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Abstract

In this thesis, I will talk about the recent trend of the usage of proof assistants in

mathematics and the type theories that form their logical foundations. First I go over

a quick tutorial on the Lean proof assistant to demonstrate how this system is used to

create a formal proof of the infinitude of prime numbers. I emphasize the interactive

nature of formalizing an informal, natural language proof, and demonstrate how it

tracks with our usual thought processes when going through a proof. Then I use

the equational theories project formalization of magma theory as an example of a

piece of mathematics that is uniquely amenable to being formalized, being difficult

to approach without proof assistants. I talk about some interesting algebraic results

on magmas and cover some of my contributions to the project. Lastly, I develop the

formal language of dependent type theory which many proof assistants are based off

of. Motivating type theory through the pitfalls of untyped lambda calculus, I prove

some meta-theoretical properties of simply typed lambda calculus, and demonstrate

the mathematical construction of functions and the natural numbers in dependent

type theory.
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Chapter 1

Interactive theorem proving

Interactive theorem provers, or proof assistants, are rapidly emerging as a new tool

and subfield in mathematics. These proof assistant systems afford mathematicians

an environment within which we can produce automatically checked and certified

formal proofs of theorems that give an extra degree of certainty to the correctness

of our proofs. Gradually, these systems are becoming more and more practical for

usage in ‘serious’ mathematics, and their use is likely to only increase as time goes on.

But how exactly do these proof assistants verify that a proof is correct? What does

it even mean to prove something? In this chapter, I would like to give an overview

of how to prove theorems with the Lean proof assistant and then give an answer to

these questions.

1



Chapter 1. Interactive theorem proving

1.1 Proving the infinitude of prime numbers with

Lean

That there are infinitely many prime numbers is a classic result of number theory

dating back to Euclid. Here is a paraphrasing of Euclid’s proof from [Ore48]:

Theorem 1. For any natural number n, there is a prime number larger than n.

Proof. Let p be a prime factor of n! + 1. If p ≤ n, then it divides n!. Since it divides

n! + 1, it divides 1, a contradiction. Therefore, p > n.

We can see that there are lots of intermediate steps that have been skipped as

clear in this proof, and lots of unnamed lemmas used (thousands of them, even, going

back down to the logical fundamentals). Further, this proof does not even technically

show that there are infinitely many primes; we have only shown that there is no

upper bound to the set of prime numbers, and we would have to further show that

any unbounded-above set of positive integers is equinumerous to N to truly prove

that there are infinitely many primes. This we shall skip for now.

Much of the labor in producing a formal proof of a theorem is finding out what

all the skipped steps are and proving all of those unnamed lemmas. Interactive

proof assistants do indeed assist considerably in working through and formalizing an

‘informal’ proof like this. We will use this theorem and its proof as a first instructive

example of formalization, emphasizing the interactive nature of the process.

The first step in specifying a formal proof with Lean is stating the theorem

itself, beginning with a theorem keyword, the name of the theorem, and then the

assumptions given for the theorem. The one assumption given in this theorem is just

any natural number n, which we can refer to in Lean as n : N, which in Lean always

includes 0 as well. Fortunately, we do not have to start with building the definition
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Chapter 1. Interactive theorem proving

of the universal quantifier or the natural numbers, as both of these are built in to the

foundations of Lean, which we will be investigating in the next section. We begin the

statement of a theorem named infinite_primes with the assumption of a natural

number n as such:

theorem infinite_primes (n : N)

The theorem is an existentially quantified statement, stating that there exists a

p ∈ N such that p is prime and p > n. Note for one that it is not written at all in the

original theorem statement that p ∈ N, but that is the simplest choice for what set p

should reside in, as the negative integers are irrelevant here. One thing that does not

exist in the foundations of Lean is a definition of prime natural numbers, which we

could conceivably construct ourselves now. This is, however, highly inconvenient, as

we would also first have to define divisibility and then write potentially thousands

of lines of code proving for ourselves many dozens of various lemmas of divisibility

and primes that have nothing directly to do at all with the infinitude of primes. The

most commonly taken option when working with mathematics in Lean is to instead

use the pre-made definitions and lemmas from mathlib [Com20]. In order to not

be distracted by these basic definitions and focus simply on proving our theorem,

we will import the most basic theory of prime numbers from mathlib, given in the

file Mathlib.Data.Nat.Prime.Defs. Exactly which theorems we have available from

this file can be seen online here. Importing this also helpfully gives us the ordering

relation > on N. So we import the theory of prime numbers and write the statement

of the theorem, separated from the name and assumptions by a colon:

import Mathlib.Data.Nat.Prime.Defs

theorem infinite_primes (n : N) : ∃ (p : N), Nat.Prime p ∧ p > n

We are now ready to begin the proof. The symbols to indicate the start of a proof

are :=, and we use the by keyword to enter tactics mode. Tactics are commands that

represent each step taken through a proof. Generally, tactics are designed to resemble
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Chapter 1. Interactive theorem proving

the steps that mathematicians commonly make in informal proofs, so tactics-based

proofs are ideal for formalizing and checking some specific informal proof of a theorem.

Our code now looks like this:

import Mathlib.Data.Nat.Prime.Defs

theorem infinite_primes (n : N) : ∃ (p : N), Nat.Prime p ∧ p > n := by

The standard ways of installing and setting up Lean will generally have the Lean

infoview running alongside the editor being used to make the proof. At this point in

the proof, the infoview looks like this:

n : N

⊢ ∃ p, Nat.Prime p ∧ p > n

The lines on top keep track of our assumptions and any other results that we have

obtained in the process of our proof. The final line next to the ⊢ symbol is our

goal; it is what we want to prove. As we step through the proof, the infoview will

dynamically change to reflect the current state of the proof. This is a very useful

logical organization tool and gives a highly interactive nature to writing a proof in

Lean.

The first step taken in the proof is to choose p to be a prime factor of n! + 1. In

order to do this, we need to first prove that there exists a prime factor of n! + 1,

or more generally that there is a prime factor of any n ≥ 2. This is not a theorem

that exists in the mathlib file that we have imported, so in order to keep our imports

minimal, I will state the theorem we want and automatically generate a temporary

proof of it with sorry. The sorry tactic can generate a proof of absolutely anything,

even False, but Lean recognizes that using sorry is cheating and will not accept a

proof until any instance of sorry is removed. This tactic is helpful for building up

proofs in blocks, so that we can create the structure of the proof first and then fill

in all of the sorrys to complete the proof. Since this is a large theorem with a large
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Chapter 1. Interactive theorem proving

proof, I will write it outside of our current proof with its own name, as such:

import Mathlib.Data.Nat.Prime.Defs

theorem prime_factor {n : N} (h : 2 ≤ n) : ∃ (p : N), Nat.Prime p ∧ p | n

:= by sorry

theorem infinite_primes (n : N) : ∃ (p : N), Nat.Prime p ∧ p > n := by

You may notice that in the statement of prime_factor, I wrote the assumption

n : N in curly brackets instead of parentheses. This indicates that the assumption is

to be implicitly inferred from context by Lean, so that when we use the prime_factor

theorem, we only have to provide a proof of 2 ≤ n without redundantly specifying

what n is beforehand. Lean has many automated inference abilities and sometimes

many parts of parts of proofs can be outright removed, as Lean is able to infer some

things itself automatically.

In order to use this p that is a prime factor of n! + 1, we have to first show that

the condition h : 2 ≤ n is fulfilled for n! + 1. For this, we can use the have tactic,

which allows us to create a sub-proof of some lemma within our larger proof. In this

case, we want to prove that 2 ≤ n! + 1 for any n, so we write this with have as such:

import Mathlib.Data.Nat.Prime.Defs

theorem prime_factor {n : N} (h : 2 ≤ n) : ∃ (p : N), Nat.Prime p ∧ p | n

:= by sorry

theorem infinite_primes (n : N) : ∃ (p : N), Nat.Prime p ∧ p > n := by

have : 2 ≤ Nat.factorial n + 1 := by

We see then at this point that the infoview has updated to reflect our new

sub-proof:

n : N

⊢ 2 ≤ n.factorial + 1

To prove this simple theorem, my first reaction is to check the mathlib documen-
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Chapter 1. Interactive theorem proving

tation on the natural numbers to see what elementary tools are available to us. The

theorem there that stands out to me is Nat.add_one_le_add_one_iff which states

that a+1 ≤ b+1 ⇐⇒ a ≤ b. What we want to prove is of the form a+1 ≤ b+1, so

this theorem tells us that it suffices to prove that a ≤ b, or in other words, that 1 ≤ n!.

