embodied in the P value. (But that would not allow us to define
confidence regions associated with significance tests.)

EXAMPLE 2.1.3. Fisher’s Exact Test for 2×2 Tables.
Consider the following subset of the knee injury data of Christensen (1997, Exam-
ple 2.3.1). The two factors are surgical outcome: either excellent (E) or good (G),
and the source of injury to the knee: either the knee was subject to a direct blow
(Direct) or the knee was also twisted (Both).

Result
Injury E G Total
Direct 3 2 5
Both 7 1 8
Total 10 3 13

We want to test whether the probability of an excellent outcome (given that the
outcome is E or G) is the same for a direct as for both. Fisher’s Exact Test can be
based on the conditional distribution of the number y1 of E outcomes for Direct
injuries, given that the total number of E outcomes was 10, the number of Direct
injuries was 5, and the number of Both injuries was 8. We will show later that the
distribution of y1 and the P values are given by

r 0 1 2 3 4 5
Pr(y1 = r) 0 0 10/286 80/286 140/286 56/286

P value 0 0 10/286 = 0.035 146/286 = 0.510 1 66/286 = 0.231

Since there are 5 Direct injuries, the possible values for the number of E outcomes,
say r, is 0 to 5. However, we are conditioning on having seen a total of 10 E out-
comes, and it is impossible to get a total of 10 Es from samples of 5 Directs and 8
Boths without having at least 2 of the Direct injuries being Es. Given the numbers
of Direct and Both injuries (both numbers treated as fixed) and the total number of
excellent outcomes, the only outcome that would constitute any reasonable evidence
that something is wrong with the null model (has a small P value) is seeing y1 = 2,
which we did not see. (I did all these computations by hand except for finding the
decimal P values.) 2

We now derive the conditional distribution. The assumed model for the data is
that independently yi ∼ Bin(Ni, pi), i = 1,2. The null hypothesis is p1 = p2 ≡ p, so
under the null model y1 and y2 are independent yi ∼ Bin(Ni, p). Write the 2×2 table
as

Success Failure Total
Group 1 y1 N1 − y1 N1
Group 2 y2 N2 − y2 N2
Total t N1 +N2 − t N1 +N2

Note that under the null model t ≡ y1 + y2 ∼ Bin(N1 +N2, p), so
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Pr(t = s) =
(

N1 +N2

s

)
ps(1− p)N1+N2−s.

Because y1 and y2 are independent,

Pr(y1 = r and t = s) = Pr(y1 = r and y2 = s− r)

= Pr(y1 = r)Pr(y2 = s− r)

=

(
N1

r

)
pr(1− p)N1−r ×

(
N2

s− r

)
ps−r(1− p)N2−s+r

=

(
N1

r

)(
N2

s− r

)
ps(1− p)N1+N2−s.

It follows that

Pr(y1 = r|t = s) =
Pr(y1 = r and t = s)

Pr(t = s)
=

(
N1

r

)(
N2

t − r

)/(
N1 +N2

t

)
,

for allowable r. This is known as the hypergeometric distribution. Remember that
N1 and N2 are also being treated as fixed and known here. The same distribution
would obtain if we had a multinomial sample of the four categories in the table and
conditioned on one column total and one row total.

Unlike most tests for categorical data, this test does not depend on any large
sample approximations. It gives exact probabilities for any sample sizes N1 and N2.
However, the computations become difficult with large samples.

Exercise 2.1. Show that the same distribution results if the 4 values in the table
are multinomial with Success/Failure independent of Groups when conditioning on
one row total and one column total.

EXAMPLE 2.1.3. Fisher’s Exact Test for Twins.
Fisher (1925, Section 20.1, Example 13.1) examined data from Lange on 30 people
who had been convicted of a crime that were twins. The data are whether their fellow
twin had also been convicted of a crime.

Result
Twins Convicted Not Total
Identical 10 3 13
Fraternal 2 15 17
Total 12 18 30

As just demonstrated, the probability distribution for Fisher’s Exact Test is

Pr(y1 = r) =
(

13
r

)(
17

12− r

)/(
30
12

)
,
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where we have suppressed in the notation that the probability is conditional on see-
ing 12 total convictions, 13 identical twins, and 17 fraternal twins.

The reason for addressing this example is because Fisher argued that the only
more extreme tables are

Result Result
Twins Convicted Not Total Twins Convicted Not Total
Identical 11 2 13 Identical 12 1 13
Fraternal 1 16 17 Fraternal 0 15 17
Total 12 18 30 Total 12 18 30

so Fisher computed a P value as the sum of the probabilities of these three tables
giving

619
1330665

= 0.000465.

This looks like some kind of one-sided test rather than a significance test.
Indeed, it is not a significance test. The probability of seeing what we saw is

Pr(y1 = 10) =
1(30
12

)(13
10

)(
17
2

)
=

1(30
12

) 13 ·12 ·11
3 ·2

17 ·16
2

=
1(30
12

)17 ·13 ·16 ·11.

The extreme table in the other direction is

Result
Twins Convicted Not Total
Identical 0 13 13
Fraternal 12 5 17
Total 12 18 30

which has probability

Pr(y1 = 0) =
1(30
12

)(13
0

)(
17
12

)
=

1(30
12

) 17 ·16 ·15 ·14 ·13
5 ·4 ·3 ·2

=
1(30
12

)17 ·13 ·2 ·14.

Obviously, 16 · 11 > 2 · 14, so Pr(y1 = 10) > Pr(y1 = 0) and Pr(y1 = 0) should be
added in when computing the P value. It turns out that the second most extreme
case in the other direction has Pr(y1 = 1) > Pr(y1 = 10), so it does not need to be
added to P. I used R to compute the distribution as shown below and obviously
Pr(y1 = 10)< Pr(y1 = r), r = 1, . . . ,9.

r Pr(y1 = r) r Pr(y1 = r)
0 0.00007154318 7 0.1227681
1 0.001860123 8 0.03541387
2 0.01753830 9 0.005621250
3 0.08038387 10 0.0004497000
4 0.2009597 11 0.00001533068
5 0.2893819 12 0.0000001503008
6 0.2455362



12 2 Significance Tests

The significance test P value is 0.000472, not a whole lot different from Fisher’s
0.000465. 2

EXAMPLE 2.1.4. Exact Tests for Contingency Tables.
With modern computational tools it is possible to extend Fisher’s exact test to big-
ger tables than 2× 2. The complete knee injury data from Christensen (1997, Ex-
ample 2.3.1) are

Result
ni j E G F-P Totals

Twist 21 11 4 36
Injury Direct 3 2 2 7

Both 7 1 1 9
Totals 31 14 7 52

where the surgical result F-P has collapsed together the Fair and Poor outcomes. The
overall model for the data is that the results for each type of injury constitute inde-
pendent multinomial distributions and the null hypothesis is that the probabilities
are identical in each of the multinomials. The test statistic is taken as Pearson’s chi-
square or the generalized likelihood ratio statistic or some other appropriate statistic.
One then finds the probability distribution of the test statistic given both the row to-
tals and the column totals. The problem is that you have to enumerate every possible
table that has the fixed row and column totals.

Somewhat ironically, testing for equal probabilities in independent multinomi-
als is actually the most difficult problem as far as enumerating all of the possible
tables. More complicated models for contingency tables, such as those used for
three and higher dimensional tables, are conceptually easier to enumerate because,
the more constraints you put on the model, the fewer possible models there are to
enumerate. As Christensen (1997, Section 2.6) points out, even logistic regression
models are just more highly constrained two-way contingency table models, so they
are candidates for exact tests. Cyrus Mehta and Nitin Patel were in the forefront of
developing this theory and associated software. See Christensen (2020c) for more
discussion and references. 2

To summarize, as in any proof by contradiction, the results are skewed. If the
data tend to contradict the model, we have evidence that the model is invalid. If
the data are consistent with (do not tend to contradict) the model, we have an at-
tempt at proof by contradiction in which we got no contradiction. If the model is
not rejected, the best one can say is that the data are consistent with the model.
Not rejecting certainly does not prove that the model is correct, whence comes the
common exhortation that one can reject, but should never accept, a null hypothesis
(model).

To see that high consistency does not provide evidence that the model is cor-
rect, suppose your model for a population is that a distribution of heights is, in
inches, N(69,9). If your test statistic is the sample mean and the population was
NBA basketball players, a sample of size 10 would surely convince you that the
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model is wrong. If the population was male University of New Mexico (UNM) stu-
dents, a sample of size 10 with sample mean of ȳ· = 69.3 is consistent with the
model, having a P value of 0.92. But ȳ· = 69.3 is even more consistent with the
model N(69.0001,9) and is most consistent with the model N(69.3,9). Of course
ȳ· = 69.3 is also perfectly consistent with the model that every male at UNM has the
height 69.3 inches, but (presumably) aspects of the data other than their mean could
prove that model incorrect.

Seeing data that are consistent with the model does not make the model correct,
anymore than making a bunch of assumptions and not being able to find a contra-
diction makes the assumptions correct. The logic is one directional. A contradiction
means the assumptions are wrong, weird data suggest the model may be wrong.
Admittedly, I do feel that collecting data that are consistent with a null model is a
more worthwhile activity than merely thinking about assumptions and failing to find
a contradiction.

A significance test can really be thought of as a model validation procedure. It
makes no reference to any alternative model(s). We have the distribution of the null
model and we examine whether the data look weird or not.

2.2 Continuous Distributions

For discrete distributions, i.e., distributions with a finite or countable number of
outcomes, using the probabilities of those outcomes as a measure of their weird-
ness seems unexceptionable. I have never heard anyone object to it. For continuous
distributions, no particular outcome has positive probability, so we use probabil-
ity density functions to define probabilities via calculus. The probability of any set
is the integral of the density over that set. It is then natural to rank the weirdness
of continuous outcomes by how small the probability density is at that outcome.
Frequently, this works well and we begin with illustrations of it working well. But
probability densities are much more nebulous things than probabilities and we will
also examine problems that arise from defining weirdness in terms of densities.

Earlier I said that “Anything with a P value of 0 is something that cannot hap-
pen and gives an absolute contradiction to the assumed probability model.” With
a continuous distribution, every observation is something that “cannot happen” yet
things do happen. The truth is that we never see the outcome of a continuous dis-
tribution because we are incapable of making such observations. All measurement
devices have a finite ability to measure, so all measurement devices only tell us that
an observation has occurred within some interval. With good measuring devices we
just ignore the interval and act like we saw the point. A potential method for dealing
with the problems of densities is to go back to focusing on the observation intervals
that have positive probability. (One difference between continuous and discrete dis-
tributions is that in a discrete distribution the total probability of all the outcomes
with 0 probability is 0 but with continuous distributions all outcomes individually
have 0 probability but collections of such outcomes can have positive probability.)
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2.2.1 One Sample Normals

Assume a random sample of n observations,

Data Distribution
y1,y2, . . . ,yn independent N(µ,σ2)

The key assumptions are that the observations are independent and have the same
distribution. In particular, we assume they have the same mean µ and the same
variance σ2. Assuming that the common distribution is normal facilitates working
with the probability distributions. In particular, if we compute the sample mean ȳ·
and the (unbiased) sample variance s2, it is well known that

ȳ−µ√
s2/n

∼ t(n−1),

where t(n− 1) indicates the famous Student t distribution with n− 1 degrees of
freedom. Figure 2.1 illustrates three t distributions using the fact that t(∞)≡N(0,1).
As the degrees of freedom df get larger, the t(df ) distributions get closer to a N(0,1)
distribution. For our purposes, the key facts are that all of these distributions have a
maximum density at 0, are symmetric, and the density decreases as we get farther
from 0.

−4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4 N(0,1)
t(3)
t(1)

Fig. 2.1 Three distributions: solid, N(0,1); long dashes, t(1); short dashes, t(3).
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EXAMPLE 2.2.1. One Sample t Test.
We have specified the overall model for the data. Now specify a null hypothesis as,
say, H0 : µ = 3. For a sample size of n = 100, the null model implies that

ȳ−3√
s2/100

∼ t(99).

We are summarizing the data using the test statistic

t ≡ ȳ−3√
s2/100

.

We want to collect data and then use them to determine whether or not the data give
a test statistic that is consistent with the t(99) distribution.

Taking weird observations to be those that have small probability densities, be-
cause of the shape of t(df ) distributions, weird observations are values of (ȳ −
3)/
√

s2/100 that are far from 0. Because of symmetry about 0, the level of weird-
ness is determined by |ȳ−3|/

√
s2/100 with larger values more weird than smaller

values.
If we happen to observe ȳobs = 1 and s2

obs = 4, we get

tobs ≡
ȳobs −3√
s2

obs/100
=

1−3√
4/100

=−10,

which is a very strange thing to observe from a t(99) distribution. (A t(99) will
be quite similar to a N(0,1) distribution.) By symmetry about 0, seeing (ȳ −
3)/
√

s2/100 = −10 is exactly as weird as seeing (ȳ− 3)/
√

s2/100 = 10 and less
weird than seeing anything with |ȳ− 3|/

√
s2/100 < 10. So the P value, being the

probability of seeing anything as weird or weirder than the −10 that we actually
saw, is the probability that a t(99) distribution is (as far or) farther away from 0 than
10, i.e.,

P = Pr[|t(99)| ≥ |−10|] = Pr[t(99)≤−10]+Pr[t(99)≥ 10],

which is approximately 0. This constitutes a great deal of evidence against the null
model but it does not necessarily constitute evidence against the null hypothesis.
Perhaps µ ̸= 3 but perhaps the data are not normal or perhaps the data are not inde-
pendent or perhaps the observations have different variances or different means.

2

EXAMPLE 2.2.2. One Sample F Test.
It is a well known fact that the square of a t(df ) distribution is an F(1,df ) distribu-
tion. As in the previous example we have specified the overall model for the data and
a null hypothesis H0 : µ = 3. For a sample size of n = 100, the null model implies
that
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ȳ−3√
s2/100

]2

∼ F(1,99).

We are summarizing the data using the test statistic

F ≡

[
ȳ−3√
s2/100

]2

.

We want to collect data and then use them to determine whether or not the data give
a test statistic that is consistent with the F(1,99) distribution.

We again take weird observations to be those that have small probability den-
sities but now the shape of the F(1,df ) distribution is as illustrated in Figure 2.2.
Because of the shape of F(1,df ) distributions, weird observations are values of
(ȳ−3)2/(s2/100) that are above 0 with larger values more weird than smaller val-
ues.

F(1,df)
F(2,df)

10

0

Fig. 2.2 F(1,df ) and F(2,df ) densities.

If we happen to observe ȳobs = 1 and s2
obs = 4, we get Fobs ≡ (ȳobs−3)2/(s2

obs/100)=
100 which is a very strange thing to observe from a F(1,df ) distribution. The P
value, being the probability of seeing anything as weird or weirder than the 100 that
we actually saw, is the probability that a F(1,99) distribution is (as far or) farther
away from 0 than 100, i.e.,

P = Pr[F(1,99)≥ 100] = Pr[|t(99)| ≥ 10],
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which is approximately 0. In this case, the t and F significance tests correspond
perfectly and give exactly the same interpretations. 2

Exactly the same arguments apply to all the t(df ) tests and their corresponding
F(1,df ) tests that arise in regression analysis, in analysis of variance (ANOVA),
and in general linear models, cf. Christensen (1996, 2015, 2020a). Note that the
equivalence was based entirely on the fact that [t(df )]2 ∼ F(1,df ) and on the shapes
of the distributions.

Generally, to determine weirdness we have to know and evaluate the density of
the test statistic under the null model. For an F(d1,d2) distribution, that density is

f (x|d1,d2)≡
1

B
(

d1
2 ,

d2
2

) (d1

d2

) d1
2

x
d1
2 −1

(
1+

d1

d2
x
)− d1+d2

2
,

where B(·, ·) is the Beta function, which is defined in terms of the Gamma function
as

B(x,y) =
Γ (x)Γ (y)
Γ (x+ y)

.

For d1 = 1,2 the shape of the density was illustrated in Figure 2.2. For d1 ≥ 3, the
shape is illustrated in Figure 2.3.

F(1 − α,df1,df2)1

0

1 − α

F(df1, df2)

Fig. 2.3 Percentiles of F(df 1,df 2) distributions; df 1 ≥ 3.
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2.2.1.1 Linear Model F Tests

In regression analysis, analysis of variance (ANOVA), and in general linear models
key statistics associated with a model are the sum of squares for error (SSE), degrees
of freedom for error (dfE), and the mean squared error (MSE), wherein

MSE ≡ SSE
dfE

.

As mentioned earlier, although significance tests themselves involve no alterna-
tive hypothesis (other than the trivial one that the null model is wrong), typically the
test statistic is chosen with an eye towards those aspects of the null model that are
least likely to be true. With linear models, test statistics are most often chosen with
some “full” model in mind that ideally represents our overall model for the data, and
we perform a test for the validity of a “reduced” model (one that is a special case of
the full model), that represents our null model. (The null hypothesis consists of the
restrictions on the full model needed to specify the reduced model.) As usual, if we
reject the null model it means that either (we got weird data or) the null hypothesis is
wrong or the full model is wrong. If we can validate the full model, we have reason
to believe that the null hypothesis is what is wrong. Christensen (2015, Chapter 3)
goes into details of significance tests for linear models. Christensen (2020a) goes
into the details of linear model theory.

Using obvious notation, the general form of these tests are F tests where the test
statistic is

F =
[SSE(Red.)−SSE(Full)]/[dfE(Red.)−dfE(Full)]

MSE(Full)

and under the null model the distribution of F is

F ∼ F [dfE(Red.)−dfE(Full),dfE(Full)] .

The idea of the test is that under the null model both

SSE(Red.)−SSE(Full)
dfE(Red.)−dfE(Full)

and MSE(Full)

should be unbiased estimates of the variance parameter σ2, so under the null model
F should take on a value close to 1, even though 1 is not typically the mean, median,
or mode for the F [dfE(Red.)−dfE(Full),dfE(Full)] distribution.

All software that I have seen computes P ≡ Pr[F > Fobs] where Fobs is the value
of F computed from the observed values of SSE(Red.), dfE(Red.), SSE(Full), and
dfE(Full). Indeed, if the full model is valid, only large values of F are inconsistent
with the null model. But we do not know that the full model is valid. With weirdness
defined by the density function, Figures 2.2 and 2.3 show that this P ≡ Pr[F > Fobs]
computation only gives the significance test P value when dfE(Red.)−dfE(Full)=
1,2. For dfE(Red.)−dfE(Full) ≥ 3, finding the significance test P value requires
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finding the density value f (Fobs|dfE(Red.)−dfE(Full),dfE(Full)) and a second
value F∗ such that f (F∗) = f (Fobs|dfE(Red.)−dfE(Full),dfE(Full)) and finding
the probability that, if F∗ ≤ Fobs,

P = Pr[F ≤ F∗]+Pr[F ≥ Fobs]

or, if F∗ ≥ Fobs,
P = Pr[F ≥ F∗]+Pr[F ≤ Fobs].

EXAMPLE 2.2.3. Numerical Examples
Suppose we have 5 and 40 degrees of freedom with Fobs = 2.75. The one-sided P
value associated with this is 0.031595. The density at Fobs is f (2.75|5,40) = 0.0481.
It turns out that f (0.0349|5,40) = 0.0481 so F∗ = 0.0349. The significance test P
value is then

P = Pr[F ≤ 0.0349]+Pr[F ≥ 2.75] = 0.000691+0.031595 = 0.032286.

Not much difference.
What about small values? With the same degrees of freedom suppose Fobs = 0.15.

The commonly computed one-sided P value is 0.978878 which is almost too good
to be true and large enough to make many of us suspicious that something is wrong.
The density at Fobs is f (0.15|5,40) = 0.3113 and it turns out that f (1.504|5,40) =
0.3113, so F∗ = 1.504. The significance test P value is then

P = Pr[F ≤ 0.15]+Pr[F ≥ 1.504] = 0.021122+0.210298 = 0.232420,

which does not seem suspicious at all. 2

We will revisit these numerical examples once we have developed another ap-
proach to these problems.

2.3 Testing Two Sample Variances.

Using the F density becomes more problematic when we seek to test the equality of
the variances from two normal samples.

EXAMPLE 2.3.1. We examine Jolicoeur and Mosimann’s log turtle height data,
cf. Christensen (2015, Example 4.4.1), consisting of 24 female heights and 24 male
heights. The sample variance of log female heights is s2

1 = 0.02493979 and the sam-
ple variance of log male heights is s2

2 = 0.00677276. The overall model is that the
observations are independent with one normal distribution for females and another
one for males. The null hypothesis is that the variances for males and females are
the same, i.e., σ2

2 = σ2
1 . The standard α = 0.01 level hypothesis (not significance)

test is rejected, i.e., we conclude that the null model with is wrong, if
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Fobs = 0.2716 =
0.00677276
0.02493979

=
s2

2

s2
1
> F(0.995,23,23) = 3.04

or if

Fobs = 0.2716 < F(0.005,23,23) =
1

F(0.995,23,23)
=

1
3.04

= 0.33.

The second of these inequalities is true, so the null model with equal variances is
rejected at the 0.01 level. This is a simple hypothesis test (by no means an optimal
one).

The significance test is a bit more work to determine. Denote the density
for the F(23,23) distribution f (z|23,23). Evaluating the density at Fobs gives
f (0.2716|23,23) = 0.03597. It turns out that f (2.50835|23,23) = 0.03597, so
F∗ = 2.50835 and Fobs = 0.2716 are equally rare events. The P value, given the
shape of f (z|23,23), is

P = Pr(F ≤ 0.2716)+Pr(F ≥ 2.50835) = 0.00138+0.015974 = 0.017.

The significance test is not rejected at the 0.01 level.
What makes this problematic for significance testing is that because s2

1 and s2
2

differ only in their labels, there is no possible reason to prefer looking at s2
2/s2

1
rather than s2

1/s2
2. But the P value changes when you reverse the order.

If we base the test on

Fobs =
s2

1

s2
2
= 3.6824,

the significance test requires us to find f (3.6824|23,23) = 0.002650 and then a
value F∗, different from Fobs, with f (F∗|23,23)= 0.002650. Since f (0.17979|23,23)=
0.002650, F∗ = 0.17979 and the significance test P value becomes

P = Pr(F ≥ 3.6824)+Pr(F ≤ 0.17979) = 0.00138+0.0000573 = 0.001

which is far smaller than the other one. 2

In the next section we will fix this particular problem. Incidentally, the stan-
dard (nonoptimal) α level hypothesis test illustrated at the beginning of the section
does not change when you reverse the order of the sample variances, because of
the mathematical fact that F(α,r,s) = F(1−α,s,r), and that is true even when you
have different numbers of degrees of freedom in the numerator and denominator.

Before proceeding we also need to look at a similar F significance test where the
numerator and denominator degrees of freedom are not the same.

EXAMPLE 2.3.2. Consider the final point total data of Christensen (2015, Exam-
ple 4.4.2.). For a sample of 15 females the sample variance was s2

1 = 487.28 and for
22 males the sample variance was s2

2 = 979.29. The test statistic can be F = s2
1/s2

2
with
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Fobs =
s2

1

s2
2
=

487.28
979.29

= 0.498.

To find the significance test P value observe that f (0.498|14,21) = 0.6207, so F∗ =
1.2051 because f (1.2051|14,21) = 0.6207. Using the F(14,21) distribution

P = Pr(F ≥ 1.2051)+Pr(F ≤ 0.498) = 0.34028+0.09125 = 0.432

Alternatively, the test statistic can be F = s2
2/s2

1 with

Fobs =
s2

2

s2
1
=

979.29
487.28

= 2.010.

To find the significance test P value observe that f (2.010|21,14) = 0.15339, so F∗ =
0.31933 because f (0.31933|21,14) = 0.15339. Using the F(21,14) distribution

P = Pr(F ≥ 2.010)+Pr(F ≤ 0.31933) = 0.09125+0.00901 = 0.100.

Again the P values are unacceptably far apart. 2

R code for finding the P values follows. A routine that can be adapted for finding
F∗ appears in the next section.

a=487.28/979.29
b=1/a

# Check densities at F_{obs} and F_*
df(a,14,21)
df(1.2051,14,21)
# Probabilities
pf(a,14,21)
1-pf(1.2051,14,21)

# Check densities at F_{obs} and F_*
df(b,21,14)
df(.31933,21,14)
# Probabilities
pf(.31933,21,14)
1-pf(b,21,14)

Do an example where we collect data 12.3, etc. compute F statistic, recompute
with everything at 12.25 and recompute with 12.35, to see how much F changes.
Discretize based on F changes.
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2.4 Fisher’s z distribution.

The F statistic was invented by George Snedecor in the 1930’s at Iowa State Univer-
sity and labeled F in honor of R.A. Fisher. Many of Fisher’s applications to which
we now apply F tests were invented before the F distribution, so obviously Fisher
did not originally use F tests. He used Fisher’s z distribution which is

z ≡ 1
2

log(F),

see Fisher (1924) and Aroian (1941). In particular, this has the density

f̃ (x|d1,d2) =
2dd1/2

1 dd2/2
2

B(d1/2,d2/2)
ed1x

(d1e2x +d2)
(d1+d2)/2 ,

which always has a mode of 0 and is symmetric for d1 = d2. Recall that F should be
near 1 but typically 1 is not the mode of the F distribution. Here, 0 = (1/2) log(1),
so the density of Fisher’s z distribution has its mode at the point that should be most
consistent with the null model.

Frankly, given the current state of statistics, I cannot think of a single reason
to use Fisher’s z distribution except for using its density to define weirdness for F
statistics We will continue to compute P values using software for F distributions
but the sets we compute the probabilities for will be determined by the Fisher’s z
distribution.

EXAMPLE 2.4.1. We again examine the log turtle height data consisting of 24
female heights and 24 male heights. The sample variance of log female heights is
s2

1 = 0.02493979 and the sample variance of log male heights is s2
2 = 0.00677276.

Fobs = 0.2716 =
0.00677276
0.02493979

=
s2

2

s2
1
,

so
zobs = log(0.2716)/2 =−0.6517

Denote the density for the z(23,23) distribution f̃ (z|23,23). From the symmetry of
the distribution f̃ (−0.6517|23,23) = f̃ (0.6517|23,23). The P value becomes

P = Pr[z ≤−0.6517]+Pr[z ≥ 0.6517]
= Pr[F ≤ 0.2716]+Pr[F ≥ 1/0.2716]
= Pr[F ≤ 0.2716]+Pr[F ≥ 3.6824]
= 0.0014+0.0014 = 0.0028.

It turns out that if you perform the test with s2
1/s2

2 you will get the same P value. 2
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Even with unequal degrees of freedom, z gives the same P value either way you
do the test.

EXAMPLE 2.4.2. Consider again the final point total data. For a sample of 15
females the sample variance was s2

1 = 487.28 and for 22 males the sample variance
was s2

2 = 979.29. The test statistic can be F = s2
1/s2

2 with

Fobs =
s2

1

s2
2
=

487.28
979.29

= 0.497584985.

This leads to
zobs = log(0.498)/2 =−0.3489945

To find the significance test P value we first need to calculate f̃ (zobs|14,21) =
f̃ (−0.3489945|14,21) = 0.6168776, then find a value z∗ on the other side of the
mode from zobs with f̃ (z∗|14,21) = f̃ (zobs|14,21), that is f̃ (0.3335880|14,21) =
f̃ (−0.3489945|14,21), and then we can find the probability.

P = Pr[z ≤−0.3489945]+Pr[z ≥ 0.3335880]
= Pr[F ≤ 0.497584985]+Pr[F ≥ 1.948726]
= 0.09125+0.081016 = 0.1723.

Alternatively, the test statistic can be F = s2
2/s2

1 with

Fobs =
s2

2

s2
1
=

979.29
487.28

= 2.00970694.

This leads to

zobs = log(2.010)/2 =− log(0.498)/2 = 0.3489945.

Although the test statistics are symmetric, with unequal degrees for freedom,
Fisher’s z distribution is not, so the P values will be slightly different. To find the sig-
nificance test P value we first need to calculate f̃ (zobs|21,14)= f̃ (0.3489945|21,14)=
0.6168776, then find a value z∗ on the other side of the mode from zobs with
f̃ (z∗|21,14) = f̃ (zobs|21,14), that is f̃ (−0.3335880|21,14) = f̃ (0.3489945|21,14),
and then we can find the probability.

P = Pr[z ≥ 0.3489945]+Pr[z ≤−0.3335880]
= Pr[F ≥ 2.00970694]+Pr[F ≤ 0.51315568]
= 0.09125+0.081016 = 0.1723.

2

The following R code illustrates the symmetry of the test.

fobs=0.497584985
xx=.3489945
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x=c(log(fobs)/2,xx)
d1=14
d2=21
ftilde = (2*d1ˆ(d1/2)*d2ˆ(d2/2)/beta(d1/2,d2/2))*
exp(d1*x)/(d1*exp(2*x)+d2)ˆ((d1+d2)/2)
matrix(c(x,ftilde),,2)

fobs=2.00970695
xx=-.3335880
x=c(log(fobs)/2,xx)
d1=21
d2=14
ftilde = (2*d1ˆ(d1/2)*d2ˆ(d2/2)/beta(d1/2,d2/2))*
exp(d1*x)/(d1*exp(2*x)+d2)ˆ((d1+d2)/2)
matrix(c(x,ftilde),,2)

In the following R code by playing around with a, b, and c that determine xx
you can figure out what z∗ has to be. The first entry in x is zobs, so the first entry
in ftilde is what you are trying to reproduce. You can start with a = −5, b = 5,
1/10c = .1. Once you see what zobs is, z∗ should be somewhere near its negative.
Pick a and b appropriately and then decrease the last term in seq by a factor of 10
as needed. Minor changes allow finding F∗. In particular, you would want to change
to a = 0.

# Routine for finding z_*
# Adaptable for finding F_*
a=-5
b=5
c=1
fobs=0.497584985
xx=seq(a,b,1/10ˆc)
x=c(log(fobs)/2,xx)
# For F_* use
# x=c(fobs,xx)
d1=14
d2=21
ftilde = (2*d1ˆ(d1/2)*d2ˆ(d2/2)/beta(d1/2,d2/2))*
exp(d1*x)/(d1*exp(2*x)+d2)ˆ((d1+d2)/2)
# For F_* use
# ftilde=df(x,d1,d2)
matrix(c(x,ftilde),,2)

Plots of these 3 densities, 36,36 and 14,21 and 21,14.

x=seq(-1,1,.01)
d1=23
d2=23
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ftilde = (2*d1ˆ(d1/2)*d2ˆ(d2/2)/beta(d1/2,d2/2))*
exp(d1*x)/(d1*exp(2*x)+d2)ˆ((d1+d2)/2)
plot(x,ftilde,type="l",ylim=c(0,2),ylab="",
xlab="",lty=3,labels=T)
d1=14
d2=21
ftilde1 = (2*d1ˆ(d1/2)*d2ˆ(d2/2)/beta(d1/2,d2/2))*
exp(d1*x)/(d1*exp(2*x)+d2)ˆ((d1+d2)/2)
lines(x,ftilde1,type="l",lty=2)
d1=21
d2=14
ftilde2 = (2*d1ˆ(d1/2)*d2ˆ(d2/2)/beta(d1/2,d2/2))*
exp(d1*x)/(d1*exp(2*x)+d2)ˆ((d1+d2)/2)
lines(x,ftilde2,type="l",lty=1)
legend("topright",c("z(23,23)","z(14,21)",
"z(21,14)"),lty=c(3,2,1))

−1.0 −0.5 0.0 0.5 1.0

0.0
0.5

1.0
1.5

2.0 z(23,23)
z(14,21)
z(21,14)

Fig. 2.4 Three Fisher z(df 1,df 2) densities.

The R package VGAM has a command dlogF that gives the density for 2z =
log(F).

EXAMPLE 2.4.3. Linear model F tests: Numerical Examples with d1 ≥ 3.
As in Example 2.2.3., suppose we have 5 and 40 degrees of freedom with Fobs =
2.75. The one-sided P value associated with this is 0.031585. The significance test
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P value from the F distribution is

P = Pr[F ≤ 0.0349]+Pr[F ≥ 2.75] = 0.000691+0.031585 = 0.032.

Fobs = 2.75 leads to

zobs = log(2.75)/2 = 0.505800456

To find the significance test P value we first need to calculate f̃ (zobs|5,40) =
f̃ (0.505800456|5,40) = 0.2647452, then find a value z∗ on the other side of the
mode from zobs with f̃ (z∗|5,40)= f̃ (zobs|5,40). In particular, f̃ (0.505800456|5,40)=
f̃ (−0.6823366|5,40), so we can find the probability.

P = Pr[z ≤−0.6823366]+Pr[z ≥ 0.505800456|]
= Pr[F ≤ 0.2554641]+Pr[F ≥ 2.75]
= 0.065451+0.031585 = 0.097.

What about small values? With the same degrees of freedom suppose Fobs = 0.15.
The commonly computed one-sided P value is 0.978878 which is almost too good
to be true and large enough to make many of us suspicious that something is wrong.
The significance test P value from an F test is

P = Pr[F ≤ 0.15]+Pr[F ≥ 1.504] = 0.021122+0.210298 = 0.231.

Fobs = 0.15 leads to
zobs = log(0.15)/2 =−0.94856

To find the significance test P value from a z test, we first need to calculate
f̃ (zobs|5,40) = f̃ (−0.94856|5,40) = 0.09340470, then find a value z∗ on the other
side of the mode from zobs with f̃ (z∗|5,40)= f̃ (zobs|5,40). With f̃ (−0.94856|5,40)=
f̃ (0.64079287|5,40), we can find the probability

P = Pr[z ≤−0.94856]+Pr[z ≥ .64079287]
= Pr[F ≤ 0.15]+Pr[F ≥ 3.6023476]
= 0.0211224+0.008772 = 0.0299.

fobs=2.75
d1=5
d2=40
1-pf(fobs,d1,d2)
df(fobs,d1,d2)
df(.0349,d1,d2)
pf(.0349,d1,d2)
pf(.0349,d1,d2)+1-pf(fobs,d1,d2)

xx=-.6823366
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x=c(log(fobs)/2,xx)
ftilde = (2*d1ˆ(d1/2)*d2ˆ(d2/2)/beta(d1/2,d2/2))*
exp(d1*x)/(d1*exp(2*x)+d2)ˆ((d1+d2)/2)
matrix(c(x,ftilde),,2)
exp(2*x)
pf(exp(2*x),d1,d2)

2

EXAMPLE 2.4.4. Linear model F tests, d1 = 1,2.
Earlier we showed that, because of the density shapes in Figure 2.2, F tests with
d1 = 1,2 are one-sided tests and that for d1 = 1 an F test is equivalent to the corre-
sponding t test.

We have specified the overall model for the data. Now specify a null hypothesis
as, say, H0 : µ = 3. For a sample size of n = 100, the null model implies that

ȳ−3√
s2/100

∼ t(99).

We are summarizing the data using the test statistic

t ≡ ȳ−3√
s2/100

.

If we happen to observe ȳobs = 2.6 and s2
obs = 4, we get

tobs ≡
ȳobs −3√
s2

obs/100
=−2,

and Fobs = 4.
zobs = log(4)/2 = 0.6931472

To find the significance test P value we first need to calculate f̃ (zobs|5,40) =
f̃ (0.6931472|1,99) = 0.2196706, then find a value z∗ on the other side of the mode
from zobs with f̃ (z∗|1.99)= f̃ (zobs|1,99), that is f̃ (0.6931472|1,99)= f̃ (−1.245495|1,99),
and then we can find the probability.

P = Pr[z ≤−1.245495]+Pr[z ≥ 0.6931472]
= Pr[F ≤ 0.0828279]+Pr[F ≥ 4]
= 0.225897+0.048240 = 0.274.

This oddity occurs because this z distribution is highly skewed to the left.
Personally, this is the only situation in which I would choose to use P values from

the F distribution rather than Fisher’s z. But I have not really investigated behavior
with 2 degrees of freedom in the numerator. As a practical matter, although I do not
choose to do it, I live with the one-sided P values imposed by standard software.
And they are the same for both distributions. 2
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2.5 Final Notes

Rejecting a Significance test suggests that something is wrong with the (null) model.
It does not specify what is wrong.

The example of a t test raises yet another question. Why should we summarize
these data by looking at the t statistic,

ȳ−0
s/
√

n
?

One reason is purely practical. In order to perform a test, one must have a known
distribution to compare to the data. Without a known distribution there is no way
to identify which values of the data are weird. With the normal data, even when
assuming µ is known, we do not know σ2 so we do not know the distribution of
the data. By summarizing the data into the t statistic, we get a function of the data
that has a known distribution, which allows us to perform a test. Another reason is
essentially: why not look at the t statistic? If you have another statistic you want
to base a test on, the Significance tester is happy to oblige. Fisher (1956, p. 49)
indicates that the hypothesis should be rejected “if any relevant feature of the obser-
vational record can be shown to [be] sufficiently rare”. After all, if the null model is
correct, it should be able to withstand any challenge. Moreover, there is no hint in
this passage of worrying about the effects of performing multiple tests. Inflating the
probability of Type I error (rejecting the null when it is true) by performing multiple
tests is not a concern in Significance testing because the probability of Type I error
is not a concern in Significance testing.

The one place that possible alternative hypotheses arise in Significance testing is
in the choice of test statistics. Again quoting Fisher (1956, p. 50), “In choosing the
grounds upon which a general hypothesis should be rejected, personal judgement
may and should properly be exercised. The experimenter will rightly consider all
points on which, in the light of current knowledge, the hypothesis may be imper-
fectly accurate, and will select tests, so far as possible, sensitive to these possible
faults, rather than to others.” Nevertheless, the logic of Significance testing in no
way depends on the source of the test statistic.

Although Fisher prefered his idea of fiducial inference, one can use Significance
testing to arrive at “confidence regions” that do not involve either fiducial inference
or repeated sampling. If you have a null model determined by an overall model and
a null hypothesis about a parameter’s value, a (1−α) confidence region can be de-
fined simply as a collection of parameter values that would not be rejected by a α

level significance test, that is, a collection of parameter values that are consistent
with the data as judged by an α level test. This definition involves no long run fre-
quency interpretation of “confidence.” It makes no reference to what proportion of
hypothetical confidence regions would include the true parameter. It does, however,
require one to be willing to perform an infinite number of tests without worrying
about their frequency interpretation. This approach also raises some curious ideas.
For example, with the normal data discussed earlier, this leads to standard t confi-
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dence intervals for µ and χ2 confidence intervals for σ2, but one could also form
a joint 95% confidence region for µ and σ2 by taking all the pairs of values that
satisfy

|ȳ−µ|
σ/

√
n
< 1.96.

Certainly all such µ , σ2 pairs are consistent with the data as summarized by ȳ.





Chapter 3
Hypothesis Tests

Significance testing predates hypothesis testing. A theory of hypothesis testing was
formally set out in a series of papers by Jersy Neyman and Egon Pearson, cf.
Lehmann (2011). This theory set out to expand/improve on significance testing.
Bayesian testing provides an alternative to the Neyman-Pearson theory.

Significance tests are about deciding whether a single probability model is rea-
sonable. Hypothesis tests are about deciding which of two probability models (or
sets of probability models) is better.

As in the previous chapter, we introduce the ideas using elementary examples.
A more general discussion of hypothesis testing is introduced in Chapter 5 and
expanded in Chapter 7.

3.1 Testing Two Simple Hypotheses

We begin by discussing how to decide which of two discrete probability distribu-
tions is more consistent with observed data. We typically identify the distributions
using their densities (mass functions). We could call them f and g but we call them
f (r|θ), specifying probabilities on outcomes r for two different values for θ . In
particular, consider

r 1 2 3 4
f (r|0) 0.980 0.005 0.005 0.010
f (r|2) 0.098 0.001 0.001 0.900

The first of these is the same distribution that we used to illustrate significance
testing in Section 2.1. But now we no longer consider the question of whether
the data seem consistent with the simple null hypothesis H0 : θ = 0. Now we ask
whether the observed data are more consistent with H0 : θ = 0 or with the the alter-
native hypothesis HA : θ = 2.

31
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These hypotheses are simple in the sense that the distributions involved are com-
pletely specified. An hypothesis that data come from a family of two or more distri-
butions is call a composite hypothesis.

This is a decision problem. We have two possible distributions and we are decid-
ing between them. The reformulation of significance testing into a decision prob-
lem is a primary reason that Fisher objected to Neyman-Pearson testing, see Fisher
(1956, Chp. 4).

Before examining formal testing procedures, look at the distributions. Intuitively,
if we see r = 4 we are inclined to believe θ = 2, if we see r = 1 we are quite inclined
to believe that θ = 0, and if we see either a 2 or a 3, it is still 5 times more likely
that the data came from θ = 0.

While significance testing does not use an explicit alternative, there is nothing to
stop us from doing two significance tests: a test of H0 : θ = 0 and then another test
of H0 : θ = 2. The significance tests both give perfectly reasonable results. The test
for H0 : θ = 0 has small P values for any of r = 2,3,4. These are all strange values
when θ = 0. The test for H0 : θ = 2 has small P values when r = 2,3.

When r = 4, we do not reject θ = 2; when r = 1, we do not reject θ = 0; when
r = 2,3, we reject both θ = 0 and θ = 2. The significance tests are not being forced
to choose between the two distributions. Seeing either a 2 or a 3 is weird under both
distributions. Hypothesis testing decides between the available choices, it does not
allow one to reject both choices.

3.1.1 Neyman-Pearson tests

Neyman-Pearson testing involves the concepts of Type I and Type II error. Type I
error is rejecting the null hypothesis when it is true and Type II error is not rejecting
the null hypothesis when it is false. This very statement is a legacy of significance
testing in that it focuses on the null hypothesis. In this problem it should be equiva-
lent to describe Type I error as accepting the alternative hypothesis when it is false
and Type II error as not accepting the alternative hypothesis when it is true. (In sig-
nificance testing you may reject a null hypothesis (model) but you never accept it.)

Neyman-Pearson (N-P) tests treat the two hypotheses in fundamentally different
ways. A test of H0 : θ = 0 versus HA : θ = 2 is typically different from a test of H0 :
θ = 2 versus HA : θ = 0. We will examine the test of H0 : θ = 0 versus HA : θ = 2.
In a simple versus simple test test like this, there is no good reason for the testing
problems to be different, but – in a legacy from significance testing – they typically
are treated as different.

The asymmetry stems from N-P theory seeking to find the best α level test, where
α is the probability of Type I error (rejecting H0 when it is true). The rejection region
is the set of data values that cause one to reject the null hypothesis, so under H0 the
probability of the rejection region must be α . The best α level test is defined to
be the most powerful one, the one with the highest power, that is, the one with the
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highest probability of rejecting H0 (observing data in the rejection region) when HA
is true. Equivalently, the best test minimizes the probability of Type II error.

Defining the α level as the probability of rejecting the null hypothesis when it
is true places an emphasis on repeated sampling so that the Law of Large Numbers
suggests that about α of the time you will make an incorrect decision, provided the
null hypothesis is true in all of the samples. While this is obviously a reasonable
definition prior to seeing the data, its relevance after seeing the data is questionable.

Consider again our example.

r 1 2 3 4
f (r|0) 0.980 0.005 0.005 0.010
f (r|2) 0.098 0.001 0.001 0.900

f (r|2)/ f (r|0) 0.1 0.2 0.2 90

As demonstrated in the famous Neyman-Pearson lemma (see Chapter 7 or Lehmann,
1997, Chp. 3), optimal N-P tests are based on the likelihood ratio f (r|2)/ f (r|0). The
best N-P tests reject for the largest values of the likelihood ratio. For example, our
largest ratio occurs when r = 4. If we take r = 4 to be our rejection region we will
get a most powerful test for its size. The size of the test is the probability of rejecting
the null when the null is true, so here it is α = 0.01.

If we reject whenever the likelihood ratio is 0.2 or larger, we will reject for
r = 2,3,4. This will be most powerful for its size which is the probability of this
rejection region under the null, i.e., α = 0.005+0.005+0.01 = 0.02.

It is easy to pick rejection regions that will be most powerful for their size but
how do we specify a size and find the most powerful rejection region? How would
we find an optimal α = 0.005 level test? We have to reject for the largest values of
f (r|2)/ f (r|0). The largest value corresponds to r = 4 but, as we saw, rejecting for
r = 4 yields an α = 0.01 test. We can reduce the size to α = 0.005 by flipping a
coin and only rejecting r = 4 if the coin turns up heads. Similarly, we could reduce
the size to α = 0.01/6 by rolling a die and only rejecting r = 4 if the die turns up
six. You say you don’t like this idea? Tough! It if fundamental to N-P theory. You
say you don’t like such a theory? Well, neither do I.

To allow arbitrary α levels, one must consider randomized tests. A randomized
test requires a randomized rejection region. How could one perform an α = 0.0125
test in our example? Three distinct tests are: (a) reject whenever r = 4 and flip a coin,
if it comes up heads, reject when r = 2, (b) reject whenever r = 4 and flip a coin, if
it comes up heads, reject when r = 3, (c) reject whenever r = 2 or 3 and flip a coin
twice, if both come up heads, reject when r = 4. It is difficult to convince anyone that
these are reasonable practical procedures. Yet all have the correct size α and the first
two are both most powerful tests. The third is not most powerful because it more
readily rejects when f (r|2)/ f (r|0) = 0.2 than it does when f (r|2)/ f (r|0) = 90.
Thus it violates the Neyman-Pearson lemma structure of rejecting for the highest
likelihood ratios.

Note that the best N-P test of size α = 0.01 (rejecting when r = 4) is completely
different from the 0.01 significance test of H0 : θ = 0 that rejected when r = 2,3.
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(On the other hand, the α = 0.02 N-P test coincides with the significance test. Both
reject when observing any of r = 2,3,4.) The power of the α = 0.01 N-P test is 0.9
whereas the power of the significance α = 0.01 test is only 0.001+0.001 = 0.002.
Clearly the significance test is not a good way to decide between these alternatives.
But then the significance test was not designed to decide between two alternatives.
It was designed to see whether the null model seemed reasonable and, on its own
terms, it works well. Although the meaning of α differs between significance and
N-P tests, we have chosen two examples, α = 0.01 and α = 0.02, in which the
significance test rejection region also happens to define an N-P test with the same
numerical value of α . Such a comparison would not be appropriate if we had exam-
ined, say, α = 0.0125 significance and N-P tests because significance tests do not
admit randomized decision rules.

In particular, the motivation for insisting on small α levels seems to be based
entirely on the philosophical idea of proof by contradiction. In a significance test,
using a large α level eliminates the suggestion that the data are unusual and thus
tend to contradict H0. However, N-P testing cannot appeal to the idea of proof by
contradiction. Later we will examine situations in which most powerful N-P tests
reject for those data values that are most consistent with the null hypothesis. In
particular, such examples make it clear that significance test P values can have no
role in N-P testing! See also Hubbard and Bayarri (2003) and discussion.

It seems that once you base the test on wanting a large probability of rejecting
when the alternative hypothesis is true (high power), you have put yourself in the
business of deciding between the two hypotheses. Even on this basis, the N-P test
does not always perform very well. The rejection region for the α = 0.02 optimal N-
P test of H0 : θ = 0 versus HA : θ = 2 includes r = 2,3, even though 2 and 3 are five
times more likely under the null hypothesis than under the alternative. Admittedly,
2 and 3 are weird things to see under either hypothesis, but when deciding between
these specific alternatives, rejecting θ = 0 (accepting θ = 2) for r = 2 or 3 does not
seem reasonable. The Bayesian approach to testing, discussed in the next subsection,
seems to handle this decision problem well.

Instead of arbitrarily deciding on a small value for α , good N-P testing needs to
play off the relative probabilities of Type I and Type II error. If a small α causes too
large a β (i.e., probability of Type II error), the N-P tester should pick a bigger α

(which will make β smaller), even to the point where α may no longer be “small.”
Somewhat ironically, in our little example, picking a smaller α , 0.01 instead of 0.02,
increases β to 0.1 from 0.098, but the change is β is much smaller than the change
in α , so the smaller α may be preferred. The point is that good N-P testing requires
consideration of both α and β (or α and the power), yet traditional N-P testing tends
just to pick a small α and try to do the best with it.
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3.1.2 Bayesian Tests

Bayesian analysis requires us to have prior probabilities on the values of θ . It then
uses Bayes’ Theorem to combine the prior probabilities with the information in the
data to find “posterior” probabilities for θ given the data. All decisions about θ

are based entirely upon these posterior probabilities. The information in the data is
obtained from the likelihood function. For an observed data value, say r = r∗, the
likelihood is the function of θ defined by f (r∗|θ).

In our simple versus simple testing example, let the prior probabilities on θ = 0,2
be p(0) and p(2). Applying Bayes’ theorem to observed data r, we turn these prior
probabilities into posterior probabilities for θ given r, say p(0|r) and p(2|r). To do
this we need the likelihood function which here takes on only the two values f (r|0)
and f (r|2). From Bayes’ Theorem,

p(θ |r) = f (r|θ)p(θ)
f (r|0)p(0)+ f (r|2)p(2)

, θ = 0,2.

Decisions are based on these posterior probabilities. Other things being equal,
whichever value of θ has the larger posterior probability is the value of θ that we
will accept. If both posterior probabilities are near 0.5, we might admit that we do
not know which is right.

