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For linear models with general nonsingular estimated covariance matrices, we discuss the ap-

proximate null distributions proposed for the standard test statistics by Fai and Cornelius (1996),

referred to as FC, and by Kenward and Roger (1997, 2009), referred to as KR1 and KR2, respec-

tively, or as KR collectively. Much of the material relates to Christensen (2019) including the

material on differentiation in his Appendix A.1. The proposed approximations are shown to

give the exact distributions appropriate for use with Generalized Split Plot models. While there

is a great deal of theory behind the approximations, there is also a great deal of seat-of-the-pants

approximation involved.

1 Background

Consider a full linear model

Y = Xβ + e, e ∼ N[0,V (θ)] (1.1)
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and testing it against a reduced model

Y = X0β0 + e, C(X0)⊂C(X).

Write

V ≡V (θ) = σ2V∗(θ∗)≡ σ2V∗

with θ ′ = (σ2,θ ′
∗) a q vector of covariance parameters. Write oblique projection operators onto

C(X) and C(X0),

A ≡ X [X ′V−1X ]−X ′V−1 and A0 ≡ X0[X ′
0V−1X0]

−X ′
0V−1.

Note that these projection operators remain the same when V is replaced by V∗. Also, as in Christensen

(2020, Exercise 2.5), the projection operators do not depend on the choice of the generalized

inverse and

A′V−1A = A′V−1 =V−1A.

When using estimates θ̃ = (σ̃2, θ̃ ′
∗)

′, write

Ṽ ≡V (θ̃) = σ̃2V∗(θ̃∗)≡ σ̃2Ṽ∗

and projection operators Ã and Ã0.

It is well known, e.g. Christensen (2020), that for known V the test statistic and null distribu-

tion can be written as

F = Y ′(A−A0)
′V−1(A−A0)Y/r(A−A0)∼ χ2[r(A−A0)]/r(A−A0) = F [r(A−A0),∞].
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Also, for known V∗ but unknown σ2,

F =
Y ′(A−A0)

′V−1
∗ (A−A0)Y/r(A−A0)

Y ′(I −A)′V−1
∗ (I −A)Y/r(I −A)

∼ F [r(A−A0),n− r(A)].

The intuitive basis for this change is that in the original F statistic,

Y ′(A−A0)
′V−1(A−A0)Y =

Y ′(A−A0)
′V−1

∗ (A−A0)Y
σ2

however we can replace the unknown parameter σ2 using an unbiased estimate of it, MSE ≡

Y ′(I −A)′V−1
∗ (I −A)Y/r(I −A). We can then show that for known V∗, this has the indicated F

distribution. In fact, writing V̆ ≡ MSE ×V∗,

F =
Y ′(A−A0)

′V−1
∗ (A−A0)Y/r(A−A0)

Y ′(I −A)′V−1
∗ (I −A)Y/r(I −A)

= Y ′(A−A0)
′V̆−1(A−A0)Y/r(A−A0)∼ F [r(A−A0),n− r(A)].

Again, with V∗ known, we know both A and A0.

The goal is to get better approximate distributions for F under the null model when V and

V∗ are unknown by incorporating information about the estimates of θ or θ∗. This involves

finding an approximate number of degrees of freedom for the denominator of the F distribution.

Later we will show that for generalized split plot models using REML estimates, these methods

typically give the standard exact F statistics, i.e., that the approximation methods typically give

the correct denominator degrees of freedom. (This fails when a REML estimate is 0.)

To work out the approximations we rewrite the problem as an ACOVA problem,

Y = X0β0 +X1β1 + e, (1.2)

where X = [X0,X1], β ′ = [β ′
0,β

′
1]. Our interest is in testing β1 = 0, or more accurately, that we can

drop β1 from the model. (It is possible that there exists β1 ̸= 0 with X1β1 ∈C(X0).)
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As in Christensen (2020, Subsection 9.1.1),

A−A0 = (I −A0)X1[X ′
1(I −A0)

′V−1(I −A0)X1]
−X ′

1(I −A0)
′V−1 ≡ A1,

so for known V ,

F = Y ′(A−A0)
′V−1(A−A0)Y/r(A−A0)

= YA′
1V−1A1Y/r(A1).

For any generalized inverse,

β̂1(θ)≡ [X ′
1(I −A0)

′V−1(I −A0)X1]
−X ′

1(I −A0)
′V−1Y = β̂1(θ∗)

is a generalized least squares estimate. The test statistic has the property that

YA′
1V−1A1Y = β̂ ′

1[X
′
1(I −A0)

′V−1(I −A0)X1]β̂1.