To use this theorem, we will use the rw tactic, which stands for “rewrite.” This tactic

allows us to rewrite goals or assumptions according to equalities or equivalences: if

we have a proof of a = b and a goal or assumption with a in it, rw can rewrite that a

to b, or a b to a; similarly with a proof of P ⇐⇒ Q. We use this tactic as follows:

import Mathlib.Data.Nat.Prime.Defs

theorem prime_factor {n : N} (h : 2 ≤ n) : ∃ (p : N), Nat.Prime p ∧ p | n

:= by sorry

theorem infinite_primes (n : N) : ∃ (p : N), Nat.Prime p ∧ p > n := by

have : 2 ≤ Nat.factorial n + 1 := by

rw [Nat.add_one_le_add_one_iff]

And our infoview updates as expected:

n : N

⊢ 1 ≤ n.factorial

To prove this, we find from the same file in mathlib again another theorem that

will bring us to the end: Nat.add_one_le_of_lt, which states that if n < m then

n+1 ≤ m. So, if we want to show that 1 ≤ n!, we just have to show that 0 < n!, which

is a theorem given in the factorial file: Nat.factorial_pos. Nat.add_one_le_of_lt is

not an equivalence, so we cannot use rw with it, but we can use the apply tactic. If we

have a theorem of the form h : P → Q, and a goal of the form Q, then apply h will

change our goal to P, which would then imply Q. So we apply Nat.add_one_le_of_lt

as such:
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Chapter 1. Interactive theorem proving

import Mathlib.Data.Nat.Prime.Defs

theorem prime_factor {n : N} (h : 2 ≤ n) : ∃ (p : N), Nat.Prime p ∧ p | n

:= by sorry

theorem infinite_primes (n : N) : ∃ (p : N), Nat.Prime p ∧ p > n := by

have : 2 ≤ Nat.factorial n + 1 := by

rw [Nat.add_one_le_add_one_iff]

apply Nat.add_one_le_of_lt

Once again, the infoview updates as expected:

n : N

⊢ 0 < n.factorial

As mentioned above, this is the theorem Nat.factorial_pos in mathlib, so we use

the exact tactic which gives that we have already proved something which is exactly

the goal. So, our proof ends up as

import Mathlib.Data.Nat.Prime.Defs

theorem prime_factor {n : N} (h : 2 ≤ n) : ∃ (p : N), Nat.Prime p ∧ p | n

:= by sorry

theorem infinite_primes (n : N) : ∃ (p : N), Nat.Prime p ∧ p > n := by

have : 2 ≤ Nat.factorial n + 1 := by

rw [Nat.add_one_le_add_one_iff]

apply Nat.add_one_le_of_lt

exact Nat.factorial_pos n

With this, our infoview tells us that our goals are accomplished with a celebratory

party popper emoji. But we only accomplished the goal for 2 ≤ n! + 1, and starting

a new line then updates our infoview to our infinitely many primes theorem along

with our brand new lemma that we just proved in the assumptions, with the default

name this:
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Chapter 1. Interactive theorem proving

n : N

this : 2 ≤ n.factorial + 1

⊢ ∃ p, Nat.Prime p ∧ p > n

Using our previous prime_factor theorem, we can now have that this prime factor

exists:

import Mathlib.Data.Nat.Prime.Defs

theorem prime_factor {n : N} (h : 2 ≤ n) : ∃ (p : N), Nat.Prime p ∧ p | n

:= by sorry

theorem infinite_primes (n : N) : ∃ (p : N), Nat.Prime p ∧ p > n := by

have : 2 ≤ Nat.factorial n + 1 := by

rw [Nat.add_one_le_add_one_iff]

apply Nat.add_one_le_of_lt

exact Nat.factorial_pos n

have := prime_factor this

Which gives us the prime_factor theorem applied to n! + 1 in the assumptions,

replacing the name this (we can give lemmas names with have and avoid the naming

conflict, but it is not required, especially if we are not going to use the lemma more

than once):

n : N

this† : 2 ≤ n.factorial + 1

this : ∃ (p : N), Nat.Prime p ∧ p | n.factorial + 1

⊢ ∃ p, Nat.Prime p ∧ p > n

Now this is an existentially quantified statement, which is still not exactly what

we want. We want the prime p that divides n!+1, and there are a few options in Lean

for accessing this prime from the existential statement. The simplest option is to use

the Exists.elim theorem, which allows us to prove any proposition b from ∃x, p(x)

and ∀(a : α), p(a) → b for some proposition p. We just proved the ∃x, p(x) part,
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Chapter 1. Interactive theorem proving

which is now named this, so adding apply Exists.elim this to our proof will have

us prove the ∀(a : α), p(a) → b part. Our infoview after adding the apply statement

reflects that exactly:

n : N

this† : 2 ≤ n.factorial + 1

this : ∃ (p : N), Nat.Prime p ∧ p | n.factorial + 1

⊢ ∀ (a : N), Nat.Prime p ∧ p | n.factorial + 1 → ∃ p, Nat.Prime p ∧ p >

n

Our goal is now a universally quantified conditional, and the way to introduce

these into our assumptions is with the intro tactic. If we have a goal of the form

P → Q, then intro h will give us the assumption h : P and change our goal to Q. This

also can be used with introducing universally quantified variables into our assumptions

as well. So we introduce the variable p and the condition into our assumptions with

intro p ph, which brings us the infoview:

n : N

this† : 2 ≤ n.factorial + 1

this : ∃ (p : N), Nat.Prime p ∧ p | n.factorial + 1

p : N

ph : Nat.Prime p ∧ p | n.factorial + 1

⊢ ∃ p, Nat.Prime p ∧ p > n

The equivalent tactic to intro for working with existentially quantified goals is

use, which lets us use some specific object of the correct type as the object that

satisfies the proposition we want to prove. So, adding use p to our proof, our infoview

is:
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n : N

this† : 2 ≤ n.factorial + 1

this : ∃ (p : N), Nat.Prime p ∧ p | n.factorial + 1

p : N

ph : Nat.Prime p ∧ p | n.factorial + 1

⊢ Nat.Prime p ∧ p > n

We want to prove an and statement, so we can apply And.intro, which splits our

infoview into two different goals, one for each part of the and statement we want to

prove:

case h.left

n : N

this† : 2 ≤ n.factorial + 1

this : ∃ (p : N), Nat.Prime p ∧ p | n.factorial + 1

p : N

ph : Nat.Prime p ∧ p | n.factorial + 1

⊢ Nat.Prime p

case h.right

n : N

this† : 2 ≤ n.factorial + 1

this : ∃ (p : N), Nat.Prime p ∧ p | n.factorial + 1

p : N

ph : Nat.Prime p ∧ p | n.factorial + 1

⊢ p > n

We already have that Nat.Prime p, it is the first half of the and statement ph. We

can access this with ph.left, so the tactic exact ph.left closes the first goal, leaving

us with just the second goal of p > n.
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Note that this was a fair amount of work to achieve what was done completely

automatically in the first sentence of the informal proof. But all of these steps really

do end up being necessary when it comes to explaining one’s reasoning in the fullest

possible detail. This is the demand made by proof assistant languages, though there

do exist more efficient, yet less explanatory, methods for doing everything we have

done above. What is important now is that we have finished formalizing the first

sentence of the proof and can move onto the second, which states that “If p ≤ n, then

it divides n!. This is beginning a proof by contradiction, which is supported by the

tactic by_contra. With a goal P , by_contra will give us ¬P in our assumptions and

changes our goal to False:

case h.right

n : N

this† : 2 ≤ n.factorial + 1

this : ∃ (p : N), Nat.Prime p ∧ p | n.factorial + 1

p : N

ph : Nat.Prime p ∧ p | n.factorial + 1

np : ¬p > n

⊢ False

The statement ¬p > n is equivalent to p ≤ n, and the tactic push_neg at np is able

to turn np : ¬p > n in our assumptions into np : p ≤ n, which is the contradictory

assumption given in the informal proof. The next claim made in the proof is that

p | n!, which we will begin a proof of with:

have : p | Nat.factorial n := by

A quick search in mathlibb finds the theorem Nat.dvd_factorial, which states

that if 0 < m and m ≤ n, then m | n!. This conclusion matches the goal we want, so

we apply this theorem:

have : p | Nat.factorial n := by
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apply Nat.dvd_factorial

This brings our infoview to two different goals, corresponding to 0 < p and

p ≤ n. Since p is prime, of course 0 < p, which is represented by the theorem

Nat.Prime.pos, so that exact Nat.Prime.pos ph.left closes the first goal, and the

second condition p ≤ n is our assumption np, so exact np closes the second goal.

Then this : p | Nat.factorial n is added to our assumptions.

The reason why p | n! + 1 together with p | n! implies that p | 1 is because if k | m

and k | n then k | m− n. This is the theorem Nat.dvd_sub, which importantly also

requires a proof of n ≤ m. So we start our proof of p | 1 with the usual have:

have : p | 1 := by

But directly using apply Nat.dvd_sub here gives us an error as this theorem

requires our goal to be of the form k | n - m, which it does not match yet. So we can

backtrack and instead first prove that p | Nat.factorial n + 1 - Nat.factorial n,

which we can use apply Nat.dvd_sub on, which splits our infoview into three goals for

each condition. The first thing we then have to prove is n.factorial ≤ n.factorial

+ 1. This is easy from basic arithmetic theorems, but I would like to use this

opportunity to introduce the powerful proof automation tactics that exist in Lean.