In practice, posterior probabilities are computed only for the value of r that was
actually observed, but Table 2 gives posterior probabilities for all values of r and two
sets of prior probabilities: (a) one in which each value of θ has the same probability,
1/2, and (b) one set in which θ = 2 is five times more probable than θ = 0.

Prior r 1 2 3 4
f (r|0) 0.980 0.005 0.005 0.010
f (r|2) 0.098 0.001 0.001 0.900

pa(0) = 1/2 pa(0|r) 0.91 0.83 0.83 0.01
pa(2) = 1/2 pa(2|r) 0.09 0.17 0.17 0.99
pb(0) = 1/6 pb(0|r) 0.67 0.50 0.50 0.002
pb(2) = 5/6 pb(2|r) 0.33 0.50 0.50 0.998

Table 3.1 Posterior probabilities of θ = 0,2 for two prior distributions a and b.

As is intuitively reasonable, regardless of the prior distribution, if you see r = 4
the posterior is heavily in favor of θ = 2 and if you see r = 1 the posterior substan-
tially favors θ = 0.

The key point is what happens when r equals 2 or 3. With equal prior weight
on the θs, the posterior heavily favors θ = 0, that is, with r = 2, pa(0|2) = 0.83,
pa(2|2) = 0.17 and with r = 3, pa(0|3) = 0.83, pa(2|3) = 0.17. It is not until our
prior makes θ = 2 five times more probable than θ = 0 that we wash out the ev-
idence from the data that θ = 0 is more likely, that is, pb(0|2) = pb(2|2) = 0.50
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and pb(0|3) = pb(2|3) = 0.50. Given the prior, the Bayesian procedure is always
reasonable.

The Bayesian analysis gives no special role to the null hypothesis. It treats the two
hypotheses on an equal footing. That N-P theory treats the hypotheses in different
ways is something that many Bayesians find disturbing.

As discussed in Chapter 5, if actions have losses or utilities associated with them,
the Bayesian can base a decision on maximizing expected posterior utility or mini-
mizing expected posterior loss. Berry (2004) discussed the practical importance of
developing approximate utilities for designing clinical trials.

The absence of a clear source for the prior probabilities seems to be the primary
objection to the Bayesian procedure. Typically, if we have enough data, the prior
probabilities are not going to matter because the posterior probabilities will be sub-
stantially the same for different priors. If we do not have enough data, the posteriors
will not agree but why should we expect them to? The best we can ever hope to
achieve is that reasonable people (with reasonable priors) will arrive at a consensus
when enough data are collected. In the example, seeing one observation of r = 1 or
4 is already enough data to cause substantial consensus. One observation that turns
out to be a 2 or a 3 leaves us wanting more data.

3.2 Simple Versus Composite Hypotheses

We now consider testing a single distribution against a pair of distributions. Recall
that a composite hypothesis is any hypothesis that contains more than one distribu-
tion. Specifically, we consider the example

r 1 2 3 4
f (r|0) 0.980 0.005 0.005 0.010
f (r|1) 0.100 0.200 0.200 0.500
f (r|2) 0.098 0.001 0.001 0.900

f (r|1)/ f (r|0) 10/98 40 40 50
f (r|2)/ f (r|0) 0.1 0.2 0.2 90

and test the simple null hypothesis H0 : θ = 0 versus the composite alternative hy-
pothesis HA : θ > 0. Here we can write the set of all θs as Θ = {0,1,2} with the
null being Θ0 ≡ {0} and the alternative ΘA ≡ {1,2}. With this notation we can
also write the testing problem quite generally as H0 : θ ∈ Θ0 versus HA : θ ∈ ΘA.
Since the composite alternative has only two values, we could alternatively write
HA : θ = 1,2 or HA : θ ̸= 0. Looking at the distributions in Table 1, the intuitive
conclusions are pretty clear. For r = 1, go with θ = 0. For r = 4, go with θ = 2. For
r = 2,3, go with θ = 1.

Significance testing has nothing new to add to this situation except the observa-
tion that when θ = 1, none of the data are really weird. In this case, the strangest
observation is r = 1 which has a P value of 0.1.
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3.2.1 Neyman-Pearson Testing

The best thing that can happen in N-P testing of a composite alternative is to have
a uniformly most powerful test. With HA : θ > 0, let θ ∗ be a particular value that is
greater than 0. Test the simple null H0 : θ = 0 against the simple alternative HA : θ =
θ ∗. If, for a given α , the most powerful test has the same rejection region regardless
of the value of θ ∗, then that test is the uniformly most powerful (UMP) test. It is a
simple matter to see that the α = 0.01 N-P most powerful test of H0 : θ = 0 versus
HA : θ = 1 rejects when r = 4. We have already seen that that is also true when the
alternative is HA : θ = 2. Since the most powerful tests of the alternatives HA : θ = 1
and HA : θ = 2 are identical, and these are the only permissible values of θ > 0, this
is the uniformly most powerful α = 0.01 test. The test makes a “bad” decision when
r = 2,3 because with θ = 1 as a consideration, you would intuitively like to reject
the test.

The α = 0.02 uniformly most powerful test rejects for r = 2,3,4, which is in line
with our intuitive evaluation, but recall from the previous section that this is the test
that (intuitively) should not have rejected for r = 2,3 when testing only HA : θ = 2.

Theoretically, the key thing to note is that as r varies, the relative order of
f (r|1)/ f (r|0) is identical to the relative order of f (r|2)/ f (r|0). The largest value of
f (r|1)/ f (r|0) and f (r|2)/ f (r|0) occurs at r = 4. The smallest value of f (r|1)/ f (r|0)
and f (r|2)/ f (r|0) occurs at r = 1. For r = 2,3 the values of f (r|1)/ f (r|0) are
the same and between the other two values. The same holds for f (r|2)/ f (r|0).
This common ordering means that, regardless of size, any most powerful test for
H0 : θ = 0 versus HA : θ = 1 will also be a most powerful test for H0 : θ = 0 versus
HA : θ = 2. Recall that the size of the test depends on the rejection region but not
on the alternative hypothesis. The most powerful test of size α = 0.01 rejects when
r = 4 for both alternatives. The most powerful test of size α = 0.02 rejects when
r = 2,3,4 for both alternatives. One most powerful test of size α = 0.0125 for both
alternatives rejects when r = 4 and rejects for r = 2 if a coin flip comes up heads.

This same idea works very generally. Suppose we are testing H0 : θ = θ0 versus
HA : θ ∈ΘA. If, as r varies, the relative order of f (r|θ)/ f (r|θ0) remains the same for
any θ ∈ΘA, the most powerful test will remain the same regardless of which θ ∈ΘA
we are considering, so we can find a uniformly most powerful test. In particular,
it is fairly obvious that if, for any θ ∈ ΘA, the function f (r|θ)/ f (r|θ0) is always
either increasing (or always decreasing) in r, the relative order of the likelihood
ratios will remain the same regardless of the choice of θ ∈ ΘA. This property is
called having monotone likelihood ratio and it is sufficient (but not necessary) for
the existence of uniformly most powerful tests. In fact, our little example displays
monotone likelihood ratio.

If the likelihood ratios are always increasing, UMP tests can be chosen that reject
for large values of r (possibly with random rejection for the smallest value of r in the
rejection region), and if they are decreasing, UMP tests can reject for small values
of r. For example, because the likelihood ratios are not strictly increasing, as in our
simple versus composite example, both (a) reject whenever r = 4 and flip a coin, if
it comes up heads, reject when r = 2, and (b) reject whenever r = 4 and flip a coin,
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if it comes up heads, reject when r = 3, are uniformly most powerful tests of size
α = 0.0125. But the second test is a UMP test that rejects for large values of r.

3.2.2 Bayesian Testing

A (nontrivial) Bayesian approach requires positive prior probabilities on both Θ0
and ΘA. When ΘA is composite, we need a prior distribution on θ given that θ ∈ΘA.
The easiest way to achieve this is by simply putting a prior distribution on Θ for
which 0 < Pr(Θ0)< 1. When Θ is finite or countable, this is easy to do.

For our simple versus composite example, an even handed Bayesian approach
might take prior probabilities that are the same for the null hypothesis and the
alternative, that is, Pr[θ = 0] = 0.5 and Pr[θ > 0] = 0.5. Moreover, we might
then put the same prior weight on every possible θ value within the alternative,
thus Pr[θ = 1|θ > 0] = 0.5 and Pr[θ = 2|θ > 0] = 0.5. Equivalently, p(0) = 0.5,
p(1) = 0.25, and p(2) = 0.25. Using Bayes Theorem,

p(θ |r) = f (r|θ)p(θ)
f (r|0)p(0)+ f (r|1)p(1)+ f (r|2)p(2)

,

the posterior probabilities become

r 1 2 3 4
p(0|r) 0.908 0.047 0.047 0.014
p(1|r) 0.046 0.948 0.948 0.352
p(2|r) 0.045 0.005 0.005 0.634

Pr[θ > 0|r] 0.091 0.953 0.953 0.986

These agree well with the intuitive conclusions that r = 1 suggests θ = 0, r = 4
suggests θ = 2, and r = 2,3 suggest θ = 1. This is true even though the prior puts
twice as much weight on θ = 0 as on the other θs. For the specific decision prob-
lem, Pr[θ > 0|r] gives our probability that the alternative hypothesis is true when
observing r. (There is a little roundoff error for r = 1.)

The Bayesian approach to testing a simple null against a composite alternative
can be recast as testing a simple null versus a simple alternative. Using the prior
probability on the values of θ given that the alternative hypothesis is true, one can
find the average distribution for the data under the alternative. With Pr[θ = 1|θ >
0] = 0.5 and Pr[θ = 2|θ > 0] = 0.5, the average distribution under the alternative
is 0.5 f (r|1)+0.5 f (r|2). The Bayesian test of the θ = 0 density f (r|0) against this
average density for the data under the alternative yields the posterior probabilities
p(0|r) and Pr[θ > 0|r], cf. Table 3.2.

It might also be reasonable to put equal probabilities on every θ value. In prob-
lems like this, where you know the data distributions, the only way to get unreason-
able Bayesian answers is to use an unreasonable prior.
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Prior r 1 2 3 4
f (r|0) 0.980 0.005 0.005 0.010

f (r|θ > 0) 0.099 0.1005 0.1005 0.700
Pr(θ = 0) = 1/2 Pr(θ = 0|r) 0.908 0.047 0.047 0.014
Pr(θ > 0) = 1/2 Pr(θ > 0|r) 0.091 0.953 0.953 0.986

Table 3.2 Recasting a simple versus composite Bayes test as simple versus simple.

3.3 Composite versus Composite

Now we add a fourth distribution to our consideration, f (r|−1), and test the com-
posite null H0 : θ ≤ 0 versus the composite alternative HA : θ > 0 or, more specif-
ically, H0 : θ ∈ {−1,0} ≡ Θ0 versus HA : θ ∈ {1,2} ≡ ΘA. The distributions and
likelihood ratios are given below.

r 1 2 3 4
f (r|−1) 0.9803 0.0049 0.0049 0.0099

f (r|0) 0.980 0.005 0.005 0.010
f (r|1) 0.100 0.200 0.200 0.500
f (r|2) 0.098 0.001 0.001 0.900

f (r|1)/ f (r|−1) 0.102 40.82 40.82 50.51
f (r|2)/ f (r|−1) 0.109 0.204 0.204 90.9

f (r|1)/ f (r|0) 10/98 40 40 50
f (r|2)/ f (r|0) 0.1 0.2 0.2 90

It is hard to make comparisons with significance testing because the composite hy-
potheses do not provide us with a model that determines a unique distribution for the
data. One could make four different significance tests. For this example, f (r| − 1)
was chosen to be a minor modification of f (r|0).

3.3.1 Neyman-Pearson Testing

As always N-P theory (quite properly) focuses on likelihood ratios. (Problems arise
with what N-P theory does with these ratios.) The example was chosen so that for
every θ0 ∈ Θ0 and every θ1 ∈ ΘA as r varies we have an identical ordering to the
values of f (r|θ1)/ f (r|θ0). As we have seen earlier, this means we can find UMP
tests. In particular, regardless of hypotheses, if θ∗ < 0.5 < θ#, our likelihood ratios
f (r|θ#)/ f (r|θ∗) are all monotone increasing, so UMP tests can be formed by reject-
ing for large values of r (perhaps with some randomization on the smallest r value).
The trick is to find/define the size of these tests.

For a composite null H0 : θ ∈ Θ0, the size of a test is defined to be the largest
probability for the rejection region among all θ ∈Θ0. Thus, if we reject when r = 4,
the size for θ = 0 is 0.01 and the size for θ =−1 is 0.0099, so the overall size is the
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maximum value, 0.01. For the rejection region r = 2,3,4, the size for θ = 0 is 0.02
and the size for θ =−1 is 0.0049+0.0049+0.99 = 0.197, so the overall size is the
maximum value, 0.02.

3.3.2 Bayesian Testing

Again a (nontrivial) Bayesian approach requires positive prior probabilities on both
Θ0 and ΘA and specifying conditional distributions for the θs given either the null or
the alternative. Again, the easiest way to achieve this is putting a prior distribution
on Θ for which 0 < Pr(Θ0)< 1. This time we illustrate the prior p(θ) = 1/4 for all
θ , so Pr(Θ0) = Pr(ΘA) = 1/2 and p(θ |Θi) = 1/2 for allowable θs when i = 0,A.

Using Bayes Theorem,

p(θ |r) = f (r|θ)p(θ)
f (r|−1)p(−1)+ f (r|0)p(0)+ f (r|1)p(1)+ f (r|2)p(2)

,

the posterior probabilities become

r 1 2 3 4
p(−1|r) 0.454 0.0235 0.0235 0.007

p(0|r) 0.454 0.0235 0.0235 0.007
p(1|r) 0.046 0.948 0.948 0.352
p(2|r) 0.045 0.005 0.005 0.634

Pr[θ > 0|r] 0.091 0.953 0.953 0.986

With f (r|−1) so similar to f (r|0) and equal probabilities p(−1) = p(0) = 1/4, the
values of Pr(Θ0|r) from the last example have essentially been retained in this exam-
ple but now p(−1|r) .

= p(0|r) .
= Pr(Θ0|r)/2. (I didn’t actually do the arithmetic

for the table but this “has to be” true.)
As with the simple versus composite case, the composite versus composite

Bayesian test can be recast as a simple versus simple test. As before, one finds the
average data distribution under the alternative but now, rather than having a single
data distribution under the null, the average alternative is tested against the average
data distribution under the null. With the prior we chose, each of these is just a sim-
ple average of the probabilities. Table 3.3 illustrates the computations. The posterior
probabilities in the table roundoff to the same values as in Table 3.2, even though
they are slightly different, because I choose an f (r|−1) extremely similar to f (r|0).

3.4 More on Neyman-Pearson Tests

To handle more general testing situations, N-P theory has developed a variety of
concepts such as unbiased tests, invariant tests, and α similar tests, see Chapter 7 or
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Prior r 1 2 3 4
f (r|θ ≤ 0) 0.98015 0.00495 0.00495 0.00995
f (r|θ > 0) 0.099 0.1005 0.1005 0.700

Pr(θ ≤ 0) = 1/2 Pr(θ ≤ 0|r) 0.908 0.047 0.047 0.014
Pr(θ > 0) = 1/2 Pr(θ > 0|r) 0.092 0.953 0.953 0.986

Table 3.3 Recasting a composite versus composite Bayes test as simple versus simple.

Lehmann (1997). For example, the one and two sample t tests are not a uniformly
most powerful tests but are uniformly most powerful unbiased tests. Similarly, the
standard F test in regression and analysis of variance is a uniformly most powerful
invariant test.

Similar to significance testing, the N-P approach to finding confidence regions is
also to find parameter values that would not be rejected by a α level test. However,
just as N-P theory interprets the size α of a test as the long run frequency of rejecting
a correct null hypothesis, N-P theory interprets the confidence 1−α as the long run
probability of these regions including the true parameter. The rub is that you only
have one of the regions, not a long run of them, and you are trying to say something
about this parameter based on these data. In practice, the long run frequency of
α somehow gets turned into something called “confidence” that this parameter is
within this particular region.

While I admit that the term “confidence,” as commonly used, feels good, I have
no idea what “confidence” really means as applied to the region at hand. Hubbard
and Bayarri (2003) make a case, implicitly, that an N-P concept of confidence would
have no meaning as applied to the region at hand, that it only applies to a long run
of similar intervals. Students, almost invariably, interpret confidence as posterior
probability. For example, if we were to flip a coin many times, about half of the
time we would get heads. If I flip a coin and look at it but do not tell you the result,
you may feel comfortable saying that the chance of heads is still 0.5 even though
I know whether it is heads or tails. Somehow the probability of what is going to
happen in the future is turning into confidence about what has already happened
but is unobserved. Since I do not understand how this transition from probability to
confidence is made (unless one is a Bayesian in which case confidence actually is
probability), I do not understand “confidence.”

3.5 More on Bayesian Testing

Bayesian tests can go seriously wrong only if you pick inappropriate prior distri-
butions. This is the case in Lindley’s famous paradox in which, for a seemingly
simple and reasonable testing situation involving normal data, the null hypothesis is
accepted no matter how weird the observed data are relative to the null hypothesis.
The datum is X |µ ∼ N(µ,1). The test is H0 : µ = 0 versus HA : µ > 0. The priors on
the hypotheses do not really matter, but take Pr[µ = 0] = 0.5 and Pr[µ > 0] = 0.5 In
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an attempt to use a noninformative prior, take the density of µ given µ > 0 to be flat
on the half line. (This is an improper prior but similar proper priors lead to similar
results.) The Bayesian test compares the density of the data X under H0 : µ = 0 to
the average density of the data under HA : µ > 0. (The latter involves integrating the
density of X |µ times the density of µ given µ > 0.) The average density under the
alternative makes any X you could possibly see, infinitely more probable to have
come from the null distribution than from the alternative. Thus, anything you could
possibly see will cause you to accept µ = 0. Attempting to have a noninformative
prior on the half line leads one to a nonsensical prior that effectively puts all the
probability on unreasonably large values of µ so that, by comparison, µ = 0 always
looks more reasonable.

3.6 Hypothesis Test P Values

The definition of a P value for a significance test is straight forward, it is the prob-
ability of seeming something as weird or weirder than you actually saw. The prob-
ability is computed under the only distribution you have and that density of that
distribution is used to define how weird an observation is. For an hypothesis test,
you have at least two distributions and one again needs to define weird.

For a simple versus simple hypothesis test the standard definition of a P value is
to compute the probability under the null distribution and to define weird in a relative
sense as having a large value of the likelihood ratio (alternative density divided by
null). This idea will also work for simple versus composite hypotheses for which
UMP tests exist. However a key feature is that weird observations are not weird
in any absolute sense, they are only weird relative to the alternative hypothesis.
As such, and as we have seen, a small P value in this sense does not necessarily
either contradict the null hypothesis, cf. Example 4.0.1, nor does it suggest that the
alternative is more likely to be true, cf. Section 3.1 with α = .02.

For more complicated problems, the idea of an hypothesis test P value is to find
the α level for which the test would just barely reject. But that requires one to have a
collection of tests indexed by α for which the rejections regions are getting smaller
as α decreases in a continuous way so that the data always fall into some rejection
region and a smallest rejection region exists.

Lehmann and Romano’s (2005) most general definition of a P value is that if you
have a collection of tests φα indexed by their size and if those tests have the property
that φα1(x) ≤ φα2(x) for any x and α1 ≤ α2, then the P value for this collection of
tests is defined to be P ≡ inf{α|φα(X) = 1}. This makes P the smallest level of
significance for which the null is rejected with probability 1. Flip an α coin has
P = 0.

They also define for nonrandomized tests with nested rejection regions Rα1 ⊂Rα2
for any α1 ≤ α2, P ≡ inf{α|X ∈ Rα}
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3.7 Permutation Tests

Are they hypothesis tests rather than significance tests because they require an al-
ternative? Probably an alternative based on stochastic inequality. The issue is that
all outcomes would have equal probabilities so you need some outside definition of
what constitutes “weird.”





Chapter 4
Comparing Testing Procedures

Significance tests and hypothesis tests are very different procedures. The clearest
example of this, that I know of, is the following.

EXAMPLE 4.0.1. Consider a significance test of the null model y ∼ N(0,1) based
on one observation. The density decreases as one gets further from the mean 0, so
large |y| values constitute evidence against the null model. In particular, an α = 0.05
significance test rejects for |y| ≥ 1.96.

Now consider testing H0 : y ∼ N(0,1) versus HA : y ∼ N(0,σ2), σ2 < 1. Fig-
ure 4.1 illustrates the densities f (y|σ2). With σ2 < 1 the density of a N(0,σ2) is

−4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4
0.5

0.6

N(0,1)
N(0,0.6)

Fig. 4.1 N(0,1) and N(0,0.6) densities.
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higher near 0 than the density of the N(0,1) which means that the N-P hypothesis
test for an α = 0.05 test will reject for values close to 0, in particular it will reject for
|y| ≤ 0.063. Could two tests for the same null model be any more different? Seeing
a small value of |y| provides no evidence against the model N(0,1) in any absolute
sense, such values are merely more consistent with the alternative than they are with
the null.

More technically, the density (likelihood) ratio is

f (y|σ2)

f (y|1)
=

(1/2πσ)e−y2/2σ2

(1/2πσ)e−y2/2
= e−y2/2σ2+y2/2 = exp

[
−(y2/2)

(
1

σ2 −1
)]

,

which, for any value of σ2 < 1, is maximized at 0 and decreases as |y| gets further
from 0. So according to the N-P lemma, the most powerful test for any particular
σ2 < 1, rejects for the smallest values of |y|. This holds regardless of the particular
value of σ2, hence the test is uniformly most powerful. In Chapter 7 it is an exercise
to show that this is a UMP test.

The same moral can be learned from discrete distributions. Our simple versus
composite hypothesis example of the previous chapter included the distributions

r 1 2 3 4
f (r|1) 0.100 0.200 0.200 0.500
f (r|2) 0.098 0.001 0.001 0.900

f (r|2)/ f (r|1) 0.98 0.0005 0.0005 1.8

Now consider an N-P test of H0 : θ = 1 versus HA : θ = 2. The N-P Lemma indicates
that we should most readily reject for the data point with the highest likelihood
ratio, r = 4, which is precisely the data point that is most consistent with the null
hypothesis. (For any N-P test with α < 0.5, a randomized test is needed.)

4.1 Discussion

The basic elements of a significance test are: (1) There is a probability model for
the data. (2) Multidimensional data are summarized into a test statistic that has a
known distribution. (3) This known distribution provides a ranking of the “weird-
ness” of various observations. (4) The P value, which is the probability of observing
something as weird or weirder than was actually observed, is used to quantify the
evidence against the null hypothesis. (5) α level tests are defined by reference to the
P value.

The basic elements of an N-P test are: (1) There are two (sets of) hypothesized
models for the data: H0 and HA. (2) An α level is chosen which is to be the (maxi-
mum) probability of rejecting H0 when H0 is true. (3) A rejection region is chosen
so that the probability of data falling into the rejection region is (at most) α when
H0 is true. With discrete data, this often requires the specification of a randomized
rejection region in which certain data values are randomly assigned to be in or out of
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the rejection region. (4) Various tests are evaluated based on their power properties.
Ideally, one wants the most powerful test. (5) In complicated problems, properties
such as unbiasedness or invariance are used to restrict the class of tests prior to
choosing a test with good power properties.

Significance testing seems to be a reasonable approach to model validation. In
fact, Box (1980) suggested significance tests, based on the marginal distribution of
the data, as a method for validating Bayesian models. Significance testing is philo-
sophically based on the idea of proof by contradiction in which the contradiction is
not absolute.

Bayesian testing seems to be a reasonable approach to making a decision between
alternative hypotheses. The results are influenced by the prior distributions, but one
can examine a variety of prior distributions.

Neyman-Pearson testing seems to be neither fish nor fowl. It seems to mimic sig-
nificance testing with its emphasis on the null hypothesis and small α levels, but it
also employs an alternative hypothesis, so it is not based on proof by contradiction
as is significance testing. Because N-P testing focuses on small α levels, it often
leads to bad decisions between the two alternative hypotheses. Certainly, for simple
versus simple hypotheses, any problems with N-P testing vanish if one is not philo-
sophically tied down to small α values. For example, any reasonable test (as judged
by frequentist criteria) must be within both the collection of all most powerful tests
and the collection of all Bayesian tests, see Ferguson (1967, p. 204).

Although most problems with testing seem to stem from choosing too small an
α at the expense of creating very large probabilities of type II error (β ), we have
seen an example where a decrease in α was appropriate because it barely increased
β .

There is also the issue of whether α is merely a measure of how weird the data
are, or whether is should be interpreted as the probability of making the wrong
decision about the null. If α is the probability of making an incorrect decision about
the null, then performing multiple tests to evaluate a composite null causes problems
because it changes the overall probability of making the wrong decision. If α is
merely a measure of how weird the data are, it is less clear that multiple testing
inherently causes any problem. In particular, Fisher (1935, Chp. 24) did not worry
about the experimentwise error rate when making multiple comparisons using his
“least significant difference” method in analysis of variance. He did, however, worry
about drawing inappropriate conclusions by using an invalid null distribution for
tests determined by examining the data.

In significance testing the P value is well defined and an α level test is defined in
terms of the P value. In hypothesis testing, an α level test is well defined and some
people want to define P values for hypothesis tests. We have seen that significance
tests and hypothesis tests are fundamentally different creatures, so any hypothesis
testing P value, needs to have a different definition than a significance testing P
value. Indeed, for all the restrictions one may need to place on N-P tests (composite
α value, unbiasedness, invariance), ultimately N-P tests are trying to reject for val-
ues with large likelihood ratios. So a reasonable definition of an hypothesis testing P
value will have to measure the weirdness of data by how much the likelihood ratio
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favors the alternative over the null. But this will always lead to a choice between
hypotheses and not a contradiction to the null model.

In the late 20-teens, it became fashionable to criticize NHST (Null Hypothe-
sis Significance Testing). Unfortunately, NHST is something of a straw man. Over
the years many statisticians have conflated significance and hypothesis testing into
NHST, which blurs the very important distinctions between the two methodologies.
(Even the name NHST conflates the methodologies because a significance test is for
a given model not a null hypothesis.) [Our use of the term “null model” is a capit-
ulation to the prevalence of NHST.] The problem is exacerbated by the fact that the
most commonly taught tests happen to be instances wherein the differences between
significance and hypothesis testing are easily glossed over.

Exercise 4.1. Discuss the problems of significance testing f (x) = .01,x =
1, . . . ,95, f (0) = .001, f (96) = .049, f (97) = 0 and of hypothesis testing f against
g(x) = .001,x = 1, . . . ,95,g(0) = 0,g(96) = .1,g(97) = .805.

4.2 Jeffreys’ Critique

A test of significance examines not only the event that occurred, but discrepant
events that did not occur. Jeffreys’s (1961) criticized the procedure saying,

“What the use of the P value implies, therefore, is that a hypothesis that may be
true may be rejected because it has not predicted observable results that have not
occurred.”

While that sounds good, its meaning is not clear. In the context of testing a null
probability model, it seems hardly to apply. If a probability model were to predict
different observable results, it would be a different probability model, and thus it
cannot be true. From the point of view of testing a parameter, the quotation makes
more sense. Suppose we observe X = 2 with E(X) = θ and we are testing H0 :
θ = 0. Whether we reject the hypothesis depends on assumptions we make about
unobserved quantities. If we assume X ∼ N(θ ,1), values of X greater than 2 units
from 0 are not predicted to occur often, so we could reject the hypothesis with
P = .045. If X − θ ∼ t(2), P = .18 which is unlikely to make us reject the null.
While this example fits the context of Jeffreys’s statement, it does not seem a very
damning criticism of significance tests.

Jeffreys’s criticism is far more meaningful when applied to tests that involve the
specification of an alternative hypothesis. In those cases it is appropriate to base
conclusions on which alternative is more likely to have generated the observed data.
In such a case, it seems ludicrous to incorporate into any conclusion the relative
likelihoods of data that were not observed.

Discuss the stopping rule principal. Binomial versus negative binomial P val-
ues. Savage’s quote (mentioned in Barnard conversation(?) and probably Rereading
Fisher). Jessica’s ESP experiment.



Chapter 5
Decision Theory

Decision theory is a very general theory that allows one to examine Bayesian es-
timation and hypothesis testing as well as Neyman-Pearson hypothesis testing and
many aspects of frequentist estimation. I am not aware that it has anything to say
about Fisherian significance testing.

In decision theory we start with states of nature θ ∈ Θ , potential actions a ∈
A , and a loss function L(θ ,a) that takes real values. We are interesting in taking
actions that will reduce our losses. Some formulations of decision theory incorporate
a utility function U(θ ,a) and seek actions that increase utility. The formulations are
interchangeable by simply taking U(θ ,a) =−L(θ ,a).

Eventually, we will want to incorporate data in the form of a random vector X
taking values in X and having density f (x|θ). The distribution of X |θ is called the
sampling distribution.

We will focus on three special cases.
Estimation of a scalar state of nature involves scalar actions with Θ = A = R.

Three commonly used loss functions are

• Squared error, L(θ ,a) = (θ −a)2;
• Weighted squared error, L(θ ,a) = w(θ)(θ − a)2, wherein w(θ) is a known

weighting function taking positive values;
• Absolute error, L(θ ,a) = |θ −a|.

Estimation of a vector involves Θ = A = Rd . Three commonly used loss func-
tions are

• L(θ ,a) = (θ −a)′(θ −a)≡ ∥θ −a∥2;
• L(θ ,a) = w(θ)∥θ −a∥2, with known w(θ)> 0;
• L(θ ,a) = ∑

d
j=1 |θ j −a j|.

Hypothesis testing involves two hypotheses, say Θ = {θ0,θ1}, and two corre-
sponding actions A = {a0,a1}. What is key in this problem is that there are only
two states of nature in Θ that we can think of as the null and alternative hypotheses,
respectively, and two corresponding actions in A that we can think of as accepting
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the null (rejecting the alternative) and accepting the alternative (rejecting the null).
The standard loss function is

L(θ ,a) a0 a1
θ0 0 1
θ1 1 0

A more general loss function is

L(θ ,a) a0 a1
θ0 c00 c01
θ1 c10 c11

wherein, presumably, c00 ≤ c01 and c10 ≥ c11.
More generally in hypothesis testing we can partition a more general Θ into

Θ0 (the null hypothesis) and Θ1 (the alternative hypothesis) with only two actions
A = {a0,a1} and the standard loss function becomes

L(θ ,a) a0 a1
θ ∈Θ0 0 1
θ ∈Θ1 1 0.

Again, a1 is taken to mean rejecting the null hypothesis and a0 is taken to mean
accepting the null hypothesis. To reject is to ‘not accept’ and to ‘not accept’ is to
reject. (Recall that in Significance Testing, not rejecting the null is different from
accepting it and there is no formal alternative to accept.) The use of a1 when θ ∈Θ0,
i.e., rejecting the null hypothesis when it is true, is called a Type I error. Using a0
when θ ∈ Θ1, i.e., not rejecting/accepting the null hypothesis when it is false, is
called a Type II error.

5.1 Optimal Prior Actions

If θ is random, i.e., if θ has a prior distribution, then the optimal action is defined
to be the action that minimizes the expected loss, E[L(θ ,a)]≡ Eθ [L(θ ,a)]

Proposition 5.1.1. For Θ = A = R and L(θ ,a) = (θ −a)2, if θ is random, the
optimal action is â = E(θ).

PROOF: It is enough to show that

E[(θ −a)2] = E[(θ − â)2]+ (â−a)2

because then the minimizing value of a occurs when â = a.
As is so often the case, the proof proceeds by subtracting and adding the correct

answer.
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E[(θ −a)2] = E[({θ − â}+{â−a})2]

= E[(θ − â)2]+2E[(θ − â)(â−a)]+E[(â−a)2]

= E[(θ − â)2]+2(â−a)E[(θ − â)]+(â−a)2

= E[(θ − â)2]+ (â−a)2

The third equality holds because (â−a)2 is a constant and the fourth holds because
E[θ −E(θ)] = 0. 2

Proposition 5.1.2. For Θ =A = R and L(θ ,a) = w(θ)(θ −a)2 with w(θ)> 0,
if θ is random, the optimal action is â = E[w(θ)θ ]/E[w(θ)].

PROOF: The proof is an exercise. Write

E[w(θ)(θ −a)2] = E[w(θ)(θ − â+ â−a)2].

2

Proposition 5.1.3. For Θ = A = R and L(θ ,a) = |θ − a|, if θ is random, an
optimal action is â = m ≡ Median(θ). Any median is optimal.

PROOF: Without loss of generality assume a is greater than the median m of θ

under consideration so that pa ≡ P[θ > a] ≤ 0.5. By the definition of the median,
pm ≡ P[θ ≤ m] ≥ 0.5. (A median m also has P[θ ≥ m] ≥ 0.5 with the inequalities
used to cope with discrete distributions.) For discrete distributions we take

∫ d
c to

mean
∫

I(c,d] with d = ∞ irrelevant because P[θ = ∞] = 0. As with many proofs,
ours involves adding and subtracting the correct item, but here we have to do it three
times.

E[|θ −a|] =
∫

|θ −a|dP(θ)

=
∫

∞

a
(θ −a)dP(θ)+

∫ a

m
(a−θ)dP(θ)+

∫ m

−∞

(a−θ)dP(θ)

=
∫

∞

a
(θ −a)dP(θ)+

∫
∞

a
(a−m)dP(θ)+

∫
∞

a
(m−a)dP(θ)

+
∫ a

m
(a−θ)dP(θ)+

∫ a

m
(θ −m)dP(θ)+

∫ a

m
(m−θ)dP(θ)

+
∫ m

−∞

(a−θ)dP(θ)+
∫ m

−∞

(m−a)dP(θ)+
∫ m

−∞

(a−m)dP(θ)

=
∫

∞

a
(θ −m)dP(θ)+

∫
∞

a
(m−a)dP(θ)

+
∫ a

m
(θ −m)dP(θ)+

∫ a

m
(m+a−2θ)dP(θ)

+
∫ m

−∞

(m−θ)dP(θ)+
∫ m

−∞

(a−m)dP(θ)
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=
∫

|θ −m|dP(θ)

+
∫

∞

a
(m−a)dP(θ)+

∫ a

m
(m+a−2θ)dP(θ)+

∫ m

−∞

(a−m)dP(θ)

=
∫

|θ −m|dP(θ)+ pa(m−a)+
∫ a

m
(m+a−2θ)dP(θ)+ pm(a−m)

=
∫

|θ −m|dP(θ)+(pm − pa)(a−m)+
∫ a

m
(m+a−2θ)dP(θ)

≥
∫

|θ −m|dP(θ)+(pm − pa)(a−m)+
∫ a

m
(m−a)dP(θ)

=
∫

|θ −m|dP(θ)+(pm − pa)(a−m)+(m−a)P[m < θ ≤ a]

=
∫

|θ −m|dP(θ)+(pm − pa)(a−m)+ [(1− pa)− pm](m−a)

=
∫

|θ −m|dP(θ)+(pm − pa)(a−m)− [(1− pa)− pm](a−m)

=
∫

|θ −m|dP(θ)+(2pm −1)(a−m)

≥
∫

|θ −m|dP(θ)

= E[|θ −m|],

where the first inequality holds because over the range of integration m+a−2θ ≥
m+a−2a and the second inequality holds because, by definition, pm ≥ 0.5 and, by
assumption, a ≥ m.

The proof for a < m is similar. 2

Proposition 5.1.4. For Θ = {θ0,θ1}, A = {a0,a1}, and the standard loss func-
tion, the optimal action is

â =

{
a0 if Pr(θ = θ0)> 0.5,
a1 if Pr(θ = θ0)< 0.5.

If Pr(θ = θ0) = 0.5, both actions are optimal.

PROOF: Note that

E[L(θ ,a0)] = L(θ0,a0)Pr(θ = θ0)+L(θ1,a0)Pr(θ = θ1) = Pr(θ = θ1)

and

E[L(θ ,a1)] = L(θ0,a1)Pr(θ = θ0)+L(θ1,a1)Pr(θ = θ1) = Pr(θ = θ0).

If Pr(θ = θ1)< Pr(θ = θ0) the optimal action is a0 and if Pr(θ = θ1)> Pr(θ = θ0)
the optimal action is a1. However, Pr(θ = θ0)+Pr(θ = θ1) = 1, so Pr(θ = θ1) <
Pr(θ = θ0) if and only if Pr(θ = θ0)> 0.5 2
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The final result is a generalization of Propostion 5.1.3 that establishes that quan-
tiles/percentiles other than the median can be optimal actions for an appropriate loss
function.

Proposition 5.1.5. For Θ =A = R and L(θ ,a) = (1−α)(a−θ)++α(θ −a)+
where (x)+ is x when x is nonnegative and 0 when it is negative, and θ random, an
optimal action â is any α quantile/percentile of the distribution of θ .

PROOF: The proof is similar to that for Propostion 5.1.3 but more involved. I
have broken it into more manageable pieces. Of course α = 0.5 is the special case
addressed earlier. For notational simplicity and similarity with the proof for absolute
error, we denote the α quantile as m rather than the more commonly used notation
qα .

First assume a is greater than the α quantile m of θ so that F(m)≤ F(a) where
F is the cdf of θ . By the definition of the alpha quantile, F(m) ≡ P[θ ≤ m] ≥ α

and P[θ ≥ m]≥ 1−α with the inequalities used to cope with discrete distributions.
For discrete distributions we take

∫ d
c to mean

∫
I(c,d] with d = ∞ irrelevant because

P[θ = ∞] = 0.

E[(1−α)(a−θ)++α(θ −a)+]

=
∫
[(1−α)(a−θ)++α(θ −a)+]dP(θ)

= α

∫
∞

a
(θ −a)dP(θ)+(1−α)

∫ a

m
(a−θ)dP(θ)+(1−α)

∫ m

−∞

(a−θ)dP(θ)

We are going to look at these three terms separately and then put them back together.
The first term reduces to

α

∫
∞

a
(θ −a)dP(θ)

= α

∫
∞

a
(θ −a)dP(θ)+α

∫
∞

a
(a−m)dP(θ)+α

∫
∞

a
(m−a)dP(θ)

= α

∫
∞

a
(θ −m)dP(θ)+α

∫
∞

a
(m−a)dP(θ)

= α

∫
∞

a
(θ −m)dP(θ)+α[1−F(a)](m−a)

The second term satisfies

(1−α)
∫ a

m
(a−θ)dP(θ)

= (1−α)
∫ a

m
(a−θ)dP(θ)

+(1−α)
∫ a

m
(θ −m)dP(θ)+(1−α)

∫ a

m
(m−θ)dP(θ)
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= (1−α)
∫ a

m
(θ −m)dP(θ)+(1−α)

∫ a

m
(m+a−2θ)dP(θ)

= α

∫ a

m
(θ −m)dP(θ)

+(1−2α)
∫ a

m
(θ −m)dP(θ)+(1−α)

∫ a

m
(m+a−2θ)dP(θ)

≥ α

∫ a

m
(θ −m)dP(θ)

where the last inequality holds because in the previous relation the sum of the last
two terms is nonnegative. To see this,

(1−2α)
∫ a

m
(θ −m)dP(θ)+(1−α)

∫ a

m
(m+a−2θ)dP(θ)

=
∫ a

m
(θ −m+m+a−2θ)dP(θ)−

∫ a

m
(2αθ −2αm+αm+αa−2αθ)dP(θ)

=
∫ a

m
(a−θ)dP(θ)−α

∫ a

m
(a−m)dP(θ)

≥
∫ a

m
(a−m)dP(θ)−α

∫ a

m
(a−m)dP(θ)

= (1−α)
∫ a

m
(a−m)dP(θ) = (1−α)[F(a)−F(m)](a−m)≥ 0.

The third term has

(1−α)
∫ m

−∞

(a−θ)dP(θ)

= (1−α)
∫ m

−∞

(a−θ)dP(θ)+(1−α)
∫ m

−∞

(m−a)dP(θ)+(1−α)
∫ m

−∞

(a−m)dP(θ)

= (1−α)
∫ m

−∞

(m−θ)dP(θ)+(1−α)
∫ m

−∞

(a−m)dP(θ)

= (1−α)
∫ m

−∞

(m−θ)dP(θ)+(1−α)F(m)(a−m)dP(θ)

Putting these three together gives

E[(1−α)(a−θ)++α(θ −a)+]

= α

∫
∞

a
(θ −a)dP(θ)+(1−α)

∫ a

m
(a−θ)dP(θ)+(1−α)

∫ m

−∞

(a−θ)dP(θ)

≥ α

∫
∞

a
(θ −m)dP(θ)+α[1−F(a)](m−a)

+α

∫ a

m
(θ −m)dP(θ)

+(1−α)
∫ m

−∞

(m−θ)dP(θ)+(1−α)F(m)(a−m)dP(θ)
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= E[(1−α)(m−θ)++α(θ −m)+]+α[1−F(a)](m−a)+(1−α)F(m)(a−m)

≥ E[(1−α)(m−θ)++α(θ −m)+].

The last inequality holds because

α[1−F(a)](m−a)+(1−α)F(m)(a−m)≥ 0.

This is true because it is equivalent to having

(1−α)F(m)≥ α[1−F(a)],

which holds because (1−α)≥ [1−F(a)] and F(m)≥ α .
To prove the case with a < m, you need to redefine

∫ d
c dP(θ) ≡

∫
I[c,d) dP(θ),

which leads to redefining F as F(a) = Pr[θ < a] so that now the alpha quantile has
1−F(m)≥ 1−α .

E[(1−α)(a−θ)++α(θ −a)+]

= α

∫
∞

m
(θ −a)dP(θ)+α

∫ m

a
(θ −a)dP(θ)+(1−α)

∫ a

−∞

(a−θ)dP(θ)

Showing that

α

∫ m

a
(θ −a)dP(θ)≥ (1−α)

∫ m

a
(m−θ)dP(θ)

is left as an exercise. For the first and third terms, you also need to prove that

α[1−F(m)](m−a)+(1−α)F(a)(a−m)≥ 0,

which is equivalent to
α[1−F(m)]≥ (1−α)F(a),

which follows because α ≥ F(a) and [1−F(m)]≥ (1−α). 2

5.2 Optimal Posterior Actions

Suppose we have a data vector X with density f (u|θ). If θ is random, i.e., if θ has
a prior density p(θ), a Bayesian updates the distribution of θ using the data and
Bayes’ Theorem to get the posterior density

p(θ |X = u) =
f (u|θ)p(θ)∫

f (u|θ)p(θ)dµ(θ)
.

The Bayes action is defined to be the action that minimizes the expected loss,
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E[L(θ ,a)|X = u]≡ Eθ |X=u[L(θ ,a)].

The Bayes action is just the optimal action when the distribution on θ is the pos-
terior distribution given X . Recognizing this fact, the previous section immediately
provides four results.

Proposition 5.2.1. For Θ = A = R, data X = u, and L(θ ,a) = (θ −a)2, if θ is
random, the Bayes action is â = Eθ |X=u(θ)≡ E(θ |X = u).

Proposition 5.2.2. For Θ =A =R, data X = u, and L(θ ,a)=w(θ)(θ −a)2 with
w(θ)> 0, if θ is random, the Bayes action is â = E[w(θ)θ |X = u]/E[w(θ)|X = u].

Proposition 5.2.3. For Θ = A = R, data X = u, and L(θ ,a) = |θ − a|, if θ is
random, a Bayes action is any â = m ≡ Median(θ |X = u).

Proposition 5.2.4. For Θ = {θ0,θ1}, data X = u, A = {a0,a1}, L(θ ,a) = I(θ ̸=
a), a Bayes action has

â =

{
a0 if Pr(θ = θ0|X = u)> 0.5
a1 if Pr(θ = θ0|X = u)< 0.5 .

A similar result also holds for quantile estimation. In Section 5 we will see that
predictions problems have the same structure and the same results.

5.3 Traditional Decision Theory

With states of nature θ ∈ Θ , potential actions a ∈ A , and a data vector X taking
values in X and having density f (x|θ), a decision function (rule) δ is defined as a
mapping of the data into the action space, i.e.,

δ : X → A .

With a loss function L(θ ,a), the risk function is defined as

R(θ ,δ )≡ EX |θ{L[θ ,δ (X)]}.

To frequentists, the risk function is the soul of decision theory. They would like
to pick a δ that minimizes R(θ ,δ ) uniformly in θ . That is very hard to do.

Uniformly minimum variance unbiased (UMVU) estimators of h(θ) use squared
error loss, minimize R(θ ,δ ) uniformly in θ , but restrict δ to rules with EX |θ [δ (X)]=
h(θ).
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In testing problems with the standard loss function, we would love to minimize
R(θ ,δ ) uniformly in θ but we cannot. For θ ∈Θ0, R(θ ,δ ) is the probability of Type
I error. In particular, since δ (X) only takes two values,

R(θ ,δ ) = L(θ ,a0)PX |θ [δ (X) = a0]+L(θ ,a1)PX |θ [δ (X) = a1]

= 0+PX |θ [δ (X) = a1].

For θ ∈Θ1, R(θ ,δ ) becomes the probability of Type II error. If Θ0 and Θ1 are not
single points, both probabilities are functions of θ . For θ ∈Θ0, R(θ ,δ ) is sometimes
called the size function of the test. (The actual size of a test is usually taken as
supθ∈Θ0

R(θ ,δ ).)
The power of the test δ is the probability of rejecting the null hypothesis when

it is false (picking a1 when θ ∈ Θ1), and equals 1−R(θ ,δ ) when θ ∈ Θ1. As a
function of θ , PX |θ [δ (X) = a1] gives the size function when θ ∈Θ0 and the power
function when θ ∈Θ1, so it provides the size-power function. Uniformly most pow-
erful (UMP) tests minimize R(θ ,δ ) uniformly for θ ∈ Θ1, but restrict δ to rules
with R(θ ,δ ) ≤ α for all θ ∈ Θ0. Uniformly most powerful unbiased (UMPU) and
uniformly most powerful invariant (UMPI) tests place additional restrictions on the
δ rules that are considered.

The Bayes risk is a frequentist idea of what a Bayesian should worry about. With
a prior distribution, call it p, on θ , the Bayes risk is defined as

r(p,δ )≡ E[R(θ ,δ )].

Frequentists think that Bayesians should be concerned about finding the Bayes de-
cision rule that minimizes the Bayes risk. Formally, for a prior p, the Bayes rule is
a decision function δp with

r(p,δp) = inf
δ

r(p,δ ).

As discussed in the previous section, Bayesians think that they should be concerned
with finding the Bayes action given the data. Fortunately, these amount to the same
thing. To minimize the Bayes risk, you pick δ (x) to minimize

r(p,δ ) = E[R(θ ,δ )]
= Eθ

(
EX |θ{L[θ ,δ (X)]}

)
= EX

(
Eθ |X{L[θ ,δ (X)]}

)
.

This can be minimized by picking δ (x) to be the Bayes action that minimizes

Eθ |X=x{L[θ ,δ (x)]}

for every value of x.
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One exception to Bayesians being concerned about the Bayes action rather than
the Bayes decision rule is when a Bayesian is trying to design an experiment, hence
is concerned with possible data rather than already observed data.

We now introduce other basic concepts from decision theory.

Definition 5.3.1 The rule δ is inadmissible if there exists δ∗ such that, for any θ ,
R(θ ,δ∗)≤ R(θ ,δ ) and there exists θ∗ such that R(θ∗,δ∗)< R(θ∗,δ ). In such a case
we say that δ∗ is better than δ . The rule δ is admissible if it is not inadmissible, i.e.,
if no rule is better than it. Two rules δ1 and δ2 are equivalent if R(θ ,δ1) = R(θ ,δ2)
for all θ . A rule δ1 is as good as δ2 if it is either better than or equivalent to δ2.

For a discrete Θ and a prior that puts positive probability on each θ , the Bayes
rule is admissible. Typically Bayes rules are admissible in decision problems unless
something funky is going on. Suppose δp is Bayes and inadmissible with, say, δ

being better so that R(θ ,δ ) ≤ R(θ ,δp) with there existing θ0 such that R(θ0,δ ) <
R(θ0,δp). Obviously the prior p cannot put positive probability on θ0 or else δ

would have a strictly smaller Bayes risk. When Θ is not discrete, if the risk functions
are continuous in θ in a neighborhood of θ0, then there is a neighborhood of θ0 on
which R(θ ,δ )< R(θ ,δp) and the difference is bounded above 0. The prior p cannot
have positive probability on this neighborhood of θ0 or else δ would have a strictly
smaller Bayes risk.

Definition 5.3.2. A class of decision rules C is a complete class if for any δ ̸∈C
there exists δ∗ ∈ C , with δ∗ better than δ . A class of decision rules C ∗ is essentially
complete if for any δ ̸∈ C ∗ there exists δ∗ ∈ C ∗, with δ∗ as good as δ .

Every complete class contains all of the admissible rules. The Complete Class The-
orem is that (under suitable conditions) the Bayes rules constitute a complete class.
One rationale for being a Bayesian is that if all reasonable decision rules correspond
to some prior distribution, before choosing something among the reasonable deci-
sion rules, you should investigate whether its corresponding prior seems reasonable.