Consider a (full rank version of the) singular value decomposition,

X ′
1(I −A0)

′V−1(I −A0)X1 = PD(ϕ)P′ = [P1, · · · ,Ps]D(ϕ)[P1, · · · ,Ps]
′,

where

s = r[(I −A0)X1] = r(A1),

and ϕ = (ϕ1, . . . ,ϕs)
′ with ϕ j > 0, enabling us to write

YA′
1V−1A1Y =

s

∑
j=1

ϕ j(P′
jβ̂1)

2. (1.3)

We want to show that the P′
jβ̂1s are independent and that P′

jβ1 is estimable. For estimability,
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because it is a linear function of X0β0 + X1β1, clearly (I − A0)X1β1 is estimable. Observe that

C(P) = C[X ′(I −A0)
′] so there exists Q such that P′ = Q′(I −A0)X1 and P′β1 is a linear function

of an estimable parameter, hence estimable and each component of the vector is estimable. To

check independence, by multivariate normality, it is enough to show that the covariance matrix

is diagonal,

Cov(P′β̂1) = Cov[Q′(I −A0)X1β̂1] = Cov(Q′A1Y ) = Q′A1VA′
1Q

= P′[X ′
1(I −A0)

′V−1(I −A0)X1]
−P = P′[PD(ϕ)−1P′]P = D(ϕ)−1,

where any generalized inverse when pre and post multiplied by P′ and P will give the same

result as using this Moore-Penrose generalized inverse PD(ϕ)−1P′.

Although β̂1 is unknown, and in practice must be replaced by

β̃1 ≡ β̂ (θ̃) = [X ′
1(I − Ã0)

′Ṽ−1(I − Ã0)X1]
−X ′

1(I − Ã0)
′Ṽ−1Y,

the FC Satterthwaite approximation works with an estimate of Cov(β̂1) = [X ′
1(I − A0)

′V−1(I −

A0)X1]
− rather than an estimate of Cov(β̃1). KR approximate Cov(β̃1). (For the covariance matri-

ces to behave uniquely, we need to restrict attention to looking at estimable functions of β1.) We

will also need P̃ and ϕ̃ that come from a singular value decomposition,

[X ′
1(I − Ã0)

′Ṽ−1(I − Ã0)X1]
− = P̃D(ϕ̃)P̃′.

As discussed in the appendix, this term arises naturally when looking at (X ′Ṽ−1X)−.

2 Satterthwaite Approximation

This Satterthwaite approximation was developed by Fai and Cornelius (1996) based on previous

work by Giesbrecht and Burns (1985) [GB].
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2.1 Fai and Cornelius

FC’s approach to applying Satterthwaite approximations for F statistics is to find a denominator

degrees of freedom ν for

F = Y Ã′
1Ṽ−1Ã1Y/s ∼ F(s,ν)

by writing

F =
s

∑
j=1

ϕ̃ j(P̃′
jβ̃1)

2/s,

treating the terms
√

ϕ̃ j(P̃′
jβ̃1) as having t(v j) distributions, and then using the v js to find an

appropriate value for ν . The v js are found by using GB’s method which will be discussed later.

Letting T (vi) denote a random variable with a t(vi) distribution and recalling that t2(vi) ∼

F(1,vi),

E

[
s

∑
i=1

T 2(vi)/s

]
=

s

∑
i=1

vi/(vi −2)s

and the mean of an F(s,ν) distribution is ν/(ν −2). The approximating F denominator degrees

of freedom are taken as the value ν that satisfies

ν/(ν −2) =
s

∑
i=1

vi/(vi −2)s

i.e.,

ν =
2∑s

i=1 vi/(vi −2)s
∑s

i=1 vi/(vi −2)− s
.

2.2 Giesbrecht and Burns

We now examine GB’s approach to finding the degrees of freedom v j for an approximate t test

based on √
ϕ̃ jP̃′

jβ̃1 =
P̃′

jβ̃1√
P̃′

j[X
′
1(I − Ã0)′Ṽ−1(I − Ã0)X1]−P̃j

.
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Then, as indicated above, we use these v js to determine an overall denominator degrees of free-

dom ν for the F test.

To justify the approach, we will look at

P′
jβ̂1√

P′
j[X

′
1(I −A0)′Ṽ−1(I −A0)X1]−Pj

, (2.1)

and then ultimately estimate all the pieces in (2.1) that are unknown.

We presume that θ̃ is a function of B′Y where B is a full rank matrix such that C(B) = C(X)⊥.

This is true for REML and MINQUE estimates. It follows easily from the formula for the projec-

tion operator A that Cov(AY,B′Y ) = 0, so from multivariate normality

AY |= B′Y

and

P′
jβ̂1 |= P′

j[X
′
1(I −A0)

′Ṽ−1(I −A0)X1]
−Pj.

We know that P′
jβ̂1 is normal so, for the statistic in (2.1) to have a t(v j) distribution, we need only

show that
v j P′

j[X
′
1(I −A0)

′Ṽ−1(I −A0)X1]
−Pj

P′
j[X

′
1(I −A0)′V−1(I −A0)X1]−Pj

∼ χ2(v j). (2.2)

(None of these statements would be true if we were using β̃1, P̃j, or Ã0.)