One particular tactic that closes this goal is linarith. This tactic is designed to

automatically calculate and close goals that are based on linear systems of equalities

and inequalities. Another tactic that can close this goal is simp. This tactic is

the “simplifier,” and works by trying to apply many tagged lemmas and theorems

previously proven at the same time to reduce the goal to a simplified state. There

are many alternate ways to use simp as well, such as simp? which will print the list

of theorems that it used to do the simplification. There are many more of these

automation tactics designed for different contexts, such as ring, which can prove ring

identities, aesop, which is a highly powerful proof generator that can search for a
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very wide range of proofs, and so on. For now, I will import linarith and use it to

close the n! ≤ n! + 1 goal at hand.

The remaining two goals of p | Nat.factorial n + 1 and n.factorial are closed

by exact ph.right and exact this.

Going back to our proof of p | 1, we can now easily rewrite p | Nat.factorial

n + 1 - Nat.factorial n to p | 1 with Nat.add_sub_cancel_left.

At this point we now have that p is a prime and p | 1, and any mathematician

would be convinced of the contradiction by now, but we still have some work to do to

actually provide the proof of False that is required. There are a few ways to do this,

but I chose to rewrite p | 1 to p = 1 with Nat.dvd_one, and then used the theorem

Nat.Prime.ne_one to get that p ̸= 1, at which point the contradiction tactic was

able to automatically close the goal. Here is what the final proof looks like:

theorem infinite_primes (n : N) : ∃ (p : N), Nat.Prime p ∧ p > n := by

have : 2 ≤ Nat.factorial n + 1 := by

rw [Nat.add_one_le_add_one_iff]

apply Nat.add_one_le_of_lt

exact Nat.factorial_pos n

have := prime_factor this

apply Exists.elim this

intro p ph

use p

apply And.intro

exact ph.left

by_contra np

push_neg at np

have : p | Nat.factorial n := by

apply Nat.dvd_factorial

exact Nat.Prime.pos ph.left
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exact np

have : p | Nat.factorial n + 1 - Nat.factorial n := by

apply Nat.dvd_sub

linarith

exact ph.right

exact this

have : p | 1 := by

rw [Nat.add_sub_cancel_left] at this

exact this

rw [Nat.dvd_one] at this

have := Nat.Prime.ne_one ph.left

contradiction

This is a highly verbose proof and far from the most optimal one that can be

written in Lean, but it pretty exactly matches the line of reasoning used in the

informal proof given at the beginning. This uses only some of the most fundamental

tactics, and a whole wealth of various tactics can be seen in the mathlib tactics

documentation. The proof of Nat.exists_infinite_primes in mathlib follows a very

similar argument, but in only 9 lines after a lot of optimization and using the full

range of tools afforded by mathlib. I will leave the proof of prime_factor as an

exercise, with the hint to use the by_cases tactic to start a proof by cases on whether

n is prime and to look up the documentation for the induction’ tactic and use it

with Nat.strong_induction_on.

1.2 Magma theory

What we have seen now with this proof of infinitely many primes is using a proof

assistant to verify our human mathematics. This is currently the most common use

14
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case for Lean and other proof assistants, but it clearly makes our human mathematics

much more involved and adds layers of difficulty. There are, however, some types of

mathematics that this sort of computerized system enables and makes significantly

easier. As a particularly interesting example that has seen some work recently, I

would like to demonstrate a bit of the theory of magmas.

1.2.1 Definition and examples

Definition 1. A magma is a set M equipped with a binary operation ⋄ :M×M →M .

The only requirement on a binary operation in a magma is that it is closed. Of

course, all of the familiar algebraic examples of groups, vector spaces, etc. form

magmas. However, we are given almost nothing to work with at the level of generality

of magmas. The number of possible magmas that can be constructed is far too large

to have any clear structure. What is interesting about magmas is that they allow

us a kind of ‘playground’ of binary relations. We can arbitrarily restrict the binary

operation on a magma with laws.

Example 1. A magma with an associative law is a magma for which ∀x, y, z ∈

M, (x ⋄ y) ⋄ z = x ⋄ (y ⋄ z). In this case, the magma is called an associative magma.

The associative law is one highly familiar to us from algebra, but still there are a

huge amount of conceivable laws on magmas that are not necessarily familiar to us at

all. An example due to Johan Commelin [Com24] is

Example 2. Let S be the set of all strings on a countable alphabet A. For any two

x, y ∈ S, define

x ⋄ y =

y if x = y or x ends with yyy

xy otherwise.

15
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This forms a magma on S as the concatenation of two strings of some alphabet is

also a string in that alphabet. This magma satisfies the following law:

Theorem 2. If S is the magma defined in Example 2, then

∀x, y ∈ S, x = (((y ⋄ x) ⋄ x) ⋄ x) ⋄ x.

Proof. Let x, y ∈ S be strings. By the construction of ⋄, we have x ⋄ x = x. Assume

that either x = y or y ends with xxx. Then y ⋄ x = x. Therefore

(((y ⋄ x) ⋄ x) ⋄ x) ⋄ x = ((x ⋄ x) ⋄ x) ⋄ x

= (x ⋄ x) ⋄ x

= x ⋄ x

= x.

Now assume that x ̸= y and y does not end with xxx. Then y ⋄ x = yx. Therefore

(((y ⋄ x) ⋄ x) ⋄ x) ⋄ x = ((yx ⋄ x) ⋄ x) ⋄ x.

If yx = x, then we end up with the same proof as the first case, so assume yx ̸= x.

Then

((yx ⋄ x) ⋄ x) ⋄ x = (yxx ⋄ x) ⋄ x.

Once again if yxx = x, then we end up in the first case, so assume yxx ̸= x. Then

(yxx ⋄ x) ⋄ x = yxxx ⋄ x.

We have that yxxx ends with xxx. Therefore, yxxx ⋄ x = x. Therefore, in all cases,

we end up with (((y ⋄ x) ⋄ x) ⋄ x) ⋄ x = x.

Here is a law that this magma does not satisfy:

Theorem 3. If S is the magma defined in Example 2, then we do not have ∀x, y, z ∈

S, x = (((y ⋄ z) ⋄ x) ⋄ x) ⋄ x.

16



Chapter 1. Interactive theorem proving

Proof. Let A = N, and consider the strings x = 1, y = 2, and z = 3. Then

(((y ⋄ z) ⋄ x) ⋄ x) ⋄ x = (((2 ⋄ 3) ⋄ 1) ⋄ 1) ⋄ 1

= ((23 ⋄ 1) ⋄ 1) ⋄ 1

= (231 ⋄ 1) ⋄ 1

= 2311 ⋄ 1

= 23111 ̸= 1.

What we have shown then is a magma that satisfies one law but not the other, and

therefore a counterexample to the implication between those two laws. That is, we

have shown that if a magma M satisfies the law ∀x, y ∈M,x = (((y ⋄ x) ⋄ x) ⋄ x) ⋄ x,

then we do not necessarily have ∀x, y, z ∈ M,x = (((y ⋄ z) ⋄ x) ⋄ x) ⋄ x. It is

this perspective that gives us a way to characterize magmas: by implications and

non-implications between laws on magmas.

We can specify finite magmas with tables that describe the magma operation.

Here is an example on the set {0, 1} that is not associative, not commutative, and

has no identity element:

⋄ 0 1

0 1 1

1 0 1

This magma also corresponds to logical implication on the set of booleans.

1.2.2 Detecting laws on magmas

Definition 2. A magma M is trivial if ∀x, y ∈M,x = y.

17
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In the case where a magma is trivial, the underlying set on the magma must have

at most one element. There are a number of laws on magmas which, upon initial

inspection, might not appear to describe only a singleton but which are actually

equivalent to the trivial magma. When a magma has a law that makes it equivalent

to the trivial magma, we call it a trivial law. Here is an example of a trivial law that

I formalized [Tao24b]:

Theorem 4. Let M be a magma. The law ∀x, y, z ∈M,x = y ⋄ ((z ⋄ x) ⋄ (z ⋄ z)) is

a trivial law.

Proof. If M is trivial, then we immediately have x = y ⋄ ((z ⋄ x) ⋄ (z ⋄ z)) for any

x, y, z ∈M .

Assume that ∀x, y, z ∈M,x = y ⋄ ((z ⋄ x) ⋄ (z ⋄ z)). Let 0, a ∈M . Let 1 = 0 ⋄ 0,

and let 2 = 1 ⋄ 1. Substituting x = z = 0 into the given law, we get

∀y ∈M, 0 = y ⋄ ((0 ⋄ 0) ⋄ (0 ⋄ 0))

∀y ∈M, 0 = y ⋄ (1 ⋄ 1)

∀y ∈M, 0 = y ⋄ 2. (1.1)

Then substituting z = 1 into the given law, we also get that

∀x, y ∈M,x = y ⋄ ((1 ⋄ x) ⋄ (1 ⋄ 1))

∀x, y ∈M,x = y ⋄ ((1 ⋄ x) ⋄ 2)

∀x, y ∈M,x = y ⋄ 0. (1.2)

The deduction from the second line to the final line is given by letting y = 1 ⋄ x in

(1.1). Therefore, substituting x = y = 0 into (1.2), we have 0 = 0⋄0, and substituting

x = a and y = 0 into (1.2), we get a = 0 ⋄ 0, so that a = 0.

We can also use magma homomorphisms to detect if laws hold for magmas.