Two generalizations of decision rules exist. You can randomly pick a decision
rule or you can have a decision rule that yields randomized actions, i.e., if you see
X = x you randomly pick an action with the randomization allowed to depend on x.
This second idea is called a randomized decision rule. For a randomized action A,

L(θ ,A)≡ EA[L(θ ,A)].

For a randomized decision rule taking randomized actions δ (x),

R(θ ,δ )≡ EX |θ Eδ (X)|X [L(θ ,δ (X)].

Randomized decision rules are an integral part of Neyman-Pearson testing theory.
When randomly picking a decision rule, say ∆ ,
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R(θ ,∆)≡ E∆ EX |θ ,∆=δ [L(θ ,δ (X)].

For example, suppose ∆ is that you flip a coin and use δ1 if the coin is heads and δ2
if the coin is tails, then

R(θ ,∆) =
1
2

R(θ ,δ1)+
1
2

R(θ ,δ2).

Neither of these ideas are very attractive to statisticians. You have certain ev-
idence X = x that global warming is true. Why would you flip a coin to decide
whether that evidence is sufficient for you to act as if global warming is true.
Nonetheless, we will see in Chapter 7 that randomized decision rules are a key
feature of the theory of hypothesis testing. (Fortunately, they are not a key feature
of its practice.)

Definition 5.3.3. The value of a decision problem is infa∈A supθ L(θ ,a) or
infA supθ L(θ ,A) for randomized actions.

EXAMPLE 5.3.4. In testing with the standard loss function, supθ L(θ ,a0) = 1 and
supθ L(θ ,a1) = 1 so the value is 1. Either action will minimize your maximum loss
and achieve the value of the problem.

With a randomized action,

A =

{
a0 with probability p
a1 with probability 1− p,

we get L(θ0,A) = 1− p and L(θ1,A) = p and supθ L(θ ,A) = max(p,1− p). With
randomized actions, the value of the problem is infA supθ L(θ ,a) = infp max(p,1−
p) = 0.5, so it corresponds to the action of flipping a fair coin to decide which
hypothesis to accept.

If you think of this as a game, you get to take actions, your opponent determines
the states of nature, and whatever you lose your opponent wins. Your opponent acts
to maximize your losses, so you can do better on average if you take randomized
actions. With randomized actions, the worst thing that can happen to you in this
example is half as bad and with fixed actions.

For the loss function

L(θ ,a) a0 a1
θ0 2 4
θ1 3 2

action a0 will minimize your maximum loss. This is the minimax pure action. 2

Exercise 5.1 For the loss function immediately above, show that the randomized
action that takes a0 with probability 2/3 minimizes the maximum expected loss.

In the next section we extend these ideas to minimax decision rules.
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5.4 Minimax Rules

Definition 5.4.1. A decision rule δ0 is a minimax rule if

sup
θ

R(θ ,δ0) = inf
δ

sup
θ

R(θ ,δ ).

In particular, δ0 is a minimax rule if for any θ∗ ∈ Θ and any δ , R(θ∗,δ0) ≤
supθ R(θ ,δ )

Definition 5.4.2. A prior distribution on θ , say g∗, is a least favorable distribution
if

inf
δ

r(g∗,δ ) = sup
g

inf
δ

r(g,δ ) = sup
g

r(g,δg),

where δg is a Bayes rule for g. If δ∗ is a Bayes rule with respect to g∗ then

r(g∗,δ∗) = inf
δ

r(g∗,δ ) = sup
g

inf
δ

r(g,δ ) = sup
g

r(g,δg).

In other words, g∗ is the prior that is going to give a Bayesian the worst possible
outcome (risk).

Exercise 5.2 Show that g∗ is least favorable if and only if infδ r(g∗,δ0) ≥
infδ r(g,δ ) for any δ0 and all g.

We present without proof the Minimax Theorem.

Theorem 5.4.3. The Minimax Theorem.

inf
δ

sup
g

r(g,δ ) = sup
g

inf
δ

r(g,δ )

Note that on the right side, if supg infδ r(g,δ ) = infδ r(g∗,δ ) then g∗ is a least
favorable distribution.

Corollary 5.4.4. For any δ , supθ R(θ ,δ ) = supg r(g,δ ).

PROOF: Observe that

r(g,δ ) = E[R(θ ,δ )]≤ E[sup
θ

R(θ ,δ )] = sup
θ

R(θ ,δ ),

so
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sup
g

r(g,δ )≤ sup
θ

R(θ ,δ ).

Conversely, by considering the subset of priors that take on the value θ with proba-
bility one, say gθ , note that r(gθ ,δ ) = R(θ ,δ ) and

sup
g

r(g,δ )≥ sup
gθ :θ∈Θ

r(gθ ,δ ) = sup
θ

R(θ ,δ ).

2

Proposition 5.4.5. If the Minimax Theorem holds, if δ0 is a minimax rule, and
if g∗ is a least favorable distribution with corresponding Bayes rule δ∗, then δ0 is
also a Bayes rule with respect to the least favorable distribution. (If the Bayes rule
happens to be unique, we must have δ0 = δ∗.)

PROOF: Using Corollary 4, Definition 1, Corollary 4, the Minimax Theorem 3,
and Definition 2,

r(g∗,δ0) ≤ sup
g

r(g,δ0)

= sup
θ

R(θ ,δ0)

= inf
δ

sup
θ

R(θ ,δ )

= inf
δ

sup
g

r(g,δ )

= sup
g

inf
δ

r(g,δ )

= r(g∗,δ∗)

This must be an equality since we know by definition of the Bayes rule that

r(g∗,δ0)≥ r(g∗,δ∗)

Since δ0 and δ∗ have the same Bayes risk, they must both be Bayes rules. 2

The point is that a Bayes rule for a least favorable distribution isn’t necessarily a
minimax rule, but a minimax rule, if it exists, is necessarily a Bayes rule for a least
favorable distribution.

We now introduce a method for finding minimax rules.

Definition 5.4.6. δ0 is an equalizer rule if for some constant K, R(θ ,δ0) = K for
all θ .

Proposition 5.4.7. If the Minimax Theorem holds and if δ0 is both an equalizer
rule and the Bayes rule for some prior distribution g0, then δ0 is minimax.
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PROOF:

inf
δ

sup
θ

R(θ ,δ )≤ sup
θ

R(θ ,δ0) = K = r(g0,δ0) = inf
δ

r(g0,δ )≤ sup
g

inf
δ

r(g,δ ).

By the Minimax Theorem and Corollary 4, all of these are equal, so in particular

inf
δ

sup
θ

R(θ ,δ ) = sup
θ

R(θ ,δ0).

2

Exercise 5.3a. Let X1, . . . ,Xn|θ ∼ N(θ ,σ2). For squared error loss, show that
the sample mean is an equalizer rule.

Exercise 5.3b. Let X |θ ∼ Bin(n,θ) and θ ∼ Beta(α,β ). Assume that the Min-
imax Theorem holds! For squared error loss, find the Bayes rule, say, δαβ . Find
R(θ ,δαβ ). Pick α and β so that δαβ is an equalizer rule. Establish that δαβ a mini-
max rule.

5.5 Prediction Theory

In prediction theory one wishes to predict an unobserved random vector y based
on an observed random vector x. Let’s say that y has q dimensions and that x has
p− 1 dimensions. We assume that the joint distribution of x and y is known. Any
predictor of y is some function of x, say ỹ(x). We define a predictive loss function,
L[y, ỹ(x)] and seek to find a predictor ŷ(x) that minimizes the expected prediction
loss, E{L[y, ỹ(x)]}, where the expectation is over both y and x. Note that

Ex,y{L[y, ỹ(x)]}= Ex
(
Ey|x{L[y, ỹ(x)]}

)
or in alternative notation

E{L[y, ỹ(x)]}= E(E{L[y, ỹ(x)]|x}) .

In particular, there is a one to one correspondence between prediction theory
and the approach of traditional decision theory to Bayesian analysis. We associate
y with θ and x with X . In prediction we assume a joint distribution for x and y
whereas in Bayesian analysis we specify the sampling distribution and the prior that
together determine the joint distribution of θ and X . A predictor ỹ(x) is analogous
to a decision rule. The expected prediction error Ex,y{L[y, ỹ(x)]} is analogous to the
Bayes risk. Just like in Bayesian analysis, the way to find the best predictor is, for
each value of x, to find the value of ỹ(x) that minimizes E{L[y, ỹ(x)]|x}.
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The most common prediction problem is similar to linear regression in which y
takes values in R and uses squared error loss,

L[y, ỹ(x)] = [y− ỹ(x)]2.

We want to minimize the expected prediction error

E{L[y, ỹ(x)]}= E{[y− ỹ(x)]2}

where the expectation is over both y and x. Identifying prediction with decision and
conditioning on x, we see that Proposition 5.1.1 implies

Proposition 5.5.1. For data (x′,y), y ∈ R, and L(y, ỹ(x)) = [y− ỹ(x)]2, the best
predictor is ŷ = E(y|x).

Regression, both linear and nonparametric, is about estimating the optimal predictor
E(y|x). Note that this result holds even when y is Bernoulli, in which case the best
predictor under squared error loss is E(y|x) = Pr[y = 1|x]. Using squared error loss
with a Bernoulli variable y is essentially using Brier Scores.

Similarly we can get other best predictors.

Proposition 5.5.2. For data (x′,y), y ∈ R, and L(y, ỹ(x)) = w(y)[y− ỹ(x)]2 with
w(θ)> 0, the best predictor is ŷ = E[w(y)y|x]/E[w(y)|x].

Proposition 5.5.3. For data (x′,y), y ∈ R, and L(y, ỹ(x)) = |y− ỹ(x)|, a best
predictor is any ŷ = m ≡ Median(y|x).

When y takes values in {0,1}, an alternative loss function is the so called Ham-
ming loss,

L[y, ỹ(x)] = I [y ̸= ỹ(x)],

wherein I (logical) is 0 if the logical statement is false and 1 if it is true and a
predictor ỹ(x) also needs to take values in {0,1}. We want to minimize the expected
prediction error

E{L[y, ỹ(x)]}= E{I [y ̸= ỹ(x)]}

where the expectation is over both y and x. We see that Proposition 5.1.4 implies

Proposition 5.5.4. For data (x′,y), y ∈ {0,1} and L(y, ỹ(x)) = I (y ̸= ỹ(x)), a
best predictor has

ŷ(x)≡
{

0 if Pr(y = 0|x)> 0.5
1 if Pr(y = 0|x)< 0.5 .

In binary regression people tend to focus on the probability of getting a 1, rather
than getting a 0 (which is analogous to a null hypothesis), so it is more common to
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think of the optimal predictor as

ŷ(x)≡
{

0 if Pr(y = 1|x)< 0.5
1 if Pr(y = 1|x)> 0.5 .

Binomial (e.g., logistic or probit) regression is about estimating the probability
Pr(y = 1|x). For squared error loss, this gives the estimated optimal predictor. For
Hamming loss, the estimated optimal predictor is 0 or 1 depending on whether the
estimated value of Pr(y = 1|x) is less than 0.5

Fisher argued (similarly to Bayesians) that prediction problems should be con-
sidered entirely as conditional on the predictor vector x. However, there are some
predictive measures, such as the squared multiple correlation coefficient (of which
the coefficient of determination R2 is an estimate), whose definition depends on the
distribution of x. Measures that depend on the distribution of x are inappropriate to
compare when the distribution of x changes. Thus it is common to argue that R2

values for the same model on different data are not comparable. In fact, that is only
true if the x data have been sampled from a different population – which is usually
the case.
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5.5.2 Linear Models

Do a prediction chapter. the prediction result from PA Exercise 2.1 can be used
more generally when predicting ỹ and specifically some function of it ρ̃ ′ỹ like the
difference in sample means between two predictive samples. When X̃β is estimable,

ρ̃ ′ỹ− ρ̃ ′X̃ β̂
√

MSE
(
ρ̃ ′ρ̃ + ρ̃ ′X̃(X ′X)−X̃

)′
ρ̃

(ȲM1 − ȲM2)− (ȳ1·ȳ2·)√
MSE

[
1
M + 1

M + 1
N1

+ 1
N2

]





Chapter 6
Estimation Theory

6.1 Basic Estimation Definitions and Results

Consider a parametric family of distributions for an observable random n-vector y
defined by their densities (with respect to some dominating measure)

y|θ ∼ f (v|θ); θ ∈Θ .

Most often, Θ ⊂ Rd . Often we consider y1, . . . ,yn iid with some common density
f∗(·|θ). In that case,

y = (y1, . . . ,yn)
′; f (v|θ) =

n

∏
i=1

f∗(vi|θ).

Definition 6.1.1. Any function of y, say T (y), is a statistic. Statistics can be real
valued or vector valued.

Note that a statistic is not allowed to depend on θ but for fixed θ we can still
treat functions G(y,θ) as random variables.

Definition 6.1.2. A statistic (estimator) g(y) is unbiased for h(θ), if Ey|θ [g(y)] =
h(θ) for all θ . The bias of g(y) for estimating h(θ) is defined by bgh(θ) ≡
Ey|θ [g(y)− h(θ)]. If h(θ) ≡ θ , we suppress the bias subscript h. These functions
can be either real valued or vector valued.

For g(y) and h(θ) real valued with the loss function

L(θ ,a) = [a−h(θ)]2,

the risk is

R[θ ,g(y)] = Ey|θ [g(y)−h(θ)]2 = Vary|θ [g(y)]+ [bgh(θ)]
2.

67
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This is often referred to as the mean squared error. (In linear model theory the
“mean squared error” is used to indicate the unbiased estimate of the variance, so to
distinguish the concepts, this risk may be called the “expected squared error.”)

Definition 6.1.3. The density of y, f (v|θ), is a function of the place holder
variable v for known θ . We get to observe y but never know θ . For fixed y, the
likelihood function is

L(θ)≡ f (y|θ).

If we want to emphasize its dependence on y we may write L(θ |y).

6.1.1 Maximum Likelihood Estimation

Definition 6.1.4. A statistic θ̂(y) ≡ θ̂ is a maximum likelihood estimate (MLE)
of θ if

L[θ̂(y)] = sup
θ∈Θ

L(θ)≡ sup
θ∈Θ

L(θ |y).

For any function h(θ), the MLE is h(θ̂). cf. Cox and Hinkley (1974).

Under suitable regularity conditions, MLEs have excellent asymptotic properties,
see Ferguson (1996). They converge in probability to what they are estimating and,
when suitably normalized, they converge in distribution to a normal distribution.

A theorem exists that if a minimum variance unbiased estimate exists and if the
maximum likelihood estimate is unbiased, it is the minimum variance unbiased es-
timate.

6.2 Sufficiency and Completeness

Calling a statistic T (y) “sufficient” is intended to convey that all the information
about θ is contained in T (y).

Definition 6.2.1. T (y) is a sufficient statistic (for θ ) if the distribution of y given
T (y) does not depend on the parameter θ .

If Θ0 ⊂Θ , then any T (y) that is sufficient for θ ∈Θ is automatically sufficient for
θ ∈ Θ0. The distribution of y|T (y) can be used to examine whether our parametric
family is appropriate, that is, it can be used for model checking.

The data themselves are always sufficient. If y1, . . . ,yn are iid f∗(·|θ), the order
statistics y(1) ≤ ·· · ≤ y(n) are always sufficient because the distribution of the data



6.2 Sufficiency and Completeness 69

given the order statistics is just a permutation. In other words,

P(y1 = v1, . . . ,yn = vn|y(1) = u1, . . . ,y(n) = un) =
1
n!
,

where v1, . . . ,vn is any permutation of u1 ≤ ·· · ≤ un. Clearly, this conditional distri-
bution does not depend on θ .

We generally determine whether something is sufficient by using the following
theorem.

Theorem 6.2.2. The Factorization Criterion.
T (y) is a sufficient statistic for θ if an only if we can write

f (v|θ) = h(v)g[T (v);θ ]

for some functions h and g.

First shown by Fisher (1922), this result was proven in great generality by Halmos
and Savage (1949). When establishing properties of sufficient statistics, knowing the
the factorization holds is very useful. However when finding sufficient statistics for a
particular model, finding a factorization is how we typically establish sufficiency. So
both directions in the if and only if statement are important. That notwithstanding,
only a proof that the factorization implies sufficiency is given at the end of the
section.

As a function of θ , the likelihood is now L(θ |y) ∝ g[T (y);θ ], so, for example,
the maximum of the likelihood function must occur at the maximum of g[T (y);θ ],
which only depends on y through the sufficient statistic T (y). Similarly, if we have a
prior density on θ , say pθ (u), from Bayes Theorem the posterior density of θ given
y = v is

pθ |y(u|v) =
f (v|u)pθ (u)∫
f (v|u)pθ (u)du

=
g[T (v);u]pθ (u)∫
g[T (v);u]pθ (u)du

,

where the last term shows that the posterior distribution depends on y = v only
through the fact that T (y) = T (v). Thus the posterior depends on y only through the
value of the sufficient statistic, any sufficient statistic.

EXAMPLE 6.2.3. Consider y1, . . . ,yn iid U(0,θ), θ > 0. For these data the largest
order statistic is sufficient.

f (v|θ) =
n

∏
i=1

1
θ

I(0,θ)(vi) =
n

∏
i=1

1
θ

I(0,θ)(v(i)) =
1

θ n I(0,∞)(v(1))I(0,θ)(v(n)).

The second equality holds because we are merely reordering the terms in the prod-
uct. The third equality follows from the definition of the order statistics. In the fac-
torization criterion, h(v) = I(0,∞)(v(1))

EXAMPLE 6.2.4. Consider y1, . . . ,yn iid U(θ1,θ2), θ2 > θ1. For these data the
smallest and largest order statistics are sufficient.
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f (v|θ1,θ2) =
n

∏
i=1

1
(θ2 −θ1)

I(θ1,θ2)(vi) =
n

∏
i=1

1
(θ2 −θ1)

I(θ1,θ2)(v(i))

=
1

(θ2 −θ1)n I(θ1,θ2)(v(1))I(θ1,θ2)(v(n)).

If the smallest and largest order statistics are between θ1 and θ2, all of the order
statistics must be between them.

When manipulating densities, if the density contains an indicator function, it is
very important to retain the indicator throughout the manipulation.

Exercise 6.1. Let y1, . . . ,yn iid N(µ,σ2) with θ ≡ (µ,σ2)′ ∈ Θ = (R,R+)′.
Show that (ȳ·,s2)′ is sufficient. Also show that (∑i yi,∑i y2

i )
′ is sufficient.

Exercise 6.2. Let y1, . . . ,yn iid N(0,σ2) with θ ≡ σ2 ∈Θ = R+. Show that ∑i y2
i

is sufficient.

Exercise 6.3. Let y1, . . . ,yn iid N(5,σ2) with θ ≡ σ2 ∈ Θ = R+. Show that
(ȳ·,s2)′ is sufficient. Show that ∑i(yi −5)2 is sufficient.

Definition 6.2.5. A statistic H(y) is a complete statistic if Ey|θ{Q[H(y)]}= 0 for
all θ ∈Θ implies that Q[H(y)] = 0 a.e. in the dominating measure. A less restrictive
version is that Py|θ{Q[H(y)] = 0}= 1 for every θ ∈Θ . H(y) is boundedly complete
if the result holds for bounded functions Q.

Suppose you have two functions of a complete statistic, say g1[H(y)] and g2[H(y)],
and both are unbiased for h(θ). Then Ey|θ{g1[H(y)]−g2[H(y)]}= 0 for all θ which
means that Py|θ [g1[H(y)]− g2[H(y)] = 0] = 1. Basically, for any parameter h(θ),
there can be only one unbiased estimate that is a function of H(y). We will see in
the next section that if a statistic T (y) is both complete and sufficient, any function
of it, say g[T (y)] has to be a minimum variance unbiased estimate of its expectation,
i.e., of h(θ)≡ Ey|θ{g[T (y)]}.

If Θ0 ⊂Θ , then any T (y) that is complete for θ ∈Θ0 is automatically complete
for θ ∈Θ . Relative to subsets of Θ , sufficiency and completeness work in opposite
ways. Think of Θ as indexing all distributions that are absolutely continuous wrt
(with respect to) Lebesgue measure and for which the expected value exists. Think
of Θ0 as indexing N(µ,1) distributions. Consider y1, . . . ,yn iid f∗(·|θ). For Θ , the
order statistics y(1) ≤ . . .≤ y(n) are complete and sufficient, see Frasier (1957). For
Θ0, we will see later that the sample mean ȳ· is complete and sufficient. For Θ0,
the order statistics are sufficient but not complete. For Θ , ȳ· is complete but not
sufficient.

Incidentally, ȳ· is the minimum variance unbiased estimate of E(yi) in both fam-
ilies. For θ ∈ Θ it is relatively hard to find statistics that estimate the expected
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value unbiasedly. Thus ȳ·, which is the mean of the order statistics, is the best of a
relatively small group of unbiased estimators but is best for a wide array of distri-
butions. For θ ∈ Θ0 it is relatively easy to find statistics that estimate the expected
value unbiasedly (partly because of symmetry). Thus ȳ· is the best of a large group
of estimators but is best for a relatively small collection of distributions.

6.2.1 Ancillary Statistics

Ancillary statistics are a somewhat controversial subject. If an ancillary statistic
exists, some people (notably Fisher) argue that inference on θ should proceed by
conditioning on the ancillary statistic.

Definition 6.2.8. Suppose y ∼ f (v|θ). A statistic A(y) is said to be ancillary if
Py|θ [A(y) ∈ B] for any (measurable) B does not depend on θ . A statistic A(y) is said
to be first order ancillary if Ey|θ [A(y)] does not depend on θ .

Some people like to analyze experimental designs in which treatments are ran-
domly assigned to experimental units based entirely on the random assignment. (For
some simple applications see PA, Appendix G.) Obviously, the random assignment
has nothing to do with any parameters related to the results of the experiment, so the
result of the randomization is an ancillary statistic. If the randomization is the only
thing random, conditioning on the ancillary statistic leaves nothing on which to base
an analysis. Ironically, Fisher was big on both the idea of conditioning on ancillary
statistics and on the idea of using only the random assignment of treatments as the
basis for analyzing experiments.

When predicting y on the basis of x, Fisher argued that the only parameters of
interest are associated with the conditional distribution given x. Pretty obviously, the
distribution of x does not depend on any of those parameters, so is ancillary. (This
is actually a somewhat more nuanced argument involving parameters of interest and
nuisance parameters.)

In dealing with count data, Fisher’s exact conditional test for 2× 2 contingency
tables conditions on ancillary statistics (row and column totals). In fact, all exact
conditional tests for contingency tables involve conditioning on statistics that are
ancillary for the parameters of interest. Whether these tests are more appropriate
than unconditional tests is a source of controversy, cf. Agresti (1992).

The most famous result relating to ancillary statistics is due to Basu.

Basu’s Theorem 6.2.8. If T (y) is a boundedly complete sufficient statistic and
if A(y) is ancillary then T (y) and A(y) are independent.

PROOF: [Lehmann, 1983, p.46] Let ηB(t)≡ Py|θ [A(y) ∈ B|T (y) = t]. By suffi-
ciency this conditional probability does not depend on θ . Dropping the unnecessary
subscript on the conditional probability,
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Ey|θ [ηB(T (y))] = P[A(y) ∈ B]≡ pB,

which by ancillarity does not depend on θ . It follows that

Ey|θ [ηB(T (y))− pB] = 0,

for every θ . By (boundedly) completeness, ηB(T (y))− pB = 0 a.s. for all θ , so
P[A(y) ∈ B|T (y) = t] = P[A(y) ∈ B]. If the conditional probability does not depend
on what is being conditioned on, the objects are independent, so A(y) ∈ B is inde-
pendent of T (y) for any B.

EXAMPLE 6.2.10. Consider random variables x1, . . . ,xn iid each with a density
h(·). Random variables y1, . . . ,yn are iid from a location family if for some xis they
satisfy yi ∼ xi + θ in which case they have density fy|θ (v) = ∏

n
i=1 h(vi − θ). The

statistics yi − y j are all ancillary because yi − y j = xi − x j so the distribution does
not depend on θ .

Consider y1, . . . ,yn iid from a scale family defined by yi ∼ xiθ in which case they
have density fy|θ (v) = ∏

n
i=1 h(vi/θ)/θ . The statistics yi/y j are all ancillary because

yi/y j = xi/x j so the distribution does not depend on θ .

It would seem that Ancillary Statistics cannot be complete.

6.2.2 Proof of the Factorization Criterion

I think this if from Ferguson (1967).

Lemma 6.2.11. Let r ≥ 0 and s be two functions and let E[r(y)] ≤ Kr < ∞.
Because it is nonnegative , r can act like a (not typically probability) density with
regards to the dominating measure P, call this new measure µr, and so we can con-
struct something akin to a conditional expectation relative to this new measure, call
it Er[s(y)|T (y)], then∫

T−1(B)
g[T (v)]r(v)s(v)dP(v) =

∫
T−1(B)

g[T (v)]E[r(v)s(v)|T (v)]dP(v)

=
∫

T−1(B)
g[T (v)]Er[s(v)|T (v)]r(v)dP(v)

=
∫

T−1(B)
g[T (v)]Er[s(v)|T (v)]E[r(v)|T (v)]dP(v).

PROOF: Let g[T (v)] be an indicator and then do limits.
If g[T (v)] be an indicator, combine it with the indicator for T−1(B), so it is

enough to show the result without g[T (v)] in the integral.
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T−1(B)

s(v)dµr(v) =
∫

T−1(B)
Er[s(y)|T (v)]dµr(v)

so

1
Kr

∫
T−1(B)

r(v)s(v)dP(v) =
1
Kr

∫
T−1(B)

Er[s(y)|T (v)]r(v)dP(v)

=
1
Kr

∫
T−1(B)

E
{

Er[s(y)|T (v)]r(y)
∣∣T (v)}dP(v)

=
1
Kr

∫
T−1(B)

Er[s(y)|T (v)]E
{

r(y)
∣∣T (v)}dP(v)

Lemma 6.2.12. Suppose ν is a σ -finite measure so there exists a partition Ai,
i = 1,2, . . . such that for all i, ν(Ai)< ∞. The

ν∗(B) =
∞

∑
i=1

B∩Ai

2iν(Ai)

is a probability measure and

dν∗(v) =
∞

∑
i=1

IAi(v)
2iν(Ai)

dν(v).

PROOF: Obvious.

PROOF OF THE FACTORIZATION CRITERION:
⇐ We must prove that, for all A, E[IA(y)|T (y)] does not depend on θ .

From Lemma 6.2.12 and implicitly defining the function h1,

dPθ (v) = f (v|θ)dν = f (v|θ) 1

∑
∞
i=1

IAi (v)
2iν(Ai)

dν∗(v)

= g[T (v);θ ]
h(v)

∑
∞
i=1

IAi (v)
2iν(Ai)

dν∗(v)

≡ g[T (v);θ ]h1(v)dν∗(v).

In Lemma 6.2.11 identify g[T (v)]→ g[T (v);θ ], r(v)→ h1(v), s(v)→IA(v) dP(v)→
dν∗(v), so∫

T−1(B)
g[T (v);θ ]h1s(v)dP(v) =

∫
T−1(B)

g[T (v)]E[h1(y)IA(y)|T (v)]dν∗(v)

=
∫

T−1(B)
g[T (v);θ ]Eh1 [IA(y)|T (v)]h1(v)dν∗(v)

=
∫

T−1(B)
g[T (v);θ ]Eh1 [IA(y)|T (v)]E[h1(y)|T (v)]dP(v)
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∫
T−1(B)

E[IA(y)|T (v)]dPθ (v) =
∫

T−1(B)
IA(v)g[T (v);θ ]h1(v)dν∗(v)

=
∫

T−1(B)
g[T (v);θ ]Eh1 [IA(y)|T (v)]h1(v)dν∗(v)

=
∫

T−1(B)
g[T (v);θ ]Eh1 [IA(y)|T (v)]Eν∗ [h1(y)|T (v)]dν∗(v)

=
∫

T−1(B)
g[T (v);θ ]Eh1 [IA(y)|T (v)]h1(y)dν∗(v)

=
∫

T−1(B)
Eh1 [IA(y)|T (v)]dPθ (v).

By definition Eh1 [IA(y)|T (v)] = Ey|θ [IA(y)|T (v)] but Eh1 [IA(y)|T (v)] is defined
with respect to the measure with density h1(v)dν∗(v) which does not depend on θ

⇒ We don’t actually care that much about this direction.

6.3 Rao-Blackwell Theorem and Minimum Variance Unbiased
Estimation

Suppose T (y) is any statistic and g(y) is unbiased for h(θ), both real valued. To
simplify notation, for fixed θ write the conditional expectation and variance of g(y)
given T (y) as both

Ey|θ [g(y)|T (y)]≡ Ey|θ ,T (y)[g(y)]

and write
Vary|θ [g(y)|T (y)]≡ Vary|θ ,T (y)[g(y)].

The key point in this section is that these numbers typically depend on θ but, when
T (Y ) is sufficient, they do not.

Standard results, cf. Exercise A.1, on conditional probabilities provide that for
any statistic T (y),

h(θ) = Ey|θ [g(y)] = Ey|θ{Ey|θ [g(y)|T (y)]} (1)

and

Vary|θ [g(y)] = Vary|θ{Ey|θ [g(y)|T (y)]}+Ey|θ{Vary|θ [g(y)|T (y)]}
≥ Vary|θ{Ey|θ [g(y)|T (y)]}. (2)

Since we do not know θ , if Ey|θ [g(y)|T (y)] depends on θ , it is not a statistic. It is
not a number that we can actually find once we observe y, so it is not something we
can use as an estimator. If T (y) is a sufficient statistic, the distribution of g(y) given
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T (y) does not depend on θ , so Ey|θ [g(y)|T (y)] ≡ Ey|θ ,T (y)[g(y)] = Ey|T (y)[g(y)] ≡
E[g(y)|T (y)] is a statistic, it is a function of y that does not depend on θ . It then
follows from (1) that E[g(y)|T (y)] is an unbiased estimate of h(θ) and from (2)
that Vary|θ{E[g(y)|T (y)]} ≤ Var[g(y)], so the conditional expectation is at least as
good an unbiased estimate as the original unbiased estimate. We have proven the
following.

Theorem 6.3.1. Rao-Blackwell Theorem.
If g(y) is an unbiased estimate of h(θ) and T (y) is a sufficient statistic, then
E[g(y)|T (y)] is also an unbiased estimate with variance no greater than that of g(y).

If T (Y ) is both complete and sufficient, any function of it, say g̃[T (y)], is unbi-
ased for its expected value, say, h(θ)≡ Ey|θ{g̃[T (y)]}. If g(y) is any other unbiased
estimate of h(θ), then by sufficiency E[g(y)|T (y)] is also an unbiased statistic and a
function of T (Y ), so E{g̃[T (y)]−E[g(y)|T (y)]} = 0 and by completeness of T (y),
1 = Pry|θ{g̃[T (y)]−E[g(y)|T (y)] = 0}= Pry|θ{g̃[T (y)] = E[g(y)|T (y)]}. It follows
that

Vary|θ{g̃[T (y)]}= Vary|θ{Ey|θ [g(y)|T (y)]} ≤ Vary|θ [g(y)],

so the variance of g̃[T (y)] is at least as small as the variance of any other unbiased
estimate. This result is sometimes called the Lehmann-Scheffé Theorem.

The factorization criterion allows us to find sufficient statistics, the remaining
question is how to find complete sufficient statistics. That will be addressed in the
section on exponential families.

A similar result holds for any loss function L(θ ,a) that is convex in a. Jensen’s
inequality applied to the conditional distribution of y given T (y) implies

E{L[θ ,g(y)]|T (y)} ≥ L{θ ,E[g(y)|T (y)]},

so

R[θ ,g(y)]=E(E{L[θ ,g(y)]|T (y)})≥E(L{θ ,E[g(y)|T (y)]})=R{θ ,E[g(y)|T (y)]}.

In particular, conditioning on a sufficient statistic can improve mean squared error
even for biased estimates.

6.3.1 Minimal Sufficient Statistics

Definition 6.3.6 A sufficient statistic T0(y) is said to be minimal sufficient if for
any other sufficient statistic T (y) there exists a transformation q such that T0(y) =
q[T (y)].
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EXAMPLE 6.3.7. Suppose y1, . . . ,yn are iid N(µ,σ2), then the data and the order
statistics are sufficient but (ȳ·,s2) and (∑i yi,∑i y2

i ) are minimal sufficient.

Suppose T (y) is sufficient and T0(y) is minimal sufficient and suppose that
g[T (y)] and g0[T0(y)] are unbiased for h(θ). By Rao-Blackwell, E{g[T (y)] |T0(y)]
is at least as good as g[T (y)] and may be better. However, by minimal sufficiency,

E{g0[T0(y)] |T (y)] = E(g0{q[T (y)]}|T (y)) = g0{q[T (y)]}= g0[T0(y)],

so it cannot be an improvement. This establishes that a best unbiased estimator
must be a function of the minimal sufficient statistic, however, without completeness
there is no guarantee that merely conditioning an unbiased estimate on a minimal
sufficient statistic will get you the best unbiased estimator. Galili and Meilijson
(2016) provide a simple example with several unbiased functions of the minimal
sufficient statistic giving different variances.

Lehmann and Scheffé (1950) show that if T (y) is a boundedly complete sufficient
statistic then it is minimal sufficient. If a minimal sufficient statistic and a UMVU
estimate both exist, there has to be a UMVU that is a function of the minimal suffi-
cient statistic.

6.3.2 Unbiased Estimation: Additional Results from Rao (1973,
Chapter 5)

EXAMPLE 6.3.8. (This also appears in Cox and Hinkley.) Let y1, . . . ,yn be iid
N(µ,σ2). Then E(s2) = σ2, Var(s2) = 2σ4/(n−1), but s2(n−1)/n maximizes the
likelihood function. Consider the risk under squared error loss from estimates of the
form cs2 for a constant c.

E[cs2 −σ
2]2 =

[
2c2

n−1
+(1− c)2

]
σ

4.

This is minimized for c = (n−1)/(n+1). Squared error loss is kind of weird when
there is a bound on the parameter space. You tend to get risk improvements by
shrinking towards the bound. 2

In normal theory statistical inference, what matters is not the point estimate of
σ2 but the fact that ∑i(yi − ȳ·)2/σ2 ∼ χ2(n − 1). Using s2 leads to the t(n − 1)
and F(1,n− 1) distributions. If you use a different point estimate, you need to use
different distributions, but they adjust is such a way that you get the same tests and
confidence intervals.

EXAMPLE 6.3.9. A case for unbiased estimation. Consider k independent, pos-
sibly biased, estimators of θ , say θ̂1, . . . , θ̂k. Take E

[
θ̂i
]
= θ + b and Var

[
θ̂i
]
=
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σ2
i ≤ σ2. Now define θ̄ ≡ ∑

k
i=1 θ̂i/k. We still get E

[
θ̄
]
= θ +b but now Var

[
θ̄
]
=

∑i σ2
i /k2 ≤ σ2/k. So combining biased estimators reduces variance but does not

help to reduce bias. 2

The next result is very similar to a result in PA that something is the BP of y if
and only if the prediction residuals are uncorrelated with any function of x.

Proposition 6.3.10. T (y) is minimum variance unbiased for θ if and only if it is
unbiased and for any function h with E[h(y)] = 0, we have Cov[T (y),h(y)] = 0.

PROOF: ⇐ Suppose E[T (y)] = θ = E[h(y)], then U(y) = T (y)− h(y) has
E[U(y)] = 0.

Var[h(y)] = Var[T (y)+U(y)] = Var[T (y)]+Var[U(y)]+2Cov[T (y),U(y)]

If Cov[T (y),U(y)] = 0, then

Var[h(y)]≥ Var[T (y)]

⇒ SupposeT (y) is minimum variance unbiased for θ and E[h(y)] = 0. For any
scalar λ ,

Var[T +λh] = Var[T ]+2λCov[T,h]+λ
2Var[h]

which is less than Var[T ] if 2λCov[T,h]+λ 2Var[h]< 0
If λ > 0,

0 < λ <
−2Cov[T,h]

Var[h]

If λ < 0,

0 > λ >
2Cov[T,h]

Var[h]

If Cov[T, f ] ̸= 0 can find a λ so that T is not MVU

Corollary 6.3.11. E[T (y)] = θ E[h(y)] = 0 T (y) is MVU if Cov[T (y),h(y)]≥ 0.

PROOF: If Cov[T (y),T (y)−h(y)]≥ 0, then Var[T (y)] = Cov[T (y),h(y)]

Corollary 6.3.12. T (y) and h(y) are minimum variance unbiased, then Corr[T (y),h(y)]=
1.

PROOF: Var[T (y)] = Cov[T (y),h(y)] = Var[h(y)].

Corollary 6.3.13. T (y) ∈ G and unbiased. T (y) is MVU within G if and only if
Cov[T (y),h(y)] = 0 for every h ∈ G with E[h] = 0.
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PROOF: Same.

Often G is the class of linear estimators. In linear models λ ′β is a BLUE iff
Cov[λ ′β̂ ,ρ ′Y ] = 0 when E[ρ ′Y ] = 0.

Corollary 6.3.14. Let T (y) ∈ H . E[T −θ ]2 is minimized within H iff E[(T −
θ)(T −h)] = 0 for h ∈ H

PROOF: Similar

E[h−θ ]2 = E[h−T ]2 +E[T −θ ]2 +2Cov[(h−T )(T −θ)]

Corollary 6.3.15. If T1(y) and T2(y) are minimum variance unbiased for θ1 and
θ2 then b1T1(y)+b2T2(y) are minimum variance unbiased for b1θ1 +b2θ2.

PROOF: Cov[b1T1(y)+b2T2(y),h] = 0 if E[h] = 0. look this up

Corollary 6.3.16. Results hold for y ∼ f (v). If results hold for all η , with y ∼
f (v|η).

PROOF:

Theorem 6.3.17. If y is iid, any MVU is symmetric in the observations.

PROOF: iid implies that the order statistics are sufficient. Conditioning on the
order statistics gives a symmetric function of the data.

E[h(y)|O] =
∑permutation p h[p(y)

n!

Theorem 6.3.18. Generalization of Rao-Blackwell.

E[U −h(θ)]2 ≥ E{E[U |T ]−h(θ)}2

PROOF: Let E[U ] = g(θ)

E[U −h(θ)]2 = E[U −g(θ)+g(θ)−h(θ)]2 = Var[U −g(θ)]2 +[g(θ)−h(θ)]2

E[E[U |T ]−h(θ)]2 = Var[E[U |T ]−g(θ)]2 +[g(θ)−h(θ)]2
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6.4 Scores, Information, and Cramér-Rao

We begin by introducing the the score and information functions. We then use these
concepts to introduce the Cramér-Rao inequality.

For θ ∈Θ ⊂ Rd ,
1 =

∫
f (v|θ)dv.

Differentiating with respect to θ and assuming we can do it under the integral,

0 = dθ 1

= dθ

[∫
f (v|θ)dv

]
=
∫

dθ f (v|θ)dv

=
∫ [ 1

f (v|θ)
dθ f (v|θ)

]
f (v|θ)dv

= Ey|θ

[
1

f (y|θ)
dθ f (y|θ)

]
.

Note that if d > 1, all of these quantities are d-dimensional row vectors. In the array
of equations earlier, we divided by the density f (v|θ) but densities can be 0 over
measurable sets. However, the derivative is assumed to exist, so it must also be 0,
and whenever we divide by a 0 density we also multiply by a 0 density, so we can
just exclude any regions of zero density from our computations.

Define the score function d-vector as

S(y;θ)≡ 1
f (y|θ)

[dθ f (y|θ)]′.

Since it depends on θ , S(y;θ) is not a statistic. The score function can also be
thought of as {dθ log[ f (y|θ)]}′.

We have just shown that E[S(y;θ)] = 0, so it follows that

Covy|θ [S(y;θ)] = Ey|θ [S(y;θ)S(y;θ)′]≡ I(θ),

where we use the equivalence to define I(θ), the information in y for θ .
If the data are iid, the density is f (v|θ) = ∏

n
i=1 f∗(vi|θ) and the score function

for y becomes the sum of the score functions for the yis, S(y;θ) = ∑
n
i=1 S∗(yi;θ),

because the multiplication rule Proposition F.2(a) lets us write

S(y;θ) =
1

f (y|θ)
[dθ f (y|θ)]′

=
1

f (y|θ)

[
dθ

n

∏
i=1

f∗(yi|θ)

]′
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=
1

f (y|θ)

[
n

∑
k=1

[dθ f∗(yk|θ)]∏
i̸=k

f∗(yi|θ)

]′

=
1

f (y|θ)

[
n

∑
k=1

[dθ f∗(yk|θ)]
(

f∗(yk|θ)
f∗(yk|θ)

)
∏
i̸=k

f∗(yi|θ)

]′

=
1

f (y|θ)

[
n

∑
k=1

[dθ f∗(yk|θ)]
f∗(yk|θ)

n

∏
i=1

f∗(yi|θ)

]′

=
1

f (y|θ)

[
n

∑
k=1

[dθ f∗(yk|θ)]
f∗(yk|θ)

f (y|θ)

]′

=
f (y|θ)
f (y|θ)

[
n

∑
k=1

[dθ f∗(yk|θ)]
f∗(yk|θ)

]′
=

n

∑
i=1

S∗(yi;θ).

Similarly, the information matrix for y is the sum of the information matrices for
the yis, but those are all identical, so I(θ) = nI∗(θ) where we use I∗(θ) to denote
the information in a single observation. All of this remains true if the yis are iid r
vectors so that y is actually an rn×1 vector.

Exercise 6.1.
(a) Show I(θ) = E

{
[∑n

i=1 S∗(yi;θ)]
[
∑

n
j=1 S∗(y j;θ)

]′}
= nI∗(θ).

Hint: Independence allows you to get rid of cross-product terms.
(b) Show that I(θ) = E

(
−{d2

θθ
log[ f (y|θ)]}

)
.

Hint: Take the second derivative on each side of 1 =
∫

f (v|θ)dv.

The Cramér-Rao Inequality gives a lower bound for the variance of any estimate
of a scalar parameter θ . Obviously, if you have an unbiased estimate that actually
achieves the lower bound, it must be a minimum variance unbiased estimate.

The Cramér-Rao inequality involves applying the Cauchy-Schwarz inequality to
a real valued estimator g(y) of a real valued parameter θ and the real valued score
function S(y;θ). If g(y) is a possibly biased estimate of θ then

θ +bg(θ) =
∫

g(v) f (v|θ)dv

and differentiating (under the integral) wrt θ gives

1+ ḃg(θ) =
∫

g(v) ḟ (v|θ)dv =
∫

g(v)S(v;θ) f (v|θ)dv = Ey|θ [g(y)S(y;θ)] . (1)

The Cauchy-Schwarz Inequality states that for any random functions x and y,
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[Cov(x,y)]2 ≤ Var(x)Var(y).

Applying this to an estimate g(y) of θ and the score, by Cauchy-Schwarz,

{Covy|θ [g(y),S(y;θ)]}2 ≤ Vary|θ [g(y)]Vary|θ [S(y;θ)].

It follows immediately that

Vary|θ [g(y)]≥
{Covy|θ [g(y),S(y;θ)]}2

I(θ)
.

Look at the covariance term. Using (1) and the fact that 0 = Ey|θ [S(y;θ)],

Covy|θ [g(y),S(y;θ)] = Ey|θ [g(y)S(y;θ)] = 1+ ḃg(θ).

Our final form for the Cramér-Rao Inequality is

Vary|θ [g(y)]≥
[1+ ḃg(θ)]

2

I(θ)
.

If we restrict g(y) to be an unbiased estimate of θ , then bg(θ) = 0, so the result
reduces to

Vary|θ [g(y)]≥
1

I(θ)
.

Again, a sufficient (but not necessary) way to show that you have a minimum vari-
ance unbiased estimate of θ is to find an unbiased estimate that achieves equality in
the Cramér-Rao lower bound.

Nayak (2002) discusses a similar inequality for prediction problems.

6.4.1 Information and Maximum Likelihood

The exact asymptotic distribution of the MLE depends on the information, cf. Fer-
guson (1996). Under suitable conditions with Θ ⊂ Rd ,

[I(θ)]1/2[θ̂ −θ ]
L→ N(0, Id)

and
[θ̂ −θ ]′[I(θ)][θ̂ −θ ]

L→ χ
2(d).

Here we are using a Singular Value Decomposition to define [I(θ)]1/2, cf. Chris-
tensen (2020). For iid data these reduce to

√
n[θ̂ −θ ]

L→ N
(
0,I∗(θ)−1)

and
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n[θ̂ −θ ]′[I∗(θ)][θ̂ −θ ]
L→ χ

2(d).

Typically, θ̂
P→ θ and these relationships also hold when the information on θ is

replaced with the information evaluated at θ̂ .

6.4.2 Score Statistics

While the score function S(y;θ) ≡ [dθ f (y|θ)]′[1/ f (y|θ)] is not a statistic, if we
replace θ with its MLE θ̂ we get the score statistic, S(y; θ̂). In the next chapter we
will consider tests based on score statistics. Also, if we are only considering one
value of θ , say θ = θ0, we also refer to S(y;θ0) as a (test) statistic.

6.5 Gauss-Markov Theorem

For a linear model

Y = Xβ + e; E(e) = 0; Cov(e) = σ
2I,

the Gauss-Markov theorem is that for any estimable function, the least squares es-
timate is the best (minimum variance) linear unbiased estimate. See Plane Answers
for details.

6.6 Exponential Families

A density function is in the natural exponential family if for functions c and h and a
statistic T (y) it can be written as

f (v|θ) = c(θ)h(v)exp[θ ′T (v)] = h(v)exp[θ ′T (v)− r(θ)],

where c(θ) ≡ exp[−r(θ)] (provided that c(θ) > 0). By the factorization criterion,
T (y) is a sufficient statistic.

The support of a distribution is the set of v values for which f (v|θ) > 0. (The
support is only defined up to sets of dominating measure 0.) The density of y is
then equal to f (v|θ) times the indicator function of the support. If the support of
the distribution depends on θ , the distribution is not in the exponential family. If the
support depends on θ , we can write the support as a set A(θ) ̸= Rn. The indicator
for the support is IA(θ)(v) This cannot be part of c(θ) or h(v) because it involves
both θ and v. It also cannot be part of exp[θ ′T (v)] because exp[θ ′T (v)] > 0 yet
the indicator function of the support can be 0. For example, uniform distributions
determined by a parametric endpoint are not members on an exponential family.
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The mean of the statistic T (y) can often be written in terms of r(θ).

1 =
∫

f (v|θ)dv =
∫

h(v)exp[θ ′T (v)− r(θ)]dv.

If we can differentiate under the integral sign,

0 = dθ (1) =
∫

h(v)dθ{exp[θ ′T (v)− r(θ)]}dv

=
∫

h(v)exp[θ ′T (v)− r(θ)]
[
T (v)′−dθ r(θ)

]
dv

= E
[
T (y)′−dθ r(θ)

]
.

This leads to
E [T (y)] = [dθ r(θ)]′ .

Lehmann has given a couple of conditions under which T (Y ) is also complete.
The following theorem gives what seems to be the simplest.

Theorem 6.6.1. [Lehmann, 1986, p.142 ] Suppose y|θ has a density in the nat-
ural exponential family. Then if neither θ nor T (Y ) is subject to a linear constraint,
T (y) is sufficient and complete.

PROOF: Wlog (without loss of generality) assume that I = [−aJ ≤ θ ≤ aJ]⊂Θ

where J is a vector of as and a > 0 is a scalar. Consider θ ∈ I.
Suppose ν is the dominating measure for the density of y. Define νT (B) =

ν [T (v) ∈ B] and further define ν∗ via dν∗(t) = hT (t)dνT (t). The distribution of
T ≡ T (y) is determined by a density with respect to νT of the form

f (t|θ) = c(θ)exp[θ ′t]dν∗(t)

We need to show that if ET |θ [Q(T )] = 0 for all θ , then PT |θ [Q(T ) = 0] = 1 for all
θ . As in Appendix D.2, write Q = Q+ −Q−. Note that since 0 = ET |θ [Q(T )] =
ET |θ [Q+(T )]−ET |θ [Q−(T )],∫

Q+(t)c(θ)exp[θ ′t]ν∗(t) =
∫

Q−(t)c(θ)exp[θ ′t]dν∗(t), (1)

hence for θ = 0, ∫
Q+(t)dν∗(t) =

∫
Q−(t)dν∗(t)≡ K.

It follows that Q+(t)/K and Q−(t)/K can be viewed as densities wrt dν∗(t) and
equation (1) specifies that the densities have the same moment generating function,
hence the densities determine the same distribution. If the distributions are the same,
the densities must be the same a.e. (ν∗), i.e., Q+(t) = Q−(t) a.e., hence Q(t) =
Q+(t)−Q−(t) = 0 a.e. (ν∗) which is enough to ensure that the function is 0 a.e. (ν)
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We can broaden the class of exponential families by considering “unnatural”
ones. A density function is in the exponential family if for functions c, h, η , and a
statistic T (y) it can be written as

f (v|θ) = c(θ)h(v)exp[η(θ)′T (v)] = h(v)exp[η(θ)′T (v)− r(θ)],

where c(θ)≡ exp[−r(θ)] and T (y) is sufficient. If η is a bijection (one-to-one and
onto), we can reparameterize θ into a new parameter η that is in the natural expo-
nential family.