The t(v j) approximation is based on assuming that (2.2) is true and estimating the degrees of

freedom v j. If the χ2(v j) distribution in (2.2) is true, the variance has to satisfy

v2
jVar{P′

j[X
′
1(I −A0)

′Ṽ−1(I −A0)X1]
−Pj}

{P′
j[X

′
1(I −A0)′V−1(I −A0)X1]−Pj}2 = 2v j.

or

v j = 2
{P′

j[X
′
1(I −A0)

′V−1(I −A0)X1]
−Pj}2

Var{P′
j[X

′
1(I −A0)′Ṽ−1(I −A0)X1]−Pj}

. (2.3)
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The only “unknown” in equation (2.3) is Var{P′
j[X

′
1(I −A0)

′Ṽ−1(I −A0)X1]
−Pj} for which we will

use an asymptotic variance based on the asymptotic distribution of θ̃ and the Delta Method. (In

reality most of the terms in (2.3) are unknown and will eventually have to be estimated.)

For REML estimates
√

n(θ̃ −θ) L→ N[0,I−1
r (θ)],

where, defining Ir(θ) to be the information matrix from the restricted likelihood computed on

B′Y , further define Ir(θ) by the limit

Ir(θ)/n → Ir(θ),

cf. Cressie and Lahiri (1993). Note that in practice this limit need not be appropriate. For example

in a one-way ANOVA with random group effects, the estimated variance of the group effects

will only be good asymptotically if the the number of groups goes to infinity. More generally,

the method only requires a known asymptotic distribution for θ̃ .

Define

g(θ)≡ P′
j[X

′
1(I −A0)

′V−1(θ)(I −A0)X1]
−Pj = P′

j[PD(1/ϕ)P′]−Pj,

where we ignore the fact that Pj and A0 are functions of θ . GB treated fixed estimable functions

λ ′β but FC’s application has estimable functions that depend on θ . GB need to compute the

simple looking function [X ′V−1(θ)X ]− but, as discussed in the appendix, this involves [X ′
1(I −

A0)
′V−1(θ)(I −A0)X1]

−. Indeed, for the sake of taking derivatives, it may be better to actually

apply GB’s method to Λ′β as discussed in the appendix.

Let dθ g(θ) be the 1×q row vector of partial derivatives of g(·). In particular, similar to Chris-

tensen (2019, Chapter 4), the kth component of the row vector is

dθkg(θ)≡ P′
j[X

′
1(I −A0)

′V−1(θ){dθkV (θ)}V−1(θ)(I −A0)X1]
−Pj.
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By the Delta Method
√

n[g(θ̃)−g(θ)] L→ N[0,dθ g(θ)I−1
r (θ)dθ g(θ)′].

Thus we take

v j = 2n
{P̃′

j[X
′
1(I − Ã0)

′Ṽ−1(I − Ã0)X1]
−P̃j}2

dθ g(θ̃)I−1
r (θ̃)dθ g(θ̃)′

.

Replacing I−1
r (θ̃) with nI −1

r (θ̃), the formula becomes

v j = 2
{P̃′

j[X
′
1(I − Ã0)

′Ṽ−1(I − Ã0)X1]
−P̃j}2

dθ g(θ̃)I −1
r (θ̃)dθ g(θ̃)′

.

Having found the derivative (which depends on j), it only remains to find Ir(θ).

2.3 Derivation of Ir(θ)

Much of the material in this subsection is similar to Christensen (2019, Sections 4.3, 4.2). REML

estimates are based on

U ≡ B′Y ∼ N(0,Vr); Vr ≡ B′V B.

We know that, because C(B) =C(X)⊥,

V−1(θ)[I −A(θ)] = B(B′V (θ)B)−1B′ = [I −A(θ)]′V−1(θ).

By definition, Ir(θ) is the covariance matrix of the score function S(U,θ) which is the transpose

of the derivative of the log-likelihood. Our score vector has ith component of the form Si(U,θ) =

U ′RiU −hi(θ) with E(U ′RiU) = hi(θ). The i, j element of the information matrix is

Ir(θ)i j ≡ E
{
[U ′RiU −hi(θ)][U ′R jU −h j(θ)]

}
= Cov[U ′RiU,U ′R jU ]

From Christensen (2019, Section 4.3)

2h j(θ) = tr
{
[B′V (θ)B]−1[dθ jB

′V (θ)B]
}
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and

2U ′R jU = Y ′B[B′V (θ)B]−1[dθ jB
′V (θ)B][B′V (θ)B]−1B′Y ,

or

2h j(θ) = tr
{
[B′V (θ)B]−1B′[dθ jV (θ)]B

}
;

2U ′R jU =U ′(B′V (θ)B)−1B′[dθ jV (θ)]B[B′V (θ)B]−1U .

The proof of the following proposition is based on the Wishart matrix proof for Theorem 4.6.1

in Christensen (2019). See, e.g., http://stat.unm.edu/˜fletcher/Wishart.pdf for the

covariance matrix of the Vec of a Wishart.

Proposition. If U ∼ N(0,Vr), then

Cov(U ′RiU,U ′R jU) = 2tr(RiVrR jVr).