18
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Definition 3. For two magmas (M, ⋄), (N, ·), a magma homomorphism is a function

f :M → N such that ∀x, y ∈M, f(x ⋄ y) = f(x) · f(y).

Then some basic expected algebraic results hold for magma homomorphisms, but

also some fail:

Lemma 1. For three magmas (M, ⋄), (N, ·), (G, •), and two magma homomorphisms

f :M → N , and g : N → G, we have that g◦f :M → G is a magma homomorphism.

Proof. Let x, y ∈M . Then

(g ◦ f)(x ⋄ y) = g(f(x ⋄ y))

= g(f(x) · f(y))

= g(f(x)) • g(f(y))

= (g ◦ f)(x) • (g ◦ f)(y).

With this, together with the fact that the composition of functions on sets is

associative, and the fact that the identity morphism on magmas is trivially a magma

homomorphism, we can speak of a category of magmas, Mag. There is one particularly

interesting property of Mag that ends up being important for the Eckmann-Hilton

argument [Wik24]:

Lemma 2. For two magmas (M1, ⋄), (M2, ·), the Cartesian product (M1 ×M2, ⋆)

with ⋆ defined component-wise is a product in Mag.

Proof. Let (M1, ⋄) and (M2, ·) be magmas, and define (M1 ×M2, ⋆) with the binary

operation ⋆ on M1 × M2 defined component-wise: (x, y) ⋆ (z, w) = (x ⋄ z, y · w).

Then we have projection morphisms π1 : M1 × M2 → M1 given by (x, y) 7→ x,
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and π2 : M1 × M2 → M2 given by (x, y) 7→ y. Importantly, these are magma

homomorphisms as

π1((x1, y1) ⋆ (x2, y2)) = π1(x1 ⋄ x2, y1 · y2)

= x1 ⋄ x2

= π1(x1, y1) ⋄ π1(x2, y2),

and similarly with π2.

Let (M, ∗) be any magma and consider any pair of magma homomorphisms

f1 :M →M1 and f2 :M →M2. Then consider the function f1× f2 :M →M1×M2,

given by x 7→ (f1(x), f2(x)). Then we need to show that the following diagram

commutes uniquely:

M1

M1 ×M2 M

M2

π1

π2

f1

f1×f2

f2

We have that

(π1 ◦ (f1 × f2))(x) = π1((f1 × f2)(x))

= π1(f1(x), f2(x))

= f1(x),

and

(π2 ◦ (f1 × f2))(x) = π2((f1 × f2)(x))

= π2(f1(x), f2(x))

= f2(x).

Therefore π1 ◦ (f1 × f2) = f1 and π2 ◦ (f1 × f2) = f2. To verify that f1 × f2 is a

20



Chapter 1. Interactive theorem proving

magma homomorphism, we have:

(f1 × f2)(x ∗ y) = (f1(x ∗ y), f2(x ∗ y))

= (f1(x) ⋄ f1(y), f2(x) · f2(y))

= (f1(x), f2(x)) ⋆ (f1(y), f2(y))

= (f1 × f2)(x) ⋆ (f1 × f2)(y).

Then we lastly need to show that f1 × f2 is the unique magma homomorphism such

that π1 ◦ (f1 × f2) = f1 and π2 ◦ (f1 × f2) = f2. Assume that there is another magma

homomorphism f :M →M1 ×M2 such that π1 ◦ f = f1 and π2 ◦ f = f2. Then we

have π1(f(x)) = π1((f1 × f2)(x)) and π2(f(x)) = π2((f1 × f2)(x)), and therefore if

f(x) = (x1, y1), we have x1 = f1(x) and y1 = f2(x), so that f(x) = (f1(x), f2(x)) =

(f1 × f2)(x).

Similarly, we also have coproducts in Mag, from the general construction given

here [Bra]:

Theorem 5. For two magmas (M1, ⋄), (M2, ·), the free product (M1

∐
M2, ⋆) is a

coproduct in Mag.

Proof. First, we will construct the free product of M1 and M2. For M1 and M2

considered as sets, letM1+M2 denote the disjoint union ofM1 andM2. Let (M1+M2)
s

be the set of finite sequences with entries in M1 +M2. This is a magma with the

operation defined by concatenation: (a1, . . . , an) ∗ (b1, . . . , bm) = a1, . . . , an, b1, . . . , bm.

An operation on (M1 +M2)
s is an elementary reduction if it is of the following form:

a1, . . . , ai, ai+1, . . . , an 7→ a1, . . . , aiai+1, . . . , gn if ai, ai+1 ∈M1 or a1, ai+1 ∈M2.

This kind of operation takes two adjacent elements in a sequence in (M1 +M2)
s and

combines them according to the magma operation of M1 or M2 if the two adjacent

elements are in the same magma. Now define a relation ∼ on (M1 +M2)
s for any
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two W1,W2 ∈ (M1 +M2)
s by W1 ∼ W2 iff W1 can be transformed to W2 by a finite

number of elementary reductions or their inverses (which would be factoring the

element aiai+1 in a sequence into two elements ai, ai+1).

We have W1 ∼ W1 trivially. If W1 ∼ W2, so that there is a sequence of elementary

transformations from W1 to W2, then we can replace each elementary reduction in

the sequence with its inverse to go from W2 to W1, and therefore W2 ∼ W1, and

also vice versa. If W1 ∼ W2 and W2 ∼ W3, then we can follow the sequence of

transformations from W1 to W2 and then from W2 to W3 to transform W1 to W3, and

therefore W1 ∼ W3. Therefore, ∼ is an equivalence relation, so we can quotient out

(M1 +M2)
s by ∼ to get the free product of M1 and M2: (M1 +M2)

s/∼ =M1

∐
M2,

where the magma operation is given by [a] ⋆ [b] = [ab], where ab is the sequence ab in

M1 +M2. We then have the natural inclusion morphisms i1 : M1 → M1

∐
M2 and

i2 :M2 →M1

∐
M2 given by a 7→ [a], the set of all finite sequences inM1+M2 that can

be reduced to a. Importantly, these are magma homomorphisms, as i1(x ⋄ y) = [x ⋄ y],

and the sequence x⋄y can be reduced to the sequence xy through the inverse mapping,

so that [x ⋄ y] = [xy] = [x] ⋆ [y] = i1(x) ⋆ i1(y), and similarly with i2.

Let (M, ∗) be any magma and consider any pair of magma homomorphisms

f1 : M1 → M and f2 : M2 → M . Define ψ : M1

∐
M2 → M as [a1, . . . , an] 7→

fk(a1) ∗ . . . ∗ fk(an), for aj ∈Mk. Then ψ is a magma homomorphism as

ψ(a1, . . . , an ⋆ b1, . . . , bm) = ψ(a1, . . . , an, b1, . . . , bm)

= fk(a1) ∗ . . . ∗ fk(an) ∗ fk(b1) ∗ . . . ∗ fk(bm)

= ψ(a1, . . . , an) ∗ ψ(b1, . . . bm).

We need to show then that the following diagram commutes uniquely:
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M1

M1

∐
M2 M

M2

i1
f1

ψ

i2
f2

The diagram commutes as, for any a ∈M1,

(ψ ◦ i1)(a) = ψ(i1(a))

= ψ([a])

= f1(a),

and for any b ∈M2,

(ψ ◦ i2)(b) = ψ(i2(b))

= ψ([b])

= f2(b).

Assume there is another Ψ : M1

∐
M2 → M such that Ψ ◦ i1 = f1 and Ψ ◦ i2 = f2.

Therefore Ψ◦ i1 = ψ ◦ i1, so that Ψ([a]) = ψ([a]) for any a ∈M1, and therefore Ψ = ψ.

Unital magmas are a particularly important class of magmas:

Definition 4. A magma M is unital if there exists an e ∈ M such that ∀x ∈

M, e ⋄ x = x ⋄ e = x.

Example 3. Let (M, ⋄), (N, ·) be unital magmas with identities e0 ∈M and e1 ∈ N .

Let f : M → N be a magma homomorphism. Then we do not necessarily have

f(e0) = e1.
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Proof. Consider f : (Z,×) → (Z,×) defined by x 7→ 0. Then

f(x× y) = 0

= 0× 0

= f(x)× f(y),

so that f is a magma homomorphism. But the multiplicative identity in (Z,×) is 1,

and f(1) = 0.

Unfortunately, magma homomorphisms rarely directly carry over properties such

as triviality and unitality. For example:

Example 4. Consider a trivial magma (M, ⋄) = {⋆} and any magma (N, ·). If

f :M → N is a magma homomorphism, then N is not necessarily trivial.

Proof. Consider N = {1, 2}, with some closed operation · that has 1 · 1 = 1. Then

define f :M → N by ⋆ 7→ 1. Then we have, for any x, y ∈M ,

f(x ⋄ y) = f(⋆)

= 1

= 1 · 1

= f(⋆) · f(⋆)

= f(x) · f(y).

Therefore f is a magma homomorphism, but N is not trivial.

The above example allows us to see properties about individual elements of N ,

that is, if f :M → N is a magma homomorphism with f(⋆) = y, then it must be that

y = y · y, but this is much weaker than showing the complete law ∀y ∈ N, y = y · y.