See PA, Section 2.5 for a discussion of these ideas applied to linear models.
I seem to recall that complete sufficient statistics only exist for exponential fam-

ilies.

6.7 Asymptotic Properties

Consistency, Efficiency, etc. Leave the details of these procedures to other sources
on asymptotic theory like Ferguson (1996) or Lehmann(1999).



Chapter 7
Hypothesis Test Theory

In Chapter 5 we introduced hypothesis testing as part of decision theory. This in-
volves partitioning Θ into Θ0 (the null hypothesis) and Θ1 (the alternative hypothe-
sis) and only two actions A = {a0,a1} with a0 accepting the null hypothesis (reject-
ing the alternative) and a1 rejecting the null hypothesis (accepting the alternative).
The standard loss function is

L(θ ,a) a0 a1
θ ∈Θ0 0 1
θ ∈Θ1 1 0.

Using a1 when θ ∈ Θ0 is called a Type I error. Using a0 when θ ∈ Θ1 is called a
Type II error.

If either Θ0 or Θ1 contains only a single value, it is referred to as a simple hypoth-
esis. If either contains more than one value, that is called a composite hypothesis.
Simple nulls are tested against both simple and composite alternatives. Composite
nulls are tested against composite alternatives but rarely against simple alternatives.

We consider a test φ(y) to be a randomized decision rule in the sense that for
every v, φ(v) is the probability of rejecting the null hypothesis. The loss for a ran-
domized action φ(v) is

L(θ ,φ(v)) = L(θ ,a1)φ(v)+L(θ ,a0)[1−φ(v)].

The risk associated with φ is

R(θ ,φ) = Ey|θ{L(θ ,a1)φ(y)+L(θ ,a0)[1−φ(y)]}.

With the standard loss function, the size of a test is defined to be

α ≡ sup
θ∈Θ0

R(θ ,φ) = sup
θ∈Θ0

Ey|θ{L(θ ,a1)φ(y)}= sup
θ∈Θ0

∫
φ(v) f (v|θ)dv.

This is often called the α level of the test and the (maximum) probability of Type I
error.

85
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For a simple null hypothesis Θ0 = {θ0}, the size is

α ≡ R(θ0,φ) =
∫

φ(v) f (v|θ0)dv.

This is the probability of rejection under the null hypothesis, i.e., the probability of
Type I error.

The probability of Type II error is R(θ ,φ) for θ ∈Θ1 and written as,

βφ (θ)≡
∫
[1−φ(v)] f (v|θ)dv.

The power of a test is the probability of rejecting the null hypothesis when it is
false. For any θ ∈Θ , the power function (more awkwardly but correctly called the
size-power function) is

πφ (θ)≡
∫

φ(v) f (v|θ)dv = E[φ(y)].

Despite the name, the power function only gives the power of the test when θ ∈
Θ1, whence πφ (θ) = 1−R(θ ,φ) = 1− βφ (θ). Somewhat ironically, for θ ∈ Θ0,
the power function is actually the size function because πφ (θ) = R(θ ,φ) is the
probability of Type I error for θ ∈Θ0. The size of the test is supθ∈Θ0

πφ (θ).
A test φ̃ in a class of tests C is uniformly most powerful (UMP) of size α in C if

α = supθ∈Θ0
R(θ , φ̃) and if for any other test φ ∈ C with α ≥ supθ∈Θ0

R(θ ,φ),

π
φ̃
(θ)≥ πφ (θ) for all θ ∈Θ1.

If C is the collection of all tests, we merely say that φ̃ is uniformly most powerful.
Two restricted classes of tests are often used.
A size α test φ is said to be unbiased if

sup
θ∈Θ0

πφ (θ)≤ inf
θ∈Θ1

πφ (θ).

A uniformly most powerful unbiased (UMPU) test is uniformly most powerful
among φs that are unbiased (all with size α).

Consider a group of transformations G that map Rn into Rn. A test φ is said to
be invariant under G if

φ(y) = φ [G(y)],

for any G ∈ G and any y. A uniformly most powerful invariant (UMPI) test is uni-
formly most powerful among tests φ that are invariant (all with size α).

Throughout we assume that y ∼ f (v|θ) for some family of densities subject to a
dominating measure, i.e., if the set A has dominating measure 0, Py|θ (y ∈ A) = 0 for
all θ ∈Θ .

For a simple versus simple test, because we know the two θs involved, we can
and will let tests depend on f (y|θ1)/ f (y|θ0). For composite hypotheses, we will
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need a test statistic that may or may not depend on particular values of θ . Not
infrequently, test statistics depend on a value θ0 ∈Θ0.

7.1 Simple versus Simple Tests and the Neyman-Pearson Lemma

We begin by considering a simple null hypothesis H0 : θ = θ0 and a simple alter-
native H1 : θ = θ1. The key result in finding a most powerful test is the Neyman-
Pearson lemma. With only two distributions to test f (v|θ0) versus f (v|θ1) the entire
conceit of introducing a parametric family in unnecessary. We could discuss this as
simply testing one distribution for y, say density f , against another distribution for
y, say density g. [That Lehmann (1958) used such notation took some adjusting on
my part back in the 1970s.]

The goal is to fix α and find the test that maximizes the power (minimizes β ).
The Neyman-Pearson lemma tells us how to do this.

For some K ≥ 0 and function γ(y) taking values in [0,1], consider a test φ̃ (ran-
domized decision rule) that rejects the null hypothesis with probabilities specified
by

φ̃(y) =

1 if f (y|θ1)> K f (y|θ0),
γ(y) if f (y|θ1) = K f (y|θ0),
0 if f (y|θ1)< K f (y|θ0).

One of the nice things about this test is that it is not a very randomized rule. Only
when f (y|θ1) = K f (y|θ0) do you have to resort to randomization for picking an
action. Nonetheless, when y has a discrete distribution, randomized actions are a
vital part of the theory.

Notice that the test φ̃ can be rewritten as

φ̃(y) =

1 if f (y|θ1)−K f (y|θ0)> 0,
γ(y) if f (y|θ1)−K f (y|θ0) = 0,
0 if f (y|θ1)−K f (y|θ0)< 0.

This form of the test is actually more convenient for our next proof and three ex-
amples. The test can also be written in terms of the likelihood ratio f (y|θ1)/ f (y|θ0)
being greater than, equal to, or less than K but that form requires us to worry about
what happens when f (y|θ0) = 0.

Lemma 7.1.1. The Neyman-Pearson Lemma
Suppose the size of φ̃ is α . If φ(y) taking values in [0,1] is any other randomized
decision rule with no greater size, then φ̃ is at least as powerful as φ .

PROOF: First suppose that

0 ≤
∫
[φ̃(v)−φ(v)][ f (v|θ1)−K f (v|θ0)]dv. (1)
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If that is true, then

0 ≤
∫
[φ̃(v)−φ(v)] f (v|θ1)dv−K

∫
[φ̃(v)−φ(v)] f (v|θ0)]dv. (2)

Looking at the second term,∫
[φ̃(v)−φ(v)] f (v|θ0)]dv =

∫
φ̃(v) f (v|θ0)]dv−

∫
φ(v) f (v|θ0)]dv

= R(θ0, φ̃)−R(θ0,φ) = π
φ̃
(θ0)−πφ (θ0).

This is the difference in the sizes of the tests, so by assumption [R(θ0, φ̃)−
R(θ0,φ)] ≥ 0. Since K ≥ 0, in the second term of (2) we are subtracting a non-
negative number, and since the difference is nonnegative, the first term must be
nonnegative, thus

0 ≤
∫
[φ̃(v)−φ(v)] f (v|θ1)dv

=
∫

φ̃(v) f (v|θ1)dv−
∫

φ(v) f (v|θ1)dv = π
φ̃
(θ1)−πφ (θ1).

However, this is just the difference in the powers of the two tests, so φ̃ must have at
least as much power as φ .

To establish (1) it suffices to show that [φ̃(v)− φ(v)][ f (v|θ1)− K f (v|θ0)] ≥
0. We consider three cases: when the second term is positive, negative, and 0.
When [ f (v|θ1)− K f (v|θ0)] > 0, we have φ̃(y) = 1 and since 0 ≤ φ(v) ≤ 1, we
have [φ̃(v)− φ(v)] ≥ 0. Thus [φ̃(v)− φ(v)][ f (v|θ1)− K f (v|θ0)] ≥ 0. Similarly,
when [ f (v|θ1)− K f (v|θ0)] < 0, we have φ̃(y) = 0, so [φ̃(v)− φ(v)] ≤ 0, and
[φ̃(v)−φ(v)][ f (v|θ1)−K f (v|θ0)]≥ 0. Finally, when [ f (v|θ1)−K f (v|θ0)] = 0, we
have [φ̃(v)−φ(v)][ f (v|θ1)−K f (v|θ0)] = 0. 2

For values v with [ f (v|θ1)−K f (v|θ0)] = 0, there are many functions γ(v) that
can give a size α most powerful test, however there always exists a constant function
γ(v)≡ γ0 that will give a most powerful test. In particular, to get an α level test, take
K̃ to be the smallest K value with 1−α ≤ Py|θ0 [ f (y|θ1) ≤ K f (y|θ0)]. Then define
α0 ≡Py|θ0 [ f (y|θ1)> K̃ f (y|θ0)]≤α . As a function of K, the function Py|θ0 [ f (y|θ1)≤
K f (y|θ0)] is either continuous at K̃ or it is not. If it is continuous, α0 = α , and
taking γ0 = 0 we are done. If it is discontinuous then α0 < α and we must have
0 < η0 ≡ Py|θ0 [ f (y|θ1) = K̃ f (y|θ0)]. In that case take γ0 = (α −α0)/η0 and we are
done.

EXAMPLE 7.1.0. Test H0 : y ∼ f (r|0) versus H1 : y ∼ f (r|2) where, as in Chapter
3,

r 1 2 3 4
f (r|0) 0.980 0.005 0.005 0.010
f (r|2) 0.098 0.001 0.001 0.900
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Illustrate different α , K, and γ(·) choices.

EXAMPLE 7.1.1. Test H0 : y ∼ U [0,1] versus H1 : y ∼ U [2,3]. It is intuitively
clear that one should reject H0 if 2 ≤ y ≤ 3 and accept H0 if 0 ≤ y ≤ 1. We merely
illustrate that the most powerful test behaves properly. Remember we reject H0 for
positive values of f (y|θ1)−K f (y|θ0), accept H0 for negative values, and (if neces-
sary) randomize when 0 = f (y|θ1)−K f (y|θ0). If Py|θ [0 = f (y|θ1)−K f (y|θ0)] = 0
for both θs, we don’t need to worry about this possibility.)

In this example,

f (y|θ1)−K f (y|θ0) = I[2,3](y)−KI[0,1](y) =


0 if y < 0
−K if 0 ≤ y ≤ 1
0 if 1 < y < 2
1 if 2 ≤ y ≤ 3
0 if 3 < y

.

We always reject H0 if 2 ≤ y ≤ 3 because then φ̃(y) = 1, so the test has power 1
regardless of the value of K.

For any K > 0, if 0 ≤ y ≤ 1, we never reject because φ̃(y) = 0. The other values
of y cannot occur under these two models, so it doesn’t matter what we do when
I[2,3](y)−KI[0,1](y) = 0. This test has size 0 (and power 1).

To construct a test with size greater than 0, we need to take K = 0 and randomly
reject values 0 ≤ y ≤ 1 with probability α . We could reject any such value with
probability α (flip a coin that gives heads with probability α), or always reject when
0 ≤ y < α but never when α < y ≤ 1, or always reject when 1−α ≤ y < 1 but never
when 0 ≤ y ≤ 1−α . All three (and an infinite variety of others) give most powerful
tests with power 1. But it would be silly to do this when a size 0, power 1 test is
readily available. 2

EXAMPLE 7.1.2. Test H0 : y ∼U [−1,1] versus H1 : y ∼ N(0,1). Write the stan-
dard normal density as ϕ(y)≡ exp(−y2/2)/

√
2π). Then

f (y|θ1)−K f (y|θ0) = ϕ(y)−KI[−1,1](y)/2 =

ϕ(y) if y <−1
ϕ(y)−K/2 if −1 ≤ y ≤ 1
ϕ(y) if 1 < y

.

We always reject when |y|> 1 because then ϕ(y)> 0 and f (y|θ1)−K f (y|θ0)> 0.
For any K ≥ 0, P[ϕ(y)−K/2 = 0] = 0 under both hypotheses, so there no need to
worry about randomized tests. We accept H0 if ϕ(y)−K/2 < 0 and that depends
specifically on the value of K. To get a most powerful size α test pick y0 = α so that
under the null uniform distribution P[|y| < y0] = α . Take K so that K/2 = ϕ(y0),
thus ϕ(y)−K/2 > 0 iff (if an only if) ϕ(y)−ϕ(y0) > 0 iff |y| < y0. So the most
powerful size α test rejects when |y| ≤ α or |y|> 1. 2

EXAMPLE 7.1.3. Now we reverse the roles of the distributions in the previous
example and test H0 : y ∼ N(0,1) versus H1 : y ∼U [−1,1]. Again write the standard
normal density as ϕ(y) = exp(−y2/2)/

√
2π. We get
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f (y|θ1)−K f (y|θ0) = I[−1,1](y)/2−Kϕ(y) =

−Kϕ(y) if y <−1
0.5−Kϕ(y) if −1 ≤ y ≤ 1
−Kϕ(y) if 1 < y

.

For K > 0, you never reject when |y| > 1 because then ϕ(y) > 0 and f (y|θ1)−
K f (y|θ0) < 0. To get a most powerful size α test pick y0 so that under the null
standard normal distribution P[1 ≥ |y|> y0] = α . Take K > 0 so that 1/2K = ϕ(y0),
thus for −1 ≤ y ≤ 1, 0.5−Kϕ(y) > 0 iff ϕ(y0)−ϕ(y) > 0 iff 1 ≥ |y| > y0. So the
most powerful size α test rejects when |y| ≥ 1 > 1−α2. 2

In the case γ(y) = γ0, when a sufficient statistic exists, an easy application of
the factorization criterion shows that the test is a function of the sufficient statistic.
(And that the important parts of the test, were φ̃(y) ̸= γy), always are.) In fact, we
can respecify the Neyman-Pearson test structure as most powerful tests having the
following structure: For for any sufficient statistic T (y), for some K ≥ 0, and, as
discussed earlier, some value γ0 taking values in [0,1], a most powerful test can be
written as

φ̃(y) =

1 if h(y)g[T (y);θ1]> Kh(y)g[T (y);θ0],
γ0 if h(y)g[T (y);θ1] = Kh(y)g[T (y);θ0],
0 if h(y)g[T (y);θ1]< Kh(y)g[T (y);θ0].

But this can be rewritten in terms T (y),

φ̃ [T (y)] =

1 if g[T (y);θ1]> Kg[T (y);θ0],
γ0 if g[T (y);θ1] = Kg[T (y);θ0],
0 if g[T (y);θ1]< Kg[T (y);θ0],

so a most powerful test exists that depends only on the sufficient statistic. More
generally, we can consider T ≡ T (y) with density fT (t|θ) = hT (t)g(t;θ) and write
a most powerful test φ̃ (randomized decision rule) that rejects the null hypothesis
with probabilities specified by

φ̃(T ) =

1 if fT (T |θ1)> K fT (T |θ0),
γ(T ) if fT (T |θ1) = K fT (T |θ0),
0 if fT (T |θ1)< K fT (T |θ0),

Clearly, any size α test of this form will also have, when considered a function of y,
the form of most powerful α level test.

7.2 One-sided Alternatives

With Θ = R, we consider a composite one-sided alternative H1 : θ > θ0. We begin
with the simple null, H0 : θ = θ0 and then consider the composite null s H0 : θ ≤ θ0.
In both cases the Neyman-Pearson Lemma allows us to find UMP tests provided
that we have a property called monotone likelihood ratio.
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The changes necessary for testing H0 : θ = θ0 or H0 : θ ≥ θ0 versus H1 : θ < θ0
are minor.

7.2.1 Monotone Likelihood Ratio

Definition 7.2.1. The densities are said to have monotone likelihood ratio if for
any θ1 > θ0, the ratio f (v|θ1)/ f (v|θ0) is a monotone function in v whenever both
densities are nonzero.

For the general exponential family, it suffices to have η(θ) increasing and T (v)
monotone. We tend to think in terms of increasing likelihood ratios but the theory
works as well for decreasing likelihood ratios.

More importantly, the placeholder variable v in the definition is implicitly real
valued, which means that the definition applies for random variables y rather than
random vectors. In practice, we will apply the definition to situations in which a real
valued sufficient statistic T (y) exists, and require monotone likelihood ratio in the
densities of the sufficient statistic. .

Theorem 7.2.1. If T has nondecreasing likelihood ratio, then any test of the
form

φ̃(T ) =

{1 if T > t0,
γ̃ if T = t0,
0 if T < t0,

has nondecreasing size-power function ET |θ [φ̃(T )] and is uniformly most powerful
of its size for testing H0 : θ ≤ θ0 versus H1 : θ > θ0 for any θ0. Moreover, for any
0 ≤ α ≤ 1, there exist a t0 and γ̃ that give a size α test.

The values t0 and γ̃ are chosen to give a size α test at θ = θ0 but the test does not
depend on θ1 > θ0, so if it is most powerful for any θ1 it is most powerful for all of
them.

For θ < θ0, if we think about θ0 as the alternative, the power is α so the size
must be be less than that. More specifically, if the size at θ is ξ , then we can make
a test that always rejects with probability ξ , an the most powerful test at alternative
θ0 has to have power at least as great as ξ .

PROOF: For any θ0 < θ1, the most powerful test has the form

φ̃(T ) =

1 if fT (T |θ1)> K fT (T |θ0),
γ(T ) if fT (T |θ1) = K fT (T |θ0),
0 if fT (T |θ1)< K fT (T |θ0),

We need to show that the test in the theorem can be written in this form.
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Write g(t) ≡ fT (t|θ1)/ fT (t|θ0) which is nondecreasing, so if t > t0, we have
g(t)≥ g(t0). The most powerful test now involves comparing g(T ) to K.

Let t0 be the smallest t with 1−α ≤ P(T ≤ t0)≡ 1−α0. The function P(T ≤ t)
is either continuous at t0 or is not. If continuous, α0 = α and take γ̃ = 0. If it is
discontinuous then α0 < α and we must have 0 < η0 ≡ PT |θ0 [T = t0]. In that case
take γ̃ = (α −α0)/η0. To see that the form of the theorem is the form of a most
powerful test, observe that the test in the theorem is

φ̃(T ) =


1 if g(T )> g(t0),
1 if g(T ) = g(t0);T > t0,
γ̃ if g(T ) = g(t0);T = t0,
0 if g(T ) = g(t0);T < t0,
0 if g(T )< g(t0),

in which K ≡ g(t0) and γ(T ) is defined by the three middle cases.

Example t ∼ N(θ ,1) Algebra to show that f (t|θ1) > k f (t|θ0) iff t > (θ1 −
θ0)

2/2+ log(K).

Exercise 7.1. Assume y ∼ N(0,σ2). Show that the problem displays monotone
likelihood ratio 0 < σ2 ≤ 1. Find the UMP test for H0 : σ2 = 1 versus H1 : σ2 < 1.

The composite versus composite example in Section 3.3 had a uniformly most
powerful test without having monotone likelihood ratio because it was monotone
where it counted. The likelihood ratios were increasing when θ0 ∈Θ0 and θ1 ∈ΘA
but that broke down when looking at two distributions from the same hypothesis.
Monotone likelihood ratio (for θs both in Θ0) also assures that the size of a test is
the size associated with largest θ0 ∈Θ0.

7.3 Two-sided Testing

I think it was Ed Bedrick who pointed out to me that the normal theory two-sided
t is a clearly reasonable thing to do. So the fact that it is UMPU is less evidence
that it a reasonable test and more the case that it gives credence to UMPU being a
reasonable criterion on which to base a test.

Locally best tests.

7.4 Generalized Likelihood Ratio Tests

As I recall from Lehmann’s wonderful (2011) book, some people, I believe Gossett
and Eagon Pearson, were dissatisfied with the fact that significance tests did not tell
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you what was wrong with the null model. So E. Pearson came up with the idea of
specifying an alternative hypothesis and the generalized likelihood ratio test statistic
– before he and Neyman began collaborating on the theory of hypothesis testing.

This involves partitioning Θ into Θ0 (the null hypothesis) and Θ1 (the alternative
hypothesis). The generalized likelihood ratio test statistic is

T (y)≡
supθ∈Θ0

L(θ |y)
supθ∈Θ L(θ |y)

=
L(θ̂0)

L(θ̂)
.

Reject H0 if T (y) is too small.

Asymptotics: Under H0 typically −2log[T (y)] L→ χ2(d) where d requires some
specification.

Linear model
Y = Xβ + e, e ∼ N(0,σ2I),

or
Y ∼ N(Xβ ,σ2I).

Least squares estimates of β are maximum likelihood, i.e., any β̂ satisfying X β̂ =
MY . Exercise 3.1 in PA is to show that the usual one-sided F test of a reduced model
is equivalent to the generalized likelihood ratio test.

7.5 A Worse than Useless Generalized Likelihood Ratio Test

Geisser (2005) contains a favorite example from Hacking (1965) illustrating foun-
dational issues related to testing.

Consider the null model

Pr[X = 0|θ = 0] = 0.9

Pr[X = i|θ = 0] = 0.001, i = 1, . . . ,100.

The Fisherian 0.1 test of significance for this distribution rejects H0 : θ = 0 for X = i,
i= 1, . . . ,100. Observing anything other than X = 0 is somewhat weird, so that tends
to contradict the (null) hypothesis. The Fisherian size is determined by the P value
rather than the probability of type I error. Also, significance tests do not involve an
alternative, so power is not an issue.

Now consider the Neyman-Pearson (N-P) problem of testing H0 : θ = 0 versus
H1 : θ ̸= 0 for θ = 0,1, . . . ,100. The null distribution is as before and the alternative
sampling distributions are

Pr[X = 0|θ = i] = 0.91

Pr[X = i|θ = i] = 0.09, i = 1, . . . ,100.
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The significance test also defines a Neyman-Pearson test, so we can explore it’s
N-P properties. In this example, the probability of type I error is 0.1. When used in
N-P testing, significance tests can have very poor power for some alternatives since
they are constructed without reference to any alternative. For these alternatives, the
significance test has power 0.09 regardless of the alternative, so its power is less
than its size. This is not surprising. Given any test, you can always construct an
alternative that will have power less than the size.

The most powerful test for an alternative θ > 0 depends on θ , so a uniformly
most powerful test does not exist. The significance test is also the likelihood ratio
test. The likelihood ratio examines the transformation

T (x) =
Pr[X = x|θ = 0]

maxi=0,...,100 Pr[X = x|θ = i]

=

{
0.9/0.91 = 0.989 if x = 0
0.001/0.09 = 1/90 if x ̸= 0

and rejects for small values of the test statistic T (X). That the likelihood ratio test
has power less than its size IS surprising.

The uniformly most powerful invariant (UMPI) test of size .1 is a randomized
test. It rejects when X = 0 with probability 1/9. The size is .9(1/9) = 0.1 and the
power is 0.91(1/9)> 0.1. Note, however, that observing X = 0 does not contradict
the null hypothesis because X = 0 is the most probable outcome under the null
hypothesis. Moreover, the test does not reject for any value X ̸= 0, even though such
data are 90 times more likely to come from the alternative θ = X than from the null.

7.6 Asymptotic Test Statistics

There are three commonly used asymptotic tests for a d dimensional parametric
family of distributions: the generalized likelihood ratio test, Wald tests, and score
tests. With the parameter vector θ ∈ Θ and the null hypothesis θ ∈ Θ0, we have
previously discussed the asymptotic behavior of generalized likelihood ratio tests,
namely that under H0 typically

−2log[L(θ̂0)−L(θ̂)] L→ χ
2(r),

where θ̂0 is the maximum of the likelihood function L(θ) when θ is restricted to
values in Θ0 ⊂ Θ and r is the difference in the dimensions between Θ and Θ0. It
is well-known from linear model theory that for multivariate normal data the usual
F tests rejecting for large values are equivalent to rejecting for small values of the
generalized likelihood ratio statistic. But in normal theory linear models, we can
find exact distributions for the test statistics and do not need asymptotic theory.

EXAMPLE 7.6.1 One-Sample Normal Theory.
Consider y1, . . . ,yn iid N(µ,φ), where φ ≡ σ2. Recall that the likelihood is
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L(θ) = f (y|µ,φ) = (2π)−n/2
φ
−n/2 exp

[
−1
2φ

n

∑
i=1

(yi −µ)2

]
,

the log-likelihood is

ℓ(θ) = log[ f (y|µ,φ)] = −n
2

log(2π)− n
2

log(φ)− 1
2φ

n

∑
i=1

(yi −µ)2,

and the score function is

S(y; µ,φ) =

[
dµ log[ f (y|µ,φ)]
dφ log[ f (y|µ,φ)]

]
=

[
∑

n
i=1(yi −µ)/φ

− n
2φ

+ 1
2φ2 ∑

n
i=1(yi −µ)2

]
.

The maximum likelihood estimates µ̂ and φ̂ will solve the vector equation S(y; µ̂, φ̂)=
0. Taking µ̂ = ȳ· makes the first component of the equation 0 regardless of the
value of φ . With this µ̂ , the second component of the equation is solved by
φ̂ = ∑

n
i=1(yi − ȳ·)2/n. It is not hard to see that when restricting θ to Θ0, we get

θ̂0 = (µ0, φ̃)
′ where φ̃ ≡ ∑

n
i=1(yi −µ0)/n.

Some algebra shows that φ̃ = φ̂ +(ȳ·−µ0)
2, so the generalized likelihood ratio

test looks at

−2log[L(θ̂0)−L(θ̂)] = −2
{

log[ f (y|µ0, φ̃)]− log[ f (y|µ̂, φ̂)]
}

= −2

[
−n
2

log(2π)− n
2

log(φ̃)− 1
2φ̃

n

∑
i=1

(yi −µ0)
2

]

− (−2)

[
−n
2

log(2π)− n
2

log(φ̂)− 1
2φ̂

n

∑
i=1

(yi − µ̂)2

]

=

[
n log(φ̃)+

1
φ̃

n

∑
i=1

(yi −µ0)
2

]
−

[
n log(φ̂)− 1

φ̂

n

∑
i=1

(yi − µ̂)2

]

=

[
n log(φ̃)+

1
φ̃

nφ̃

]
−
[

n log(φ̂)− 1
φ̂

nφ̂

]
= n log(φ̃)−n log(φ̂)
= n log[φ̂ +(ȳ·−µ0)

2]−n log(φ̂)

= n log
[

1+
(ȳ·−µ0)

2

φ̂

]
.

Large values of this can be rejected if larger than the α percentile of the asymptotic
χ2(1) distribution, but we can find an exact small sample distribution for this test.
Large values of this statistic correspond to large values of (ȳ·− µ0)

2/(φ̂/n) which
linear model theory tells us has an exact n

n−1 F(1,n−1) distribution and also to large
values of (ȳ·− µ0)

2/(s2
y/n) which has an exact F(1,n− 1) distribution and also to

large absolute values of (ȳ·−µ0)
/√

s2
y/n which has an exact t(n−1) distribution.
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Exercise 7.1a. What is wrong with the following argument for showing that the

likelihood ratio test is asymptotically χ2(1). Let Wn = (ȳ· − µ0)/
√

φ̂/n. Then by

the CLThm and LLN and Ferguson’s version of Slutsky, Wn
L→ Z ∼ N(0,1). Again

by Ferguson’s Slutsky, W 2
n

L→ Z2 ∼ χ2(1). We know if an → a, then
[
1+ an

n

]n → ea,
so again by Ferguson’s Slutsky, [

1+
W 2

n

n

]n
L→ eZ2

.

Again by Ferguson’s Slutsky,

n log
[

1+
W 2

n

n

]
L→ Z2,

so

n log
[

1+
(ȳ·−µ0)

2

φ̂

]
L→ Z2 ∼ χ

2(1).

as was to be shown.

7.6.1 Wald tests

Wald tests are based directly on the asymptotic distribution of an estimate of the
parameter being tested. Suppose we have some d dimensional parameter θ and that
for some r dimensional differentiable function ξ we want to test H0 : ξ (θ) = ξ0. Of
course this makes no sense unless ξ0 is in the range of the function ξ , i.e., for this
to make sense there must exist θ0 such that ξ (θ0) = ξ0.

Wald tests can be based on any sequence of d ×1 random estimates θ̂n that have

√
n(θ̂n −θ)

L→ N
[
0,Σ(θ)

]
.

Frequently they are based on iid data and maximum likelihood estimates in which
case, typically, Σ(θ) = I∗(θ)−1.

As discussed in Example B.2.7, this convergence in law implies that θ̂n
P→ θ , and

for Σ(θ) continuous (in each entry), we get Σ(θ̂n)
P→ Σ(θ). (More technically, we

get Vec[Σ(θ̂n)]
P→ Vec[Σ(θ)].) In general, we can consider an arbitrary positive def-

inite estimate Σ̂n with Σ̂n
P→ Σ(θ), for which, by continuity of the inverse function,

Σ̂−1
n

P→ [Σ(θ)]−1.
Applying the delta method of Appendix Subsection B.2.6,

√
n[ξ (θ̂n)−ξ (θ)]

L→ Yw ∼ N
{

0, [dθ ξ (θ)]Σ(θ)[dθ ξ (θ)]′
}
.
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In particular, under the null hypothesis,

√
n[ξ (θ̂n)−ξ0]

L→ Yw ∼ N
{

0, [dθ ξ (θ0)]Σ(θ0)[dθ ξ (θ0)]
′}.

A potential problem with this covariance matrix is that if the value θ0 with ξ (θ0) =
ξ0 is not unique, the covariance matrix, and therefore the Wald test, may depend on
the choice of θ0 and not on ξ0 alone.

Provided that the derivative dθ ξ (θ) is continuous at θ0, following Example B.2.7,
Ferguson’s Slutsky allows us to infer that{√

n[ξ (θ̂n)−ξ0)]
}′{

[dθ ξ (θ̂)]Σ̂n[dθ ξ (θ̂)′]
}−1{√

n[ξ (θ̂n)−ξ0)]
}

L→ Y ′
w
[
dθ ξ (θ0)Σ(θ0)dθ ξ (θ0)

′]−1 Yw ∼ χ
2(r).

Evaluating the derivative at θ0 rather than θ̂ in the test statistic gives the same
asymptotic distribution but, as discussed in the example below, using θ̂ rather than
θ0 in the estimate of the covariance matrix is often advantageous for finite samples
because under the alternative hypothesis, it often gives smaller variance estimates
and thus larger test statistics and greater power.

Again as in Example B.2.7, if r = 1 we can base a Wald test on

ξ (θ̂n)−ξ0√{
[dθ ξ (θ̂)]Σ̂n[dθ ξ (θ̂)′]

}
/n

L→ 1√
[dθ ξ (θ0)]Σ(θ0) [dθ ξ (θ0)′]

Yw ∼ N(0,1).

Exercise 7.2 Find the form of the Wald test statistic when ξ (θ) ≡ Λ ′θ for a
fixed r×d matrix Λ of rank r. Show that for r = 1 and Λ ≡ λ , the Wald test can be
based on

λ ′θ̂n −λ ′θ0√
λ ′Σ̂nλ/n

L→ N(0,1).

Generalizing Wald χ2 tests to deal with singular covariance matrices is merely
awkward, rather than actually difficult.

EXAMPLE 7.6.1 CONTINUED. One-Sample Normal Theory.
We construct Wald tests based on the MLEs. To do that we first need to find the
information matrix. Using the second derivative method of Exercise 6.1,

−
[

dµ S(y; µ,φ)
dφ S(y; µ,φ)

]
=

[
n/φ ∑

n
i=1(yi −µ)/φ 2

∑
n
i=1(yi −µ)/φ 2 − n

φ2 +∑
n
i=1(yi −µ)2/φ 3

]
.

From linear model theory it is well known that Ey|µ,φ ∑
n
i=1(yi−µ)= 0 and ∑

n
i=1(yi−

µ)2/φ ∼ χ2(n), so Ey|µ,φ ∑
n
i=1(yi −µ)2 = φn, thus
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I(µ,φ) =−Ey|µ,φ

[
dµ S(y; µ,φ)
dφ S(y; µ,φ)

]
=

[
n/φ 0

0 − n
2φ2 +

nφ

φ3

]
=

[
n/φ 0

0 n
2φ2

]
and

I∗(µ,φ) =
[

1/φ 0
0 1

2φ2

]
Asymptotically,

Cov
[

µ̂

φ̂

]
.
= I(µ,φ)−1 =

[
φ/n 0

0 2φ2

n

]
.

This agrees closely with results in linear model theory from which we know, ȳ· ∼
N(µ,φ/n), nφ̂/φ ∼ χ2(n−1), so that E(nφ̂/φ) = n−1 and Var(nφ̂/φ) = 2(n−1),
with ȳ· |= ∑

n
i=1(yi − ȳ·)2. It follows that actually

Cov
[

µ̂

φ̂

]
=

[
φ/n 0

0 2φ2(n−1)
n2

]
.

To test H0 : µ = µ0, define ξ (θ) = (1,0)θ = µ , so ξ (θ̂) = (1,0)θ̂ = µ̂ = ȳ·.
Take ξ0 = (1,0)θ0 where θ0 = (µ0,φ0)

′. Thankfully, this test will not depend on the
choice of φ0. Here we are using I(θ) as the asymptotic covariance matrix of θ̂ and,
since dθ ξ (θ) = (1,0), the asymptotic variance of ξ (θ̂) is

[1 0 ]
[

n/φ 0
0 n

2φ2

]−1 [1
0

]
= φ/n.

We have two choices for estimating this, the standard choice using θ̂

[1 0 ]
[

n/φ̂ 0
0 n

2φ̂2

]−1 [
1
0

]
= φ̂/n,

and an alternative choice using θ̂0, which is

[1 0 ]
[

n/φ̃ 0
0 n

2φ̃2

]−1 [1
0

]
= φ̃/n.

The standard Wald statistic becomes

ȳ·−µ0√
φ̂/n

.

The alternative choice replaces φ̂ with φ̃ . Because φ̃ = φ̂ +(ȳ·−µ0)
2, the test statis-

tic with φ̂ is larger than with φ̃ , and since both are compared to a standard normal
distribution, it provides a more powerful test in small samples. Of course under the
null hypothesis, (ȳ·−µ0)

2 P→ 0.
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Exercise 7.3 Consider two independent samples of size n with the same variance
but possibly different means. Write θ = (µ1,µ2)

′ and θ̂n = (ȳ1·, ȳ2·)
′. Let ξ0 be a

fixed number (like 2). Using the pooled estimate of the variance s2
p (cf. Christensen,

1996 or 2015), find the Wald test for H0 : µ1/µ2 = ξ0. Now find the Wald test for
H0 : µ1 = ξ0µ2, i.e., test (1,−ξ0)(µ1,µ2)

′ = 0. Compare the two test statistics. Hint:
For some number K, each test statistic can be written as

ȳ1·−ξ0ȳ2·√
s2

p
n K
(
1+ξ 2

0

) .
Exercise 7.4 In standard linear model theory

Y = Xβ + e, e ∼ N(0,σ2I).

To test an estimable function Λ ′β = d, the standard F test is based on

[Λ ′β̂ −d]′[Λ ′(X ′X)−Λ ]−1[Λ ′β̂ −d]/r(Λ)

MSE
∼ F [r(Λ),d! f !E].

Using the least squares estimates and Σ̂n ≡ (MSE) In, show that the Wald test statis-
tic has a known small sample distribution based on

[Λ ′
β̂ −d]′[(MSE)Λ

′(X ′X)−Λ ]−1[Λ ′
β̂ −d]∼ r(Λ)F [r(Λ),d! f !E].

7.6.2 Score Tests

We now consider score tests. Recall from Section 6.4 that the score function is a d
vector

S(y;θ)≡ 1
f (y|θ)

[dθ f (y|θ)]′ = [dθ log f (y|θ)]′,

with
E[S(y;θ)] = 0; Cov[S(y;θ)]≡ I(θ).

For independent observations yi with density f∗(vi|θ), score function S∗(yi;θ), and
information I∗(θ), we established that

S(y;θ) =
n

∑
i=1

S∗(yi;θ); I(θ) = nI∗(θ).

Now define

S̄(θ) =
1
n

n

∑
i=1

S∗(yi;θ) =
1
n

S(y;θ),
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then by the Central Limit Theorem

√
n
[
S̄(θ)−0

] L→ Ys ∼ N[0,I∗(θ)].

Again applying Example B.2.7, we get{√
n
[
S̄(θ)

]}′ I∗(θ)−1{√n
[
S̄(θ)

]} L→ Y ′
s I∗(θ)−1Ys ∼ χ

2(d).

This result can be rewritten as

S(y;θ)′I(θ)−1S(y;θ)
L→ χ

2(d)

and often holds even for non-iid data.
To test the hypothesis H0 : θ = θ0 versus H1 : θ ̸= θ0 the α level score test rejects

when
S(y;θ0)

′I(θ0)
−1S(y;θ0)≥ χ

2(1−α,d).

If d = 1, the score test can be based on the approximation S(y;θ0)/
√

I(θ0) ∼
N(0,1).

For testing H0 : θ ∈Θ0 versus H1 : θ ∈Θ1 the α level score test rejects when

S(y; θ̂0)
′I(θ̂0)

−1S(y; θ̂0)≥ χ
2(1−α,r),

where θ̂0 is the value that maximizes the likelihood among values θ ∈Θ0 and r is the
difference in the dimensions between the spaces Θ and Θ0. Typically, S(y; θ̂) = 0
because the maximum of the log-likelihood would be in the interior of Θ , but typi-
cally S(y; θ̂0) ̸= 0 because the maximum of the log-likelihood would be on a bound-
ary of Θ0. (Remember S(y;θ) is defined for the full model. For a redefined null
model score function, typically, S0(y; θ̂0) = 0.) Sometimes an exact small sample
distribution can be found for the score test statistic.

An advantage of score tests is that you only have to find the MLE under the null
model. If you want to do model selection among generalized linear models, doing
score tests to compare various models with the smallest model of interest is an easy,
but ill advised, way to proceed, cf. Christensen (2025, Section 4.4).

EXAMPLE 7.6.1 CONTINUED. One-Sample Normal Theory.
Now consider the score test of H0 : µ = µ0. In this case Θ = {(µ,φ)|µ ∈ R,φ > 0}
and Θ0 = {(µ0,φ)|φ > 0}. It is not hard to see that S(y; θ̂0) = S(y; µ0, φ̃) where
φ̃ ≡ ∑

n
i=1(yi −µ0)/n.

S(y; µ0, φ̃)==

[
∑

n
i=1(yi −µ0)/φ̃

− n
2φ̃

+ 1
2φ̃2 ∑

n
i=1(yi −µ0)

2

]
=

[
(ȳ·−µ0)/(φ̃/n)
− n

2φ̃
+ n

2φ̃2 φ̃

]
=

[
(ȳ·−µ0)/(φ̃/n)

0

]
.

The information needed for the test is

I(θ̂0) =

[
n/φ̃ 0

0 n
2φ̃2

]
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The asymptotic test statistic is

S(y; θ̂0)
′I(θ̂0)

−1S(y; θ̂0) =

[
(ȳ·−µ0)/(φ̃/n)

0

]′ [n/φ̃ 0
0 1

2φ̃2

]−1 [
(ȳ·−µ0)/(φ̃/n)

0

]
= [(ȳ·−µ0)/(φ̃/n)]2[φ̃/n]

=
(ȳ·−µ0)

2

φ̃/n

This gets compared to a χ2(1) distribution because Θ is a two-dimensional space
and Θ0 is a one-dimensional space. The χ2(1) test is the same as a two-sided test
based on

ȳ·−µ0√
φ̃/n

L→ Z ∼ N(0,1). (1)

This is the same as the alternative Wald test, which we saw is less powerful than the
standard Wald test for this problem.

7.6.3 Comparison of Tests

Exercise 6.1 on Fisher’s information establishes that

I(θ) = E
(
−{d2

θθ log[ f (y|θ)]}
)
.

There is another concept known as the observed information defined as

J(θ |y)≡−{d2
θθ log[ f (y|θ)].

For iid data with pdf f∗(v|θ), we have

J∗(θ |yi)≡−{d2
θθ log[ f∗(yi|θ)]

and J(θ |y) = ∑
n
i=1 J∗(θ |yi). Since I∗(θ) = E[J∗(θ |yi)], by the LLN,

1
n

J(θ |y) a.s.→ I∗(θ)

and we can use the observed information J(θ |y) as an approximation for the Fisher
information I(θ).

Figure 7.1 gives a plot of the log-likelihood function ℓ(θ) that I stole from Cox
(2006) and need to replace with one of my own construction. It illustrates the re-
lationships between the generalized likelihood ratio, maximum likelihood Wald,
and score test statistics for d = r = 1 and a simple null hypothesis H0 : θ = θ0.
Because r = 1, we can be looking at two-sided normal tests. The plot illustrates
the numerators of these tests. Each test needs to be standardized appropriately;
the standardizations are different for each. The log-likelihood function is maxi-
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mized at θ̂ and for large samples under the null hypothesis, θ̂ should be close
to θ0. Let Z ∼ N(0,1). The generalized likelihood ratio test statistic is based on
WL = ℓ(θ̂)− ℓ(θ0) with

√
2WL ∼ |Z|. The maximum likelihood Wald statistic is

based on WE = θ̂ − θ0 ∼ N(0,J(θ̂)−1) where the variance is approximated by the
inverse of the negative second derivative of the ℓ(θ) function at θ̂ but could be
replaced by the negative inverse second derivative at θ0 since the two points are
asymptotically close to one another under the null hypothesis. Finally, the score test
looks at the slope of the tangent line evaluated at θ0, i.e. WS = S(y;θ0)∼N(0,J(θ0)),
and is standardized by the square root of the negative second derivative of ℓ(θ) eval-
uated at θ0. Note that with increased sample sizes the ℓ(θ) curve should get more
sharply peaked, so the second derivatives should get to be larger negative numbers,
but also the slope of the tangent line should also get steeper.

Fig. 7.1 Graph of a d = 1 log-likelihood function with numerators of the generalized likelihood
ratio, maximum likelihood Wald, and score normal test statistics. Taken from Cox (2006). Need
to make my own version.



Chapter 8
UMPI Tests for Linear Models

We examine the transformations necessary for establishing that the linear model
F test is a uniformly most powerful invariant (UMPI) test. We also note that the
Studentized range test for equality of groups means in a balanced one-way ANOVA
is not invariant under all of these transformations so the UMPI result says nothing
about the relative powers of the ANOVA F test and the Studentized range test. The
discussion uses notation from Christensen (2020).

8.1 Introduction

It has been well-known for a long time that the linear model F test is a uniformly
most powerful invariant (UMPI) test. Lehmann (1959) discussed the result in the
first edition of his classic test and in all subsequent editions, e.g. Lehmann and
Romano (2005). But the exact nature of this result is a bit convoluted and may be
worth looking at with some simpler and more modern terminology.

Consider a (full) linear model

Y = Xβ + e, e ∼ N(0,σ2I)

where Y is an n vector of observable random variables and consider a reduced (null)
model

Y = X0γ + e, C(X0)⊂C(X),

where C(X) denotes the column (range) space of X . Let M be the perpendicular
projection operator (ppo) onto C(X) and M0 be the ppo onto C(X0). The usual F test
statistic, which is equivalent to the generalized likelihood test statistic, is

F(Y )≡ F ≡ Y ′(M−M0)Y/[r(X)− r(X0)]

Y ′(I −M)Y/[n− r(X)]
,

where r(X) denotes the rank of X .
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Consider a group of transformations G that map Rn into Rn. A test statistic T (Y )
is invariant under G if

T (Y ) = T [G(Y )],

for any G ∈ G and any Y . It is not too surprising that the F statistic is invariant under
location and scale transformations. Specifically, if we define G(Y ) = a(Y +X0δ ) for
any positive real number a and any vector δ , it is easy to see using properties of ppos
that F(Y ) = F [G(Y )]. Unfortunately, this is not the complete set of transformations
required to get the UMPI result. Note also that the location invariance is defined
with respect to the reduced model, that is, it involves X0. Given that the alternative
hypothesis is the existence of a location Xβ ̸= X0γ for any γ , one would not want a
test statistic that is invariant to changes in the alternative, particularly changes that
could turn the alternative into the null.

Before discussing the third group of transformations required for a UMPI F test,
let’s look at the best known alternative to the linear model F test. Consider a bal-
anced one-way ANOVA model,

yi j = µi + εi j, εi j iid N(0,σ2),

i = 1, . . . ,a, j = 1, . . . ,N. The F statistic for H0 : µ1 = · · ·= µa is

F(Y )≡ F ≡ N ∑
a
i=1(ȳi·− ȳ··)2/[a−1]

∑
a
i=1 ∑

N
j=1(ȳi j − ȳi·)2/[a(N −1)]

≡ MSGrps
MSE

.

The best known competitor to an F test for H0 is the test that rejects for large values
of the studentized range,

Q(Y )≡ Q ≡ maxi ȳi·−mini ȳi·√
MSE/N

.

We already know that F is location and scale invariant and it is easy to see that Q is
too. In this case, location invariance means that the test statistic remains the same if
we add a constant to every observation. Moreover, it is reasonably well known that
neither of these tests is uniformly superior to the other, which means that Q must
not be invariant under the full range of transformations that are required to make F
a UMPI test.

We can decompose Y into three orthogonal pieces,

Y = M0Y +(M−M0)Y +(I −M)Y = X0γ̂ +(X β̂ −X0γ̂)+(Y −X β̂ ). (1)

The first term of the decomposition contains the fitted values for the reduced model.
The second term is the difference between the fitted values of the full model and
those of the reduced model. The last term is the residual vector from the full model.
Intuitively we can think of the transformations that define the invariance as relating
to the three parts of this decomposition. The residuals are used to estimate σ , the
scale parameter of the linear model, so we can think of scale invariance as relating
to (I−M)Y . The translation invariance of adding vectors X0δ modifies M0Y . To get
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the UMPI result we need another group of transformations that relate to (M−M0)Y .
Specifically, we need to incorporate rotations of the vector (M−M0)Y that keep the
vector within C(M −M0) = C(X0)

⊥
C(X), the orthogonal complement of C(X0) with

respect to C(X). If we allow rotations of (M −M0)Y within C(M −M0), the end
result can be any vector in C(M−M0) that has the same length as (M−M0)Y . The
length of a vector v is ∥v∥ ≡

√
v′v. The end result of a rotation within C(M −M0)

can be, for any n vector v with ∥(M−M0)v∥ ̸= 0,

∥(M−M0)Y∥
∥(M−M0)v∥

(M−M0)v.

Finally, the complete set of transformations to obtain the UMPI result is for any
positive number a, any appropriate size vector δ , and any n vector v with ∥(M −
M0)v∥ ̸= 0,

G(Y ) = a
[

M0Y +X0δ +(I −M)Y +
∥(M−M0)Y∥
∥(M−M0)v∥

(M−M0)v
]
.

Again, it is not difficult to see that F(Y ) = F [G(Y )].
However, in the balanced ANOVA problem, there exist such transformations G

with Q(Y ) ̸= Q[G(Y )], so Q is not invariant under these transformations and when
we say that F is UMPI, it says nothing about the relative powers of F and Q. We
know that Q is invariant to location and scale changes, so it must be the rotation
that Q is not invariant to. Let Jm be an m dimensional vector of 1s. In a one-way
ANOVA, write Y = [y11,y12, . . . ,yaN ]

′ and

(M−M0)Y = X β̂ −X0γ̂

=


JN 0

JN
. . .

0 Jn




ȳ1·
ȳ2·
...

ȳa·

− JaN ȳ·· =


(ȳ1·− ȳ··)JN
(ȳ2·− ȳ··)JN

...
(ȳa·− ȳ··)JN

 . (2)

Since Y is an arbitrary vector, (M−M0)v must display a similar structure. Also

∥(M−M0)Y∥2 = N
a

∑
i=1

(ȳi·− ȳ··)2 ≡ SSGrps. (3)

Thinking about the decomposition in (1), if Q(Y ) were invariant we should get
the same test statistic if we replace M0Y with M0Y +X0δ (which we do) and if we re-
place (M−M0)Y with [∥(M−M0)Y∥/∥(M−M0)v∥](M−M0)v (which we do not).
The numerator of Q is a function of (M−M0)Y , namely, it takes the difference be-
tween the largest and smallest components of (M−M0)Y . For Q(Y ) to be invariant,
the max minus the min of (M−M0)Y would have to be the same as the max minus
the min of [∥(M −M0)Y∥/∥(M −M0)v∥](M −M0)v for any Y and v. Alternatively,
the max minus the min of [1/∥(M−M0)Y∥](M−M0)Y would have to be the same
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as the max minus the min of [1/∥(M −M0)v∥](M −M0)v for any Y and v. In other
words, given (2) and (3),

maxi ȳi·−mini ȳi·√
SSGrps

would have to be a constant for any data vector Y , which it is not.