Using this proposition with the earlier implicit definition of Ri and the fact that dθiV
−1(θ) =

−V−1dθiV (θ)V−1,

2Ir(θ)i j

= tr
{
(B′V (θ)B)−1B′[dθiV (θ)]B[B′V (θ)B]−1B′V B(B′V (θ)B)−1B′[dθ jV (θ)]

×B[B′V (θ)B]−1B′V B
}

= tr
{
(I −A)′V−1[dθiV (θ)]V−1(I −A)V (I −A)′V−1[dθ jV (θ)]V−1(I −A)V

}
= tr

{
(I −A)′[dθiV

−1(θ)](I −A)V (I −A)′[dθ jV
−1(θ)](I −A)V

}
= tr

{
[dθiV

−1(θ)](I −A)V (I −A)′[dθ jV
−1(θ)](I −A)V (I −A)′

}
= tr

{
[dθiV

−1(θ)](I −A)(I −A)V [dθ jV
−1(θ)](I −A)(I −A)V

}
= tr

{
[dθiV

−1(θ)](I −A)V [dθ jV
−1(θ)](I −A)V

}

10



This agrees with KR1’s formula (KR2 has a similar formula but contains a typo)

2Ir(θ)i j = tr
(
{dθiV

−1(θ)}V{dθ jV
−1(θ)}V

)
− tr

(
2ΦQi j −ΦPiΦPj

)
,

where

Φ = [X ′V−1(θ)X ]−1, Pi = X ′{dθiV
−1(θ)}X , (2.4)

Qi j = X ′{dθiV
−1(θ)}V{dθ jV

−1(θ)}X . (2.5)

3 Kenward-Roger Approximation

As discussed in Christensen (2019, Subsection 4.7.1), under reasonable conditions

E
[
V̂ar(λ ′β̂1)

]
= E

{
λ ′[X ′

1(I − Ã0)
′Ṽ−1(I − Ã0)X1]

−λ
}
≤ Var(λ ′β̂1)≤ Var(λ ′β̃1).

FC and GB focus their methods on V̂ar(λ ′β̂1) rather than trying to estimate the larger value

Var(λ ′β̃1). KR try to correct that.

KR begin with

V̂ar(λ ′β̂1)≡ λ ′[X ′
1(I − Ã0)

′Ṽ−1(I − Ã0)X1]
−λ = λ ′Φ(θ̃)λ ,

where Φ ≡ Φ(θ) is defined implicitly. They seek an estimate of the bias term

Var(λ ′β̂1)−E
{

λ ′[X ′
1(I − Ã0)

′Ṽ−1(I − Ã0)X1]
−λ

}
and they also seek an estimate of the bias term Var(λ ′β̃1)−Var(λ ′β̂1)≡ λ ′Ψλ . As far as I can tell,

KR use the same second bias term estimate but for the first term the R programs pbkrtest and

lmerTest only use results from KR1 and not from KR2.
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In summery, if

E(Φ̃) = Φ−E(A)

then

E(Φ̃+A) = Φ.

Since

Cov(β̃ ) = Cov(β̂ )+Cov(β̃ − β̂ ) = Φ+Ψ,

We estimate Cov(β̃ ) with

Φ̆ ≡ Φ̃+ Ã+ Ψ̃. (3.1)

Using the notation of (2.4) and (2.5), KR give this result as

Φ̆ = Φ̃+2Φ̃

[
q

∑
i=1

q

∑
j=1

wi j

(
Qi j −PiΦPj −

1
4

Ri j

)]
Φ̃,

where

Ri j = X ′V−1d2
θiθ j

V−1X .

Note that if V (θ) is linear in θ , as in traditional variance component models, then Ri j = 0.

We examine the second bias term first.

3.1 Finding Var(λ ′β̃1)−Var(λ ′β̂1)

Focus on a regression version of model (1.1) and all of β . Kacker and Harville (1984) argue

that when using translation invariant estimates in β̃ , we have (β̃ − β̂ ) |= β̂ , so Cov(β̃ ) = Cov(β̃ −

β̂ )+Cov(β̂ ). They proceed to estimate the bias term Cov(β̃ − β̂ ). In particular, recalling from

Christensen (2019, Subsection 4.7.1) that E(β̃ − β̂ ) = 0,

Cov(β̃ − β̂ ) = E
[
(β̃ − β̂ )(β̃ − β̂ )′

]
.
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Recalling that β̃ ≡ β̂ (θ̃) and letting θ0 be the true value of θ , use a first order Taylor’s approxi-

mation to get

[β̂ (θ̃)− β̂ (θ0)]
.
=
[
dθ β̂ (θ0)

]
(θ̃ −θ0).

