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Abstract

We demonstrate explicitly that the Householder transformation method of perform-
ing a QR decomposition is equivalent to performing the Gram-Schmidt orthonomal-
ization.
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1. Introduction

For a standard statistical linear model

Y = Xβ + e, E(e) = 0, Cov(e) = σ2I,

the fundamental statistic is the least squares vector of predicted values, Ŷ ≡ Xβ̂. This
vector is the perpendicular projection of Y into the vector space spanned by the columns
of X, often called the column space of X and written C(X). Finding the perpendicular
projection essentially requires finding an orthonormal basis for C(X). The most common
way of doing that seems to be finding a QR decomposition of X. The purpose of this work
is to give a vector (Hilbert) space justification for one of the most common, mathematically
stable methods for finding a QR decomposition: the method based on Householder matrices.

Consider an n × p matrix X with r(X) = r. A QR decomposition of X is a characteri-
zation

X = QR

where Qn×r has orthonormal columns and Rr×p is upper triangular. The columns of X and
Q are the vectors xj and oj, respectively, so {o1, . . . , or} in an orthornormal basis for C(X).

Numerically stable approaches to finding a QR decomposition typically find a sequence
of orthogonal matrices, Q1, . . . , Qt that upper triangularize X, i.e.,

Qt · · ·Q1X = R̃

where R̃ is n× p with

R̃ =

[
Rr×p

0n−r×p

]
and R upper triangular. Note that

Q̃ ≡ [Qt · · ·Q1]
′.

is an orthogonal matrix because it is the product of orthogonal matrices. The QR decompo-
sition then involves the aforementioned R with Q consisting of the first r columns of Q̃. The
columns of Q are orthonormal and provide a spanning set for C(X), hence give an orthonor-
mal basis. Although this is a nicely terse argument, it is an extremely indirect approach to
finding an orthogonal basis. Typically this approach to QR is performed using Householder
or Givens transformations.

As discussed in the next section, another method for producing the QR decomposition,
and a far more transparent method for producing an orthonormal basis, uses the Gram-
Schmidt (G-S) algorithm. Harville (1997) points out that the QR decomposition is unique
(for full rank X), from which it follows that any alternative forms of finding QR must
ultimately reduce to the G-S algorithm. We demonstrate this equivalence with G-S for the
Householder method. (Givens seems less amenable to this purpose.) In fact, our focus is not
on finding the QR decomposition but on finding the matrix Q.
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2. Gram-Schmidt

The standard theoretical method for orthonormalizing vectors is to use the Gram-Schmidt
(G-S) algorithm.

The Gram–Schmidt Theorem.
There exists an orthonormal basis for C(X), say {o1, . . . , or}, in which, for s = 1, . . . , r,
{o1, . . . , ok} is an orthonormal basis for C(x1, . . . , xs) when the space has rank k.

Proof. Define the ois using the G-S Algorithm. Let ∥v∥ ≡
√
v′v and let

o1 = x1/∥x1∥ ,

zs = xs −
s−1∑
k=1

ok(o
′
kxs) ,

os = zs/∥zs∥ .

The proof by induction is standard (when r(X) = p) and omitted. However, if {x1, . . . , xp}
is not a basis, zs = 0 implies that xs is a linear function of {x1, . . . , xs−1}. We exclude this zs
from the orthonormal basis being constructed and adjust all subscripts accordingly. Clearly,
when constructing a QR decomposition (as opposed to an orthonormal basis), we will be
able to write the corresponding xs as a linear combination of o1, . . . , ok. 2

The sweep operators used by some statistical regression programs are fairly straight
forward applications of this G-S algorithm, also see LaMotte (2014).

Akin to Christensen (2011, Appendix B), G-S essentially defines

zs+1 = (I −Mk)xs+1

where

Mk =
k∑

j=1

ojo
′
j

is the perpendicular projection operator onto C(x1, . . . , xs) which has rank k, i.e., zs+1 is the
perpendicular projection of xs+1 onto the orthogonal complement of C(x1, . . . , xs).

A numerically more stable form of G-S involves taking the product of individual projec-
tions operators,

zs+1 =

[
k∏

j=1

(I − ojo
′
j)

]
xs+1 = [(I − oko

′
k) · · · [(I − o2o

′
2)[(I − o1o

′
1)xs+1]] · · ·].

Numerical stability is all about the order in which you do things. It is not hard to show that∏k
j=1(I − ojo

′
j) = (I − Mk). This method is not thought to be as stable as triangulation

through orthogonal matrices.
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3. Householder Transformations

Householder transformations reflect a vector in a (hyper)plane. For a unit vector y with
∥y∥ = 1 define the Householder transformation as

H = I − 2yy′.