Chapter 9
Significance Testing for Composite Hypotheses

In their most natural form, significance tests typically lead to two-sided t and χ2

tests. We review significance tests as probabilistic proofs by contradiction. We em-
phasize an appropriate definition of p values for significance testing and compare
it to alternate definitions. We introduce the concept of composite significance tests,
and illustrate that they can generate one-sided tests. We review interval estimation
for both parameters and predictions based on significance testing and illustrate that
one-sided interval estimates can be constructed from composite significance tests.
Finally, we address the issue of multiple comparisons in the context of significance
testing.

9.1 Introduction

Schervish, M.J. (1996), “P-Values: What They Are and What They Are Not,” The
American Statistician, 50, 203-206.

Fisher (1956) p. 94 seems to be saying the the significance of a composite hy-
pothesis is the significance of each individual test. This can differ radically from
N-P probability of type I error. H0 : (A∩B)c is true. Reject at level α if both Ac and
Bc rejected at level α . Example really lends itself to an alternative H1 : A∩B is true.
Probability of type I error is much smaller than significance level.

Fisher was certainly interested in one side rejection regions!
Fisher 1925 p. 80-81 In preparing this table we have borne in mind that in practice

we do not always want to know the exact value of P for any observed χ2, but,
in the first place, whether or not the observed value is open to suspicion. If P is
between .1 and .9 there is certainly no reason to suspect the hypothesis tested. If it
is below .02 it is strongly indicated that the hypothesis fails to account for the whole
of the facts. Belief in the hypothesis as an accurate representation of the population
sampled is confronted by the logical disjunction: Either the hypothesis is untrue or
the value of χ2 has attained by chance an exceptionally high value. The actual value
of P obtainable from the table by interpolaton indicates the strength of the evidence
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against the hypothesis. A value of χ2 exceeding the 5 per cent point is seldom to be
disregarded.

a paragraph later
The term Goodness of Fit has caused some to fall into the fallacy of believing

that the higher the value of P the more satisfactorily is the hypothesis verified. Val-
ues over .999 have sometimes been reported which, if the hypothesis were true,
would only occur once in a thousand trials. Generally such cases are demonstrably
due to the use of inaccurate formulae, but occasionally small values of χ2 beyond
the expected range do occur, as in Ex. 4 with the colony numbers obtained in the
plating method of bacterial counting. In these cases the hypothesis considered is as
definitely disproved as if P had been .001.

Significance (Fisherian) tests are probabilistic versions of proof by contradic-
tion. A probabilistic model is assumed and observed data are either deemed to be
inconsistent with the model, which suggests that the model is wrong, or the data are
consistent with the model, which suggests very little. Data consistent with the as-
sumed model are almost always equally consistent with other models. The extent to
which the data are consistent with the model is measured using a p value with small
p values indicating data that are inconsistent with the model. Significance testing
is distinct from the Neyman-Pearson theory of hypothesis testing, see Christensen
(2005).

Significance tests for unimodal distributions typically yield two-sided tests. We
begin with a discussion of simple significance tests and alternative definitions of p
values. Section 3 discusses extensions of simple significance tests that include the
possibility of one-sided tests. Section 4 discusses interval estimation with emphasis
on the significance testing interpretation of prediction intervals and one-sided inter-
vals. Finally, Section 5 briefly addresses the role of multiple comparison corrections
in significance testing.

9.2 Simple Significance Tests

The standard form for significance testing assumes some model for a data vector
y = (y1, . . . ,yn)

′. A statistic W ≡W (y) with a known distribution is chosen to serve
as a test statistic. Denote W ’s (possibly discrete) density f (w). The model is called in
question if the observed value of the test statistic looks weird relative to the density
f (w). Denote the observed data yobs and let Wobs =W (yobs).

To illustrate, assume y1, . . . ,yn iid N(0,σ2), then a standard test statistic is

T ≡ T (y)≡ ȳ·−0
s/
√

n
∼ t(n−1),

where ȳ· and s are the sample mean and standard deviation, respectively. The weird-
est data are those that correspond to small densities under the t(n−1) distribution.
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The t(n− 1) density decreases away from 0, so the weirdest observations are far
from 0.

The p value is the probability of observing a test statistic as weird or weirder than
we actually saw. In the illustration, because the t(n−1) density is symmetric about
0, with Tobs ≡ T (yobs) the p value is

p = Pr[T ≤−|Tobs|]+Pr[T ≥ |Tobs|].

A small p value suggests that something is wrong with the model. Perhaps the mean
is not 0 but perhaps the data are not normal, are not independent, or are heteroscedas-
tic. Interestingly, this two-sided t(n−1) test, when using the alternative test statistic
T 2, corresponds to a one-sided F(1,n−1) test, because the mode of an F(1,n−1)
distribution is at 0.

In general, with Wobs ≡W (yobs), the p value is

p = Pr[ f (W )≤ f (Wobs)]. (1)

For a less standard illustration, assume y1, . . . ,yn iid N(µ,4). With a test statistic

W =
(n−1)s2

4
∼ χ

2(n−1),

denote the density χ2(w|n−1). For n−1 > 2, unless Wobs happens to be the mode,
there are two values w1 < w2 that have

χ
2(Wobs|n−1) = χ

2(w1|n−1) = χ
2(w2|n−1).

(One of w1 and w2 will be Wobs.) Here

p = Pr[W ≤ w1]+Pr[W ≥ w2].

For n = 12 and s2 = 6.0, we get Wobs = 16.50 and

.0332 = χ
2(4.21|11) = χ

2(16.50|11),

so
p = Pr[W ≤ 4.21]+Pr[W ≥ 16.50] = .04+ .12 = .16.

While the machinations needed to find the p value may seem a bit complicated,
they are simpler than those necessary to find a Neyman-Pearson theory two-sided
uniformly most powerful unbiased test, see Lehmann (1997, pp.139, 194).

Although we are actually performing a test of the entire model that has been
assumed for the data, under the influence of Neyman-Pearson theory, these illus-
trations are often called tests of the null hypotheses H0 : µ = 0 and H0 : σ2 = 4,
respectively. In Neyman-Pearson theory, the hypotheses H0 : µ = 0 and H0 : σ2 = 4
are also referred to as composite hypotheses because the first test does not specify
σ2 and the second test does not specify µ . However, in our two examples the model
and test statistic pairs provide simple significance tests.
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The p value is universally accepted as being the probability of seeing data as
weird or weirder than were actually observed. The problem is that there are alter-
native ideas of what it means to be weird. In (2.1) we used the value of the density
from our assumed (null) model to determine what is weird. Cox (2005, p.32) indi-
cates that a p value is the probability of seeing data as indicative or more indicative
of “a departure from the null hypothesis of subject matter interest.” The common
method of applying p values to Neyman-Pearson theory posits an alternative hy-
pothesis and weird data are those that have certain extreme values of the likelihood
ratio.

The key idea of a test of significance and the related idea of a p value is that
we are looking for data that contradict the null hypothesis. The following example,
introduced briefly in Christensen (2008), shows that these alternative ideas of weird
data do not lead to a probabilistic proof by contradiction for the null model.

Take our null model as

f (y) =


.001, y = 0
.01, y = 1, . . . ,95
.049, y = 96
0, y = 97

.

With one observation take y as the test statistic, so from (2.1) the possible p values
are

p(yobs) =


.001, yobs = 0
.951, yobs = 1, . . . ,95
1, yobs = 96
0, yobs = 97

.

Among observations that have positive probability under f , y = 0 is the most incon-
sistent with the model and y = 96 is most consistent with the model. All the other
observations y = 1, . . . ,95 are equally weird as determined by f (y), so the probabil-
ity of seeing something as weird or weirder than, say, yobs = 2 is just Pr[y ̸= 96]. We
now illustrate that defining a p value relative to some formal or informal alternative
is to abandon completely the idea of a proof by contradiction for the null model.

For a Neyman-Pearson most powerful test, we need an alternative. Take it to be

g(y) =


0, y = 0
.001, y = 1, . . . ,95
.1, y = 96
.805, y = 97

.

A Neyman-Pearson test rejects the null model for the smallest values of the likeli-
hood ratio

f (y)
g(y)

=


∞, y = 0
10, y = 1, . . . ,95
.49, y = 96
0, y = 97

,

so y values are monotonically “weirder” (relative to the alternative) as they get
larger. A Neyman-Pearson p value, call it p̃ to distinguish it from the significance
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test p value, is the probability under the null model of seeing data with a likelihood
ratio as small or smaller than that actually observed, hence

p̃(yobs) =


1, yobs = 0
.999, yobs = 1, . . . ,95
.049, yobs = 96
0, yobs = 97

.

The point is that observing a 96 in no way contradicts the null model, it is the
observation most likely to be observed, yet p̃ is small. On the other hand, observing
0 tends to contradict the null model, but p̃ is large.

Cox’s (2005) approach seems to rely on the existence of an informal alternative
suggesting that, say, larger values of the test statistic provide more evidence against
the null model. In this case the p value, here called p̆, as a function of yobs becomes

p̆(yobs) =


1, yobs = 0
.049+ .01(96− yobs), yobs = 1, . . . ,95
.049, yobs = 96
0, yobs = 97

.

This is similar to p̃ in that p̆ again rejects the null model for the data most consistent
with it (yobs = 96) and fails to reject for data that are most inconsistent with the null
model (yobs = 0).

The significance test is designed as a probabilistic proof by contradiction of the
the null model. In the parlance of philosophy of science, it is a probabilistic method
for falsifying the null model. The evidence against the null is appropriately mea-
sured by p with small values required to conclude that the data are inconsistent with
the null model. Neither p̃ nor p̆ provides the basis for such a proof by contradiction.
The other “p” values provide appropriate, if not good, measures for evaluating the
evidence between the null and some alternative. Since they do not provide a proof
by contradiction of the null model, they seem to display an unnatural focus on the
null hypothesis. With a formal alternative available, there seems to be little reason to
focus on the null hypothesis as opposed to the alternative, hence little reason to re-
strict one’s self to tests in which the p value or probability of Type I error is small. In
a decision procedure, one should play off the probabilities of both Type I and Type
II error so that both are reasonable. See Christensen (2005) for more discussion of
testing null versus alternative hypotheses and in particular the virtues of Bayesian
testing for evaluating the weight of evidence between the hypotheses.

The difficulty with significance testing is picking a test statistic with a known dis-
tribution. Fisher (1956, p.50) suggests that the choice of W should be made subject
to the analyst’s prior information. However, the requirement that W have a known
distribution under the model can be quite restrictive. Composite significance testing
discussed in the next section both relaxes this assumption and can generate familiar
one-sided tests for common problems.
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9.3 Composite Significance Tests

We now present a significance testing approach to expanded models that can gener-
ate familiar one-sided tests. We begin with two simple examples.

Suppose our model is that the data come from one of the distributions

y ∼ N(µ,1); µ < 0. (1)

With one observation, take y as the test statistic. There are no distributions in this
model that would make observing a y of 2 or anything larger than a 2 plausible.
On the other hand, any observation less than 0 is completely plausible. The trick is
deciding what values between 0 and 2 are plausible and how to quantify that idea.
Clearly, for observations that are positive, the probability of seeing something as
weird or weirder than we actually saw is appropriately measured by the probability
that a standard normal is larger than yobs. We take the position that all values for yobs
of 0 or less are perfectly consistent with the model, hence the p value as a function
of yobs is discontinuous at 0 jumping from 1 to .5. (A case could be made that that p
should increase continuously to a value approaching 1 for huge negative yobs.)

In significance testing one typically only specifies a null model. There is no al-
ternative model. Although one could specify an alternative to model (3.1) that is
simply “not model (3.1),” that alternative cannot be specified as µ ≥ 0 or even
y ∼ N(µ,1); µ ≥ 0. We might observe y ≥ 2 because the true distribution is a
Cauchy centered at 0. There is about a 15% chance of seeing such data from a
Cauchy. The point is that seeing y ≥ 2 makes model (3.1) implausible. In the ab-
sence of other assumptions, it does not suggest what the true model might be. If you
are willing to make such assumptions, you should do Bayesian or Neyman-Pearson
testing.

Now suppose our model is

y ∼ N(µ,1); −1 < µ < 0.

Not only are y values of 2 and larger implausible for all allowable µ but values of
−3 and lower are correspondingly implausible. The p value for observing 2 should
be the same as the p value for observing −3. An appropriate quantification seems
to be

p(µ) = Pr[y ≤−3]+Pr[y ≥ 2]

computed under either µ =−1 or 0. The two values are both .024. Another reason-
able choice for computing the p value could be µ = −.5 but that minimizes p(µ).
To ensure that the data contradict the model, the appropriate p value is the largest of
the values p(µ), i.e.,

p = sup
−1<µ<0

p(µ).

If there is any value for µ that makes p(µ) large, the data do not contradict the
model.
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If an observation is consistent with any of the individual models in this hypoth-
esis, the observation is consistent with the entire collection of models. If the ob-
servation is inconsistent with every individual model, it contradicts them all. This
suggests that the relevant feature in determining which data are weird is the largest
density that the observation can achieve under the model. The largest density for
y = 2 is the same as the largest density for y = −3. To be weirder than another ob-
servation, the largest density must be smaller. The largest density for y = 2.5 occurs
when µ = 0. It is not only smaller than the largest density for 2, which also occurs
when µ = 0, but it is also smaller than the largest density for −3, which occurs when
µ =−1.

The largest density orders the values of y into observations that are less weird, as
weird, or weirder than yobs. The p value is the probability of seeing data as weird or
weirder than we actually saw. To contradict the model, the p value must be small for
every specific distribution in the model, so an appropriate quantification is to look
at the largest of the p values.

General Definitions

We now present general terminology for composite significance tests and then return
to the simple normal illustration.

A simple significance test, like those illustrated in Section 2, is based on a test
statistics W (y) that has a known distribution under the null model. In our illustra-
tions of composite significance testing, we had a test statistic y but a variety of
distributions for y that depend on a parameter. For the general discussion, we use
an equivalent formulation in which the test is based on a function of the data and
the parameter, a function that has a known distribution. Suppose we have a model
for y with densities q(y|θ) for θ ∈ Θ0. A composite significance test is based on a
test function W (y;θ) such that when θ is the true parameter, the test function has a
known density f (w). Note that if, say, 1 ∈Θ0, then W (y;1) is a random variable but
W (y;1)∼ f (w) only if θ = 1.

The largest density for W (y;θ) is denoted

f∗(y)≡ sup
θ∈Θ0

f (W (y;θ)).

The function f∗ orders observations y by how weird they are relative to the null
model. f∗ is not a function of θ .

To compute a probability of obtaining data as weird or weirder than we actually
saw, we pick a θ in Θ0 and compute

p(θ) = Pry|θ [ f∗(y)≤ f∗(yobs)].

For the data to contradict the null model, this number must be small for every θ ∈
Θ0, so the p value is defined as
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p = sup
θ∈Θ0

p(θ) = sup
θ∈Θ0

Pry|θ [ f∗(y)≤ f∗(yobs)]. (2)

Although p is a well defined quantity, it may not be easy to compute.
Returning to y ∼ N(µ,1) with −1 < µ < 0, define the test function Z(y; µ) ≡

y− µ . Under the model, the test function has a N(0,1) distribution, so the relevant
density is f (z)≡ φ(z) = exp(−z2/2)/

√
2π .

The supremum of the densities will be identical for −1 ≤ y ≤ 0 with f∗(y) =
φ(0). For y ≤−1, the supremum occurs when µ =−1 and for y ≥ 0 the supremum
occurs when µ = 0, thus the supremum of the densities is

f∗(y) =

φ(y+1) for y ≤−1,
φ(0) for −1 ≤ y ≤ 0,
φ(y) for y ≥ 0.

Suppose yobs = 2. We want to compute (3.2) with f∗(yobs) = f∗(2) = φ(2). By
symmetry, y=−3 is just as weird as y= 2 because f∗(−3) = φ(−3+1) = φ(−2) =
φ(2) = f∗(2). It is not difficult to see that values y < −3 and y > 2 have f∗(y) <
f∗(2). It follows that p = sup−1<µ<0 p(µ) where

p(µ) = Pry|µ [ f∗(y)≤ f∗(2)] = Pry|µ [y ≤−3]+Pry|µ [y ≥ 2].

The supremum occurs at µ =−1 and 0 with

p = 0.001+0.023 = 0.024.

Composite significance tests provide a significance testing justification for one-
sided t tests. Suppose our model is y1, . . . ,yn iid N(µ,σ2) with µ < 0 using a test
based on

T (y; µ)≡ ȳ·−µ

s/
√

n
∼ t(n−1). (3)

The maximum t(n− 1) density is identical for every value with ȳobs ≤ 0 and the p
value will be 1. For ȳ· > 0, the supremum of the densities is the density for µ =
0, and the supremum of the p values is the p value computed under µ = 0. For
T (yobs;0) = 2 and n−1 = 111, we get the usual one-sided value p = .0240.

One-sided χ2 tests are generated in a similar fashion.
Generalizing the test of y ∼ N(µ,1) with −1 < µ < 0 to a corresponding test for

a sample of normal observations with an unknown variance gets somewhat compli-
cated and is relegated to the appendix. Although the development is complicated, it
is far less complicated than the corresponding Neyman-Pearson theory.
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9.4 Interval Estimation

Fisher was never comfortable with Neyman-Pearson confidence intervals, hence his
development of fiducial intervals, see Fisher (1956). I think that interval estimates
can be developed in a reasonable manner based on significance tests.

Significance tests are fundamentally based on p values. The standard procedure
with a significance test is to report a p value, the evidence that the data are consistent
with the model. To extend significance tests to interval estimates we first need the
concept of an α level significance test. For α ∈ [0,1], define an α level significance
test as a test that rejects the null model whenever p ≤ α . If the test is not rejected,
we say that the data are consistent with the null model as determined by an α level
test.

To get a two-sided t interval estimate, we consider a t test of the null model
y1, . . . ,yn iid N(µ0,σ

2). The null model can be decomposed into the (base) model
y1, . . . ,yn iid N(µ,σ2) and the parametric null hypothesis H0 : µ = µ0. Under this
construction, the usual two-sided (1−α)100% interval is precisely the set of all µ0
values that are consistent with both the data and the model as determined by an α

level significance test.
This idea applies whenever we can separate the null model into two parts: a (base)

model and a parametric null hypothesis indexed by some parameter λ , for which we
have available a simple significance test for every λ = λ0. A 1−α interval (actually,
a “regional”) estimate consists of all parameter values λ0 that are consistent with the
data and the model as determined by an α level test.

Technically, we are specifying a collection of models that are consistent with the
data. In the normal example, there is a collection of models y1, . . . ,yn iid N(µ0,σ

2)
that are consistent with the data. If we could find the distribution of the T statistic for
Cauchy data with median µ , we could also discuss the collection of Cauchy models
that are consistent with the data. The significance testing procedure is not telling us
that we should believe the normal model, it is just telling us what the reasonable
µ0 values are, if you believe the normal model. Nonetheless, it is convenient to
refer to the collection of models by specifying the parameter λ , hence the “interval
estimate.” (There is little reason to call this a 1−α interval estimate rather than
an α level estimate except that they often correspond to Neyman-Pearson 1−α

confidence intervals.)
Similarly, to construct a prediction interval for the normal model, we test whether

an independent new observation y f ∼ N(µ,σ2) is consistent with the data and the
model. The standard α level significance test takes the form of rejecting if

|y f − ȳ·|

s
√

1+ 1
n

> t1−α/2(n−1)

where tα(n− 1) denotes the 100α percentile of the t(n− 1) distribution. The test
would be executed upon observing all of y1, . . . ,yn,y f . Treating y f as the indexing
parameter for the tests, the 1−α prediction interval consists of all y f values that are
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consistent with both the model and the observed data y1, . . . ,yn as determined by an

α level test. The result is the standard prediction interval ȳ·±t1−α/2(n−1)s
√

1+ 1
n .

The interpretation of the significance testing interval as of a collection of param-
eters that are consistent with both the data and the model does not actually presume
the model to be true. However, it is a small step to making that assumption, which
in turn would allow a Bayesian or Neyman-Pearson analysis.

Finally, consider the collection of models

y1, . . . ,yn iid N(µ,σ2); µ < µ0

indexed by µ0 with the associated t test. The model would not be rejected by an α

level composite significance test for any µ0 above the value that has

T (yobs; µ0) =
ȳobs −µ0

sobs/
√

n
= t1−α(n−1)

or µ0 = ȳobs− t1−α(n−1)sobs/
√

n. This serves as the composite significance testing
lower 1−α bound for µ0. It provides an infinite interval estimate for µ0, not for µ .
The one-sided interval tells us that µ0, the upper bound on plausible µ values, must
be at least µ0 = ȳobs − t1−α(n−1)sobs/

√
n. This is a reasonable interpretation, but a

far cry from the usual intuition of a one-sided interval.
A good Neyman-Peason-ite would correctly (if perhaps uselessly) interpret a

one-sided confidence interval in terms of its long-run frequency of covering the true
parameter µ . Nonetheless, a one-side confidence interval might be thought to con-
tain a collection of parameter values µ that are reasonable. That is not the case! The
data are never going to be consistent with any infinite interval of µ values. Suppose
ȳobs = 16, sobs = 4, and n = 16, so t.95(15) = 1.753 and the .95 one-sided interval
is (14.25,∞). This is not an interval of µ values that are consistent with the data
because with these data T (y;116) = −100. The data are clearly inconsistent with
the normal model having µ = 116 even though 116 is well within the one-sided
interval. The large positive values contained in the one-sided interval can only be
deemed consistent with the data as plausible values of µ0, that is, as plausible upper
bounds for µ .

9.5 Multiple Comparisons

It is by no means clear that significance testing has anything worthwhile to say
about multiple comparisons problems. The interval estimates discussed in the pre-
vious section involve performing an infinite number of tests, but they involve no
corrections for multiple testing.

Multiple comparison procedures are designed to control the (weak) experiment-
wise error rate, that is, to control the probability of rejecting any null hypothesis in
a group of tests when all of the null hypotheses are true. Significance tests are de-
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signed to measure how strange a set of data are relative to a null model. What does
that have to do with the probability of errors in multiple tests? The principals of sig-
nificance testing can be applied to multiple comparisons if we view the multiple tests
as defining one overall test. If you want to be able to make statements about which
individual hypotheses are correct or incorrect, you need to make stronger assump-
tions and use Neyman-Pearson or Bayesian procedures. But significance testing can
perhaps help in identifying individual hypotheses that contribute to the evidence that
the overall null model is wrong.

The very notion of evaluating the results of a collection of individual tests is
contrary to the nature of significance testing. In significance testing, the collection
of tests need to be combined into an overall measure of the evidence against some
null model. This usually amounts to combining the individual tests into one test
of a collective null model. (The overall null model may be nothing more than the
collection of null models associated with the individual tests.)

Consider the common problem of significance testing for outliers in a normal
linear model. For each of n data points, we get an associated t statistic, say ti,obs,
which is one observation on a random variable ti that has a t(d f E −1) distribution
where d f E is the degrees of freedom for Error when fitting the model. The random
variables ti typically are correlated. If we came into the problem with a suspicion that
case i′ might be outlier, we could do a standard t test for that one case, comparing
ti′,obs to a t(d f E −1) distribution to obtain a p value.

More commonly, we scan through the n different ti statistics to see if any of
them have large absolute values. In essence, we base our conclusion on the value of
maxi |ti,obs|. Recall Fisher’s dictum that one chooses the test statistic based on one’s
ideas about what may go wrong with the model. However, the test is still just a test
of whether the data (as summarized by the test statistic) are consistent with the null
model.

To compute a p value, we compare the number maxi |ti,obs| to the distribution
of the maximum of the random variables |ti|. Finding the distribution of maxi |ti|
is difficult but clearly its density is maximized at 0 and decreases monotonically
away from 0. (Clearly the density of maxi ti is symmetric about 0 and decreases
monotonically away from 0.) Therefore,

p = Pr
[

max
i

|ti| ≥ max
i

|ti,obs|
]
.

The maximum of the |ti|s is at least as large as maxi |ti,obs| if (and only if) any one
of the |ti|s is as large as our observed value so

p = Pr

[⋃
i

(
|ti| ≥ max

i
|ti,obs|

)]
,

and by Bonferroni’s inequality (finite subadditivity)
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p ≤
n

∑
i=1

Pr
[
|ti| ≥ max

i
|ti,obs|

]
= nPr

[
|ti| ≥ max

i
|ti,obs|

]
.

The naive individual p value computed from a t distribution can be as much as n
times larger than the appropriate p value. Thus, to ensure that the overall p value is
less than .05 when n = 45, we require, to quote Fisher (1935, p.60), the individual
test p value “to be as small as 1 in 900, instead of 1 in 20, before attaching statistical
significance” to the result.

Fisher was actually discussing the results of testing mean differences that were
suggested by the data in analysis of variance, but the principles are identical. In sig-
nificance testing, the issue is not how many tests you are making, the issue is using a
distribution for an overall test statistic that is appropriate for the test procedure. For
example, in balanced analysis of variance Tukey’s method for multiple comparisons
is based on knowing the distribution of the studentized range. The maximum dif-
ference between studentized means provides a significance test for the model that
is rejected only if the largest and smallest observed means are too far apart. The
issue of concluding which means are different and which are not is something sig-
nificance testing does not formally address. Nonetheless, if one can safely assume
that everything about the null model is true other than the equality of group popula-
tion means, it is not difficult to infer using Tukey’s method, with a level of evidence
borrowed from Tukey’s significance test, that some specific population means are
different.

In significance testing, even interval estimation becomes a problem involving
multiple testing. A significance testing interval estimate has a clear definition. It
consists of the parameter values that would not be rejected by an α level test, thus
it involves simultaneously testing a collection of null models for which no multi-
ple comparison correction is needed or desirable. For example, a t interval involves
testing µ = µ0 for every value of µ0, an infinite number of tests. Significance testing
does not use multiple comparison corrections; it uses different test statistics and p
values that are appropriate for those statistics. However, if one is willing to make the
leap of assuming that only one aspect of the null model can be wrong, interval esti-
mates can be interpreted as evidence in favor of certain parameter values, and tests
like Tukey’s can be interpreted as evidence that some population means are differ-
ent. Both procedures require one to specify a fixed level of evidence, α . Finally, for
these fixed α uses of significance tests, as for Neyman-Pearson and Bayesian proce-
dures, we are well served by validating our model assumptions as far as practicable.
Our conclusions are only ever as good as our model assumptions.

Appendix; More General Illustrations of Composite Significance
Tests

While most of the ideas for defining a composite significance test are apparent from
the previous simple normal illustration of Section 3, the notation was developed to
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handle more complicated problems. Actually, the test function is W (y;η) for η ∈Θ0
with W (y;θ)∼ f (w). While this assumption is enough to define the test procedure,
to actually compute the p value we need to think of W (y;η) as a random variable for
each fixed η . We know the distribution of W (y;θ) but we also need the distribution
of W (y;η) when the parameter is θ . The necessity of these requirements become
clearer when dealing with t tests but we first introduce the ideas in the context of the
simple normal example.

With Z(y;η)≡ y−η , the general definition of f∗ is f∗(y)≡ sup−1<µ<0 φ(Z(y; µ)).
The earlier analysis allows us to rewrite f∗ as

f∗(y) =

φ(Z(y;−1)) for y ≤−1,
φ(0) for −1 ≤ y ≤ 0,
φ(Z(y;0)) for y ≥ 0.

The idea that y =−3 is just as weird as y = 2, becomes

f∗(−3) = φ(Z(−3;−1)) = φ(−2) = φ(2) = φ(Z(2;0)) = f∗(2).

Because normal distributions with known variance are tractable, we were able to
compute the p value earlier. Nonetheless, the p value can be rewritten in terms of
Z(y;η) as

p(µ) = Pry|µ [y ≤−3]+Pry|µ [y ≥ 2]
= Pry|µ [y+1 ≤−2]+Pry|µ [y ≥ 2]
= Pry|µ [Z(y;−1)≤−2]+Pry|µ [Z(y;0)≥ 2].

To compute this last expression we need to know the distributions of the random
variables Z(y;−1) and Z(y;0) for all µ between −1 and 0. Again, because of the
simple nature of this problem, the distributions of Z(y;−1) and Z(y;0) are read-
ily available for all µ . In the next example, the equivalent random variables have
noncentral t distributions.

For the model y1, . . . ,yn iid N(µ,σ2) with −1 < µ < 0 we choose the t test func-
tion

T (y; µ)≡ ȳ·−µ

s/
√

n
∼ t(n−1).

To contradict the model, the data must be inconsistent with each parameter within
the model, that is, T (yobs; µ) must be inconsistent with the t(n−1) distribution for
every value of µ allowed in the model. Denote the t(n− 1) density t(·|n− 1). The
supremum of the densities is

f∗(y) =


t
(

ȳ·+1
s/
√

n |n−1
)
≡ t (T (y;−1)|n−1) ȳ· ≤−1

t(0|n−1) −1 ≤ ȳ· ≤ 0
t
(

ȳ·
s/
√

n |n−1
)
≡ t (T (y;0)|n−1) ȳ· ≥ 0

.



120 9 Significance Testing for Composite Hypotheses

Suppose ȳobs and s2
obs are such that T (yobs;0) = 2. We must then have ȳobs > 0,

so
f∗(yobs) = t(2|n−1).

For any data with T (y;0) > 2, we again have ȳ· > 0, so f∗(y) = t(T (y;0)|n− 1) <
t(2|n− 1). Also, for any data with T (y;−1) ≤ −2, we must have ȳ· < −1 and by
symmetry f∗(y) = t(T (y;−1)|n−1)≤ t(2|n−1).

To find the p value defined by (3.2) we need to maximize the probability that
T (y;−1)≤−2 or T (y;0)≥ 2, that is, maximize the probability of[

ȳ·+1
s/
√

n
≤−2

] ⋃ [
ȳ·−0
s/
√

n
≥ 2
]
,

over all parameter values in the model. These are disjoint sets, so we can compute
the probabilities separately. More formally, define

p(µ) = Pry|µ [ f∗(y)≤ f∗(yobs)]

= Pry|µ [t(T (y;−1)|n−1)≤ t(2|n−1); ȳ· <−1]
+Pry|µ [t(T (y;0)|n−1)≤ t(2|n−1); ȳ· > 0]

= Pry|µ [T (y;−1)≤−2]+Pry|µ [T (y;0)≥ 2].

Again,
p = sup

−1<µ<0
p(µ).

To compute p we need the distributions of T (y;−1) and T (y;0) for µs between
−1 and 0. For µ = 0, p(µ) is the probability that a central t(n−1) exceeds 2 and a
noncentral t with parameter 1 is below −2. When µ = −1, p(µ) is the probability
that a central t(n−1) is below −2 and a noncentral t with parameter −1 is above 2.
Obviously, they are the same number. Other parameters µ give smaller values but
involve using two noncentral t(n−1) distributions. With n−1 = 111,

p = .0240+ .0015 = .0255.

Again, this may seem complicated, but the Neyman-Pearson theory for this test is
considerably more complicated, see Hodges and Lehmann (1954, Sec.3).

If null distributions get stochastically larger as θ increases, Θ0 and interval,
do maximum densities occur at the ends of the interval? Relate to mode.

Replace Cox example with X ∼ N(0,σ2) H0 : σ2 = 1 Fisherian test totally dif-
ferent from N-P HA : σ2 < 1.

Look at Fisher’s exact test as a one-sided test, especially for extreme outcomes
using negative binomial distribution. For extreme data, the sup is at the boundary.
See Yung-Pin Chen (2011) Do the Chi-Square Test and Fisher’s Exact Test Agree in
Determining Extreme for 2×2 Tables?, The American Statistician, 65:4, 239-245,

Look at chi-square test assuming chi-squared distribution for test statistic. f∗(y)=
supp indep χ2

3 (X
2(y, p)) I think this should be achieved, for any y at the minimum
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chi-square value, f∗(y)= χ2
3 (X

2(y, p̂(y))). Then show that X2(y, p̂(y)) is a monotone
function of f∗(y) = χ2

3 (X
2(y, p̂(y))) or maybe that the chi-squared 1 distribution is

monotone for chi-square 3. Would work like a charm if we were only doing one-
sided. Or that there is virtually no probability of a chi-square 3 density getting small
when the distribution is actually chi-squared 1. that is, if X2(y, p̂(y))∼ χ2

1 then

P(χ2
3 (X

2(y, p̂(y)))< χ
2
3 (X

2(yobs, p̂(yobs)))
.
= P(X2(y, p̂(y))> X2(yobs, p̂(yobs))

y values that get a chi-squared 3 density small have virtually no probability under a
chi-squared 1. Or does it work backwards????

supp indep χ2
3 (X

2(y, p)) occurs at the same place as supp indep log[χ2
3 (X

2(y, p))]

function is decreasing in X2(y, p) because derivative is
If you find the sup by minimizing the test statistic, then small values will become

a problem. supp indep χ2
3 (X

2(y, p)) = χ2
3 (infp indep X2(y, p))

seems like this needs to be comparing looking at noncentral chi-squares with
lower df and central with higher df or vice versa. Simplest is

Y = Xβ + e,e ∼ N(0,1)

so
∥Y −Xβ0∥2 ∼ χ

2
n ∥Y −X β̂∥2 ∼ χ

2
n−r(X)

Relative to conclusions in The Fisher/Pearson Chi-Squared Controversy: A Turn-
ing Point for Inductive Inference
Author(s): Davis Baird
Source: The British Journal for the Philosophy of Science, Vol. 34, No. 2 (Jun.,
1983), pp.105-118
who says testing results are different. For Baird, he should reject for the minimum of
the test statistics, which would have a chi-squared 1 distribution. http://www.clarku.edu/faculty/facultybio.cfm?id=893

There are three ways to test Y sinN(Xβ ,σ2I) with known variance. Let the den-
sity be ψ(y|β ).

W1(Y,β )≡ψ(y|β ) W2(Y )≡W2(Y,β )≡∥Y −X β̂∥2/σ
2 ∼ χ

2(n−r) W3(Y,β )≡∥Y −Xβ∥2/σ
2

The first leads to a one-sided χ2(n− r) test, the second trivially leads to a two-sided
χ2(n−r) test because the test statistic does not depend on β , not sure what the third
leads to. Have to find the density of W3, maximize it relative to β (hopefully this is
a function of W2) and find which values of the maximized density are the smallest.
Not that W3 has a χ2(n) distribution but that is only relevant for finding the value
of β that maximizes the density and then determining the values of the maximized
density that are smaller than the observed maximized density.
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Chapter 10
Thoughts on prediction and cross-validation.

Suppose we have a random vector (y,x′) where y is a scalar random variable and
want to use x to predict y. We do this by defining some predictor function f (x). We
also have a prediction loss function L[y, f (x)] that allows us to evaluate how well a
predictor does. Want f that minimizes

Ey,x{L[y, f (x)]}

which is called the expected prediction loss or the expected prediction error. Also,
for whatever predictor we end up using, we want to be able to estimate the expected
prediction error.

TWO EXAMPLES:
The loss function determines the best predictor. These problems are equivalent

to Bayesian decision problems if we just think of y as θ , the marginal distribution
of y as the prior of θ , and the prediction loss as the decision loss. In this context,

Ey,x{L[y, f (x)]}

is the Bayes risk of the decision problem and the optimal predictor will be the Bayes
decision rule.

The most common loss function for prediction is squared error, see PA Section
6.3,

L[y, f (x)] = [y− f (x)]2

from which it follows that the optimal estimator is the “posterior” mean

m(x)≡ E(y|x).

For the special case when y ∼ Bern(p), write p(x)≡ E(y|x). The use of squared
error loss leads to estimates of the expected prediction error called Brier scores.
Another option called Hamming loss is

L[y, f (x)] = 1− I{0}[y− f (x)].

123
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In other words, for Hamming loss if you predict y correctly there is no loss and
if you predict it incorrectly the loss is 1. The expected prediction error is just the
probability of mispredicting y, i.e.,

Ey,x{L[y, f (x)]}= Pry,x{y ̸= f (x)]}

Note that with Hamming loss, it makes no sense to predict a value other than 0 or
1, so these will be referred to as valid predictions. Hamming loss is equivalent to
the Bayes test procedure with y = 1 the alternative hypothesis and y = 0 the null.
The optimal prediction is equivalent to rejecting when the posterior probability of
the alternative is greater that 0.5, i.e., the optimal rule δ has

δ (x) =
{

1 if p(x)> 0.5
0 if p(x)< 0.5 .

We don’t care which valid prediction we make (action we take) when p(x) = 0.5.
This rule clearly minimizes the loss for each x but using Bayes Theorem one can
also show that it has the form of the N-P Lemma so is a most powerful test. 2

Note that

Ey,x{L[y,δ (x)]}=Pry,x{y ̸= δ (x)]}=
∫
{x|p(x)≥0.5}

[1− p(x)] f (x)dx+
∫
{x|p(x)<0.5}

p(x) f (x)dx.

These rules depend on knowing the joint distribution of (y,x′), which is generally
unknown in prediction problems. We want to use data to estimate both E(y|x) and
Ey,x{L[y,m(x)]}. Suppose (y,x′),(y1,x′1), . . . ,(yn,x′n) are iid. Let Y be the vector of
yis and let X is the matrix with x′i as its ith row.

Estimate E(y|x).
A nonparametric approach to estimating E(y|x) is to identify xi values that are

close to x and estimate E(y|x) by taking a weighted mean of the yis that correspond
to close xis. Obviously, the weights on the yi might well depend on how far the xis
are from x. This is called a nearest-neighbor approach.

Quite generally, one can assume that E(y|x) is a member of a parametric family,
say m(x;θ) and use a maximum likelihood estimate of θ , say θ̂ . In this set-up, the xi
are treated as fixed and the distributions of yi given xi are assumed independent and
to be in a parametric family of distributions (largely) determined by its mean. This
is already in the form of nonlinear regression but standard generalized linear models
also fit this paradigm. Nonparametric regression techniques based on basis functions
such as polynomials, wavelets, or sines and cosines also fit into the generalized
linear model paradigm.

In general, we end up with an estimate

m̂(x)≡ m(x; θ̂).

.
Estimate Ey,x{L[y,m(x)]}.
If we know m, an unbiased estimate is
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1
n

n

∑
i=1

L[yi,m(xi)]. (1)

Generally, we have to estimate m, so we might use

1
n

n

∑
i=1

L[yi, m̂(xi)]. (2)

Since m̂ is a complex function of the data, the expected value of this function is hard
to find. Conventional wisdom is that (2) underestimates the true expected prediction
error, e.g.,

E

{
1
n

n

∑
i=1

L[yi, m̂(xi)]

}
≤ E

{
1
n

n

∑
i=1

L[yi,m(xi)]

}
.

I wonder if Eaton’s methods might be able to show this? (We will show not only
that this is true for linear models but that cross-validation can be even more biased
upwards.)

To “fix” this problem, people try Cross-Validation. Life is much easier if we have
one set of (training) data from which to estimate E(y|x) and a different set of (test)
data from which to estimate Ey,x{L[y,m(x)]}. In such a case, m̂ based on the training
data is a fixed predictor with regard to the test data so equation (1) gives an unbiased
estimate of expected prediction error for m̂ given the training data. One might call
this procedure, validation.

Cross-validation is based on using the validation idea repeatedly with the same
data. For example, k-fold cross-validation randomly divides the data into k subsets
of roughly equal size. First identify one subset as the test data and combine the other
k−1 subsets into the training data. Estimate the best predictor from the training data
and then use that estimate with the test data to estimate the expected prediction error.
So far, this is just validation and the estimate of the expected prediction error should
be conditionally unbiased.

However, in k-fold cross-validation there are k possible choices for the test data,
so one goes through all k validation processes and averages the k estimates of the
expected prediction error to give an overall estimate of the expected prediction error.
With n data points, the largest choice for k is n, which is known as leave one out
cross-validation.

Let’s look at how all of this works in the most tractable case, linear models with
squared prediction error loss. In linear models and more generally in nonparametric
regression the model is typically taken as

yi = m(xi)+ εi, E(yi) = 0, Var(ε) = σ
2

with independent εis, or alternatively

yi|X indep. E(yi|X) = m(xi), Var(yi|X) = σ
2.
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This model will not work for y ∼ Bern(p) because the constant variance condition
cannot hold except in degenerate cases. Under squared error loss

Ey,x{L[y,m(x)]}= ExEy|x{L[y,m(x)]}= Exσ
2 = σ

2.

In a linear model
m(x) = x′β

.
It is not hard to see that (1) leads to

1
n

n

∑
i=1

L[yi,m(xi)] =
1
n

n

∑
i=1

[yi − x′iβ ]
2

which is an unbiased estimate of σ2. However, with least squares estimation and
m̂(x) = x′β̂ ,

EY |X

{
1
n

n

∑
i=1

[yi − x′iβ̂ ]
2

}
=

n− r(X)

n
σ

2,

which underestimates σ2. Of course, what we really do in linear models is use the
mean squared error, i.e.,

EY |X

{
1

n− r(X)

n

∑
i=1

[yi − x′iβ̂ ]
2

}
= σ

2.

Finally, for leave one out cross-validation, the estimate uses the well known Press
statistic, see PA Chapter 13. In the following, let p≡ r(X). With M the perpendicular
projection operator onto the model matrix space, I believe

E(Press/n) =
1
n

E
[
Y ′(I −M)D2

(
1

(1−mii)

)
(I −M)Y

]
=

1
n

tr
[

D2
(

1
(1−mii)

)
(I −M)σ2I(I −M)

]
=

σ2

n
tr
[

D
(

1
(1−mii)

)
(I −M)D

(
1

(1−mii)

)]
=

σ2

n

n

∑
i=1

1
(1−mii)

.

For a one sample problem (intercept only model),

E(Press/n) =
n

n−1
σ

2

which is biased up. In fact, this is a lower bound for the expected value among mod-
els that include an intercept. Moreover, for x = 0,0.5,1,10,19,19.5,20 and fitting a
cubic polynomial, I believe E(Press/n)> 5σ2.
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In fact, since
n

∑
i=1

(1−mii)

n
=

n− p
n

Jensen’s Inequality gives

1
n

n

∑
i=1

1
(1−mii)

≥ n
n− p

,

so it looks like Leave One Out CV is multiplicatively more biased upward than the
naive estimator is biased downward.

I remember from talking to Rick Picard about his thesis years ago that he claimed
Press really sucked. I wonder if this is why he said that.

Other Loss Functions
Using the formal equivalence between prediction and Bayesian decision theory,

we can draw conclusions about other loss functions. For example, if for a positive
weighting function w(·),

L[y, f (x)] = w(y)[y− f (x)]2,

the BP is
E[yw(y)|x]
E[w(y)|x]

.

If
L[y, f (x)] = |y− f (x)|,

the BP is
med(y|x).

Moreover, if we use the absolute loss function with y Bernoulli, we get the same
result as using Hamming loss, i.e., the BP is

δ (x) =
{

1 if p(x)> .5
0 if p(x)< .5.





Chapter 11
Notes on weak conditionality principle

We have two potential experiments to collect data y and learn about a parameter θ .
Roughly, the weak conditionality principle says that if you flip a coin to decide
to perform experiment E = 1 or E = 2 then the analysis should be conditional on
the experiment you actually performed. What is unquestionably stupid would be to
ignore which experiment was actually performed when you know it. But it is less
clear that conditioning inferences on the observed experiment is actually necessary
to get good results as opposed to using the joint distribution of the data and the
experiment. (Inferences based on the marginal distribution of the data that ignore
knowing the experiment are dumb.) Of course all these distributions are conditional
on the parameter.

Note that the weak conditionality principle is a consequence of the ancillarity
principle, since the outcome of the Experiment randomization is an ancillary statistic
and should be conditioned on.

Fletch has an example

E=1 E=2
f (y|θ ,E = i) y = 0 y = 1 y = 2 y = 0 y = 1 y = 2

θ = 0 0.90 0.05 0.05 0.90 0.05 0.05
θ = 1 0.10 0.43 0.47 0.01 0.49 0.50

f (y|θ=1,E=i)
f (y|θ=0,E=i) 1/9 8.6 9.4 1/90 9.8 10

alternatively

E=1 E=2
f (y,E = i|θ) y = 0 y = 1 y = 2 y = 0 y = 1 y = 2

θ = 0 0.45 0.025 0.025 0.45 0.025 0.025
θ = 1 0.05 0.215 0.235 0.005 0.245 0.25

f (y,E=i|θ=1)
f (y,E=i|θ=0) 1/9 8.6 9.4 1/90 9.8 10

From the second table, the unconditional MP α = .05 test of H0 : θ = 0 versus
H1 : θ = 1 rejects for E = 2,y = 2 or E = 2,y = 1. From the first table, the two MP
α = .05 tests of H0 : θ = 0 versus H1 : θ = 1, conditional on E, reject for E = 1,y= 2
and E = 2,y = 2, respectively. They are different results, but I’m not at all sure that
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the conditional tests are better. As is the problem with so many N-P tests, the real
problem is picking a stupid α level. In this case, by paying the small price of going
from α = 0.05 to α = 0.10 you almost double the power.

I am not saying what procedure is better, only that it is not clear that one domi-
nates the other. And I am all in favor of Bayes over NP. These are all simple versus
simple tests, so the class of Bayes rules agrees with the class of NP rules. But, to
me, Bayes is clearly a better way of choosing a test than arbitrarily picking a small
level of α .

More generally, for two experiments E = 1 and E = 2 with Pr(E = 1) = p but
getting to observe E, and with outcomes y from the experiments determined by
f (y|θ ,E = i), then the weak conditionality principal says that the analysis should
be based on f (y|θ ,E = i). The alternative to conditioning would be to base the
analysis on the joint distribution of y,E,

f (y,E|θ) = p f (y|θ ,E = 1)I(E = 1)+(1− p) f (y|θ ,E = 2)I(E = 2)

which seems to lead to pretty reasonable results. However, if we look at the likeli-
hood function

L(θ |y,E) = f (y,E|θ) ∝ f (y|θ ,E)

so anything based on the likelihood is using the conditional distributions.
Another thing I looked at that seems to give good Fisherian inference from the

joint distribution is a 50/50 mixture of

E = 1 : y ∼ N(0,1), E = 2 : y ∼ N(3,1).

I come up with P values that agree with the conditional P values for E = 1,y = 3
and E = 2,y = 3, the first being small and the second being 1. Note that data points
of equal weirdness to E = 1,y = 3 are E = 1,y =−3 E = 2,y = 0, and E = 2,y = 6.
Similarly, the only point as weird as E = 2,y = 3 is E = 1,y = 0. I think, but did not
check out, that things work reasonably for testing the alternative H1 : y ∼ N(4,1).



Chapter 12
Reviews of Two Inference Books

This chapter contains reviews of two excellent books on statistical inference. Both
reviews were originally published in JASA: Christensen (2008, 2014). The first is a
brief text on statistical inference by David Cox. The second is by Erich Lehmann on
the historical development of statistical inference.

First my stories about D.R. Cox. I never met David Cox in the flesh but I saw
him, and I talked to him on the phone, and I emailed with him. I talked to him
on the phone in the mid 1980s when he edited Biometrika and I was an Assistant
Professor at Montana State University. I had submitted a paper to Biometrika along
with my friend and colleague Wes Johnson. David was famous for his fast editorial
turnaround but our paper had been sitting there a long time. Wes was coming up for
tenure at UC, Davis and he needed to hear about the paper. Calling England was
not something you did lightly in the 1980s. I got up at 3:30AM and made the call.
At first David was not very pleasant. He thought I was pressuring him to accept the
paper. When I finally communicated that we just wanted an answer, he was sorry
that it had taken so long, put down the phone, and went to another room to check on
the paper. A few seconds later he came back on the phone to explain that he could
not check right now because he had locked himself in his office and had to call his
secretary to come let him out.

The paper did get published in Biometrika.
My next personal encounters with David were more than 20 years later, after I

wrote a very detailed review of his wonderful little book, Principles of Statistical
Inference. Out of the blue one day I got an email from him thanking me for the
review. We chatted about a few things and I eventually told him that I had been
telling the previous story for years. David’s response was that, although the story as
related could not actually be true, I should absolutely keep telling the story because
it was too good not to tell.
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12.1 “Principals of Statistical Inference” by D.R. Cox

I must admit that I write this review wondering why anyone would care what I
have to say about a new book on statistical inference by D.R. Cox. Cox is, after all,
arguably our greatest living statistician. He is the author of numerous books, one of
which, Planning of Experiments, I consider to be one of the two best statistics books
that I have ever read (the other being the small book by Shewhart (1939) edited by
Deming). Interestingly, at about the same time Cox published this book on statistical
inference, he also published a review article on applied statistics, Cox (2007), the
first article ever published in a new IMS journal on the subject. But I am nothing if
not opinionated, so I will persevere in my task. I should perhaps also add that, as
with any review, this is not about what Cox said, but about what I thought he said.

This is a book on foundational issues in statistical inference. The mathemati-
cal level is aimed at university undergraduates in quantitative fields. In chapter one
he states, “The object of the study of a theory of statistical inference is to provide
a set of ideas that deal systematically with the above relatively simple situations
and, more importantly still, enable us to deal with new models that arise in new
applications.” The book has nine chapters and two appendices. The nine chapters
are: Preliminaries, Some concepts and simple applications, Significance tests, More
complicated situations, Interpretations of uncertainty, Asymptotic theory, Further
aspects of maximum likelihood, Additional objectives, Randomization-based anal-
ysis. At the ends of the chapters are Notes, which I think contain some of the most
interesting material. In some ways, the chapter Notes are crucial. For example, the
book contains interesting material on such things as linear rank statistics, Feiller’s
method, and ratio estimation, but the uninitiated would have no chance of relating
those names to the material without the chapter Notes.