Then,

Cov(β̃ − β̂ ) = E
[
(β̃ − β̂ )(β̃ − β̂ )′

]
.
= E

{[
dθ β̂ (θ0)

]
(θ̃ −θ0)(θ̃ −θ0)

′
[
dθ β̂ (θ0)

]′}
= E

{[
dθ β̂ (θ0)

]
E
{
(θ̃ −θ0)(θ̃ −θ0)

′}[dθ β̂ (θ0)
]′}

.
= E

{[
dθ β̂ (θ0)

]
Cov(θ̃)

[
dθ β̂ (θ0)

]′}
≡ Ψ.

The third line follows from writing the previous expectation as first conditional on β̂ and recog-

nizing that β̂ (θ) |= θ̃ . The penultimate equality requires θ̃ to be unbiased, or at least asymptoti-

cally unbiased so we can use an asymptotic covariance matrix for θ̃ , typically I −1
r (θ̃).

With β = E[β̂ (θ)], typically 0 = E
[
dθ β̂ (θ)

]
, and the random vectors dθ j β̂ (θ) and dθ β̂i(θ)′ have

mean 0. In particular, using the extension of a standard result on the expected value of quadratic

forms, e.g, Christensen’s (2020) Theorem 1.3.2 extended in his Exercise 10.1a, we compute

Ψrs = E
{[

dθ β̂r(θ0)
]

Cov(θ̃)
[
dθ β̂s(θ0)

]′}
= tr

{
Cov(θ̃)Cov

[
dθ β̂s(θ0)

′,dθ β̂r(θ0)
′
]}

.

To make further progress we need to examine properties of dθ β̂ (θ). Using the notation of

(2.4) and (2.5),

dθ j β̂ (θ) = dθ j

{[
X ′V−1(θ)X

]−1
X ′V−1(θ)Y

}
= dθ j

{[
X ′V−1(θ)X

]−1
}

X ′V−1(θ)Y +
[
X ′V−1(θ)

]−1 dθ jX
′V−1(θ)Y
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= −
[
ΦPjΦ

]
X ′V−1(θ)Y +ΦX ′ [dθ jV

−1(θ)
]
Y

=
{
−
[
ΦPjΦ

]
X ′V−1(θ)+ΦX ′ [dθ jV

−1(θ)
]}

Y.

This gives

dθ β̂ (θ) =
{
− [ΦP1Φ]X ′V−1 +ΦX ′ [dθ1V

−1] , . . . ,−[
ΦPqΦ

]
X ′V−1 +ΦX ′ [dθqV

−1]}Y.

Write

Bi ≡− [ΦPiΦ]X ′V−1 +ΦX ′ [dθiV
−1]

so

dθ β̂ (θ) =
{

B1, . . . ,Bq
}

Y.

Let er be a vector with all 0s except a 1 in the rth place

Cov
[
dθ β̂r(θ)′,dθ β̂s(θ)′

]
= Cov

{
[e′rdθ β̂ (θ)]′, [e′sdθ β̂ (θ)]′

}
= Cov




e′rB1Y
...

e′rBqY

 ,


e′sB1Y

...

e′sBqY


 .

The i j element of this covariance matrix is

Cov
(
e′rBiY,e′sB jY

)
= erBiV B′

jes

= e′r
({

− [ΦPiΦ]X ′V−1 +ΦX ′ [dθiV
−1]}V

{
−
[
ΦPjΦ

]
X ′V−1 +ΦX ′ [dθ jV

−1]}′)es

= e′r
{
[ΦPiΦ]Φ−1 [ΦPjΦ

]
−ΦPiΦPjΦ−ΦPiΦPjΦ+ΦQi jΦ

}
es

= e′r
(
ΦQi jΦ−ΦPiΦPjΦ

)
es

= e′rΦ
(
Qi j −PiΦPj

)
Φes.

As shown earlier, with W ≡ Cov(θ̃), Ψrs = tr
(

WCov
[
dθ β̂r(θ)′,dθ β̂s(θ)′

])
, so, recalling that for
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symmetric A and B, tr(AB) = ∑i ∑ j ai jbi j, we can now write

Ψrs = tr
(

WCov
[
dθ β̂r(θ)′,dθ β̂s(θ)′

])
=

q

∑
i=1

q

∑
j=1

wi je′rΦ
(
Qi j −PiΦPj

)
Φes

= e′rΦ

[
q

∑
i=1

q

∑
j=1

wi j
(
Qi j −PiΦPj

)]
Φes

so that, as stated in KR,

Ψ = Φ

[
q

∑
i=1

q

∑
j=1

wi j
(
Qi j −PiΦPj

)]
Φ.

This will be estimated by

Ψ̃ = Φ̃

[
q

∑
i=1

q

∑
j=1

w̃i j
(
Q̃i j − P̃iΦ̃P̃j

)]
Φ̃.

Kacker and Harville (1984) near their equation (2.3) indicate that this bias estimator is exactly

correct under conditions that seem to hold for generalized split plot models. In particular, it

holds when the covariance matrix of θ̃ is exact, the generalized least squares estimate does not

depend on θ , and their (2.3) is exact.