The reflection in a plane is relative to the plane that is the orthogonal complement of C(y),
written C(y)⊥. In particular, write any vector x as x = x0 + x1 with x0 ∈ C(y) and
x1 ⊥ C(y). Then Hx = −x0 + x1, which is the reflection in the plane.

It is easily seen that each Householder matrix is symmetric and is its own inverse, i.e.,

H = H ′ and HH = I. (1)

In particular, H is an orthogonal matrix.
In the Householder QR decomposition, Q̃ is the product of r specific Householder trans-

formations Hj, j = 1, . . . , r so that

Q̃ = H1 · · ·Hr.

We now define the matrices Hj. The key idea is to incorporate a previous orthonormal basis,
e.g., the columns of the identity matrix I = [e1, · · · , en]. We will also use the matrix

Ej ≡
n∑

k=j

eke
′
k

which, as j increases, orthogonally projects vectors into smaller and smaller subspaces. (In
triangulation discussions of the Householder method, the use of Ej corresponds to looking
at smaller and smaller submatrices.) For a collection of nonzero vectors {w1, . . . , wr} that
we will specify later, define the Householder transformations

Hj ≡ I − 2
vjv

′
j

∥vj∥2
, vj = wj − ∥wj∥ej.

These particular Householder transforms have a couple of peculiar properties:

Hjwj = ∥wj∥ej, Hjej = (1/∥wj∥)wj. (2)

These results are not difficult and follow from basic algebraic manipulations. The motivating
idea is that Hj rotates the vector wj into the direction of the orthonormal basis element ej,
an idea that can be used to triangularize a matrix.

Specifically, we define w1 ≡ (1/∥x1∥)x1 and for j = 1, . . . , r − 1,

wj+1 = Ej+1Hj · · ·H1xj+1,
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with the understanding that, since X has rank r, we will see p−r vectors with wj+1 = 0 that
we exclude from the list. As indicated from our later proof of equivalence with G-S, wj+1 = 0
indicates xj+1 ∈ C(x1, . . . , xj). Moreover, the very definition of vj+1 requires wj+1 ̸= 0. Note
that the matrices Hj+1 are defined recursively.

It is important to show that for k < j,

Hjek = ek. (3)

This follows directly from orthonormality of the ejs, the fact that

e′kvj = e′k[wj − ∥wj∥ej] = e′kEjHj−1 · · ·H1xj − e′kej(∥wj∥) = 0− 0

and that Hjek = Iek − vjv
′
jek(2/∥vj∥2). Moreover, it follows immediately from (3) that

H1 · · ·Hjek = H1 · · ·Hkek. (4)

We can now define our orthonormal basis as

oj ≡ H1 · · ·Hjej = H1 · · ·Hrej,

for j = 1, . . . , r. It is easy to see that these vectors are orthornormal. Using equations (1)

o′ioj = [H1 · · ·Hrei]
′[H1 · · ·Hrej] = eiHr · · ·H1H1 · · ·Hrej = e′iej =

{
1 i = j
0 if i ̸= j.

The problem is showing that, in the full rank case say, os is in the space spanned by x1, . . . , xs,
s = 1, . . . , p. By definition and equations (2), o1 is in the space spanned by x1. The key fact
in an induction proof is that H1 · · ·Hjej is equivalent to performing the G-S algorithm on
xj.

We demonstrate for j = 1, . . . , r − 1 that oj+1 ≡ H1 · · ·Hj+1ej+1 is the same as the
inductive step of G-S. By (2),

oj+1 ≡ H1 · · ·Hj+1ej+1 = H1 · · ·Hjwj+1(1/∥wj+1∥).

We will show that
H1 · · ·Hjwj+1 = zj+1

where zj+1 is defined in the G-S algorithm. In G-S, this vector would be normalized by divid-
ing it by ∥H1 · · ·Hjwj+1∥ but in the Householder method the normalization occurred through
dividing wj+1 by ∥wj+1∥. These normalizations agree because ∥wj+1∥ = ∥H1 · · ·Hjwj+1∥,
since Householder transformations are rotations that do not change a vector’s length.

Starting with the definition of wj+1 and assuming that o1, . . . , oj are appropriate or-
thonormal vectors

H1 · · ·Hjwj+1 = H1 · · ·HjEj+1Hj · · ·H1xj+1
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= H1 · · ·Hj

(
I −

j∑
k=1

eke
′
k)

)
Hj · · ·H1xj+1

= H1 · · ·HjHj · · ·H1xj+1 −
j∑

k=1

H1 · · ·Hjeke
′
kHj · · ·H1xj+1

= xj+1 −
j∑

k=1

oko
′
kxj+1.

This is exactly the vector zj+1 from the G-S algorithm. Normalizing it gives oj+1.
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