I’ll say right up front that I think everyone should read the appendices. The first
is “A brief history” of statistics and the second contains Cox’s personal view on
matters of inference. Although I do not agree with all his views, they are certainly
worth encountering. Cox considers (p. 195) the main differences between Fisher
and Neyman to be the nature of probability and the role of conditioning. Personally,
I think the most important differences between them are the role of repeated sam-
pling and the nature of testing. Neyman-Pearson theory seems to provide decision
rules between a null and an alternative. I will discuss Fisherian testing later, but it is
certainly a different approach. Neyman embraced the concept of repeated sampling,
that is, the long run frequency (LRF) justification for statistical procedures, but my
reading of Fisher is that he rejected LRF as a basis for testing. I think that in testing
problems Fisher simply used the (null) probability model as a criterion to evaluate
how weird the observed data were. Of course, that is intimately related to the dif-
ferent views that Fisher and Neyman had on the nature of probability. But as Cox
says in one of my favorite sentences from the book, “Fisher had little sympathy for
what he regarded as the pedanticism of precise mathematical formulation and, only
partly for that reason, his papers are not always easy to understand.” Amen!

Cox is clearly not a Bayesian. I am. He raises the issue of whether probability has
the same meaning regardless of whether it is prior or posterior probability. While I
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am sure I am missing the philosophical subtleties, as a practical matter it seems like
the posterior does one of three things. In the best of cases, we obtain more spe-
cific knowledge from the posterior. (Reduced entropy?). If that is not happening,
it suggests that we didn’t know what we were talking about in the first place. A
third scenario is where the data are inadequate to inform us about the parameteriza-
tion, i.e., we have nonidentifiability. A simple example of this is diagnostic testing
where there are three parameters: sensitivity, specificity, and prevalence, but the data
are simply the number of individuals who test positive. The data only provide in-
formation on the apparent prevalence which is a function of the three underlying
parameters. In this case, the conditional distribution of the three parameters given
the apparent prevalence will be identical in the prior and the posterior.

Cox (p. 199) states that “Issues of model criticism, especially a search for ill-
specified departures from the initial model, are somewhat less easily addressed
within the Bayesian formulation.” I think he is absolutely correct, but I see little rea-
son to attempt such a search “within the Bayesian formulation.” I see little reason
not to use Fisherian (as distinct from Neyman-Pearson) tests to critique Bayesian
models. In fact, I think it is essential to do so! I also think Cox is right to reject
the axioms of personalistic probability as “being so compelling that methods not
explicitly or implicitly using that approach are to be rejected.” Bayesian statistics
may be the only logically consistent form of inference, but it is not the only useful
form of inference. Moreover, I think that Bayesian statistics is a wonderful medium
for arriving at a consensus of thought. And I suggest that to believe we are doing
more than arriving at a consensus is deluding ourselves.

Chapter 1 provides examples, notation, and overviews of what is to come.
Throughout the book Cox uses a parameterization θ = (ψ,λ ) where ψ is the pa-
rameter of interest, typically a scalar, and λ comprises the nuisance parameters. The
book focuses primarily on confidence intervals for ψ and testing whether the data
are consistent with a particular value ψ0. To lesser extents, it examines prediction,
decision theory, and formal model criticism. The book treats both frequentist and
Bayesian approaches to inference, but to my mind, with much more emphasis on
the frequentist. On page 8 Cox seems to restrict frequentists to those who accept
LRF interpretations of procedures, so I am not sure where Fisher will fit into all of
this (or me either since the two inferential procedures that make sense to me are
Bayesian for fully specified models and a version of Fisherian testing for less speci-
fied models). Finally, chapter 1 contains a sentence I dearly wish I had written, “We
follow the very convenient, although deplorable, practice of using the term density
both for continuous random variables and for the probability functions of discrete
random variables.”

Chapter 2 starts with standard discussions of likelihood, sufficiency, exponential
families and their conjugate priors. To me, it gets really interesting when sections 2.5
and 2.6 introduce machinery for constructing confidence intervals. I once accused
the long-run frequency interpretation of confidence intervals of making Bayesian
omelets without breaking Bayesian eggs. In sections 2.5 and 2.6 it seems like Cox
is providing us with fiducial omelets (intervals) without breaking fiducial eggs. I do
not pretend to be an expert on fiducial probability, but it looks to me like he has
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set up the problems in these sections so that the fiducial argument is there for the
making, yet Cox falls back on the LRF interpretation for the intervals he obtains. In
the beginning of Chapter 3, Cox even says of his procedures, “This is close to but
not the same as specifying a probability distribution for ψ; it avoids having to treat
ψ as a random variable...” It took me a while to find an intellectual underpinning
for Cox’s arguments here because he does not seem to be using an approach that
he endorses, that of reporting parameter values not rejected by a test. Cox explicitly
eschews the Neyman-Pearson approach, yet here he is also not using any argument
that I recognized as defining Fisherian tests. Moreover, Cox endorses the idea of
tossing out probabilities of α/2 on both ends of the intervals. That makes good
sense to me from a fiducial viewpoint but I do not see any basis for it from inverting
either Neyman-Pearson (N-P) or Fisherian tests.

Cox begins chapter 3 on significance tests with a list of six different situations in
which one might wish to test a null hypothesis H0 : ψ = ψ0. Only the first and last
of these seem to me appropriate for Fisherian testing. The others lend themselves to
N-P testing. But Cox takes a broader view of significance testing than I do. To me
the key idea in determining a p value is that the distribution of the test statistic under
the (null) hypothesis is used to determine how weird an observed value is. Cox is
prepared to use an alternative hypothesis to determine p values.

I spent a lot of time deciphering chapter 3, probably because I have very strong
prior opinions about the subject matter and it was difficult to reconcile them with
Cox’s prose. Cox is clearly not addressing Neyman-Pearson theory, so I believe his
goal is to construct p values that are measures of consistency with the null hypoth-
esis. He considers two approaches. First, there are significance tests in which only
a null hypothesis and a test statistic are specified (but this also requires a known
distribution for the test statistic under the null). In the second, significance tests
are considered when alternatives are specified. Initially, I thought that most of this
chapter was about the second approach, but gradually I came to think that he is
addressing the first approach in a way that is difficult for me to digest.

As I understand the first approach, the one I have been calling Fisherian, sig-
nificance testing is a variation on proof by contradiction. The null hypothesis is
assumed to be correct. If the p value, a measure of consistency with the null hypoth-
esis, is small then the data are inconsistent with the model that incorporates the null
hypothesis. This suggests that something is wrong with the null model. But what is
wrong need not be the hypothesized parameter value! The p value is the probability
of seeing a value of the test statistic that is as weird or weirder than we actually saw.
Since there is no alternative, the null distribution has to determine how weird a par-
ticular observed value is. Weird values are those with a small probability (density)
of occurring, thus the null density provides the ordering of how weird the observable
values are. For example, in testing that the mean µ of a Poisson distributed random
variable Y is 2, Table 1, column 3 gives the p values for y = 0, . . . ,6. Column 2 gives
the probabilities under the null, thus providing our measure of weirdness. For values
y > 6, the values get increasingly weirder so the pattern is obvious without listing
them.
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y Pr[Y = y] p p̃ = Pr[Y ≥ y] p̃ = Pr[Y ≤ y]
0 0.135335 0.27821 1.00000 0.135335
1 0.270671 1.00000 0.86466 0.406006
2 0.270671 1.00000 0.59399 0.676676
3 0.180447 0.45866 0.32332 0.857123
4 0.090224 0.14288 0.14288 0.947347
5 0.036089 0.05265 0.05265 0.983436
6 0.012030 0.01656 0.01656 0.995466

Table 12.1 Values of p and p̃ for testing a Poisson with mean 2.

Although this seems like a logically sound way to proceed, there are several dif-
ficulties with it. The biggest problem is in choosing a test statistic with a known
distribution. Fisher (1956, p.50) suggests that reasonable alternatives should inform
the choice of test statistic. However, there is a potential lack of coherence in that, for
example, a t test and a t2 = F test are fundamentally equivalent but provide different
orderings of how weird observed values are. [I cannot think why I said this unless
I wrote it before I realized the shape of F(1,d f ) and F(2,d f ) distributions.]
(Although I suspect that the difference occurs because they provide different con-
tinuous approximations to our inherently discrete world.) This testing procedure,
while having a sound logical basis, does not address all the issues one might like.
Finally, I do not know of anybody who has consistently held to this procedure. Al-
most nobody applies this theory to χ2 and F tests, although I suspect that is merely
a matter of computational convenience. To “correctly” evaluate the p value in those
cases, you need to find a second value of the statistic that gives the same density as
your observed value and then compute the probability of being in either tail. These
days, that would not be hard to program, but even today, it is not a computation
that is commonly performed. Fisher (1925, Sec. 20) insisted that extremely large p
values are as significant as extremely small ones. I view this as simply a convenient
alternative to taking the trouble to make a correct p value computation. Box (1980)
used this definition of p value for Bayesian model checking. This definition is also
widely accepted in performing exact conditional tests on discrete data, e.g. Mehta
and Patel (1983). Nonetheless, in Fisher’s discussions of his exact test for 2×2 ta-
bles, he seems to have lent towards p values computed directionally. But again, that
might have been for computational convenience.

I am not at all sure that Cox would agree with my description of the first ap-
proach because, what I consider a computational convenience, Cox seems to incor-
porate into the basic procedure. Even without explicitly defining alternatives, Cox
p.32 indicates that the p value, here called a p̃ value to distinguish it from the other
definition, is the probability of seeing data as indicative or more indicative of “a
departure from the null hypothesis of subject matter interest [my italics].” For ex-
ample, in testing that the mean µ of a Poisson distributed random variable Y is 2,
Cox uses the idea that if µ > 2, then only large values of Y are useful for detecting
departures from the null, and conversely when µ < 2. Cox provides a table similar
to Table 1 of one sided p̃ values. Column 4 provides p̃ values when larger values of
the test statistic are of interest or when the alternative mean is greater than 2 while
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column 5 provides p̃ values when smaller values are of interest or the mean is less
than 2. These are distinct from the p values computed by letting the null distribution
determine which observations are most unusual.

I am confused about how these ideas make the transition into Cox’s second ap-
proach, testing the null value of a parameter against some alternative value of the
parameter, because I am not quite sure if these are merely examples of p̃ values
with different departures of subject matter interest or if they are p̃ values based
on the specification of alternative hypotheses. In this case, they seem to amount to
the same thing. When alternatives are available, I suspect p̃ needs to be viewed as
a measure of consistency with the null model relative to the alternative, in which
case it could perhaps be formalized as the probability of seeing a likelihood ratio
as extreme or more extreme than the one you actually saw. In fact, Cox presents
this version of a p̃ value when discussing classification problems in section 5.17.
Without a specific alternative, I am not sure how one could formalize p̃ values be-
yond what Cox has done. However, I am not convinced that this definition of p̃ can
be reconciled with the idea of p̃ being a measure of consistency with the null hy-
pothesis. Cox rightly points out that extremely small values of F statistics in linear
models have large p̃ values under this paradigm but suggest inconsistency with the
null model.

Defining a p̃ value relative to some formal or informal alternative is to abandon
completely the idea of a proof by contradiction. A small p̃ does not assure us that the
data contradict the null hypothesis nor does a large p̃ value assure us that the data
are consistent with the null hypothesis. The following simple example using two dis-
crete densities illustrates the point by improving on a similar example in Christensen
(2005). The null is f (x) = .01,x = 1, . . . ,95, f (0) = .001, f (96) = .049, f (97) = 0.
Relative to the null, observing 0 is weird and has a p value of .001; observing 96
is consistent with the null and has a p value of one. If you have no alternative,
this is extremely reasonable. Now consider a formal alternative g(x) = .001,x =
1, . . . ,95,g(0) = 0,g(96) = .1,g(97) = .805 or just an informal alternative of reject-
ing for large values of x. Relative to the alternative the p̃ value for observing 0 is
one and the p̃ value for observing 96 is .049. The point is that observing a 96 in
no way contradicts the null hypothesis, yet p̃ is small. On the other hand, observ-
ing 0 contradicts the null, but p̃ is large. Since p̃ does not provide the basis for a
proof by contradiction: 1) with no clearly specified alternative, I do not know what
p̃ is giving us and 2) with a formal alternative available, it seems to me that there
is no reason to focus on the null hypothesis, as opposed to the alternative, and we
must be employing a procedure for deciding (or evaluating the evidence) between
the null and alternative. This is the proper domain of Neyman-Pearson testing and
Bayesian testing. Moreover, if Neyman-Pearson testing is a decision procedure and
not a proof by contradiction, I see no reason to restrict one’s self to tests in which
the probability of Type I error is small. In a decision procedure, one should play off
the probabilities of both Type I and Type II error so that both are reasonable.

Cox mentions in chapter 3, and returns in Section 6.5, to the idea of comparing
two (nonnested) models by using each in turn as the null hypothesis. If p values
are defined only by the null hypothesis, this seems like a very sensible approach.
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The conclusion would be that the data are consistent with both, one, or neither of
the models. With a formal alternative, this still seems like a sensible approach but
one in which the conclusions need more explanation. As mentioned before, in a
Neyman-Pearson test one should not merely choose a test with a small probability
of Type I error but choose something with reasonable levels for both the Type I
and Type II errors. With p̃ defined as the null probability of seeing the observed
likelihood ratio or a more extreme one, p̃ provides a data driven choice for a level
of Type I error. If we then compute the probability under the alternative of a more
extreme likelihood ratio than that observed, we have the corresponding data driven
choice for the level of Type II error. For continuous data, this is the p̃ value treating
the alternative as the null. Here, a large p̃ value does not imply consistency with
the null, it merely suggests that the null looks reasonable relative to the alternative.
When doing both tests, one large p̃ value and one small p̃ value make the choice of
distribution (weight of evidence determination) simple. Two large p̃ values suggest
that it is difficult to distinguish between the alternatives with these data. Two small
p̃ values suggest that the pair of alternatives is wrong, but I suspect that this does
not necessarily imply that either one is wrong. Of course, composite hypotheses can
make this procedure intractable, a problem that Cox gets around nicely in section
6.5 with large samples; see also page 128 and section 7.4.

Cox also discusses inverting tests to give confidence intervals. It is not clear to
me how this relates to sections 2.5 and 2.6. Fisher’s (1956) approach seems to have
been that if his model passes the goodness of fit testing stage, even though that does
not imply the model is correct, he goes on to estimation. Estimation takes the form
of fiducial inference rather than confidence intervals obtained by inverting tests.
When you develop tests without consideration of alternatives, it seems a bit shaky
to then discuss the collection of all parameter values that would not be rejected by
a test. Still, I am more comfortable with that than with the LRF interpretation of
confidence intervals or fiducial intervals. Of course, what I am really comfortable
with in this situation are posterior intervals.

Cox emphasizes a couple of interesting points relative to the p value approach to
significance testing. Often the null hypothesis is actually a family of distributions for
which a sufficient statistic may exist. By definition, the distribution of the data given
the sufficient statistic does not depend on the unknown parameters of the model, so
this conditional distribution can always be used as the basis for a test regardless of
the choice of test statistic. He also points out that given just the test statistic and its
null distribution, it is easy to construct an exponential family of (Neyman smooth)
alternatives.

Chapter 4 goes into more complicated situations. Subsection 4.4.1 deals with
conditioning on part of the data. Much of the discussion focuses on categorical
data. Alas, we Americans only share second hand the cultural legacy of such lu-
minaries as Shakespeare and Shaw, but as a great American sage might have put
it: I pity the poor fool who reads this subsection without some previous knowl-
edge of the models. Fortunately, I have such knowledge, so I found it very interest-
ing. Cox’s first example considers differences between Poisson, multinomial, and
product-multinomial sampling. He emphasizes that, “Due care in interpretation is
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of course crucial.” Not only do I agree, but this is one reason I like to call general-
ized linear models a marvelous computing device in search of the theory. The last
example in this subsection I found very disturbing. It is a case wherein the condi-
tional procedure that has worked marvelously up to this point, breaks down. Cox
takes this in stride indicating that insistence on the conditional approach may some-
times require paying too high a price. But I like my theories to stick together a little
better than this. Perhaps that is why I am a Bayesian. In fact, as I was reading Ex-
ample 4.1 in section 4.3 about conditional and unconditional inference for a random
sample from the uniform (θ − 1,θ + 1), I could not help but think that the issues
would not be a problem if you were a Bayesian.

Chapter 5 is on interpretations of uncertainty and its beginning looked like it was
headed way over my head. “There are two ways in which probability may be used
in statistical discussions. The first is phenomenological, to describe in mathemati-
cal form the empirical regularities that characterize systems containing haphazard
variation.” So this first notion describes variability as opposed to the second role
which “is in connection with uncertainty and is thus epistemological.” I think the
main question here is whether the philosophical nature of probability as it is used
to describe random variation in observable data is the same as, or more to the point
whether it can be combined with, the philosophical nature of probability used to de-
scribe our personal uncertainty about a parameter. The easy answer for a Bayesian
is, “Yes.” What we do not know about random data is the same stuff that we do not
know about parameters. In fact, I have vague memories that Frank Lad may have
made this more than an easy answer, based on the “God does not play dice.” world
view. In Example 5.3, Cox attempts to explain Fisher’s notion of probability. My
reaction was that it was so fraught with assumptions that I was glad not to be a fre-
quentist. In section 5.2 some examples of the strong and weak likelihood principles
would have been nice.

In section 5.3 Cox mentions Fisher’s fiducial approach to inference but, and I am
by no means sure of this, I think he is just dismissing it out of hand. Specifically, Cox
considers Ȳ ∼N(µ,σ2

0 /n) so that 1−c= Pr[µ < Ȳ +k∗cσ0/
√

n]. Fisher would argue
that this defines a fiducial probability distribution on µ . Cox says that such a single
set of limits “can in some respects be considered just like a probability statement for
µ” but also that they cannot be combined or manipulated like probabilities, specif-
ically that it is “clearly illegitimate” to give the probability that µ exceeds zero. I
could be wrong, but it seems to me that Fisher would not have any problem dis-
cussing the probability that µ exceeds zero. Moreover, if you cannot do something
as simple as give a probability for µ exceeding zero, in what sense can you treat
these as probability statements about µ? Perhaps Cox is using this idea to justify a
later statement that µ is more likely to be in the center of a [two-sided] confidence
interval, and that if the model is appropriate and if µ “is outside the interval it is not
likely to be far outside.” It seems clear to me that nearly everyone, Cox and Fisher
included, want Bayesian answers to problems, it is just that some people are not will-
ing the bite the Bayesian bullet to get them. Cox also uses the Exchange Paradox
to illustrate “in very simple form” the problems of switching probability statements
about observables to probability statements about parameters. Alas, I know to my
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personal sorrow that there is nothing simple about the exchange paradox except its
statement, see Blachman, Christensen, and Utts (1996).

In Section 5.6 Cox returns to the subject of how to give a frequentist meaning to p̃
values. Back in Section 3.2, I thought he took the position that it should be viewed as
a long run frequency related to deciding to reject the null hypothesis when it is true.
The last thing he says in section 5.6 seems to suggest he is adopting the Fisherian
view that it simply is what it is. The null model has probabilities associated with it,
so there is probability associated with the p value computation. I would not want to
have to bet on which interpretation Cox means to adopt.

Oops. I, a Bayesian, just said I didn’t want to bet on something. Section 5.7
describes the basis for Bayesian personal probabilities in terms of making bets. It is
quite a nice discussion given that it is just over a page long on a subject often treated
at book length.

In section 5.8 Cox presents his Example 5.5 as showing that priors that work
well in small dimensions can go astray in multiple dimensions. I think the example
merely shows that infinite flat priors are stupid and, as with the Lindley-Jeffrey’s
paradox, we should not be surprised when they give stupid results. In reduced form,
the example gives the conditional distribution of Y given θ so that E(Y |θ) = θ +
1. The improper prior on θ causes E(θ |Y ) = Y + 1. Computing the unconditional
expectations, we get both E(Y ) = E(θ)+1 and E(θ) = E(Y )+1. I do not see where
multiple dimensions come into it. Moreover, I think the burden of proof should
always be on showing that improper priors give reasonable answers. It should never
be viewed as surprising when they do not.

Example 5.6 is to illustrate that “a prior that gives results that are reasonable from
various viewpoints for a single parameter will have unappealing features if applied
independently to many parameters.” What he sees as a problem with the prior distri-
bution, I see as a problem with the data and to some extent with biased estimation.
Let me present an example similar to his: heteroscedastic one-way ANOVA. For
i = 1, . . . ,n, j = 1, . . . ,m let yi j = µi + εi j with the εi js independent N(0,σ2

i ). Let
s2

i be the sample variance from the ith group. To introduce some bias, we look at
[(m− 1)/(m+ 1)]s2

i , which has better expected squared error properties than s2
i . It

seems like Cox’s dissatisfaction in Example 5.6 should extend to the fact that as n
gets large ∏

n
i=1[(m− 1)/(m+ 1)]s2

i /∏
n
i=1 σ2

i does not become a good estimator of
the number 1. In fact, it is an unbiased estimate of [(m− 1)/(m+ 1)]n, which ap-
proaches 0. Even without introducing the bias, ∏

n
i=1 s2

i /∏
n
i=1 σ2

i is still not a really
good estimate of the number 1. Introducing the bias turns a mediocre estimate into
a bad one. Ultimately, although we are in an asymptotic framework, there are not
enough data on any one parameter to expect good asymptotic behavior. Perhaps the
quote from the beginning of this paragraph should be changed to: a procedure that
gives results that are reasonable from various viewpoints for a single parameter may
have unappealing features if applied to many parameters. In Section 8.3 Cox says
something quite similar about biased point estimation while agreeing that a little bit
of bias is not normally a bad thing.

Section 5.9 deals with reference priors but more specifically with the virtues
and difficulties of developing reference priors through maximizing entropy. While
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I think this is an interesting and useful theory, I think the most important role for
reference priors is simply as priors we agree to use so that everyone has a common
basis for comparison.

Section 5.11 discusses an approach to eliciting prior probabililities that should
interest those of us who are not enamored with having betting as a key aspect to the
foundations of Bayesianism. Cox’s note on this section is quite amusing. Personally,
rather than buying into coherent betting, the first thoughtful reason I had for being
a Bayesian was based on a result in section 8.2 on Decision analysis, that is, that
all reasonable procedures are Bayes procedures. If I have to act like a Bayesian
anyway, why not use a prior that I think is reasonable. But to be honest, I had been
indoctrinated before I ever heard of the complete class theorem.

Frankly, I was a little offended that in Section 5.12 on four ways to imple-
ment Bayesian procedures that the first two were not Bayesian. They are empiri-
cal Bayesian, which is a frequentist approach. In discussing the use of informative
priors, Cox seems to want a consensus on what the prior distribution should be. Per-
sonally, I am far more interested in getting a consensus on the posterior distribution.
It seems clear to me that if we cannot arrive at a practical consensus on the posterior
distribution, we collectively do not yet know what is going on. I think the fact that
reasonable people can obtain substantially different posteriors provides valuable in-
formation to the scientific community on our state of knowledge.

Chapter 6 treats asymptotic theory. I must say that Cox displays a facility with
O(·), o(·), Op(·), op(·) notation that boggles my mind. In fact, he displays amazing
facility with the entire subject, although I am personally more comfortable with,
say, Ferguson (1996). Figure 6.2 provides a fascinating illustration of the relation-
ships between likelihood ratio, Wald, and score tests. It also quickly leads to Cox’s
conclusion that if these test statistics are substantially different, the asymptotic for-
mulation is called in question.

Chapter 7 discusses some of the difficulties with asymptotic maximum likeli-
hood theory as well as means for avoiding some of those difficulties. In particular,
section 7.6 gives brief discussions of partial-, pseudo-, and quasi- likelihoods.

Chapter 8 is devoted to additional objectives. In section 8.1 Cox manages to treat
the entire object of science, that is, prediction, in one page. But I’m being opinion-
ated again. Technically, he presents (good) frequentist prediction in terms of testing
equality of the parameters from the new observation and the observed data. That
seems unnecessarily complicated to me. If the new observation is y∗ and the old data
are a vector y and if one can find a known distribution for some function of (y∗,y),
then a prediction region consists of all values y∗ such that (y∗,yobs) is consistent
with the known distribution at a level α . In other words, take y∗ so that (y∗,yobs)
provides a p value greater than α . Again, values of (y∗,y) with the lowest density
under the known distribution are the values that are most inconsistent. This differ-
ence in thinking about prediction regions is unlikely to engender much difference in
practice. Bad frequentist prediction includes plugging estimates of the parameters
into the sampling distribution of the new observation and then proceeding as if the
sampling distribution was known. This systematically underestimates variability, a
problem Bayesian prediction avoids.
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Subsection 8.3.3 seems to have some key typographic errors or some logic I do
not follow. It took me a while to figure out that subsection 8.4.2 is a generalization
of the Grizzle, Starmer, Koch (1969) approach to categorical data.

Chapter 9 on randomization-based analysis, considers both sampling theory and
designed experiments. The main idea is to contrast randomization-based analyses
with the model based approach taken in the rest of the book. I think section 9.3
on design would be tough sledding for anyone who had not seen similar material
before. One thing I particularly liked was his making a notational distinction be-
tween the variance appropriate for a completely randomized design versus that for
a randomized complete block (paired) design. Too often we (I) just call them both
σ2.

Two final points about the book that I really like. First, Cox does not blithely as-
sume independence. He repeated points out how crucial independence assumptions
may be. Second, he stresses that all real data are discrete and that continuous models
are just approximations that can go astray.

I would like to thank Prof. Cox for never having sat down with one of my books
and picked it apart as I have done his. I hope he takes this as a sign of my high regard
for his professional accomplishments. This is a great book by a great statistician.
Buy it and read it.

References

Blachman, Nelson M., Christensen, Ronald and Utts, Jessica M. (1996). Comment
on Christensen, R. and Utts, J. (1992), “Bayesian Resolution of the ‘Exchange
Paradox.” The American Statistician, 50, 98-99.

Box, George E. P. (1980). Sampling and Bayes’ Inference in Scientific Modelling
and Robustness. Journal of the Royal Statistical Society. Series A (General),
143(4), 383-430.

Christensen, Ronald (2005). Testing Fisher, Neyman, Pearson, and Bayes. The
American Statistician, 59, 121-126.

Cox, D.R. (1958). Planning of Experiments. John Wiley and Sons, New York.
Cox, D.R. (2007). Applied Statistics: A Review. The Annals of Applied Statistics 1,

1-17.
Ferguson, Thomas S. (1996). A Course in Large Sample Theory. Chapman and Hall,

New York
Fisher, Ronald A. (1925). Statistical Methods for Research Workers, Fourteenth Edi-

tion, 1970. Hafner Press, New York.
Fisher, R. A. (1956). Statistical Methods and Scientific Inference, Third Edition,

1973. Hafner Press, New York.
Grizzle, James E., Starmer, C. Frank, and Koch, Gary G. (1969). Analysis of cate-

gorical data by linear models. Biometrics, 25, 489-504.



142 12 Reviews of Two Inference Books

Mehta, C.R. and Patel, N.R. (1983). A network algorithm for performing Fisher’s
exact test in r× c contingency tables. Journal of the American Statistical As-
sociation, 78, 427-434.

Shewhart, W. A. (1939). Statistical Method from the Viewpoint of Quality Con-
trol. Graduate School of the Department of Agriculture, Washington. Reprint
(1986), Dover, New York.

12.2 “Fisher, Neyman, and the Creation of Classical Statistics”
by Erich L. Lehmann

Erich Lehmann was a class act and this short book Fisher, Neyman and the Creation
of Classical Statistics is worthy of him. I found it great fun to read.

Lehmann was Neyman’s Ph. D. student and spent most of his career in “Ney-
man’s” department at Berkeley. He was a major contributor to Neyman-Pearson
theory and is almost certainly the foremost expositor of that theory with classic
books Testing Statistical Hypotheses, Theory of Point Estimation, and, my personal
favorite, Nonparametrics: Statistical Methods Based on Ranks. He could be for-
given for being biased (I was on the look out) but for the most part the treatment
is even-handed. When the issue of bias arises, I suspect it is less a matter of bias
and more a matter of having an imperfect understanding of Fisher. (And who can
be blamed for having an imperfect understanding of Fisher?) Having addressed the
possible bias of the author, I should perhaps address the biases of the reviewer.
While I have the utmost respect for both Fisher and Neyman, nobody would call me
a fan of Neyman-Pearson theory and I am at core a Bayesian. In reviewing the book,
which is itself a review of others’ work, references that are not listed below come
from Lehmann’s book.

The first chapter starts out with some brief biographical information about the
two protagonists as well as bios of supporting characters Karl and Egon Pearson
and W.S. Gossett. To me, one highlight of this chapter was that Neyman learned
from Karl Pearson that “scientific theories are no more than models of natural phe-
nomena” which, not only do I agree with but, brought to mind Box’s quote about
all models being wrong. The chapter then spends a few pages on Fisher’s classic
1922 paper, “On the mathematical foundations of theoretical statistics”. Although
Lehmann seems to credit Fisher for the invention of maximum likelihood estimates,
he was aware of Stigler’s (2007) work on their history. I myself remembered, from a
previous life, that the “most probable number” used in serial dilution bioassays pre-
dated Fisher. “The estimate is ‘most probable’ only in the roundabout sense that it
gives the highest probability to the observed results.” This seems to me an admirable
description of maximum likelihood estimation for discrete distributions. The previ-
ous quotation was taken from Cochran (1950) who later says, “Consequently the
m.p.n. (most probable number) method is now generally used in a great variety of
problems of statistical estimation, though it more frequently goes by the name of the
‘method of maximum likelihood’.” Cochran credits McCrady (1915) for originating
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the m.p.n. in this application and the m.p.n. terminology lives on to this day. Stigler
cites examples by Lagrange and Daniel Bernoulli of finding most probable values
in the 18th century.

Like Fisher’s 1922 paper, Chapter 2 of Lehmann’s book transitions into testing,
but now the focus shifts to Fisher’s ground breaking (1925) book Statistical Meth-
ods for Research Workers. It seems that Fisher took quite a bit of grief for writing a
practical manual directed at research workers and not including the underlying the-
ory. Lehmann points out that after Fisher carefully derived Gossett’s t distribution
in 1912 (Fisher, 1915), Gossett urged on Fisher to derive more small sample distri-
butions. Lehmann cites Gossett as pleading to Fisher, “But seriously, I want to know
what is the frequency distribution of rσx/σy [sic] for small samples, in my work I
want that more than the r distribution now happily solved.” In a section close to my
own heart, Lehmann discusses the issue of testing two independent samples. This
is the first time that I wondered if Lehmann was too firmly in Neyman’s camp to
fully understand Fisher. While Lehmann justifiably calls out Fisher for some tech-
nical sloppiness (citing Scheffé’s admirable 1959 book), I think the bigger point
goes wanting. The issue, of course, is whether to assume equal variances. Fisher’s
point, and I think it is well taken, is that the appropriate test is typically one of
whether the two samples come from the same normal population. This is scientif-
ically distinct from, although probabilistically equivalent to, testing whether two
normal populations have the same mean given that they have the same variance.
Quoting Lehmann, “Fisher concludes this later discussion by pointing out that one
could of course ask the question: ‘Might these samples be drawn from different nor-
mal populations having the same mean?’ ... but that ‘the question seems somewhat
academic’.” As Christensen et al. (2011, p. 123) point out, it is by no means clear
that testing the equality of means when the variances are different is a worthwhile
thing to do.

Chapter 3 moves on to Neyman-Pearson theory. Two things particularly struck
me here. Apparently, the generalized likelihood ratio test statistic predates the the-
ory of optimal testing and Neyman originally wanted to do the theory as a Bayesian.
“This long two-part [1928] paper is a great achievement. It introduces the consider-
ation of alternatives, the two kinds of error, and the distinction between simple and
composite hypotheses. In addition, of course, it proposes the likelihood ratio test.
This test is intuitively appealing, and Neyman and Pearson show that in a number
of important cases it leads to very satisfactory solutions. It has become the stan-
dard approach to new testing problems.” Optimal testing arrives in 1933 as Neyman
and Pearson seek to solve a decision problem, “Without hoping to know whether
each separate hypothesis is true of false, we may search for rules to govern our
behavior with regard to them ...” Lehmann’s summary of Neyman and Pearson’s
innovations follows: “The 1928 and 1933 papers of Neyman and Pearson discussed
in the present chapter, exerted enormous influence. The latter initiated the behav-
ioral [decision theoretic] point of view and the associated optimization approach.
It brought the Fundamental Lemma and exhibited its central role, and it provided
a justification for nearly all the tests that Fisher had proposed on intuitive grounds.
On the other hand, the applicability of the Neyman-Pearson optimality theory was
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severely limited. It turned out that optimum tests in their sense existed only if the
underlying family of distributions was an exponential family (or, in later extensions,
a transformation family). For more complex problems the earlier Neyman-Pearson
proposal of the likelihood ratio test offered a convenient and plausible solution. It
continues even today to be the most commonly used approach.” The rub is whether
this theory really does provide an appropriate justification for Fisher’s tests. Fisher’s
dissent is the subject of Chapter 4.

It seems to me that Fisher’s key objection to Neyman-Pearson testing is the intro-
duction of alternative hypotheses. Ironically, it was correspondence between Gosset
and Egon Pearson (discussed at the beginning of Chapter 3) that generated this idea.
In a 1934 paper, Fisher very carefully stated, “The test of significance is termed
uniformly most powerful with regard to a class of alternative hypotheses if this
property [i.e. maximum power] holds with respect to all of them.” [My italics. I
am quoting Lehmann quoting Fisher. Presumably the “i.e.” is Lehmann’s.] Even at
this early point, when Fisher’s reaction to Neyman-Pearson theory was tepid and as
yet involved no personal animosity, we have the hint that Fisher is not willing to
accept this “class of alternative hypotheses” as the only possible alternatives. As I
have argued elsewhere (Christensen, 2005), Fisherian testing is essentially subject-
ing the null hypothesis to a proof by contradiction in which the null is contradicted
(rejected) or not contradicted. Unfortunately, the contradictions are almost never
absolute and the strength of contradictory evidence is measured by a small P value.
No alternatives are needed for a proof by contradiction. As indicated earlier, and as
Fisher violently objected to, Neyman-Pearson theory is essentially a decision proce-
dure (cf. p. 54), for which (unlike Neyman and Pearson’s original thinking, cf. p. 35)
there is no reason why having a small probability of type I error should be important
if it leads to large probabilities of type II error, cf. p. 55.

It is in Chapter 4 that Lehmann seems, to me, to misunderstand Fisher most often.
On page 48 he (technically correctly) describes an argument by Fisher as increas-
ing the power of a test. Fisher’s interest is in decreasing the P value. On page 57
Lehmann writes, “Fisher relied on his intuition, while Neyman strove for logical
clarity.” The word “while” seems to make this sentence inappropriately convey far
more than the sum of its parts (neither of which I could disagree with). In another
matter, I admit that Fisher is responsible for the silly dominance of the 0.05 level in
testing, but I do not believe that he is to blame for an idea that others took to absurd
lengths. On page 53 Lehmann presents 8 examples and states, “These examples,
to which many others could be added, show that Fisher considered the purpose of
testing to be to established [sic] whether or not the results were significant at the
5% level, and that he was not particularly interested in the p-values per se.” I took
the examples exactly opposite. Given that Fisher was reporting P values from ta-
bles of the t distribution, he seems to report them as accurately as the tables allow.
Moreover, Fisher (1936) once pointed out that some of Gregor Mendel’s data give
P values that are suspiciously too high. On page 55 Lehmann suggests, I think un-
fairly, that the Neyman-Pearson attitude towards test sizes is more appropriate. In
fact, I think it is equally fair to say that Neyman-Pearson are responsible, but not to
blame, for their tests being used almost exclusively with small α levels.
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Chapter 5 is entitled, “The Design of Experiments and Sample Surveys.” While
it is hard not to notice similarities in the ideas used in experimental design and sam-
pling, I somehow felt that Dr. Lehmann was a little too cavalier (a word too often
applied to me) about their differences. On page 64 Lehmann quotes a passage from
Fisher’s book The Design of Experiments that comes close to demonstrating that
Fisher’s concept of testing is essentially a proof by contradiction. On the same page
I think Lehmann is quite right for chiding Fisher for not seeing the usefulness of
power as a tool in determining sample size. Even in Fisher’s concept of testing, it
is worthwhile to consider the power of various alternatives for a fixed sized test.
However, in Fisher’s concept, one should take a wider view of what the various al-
ternatives are. (I think Fisher occasionally used fixed sized tests but I am less sure
that he would admit to it.) I have addressed the issue that Fisher found alternative hy-
potheses inappropriate (except to help in choosing a test statistic, cf. Fisher (1956,
p. 50)), but on page 65 I found myself thinking about how Fisher and Neyman-
Pearson would disagree even on what a null hypothesis was. In Neyman-Pearson
theory a null hypothesis is an hypothesis about a parameter value within an under-
lying statistical model. In Fisherian testing the null “hypothesis” is better thought of
as the null model. The correspondence is that the Neyman-Pearson model, together
with their null hypothesis, is the null model in Fisherian testing.

In discussing randomized block designs, on page 67 Lehmann quotes Fisher as
saying, “the discrepancies between the relative performances of different varieties in
different blocks ... provide a basis for the estimation of error.” I take this as a pretty
clear statement that in a randomized complete block the treatment-block interaction
is what you want to use as a measure of error. As I recently said in another context:
If evidence for main effects is not so blatant that it overwhelms any block-treatment
interaction we should not declare main effects.

Subsection 5.7.1 on randomization does not mention what I consider to be the
most important reason for randomizing treatments. Randomization should (on av-
erage) alleviate the effects of any confounder variables, therefore randomization
provides a philosophical basis for inferring that the effects we see are caused by the
treatments.

Alas, page 73 closes with more comments reflecting the author’s background.
“These papers by Jack Kiefer [on optimal design] complemented and to some ex-
tent completed Fisher’s work on experimental design as the Neyman-Pearson theory
had done for Fisher’s testing methodology.” “In testing, the Neyman-Pearson theory
provided justification for the normal-theory tests that Fisher had proposed on intu-
itive grounds.” It has been pointed out that the t test is not reasonable because it is
uniformly most powerful unbiased, the criterion of being uniformly most powerful
unbiased may be reasonable because it gives the t test. (I got this from Ed Bedrick,
who got it from Robinson (1991), who got it from Dawid (1976).)

Chapter 6 discusses estimation. Fiducial inference is one of the great mysteries of
the statistical world. I have never personally met anyone who claimed to understand
it. But Lehmann points out a passage from Fisher that I find crucial. In discussing
Fisher’s 1935 paper on “The foundations of inductive inference” Lehmann says a
“new feature is the identification of fiducial limits with the set of parameters θ0 for
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which the hypothesis θ = θ0 is accepted at the given level. This interpretation had
already been suggested by Neyman in the appendix to his 1934 paper.” Personally,
I find this a much more reasonable basis for Fisherian interval estimation than fidu-
cial inversion of probability distributions. This lets one state unambiguously that
a Fisherian interval contains all the parameter values that are consistent with the
data and the statistical model as determined by an α level test. (Remember that a
Fisherian test requires a null model that is often a statistical model together with
a null hypothesis for a parameter value and that if the test is not rejected at the α

level we merely fail to contradict the null model so the data are merely consistent
with the null model.) In the next section Lehmann repeats Neyman’s important point
about the long-run frequency interpretation of confidence intervals that the long run
need not be on the same problem, but rather on all the confidence intervals that a
statistician performs. (Not that that solves the problem of a confidence interval re-
ally saying nothing about the data at hand.) Section 6.4 seems to me to suggest that
Fisher, like me, finds “confidence” to be nothing more than a backhanded way to get
people to think of posterior probability, no matter how much one talks about long-
run frequencies. Indeed, it seems that Fisher is identifying confidence with his own
concept of fiducial probability. I find it rather comforting that these two concepts
that I have never understood could be the same concept. It is fascinating to think of
these renown anti-Bayesians trying desperately to make Bayesian omlettes without
breaking eggs a priori. McGrayne (2011, p. 144) reveals that Abraham Wald, who
appears five times in Lehmann’s book as a key contributor to classical statistics,
was a closet Bayesian. His reticence at coming out must ultimately be due to our
protaganists.

The final chapter provides an epilogue that briefly summarizes the contributions
of these giants to a variety of topics. In particular, the section “Hypothesis Testing”,
for good or ill, recapitulates many of the the points highlighted in this review. An
appendix lists Fisher’s works.

While I have gone to some lengths to point out what I think are biases in the book,
let me reemphasize that given Lehmann’s background, I think these are remarkably
minor. And for all my disagreements, I found the book both fun and informative.
Indeed, I found myself almost ashamed for having let Lehmann do all this hard
work for me and definitely feel appreciative. If you find the title of Lehmann’s book
interesting, by all means buy it and read it. My hope is that this review will have
whetted your appetite.
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Chapter 13
The Life and Times of Seymour Geisser.

This is a written version of a talk I gave at a 2005 Objective Bayes conference in
Branson, MO. On my vita it is listed as published in the 2005 JSM Proceedings.
(My talk was followed by one of Rob McCullagh’s. I was so miserable giving mine
and Rob was so joyously enthusiastic giving his, that it convinced me to stop giving
talks except for special occasions.)

Seymour Geisser was a major figure in modern statistics, particularly in the de-
velopment of Bayesian statistics. He was an active researcher, and able administra-
tor, and an interesting man. I discuss his life, his impact on statistics, and recount
some personal interactions.

13.1 Introduction

I am not quite sure how I came to be doing this. There are any number of people
more qualified to discuss Seymour Geisser’s personal and professional lives than
me.

I was a student at the University of Minnesota before Seymour got there. And I
am sure there were times when he thought that I would still be a student there when
he left. Fortunately for us both, that turned out not to be true.

1. Seymour was not my advisor.
2. I never wrote a paper with him.
3. I never officially took a class from him.
4. I sat in on his prediction class one quarter where my unofficial status did not keep

Seymour from making me do a class presentation.

Seymour was fond of observing that there are a lot of smart people in the world but
that what matters is what you do with it. In graduate school, I may have been his
poster boy for what to avoid.
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After I finally left Minnesota for a position at Montana State University, I was
told that my stock rose immeasurably when I published a little American Statistician
article on “Bayesian point estimation using the predictive distribution,” (Christensen
and Huffman, 1985). Seymour was pretty sure that I would go to Montana and never
be heard from again.

13.2 I Started Out as A Child

Seymour Geisser was born on October 5, 1929 in the Bronx, New York. He was the
elder of two sons born to Polish immigrants who worked in the garment industry.
His father left Poland after being discharged from the army having served in the
Russo-Polish war of 1920.

At the age of two he moved to Brooklyn. By the age of 12, he was already widely
recognized for being very clever (Zelen, 1996). He graduated from Lafayette High
School. Seymour enjoyed high school and played some point guard with the basket-
ball team. Seymour matriculated from the City College of New York in 1950 having
spent much of his undergraduate years sleeping on the subway between City Col-
lege and his home in Bensonhurst. His major was mathematics, in part because the
math program was housed near the cafeteria where he played chess.

13.3 North Carolina

After graduation from City College, Seymour faced the same question many of us
do and arrived at the same answer. The question is, “How am I going to support
myself?” and the answer is, “There seem to be jobs in statistics.” In Seymour’s case,
this came about through the intervention (or intercession) of Seymour’s cousin Leon
Gilford and his wife Dorothy Gilford. Both were statisticians. Dorothy had been
a student of Harold Hotelling at Columbia. By then, Hotelling had moved to the
University of North Carolina (UNC), so Seymour headed south.

At UNC Seymour hobnobbed with the likes of Sudish Ghurye, Ingram Olkin,
Ram Gnanadesikan, Shanti Gupta, Marvin Kastenbaum, Marvin Zelen, and others.
They drank beer, played cards, gambled, and did good statistics. To see how times
have progressed, in graduate school we drank beer and played volleyball, softball,
and basketball. But we had people like Bill Sudderth to teach us the evils, or at least
the futility, of gambling.

The faculty at UNC included Hotelling, Gertrude Cox, Wassily Hoeffding, S.N.
Roy, George Nicholson, R.C. Bose, and Herb Robbins. The students at UNC were
apparently as intimidated by their professors as we were twenty five years later. I
often wish that my own students were as intimidated by me.

Not surprisingly, Seymour worked on his Masters and Ph. D. with Harold
Hotelling. His Masters thesis was on computing eigenvalues and eigenvectors. His
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doctoral thesis was on mean square successive differences. This came about from
spending summers working at the naval proving ground in Aberdeen, Maryland.
The statistics group leader, Monroe Norden, had him following up work that John
von Neumann had done during World War II. Contrary to the rumor (that I started),
his thesis was not based on data obtained when the denizens of the proving ground
went deer hunting with their cannon.

Seymour later described his interaction with Hotelling (in Christensen and John-
son, 2005). “He was very hard to get [to see] and every time I would find him and
show him my work, he would always suggest something more to do. I got to be a
little annoyed at this. I thought I had done enough. So the next time he asked me
to do something, I went back and I did it and I thought, what would he ask next. I
thought about it and said, probably this kind of thing, and I did it. Next time I came
in, sure enough, he asked me to do exactly that and I said, ‘Here, I’ve done it.’ He
said, ‘Well then, I guess you’re finished.”’

13.4 Washington, DC

After graduating from UNC in 1955, Seymour took off to the National Bureau of
Standards. It paid better than the University of Illinois and he liked living in Wash-
ington. He initially worked under Churchill Eisenhart in the Statistical Engineering
Laboratory. He also worked with Marvin Zelen, Jack Youden, I. R. Savage, Bill
Conner, and Bill Clatworthy.

Before long he joined the U.S. Public Health Service as a lieutenant j.g. The
commission was necessary for joining the National Institutes of Health. Seymour
spoke fondly of his lunchtime discussions with Sam Greenhouse, Max Halperin,
Nate Mantel, Marvin Schneiderman, and Jerry Cornfield. His interactions with Jerry
Cornfield changed his professional life.

Cornfield was interested in Bayesian ideas and the corresponding frequentist
concepts. Seymour soon caught the Bayesian bug and, given his association with
Hotelling, he not surprisingly began developing Bayesian approaches to multivariate
problems such as discriminant analysis and profile analysis. The work on Bayesian
discrimination lead naturally to looking at predictive probabilities of correct classi-
fication. Ultimately, that lead to Seymour’s seminal work on prediction as the basis
for statistical inference, first summarized in his 1971 paper “The inferential use of
predictive distributions” and later compiled in his (1993) book Predictive Inference:
An Introduction.

In 1959, Seymour published his infamous citation classic on the Greenhouse-
Geisser correction to the F test. The adjective “infamous” is Seymour’s. He was not
overly taken with the work and opined, “There is no accounting for taste.” Except
Seymour said it in Latin.

In the early ’60s, Seymour began his academic career teaching nights at George
Washington University.
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13.5 Buffalo

In 1965 Seymour moved to Buffalo, NY to be the founding Chair of the Department
of Statistics at the State University of New York. Norman Severo and Bill Clatwor-
thy were already there and together they brought in Marvin Zelen, Manny Parzen,
Charles Mode, Jack Kalbfleisch, Peter Enis, and Jim Dickey.

13.6 Minnesota

Two years after I began at the University of Minnesota, Seymour became the first
Director of the School of Statistics. That was 1971 and they forgot to consult me,
perhaps because I was a sophomore in math education at the time. Seymour re-
mained director for 30 years, helping develop a distinguished faculty. When I began
graduate school the faculty included Don Berry, Kit Bingham, Bob Buehler, Dennis
Cook, Joe Eaton (I even know why Morris L. Eaton is called Joe), Steve Fienberg,
Cliff Hildreth, David Hinkley, Kinley Larntz, Bernie Lindgren, Frank Martin, Mil-
ton Sobel, Bill Sudderth, and Sandy Weisberg. Later additions included Katherine
Chaloner, Jim Dickey, Charlie Geyer, Doug Hawkins, David Lane, Gary Oehlert,
Glen Meeden, Luke Teirney and undoubtedly others that I am less familiar with.

Unintentionally, Seymour introduced a shibboleth by which Minnesota gradu-
ates recognize each other. Every year Seymour would tell the graduate students that
seminar attendance was obligatory but not mandatory. To this day, if we hear anyone
say that something is obligatory but not mandatory, we assume that person is from
Minnesota. I doubt that Seymour was aware of this, but I am sure that he would have
enjoyed me calling it a shibboleth.

I mentioned that we were intimidated by our faculty, and Seymour was certainly
not an exception. A fellow graduate student, Dennis Jennings, got married and in-
vited Seymour to the reception. I do not remember any other faculty being there.
But I do remember Seymour and Anne sitting alone and the graduate students not
having the nerve to go over and socialize. Perhaps one of the reasons I’m writing
this is because I eventually worked up enough nerve.