I think this idea may be useful

dθ X ′V (θ)Y =
[
dθ1X ′V (θ)Y, . . . ,dθqX ′V (θ)Y

]

3.2 Finding Var(λ ′β̂1)−E
{

λ ′[X ′
1(I − Ã0)

′Ṽ−1(I − Ã0)X1]
−λ

}
KR also estimate the bias Var(λ ′β̂1)−E

{
λ ′[X ′

1(I − Ã0)
′Ṽ−1(I − Ã0)X1]

−λ
}

Using a second-order Taylor approximation,

Φi j(θ̃)
.
= Φi j(θ0)+ [dθ Φi j(θ0)](θ̃ −θ0)+

1
2
(θ̃ −θ0)

′[d2
θθ Φi j(θ0)](θ̃ −θ0).

15



Assuming that θ̃ is unbiased,

E
[
Φi j(θ̃)

] .
= Φi j(θ0)+ [dθ Φi j(θ0)]E

[
(θ̃ −θ0)

]
+

1
2

E
[
(θ̃ −θ0)

′[d2
θθ Φi j(θ0)](θ̃ −θ0)

]
= Φi j(θ0)+

1
2

tr
{

W [d2
θθ Φi j(θ0)]

]
(3.2)

As illustrated earlier,

dθrΦi j(θ) = e′idθr

{[
X ′V−1(θ)X

]−1
}

e j =−e′i [ΦPrΦ]e j,

so

d2
θrθs

Φi j(θ)

= −e′i [dθsΦPrΦ]e j

= −e′i [dθsΦ]PrΦe j − e′iΦ [dθsPr]Φe j − e′iΦPr [dθsΦ]e j

= e′i [ΦPsΦ]PrΦe j − e′iΦ [dθsPr]Φe j + e′iΦPr [ΦPsΦ]e j

= e′iΦPsΦPrΦe j − e′iΦ [dθsPr]Φe j + e′iΦPrΦPsΦe j

While it is possible that the covariance matrix might be specified in terms of V−1(θ), more

commonly it is specified as V (θ). Following KR, we have specified most derivatives in terms of

dθrV
−1(θ) but as in ALM-III,

dθrV
−1(θ) =−V−1(θ)[dθrV (θ)]V−1(θ),

so dθrV
−1(θ) is easily found in terms of dθrV (θ). Finding e′iΦ [dθsPr]Φe j in terms of derivatives of

V−1(θ) is easy using

d2
srV

−1(θ) = dθs [dθrV
−1(θ)],
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but finding it in terms of derivatives of V (θ) is considerably more work. We begin by looking at

d2
srV

−1(θ) in terms of dθrV
−1(θ) and second derivatives of V (θ).

dθs [dθrV
−1(θ)]

= dθs{−V−1(θ)[dθrV (θ)]V−1(θ)}

= −
{
[dθsV

−1(θ)][dθrV (θ)]V−1 +V−1[dθs [dθrV (θ)]]V−1 +V−1[dθrV (θ)][dθsV
−1(θ)]

}
= −

{
−V−1[dθsV ]V−1[dθrV ]V−1 +V−1[d2

θsθr
V ]V−1 −V−1[dθrV ]V−1[dθsV ]V−1}

= [dθsV
−1]V [dθrV

−1]−V−1[d2
θsθr

V (θ)]V−1 − [dθrV
−1]V [dθsV

−1]

so relating back to KR’s notation,

X ′dθs [dθrV
−1(θ)]X = Qsr −Rsr +Qrs

and

e′iΦ [dθsPr]Φe j = e′iΦ(Qsr −Rsr +Qrs)Φe j

and

d2
θrθs

Φi j(θ) = e′iΦPsΦPrΦe j + e′iΦPrΦPsΦe j − e′iΦ(Qsr −Rsr +Qrs)Φe j.

which agrees with KR1.

From (3.2) our desired bias term is

Φi j(θ)−E
[
Φi j(θ̃)

]
= −1

2
tr
{

W [d2
θθ Φi j(θ)]

]
= −e′iΦ

[
∑
r

∑
s

wrs

(
PsΦPr −Qsr +

1
2

Rsr

)]
Φe j

= e′iΦ
[
∑
r

∑
s

wrs

(
Qsr −PsΦPr −

1
2

Rsr

)]
Φe j

17



and

Φ(θ)−E
[
Φ(θ̃)

]
= Φ

[
∑
r

∑
s

wrs

(
Qsr −PsΦPr −

1
2

Rsr

)]
Φ

Similar to (3.1), the estimate of Cov(β̂ ) is

Φ̆ = Φ̃+ Φ̃
[
∑
r

∑
s

w̃rs

(
Q̃sr − P̃sΦ̃P̃r −

1
2

R̃sr

)]
Φ̃

+ Φ̃

[
q

∑
i=1

q

∑
j=1

w̃i j
(
Q̃i j − P̃iΦ̃P̃j

)]
Φ̃

= Φ̃+2Φ̃
[
∑
r

∑
s

w̃rs

(
Q̃sr − P̃sΦ̃P̃r −

1
4

R̃sr

)]
Φ̃. (3.3)

This is the result in KR1 that seems to be what is incorporated into the R programs pbkrtest

and lmerTest. KR2 incorporate a first order bias approximation for E
[
(θ̃ −θ0)

]
based on the

REML estimates (using the score function of the restricted data B′Y ).