We also trivially see that if f is surjective, then N must be trivial, since then N can

have at most one element.
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There are, however, more indirect ways to detect information about magmas with

homomorphisms, usually requiring a bit more structure on the magmas. This theorem

is known as the Eckmann-Hilton argument (and this is actually more general than

the original argument):

Theorem 6. Let (M, ⋄) be a unital magma with identity element e0. Then consider

a unital magma (M, ·) given by an operation · such that · : (M, ⋄)× (M, ⋄) → (M, ⋄)

is a magma homomorphism, with identity element e1. Then we have the following:

1. The exchange law holds: ∀x, y, z, w ∈M, (x · y) ⋄ (z · w) = (x ⋄ z) · (y ⋄ w);

2. e0 = e1;

3. ∀x, y ∈M,x ⋄ y = x · y;

4. (M, ⋄) is commutative (and therefore also (M, ·) is);

5. (M, ⋄) is associative (and therefore also (M, ·) is).

Proof. (1.) Recall from Lemma 2 that the binary operation ⋆ on (M, ⋄) × (M, ⋄)

is defined component-wise, so that (x, y) ⋆ (z, w) = (x ⋄ z, y ⋄ w). Then since · is a

magma homomorphism, we have

·((x, y) ∗ (z, w)) = ·(x ⋄ z, y ⋄ w)

= ·(x, y) ⋄ ·(z, w).

Therefore (x ⋄ z) · (y ⋄ w) = (x · y) ⋄ (z · w).

(2.):

e0 = e0 ⋄ e0

= (e1 · e0) ⋄ (e0 · e1)

= (e1 ⋄ e0) · (e0 ⋄ e1)

= e1 · e1

= e1.
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(3.):

x ⋄ y = (x · e1) ⋄ (e1 · y)

= (x ⋄ e1) · (e1 ⋄ y)

= (x ⋄ e0) · (e0 ⋄ y)

= x · y.

Now that we have these two results, we’ll write the one identity in M as e, and write

x ⋄ y = x · y = xy. Then the exchange law we have states that (ab)(cd) = (ac)(bd).

(4.):

xy = (ex)(ye)

= (ey)(xe)

= yx.

(5.):

(xy)z = (xy)(ez)

= (xe)(yz)

= x(yz).

This theorem ends up having important consequences, such as in the proof of

the commutativity of higher homotopy groups, and secretly it is a statement about

monoidal categories [Yua12], but for our purposes it shows how constructing certain

magma homomorphisms gives us laws on magmas.

1.2.3 Minimal axiomatizations and the usefulness of Lean

Generally speaking, proofs of magma implications tend to get quite large and unwieldy

to do with pen and paper when we don’t have nice constructions like the above
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available, which is more often than not. As a demonstration, we can sometimes

prove the equivalence between a single magma law and a more sophisticated algebraic

structure. This is known generally as a ‘minimal axiomatization’ of the algebraic

structure. Here is an interesting example from [MP74]:

Theorem 7. M is a magma such that ∀x, y, z ∈M,x = (y ⋄ z) ⋄ (y ⋄ (x ⋄ z)) if and

only if M is an Abelian group of exponent 2.

Proof. Let M be an Abelian group of exponent 2, so that 2 is the smallest positive

natural number z such that mz = I for all m ∈M . Then we have for any x, y, z ∈M ,

(y ⋄ z) ⋄ (y ⋄ (x ⋄ z)) = (y ⋄ y) ⋄ (x ⋄ (z ⋄ z))

= e ⋄ (x ⋄ e)

= x.

Now let M be a magma such that ∀x, y, z ∈M,x = (y ⋄ z) ⋄ (y ⋄ (x ⋄ z)). Substituting

in y = z = x ⋄ y, we get

∀x, y ∈M,x = ((x ⋄ y) ⋄ (x ⋄ y)) ⋄ ((x ⋄ y) ⋄ (x ⋄ (x ⋄ y))). (1.3)

Similarly, substituting in z = y and y = x, we get

∀x, y,∈M,x = (x ⋄ y) ⋄ (x ⋄ (x ⋄ y)).

Observe then that this is the right half of (1.3), so therefore we have

∀x, y ∈M,x = ((x ⋄ y) ⋄ (x ⋄ y)) ⋄ x.

Changing variables here, we have

∀y, z ∈M, y = ((y ⋄ z) ⋄ (y ⋄ z)) ⋄ y. (1.4)

Then substituting in x = (y ⋄ z) ⋄ (y ⋄ z), y = x, and z = y into the assumed law, we

have

∀x, y, z ∈M, (y ⋄ z) ⋄ (y ⋄ z) = (x ⋄ y) ⋄ (x ⋄ ((y ⋄ z) ⋄ (y ⋄ z)) ⋄ y).
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We see then that this includes the term ((y ⋄ z) ⋄ (y ⋄ z)) ⋄ y, which we found to be

equal to y with (1.4), so we have

∀x, y, z ∈M, (y ⋄ z) ⋄ (y ⋄ z) = (x ⋄ y) ⋄ (x ⋄ y).

Changing variables here, we have

∀y, z, w ∈M, (y ⋄ z) ⋄ (y ⋄ z) = (z ⋄ w) ⋄ (z ⋄ w).

Therefore by transitivity we have

∀x, y, z, w ∈M, (x ⋄ y) ⋄ (x ⋄ y) = (z ⋄ w) ⋄ (z ⋄ w).

Now substituting in x = x ⋄ x, y = x ⋄ (x ⋄ x), z = y ⋄ y, and w = y ⋄ (y ⋄ y) here, we

have

∀x, y ∈M,((x ⋄ x) ⋄ (x ⋄ (x ⋄ x))) ⋄ ((x ⋄ x) ⋄ (x ⋄ (x ⋄ x)))

= ((y ⋄ y) ⋄ (y ⋄ (y ⋄ y))) ⋄ ((y ⋄ y) ⋄ (y ⋄ (y ⋄ y))). (1.5)

Our given law for x = y = z gives us also that

∀x ∈M,x = (x ⋄ x) ⋄ (x ⋄ (x ⋄ x)), (1.6)

and similarly

∀y ∈M, y = (y ⋄ y) ⋄ (y ⋄ (y ⋄ y)).

So therefore (1.5) reduces to

∀x, y ∈M,x ⋄ x = y ⋄ y.

For any y ∈M , let e = y ⋄ y. Therefore we have

∀x ∈M,x ⋄ x = e. (1.7)
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Substituting this back into (1.6), we get

∀x ∈M,x = e ⋄ (x ⋄ e), (1.8)

and substituting in y = z = e into the given law, we have

∀x ∈M,x = (e ⋄ e) ⋄ (e ⋄ (x ⋄ e)),

so that by (1.7),

∀x ∈M,x = e ⋄ (e ⋄ (x ⋄ e)).

Observing then that the right half of this equation is equal to x by (1.8), we have

∀x ∈M,x = e ⋄ x. (1.9)

Then applying (1.8) to (1.9), we get

∀x ∈M,x = x ⋄ e. (1.10)

Moving on then, taking z = e in the given law, we have

∀x, y ∈M,x = (y ⋄ e) ⋄ (y ⋄ (x ⋄ e)),

so that

∀x, y ∈M,x = y ⋄ (y ⋄ x). (1.11)

Similarly taking y = I, we get

∀x, z ∈ X, x = z ⋄ (x ⋄ z). (1.12)

Substituting z = x ⋄ y into (1.12), we get

∀x, y ∈M,x = (x ⋄ y) ⋄ (x ⋄ (x ⋄ y)),

and using (1.11) on x ⋄ (x ⋄ y), we get

∀x, y ∈M,x = (x ⋄ y) ⋄ y.
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From this, we have

∀x, y ∈M, y ⋄ x = y ⋄ ((x ⋄ y) ⋄ y).

Substituting in x = x ⋄ y and z = y into (1.12) then, we have that

∀x, y ∈M,x ⋄ y = y ⋄ ((x ⋄ y) ⋄ y),

and therefore by transitivity

∀x, y ∈M,x ⋄ y = y ⋄ x. (1.13)

Lastly, substituting in x = x ⋄ (y ⋄ z) and z = x into the given law, we have

∀x, y, z ∈M,x ⋄ (y ⋄ z) = (y ⋄ x) ⋄ (y ⋄ ((x ⋄ (y ⋄ z)) ⋄ x)).

Therefore, by repeated applications of (1.11) and (1.13), we have

∀x, y, z ∈M, (y ⋄ x) ⋄ (y ⋄ ((x ⋄ (y ⋄ z)) ⋄ x)) = (x ⋄ y) ⋄ (y ⋄ ((x ⋄ (y ⋄ z)) ⋄ x))

= (x ⋄ y) ⋄ (y ⋄ (x ⋄ (x ⋄ (y ⋄ z))))

= (x ⋄ y) ⋄ (y ⋄ (y ⋄ z))

= (x ⋄ y) ⋄ z.

Therefore by transitivity,

∀x, y ∈M,x ⋄ (y ⋄ z) = (x ⋄ y) ⋄ z. (1.14)

Therefore in all, (1.14) gives us that M is associative, (1.13) gives us that M is

commutative, (1.9) and (1.10) give us that e is an identity element in M , and (1.7)

gives us that each element is its own inverse (and therefore also M is of exponent 2).