13.7 Seymour’s Professional Contributions

Seymour was always a very active researcher. He had over 175 publications. He had
visiting professorships at 13 universities. He was a fellow of the Institute of Math-
ematical Statistics and the American Statistical Association. He was on numerous
national committees.

In a two year period, late in life but before getting sick, Seymour published papers
on:
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interim analysis of lifetime data,
Bayesian method of moments,
order statistics in Bayesian analysis,
diagnostic tests,
and he edited a book on genetics.

In later years his research had focused on

Laplace approximations
Perturbation diagnostics and robustness
Curtailment of sampling
Paternity determination
Prior Distributions

Seymour was active as a expert witness in court cases particularly those involving
DNA identification. In 2000 he published a fascinating and eye-opening account
of his experiences as a witness for the defense, “Statistics, litigation, and conduct
unbecoming.”

Of course, Seymour was best known for his advocacy of the predictive approach
to statistical inference. The essence of the predictive approach is that science, and
statisticians, should be concerned about predicting future observables rather than
estimating or testing parameters. While I never heard Seymour do it, this idea natu-
rally calls in question the scientific validity of any discipline that displays a limited
ability to provide verifiable predictions. Cosmology and the evolution of species
come to my mind.

Predictive methodology largely boils down to, “Do unto the predictive distribu-
tion, that which you would do to the sampling distribution,” (if you knew the value
of the parameter). Thus, to estimate the mean θ of the sampling distribution, use the
mean of the predictive distribution. Seymour noted that the mean of the predictive
equals the posterior mean of θ .

In 1975, Seymour introduced predictive sample reuse as a “low structure” method
for predictive inference. About the same time, Stone (1974) was independently in-
troducing the same concept as cross-validation. By 1993, when he wrote his book,
Seymour had given in somewhat and was using both terminologies for the concept.
In any case, the concept has become a touchstone for evaluating predictive models,
cf. Breiman (2000).

Seymour’s interest in both foundational issues and prediction are illustrated in a
(1985) reevaluation of Bayes’ paper. Standard discussions of Bayes paper typically
take one of two forms. The data X1, . . . ,Xn are iid Bernoulli with probability of
success θ . The sampling distribution has

f (x1, . . . ,xn|θ) = θ ∑xi(1−θ)n−∑xi .

The first version observes that

p(θ |x1, . . . ,xn) ∝ θ ∑xi(1−θ)n−∑xi ,
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so
p(θ) = 1.

Stigler (1982) has Bayes assuming a marginal distribution for the data in which

Pr
[
∑Xi = r

]
=

1
N +1

.

A somewhat more complicated argument again leads to

p(θ) = 1.

Seymour’s version is entirely predictivist. He notes that the data are actually
Y0,Y1, . . . ,Yn iid U(0,1) but that all one observes is

Xi =

{
1 if Yi ≤ Y0
0 Yi > Y0

.

In other words,
θ ≡ Pr[Yi ≤ Y0|Y0].

In Seymour’s formulation,

f (x1, . . . ,xn|y0) = y∑xi
0 (1− y0)

n−∑xi

and by Bayes’ theorem, the predictive distribution is

f (y0|x1, . . . ,xn) ∝ y∑xi
0 (1− y0)

n−∑xi .

There are no parameters. Everything is potentially observable.
The final major work of Seymour’s career is a book on Modes of Parametric

Statistical Inference (Geisser, 2005). Characteristically, the book begins with an ex-
ample taken from the Book of Numbers. It also contains a favorite example from
Hacking (1965) illustrating foundational issues related to testing.

Consider the null model

Pr[X = 0|θ = 0] = .9

Pr[X = i|θ = 0] = .001, i = 1, . . . ,100.

The Fisherian .1 test of significance for this distribution rejects H0 : θ = 0 for X = i,
i= 1, . . . ,100. Observing anything other than X = 0 is somewhat weird, so that tends
to contradict the (null) hypothesis. The Fisherian size is determined by the P value
rather than the probability of type I error. Also, Fisherian tests do not involve an
alternative, so power is not an issue.

Now consider the Neyman-Pearson (N-P) problem of testing H0 : θ = 0 versus
H1 : θ ̸= 0 for θ = 0,1, . . . ,100. The null distribution is as before and the alternative
sampling distributions are
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Pr[X = 0|θ = i] = .91

Pr[X = i|θ = i] = .09, i = 1, . . . ,100.

The Fisherian test also defines a Neyman-Pearson test, so we can explore it’s
N-P properties. In this example, the probability of type I error is .1. When used in
N-P testing, Fisherian tests can have very poor power for some alternatives since
they are constructed without reference to any alternative. For these alternatives, the
Fisherian test has power .09 regardless of the alternative, so its power is less than its
size. This is not surprising. Given any test, you can always construct an alternative
that will have power less than the size.

The most powerful test for an alternative θ > 0 depends on θ , so a uniformly
most powerful test does not exist. The Fisherian test is also the likelihood ratio test.
The likelihood ratio examines the transformation

T (x) =
Pr[X = x|θ = 0]

maxi=0,...,100 Pr[X = x|θ = i]

=

{
.9/.91 = .989 if x = 0
.001/.09 = 1/90 if x ̸= 0

and rejects for small values of the test statistic T (X). That the likelihood ratio test
has power less than its size IS surprising.

The uniformly most powerful invariant (UMPI) test of size .1 is a randomized
test. It rejects when X = 0 with probability 1/9. The size is .9(1/9) = .1 and the
power is .91(1/9) > .1. Note, however, that observing X = 0 does not contradict
the null hypothesis because X = 0 is the most probable outcome under the null
hypothesis. Moreover, the test does not reject for any value X ̸= 0, even though such
data are 90 times more likely to come from the alternative θ = X than from the null.

In my humble opinion, Seymour’s primary research contributions were to

Non-Bayesian Multivariate Analysis
Bayesian Multivariate Analysis
Predictive Sample Reuse
and Predictive Inference.

He was also proud of his role in building the program at Minnesota.

13.8 Family Life

Seymour had four children: Adam, Dan, Georgia, and Mindy. Mindy is a biostatisti-
cian in Minnesota. He had five grandchildren, including a set of triplets. When Sey-
mour visited Harvard once, Marvin Zelen asked his administrator Anne to take care
of him. She took the job so seriously that they married. Seymour’s brother Martin
taught high school and served as a counselor. Seymour enjoyed history, archeology,
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religion and novels. More than once I was surprised at how well read he was. He
seemed to know something about even my most obscure interests.

13.9 Conclusion

My personal favorite memories of Seymour come from professional meetings, par-
ticularly the Joint Statistical Meetings. Many’s the time Wes Johnson would drag
Seymour and I to some seedy or noisy bar. Seymour and I would get fed up with the
place about the same time and the two of us would walk back to our hotels together,
sometimes through rough parts of town. I always felt rather protective of Seymour
on these occasions — rather like I would my father.

I learned relatively little from the lectures I attended during graduate school. I
learned that material far better from reading the books recommended by my profes-
sors. Nonetheless, what I learned in graduate school was irreplaceable. I learned a
sense of what is important in statistics. From Seymour I learned the importance of
foundational issues and the importance of prediction. I try to view all of my work
through that lens.

Seymour died March 11, 2004.
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Appendix A
Multivariate Distributions

This appendix reviews properties of multivariate distributions. It contains a few ad-
ditions to similar material in PA.

Let y = (y1, . . . ,yn)
′ be a random vector. The joint cumulative distribution func-

tion (cdf) of (y1, . . . ,yn)
′ is

F(v1, . . . ,vn)≡ Pr [y1 ≤ v1, . . . ,yn ≤ vn] .

If F(v1, . . . ,vn) is the cdf of a discrete random variable, we can define a (joint)
probability mass function

f (v1, . . . ,vn)≡ Pr [y1 = v1, . . . ,yn = vn] .

If F(v1, . . . ,vn) admits the nth order mixed partial derivative, then we can define a
(joint) density function

f (v1, . . . ,vn)≡
∂ n

∂v1 · · ·∂vn
F(v1, . . . ,vn).

The cdf can be recovered from the density as

F(v1, . . . ,vn) =
∫ v1

−∞

· · ·
∫ vn

−∞

f (w1, . . . ,wn)dw1 · · ·dwn.

We (with D.R. Cox) will often adopt the “deplorable” habit of referring to probabil-
ity mass functions as discrete densities, or if the context is clear, just densities.

For a function g(·) of (y1, . . . ,yn)
′ into R, the expected value is defined as

E [g(y1, . . . ,yn)] =
∫

∞

−∞

· · ·
∫

∞

−∞

g(v1, . . . ,vn) f (v1, . . . ,vn)dv1 · · ·dvn.

We might also write this as Ey [g(y)].
The expected value of any random matrix is performed element wise, e.g.,
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E(y) = [E(y1), . . . ,E(yn)]
′

and, if E(y) = µ ,
Cov(y)≡ E[(y−µ)(y−µ)′].

It is easily seen that for a conformable fixed matrix A and vector b,

E(Ay+b) = AE(y)+b; Cov(Ay+b) = ACov(y)A′.

We now consider relationships between two random vectors, say x= (x1, . . . ,xm)
′

and y = (y1, . . . ,yn)
′. Assume that the joint vector (x′,y′)′ = (x1, . . . ,xm,y1, . . . ,yn)

′

has a density function

fx,y(u,v)≡ fx,y(u1, . . . ,um,v1, . . . ,vn),

where u = (u1, . . . ,um)
′ and v = (v1, . . . ,vn)

′ are vectors of placehold variables cor-
responding to x and y respectively. Similar definitions and results hold if (x′,y′)′ has
a probability mass function. Of particular note is that if E(x) = µx and E(y) = µy,

Cov(x,y)≡ E[(x−µx)(y−µy)
′],

with, for conformable fixed matrices and vectors A1, A2, b1, b2:

Cov(A1x+b1,A2y+b2) = A1Cov(x,y)A′
2.

The distribution of one random vector, say x, ignoring the other vector, y, is called
the marginal distribution of x. The marginal cdf of x can be obtained by substituting
the value +∞ into the joint cdf for all of the y variables:

Fx(u) = Fx,y(u1, . . . ,um,+∞, . . . ,+∞).

The marginal density can be obtained either by partial differentiation of Fx(u) or by
integrating the joint density over the y variables:

fx(u) =
∫

∞

−∞

· · ·
∫

∞

−∞

fx,y(u1, . . . ,um,v1, . . . ,vn)dv1 · · ·dvn.

A.1 Conditional Distributions

The conditional density of a vector, say x, given the value of the other vector, say
y = v, is obtained by dividing the density of (x′,y′)′ by the density of y evaluated at
v, i.e.,

fx|y(u|v)≡ fx,y(u,v)
/

fy(v).

The conditional density is a well-defined density, so expectations with respect to it
are well defined. Let g be a function from Rm into R,
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E[g(x)|y = v] =
∫

∞

−∞

· · ·
∫

∞

−∞

g(u) fx|y(u|v)du,

where du ≡ du1du2 · · ·dum. Sometimes we write

Ex|y=v[g(x)]≡ Ex[g(x)|y = v]≡ E[g(x)|y = v] .

The standard properties of expectations hold for conditional expectations. For ex-
ample, with a and b real,

E[ag1(x)+bg2(x)|y = v] = aE[g1(x)|y = v]+bE[g2(x)|y = v] .

The conditional expectation of E[g(x)|y = v] is a function of the value v. Since
y is random, we can consider E[g(x)|y = v] as a random variable. In this context
we write E[g(x)|y] or Ex[g(x)|y] or Ex|y[g(x)]. An important property of conditional
expectations is

E[g(x)] = E[E[g(x)|y] ] .

To see this, note that fx|y(u|v) fy(v) = fx,y(u,v) and

E[E[g(x)|y] ] =
∫

∞

−∞

· · ·
∫

∞

−∞

E[g(x)|y = v] fy(v)dv

=
∫

∞

−∞

· · ·
∫

∞

−∞

[∫
∞

−∞

· · ·
∫

∞

−∞

g(u) fx|y(u|v)du
]

fy(v)dv

=
∫

∞

−∞

· · ·
∫

∞

−∞

g(u) fx|y(u|v) fy(v)dudv

=
∫

∞

−∞

· · ·
∫

∞

−∞

g(u) fx,y(u,v)dudv

= E[g(x)] .

In fact, both the notion of conditional expectation and this result can be gen-
eralized. Consider a function g(x,y) from Rm+n into R. If y = v, we can de-
fine E[g(x,y)|y = v] in a natural manner. If we consider y as random, we write
E[g(x,y)|y]. It can be easily shown that

E[g(x,y)] = E[E[g(x,y)|y]] .

A function of x or y alone can also be considered as a function from Rm+n into R.
A second important property of conditional expectations is that if h(y) is a func-

tion from Rn into R, we have

E[h(y)g(x,y)|y] = h(y)E[g(x,y)|y] . (1)

This follows because if y = v,

E[h(y)g(x,y)|y = v] =
∫

∞

−∞

· · ·
∫

∞

−∞

h(v)g(u,v) fx|y(u|v)du
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= h(v)
∫

∞

−∞

· · ·
∫

∞

−∞

g(u,v) fx|y(u|v)du

= h(v)E[g(x,y)|y = v] .

This is true for all v, so (1) holds. In particular, if g(x,y)≡ 1, we get

E[h(y)|y] = h(y).

Finally, we can extend the idea of conditional expectation to a function g(x,y)
from Rm+n into Rs. Write g(x,y) = [g1(x,y), . . . ,gs(x,y)]

′. Then define

E[g(x,y)|y] = (E[g1(x,y)|y] , . . . ,E[gs(x,y)|y])′ .

Exercise A.1 Show that

E(x) = Ey[Ex|y(x)]≡ Ey[Ex(x|y)]

and

Cov(x) = Covy[Ex|y(x)]+Ey{Covx|y(x)} ≡ Covy[E(x|y)]+Ey{Cov(x|y)}.

(The equivalences in the displays are merely notation.)

A.2 Independence

If their densities exist, two random vectors are independent if and only if their joint
density is equal to the product of their marginal densities, i.e., x and y are indepen-
dent if and only if

fx,y(u,v) = fx(u) fy(v).

Note that if x and y are independent,

fx|y(u|v) = fx(u).

If the random vectors x and y are independent, then any (reasonable) vector-
valued functions of them, say g(x) and h(y), are also independent. This follows
easily from a more general definition of the independence of two random vectors:
The random vectors x and y are independent if for any two (reasonable) sets A and
B,

Pr[x ∈ A,y ∈ B] = Pr[x ∈ A]Pr[y ∈ B].

To prove that functions of random variables are independent, recall that the set in-
verse of a function g(u) on a set A0 is g−1(A0)≡ {u|g(u) ∈ A0}. That g(x) and h(y)
are independent follows from the fact that for any (reasonable) sets A0 and B0,
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Pr[g(x) ∈ A0,h(y) ∈ B0] = Pr[x ∈ g−1(A0),y ∈ h−1(B0)]

= Pr[x ∈ g−1(A0)]Pr[y ∈ h−1(B0)]

= Pr[g(x) ∈ A0]Pr[h(y) ∈ B0].

By “reasonable” I mean things that satisfy the mathematical definitions of being
measurable, cf. Appendix B.

A.3 Characteristic Functions

The characteristic function of a random vector y = (y1, . . . ,yn)
′ is a function from

Rn to C, the complex numbers. It is defined on a vector t = (t1, . . . , tn)′ by

ϕy(t1, . . . , tn)≡
∫

∞

−∞

· · ·
∫

∞

−∞

exp

[
i

n

∑
j=1

t jv j

]
fy(v1, . . . ,vn)dv1 · · ·dvn = E[ei t ′y].

We are interested in characteristic functions because if x = (x1, . . . ,xn)
′ and y =

(y1, . . . ,yn)
′ are random vectors and if

ϕx(t1, . . . , tn) = ϕy(t1, . . . , tn)

for all (t1, . . . , tn), then x and y have the same distribution.
The great advantage of characteristic functions is that eit ′y ≡ cos(t ′y)+ isin(t ′y)

so that the random variable is bounded, so its expectation always exists. The moment
generating function gets rid of i ≡

√
−1 and is

ψy(t1, . . . , tn)≡
∫

∞

−∞

· · ·
∫

∞

−∞

exp

[
n

∑
j=1

t jv j

]
fy(v1, . . . ,vn)dv1 · · ·dvn = E[et ′y].

When it exists, it has similar properties to the characteristic function.

A.4 Inequalities

A.4.1 Chebyshev’s Inequalities

Suppose g is a nondecreasing function on nonnegative real values with the properties
that g(0)≥ 0 and g(1)≥ 1. In that case, the indicator function

IA(x,y) =
{

1 if (x,y) ∈ A
0 if (x,y) ̸∈ A

,
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has the property that
I[1,∞)(v)≤ g(v).

For example g(v) = v2 works as does g(v) = v. In particular, for ε > 0,

I[ε,∞)(|y−µy|) = I[1,∞)(|y−µy|/ε)≤ g(|y−µy|/ε).

Taking expected values gives

P(|y−µy| ≥ ε) = E
[
I[1,∞)(|y−µy|/ε)

]
≤ E [g(|y−µy|/ε)] .

In particular, for g(v) = v2, we have E
[
|y−µy|2/ε2

]
= Var(y)/ε2, so we get

P(|y−µy| ≥ ε)≤ Var(y)/ε
2.

A.4.2 Jensen’s Inequality

Jensen’s inequality is that for any convex function g(u) and random variable y, that

E[g(y)]≥ g[E(y)].

I find the easiest way to remember Jensen’s inequality is to remember that it is an
application of the fact that 0 ≤ Var(y) = E(y2)− [E(y)]2.

The function u2 needs to be convex in the sense that for any points u0 and u1, and
any α ∈ [0,1],

αg(u0)+(1−α)g(u1)≥ g[αu0 +(1−α)u1].

A.5 Change of Variables

Consider the random vectors x = (x1, . . . ,xn)
′ and y = (y1, . . . ,yn)

′. Suppose x has
density fx(u) and that y is the result of a one-to-one transformation y = T (x) so that
x = T−1(y). We want to find fy(v) the density of y. This section involves derivatives
the notation for which is set in Appendix F. The change of variable formula is that
the density of y is

fy(v) = fx[T−1(v)]
∣∣det[dvT−1(v)]

∣∣,
where dvT−1(v) is the derivative (matrix of partial derivatives) of T−1 evaluated at
v.

Not infrequently, the determinant of the derivative is replaced with an equivalent
form. Using results from Appendix F, since v= T [T−1(v)], differentiating both sides
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and using the chain rule on the right hand side gives I = [duT (u)|u=T−1(v)][dvT−1(v)].
Moreover, since det(I)= 1 and, for conformable square matrices A and B, det(AB)=
det(A)det(B), we get det[dvT−1(v)] = 1/det[duT (u)|u=T−1(v)].

EXAMPLE A.5.1. Location Families.
Let the random variable x have density h(u) and let y = x+θ . We can find the the
density of y from the cdf of y without resorting to the general formula. (Actually, the
general formula is precisely the general statement of how you these simple change
of variable problems.)∫ a

−∞

f (v|θ)dv=P[y≤ a] =P[x+θ ≤ a] =P[x≤ a−θ ] =
∫ a−θ

−∞

h(u)du=
∫ a

−∞

h(v−θ)dv

The score function and the information are important concepts in statistical infer-
ence and are discussed in Chapter 6. The next equation implicitly defines the score
function and then simplifies it for location families. Here ḟ (y|θ)≡ dθ f (v|θ)

S(y;θ)≡ ḟ (y|θ)
f (y|θ)

=
−ḣ(y−θ)

h(y−θ)
.

Similarly the information is

I(θ)≡ E[S(y;θ)]2 =
∫

[ḣ(v−θ)]2

h(v−θ)
dv =

∫
[ḣ(v)]2

h(v)
dv.

This integral, and thus the information, does not depend on θ .

EXAMPLE A.5.2. Scale Families.
Let the random variable x have density h(u) and let y = θx, θ > 0. We can find the
the density of y from the cdf of y without resorting to the general formula.∫ a

−∞

f (v|θ)dv=P[y≤ a] =P[θx≤ a] =P[x≤ a/θ ] =
∫ a/θ

−∞

h(u)du=
∫ a

−∞

1
θ

h(v/θ)dv.

As in the previous example, the last equality is basically due to the general change
of variable formula.

This paragraph was not in my notes and is currently wrong because all I did
is swap − for /. Using concepts defined in Chapter 5, the score function is

S(y;θ)≡ ḟ (y|θ)
f (y|θ)

=
−ḣ(y/θ)

h(y/θ)

and the information is

I(θ)≡ E[S(y;θ)]2 =
∫

[ḣ(v/θ)]2

h(v/θ)
dv =

∫
[ḣ(v)]2

h(v)
dv.

This integral, and thus the information, depend on θ . Paragraph wrong



166 A Multivariate Distributions

EXAMPLE A.5.3. Location-Scale Families.
Let the random variable x have density h(u) and let y = σx+µ , σ > 0.

fy(v|µ,σ) =
1
σ

h
(

v−µ

σ

)
.

A very common location transformation is between Celsius and Fahrenheit, F =
(9/5)C+ 32, although in Statistics we generally think of µ and σ as unknown pa-
rameters.

EXAMPLE A.5.4. Generalized Linear Transformations.
Generalized linear models involve an assumption that a random n vector Y has
E(Y ) = G(Xβ ) where Xn×p is known and β is a parameter vector. The vector
function G actually repeatedly applies a scalar function G(u) by defining G(v) ≡
[G(v1), · · · ,G(vn)]

′. Also define the scalar function g(u) ≡ duG(u) with its vector
equivalent. It follows that dvG(v) = D[g(v)] a diagonal matrix of derivatives and
from the chain rule that dβ G(Xβ ) = D[g(X ′β )]X .

For convenience, in this appendix we have assumed the existence of densities.
Many of these concepts generalize easily with measure theory.

A.6 Exercises

Exercise A.6.1. Let x and y be independent. Show that
(a) E[g(x)|y] = E[g(x)];
(b) E[g(x)h(y)] = E[g(x)]E[h(y)].

Exercise A.6.2. Using the methods of Subsection A.4.1, prove Markov’s in-
equality: for ε > 0,

P(|y| ≥ ε)≤ E(|y|)/ε.

Exercise A.6.3. Let U ∼ U [0,1] with density fU (u) = I(0,1). Let Y ≡ 2U Use
the change of variable formula to find the density of Y . You should be able to guess
the correct answer. The problem is show that it is correct.

Exercise A.6.4. Let the n-vector Z have independent standard normal compo-
nents and for a fixed nonsingular matrix A and a fixed vector µ define Y ≡ AZ +µ .
Find the mean and covariance matrix of Y and use the change of variable formula to
find the density of Y in terms of the mean and covariance matrix. Hints: Recall that
determinants have the properties that det(A) = det(A′) and det(AB) = det(A)det(A).



Appendix B
Measure Theory and Convergence

This book does not require the reader to know measure theory or measure theoretic
probability. But some of the ideas in measure theoretic probability are extremely
useful and we seek to provide some intuition for them.

B.1 A Brief Introduction to Measure and Integration

Lebesgue measure generalizes the concepts of length, area, and volume to arbitrary
sets in an arbitrary number of dimensions. Life being what it is, some people are
smart enough to find sets of points for which even Lebesgue’s theory is incapable
of finding their length etc., but for most of us, any set we can dream up, Lebesgue’s
theory will measure.

Any reasonable measure of length has to satisfy certain properties. If A is any set,
its length, say µ(A), has to be greater than or equal to 0. If you have any two sets A1
and A2, like (0.2,0.6] and (0.5,0.7], the total length of the set has to satisfy µ(A1 ∪
A2) ≤ µ(A1)+ µ(A2). If the sets are disjoint the inequality becomes an equality.
If this works for two sets, it works for any finite number of sets. We will assume
that it also works for a countably infinite number of sets, although one can have
philosophical debates about that. Incidentally, the finite version is enough to ensure
that if A1 ⊂ A2, then µ(A1)≤ µ(A2).

Let’s get our hands dirty by showing that the length of the set of rational numbers
in the unit interval is 0. Let h = 1,2,3, . . . and i = 1, . . . ,h. The numbers i/h are
all of the rational numbers in (0,1] (with many numbers – obviously 1 – repeated
many times). We want to list all of these numbers with a single index so take n =
(h− 1)h/2+ i. If you know n, you can figure out what h and i have to be. If you
only know i/h, rather than i and h there are lots of values n that correspond to it, but
that is no problem.

Let Q denote the rationals in (0,1]. For any ε > 0, and any n we put a ball
(interval) around i/h of length ε/2n, call the ball An. Obviously { i/h} ⊂ An and
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µ(Q) = µ

(
∞⋃

h=1

h⋃
i=1

{ i/h}

)
≤ µ

(
∞⋃

n=1

An

)
≤

∞

∑
n=1

µ(An) =
∞

∑
n=1

ε

2n = ε.

So, proof by contradiction. If you claim that µ(Q) = δ > 0, I can find ε < δ that
contradicts your claim. The only length than can work for the rationals is µ(Q) = 0.

The same argument will establish that any countable set of points has Lebesgue
measure 0, so in particular any finite set of points has Lesbegue measure 0.

By definition, the numbers in (0,1] that are not rational are irrational, say Ir.
Since (0,1] = Q∪ Ir and the sets are disjoint,

1 = µ{(0,1]}= µ(Q∪ Ir) = µ(Q)+µ(Ir) = 0+µ(Ir) = µ(Ir).

Anything that occurs except on a set of measure 0 is said to occur almost everywhere.
So irrational numbers occur in (0,1] almost everywhere.

An integral measures the area (volume, hypervolumne) under a curve. Suppose
we have a function from (x,y) into z, say f (x,y), and we want to measure the volume
under the curve defined by f (x,y).

The Reimann idea of an integral is to divide the (x,y) points into small regions
and approximate the volume under the curve for that region as the area of the region
times the height, where the height is just the value of f (x,y) for any point (x,y) in
the region. (There is a fair amount of slop here, but don’t worry.) The approximate
volume under the entire curve is just the sum of the approximate volumes for all
the small regions. Does this always work? Of course not! If x and y are allowed to
be any real numbers, you need an infinite number of small regions to sum over. If
f (x,y) is not well behaved, it can matter a great deal which (x,y) you pick in each
region to use as the height for the approximate volume. We need a guarantee that
the values of f (x,y) cannot vary too much within our small (x,y) regions. But for
lots of well-behaved functions, this idea works well.

The Lebesgue idea of an integral is different and works (by and large) for less
well-behaved functions than you need for Reimann integration. There are Lebesgue
integrable functions that are not Reimann integrable and Reimann integrable func-
tions that are not Lebesgue integrable, but typically when both integrals exist they
give the same result. One key point is that no function f is Lebesgue integrable
unless its absolute value is also integrable. That is not a requirement for Reimann
integrable functions.

In our 3-dimensional example, Reimann integration divides up the (x,y) plane
into small regions whereas Lebesgue integration divides the z axis into small re-
gions. For each small region of the z axis, there exist a set of points (x,y) that will
give you a value of f (x,y) in that small region of z. This set of (x,y) points can
be very complicated, but as mentioned earlier, Lebesgue measure can be used to
determine the area associated with this complicated set of points. Again, we will
approximate the volume by the area of the set in the x,y plane times the height of
the function but now the height is restricted to be in a very narrow region of the
z axis and we are using Lebesgue measure theory to give us the area of the corre-
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sponding set of (x,y) values. We have a good way of measuring areas, so this is
subject to much less variability (in the z direction) than is Reimann integration.

Of course the theory is far more complicated than this. Lebesgue integrals are
defined first for something called simple functions (a generalization of step func-
tions) for which the integral is easy to compute and then simple functions are used
to approximate more complicated functions, with the simple function integrals ap-
proximating the the more complicated function’s integral.

Although it is rather redundant, the Lebesgue integral of a function that is 1 when
(x,y) ∈ A and 0 when (x,y) ̸∈ A, is the area of the set A. In other words, define the
indicator function

IA(x,y) =
{

1 if (x,y) ∈ A
0 if (x,y) ̸∈ A

,

then
µ(A) =

∫
IA(x,y)dµ(x,y),

where µ is being used to denote Lebesgue measure and dµ(x,y) denotes that we
are integrating with respect to Lebesgue measure. If f (x,y) = g(x,y) almost every-
where, their integrals must be the same, i.e.,

∫
f (x,y)dµ(x,y) =

∫
g(x,y)dµ(x,y).

The whole idea of Lebesgue integration is based on Lebesgue measure which
corresponds to our usual (Euclidean) conception of length, area, and volume. As
systematized by Kolmogorov, probability is just an alternative measure that replaces
length, area, or volume. Probabilities act much like areas. The area of any set has to
be at least 0. Same for probabilities. The total area of your living quarters is the sum
of the areas for each room. The probability of you being in your living quarters is
the sum of the probabilities of you being in each room. The probability of the union
of disjoint sets has to be the sum of the probabilities for each set. The probability
of the union of any sets has to be less than or equal to the sum of the probabilities
for each set. Again, that is pretty obvious if you have a finite number of (disjoint)
sets but life is much, much easier if we also assume that it is true for an infinite
number of disjoint sets. (Again, this is a matter of some controversy, especially
among Bayesian statisticians.) The main difference between a probability measure
and Lebesgue measure is that the biggest a probability can ever be is 1.

Suppose we have a function from (x,y) into z, say f (x,y) and a probability mea-
sure on (x,y), say P. Using the same ideas as for Lebesgue measure we can define
integrals with respect to the probability measure P, say∫

f (x,y)dP(x,y).

Now, anything that holds with probability one is said to hold almost surely (a.s.).
Technically, a probability space is a triple (Ω ,F ,P) where Ω is the set of possi-

ble outcomes, F is the collection of sets (the sigma field) of outcomes that we will
work with (remember some sets are too weird for Lebesgue measure), and P is the
probability measure which is defined for every set in F . Our three main rules are

1. P( /0) = 0; the probability that nothing happens (the empty set /0 occurs) is 0
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2. P(Ω) = 1; the probability that something happens is 1
3. P(

⋃
∞
i=1 Ai) = ∑

∞
i=1 P(Ai) provided Ai ∩A j = /0 for all i, j.

Item 3 is referred to as countable additivity. It follows from item 3 that probabilities
display countable subadditivity, namely,

P

(
∞⋃

i=1

Ai

)
≤

∞

∑
i=1

P(Ai),

for any sets Ai.
A random variable y is a (measurable) mapping of Ω into the real line, y : Ω →R.

My favorite example of a random variable is that when you roll a die, some spots
appear on the top of the die. Without even thinking, we say that we rolled some
number that is 1, 2, 3, 4, 5, or 6. Now ω is the face of the die that comes up on top,
and y(ω) is the number of spots on that face. In this simple case, F is literally all
of the sets you can make up out of the six outcomes and you already know P.

The real valued function/random variable y is said to be measurable if it trans-
forms (Ω ,F ) into (R,B) where B is another big set (sigma field) of allowable sets
and if the transformation always relates sets in B to sets in F . Specifically for any
set B, define the inverse set

y−1(B)≡ {ω|y(ω) ∈ B}.

The random variable y is measurable if for any B ∈B, we always have y−1(B)∈F .
For comparison, it is well known that if (Ω ,F ) = (R,B), so we can talk about
continuous functions, y is continuous if and only if y−1(B) is an open set whenever
B is an open set.

The expected value of y is defined by its integral with respect to the probability
measure,

E(y)≡
∫

y(ω)dP(ω).

When I first learned probability, one thing that stumped me is that at some point
Ω went away. We stop really needing it because we focus exclusively on random
variables. If we have (Ω ,F ,P) and a random variable y, we can just as well work
with a new probability space (R,B,Py) in which we define Py by

Py(B)≡ P[y−1(B)] for any B ∈ B,

so we can act like the probabilities were all defined on the real line to begin with. In
this case, the random variable y defined on (R,B,Py), takes the value y(u) = u for
any u ∈ R.

A random vector is a mapping y : Ω → Rn and we take the expected values
elementwise, i.e., write y(ω) = [y1(ω), . . . ,yn(ω)]′ and E(y) ≡ [E(y1), . . . ,E(yn)]

′.
Everything discussed to this point extends is pretty obvious ways.

For a space (Rn,Bn), a probability distribution P is said to be absolutely contin-
uous with respect to Lebesgue measure µ if for any set A ∈ Bn with µ(A) = 0, we
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also have P(A) = 0. We will see in Appendix C that this is the property that allows
us to find density functions as in Appendix A. Standard continuous distributions
like the normal are specified by their density wrt Lebesgue measure and standard
discrete distributions are specified by their density wrt counting measure (in which
the measure of set is the number of integers in the set). Most of the standard con-
tinuous distributions used in Statistics are defined by their densities with respect
to Lebesgue measure, so they are automatically absolutely continuous. Although
our primary interest is in relating a probability measure to Lebesgue measure on
(Rn,Bn), the concept of absolute continuity works for any two measures defined
on the same space.

For example, we might take (y1,y2) to be the probability of a randomly selected
man and woman. It is actually hard to uniquely define a man or woman’s height and
all measurements are fundamentally discrete but lets pretend that heights are well-
defined and continuous. What is the length of the set {65}? It is only one point,
it has no length. Similarly, any probability (absolutely continuous with respect to
Lebesgue measure) has the probability that a person is 65 inches tall is also 0. There
is some positive probability that a person is between, 64.5 and 65.6 inches tall. But
no chance that someone is exactly 65 inches. In reality, all of the measurements that
we make in life (length, mass, time etc), although we think of them as measuring
continuous variables, are really statements that the measurement is within some
interval (centered at a rational number) determined by the accuracy of the measuring
device. Approximating this as a continuous measurement, rarely causes problems.

B.2 A Brief Introduction to Convergence

We need to consider when a sequence of random variables (or vectors) yn converges
to another random variable (or vector), say, y. We will discuss four different types
of convergence: convergence in distribution (in law), convergence in probability,
convergence with probability one (almost sure convergence), and convergence in
L 2 (mean square convergence). (Convergence in L p for p > 0 is similar to L 2.)
There is a partial ordering on these. Almost sure convergence and convergence in
mean square both imply convergence in probability but neither implies the other.
Convergence in probability ensures convergence in distribution.

Because we presume previous exposure to these topics, we illustrate them prior
to defining them. Our illustrative probability space is the unit interval Ω = [0,1] with
the uniform distribution (and Borel sets). Thus, the probability of any set is just its
length. We will define sequences of random variables yn that converge to a random
variable y(ω) = 0 for all ω . (Remember ω ∈ [0,1].)

EXAMPLE B.2.1. Consider the random variable yn defined as the indicator func-
tion of the set [0,1/n], i.e.,

yn(ω) = I[0,1/n](ω).
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This random variable converges in all four ways.
It converges almost surely to 0 because for every ω ∈ (0,1], the sequence of

numbers yn(ω) converges to the number 0. (As soon as 1/n < ω , we get yn(ω) = 0
AND by assumption the probability that ω ∈ (0,1] is 1, i.e., P{(0,1]}= 1. The fact
that yn(0) = 1 for all n, so that yn(0) = 1 ̸→ y(0) = 0 does not matter because it
occurs with zero probability.

To get convergence in mean square we need the limit of
∫
[yn − y]2 dP to go to 0.

Since y = 0 a.s.,∫
[yn − y]2 dP =

∫
[I[0,1/n](ω)]2 dω =

∫
I[0,1/n](ω)dω =

∫ 1/n

0
dω =

1
n
→ 0.

To get convergence in probability we need the limit of P[|yn − y|> ε] to go to 0
for any ε > 0. Since y = 0 a.s., for 0 < ε ≤ 1 (bigger εs are easy)

P[|yn − y|> ε] = P[yn = 1] = P(0 ≤ ω ≤ 1/n) =
1
n
→ 0.

For convergence in distribution, we need the cdf of yn, say Fn(v) ≡ P[yn ≤ v] to
converge to the cdf F(v)≡ P[y ≤ v] for every point v at which F(v) is continuous.

F(v) = I[0,∞)(v),

so we need continuity everywhere except at v = 0. Since yn is either 1 or 0

Fn(v)≡ P[yn ≤ v] =

{0 if v < 0,
1− 1

n if 0 ≤ v < 1,
1 if v ≥ 1.

For v < 0 or v ≥ 1, Fn(v) = F(v) and for 0 < v < 1,

Fn(v) = 1− 1
n
→ 1 = F(v).

In this case, we even get convergence at v = 0 which we do not need. 2

EXAMPLE B.2.2. Everything is the same except we redefine yn as

yn(ω) =
√

nI[0,1/n](ω).

The arguments for almost sure convergence, convergence in probability, and con-
vergence in distribution continue to hold with very little change but this random
variable does not converge to 0 in mean square. To get convergence in mean square
we need the limit of

∫
[yn − y]2 dP go to 0. Since y = 0 a.s.,∫

[yn − y]2 dP =
∫
[
√

nI[0,1/n](ω)]2 dω

= n
∫

I[0,1/n](ω)dω = n
∫ 1/n

0
dω =

n
n
̸→ 0. 2
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Exercise B.1. Show convergence a.s, in probability, and in distribution for Ex-
ample B.2.2.

It is a little tricker to get something that converges in mean square but does not
converge almost surely.

EXAMPLE B.2.3. Everything is the same except we redefine yn. Let h → ∞. For
every h we are going to construct a collection of h different 0-1 random variables,
yhi, i = 1, . . . ,h, that change which ω values generate a 1 and which generate a 0,

yhi(ω) = I[(i−1)/h,i/h](ω).

To turn this into a single sequence of random variables, define n = (h− 1)h/2+ i
and yn = yhi. The arguments for convergence in quadratic mean, probability, and
distribution are minor modifications of Example B.2.1 but almost sure convergence
now fails. For any ω , yn has been constructed so that yn(ω) is 0 infinitely often but
is also 1 infinitely often, so it does not converge to anything. Since this occurs for
every ω , yn fails to converge on a set of ω values that has probability 1, as opposed
to almost sure convergence which requires convergence on a set of ωs that have
probability 1.

If we modify the example so that

yhi(ω) =
√

hI[(i−1)/h,i/h](ω)

we get a yn that does not converge either almost surely or in quadratic mean but does
converge in probability and in distribution. 2

Exercise B.2. Establish convergence (or its lack) in quadratic mean, in proba-
bility, and in distribution for the sequences in Example B.2.3.

Exercise B.3. For the probability space in the Examples define yn(ω) to be
(n−1)/n if ω is irrational and 0 if it is rational. To what and how does yn converge?

It turns out that if yn converges to y in distribution and y is constant with probabil-
ity 1, then yn converges to y in probability. So to produce an example of a sequence
that converges in distribution but does not converge in probability, we need an ex-
ample with a more sophisticated target than y = 0.

EXAMPLE B.2.4. Let x ∼ N(0,1). Define a sequence of random variables by

x = y = y1 = y3 = y5 = y7 = · · · and −x = y2 = y4 = y6 = · · ·. Quite clearly, yn
L→ y

because all of the distributions involved are identical. However, for n even,

P[|yn − y|> ε] = P[|−2x|> ε]
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which is the probability that a N(0,4) is farther from 0 than ε . That number is
certainly not getting close to 0, and the smaller ε gets the closer it is to 1. Clearly,
yn ̸

P→ y.

We now give the general definitions of convergence for random vectors but first
recall that the length of a vector is ∥y∥ ≡

√
y′y.

Definition B.2.5. Consider a sequence of random d vectors yn and a random
vector y with respective cdfs Fn and F .

1. yn converges to y in distribution (law), written yn
L→ y, if

Fn(v)→ F(v)

at every continuity point of F .
2. yn converges to y in probability, written yn

P→ y, if for any ε > 0,

P[∥yn − y∥> ε ]→ 0.

3. yn converges to y almost surely, written yn
a.s.→ y, if

P
[
{ω| lim

n→∞
∥yn(ω)− y(ω)∥= 0}

]
= 1.

4. yn converges to y in quadratic mean, written yn
q.m.→ y, if

E
[
∥yn − y∥2 ]→ 0.

Note that all of these definitions involve checking whether certain sequences of
numbers converge and all but number 3 reduce merely to checking convergence
of numbers (as opposed to vectors). Moreover, from these definitions, the fact that
yn → y if and only if yn − y → 0 follows immediately for any form of convergence
except distribution (law). In Example B.2.4 the even numbered yns converge in law
to y but the distribution of y2k − y =−2x is not (nor does it approach) the 0 random
variable.

When discussing convergence in distribution, say yn
L→ y, if we know the dis-

tribution of y, for example if y is multivariate normal with mean µ and covariance

matrix Σ , we should write that information as yn
L→ y ∼ N(µ,Σ). As a shorthand,

we sometimes write yn
L→ N(µ,Σ) but when being careful, we need to establish the

distribution of the limiting random vector y. Normal (Gaussian) distributions and χ2

distributions are the two that most commonly appear in our limiting arguments.
It will also be useful to discuss convergence of random matrices.

Definition B.2.6. A sequence of random matrices Wn converges to a random
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matrix W (possibly degenerate at some fixed value W0) if and only if Vec(Wn) con-
verges to Vec(W ). [The Vec operator simply stacks the columns of an r× c matrix
into an rc×1 vector.]

B.2.1 Characteristic Functions Are Not Magical

How can we tell when two probability measures P1 and P2, both defined on (Ω ,F ),
are the same? Obviously they are the same if they give the same probability for
every set in F . In Appendix A we claimed that if two random variables had the
same characteristic function, they had the same distribution. A separating class is a
class of functions S such that if∫

f (ω)dP1(ω) =
∫

f (ω)dP2(ω)

for every f ∈ S , it implies that P1 = P2. One separating class is pretty obviously
all the indicator functions for sets in F . It turns out that the class of all bounded
continuous functions is a separating class. In fact, the class of functions eitx for t in
an interval around 0 is a separating class, which is why any two random variables
having the same characteristic function must have the same distribution

It turns out (cf. Billingsley, 1999) that if

E[ f (yn)]→ E[ f (y)] for every f ∈ S ,

then
yn

L→ y.

In particular, if the characteristic functions of the yns converge for all t in an interval
around 0 to the characteristic function of y, then yn

L→ y.
What if we do not know y so that all we know is that E[ f (yn)] converges to

something for every f ? Consider a sequence of probability distributions P1,P2, . . .
defined by a sequence of random variables y1,y2, . . .. The sequence is said to be tight
if for any ε > 0 there exists a closed bounded set Bε such that Pn(Bε) ≥ 1− ε for
every n. The sequence of distributions is tight in the sense that it does not have a lot
of probability going off towards infinity. It turns out that if the sequence is tight and
if E[ f (yn)] converges to something for every f in a separating class, then there exists

y such that yn
L→ y. In particular, if the characteristic functions of the yns converge

for all t in an interval around 0 to some function ϕ(t) that is continuous on a ball

around 0, it turns out that the sequence has to be tight, so there exists a y with yn
L→ y

(and ϕ(t) is the characteristic function of y).
One of my oldest (and therefore, not necessarily accurate) memories in statistics

is hearing Joe (Morris L.) Eaton say that, if you need to use characteristic functions
to prove something, you obviously don’t know what you are doing. (Not withstand-
ing, every edition of PA has used characteristic functions to prove that multivariate
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normal distributions are uniquely defined by their mean vector and covariance ma-
trix.)

B.2.2 Measure Theory Convergence Theorems

To use separating classes to show convergence in law, we need to be able to show
that the expected values (integrals) of a sequence of (measurable) functions con-
verge. We now present two of measure theory’s most useful results along that line.

The Dominated Convergence Theorem. Let (Ω ,F ,µ) be a measure space and
let fn be a sequence of real valued functions that converge to f almost everywhere.
If there exists a nonnegative measurable function g such that

∫
g(ω)dµ(ω) < ∞,

and if for all n, | fn(ω)| ≤ g(ω) except on a set of measure 0, then∫
fn(ω)dµ(ω)→

∫
f (ω)dµ(ω).

The same result stated for (measurable) random variables is

The Probability Dominated Convergence Theorem. Let (Ω ,F ,P) be a prob-
ability space and let yn be a sequence of random variables that converge to y a.s. If
there exists a nonnegative random variable x such that E(x) < ∞, and if for all n,
|yn(ω)| ≤ x(ω) almost surely, then

E(yn)→ E(y).

The Monotone Convergence Theorem. Let (Ω ,F ,µ) be a measure space and
let fn ≥ 0 be a sequence of real valued measurable functions that converge to f
almost everywhere with 0 ≤ fn(ω)≤ fn+1(ω) a.e., then∫

fn(ω)dµ(ω)→
∫

f (ω)dµ(ω).

B.2.3 Ferguson’s Version of Slutsky’s Theorem

Slutsky’s Theorem has always been a very useful result in probability and statistics.
The version presented in Ferguson (1996) is immensely useful.

Let C ( f ) be the set of all points at which the function f is continuous and let c
be a fixed vector. Ferguson’s (1996) random vector version of Slutsky’s Theorem is
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1. If Xn
L→ X and f has Pr[X ∈ C ( f )] = 1, then f (Xn)

L→ f (X).

2. If Xn
L→ X and Xn −Yn

P→ 0, then Yn
L→ X .

3. If Xn
L→ X and Yn

P→ c, then [
Xn
Yn

]
L→
[

X
c

]
.

Ferguson also shows that Yn
P→ c if and only if Yn

L→ c. These three results also hold
if convergence in law is replaced everywhere by convergence in probability but in
part (3) convergence in probability still holds if Yn converges to any random vector
Y rather than a mere constant c. This stronger version of the theorem also holds for
almost sure convergence.

A more traditional statement of Slutsky’s Theorem for random variables is that if
Xn

L→ X and Yn
P→ c, then Xn+Yn

L→ X +c, XnYn
L→ Xc, and, for c ̸= 0, Xn/Yn

L→ X/c.
These results follow immediately from Ferguson’s version.

Consider random matrices with Wn
P→ W . Based on Ferguson’s Slutsky and our

definition of matrix convergence, if the matrices are all nonsingular with probability
1, then by continuity, W−1

n
P→W−1. Moreover, the eigenvalues will also converge in

probability and at least one version of the eigenvectors will converge in probability.
If all the matrices are positive definite, this allows us to find versions W 1/2

n
P→W 1/2

and W−1/2
n

P→W−1/2.
We now illustrate just how useful the Ferguson’s Slutsky result is for manipulat-

ing random vectors.

EXAMPLE B.2.7. Standardized statistics.
Suppose for d vectors with a nonsingular covariance matrices

√
n(θ̂n −θ)

L→ Y ∼ N
[
0,Σ(θ)

]
.

This implies that θ̂n
P→ θ but we need Ferguson’s Slutsky to show it. In particular,

1/
√

n → 0, so degenerately 1/
√

n P→ 0, thus by Ferguson’s Slutsky (3)[√
n(θ̂n −θ)
1/
√

n

]
L→
[

Y
0

]
and since multiplication is a continuous function, by Ferguson’s Slutsky (1)

(θ̂n −θ) = (1/
√

n)
√

n(θ̂n −θ)
L→ (0)Y = 0.

But as Ferguson shows, (θ̂n−θ)
L→ 0 is equivalent to (θ̂n−θ)

P→ 0 and by definition
θ̂n

P→ θ .
What we really want to show is that
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n(θ̂n −θ)′
[
Σ(θ̂)

]−1
(θ̂n −θ)

L→ χ
2(d).

More generally, we would like to show that if Σ̂
P→ Σ(θ), which is to say that if

Vec(Σ̂)
P→ Vec[Σ(θ)],

then
n(θ̂n −θ)′Σ̂−1(θ̂n −θ)

L→ χ
2(d).

We focus on this second result. Of course if Σ(θ) is continuous, Ferguson’s Slut-
sky immediately gives that

Σ(θ̂)
P→ Σ(θ).

(Actually this requires either the convergence in probability version of Slutsky or the
equivalence of convergence in law and probability when converging to a constant.)
By our assumptions and part (3) of Ferguson’s Slutsky,[√

n(θ̂n −θ)
Vec(Σ̂)

]
L→
[

Y
Vec[Σ(θ)]

]
≡ Q.

Relying on our earlier comments about continuity of matrix inverses, a continuous
function of the vector Q is f (Q)≡ Y ′[Σ(θ)]−1Y , so

f
([√

n(θ̂n −θ)
Vec(Σ̂)

])
=
√

n(θ̂n −θ)′
[
Σ̂
]−1√

n(θ̂n −θ)
L→ Y ′[Σ(θ)]−1Y.

It is a well-known fact from linear model theory (cf. Christensen, 2020, Section 1.3)
that if a d vector has Y ∼ N

[
0,Σ(θ)

]
, then

Y ′[Σ(θ)]−1Y ∼ χ
2(d).

Similarly, if d = 1 so that Σ̂ ≡ σ̂2 and Σ(θ)≡ σ11(θ), then we get[√
n(θ̂n −θ)

σ̂2

]
L→
[

Y
σ11(θ)

]
.

By taking continuous functions,

θ̂n −θ√
σ̂2/n

=

√
σ11(θ)

σ̂2
1√

σ11(θ)

√
n(θ̂n −θ)

L→ (1)

(
1√

σ11(θ)

)
Y ∼ N(0,1).

Exercise B.4. Show that for any fixed d vector λ , that

λ ′θ̂n −λ ′θ√
λ ′Σ̂λ/n

L→ N(0,1).
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B.2.4 The Law of Large Numbers

The Strong Law of Large Numbers (LLN) states that if random vectors x1, . . . ,xn
are iid with E(xi) = µ , then the sample mean x̄· has the property that

x̄·
a.s.→ µ.