3.3 KR Test Statistic and Degrees of Freedom

Using (3.3) to define

Ĉov(β̃ )≡ Φ̆.

the KR1 test statistic for testing Λ′β = 0 with r(Λ) = s, is

FKR =
1
s
(Λ′β̃ )[Λ′Φ̆Λ]−β (Λ′β̃ ).

To find the degrees of freedom, they find approximate values for E(FKR) and Var(FKR), use these

to determine a coefficient of variation and take the denominator degrees of freedom ν to be the

value for which an F(s,ν) distribution has the same coefficient of variation. In addition, they
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introduce a scale factor δ (that does not affect the coefficient of variation) so that

E(δFKR) = E[F(s,ν)] = ν/(ν −2),

and approximate

F∗ ≡ δFKR ∼ F(s,ν).

In more detail, Var[F(s,ν)] = {E[F((s,ν)]}22(s+ν −2)/s(ν −4), so ν is obtained by setting

Var(FKR)

[E(FKR)]2
=

2(s+ν −2)
s(ν −4)

or

ν = 4+
s+2

s
2

Var(FKR)
{E(FKR)}2 −1

It remains to find E(FKR) and Var(FKR) which is done through a (second order?) Taylor’s

approximation and

E(F) = EΦ̆[E(F |Φ̆)]

Var(F) = EΦ̆[Var(F |Φ̆)]+VarΦ̆[E(F |Φ̆)]

I currently have no justification for the KR1 claims that follow.

E(F) = 1/[1+
A2

s
]
.
= [1+

A2

s
]

Var(F) =
2
s

1+ c1B
(1− c2B)2(1− c3B)

.
=

2
s
(1+B)

B =
1
2s
(A1 +6A2)

A1 =
q

∑
i

∑
j

wi jtr(ΘΦPiΦ)tr(ΘΦPjΦ)
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A2 = ∑
i

∑
j

wi jtr(ΘΦPiΦΘΦPjΦ)

Θ = Λ[Λ′ΦΛ]−Λ′

c1 =
g

3s+2(1−g)
, c2 =

s−g
3s+2(1−g)

, c3 =
s+2−g

3s+2(1−g)
.

g =
(s+1)A1 − (s−4)A2

(s+2)A2

If E(F) = 1/[1+ A2
s ] = ν/(ν −2) then A2 =−2s/ν . Also ΘΦPiΦ = AΛPiΦ.

4 Application to Generalized Split Plot Models

Because of the nice structure of the split plot covariance matrix you can find V−1 easily. It looks

like computing Y ′(A − A0)V−1(A − A0)Y should just give the split plot tests. REML estimates

should be the obvious ones. So program lmer works.

F =
Y ′(A−A0)

′V−1
∗ (A−A0)Y/r(A−A0)

Y ′(I −A)′V−1
∗ (I −A)Y/r(I −A)

V = σ2V∗, σ2 = σ2
w +σ2

s , ρ =
σ2

w
σ2

w +σ2
s

V∗ = (1−ρ)I +mρM1

For any projection operator P,

[aI +bP]−1 =
1
a

[
I +

b
a+b

P
]
,

so

V−1
∗ =

1
1−ρ

[
I +

mρ
(1−ρ)+mρ

M1

]
Testing models is in PA 11.2.2
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For model (8), A−A0 = M∗−M∗0

V−1(A−A0) =
1

σ2(1−ρ)

[
I +

mρ
(1−ρ)+mρ

M1

]
(M∗−M∗0)

=
1

σ2(1−ρ)

[
M1 +

mρ
(1−ρ)+mρ

M1

]
(M∗−M∗0)

=
1

σ2(1−ρ)

[
1+

mρ
(1−ρ)+mρ

]
(M∗−M∗0)

=
1

σ2(1−ρ)

[
1−ρ

(1−ρ)+mρ

]
(M∗−M∗0)

=
1

σ2

[
1

(1−ρ)+mρ

]
(M∗−M∗0)

E[MSE(1)] = σ2[(1−ρ)+mρ]

For model (9), A−A0 = M2 −M3

V−1(A−A0) =
1

σ2(1−ρ)

[
I +

mρ
(1−ρ)+mρ

M1

]
(M2 −M3)

=
1

σ2(1−ρ)
(M2 −M3)

E[MSE(2)] = σ2(1−ρ)

Qeadan (2014, Proposition 3.1.1) and Christensen (2019, Exercise 4.6) establish that if

MSE(1)> MSE(2)

then the split plot error estimates are REML estimates. In particular, we can reparameterize as

θ1 = σ2
s , θ2 = σ2

s +mσ2
w, so

V = θ1(I −M1)+θ2M1

For normal data, exact covariance matrix is variance of quadratic forms and independent.