Therefore in all M is an Abelian group of exponent 2.

This leads us to the question: for which other structures does a minimal axioma-

tization exist? Or, even more generally, can we characterize every single magma in
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terms of their magma implications? As we have seen from how difficult these proofs

can be with pen and paper, the answer is “not in any reasonable amount of time”.

This is where proof assistants come in as an incredibly helpful tool. Terence Tao

has been leading the collaborative equational theories project using the Lean proof

assistant to answer exactly this question of characterizing every magma with laws

that contain at most four instances of the binary operation [Tao24a]. This project

has been massively successful, with 22, 028, 804 implications having been proven as of

November 26, 2024.

The primary reason why Lean allows us to prove tens of millions of implications on

magmas that we could never do manually in any remotely reasonable amount of time is

because of its strong automation capabilities. For example, the SimpleRewrites folder

has tens of thousands of proofs generated automatically by trying the exact same

proof technique for every single implication and seeing which ones it works for. The

most powerful automated technique uses the specialized automated theorem prover

Vampire, which was able to do all but 130 of the 22 million possible implications

alone. These final 130 implications, all conjectured to be false, seem to require some

pretty sophisticated counterexamples, and there has been some interesting work on

these troublesome laws.

These automated theorem prover techniques also allow us to find minimal ax-

iomatizations of mathematical structures that might not have been possible to find

without them. Here is an example of one that I worked on for the equational theories

project:

Theorem 8. M is a magma such that ∀x, y, z ∈M,x = (y ⋄ ((x⋄y)⋄y))⋄ (x⋄ (z ⋄y))

if and only if M is a Boolean algebra defined in terms of the Sheffer stroke (NAND)

operation.

Proof. Let M be a Boolean algebra, so that we have the binary meet (∧) and join
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(∨) operations and the unary complement (¬) operation. Define the Sheffer stroke

magma (M, ⋄) as for any x, y ∈M , x ⋄ y = ¬(x ∧ y). Then we have

(y ⋄ ((x ⋄ y) ⋄ y)) ⋄ (x ⋄ (z ⋄ y)) = ¬(¬(y ∧ ¬(¬(x ∧ y) ∧ y)) ∧ ¬(x ∧ ¬(z ∧ y)))

= ¬(¬(y ∧ ¬(¬x ∨ (¬y ∧ y))) ∧ ¬(x ∧ ¬(z ∧ y)))

= ¬(¬(y ∧ ¬(¬x ∨ F )) ∧ ¬(x ∧ ¬(z ∧ y)))

= ¬(¬(y ∧ ¬(¬x)) ∧ ¬(x ∧ ¬(z ∧ y)))

= ¬(¬(y ∧ x) ∧ ¬(x ∧ ¬(z ∧ y)))

= (x ∧ y) ∨ (x ∧ ¬(z ∧ y))

= x ∧ (y ∨ (x ∧ ¬(z ∧ y)))

= x ∧ (y ∨ (¬z ∨ ¬y))

= x ∧ ((y ∨ ¬y) ∨ ¬z)

= x ∧ (T ∨ ¬z)

= x ∧ T

= x.

Therefore the required law holds for the Sheffer stroke. The formal proof in Lean for

this can be done with only one simp command, as seen on line 36 in [RT24a].

Assume M is a magma for which the given law holds. Automated theorem provers

can show ([McC+02]) that the given law implies that:

∀x ∈M, x = (x ⋄ x) ⋄ (x ⋄ x)

∀x, y ∈M, x ⋄ x = x ⋄ (y ⋄ (y ⋄ y))

∀x, y, z ∈M, (x ⋄ (y ⋄ z)) ⋄ (x ⋄ (y ⋄ z)) = ((y ⋄ y) ⋄ x) ⋄ ((z ⋄ z) ⋄ x).

These implications can be found in Lean starting at line 43 in [RT24a], with about

1500 lines of automatically generated Vampire proofs in [Tow24].

It was already known to Sheffer in 1913 ([She13]) that these are sufficient for

a Boolean algebra, where the meet and join operations are defined in terms of the
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Sheffer stroke: x∨ y = (x ⋄ x) ⋄ (y ⋄ y), and x∧ y = (x ⋄ y) ⋄ (x ⋄ y). This verification

in Lean can be found in [RT24b].

These implications would have been close to impossible to verify without computer

assistance, so the framework and tools provided by the proof assistant systems involved

in this proof were essential for creating this theory in the first place.

Here is how magmas are defined in the equational theories project:

class Magma (α : Type _) where

op : α → α → α

One thing we did not learn in the previous section is typeclasses, which is what

Magma is defined as. Typeclasses provide support for a form of inheritence in Lean.

This means that we can prove properties of some typeclass, and then we can show

that some other type is an instance of that typeclass, and then that type inherits

all of the properties of the typeclass that we proved. For example, we can make a

typeclass for groups which specifies an operation on a type α, α → α → α, that is

associative, etc., and then we can prove certain properties about groups in general

with that typeclass. We can then show that a type with a binary operation, say

integers on addition, is a group by proving that that binary operation is associative

etc. on that type, and then we can use all the properties that we proved for general

groups with that type. Magmas as defined here work the same way, though we only

specify a binary operation on a type α with no further requirements.

To prove magma implications in Lean, we prove them on the level of the typeclass

Magma without reference to any particular magma. Here is a formalization of the

magma implication in Theorem 4 that I wrote for the equational theories project,

where Equation 953 is the law ∀x, y, z ∈M,x = y ⋄ ((z ⋄ x) ⋄ (z ⋄ z)), and Equation 2

is the law ∀x, y ∈M,x = y:
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theorem Equation953_implies_Equation2 (G : Type _) [Magma G] (h:

Equation953 G) : Equation2 G := by

intro x y

have znx (z : G) : z ⋄ ((x ⋄ x) ⋄ (x ⋄ x)) = x := (h x z x).symm

have hzzi := h x x (x ⋄ x)

have hyzi := h y x (x ⋄ x)

rw [znx] at hzzi hyzi

exact hzzi.trans hyzi.symm

This is effectively an exact translation of the informal proof given for Theorem

4, though with a lot of compactification done. There are many different kinds of

the fully automated proofs done with Lean, but here is a brief excerpt of one that I

generated with Vampire for the proof of Theorem 8, demonstrating the complexity of

calculation these systems are able to do:

have eq9 (X0 X1 X2 X3 : G) : (X0 ⋄ ((X1 ⋄ X0) ⋄ X0)) = (((X1 ⋄ (X2 ⋄ X0))

⋄ (X1 ⋄ (X1 ⋄ (X2 ⋄ X0)))) ⋄ ((X0 ⋄ ((X1 ⋄ X0) ⋄ X0)) ⋄ (X3 ⋄ (X1 ⋄ (X2

⋄ X0))))) := superpose eq7 eq7 -- superposition 7,7, 7 into 7, unify on

(0).2 in 7 and (0).1.1.2.1 in 7

have eq10 (X0 X1 X2 X3 : G) : (((X1 ⋄ (X2 ⋄ X0)) ⋄ ((X3 ⋄ (X1 ⋄ (X2 ⋄

X0))) ⋄ (X1 ⋄ (X2 ⋄ X0)))) ⋄ (X3 ⋄ X1)) = X3 := superpose eq7 eq7 --

superposition 7,7, 7 into 7, unify on (0).2 in 7 and (0).1.2.2 in 7

have eq11 (X0 X1 X2 : G) : (X0 ⋄ ((X1 ⋄ X0) ⋄ X0)) = (((X2 ⋄ X0) ⋄ (((X0

⋄ ((X1 ⋄ X0) ⋄ X0)) ⋄ (X2 ⋄ X0)) ⋄ (X2 ⋄ X0))) ⋄ X1) := superpose eq7

eq7 -- superposition 7,7, 7 into 7, unify on (0).2 in 7 and (0).1.2 in 7
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Dependent type theory

We have seen a bit about how to work with proof assistants now and what they are

capable of doing, but we still don’t exactly understand how they work. How does

Lean know when the goals have been accomplished, that a proof is valid? To answer

this, we have to get down to the logical underpinnings of proof assistants. (Almost)

every proof assistant is an implementation of a formal language called dependent type

theory. This language was designed to be able to express mathematical propositions

and their proofs, and it works as a foundation for mathematics that is not set-based.

In this chapter, we will first compare set theory to type theory, and then get an

understanding of the development of dependent type theory through lambda calculus.

From here, we will implement some mathematical objects with dependent type theory

to get a truly fundamental perspective on how proof assistants verify math.

2.1 Set theories vs. type theories

Set theory and type theory are both attempts at making mathematical the idea of a

“collection” or a “construction,” and in the process form a foundation of mathematics.

35



Chapter 2. Dependent type theory

The primary goal of type theory is to not just be a foundation of mathematics, but

to provide a decidable foundation of mathematics. By decidable here, we mean that

there exists a finite computation which decides whether a formula is a theorem of

a logical system. Not every problem in every form of type theory is decidable, but

the important one (especially for proof assistants) is that type-checking is decidable.