For random variables, if you are willing to remove the identically distributed condi-
tion but willing to require the existence of variances that are bounded, you get the
Weak Law of Large Numbers that

x̄·
P→ µ.

Of course convergence in probability also holds for iid random vectors.

EXAMPLE B.2.8. Convergence of the sample covariance matrix.
If x1, . . . ,xn are iid with E(xi) = µ and Cov(xi) = Σ , the sample covariance matrix
is defined as

Sxx ≡ 1
n−1

n

∑
i=1

(xi − x̄·)(xi − x̄·)′

=
1

n−1

[
n

∑
i=1

xix′i −
n

∑
i=1

xix̄′·−
n

∑
i=1

x̄·x′i +nx̄·x̄′·

]

=
1

n−1

[
n

∑
i=1

xix′i −nx̄·x̄′·−nx̄·x̄′·+nx̄·x̄′·

]

=
1

n−1

[
n

∑
i=1

xix′i −nx̄·x̄′·

]

=

(
n

n−1

)
1
n

n

∑
i=1

xix′i −
n

n−1
x̄·x̄′·.

By the LLN
x̄·

P→ µ

so by Ferguson’s Slutsky part (1),

Vec(x̄·x̄′·)
P→ Vec(µµ

′)

or
x̄·x̄′·

P→ µµ
′.

By our assumptions, E(xix′i) = Σ +µµ ′, so again by the LLN,

1
n

n

∑
i=1

Vec(xix′i)
P→ Vec(Σ +µµ

′)
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or
1
n

n

∑
i=1

xix′i
P→ Σ +µµ

′.

From these pieces we can apply Slutsky part (3) to see x̄·
1
n ∑

n
i=1 Vec(xix′i)

n
n−1

 P→

 µ

Vec(Σ +µµ ′)
1

 ,
so by continuity and Slutsky part (1) we get

Sxx =
n

n−1
1
n

n

∑
i=1

xix′i −
n

n−1
x̄·x̄′·

P→ (1)(Σ +µµ
′)− (1)µµ

′ = Σ .

The use of n− 1 in the definition of Sxx ≡ 1
n−1 ∑

n
i=1(xi − x̄·)(xi − x̄·)′ is to get

E(Sxx) = Σ , it has little to do with convergence.

B.2.5 The Central Limit Theorem

The Central Limit Theorem states that if x1, . . . ,xn are iid random variables with
E(xi) = µ and Var(xi) = σ2, then the sample mean x̄· has the property that

(x̄·−µ)√
σ2/n

L→ N(0,1).

Alternatively,
√

n(x̄· − µ)
L→ N(0,σ2). A common way to prove this is to take a

second-order Taylor’s expansion of the characteristic function of (x̄·− µ)/
√

σ2/n
and show that it converges to the characteristic function of a standard normal. We
will not be doing that. We present without proof a more general result.

Lindeberg’s Central Limit Theorem For each n, let yni, i = 1, . . . ,n, be in-
dependent with mean 0 and variance σ2

ni. Let zn ≡ ∑
n
i=1 yni and B2

n ≡ Var(zn) =

∑
n
i=1 σ2

ni. If for any ε > 0,

0 = lim
n→∞

1
B2

n

n

∑
i=1

E
[
|yni|2I[εBn,∞)(|yni|)

]
, (1)

then zn

Bn

L→ N(0,1).

Lindeberg’s result implies the usual Central Limit Theorem for iid random vari-
ables.
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EXAMPLE B.2.9. Take x1, . . . ,xn iid with E(xi) = µ and Var(xi) = σ2. Set yni ≡
xi −µ , so zn = ∑

n
i=1(xi −µ) and B2

n = nσ2. If the Lindeberg condition holds

zn

Bn
=

1/n
1/n

∑
n
i=1(xi −µ)√

nσ2
=

(x̄·−µ)√
σ2/n

L→ N(0,1).

It remains to show that the Lindeberg condition (1) holds.
In this example the Lindeberg condition reduces to

lim
n→∞

1
nσ2 nE

[
|xi −µ|2I[ε

√
nσ ,∞)(|xi −µ|)

]
= 0

so it suffices to show that

E
[
|xi −µ|2I[ε

√
nσ ,∞)(|xi −µ|)

]
→ 0.

However, liman→∞ I[an,∞)(u) = 0 and E[|xi − µ|2] = σ2, so by probability dom-
inated convergence with |xi − µ|2 as the dominating function and the sequence
|xi −µ|2I[ε

√
nσ ,∞)(|xi −µ|) converging to 0 as n → ∞ a.s.,

E
[
|xi −µ|2I[ε

√
nσ ,∞)(|xi −µ|)

]
→ E[0] = 0.

EXAMPLE B.2.10. The xns are independent with Pr[xn = ±
√

n−1] = 0.25 and
Pr[xn = ±1] = 0.25. Note that xn is an example of a sequence of random variables
that is not tight. Define yni ≡ xi and observe that Var(xi) = i/2, so B2

n = ∑
n
i=1 i/2 =

n(n+1)/4. If the Lindeberg condition holds

∑
n
i=1 xi√

n(n+1)/4
=

x̄·√
1/4

n√
n(n+1)

L→ N(0,1).

Since n/
√

n(n+1)→ 1, according to Slutsky’s theorem,

x̄·√
1/4

L→ N(0,1),

or x̄·
L→ N(0,0.25).

It remains to show that the Lindeberg condition (1) holds. In this example the
Lindeberg condition reduces to

lim
n→∞

1
n(n+1)/4

n

∑
i=1

E
[
|xi|2I[ε

√
n(n+1)/4,∞)

(|xi|)
]
= 0.

However, for any ε > 0, there exists an n large enough that
√

n−1 < ε
√

n(n+1)/4.
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Once that happens, for all i = 1, . . . ,n

0 = Pr
[
|xi| ≥ ε

√
n(n+1)/4

]
= E

[
I

[ε
√

n(n+1)/4,∞)
(|xi|)

]
and, since the indicator functions are 0 a.s.,

0 =
1

n(n+1)/4

n

∑
i=1

E
[
|xi|2I[ε

√
n(n+1)/4,∞)

(|xi|)
]
.

There is a concept called entropy that measures the randomness in a random vari-
able. It turns out that among distributions with a common expected value and vari-
ance, the normal distribution has the largest entropy. In the Central Limit Theorem
we have fixed expected values and variances for the individual random variables, so
the sample mean also has a fixed expected value and variance. The Central Limit
Theorem is basically saying that the sample mean converges in distribution to the
most random thing possible that retains the correct expected value and variance,
cf. Barron (1986).

Finally we mention the vector version of the central limit theorem. If x1, . . . ,xn
are iid d vectors with with E(xi) = µ and Var(xi) = Σ , then the sample mean x̄· has
the property that

√
n(x̄·−µ)

L→ N(0,Σ),

cf. Ferguson (1996)

B.2.6 The Delta Method

Let θ̂n be a sequence of d ×1 random vectors and suppose that

√
n(θ̂n −θ)

L→ N
[
0,Σ(θ)

]
.

Suppose that g(·) is a differentiable function taking d vectors into r vectors. Let dg
denote the r×d matrix of partial derivatives of g evaluated at θ . Then

√
n
[
g(θ̂n)−g(θ)

] L→ N
[
0,dgΣ(θ)dg′

]
.

For technical reasons, it is advantageous to assume that dg and Σ(θ) are also con-
tinuous. For mathematical details, see Bishop, Fienberg, and Holland (1975, Sec-
tion 14.6.3) or Ferguson (1996, Chapter 7). Somewhat surprisingly, this is not a
direct consequence of Slutsky. Its proof involves a first order Taylor approximation.



Appendix C
Conditional Probability and Radon-Nikodym

The Radon-Nikodym Theorem basically tells us that for any absolutely continuous
distribution, a density exists, and for any discrete distribution, a probability mass
function (discrete density) exists. Typically, we define distributions in terms of their
densities, so this is somewhat circular. A more important application of Radon-
Nikodym is to defining conditional probabilities and expectations.

C.1 The Radon-Nikodym Theorem

Before stating the theorem we need a few additional ideas. A σ -finite measure
µ may have µ(Ω) = ∞ but has sets A1,A2, . . . with µ(Ai) < ∞ and Ω = ∪∞

i=1Ai.
Lebesgue measure is σ -finite. A signed measure λ simply allows negative mea-
sures. It must display countable additivity for sets of finite measure and λ ( /0) = 0.
The set R̄ includes ±∞

Radon-Nikodym Theorem. (a) Let µ be a σ -finite measure and (b) λ a signed
measure on the σ -field F of subsets of Ω . (c) Assume that λ is absolutely contin-
uous with respect to µ . Then there is a Borel measurable function g : ω → R̄ such
that

λ (A) =
∫

A
gdµ for all A ∈ F

If h is another such function, then g = h a.e. [µ].

PROOF: See Ash and Doleans-Dade (2000). 2

In the notation of Appendix A, (a) let µ be Lebesgue or counting product measure
on Rm or some mixture of the two. (See Appendix D.3.) (b) Let x be a random vector
on Rm that defines probabilities P(x ∈ A) for Borel sets A ⊂ Rm. (c) Assume that
(i) if µ is product Lebesgue measure, x is continuous; (ii) if µ is product counting
measure, x is discrete; (iii) if µ is a product measure parts of which are Lebesgue and

183



184 C Conditional Probability and Radon-Nikodym

parts counting, x is an appropriate combination of continuous and discrete variables.
Then there exists a (measurable) density function f (u) such that

P(x ∈ A) =
∫

A
f (u)dµ(u) =

{∫
A f (u)du product Lesbegue

∑u∈A f (u) product counting.

If h is another such function, h(u) = f (u) except on a set of product measure 0.
For probability mass functions like the binomial and Poisson, counting measure,

say C, puts measure 1 on every natural number with everything else having collec-
tive measure 0. (You can put counting measure on the integers or natural numbers
with the σ -field being all sets of integers (natural numbers) or you can put it on
(R,B).) Probability mass functions that exist on the natural numbers are densities
relative to counting measure. Integration with counting measure reduces to summa-
tion.

Probabilities are unitless. They are not measured in inches or centimeters or ergs.
Counting measure is similarly unitless. But Lebesgue measure has units. Length is
measured in meters or miles or some such thing. If we have a Lebesgue density for y,
then Py(A) =

∫
IA(v) fy(v)dµ(v). The left side is unitless but dµ is in, say, meters.

To get the meters to cancel out, the density has to have units that are 1/meters.
Because of this feature, sometimes using densities in statistical inference can get
dicey and Cox (2006) rightly calls of the name “density” for a probability mass
function “deplorable,” but, like us, still uses it.

Another issue that there is no compelling reason why continuous densities should
be defined relative to Lebesgue measure. They could just as well be defined relative
to the N(0,1) probability distribution.

Exercise C.1. Show that the density of a U [0,1] relative to the N(0,1) is just
I[0,1](v) divided by the usual standard normal density. Why can you not find the
density of a N(0,1) relative to a U [0,1]?

C.2 Conditional Probability

Everyone agrees that the conditional probability of x ∈ A given y ∈ B is

P(x ∈ A|y ∈ B)≡ P(x ∈ A,y ∈ B)
P(y ∈ B)

,

when P(y ∈ B) > 0. The problem is how to define conditional probability when
P(y ∈ B) = 0. Specifically, we want to develop the ideas of P(x ∈ A|y = v) when
P(y = v) = 0, and E(x|y = v), or more generally just P(x ∈ A|y) and E(x|y) as
functions of y.

The key idea is to define P(x ∈ A|y) in such a way that it is a function of y alone
and that for any allowable B,
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P(x ∈ A,y ∈ B) =
∫

y∈B
P(x ∈ A|y)dP.

More technically this is

P[{ω |x(ω) ∈ A,y(ω) ∈ B}] =
∫
{ω |y(ω)∈B}

P[x ∈ A|y(ω)]dP(ω), (1)

where in P[x∈A|y(ω)] the symbols x∈A are only part of a name and do not actually
depend on ω .

The vector (x′,y′)′ is mapping (Ω ,F ) into (Rm+n,Bm+n). (Bm+n can be thought
of as the smallest σ -field generated by products of sets in Bm and sets in Bn hence
also denoted Bm ×Bn.) For fixed A, P(x ∈ A,y ∈ B) defines a new measure on
Rn for B ∈ Bn, typically not a probability measure, yet Radon-Nikodym assures us
that some function of y(ω) exists that characterizes the new measure. We call this
function P(x ∈ A|y).

But we also want to avoid having to think about the ωs and just think about the
random vectors. We can also write the definition of conditional probability using

P(x ∈ A,y ∈ B)≡ Pxy(A×B) =
∫

Rm×B
P(x ∈ A|y = v)dPxy(u,v)

where the conditional probability P(x ∈ A|y = v) has to be a function of v alone.
If Pxy is absolutely continuous wrt some m+ n dimensional product measure (say
Lebesgue, counting, or any combinations), P(x ∈ A|y = v) is characterized by the
following:

P(x ∈ A,y ∈ B) ≡ Pxy(A×B)

=
∫

Rm×B
P(x ∈ A|y = v) fxy(u,v)d[µx ×µy](u,v)

=
∫

B

[∫
Rm

P(x ∈ A|y = v) fxy(u,v)dµx(u)
]

dµy(v)

=
∫

B
P(x ∈ A|y = v)

[∫
Rm

fxy(u,v)dµx(u)
]

dµy(v)

=
∫

B
P(x ∈ A|y = v) fy(v)dµy(v)

=
∫

B
P(x ∈ A|y = v)dPy(v)

where we perform iterated integration using the Fubini-Tonelli Theorem. We know
from the definition of the joint density that

P(x ∈ A,y ∈ B) =
∫

A×B
fxy(u,v)d[µx ×µy](u,v)

=
∫

B

[∫
A

fxy(u,v)dµx(u)
]

dµy(v)



186 C Conditional Probability and Radon-Nikodym

=
∫

B

[∫
A

fxy(u,v)/ fy(v)dµx(u)
]

fy(v)dµy(v)

=
∫

B

[∫
A

fxy(u,v)/ fy(v)dµx(u)
]

dPy(v),

so
P(x ∈ A|y = v)≡

∫
A

fxy(u,v)/ fy(v)dµx(u), a.s. µy,

is a function of y (it tells us what the function is for every y = v) such that when
integrated over y ∈ B gives P(x ∈ A,y ∈ B) for any B ∈ Bn. Radon-Nikodym tells
us that any other such function must equal this one a.s. Note that fxy(u,v)/ fy(v) is
undefined for fy(v) = 0, but as a function of y, fy(v) = 0 on a set of y probability 0,
so we can define the ratio any way we desire on this set.

There is a slight catch. If we want to think about P(x ∈ A|y = v) defining a condi-
tional distribution on x given y = v, we need to think about v being fixed and varying
the sets A ∈ Bm. Although P(x ∈ A|y = v) is unique up to sets of y probability 0, by
changing A an uncountably infinite number of times, the uncountable accumulation
of sets of y probability 0 might cause a problem. Fortunately, it can be shown that
there is a version of P(x ∈ A|y = v) that works fine. In fact, when we can do the iter-
ated integrals, P(x ∈ A|y = v)≡

∫
A fxy(u,v)/ fy(v)dµx(u) is such a version because

we can define the conditional probabilities as the result of the integral. In particular,
P(x ∈ A|y = v) admits a density wrt µx(u) which is

fx|y(u|v)≡ fxy(u,v)/ fy(v).

Now we extend these ideas to conditional probabilities that are not product sets
A×B. For D∈Bm×Bn =Bm+n, to define P[(x,y)∈D|y= v] we require, for every
B in Bn,

P[(x,y) ∈ D,y ∈ B] = P{(x,y) ∈ D,(x,y) ∈ [Rm ×B]}

=
∫

Rm×B
P[(x,y) ∈ D|y = v]dPxy(u.v) (2)

=
∫

B
P[(x,y) ∈ D|y = v]dPy(v).

We need to define D(v) = {u|(u,v) ∈ D} so that

P[(x,y) ∈ D,y ∈ B] =
∫

B

[∫
D(v)

fxy(u,v)/ fy(v)dµx(u)
]

fy(v)dµy(v),

which provides us with our working form,

P[(x,y) ∈ D|y = v] =
∫

D(v)
fxy(u,v)/ fy(v)dµx(u).

Measure theoretic discussions of conditional probability often refer to a prob-
ability space (Ω ,F ,P) and a sub-σ -field F0 ⊂ F . The conditional probability
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P(D|F0) is defined as a function, measurable wrt F0, satisfying, for every B ∈ F0,

P(D∩B) =
∫

B
P(D|F0)dP.

The idea is that conditioning on F0 is conditioning on knowing whether every set
in F0 either occurred or did not occur. This is pretty much equation (2) with the
understandings that F0 =Rm×Bn and that knowing y= v is equivalent to knowing
whether every set B in Bn occurred, or equivalently whether every set [Rm ×B] ∈
Rm ×Bn, occurred.

Finally, we examine conditional expected values. For a real valued measurable
function of y, say, g : Rn →R and a measurable vector function T : Rn →Rd . Denote
the measure theoretic conditional expectation of g(y) given T (y) variously as,

Ey|T (y)[g(y)]≡ Ey[g(y)|T (y)]≡ E[g(y)|T (y)].

Let B ∈ Bd so that T−1(B) ∈ Bn. The measure theoretic conditional expectation is
defined as a function of T (y) satisfying

E{g(y)IB[T (y)]}= E
[
g(y)IT−1(B)(y)

]
≡
∫

T−1(B)
g(v)dPy(v) =

∫
T−1(B)

E[g(y)|T (y)]dPy(v)

for all Borel sets B. As a notational matter, the collection of all sets T−1(B) for
B ∈Bd defines a sub-σ -field, say, F0 contained in Bn and sometimes E[g(y)|T (y)]
is written as E[g(y)|F0].

In particular, we can apply this result replacing y with (x′,y′)′, g(y) with g(x,y),
and T (y) with y to see that E[g(x,y)|y] has the requirement that, for any B ∈ Bn,

E [g(x,y)IB(y)]≡
∫

Rm×B
g(u,v)dPxy(u,v)

=
∫

Rm×B
E[g(x,y)|v]dPxy(u,v) =

∫
B

E[g(x,y)|v]dPy(v).

If we have densities for a product measure µx ×µy,

E [g(x,y)IB(y)] = E [g(x,y)IRm×B(x,y)]

≡
∫

Rm×B
g(u,v)dPxy(u,v)

=
∫

Rm×B
g(u,v) fxy(u,v)d[µx ×dµy](u,v)

=
∫

B

[∫
g(u,v)[ fxy(u,v)/ fy(v)]dµx(u)

]
fy(v)dµy(v)

=
∫

B

[∫
g(u,v)[ fxy(u,v)/ fy(v)]dµx(u)

]
dPy(v)
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so
∫

g(u,v) fxy(u,v)/ fy(v)dµx(u) works as a version of E[g(x,y)|y].



Appendix D
Some Additional Measure Theory

D.1 Sigma fields

To deal with continuous distributions, probabilities are defined on sets rather than on
outcomes. As discussed earlier, the probability that someone is 65 inches tall is zero
but the probability that someone is in any neighborhood of 65 inches is generally
positive. The sets on which we define probabilities (or any other measures) must
constitute a σ -field.

Consider a set of outcomes Ω . For a set F ⊂ Ω , define its complement to be

FC ≡ {ω ∈ Ω |ω ̸∈ F }.

Definition D.1.1 A collection of subsets of Ω , say F , is said to be a σ -field
(σ -algebra) if it has three properties:

1. If F ∈ F , then FC ∈ F .
2. If F1,F2, . . . ∈ F , then

⋃
∞
i=1 Fn ∈ F .

Items 1 and 2 imply that

∞⋂
i=1

Fn =

[
∞⋃

i=1

FC
n

]C

∈ F .

In particular, F1 ∩FC
1 = /0 ∈ F and /0C = Ω ∈ F .

In the real line, the smallest σ -field that contains all the (open, closed, half-open
– doesn’t matter) finite intervals constitutes the Borel sets. As I said earlier, it takes
a smarter person than me to dream up a set that is not Borel. In fact, we will see that
the Borel sets in two and three dimensions are generated by finite rectangles and
boxes, respectively.

A measurable space is a pair (Ω ,F ) on which we can define a measure.
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D.2 Step and Simple Functions

Take numbers −∞ ≡ a0 < a1 < a2 < · · · < an−1 < ∞ and define the sets Ai =
(ai−1,ai], i = 1, . . . ,n − 1 and An = (an−1,∞) Also take numbers f1, . . . , fn. The
function

f (u)≡
n

∑
i=1

fiIAi(u)

is a step function. Note that is extremely easy to compute the Reimann integral of a
step function over any bounded interval. In particular,

∫ an−1

a1

f (u)du =
n−1

∑
i=2

fi(ai −ai−1).

Simple functions are generalization of step functions. Let A1, . . . ,An form a par-
tition of the real numbers, i.e., R =

⋃n
i=1 Ai and for i ̸= j, Ai

⋂
A j = /0. (Obviously

the Ai of the previous paragraph form a partition.) Also take numbers f1, . . . , fn. The
function

f (u)≡
n

∑
i=1

fiIAi(u)

is a simple function. It is extremely easy to compute the Lebesgue integral of a
simple function. In particular,∫

f (u)dµ(u) =
n

∑
i=1

fiµ(Ai).

Unfortunately, we need to worry about adding and subtracting infinity if we allow
sets of infinite measure, which Lebesgue measure does. The Lebesgue integral over
any closed bounded set is fine. Also, for any probability measure (or other measure
for which the real line has bounded measure), the integral is always well-defined.

The basic idea is that a function f is Reimann integrable if it can be approximated
well with step functions and Lebesgue integrable if it can be approximated well with
simple functions.

To Reimann integrate an arbitrary function f we create approximating step func-
tions

f̃ (u)≡
n

∑
i=1

f (xi)IAi(u),

where xi is any point having ai−1 ≤ xi ≤ ai, which gives

∫ an−1

a1

f̃ (u)du =
n−1

∑
i=2

f (xi)(ai −ai−1).

If
∫ an−1

a1
f̃ (u)du converges to some number as you let n → ∞, ai −ai−1 → 0 for all i,

and regardless of how you pick xi, but keep a1 and an fixed, you have the Reimann
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integral
∫ an−1

a1
f (u)du. If you let a1 and an go to ∓∞, and the integrals converge to

some finite number, you get
∫

f (u)du.
To Lebesgue integrate a bounded nonnegative (measureable) function f , instead

of breaking up the x axis we partition the y axis with 0≡ b0 < b1 < b2 < · · ·< bn <∞

and sets Bi = (bi−1,bi] with bn equal to our bound on f . We create an approximating
step function

f̃ (u)≡
n

∑
i=1

fiI f−1(Bi)
(u),

where fi is any point with bi−1 ≤ fi ≤ bi. This gives

∫
f̃ (u)dµ(u) =

n−1

∑
i=1

fiµ[ f−1(Bi)].

If
∫

f̃ (u)dµ(u) converges to some number as you let n → ∞, bi −bi−1 → 0 for all i,
and regardless of how you pick fi, you have a Lebesgue integral.

More precisely, in measure theory, we integrate nonnegative functions by getting
a sequence of monotone simple functions that increase to them. We integrate regular
functions by dividing them into their positive and negative parts, say

f+(ω) =

{
f (ω) if f (ω)> 0
0 f (ω)≤ 0; f−(ω) =

{
0 f (ω)≥ 0
− f (ω) if f (ω)< 0 .

Note that f = f+− f− and | f | = f++ f−. Then
∫

f dµ ≡
∫

f+dµ −
∫

f−dµ pro-
vided the two integrals on the right both exist and are finite. If they both exist,∫
| f |dµ ≡

∫
f+dµ +

∫
f−dµ , so the integral of f only exists if the integral of | f | is

finite (unlike Reimann integration).
A classic example of a function that is Reimann integrable but not Lebesgue

integrable is sin(v)/v on the real line. The situation is analogous to the fact that
∑n−1n/n converges, rather like the Reimann integral of sin(v)/v existing. However
∑n | − 1n|/n does not converge, rather like the Lebesgue integral of sin(v)/v not
existing because the Lebesgue integral of |sin(v)|/v does not exist.

D.3 Product Spaces and Measures

Consider the measurable space (R,B). You shouldn’t be reading this if you don’t
know what R2 is, but you may not know the appropriate σ -field for R2. In one
dimension, the Borel σ -field is generated by intervals. In two and three dimensions,
it is generated by rectangles and boxes, respectively. For n dimensions let A1, . . . ,An
be sets in R and v = (v1, . . . ,vn)

′. Define product sets

A1 ×·· ·×An ≡ {v|v1 ∈ A1, . . . ,vn ∈ An }.
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The σ -field Bn is the smallest σ -field generated by all the product sets with Ais
defined by finite intervals. In two dimensions, products of intervals are rectangles.
In three dimensions, they are boxes.

It turns out that if you know the measure on a collection of sets that generate the
σ -field, it is enough to determine the entire measure. For Lebesgue measure in n
dimensions define µn(A1 ×·· ·×An) ≡ ∏

n
i=1 µ(Ai). In two or three dimensions we

might write µ2 = µ ×µ or µ3 = µ ×µ ×µ . When getting lazy, we write µn ≡ µ and
let you figure out the dimension, like in Appendix B.

More generally we can have different measures on different parts of the space.
For example we can have Lebesgue measure on some parts and counting measure
on other parts. That would be useful if we have Bin(N,θ) data (having a density
wrt counting measure) and a Beta(α,β ) distribution on θ (having a density wrt
Lebesgue measure). Together we would have a joint with respect to the product
measure obtained by crossing counting measure with Lebesgue measure.

Consider a probability space (Ω ,F ,P) and a random vector y : (Ω ,F ) →
(Rn,Bn). Specifically, write the random vector y in terms of random variables,
y = (y1, . . . ,yn)

′. We define Py on (Rn,Bn) by defining

Py(A1 ×·· ·×An)≡ P(y1 ∈ A1, . . . ,yn ∈ An)≡ P(y−1(A1 ×·· ·×An),

for any sets A1, . . . ,An in B. Knowing these probabilities is enough to determine the
probability for any set A ∈ Bn.

The random variables in y are defined to be independent if

P(y1 ∈ A1, . . . ,yn ∈ An) =
n

∏
i=1

P(yi ∈ Ai),

for any sets A1, . . . ,An in B. This constitutes a specification of (Rn,Bn,Py) in which
Py is a product measure.

The random variables are identically distributed if P(yi ∈ A) = P(y j ∈ A) for any
i, j and A ∈ B. Random variables that are independent and identically distributed
are called iid random variables.

If the n vector Y is multivariate normally distributed, i.e., Y ∼ N(µ,Σ), the den-
sity is written

f (v|µ,Σ) =
1

(2π)n/2

1
det(Σ)1/2 exp[(v−µ)′Σ−1(v−µ)/2].

This is the density wrt n dimensional Lebesgue product measure (which here we
will call mn) so that for any A ∈ Bn

P(y ∈ A) = Py(A) =
∫

IA(v) f (v|µ,Σ)dmn(v)≡
∫

A
f (v|µ,Σ)dmn(v),

where the last equivalence defines a shorthand notation. Similarly, the n dimensional
multinomial distribution y ∼ Mult(N, p) has a density with respect to n dimensional
product counting measure of
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f (v|N, p) =
N!

∏
n
i=1 vi!

n

∏
i=1

pvi
i ,

where v is any vector of nonnegative integers having ∑i vi = N.

D.4 Families of Distributions

Consider a family of probabilities on (Ω ,F ), say Pθ for θ ∈Θ . Then

Pθ (A) =
∫

A
dPθ =

∫
IA(ω)dPθ (ω).

If all of these are absolutely continuous with respect to a single (dominating) mea-
sure ν , then by Radon-Nikodym densities exist. Write the densities as

f (ω|θ), θ ∈Θ

so that
Pθ (A) =

∫
A

f (ω|θ)dν(ω) =
∫

IA(ω) f (ω|θ)dν(ω).

Usually we think of ν as Lebesgue measure but if we let it be counting measure

Pθ (A) = ∑
ω∈A

f (ω|θ),

where now A must be a set of integers.
For x to be a random variable, it need only be a measurable function from (Ω ,F )

to (R,B). All that requires is for x−1(B) ∈ F whenever B ∈ B. The random vari-
able does not depend on θ , even though its distribution does. For A ∈ B, write

Pθ (x ∈ A)≡ Px|θ (A).

The first of these is defined on (Ω ,F ) and the second is defined on (R,B). We
have a dominating measure ν on (Ω ,F ) that corresponds to a dominating measure
µ on (R,B) via

µ(A) = ν(x ∈ A).

The density f (ω|θ) for θ ∈ Θ relative to (Ω ,F ,ν) corresponds to the density
fx|θ (u) ≡ f (u|θ), θ ∈ Θ relative to (R,B,µ). [Pretty much the only way to tell
f (ω|θ) apart from f (u|θ) is context, but we almost always use the latter.]

Typically we write
x|θ ∼ f (u|θ)

then

Ex|θ [g(x)] =
∫

g(u)dPx|θ (u) =
∫

g(u) f (u|θ)dµ(u)
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=
∫

g[x(ω)]dPθ (ω) =
∫

g(ω) f (ω|θ)dν(ω).

Typically we would be doing that with Lebesgue measure as the domination mea-
sure µ but in the counting measure case it reduces to

Ex|θ [g(x)] =
∫

g[u]dPx|θ (u) = ∑
all u

g(u) f (u|θ)

=
∫

g[x(ω)]dPθ (ω) = ∑
all ω

g[x(ω)] f (ω|θ).

Again, for rolling dice, think of ω as the top side of a die, u = x(ω) as the number of
dots on the top side, Pθ could have θ indicating various ways to weight the die that
affect which face comes up. Px|θ is then the probability of the number that comes up
from the weighted die (rather than the probability of what face comes up). f (ω|θ)
gives the probabilities for all the faces that may come up whereas fx|θ (u)≡ f (u|θ)
gives the probabilities for the numbers that come up. In particular,

Pθ (x ∈ A)≡ Px|θ (A) = Ex|θ [IA(x)] .



Appendix E
Identifiability

This appendix examines the concept of identifiable parameters.

For better or worse (usually worse) much of statistical practice focuses on es-
timating and testing parameters. Identifiability is a property that ensures that this
process is a sensible one.

Consider a collection of probability distributions Y ∼ Pθ , θ ∈Θ . The parameter
θ merely provides the name (index) for each distribution in the collection. Identifi-
ability ensures that each distribution has a unique name/index.

Definition D.1 The parameterization θ ∈Θ is identifiable if Y1 ∼ Pθ1 , Y2 ∼ Pθ2 ,
and Y1 ∼ Y2 imply that θ1 = θ2.

Being identifiable is easily confused with the concept of being well-defined.

Definition D.2 The parameterization θ ∈Θ is well-defined if Y1 ∼ Pθ1 , Y2 ∼ Pθ2 ,
and θ1 = θ2 imply that Y1 ∼ Y2.

The problem with not being identifiable is that some distributions have more
than one name. Observed data give you information about the correct distribution
and thus about the correct name. Typically, the more data you have, the more in-
formation you have about the correct name. Estimation is about getting close to the
correct name and testing hypotheses is about deciding which of two lists contains
the correct name. If a distribution has more than one name, it could be in both lists.
(Significance testing is about whether it seems plausible that a name is on a list,
so identifiability seems less of an issue.) If a distribution has more than one name,
does getting close to one of those names really help? In applications to linear mod-
els, typically distributions have only one name or they have an infinite number of
names.

The ideas are roughly this. If the distributions are well-defined and I know that
Wesley O. Johnson (θ1) and O. Wesley Johnson (θ2) are the same person (θ1 = θ2),
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then, say, any collection of blood pressure readings on Wesley O. should look pretty
much the same as comparable readings on O. Wesley. They would be two samples
from the same distribution. Identifiability is the following: if all the samples I have
taken or ever could take on Wesley O. look pretty much the same as samples on
O. Wesley, then Wesley O. would have to be the same person as O. Wesley. (The
reader might consider whether personhood is actually an identifiable parameter for
blood pressure.)

For multivariate normal distributions, being well-defined is the requirement that
if Y1 ∼ N (µ1,V1), Y2 ∼ N (µ2,V2), and µ1 = µ2 and V1 = V2, then Y1 ∼ Y2. Being
identifiable is that if Y1 ∼ N (µ1,V1), Y2 ∼ N (µ2,V2), and Y1 ∼Y2, then µ1 = µ2 and
V1 =V2. Obviously, two random vectors with the same distribution have to have the
same mean vector and covariance matrix. But life gets more complicated.

The more interesting problem for multivariate normality is a model

Y ∼ N [F(β ),V (φ)]

where F and V are known functions of parameter vectors β and φ . To show that β

and φ are identifiable we need to consider

Y1 ∼ N [F(β1),V (φ1)] , Y2 ∼ N [F(β2),V (φ2)]

and show that if Y1 ∼ Y2 then β1 = β2 and φ1 = φ2. From our earlier discussion, if
if Y1 ∼ Y2 then F(β1) = F(β2) and V (φ1) =V (φ2). We need to check that F(β1) =
F(β2) implies β1 = β2 and that V (φ1)=V (φ2) implies φ1 = φ2. (Traditional analysis
of variance parameterizations for the mean vector do not provide identifiability, c.f.,
Christensen, 2020.)



Appendix F
Multivariate Differentiation

F.1 Differentiation

If F is a function from Rs into Rt with F(x) = [ f1(x), . . . , ft(x)]′, then the derivative
of F at c is the t × s matrix of partial derivatives,

dxF(x)|x=c ≡ [∂ fi(x)/∂x j|x=c].

When the context is clear, we often use simpler notations such as

dxF(x)|x=c ≡ dxF(c)≡ dF(c).

Critical points are points c where dF(c) = 0. If s = t = 1, we occasionally write

Ḟ(c)≡ dF(c).

A first order Taylor’s expansion of F around the point c is

F(x) .
= F(c)+ [dF(c)](x− c)

or, to be more mathematically precise,

F(x) = F(c)+ [dF(c)](x− c)+o(∥x− c∥),

where ∥x− c∥2 = (x− c)′(x− c) and for scalars an → 0, o(an) has the property that
o(an)/an → 0. (This is a vector divided by a scalar converging to the 0 vector.)

In fact, the first order Taylor’s expansion is essentially the mathematical defini-
tion of a derivative. The technical definition of a derivative, if it exists, is that it is
some t × s matrix dF(c) such that for any ε > 0, there exists a δ > 0 for which any
x with ∥x− c∥< δ has

∥F(x)−F(c)− [dF(c)](x− c)∥< ε∥x− c∥.
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In other words, the linear (actually affine) function of x defined by [dF(c)](x− c)
is a good approximation to the curved function F(x)−F(c) in neighborhoods of
c. Under suitable conditions, the matrix dF(c) is unique and equals the matrix of
partial derivatives of F evaluated at the vector c.

In particular, if g maps Rs into R, then dg(x) is a 1× s row vector. In this case
we can also define the second derivative matrix of g at c as

d2
xxg(c)≡ d2

xxg(x)|x=c ≡ dx
{
[dxg(x)]′

}
|x=c =

[
∂

2g(x)/∂xi∂x j|x=c
]
,

which is an s× s matrix. Taylor’s second-order expansion can be written

g(x) .
= g(c)+ [dg(c)](x− c)+(x− c)′

[
d2g(c)

]
(x− c)/2

or, to be more mathematically precise,

g(x) = g(c)+ [dg(c)](x− c)+(x− c)′
[
d2g(c)

]
(x− c)/2+o

(
∥x− c∥2).

First and second order Taylor’s expansions are fundamental to the models used in re-
sponse surface methodology, cf. http://www.stat.unm.edu/˜fletcher/
TopicsInDesign or ALM-II.1

The chain rule can be written as a matrix product. If f : Rs →Rt and g : Rt →Rn,
then the composite function is defined by

(g◦ f )(x)≡ g[ f (x)]

and its derivative is an n× s matrix that satisfies

d(g◦ f )(c) = [dvg(v)|v= f (c)][dx f (x)|x=c]≡ dg[ f (c)]d f (c).

EXAMPLE F.0. Generalized Linear Transformations.
Generalized linear models involve an assumption that a random n vector Y has
E(Y ) = G(Xβ ) where Xn×p is known and β is a parameter vector. The vector
function G actually repeatedly applies a scalar function G(u) by defining G(v) ≡

1 Taylor’s Theorem is fundamentally about mapping vectors into the real line. There are several
ways to characterize the remainder involved. We have used the second-order Peano characterization
o(||x− c||2). Ferguson (1996) uses an integral characterization for first-order Taylor’s expansions
(which are comparable to second-order Peano expansions) g(x) = g(c) + [dg(c)](x − c) + (x −
c)′
[∫ 1

0
∫ 1

0 vd2g(c+uv(x− c))dudv
]
(x−c)/2. Another characterization is due to Lagrange. A zero-

order Taylor’s expansion with the Lagrange characterization is known as the Mean Value Theorem.
This Mean Value Theorem cannot be extended to the case of mapping vectors into other (nonde-
generate) vectors but similar extensions can be obtained by generalizing the Taylor’s Theorem
integral and Peano characterizations of the remainder. Ferguson (1996) refers to the vector valued
zero-order Taylor’s theorem generalization with integral remainder as the Mean Value Theorem,
F(x) =F(c)+

[∫ 1
0 dF(c+u(x− c))du]

]
(x−c). The comparable first-order Peano characterization

extension is essentially just the definition of the derivative.

http://www.stat.unm.edu/~fletcher/TopicsInDesign
http://www.stat.unm.edu/~fletcher/TopicsInDesign
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[G(v1), · · · ,G(vn)]
′. Also define the scalar function g(u) ≡ duG(u) with its vector

equivalent. It follows that dvG(v) = D[g(v)] a diagonal matrix of derivatives and
from the chain rule that dβ G(Xβ ) = D[g(X ′β )]X .

I pretty much ripped this out of ALM-III. Not yet clear whether the following
material is needed for this work.

Since we are examining linear models, we will be particularly interested in the
derivatives of linear functions and quadratic functions.

Proposition F.1. Let A be a fixed t × s matrix with t = s in part (b).
(a) dx[Ax] = A.
(b) dx[x′Ax] = 2x′A.

PROOF. (a) is proven by writing each element of Ax as a sum and taking par-
tial derivatives. (b) is proven by writing x′Ax as a double sum and taking partial
derivatives. 2

Let A(u) = [ai j(u)] be an t × s matrix that is a function of a scalar u. We define
the derivative of A(u) with respect to u as the matrix of derivatives for its individual
entries, i.e.,

duA(u)≡ [duai j(u)].

Functions like A(u), from R into a matrix, do not fit into our definition of derivatives,
but Vec[A(u)] can be thought of as a function from R into Rts and all we are really
doing un-Vec-ing the transpose of the derivative; the derivative being 1× ts.

On the other hand, A(u)x and x′A(u)x are functions of u from R into Rt and R,
respectively, and it is easy to see that

du[A(u)x] = [duA(u)]x and that du[x′A(u)x] = x′[duA(u)]x.

We now present some useful rules for matrix derivatives. While these are specified
for a scalar u, if A is a function of a vector θ , by thinking of u = θr, we can obtain
partial derivatives with respect to θr. (To find critical points we set all of the par-
tial derivatives equal to 0.) The last three results in Proposition F.2 are particularly
useful when dealing with likelihood functions associated with multivariate normal
distributions.

Proposition F.2 For (c) and (d), t = s.
(a) A form of the product rule holds for conformable matrices A(u) and B(u),

du[A(u)B(u)] = [duA(u)]B(u)+A(u)[duB(u)].

(b) When B and C are fixed matrices of conformable sizes,

du[CA(u)B] =C[duA(u)]B.
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(c) The derivative of an inverse is

duA−1(u) =−A−1(u)[duA(u)]A−1(u).

(d) The derivative of a trace is

du{tr[A(u)]}= tr[duA(u)].

(e) If V (u) is positive definite for all u,

du log{det[V (u)]}= tr
{

V−1(u)[duV (u)]
}
.

The notations det[V ] and |V | are used interchangeably to indicate the determinant.

PROOF. See Exercise F.1 for a proof of the proposition. 2

Exercise F.1. Prove Proposition F.2. Hints: For (a), consider A(u)B(u) ele-
mentwise. For (b), use (a) twice. For (c), use (a) and the fact that 0 = duI =
d
[
A(u)A−1(u)

]
. For (d) use the fact that the trace is a linear function of the diagonal

elements. For (e), write V = PDiag(φi)P′ and show that both sides equal

q

∑
i=1

duφi(u)
1

φi(u)
.

For the right-hand side, use (a) and the fact that 0 = duI = duPP′.

Exercise F.2. Standard Linear Models.
The standard linear model is

Y = Xβ + e, E(e) = 0, Cov(e) = σ
2I.

The least squares criterion is to choose an estimate of β that minimizes the squared
Euclidean distance between Y and Xβ , namely

∥Y −Xβ∥2 ≡ (Y −Xβ )′(Y −Xβ ).

1. Using the chain rule, show that the first derivative of the squared error loss func-
tion is

dβ (Y −Xβ )′(Y −Xβ ) =−2(Y −Xβ )′X .

Note that setting the derivative equal to 0 leads to the well known normal equa-
tions X ′Xβ = X ′Y for finding least squares estimates.

2. Show that the second derivative of ∥Y −Xβ∥2 is

d2
ββ

(Y −Xβ )′(Y −Xβ ) = 2X ′X .
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Because the second derivative matrix is non-negative definite regardless of the
value of β , all critical points are global minima but there may be an infinite
number of them. When the second derivative matrix is positive definite, there
will be a unique minimum.

Exercise F.3. Log-Linear Models.
Log-linear models involve observing a random q vector of counts, say, n and model-
ing their expectation, say, E(n)≡ m using log(m)≡ µ = Xβ where the log function
is applied to the vector m elementwise and it is merely convenient to have the name
µ for log(m). The real modeling is in Xβ which, just like standard linear models,
has X as a known model matrix and β as a vector of unknown parameters. The pa-
rameter vector β determines both µ and m. Sometimes m and µ uniquely determine
β .

As discussed in Chapters 10 and 12 of Christensen (2024), the most commonly
used probabilistic models for n are independent Poisson sampling, multinomial sam-
pling, and product-multinomial sampling. Letting J denote a vector of 1s, all of
these sampling schemes lead to a log-likelihood function that is some fixed additive
constant plus

ℓ(n,µ)≡ n′µ −
q

∑
i=1

eµi = n′µ − J′m = n′Xβ − J′ exp(Xβ ), (1)

so we seek to maximize this as a function of β . Often there are many β vectors that
give the same maximization.

1. Show that the first derivative with respect to µ is

dµℓ(n,µ) = dµ

(
n′µ −

q

∑
i=1

eµi

)
== n′−m′.

2. To get the first derivative with respect to β use the chain rule to show

dβ ℓ [n,µ(β )] =
[
dµℓ(n,µ)

][
dβ µ(β )

]
= [n−m(β )]′X .

Setting this equal to 0 defines the likelihood equations.
3. Write

X =

x′1
...

x′q

= [xi j] ,

then
m(β ) = (m1, . . . ,mq)

′ =
(

ex′1β , . . . ,ex′qβ

)′
.

and show
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dβ m(β ) =

x11ex′1β · · · x1pex′1β

...
...

xq1ex′qβ · · · xqpex′qβ

= D[m(β )]X .

4. Use the previous result to show

d2
ββ

ℓ[n,µ(β )] =−X ′D[m(β )]X .

It is implicit in our models that every element of m(β ) is positive, so the negative
of the second derivative is nonnegative definite and critical points β̂ will max-
imize of the likelihood function. When the negative of the second derivative is
positive definite, the maxima will be unique.

F.2 Iterative Methods for Finding Extreme Values

Suppose we want to maximize or minimize a differentiable real valued function
L(β ) of the vector β . To do this we find critical points where the derivative
dβ L(β ) ≡ L̇(β ) equals 0. In particular we find a sequence of points β0,β1,β2, . . .
that converge to a critical point.

F.2.1 Gradient (Steepest) Descent

This is the simplest method to find where dβ L(β )≡ L̇(β ) equals 0. For some η > 0
set

βt+1 = βt −η [L̇(βt)]
′.

To maximize L(β ), use steepest ascent which replaces the minus sign with a plus
sign. At convergence, βt+1 = βt so [L̇(βt)]

′ = 0 and βt is a critical point.
Gradient descent is easy to program and easy to compute but can be inefficient.

It is often used when the dimension of β is very large.

Exercise F.4. Programming Steepest Descent.
Consider the simple linear regression data in Table 7.1 of ANREG with data files
available from www.stat.unm.edu/˜fletcher/avdr_data.zip. Write a
program for finding the least squares estimate using gradient descent. Submit a plot
illustrating the sequence of values leading to the least squares estimate. Include in
your plot at least three isobars of the least squares criterion function. These will be
centered at the least squares estimate. For those of you programming in R, you may
find it useful to modify the following program that I wrote to illustrate isobars for a
normal density.

#install.packages("ellipse")

https://www.stat.unm.edu/~fletcher/anreg.pdf
www.stat.unm.edu/~fletcher/avdr_data.zip
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#Do this only once on your computer
library(ellipse)

b1=1
b2=2
A = matrix(c(1,.9,.9,2),2,2, dimnames = list(NULL, c("b1", "b2")))
A
E <- ellipse(A,centre = c(b1, b2),t=.95,npoints = 100)
E1 <- ellipse(A,centre = c(b1, b2),t=.5 ,npoints = 100)
E2 <- ellipse(A,centre = c(b1, b2),t=.75,npoints = 100)

plot(E,type = ’l’,ylim=c(.5,3.5),xlim=c(0,2),
xlab=expression(y[1]),

ylab=expression(y[2]),main="Normal Density")
text((b1+.01),(b2-.1),expression(mu),lwd=1,cex=1)
lines(E1,type="l",lty=1)
lines(E2,type="l",lty=1)
lines(b1,b2,type="p",lty=3)

F.2.2 Newton-Raphson

Newton-Raphson finds critical points of dβ L(β )≡ L̇(β ) by using the second deriva-
tive d2

ββ
L(β )≡ L̈(β ) in a Taylor’s approximation centered on βt of the first deriva-

tive function,
[L̇(β )]′ .

= [L̇(βt)]
′+[L̈(βt)](β −βt).

Setting 0 = [L̇(β )]′ we find βt+1 to be the solution for β in

0 = [L̇(βt)]
′+[L̈(βt)](β −βt)

which gives
βt+1 = βt − [L̈(βt)]

−1[L̇(βt)]
′.

At convergence we have

0 = βt+1 −βt =−[L̈(βt)]
−1[L̇(βt)]

′

but by the (implicit) assumption that [L̈(βt)] is nonsingular, the only vector v with
−[L̈(βt)]

−1v = 0 is v = 0, so we have L̇(βt) = 0.
When β is a very high dimensional vector, finding the inverse matrix of L̈(βt)

can be very difficult in which case the method is impractical. When this method is
applicable, it tends to be very efficient. For example, it finds least squares estimates
for a linear model in just one iteration regardless of the starting value β0. Many
computer programs for fitting generalized linear models employ Newton-Raphson
under the name iteratively reweighted least squares.
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See also LLM-III, Section 12.4a.

Exercise F.5. Use the results of Exercise F.2 to show that Newton-Raphson gives
least squares estimates in only one iteration.

F.2.3 Gauss-Newton

Gauss-Newton applies only to minimizing L(β ) = [Y −F(β )]′[Y −F(β )]. To mini-
mize this, note that [L̇(β )] = 2[Y −F(β )]′[Ḟ(β )]. This method is particularly useful
in nonlinear regression of which neural networks are a special case. Like Newton-
Raphson it involves the inverse of a square matrix that has the same dimensions as
β so, while efficient when applicable, it is not readily applied to high dimensional
problems.

Use the approximation

F(β )
.
= F(βt)+ [Ḟ(βt)](β −βt)

This approximation constitutes a linear model Y = Xγ + d + e with an offset. The
offset is d = F(βt). The model matrix is X = [Ḟ(βt)]. The parameter vector is γ =
(β −βt). From linear model theory we know the least squares solution is

̂(β −βt) = γ̂ = (X ′X)−1X ′(Y −d) =
{
[Ḟ(βt)]

′[Ḟ(βt)]
}−1

[Ḟ(βt)]
′[Y −F(βt)]

and set βt+1 to be the solution for β which makes

βt+1 = βt + γ̂.

At convergence we have

0 = βt+1 −βt = γ̂ =
{
[Ḟ(βt)]

′[Ḟ(βt)]
}−1

[Ḟ(βt)]
′[Y −F(βt)]

Similar to the argument used with Newton-Raphson, this is only 0 when 0 =
[Ḟ(βt)]

′[Y −F(βt)] = [L̇(βt)]
′ as we desired.

See also ALM-III, Subsection 7.4.1.

F.2.4 E-M (Expectation-Maximization)

We will see if I ever get around to writing this. I have had little interest in it but I
gather it is extremely useful.
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The EM algorithm seems to be particularly useful for missing data problems,
for estimating the parameters of Gaussion (normal) mixture models, and for hidden
variable models (like Factor Analysis).
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