21



Large sample covariance matrix must agree.
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6 Appendix: GLS — Testing models versus hypotheses

This section gives a direct demonstration that the sums of squares for testing a reduced model is

the same as the sum of squares for testing a corresponding estimable hypothesis. In Christensen

(2020, Section 3.8) this was done indirectly (and much more simply). To explore methods of

approximating F denominatior degrees of freedom for tests with estimated covariance matrices,

it is useful the know the direct derivation.

Consider a model

Y = Xβ + e, e ∼ N[0,V (θ)] (6.1)

in partitioned form

Y = X0β0 +X1β1 + e, e ∼ N[0,V (θ)]. (6.2)

With M0 ≡ X0(X ′
0X0)

−X ′
0 being the Euclidean-distance perpendicular projection operator onto

C(X0), testing the reduced model that does not include β1 (for which it is sufficient but not nec-

essary that β1 = 0) is equivalent to testing (I −M0)X1β1 = 0 or (I −A0)X1β1 = 0. Note that each of
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these implies the other because

(I −M0)(I −A0) = (I −M0); (I −A0)(I −M0) = (I −A0).

Moreover, (I −M0)X1β1 = 0 iff (I −M0)X1β1 ⊥C[(I −M0)X1] iff X ′
1(I −M0)X1β1 = 0. This last form

of the hypothesis is convenient because it does not involve θ and (typically) has fewer than n

rows.

We want to show that the sum of squares for testing the reduced model is the same as the

sum of squares for testing X ′
1(I−M0)X1β1 = 0. The sum of squares for testing the reduced model

is Y ′A′
1V−1A1Y = β̂ ′

1{X ′
1(I−A0)

′V−1(I−A0)X1}β̂1 (as shown earlier) and with Λ′ = [0,X ′
1(I−M0)X1]

the sum of squares for testing the hypothesis is

(Λ′β̂ )′[Λ′(X ′V−1X)−Λ]−(Λ′β̂ ).

We now examine the various pieces of this last sum of squares.

It is easy to see that

Λ′β̂ = X ′
1(I −M0)X1β̂1.

We now work on computing [Λ′(X ′V−1X)−Λ]−. Clearly,

(X ′V−1X) =

[
X ′

0V−1X0 X ′
0V−1X1

X ′
1V−1X0 X ′

1V−1X1

]
.

From the formula for finding (generalized) inverses of partitioned matrices, e.g. Christensen

(2020, Exercise B.21),

(X ′V−1X)− =

[
· · · · · ·

· · · {X ′
1V−1X1 −X ′

1V−1X0[X ′
0V−1X0]

−X ′
0V−1X1}−

]
,

where, because of the structure of Λ, we do not need explicit forms except for the bottom right
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entry. Exploiting the structure of Λ,

Λ′(X ′V−1X)−Λ = [X ′
1(I −M0)X1]{X ′

1V−1X1 −X ′
1V−1X0[X ′

0V−1X0]
−X ′

0V−1X1}−[X ′
1(I −M0)X1].

The center term can be simplified using

{X ′
1V−1X1 −X ′

1V−1X0[X ′
0V−1X0]

−X ′
0V−1X1}= {X ′

1(I −A0)
′V−1(I −A0)X1},

so

Λ′(X ′V−1X)−Λ = [X ′
1(I −M0)X1]{X ′

1(I −A0)
′V−1(I −A0)X1}−[X ′

1(I −M0)X1]

and taking generalized inverses,

[Λ′(X ′V−1X)−Λ]− = [X ′
1(I −M0)X1]

−{X ′
1(I −A0)

′V−1(I −A0)X1}[X ′
1(I −M0)X1]

−.

This allows us to compute the sums of squares,

β̂ ′Λ[Λ′(X ′V−1X)−Λ]−Λ′β̂ =

β̂ ′
1[X

′
1(I −M0)X1][X ′

1(I −M0)X1]
−{X ′

1(I −A0)
′V−1(I −A0)X1}[X ′

1(I −M0)X1]
−[X ′

1(I −M0)X1]β̂1.

To further simplify the sums of squares, recall that for any matrix Q and B with C(B)⊂C(Q),

QQ−B = B. Therefore, since {X ′
1(I − A0)

′V−1(I − A0)X1} = {X ′
1(I − M0)(I − A0)

′V−1(I − A0)(I −
M0)X1}, we get

[X ′
1(I −M0)X1][X ′

1(I −M0)X1]
−{X ′

1(I −A0)
′V−1(I −A0)X1}[X ′

1(I −M0)X1]
−[X ′

1(I −M0)X1]

= {X ′
1(I −A0)

′V−1(I −A0)X1}

and

β̂ ′Λ[Λ′(X ′V−1X)−Λ]−Λ′β̂ = β̂ ′
1{X ′

1(I −A0)
′V−1(I −A0)X1}β̂1 = Y ′A1V−1A1Y.
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