Type-checking is the problem of checking whether a given term has a given type (or

in set theoretical language, whether some object is contained in some set). [Geu08]

gives a useful example to see the difference here between set theory and type theory.

Consider the set theoretical statement

3 ∈ {n ∈ N | ∀x, y, z ∈ N+, xn + yn ̸= zn}.

In order to decide whether this statement is true, we have to provide a proof that

∀x, y, z ∈ N+, x3 + y3 ̸= z3. In contrast, a typing judgment such as

3 + (7 ∗ 8)5 : Nat

(read as “3 + (7 ∗ 8)5 is of type Nat”, or natural number) does not require a proof, but

rather represents a decidable computation, in that each of 3, 7, 8, and 5 are of type

Nat, and the operations +, ∗, and exponentiation take objects of type Nat to objects

of type Nat, so the result of this computation having been done must also be of type

Nat. The computation is done automatically: there is no other possibility for the type

of 3+ (7 ∗ 8)5 as all of the objects and functions involved act only on Nat. The closest

we can get to the set theoretical example given above from a type theory perspective

is make terms that are pairs of an n : Nat and a proof p of ∀x, y, z : Nat, xn+ yn ̸= zn,

as checking that p is a proof for that n is a decidable process, whereas searching for

the proof as required by the set theoretical standard is not. This ends up giving us

the biggest difference between set theories and type theories, and the chief reason

why type theories are much more amenable for computerization than set theories: set

membership is generally undecidable, yet type-checking is decidable.
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This leads to another difference, in that sets are extensional, while types are

intentional. By extensional, we mean that any set theory will have the axiom of

extensionality: two sets are equal if and only if they contain the same elements. For

example, the sets

{n ∈ N | n is an even prime larger than 3}

and

{n ∈ N | n is an odd prime smaller than 2}

are equal to each other, as they contain the same elements (namely, no elements).

Types, on the other hand, are intentional in that types are equal if they have the

same representation. In the above example, the type of natural numbers that are even

primes larger than 3 and the type of natural numbers that are odd primes smaller

than 2 are not equal to each other, because the method of constructing a term that

is a prime larger than 3 is different from constructing a term that is an odd prime

smaller than 2: the two types are asking for two different constructions. The rules of

construction of the two types are different, so from an intensional perspective, the

types are not equal. From a philosophical perspective then, types are ways to collect

together objects of the same ‘structure’; all terms of a type are all constructed with

the same algorithmic procedure.

This intensional perspective has some immediate corollaries that we will be able

to get into more detail on later. One particularly interesting one is that each term

has a unique type, whereas elements of a set can potentially be members of many

sets.
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2.2 Untyped lambda calculus

The first step to developing dependent type theory is through the untyped and then

simply typed lambda calculi, since dependent type theory is an extension of the simply

typed lambda calculus to cover predicate logic with quantifiers. This tracks with

the historical development of dependent type theory as well. Much of the following

exposition comes from chapter 1 of [HS08], and chapters 1–4 of [SU06].

Lambda calculus is intended to be a minimalist formal system for expressing all

possible computations, which in the usual mathematical world is encapsulated by the

idea of a function. The grammar of untyped lambda calculus allows us to express the

idea of anonymous functions:

Definition 5. Let V = {v0, v1, . . .} be an alphabet, with each v ∈ V called a variable.

Then, define the set Λ of λ-terms inductively with:

1. If v ∈ V , then v ∈ Λ (these λ-terms are called atoms);

2. If M,N ∈ Λ, then (MN) ∈ Λ (called an application);

3. If M ∈ Λ, then (λx.M) ∈ Λ (called an abstraction).

At this point, there is no meaning yet for the elements of Λ, we have only specified

the valid ways of stringing together elements of V in the language of untyped lambda

calculus. Some valid λ-terms are:

1. λx.x;

2. (λx.x)(λy.y);

3. (λxy.xxy)(λx.xy)(λx.xz);

4. (x(λx.(λx.x))).
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Note the similarity here to the usual anonymous function notation familiar from

mathematics: the identity function is written as x 7→ x. The λ-term λx.x is intended

to express this exact idea: a bound variable x computes to x. Usually, functions are

applied to particular terms, which is what a λ-term like (λx.x)y is intended to express.

There isn’t really a good way to express this with the anonymous function notation,

and we usually write a λ-term like (λx.x)y as id(y), where id is defined as the function

x 7→ x (and note also that I am intentionally not specifying the domain or codomain

of id, as that is not a concept that is yet included in the untyped lambda calculus).

Evaluating functions, such as id(y) = y, is a fundamental feature of functions in the

usual mathematical notation, and there are two fundamental operations defined in

lambda calculus that encapsulate these features: α-conversion and β-reduction.

First, we need some important technical definitions that allow us to talk about

λ-terms. Note that with the given definition of Λ, we can induct on a λ-term M by

considering the three possible cases for M , if it is an atom, application, or abstraction.

Thus, we are justified in making a definition such as

Definition 6. For a λ-term M , the set of free variables FV (M) is defined inductively

as:

1. FV (x) = {x};

2. FV (PQ) = FV (P ) ∪ FV (Q);

3. FV (λx.P ) = FV (P ) \ {x}.

Intuitively, a free variable of M is a variable that is not bound by any abstraction

λx.P that occurs within M . For example, consider this λ-term:

P ≡ (λy.yx(λz.y(λa.b)z))vw.
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To find the free variables of P , we break it down inductively: P is first of all the

application of (λy.yx(λz.y(λa.b)z))v to w, so

FV (P ) = FV ((λy.yx(λz.y(λa.b)z))v) ∪ FV (w),

and FV (w) = {w}. Then we see that (λy.yx(λz.y(λa.b)z))v is the application of

λy.yx(λz.y(λa.b)z) to v, so

FV ((λy.yx(λz.y(λa.b)z))v) = FV (λy.yx(λz.y(λa.b)z)) ∪ FV (v),

and FV (v) = {v}. Then λy.yx(λz.y(λa.b)z) is an abstraction, so that

FV (λy.yx(λz.y(λa.b)z)) = FV (yx(λz.y(λa.b)z)) \ {y}.

Repeating this process, we ultimately end up with

FV (yx(λz.y(λa.b)z)) = {y} ∪ {x} ∪ ({y} ∪ ({b} \ {a})) \ {z},

so that ultimately

FV (λy.yx(λz.y(λa.b)z)) = {x, y, b} \ {y} = {x, b},

and therefore

FV (P ) = {x, b} ∪ {v} ∪ {w} = {x, b, v, w}.

This matches with our intuitive idea of a free variable, as none of x, b, v or w are

bounded by any abstraction in P .

For a formal system of functions, we want to have some way of evaluating a

function for some value. The first technical step needed for this is an algorithmic

way to substitute in terms for free variables. The following definition of substitution

might seem a bit strange, but ultimately ends up being necessary to cover for a lot of

possible side-cases that I will highlight.
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Definition 7. Let M,N, x be λ-terms. Then define the substitution of N for every

free occurrence of x in M , denoted by [N/x]M , by induction on M with

1. [N/x]x = N ;

2. [N/x]a = a for any atom a ̸= x;

3. [N/x](PQ) = ([N/x]P [N/x]Q);

4. [N/x](λx.P ) = λx.P ;

5. [N/x](λy.P ) = λy.P for x /∈ FV (P );

6. [N/x](λy.P ) = λy.[N/x]P for x ∈ FV (P ) and y /∈ FV (N);

7. [N/x](λy.P ) = λz.[N/z][z/y]P for x ∈ FV (P ) and y ∈ FV (N).

The first two parts are obvious as substituting in N for x in the term x results in

just N , and substituting in N for x in the term a results in a since there is no x to

substitute for, and 3 works similarly. For 4, the term λx.P has x /∈ FV (P ), so that

there is no free occurrence of x in P , and therefore we cannot substitute N for any

free occurrence of x, and we end up with just λx.P .

For 5–7, we end up breaking on cases of whether x ∈ FV (P ) and whether

y ∈ FV (N). If x /∈ FV (P ), then [N/x](λy.P ) = λy.P as again there is nothing

to substitute N for in λy.P . If x ∈ FV (P ), then we have to consider whether

y ∈ FV (N). For example, consider the substitution [w/x](λy.x). We reasonably

expect this substitution to evaluate to [w/x](λy.x) = λy.w, as x is free in λy.x. But

then if we were to evaluate [w/x](λw.x) in the same way, we’d end up with λw.w,

which is an identity function, and not a constant function like λw.x started off as. In

all then it is important to consider whether y ∈ FV (N) to avoid name clashes like

this that give unexpected results, so it makes most sense to evaluate this as in 7.
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With this tool of substitution defined, we can now define the two fundamental

operations of lambda calculus: α-conversion and β-reduction.

Definition 8. Let a λ-term P contain an occurrence of λx.M , and let y /∈ FV (M).

Then an α-conversion in P is the substitution

[(λy.[y/x]M)/(λx.M)]P.

Intuitively, α-conversion is a change of variables from λx.M to λy.M , where a

bound variable x is formally changed to another name y. We write P0 =α P1 if there

is a finite amount of α-conversions that, when applied successively, results in P1. For

example, we have the α-conversion

[(λy0.[y0/y](λy.xy))/(λy.xy)](λx.(λy.xy)) = [(λy0.(λy0.xy0))/(λy.xy)](λx.(λy.xy))

= [(λy0.xy0)/(λy.xy)](λx.(λy.xy))

= λx.(λy0.xy0),

so that λx.(λy.xy) =α λx.(λy0.xy0). Similarly, we can make an α-conversion that

gives us λx.(λy0.xy0) =α λy.(λy0.yy0), and then λy(λy0.yy0) =α λy(λx.yx). There-

fore, there is a finite amount of α-conversions starting from λx.(λy.xy) that, when suc-

cessively applied one after the other, results in λy(λx.yx), so that λxy.xy =α λyx.yx.

Importantly, we have the following:

Theorem 9. =α is an equivalence relation.

Proof. Note that transitivity is immediate from our definition of α-conversion: if

there is a finite amount of α-conversions that go from P0 to P1, and a finite amount

of α-conversions that go from P1 to P2, then there is a finite amount of α-conversions

that go from P0 to P2.

Let P be a λ-term containing λx.M . We have that x /∈ FV (λx.M), as x is bound

in λx.M . Then we have the α-conversion

(λx.[x/x]M)/(λx.M)]P = [(λx.M)/(λx.M)]P = P
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goes from P to P , so that P =α P .

To show that if P0 =α P1 then P1 =α P0, it suffices to show that for any single

α-conversion that goes directly from Pj to Pk, we can get another α-conversion that

goes from Pk to Pj. Let Pj contain an occurrence of λx.M , and let y /∈ FV (M).

Then let

[(λy.[y/x]M)/(λx.M)]Pj = Pk

be an α-conversion from Pj to Pk, so that Pj =α Pk. Note that this implies that

Pj = [(λx.[x/y]M)/(λy.M)]Pk.

Since then λy.M occurs in Pj and x /∈ FV (λy.M), we have that this is an α-conversion

from Pk to Pj, so that Pk =α Pj.

Notably here, [SU06] actually defines the set of λ-terms defined earlier as the set

of pre-terms, and then defines the set of λ-terms as the quotient of that set with

respect to α-equivalence. This does lead to some technical differences in the following

definition, but what we have now works just as well.

We now have the tools needed to define a mechanism for evaluating functions.

This is done through so-called β-reduction:

Definition 9. A term of the form (λx.M)N is called a β-redex. A term [N/x]M is

called a β-contractum. If P contains an occurrence of a β-redex, then the substitution

[[N/x]M/(λx.M)]P

is called a β-reduction of P . If a term contains no β-redexes, then it is in β-normal

form.
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The idea here is that the term (λx.M)N should be interpreted as evaluating the

function λx.M at N , or substituting each instance of x in M with N , and β-reduction

is the algorithmic process with which we accomplish this. We write P ▷β P
′ if P

β-reduces to P ′. For example, we can do

(λx.xx)y ▷β [[y/x]xx/(λx.xx)](λx.xx)

= [yy/(λx.xx)](λx.xx)

= yy,

so that (λx.xx)y ▷β yy. This matches our idea of function evaluation, as if we define

a function f by x 7→ xx, then f(y) = yy. When a term is in β-normal form, is when

we think of a function as being fully evaluated and cannot be β-reduced further. For

example, the β-normal form of (λx.xy)(λu.vuu) is:

(λx.xy)(λu.vuu) ▷β (λu.vuu)y

▷β vyy.

The most essential theorem on β-reduction is the Church-Rosser theorem, which

essentially states that the β-normal form of a term is unique.

Theorem 10. If P ▷β M and P ▷β N , then there exists a term T such that M ▷β T

and N ▷β T .

There is no quick or easy proof of this, so refer to page 282 of [HS08]. However,

this theorem also guarantees that there is an issue with the untyped lambda calculus.

That is, not every term can be reduced to a β-normal form. In computational terms,

this means that there are programs in the untyped lambda calculus which do not

terminate. For example:

(λx.xx)(λx.xx) ▷β [[(λx.xx)/x]xx/(λx.xx)](λx.xx)

= [(λx.xx)(λx.xx)/(λx.xx)](λx.xx)

= (λx.xx)(λx.xx).
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This therefore uniquely infinitely reduces to itself, and as such never terminates. This

is not a contradiction per se, but it does mean that the untyped lambda calculus is a

non-computable theory, and especially for the purposes of a proof assistant, we want

these kinds of non-computable expressions to be impossible. This is the problem

that the typed lambda calculus solves, by introducing a typing relation on the set of

λ-terms that guarantees the well-posedness of functions.

2.3 Natural deduction and typed lambda calculus

Type theory is usually discussed in the system of natural deduction, so I will first

briefly introduce it. Natural deduction is a proof system that formalizes the semantics

of propositional logic and forms the logical language in which much type theory ends

up being expressed. I will first define all the required grammar for natural deduction:

Definition 10. Natural deduction is defined with an infinite set PV, called the set of

propositional variables, with a constant term ⊥ ∈ PV, and the symbols →, ∨, ∧. The

set Φ of formulas of propositional logic is defined as:

1. If φ ∈ PV, then φ ∈ Ψ;

2. If φ, ψ ∈ Ψ, then (φ→ ψ), (φ ∨ ψ), (φ ∧ ψ) ∈ Ψ.

A judgment in natural deduction is a pair, written Γ ⊢ φ (read as “Γ proves φ”), of a

finite set of formulas Γ and a formula φ. Γ is called the context of the judgment, and

φ is called the consequent.

The set of judgments is defined by the following axioms of propositional logic in

natural deduction (the notation

Γ ⊢ φ Γ′ ⊢ ψ
Γ′′ ⊢ τ
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should be read as, “for Γ,Γ′,Γ′′ ⊆ Ψ, φ, ψ, τ ∈ Ψ, if Γ ⊢ φ and Γ′ ⊢ ψ are judgments,

then Γ′′ ⊢ τ is a judgment”):

1. If Γ ⊆ Ψ and φ ∈ Ψ, then Γ, φ ⊢ φ (Ax.);

2. Γ, φ ⊢ ψ (→ I);
Γ ⊢ φ→ ψ

3. Γ ⊢ φ→ ψ Γ ⊢ φ (→ E);
Γ ⊢ ψ

4. Γ ⊢ φ Γ ⊢ ψ (∧I);
Γ ⊢ φ ∧ ψ

5. Γ ⊢ φ ∧ ψ (∧E1);
Γ ⊢ φ

Γ ⊢ φ ∧ ψ (∧E2);
Γ ⊢ ψ

6. Γ ⊢ φ (∨I1);
Γ ⊢ φ ∨ ψ

Γ ⊢ ψ (∨I2);
Γ ⊢ φ ∨ ψ

7. Γ, φ ⊢ τ Γ, ψ ⊢ τ Γ,⊢ φ ∨ ψ (∨E);
Γ ⊢ τ

8. Γ ⊢ ⊥ (⊥E).
Γ ⊢ φ

These judgment axioms are meant to model our intuitive idea of propositional

logic. Observe the axiom rule, which states Γ, φ ⊢ φ. This means that if we have that

some formulas in Γ, and specifically some formula φ, are true, then we have a proof

that φ is true. This forms our inductive base case for defining the set of judgments in

natural deduction. From here, there are two types of judgment axioms: introduction
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rules and elimination rules. Introduction rules tell us how to create judgments of a

certain form, and elimination rules tell us how to deduce things from judgments of

a certain form. For example, → I, or implication introduction, tells us that if from

some formulas Γ, φ, we can prove that ψ is true, then we have a proof of φ → ψ.

This tells us the formula for constructing judgments of the form φ→ ψ: assume φ,

then prove ψ. Similarly → E, or implication elimination, tells us that if we have that

φ → ψ is true, and that φ is true, then we have a proof of ψ. This is the familiar

modus ponens rule. Note that there is no introduction rule for ⊥. This is because

⊥ should be read as the propositional formula “False.” We should not be able to

construct a proof of False, so it has no introduction rules (that is the definition of ⊥

in type theory). We can eliminate off of ⊥ by, if we are able to construct a proof of ⊥,

then we have a proof of any proposition φ; this is exactly the principle of explosion.

These rules, from a set theoretical perspective, encode much of mathematics. This

point is made very explicitly with the proof assistant Metamath, which starts explicitly

from these implication rules, and ends up deriving a vast wealth of mathematics

from those axioms alone. But these natural deduction rules are a logic built “on top

of” a model of set theory. For the simply typed lambda calculus, we must build on

the untyped lambda calculus defined earlier. To do this, for any λ-term, we have to

associate a ‘type’ to each term. Primarily, we need to make sure that application to

an abstraction enforces a type discipline that makes the types of the terms match:

an abstraction M needs to have a function type like σ → τ , and to apply N to M ,

N must have type σ. The result MN will have the type τ . This is the same idea as

making sure that you only evaluate functions for values that are in the domain of the

function, and you end up with a result in the codomain of the function.

Definition 11. Consider any finite or infinite sequence of symbols, called atomic

types. Then the set of types is defined inductively as:

1. Every atomic type is a type;
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2. if σ and τ are types, then (σ → τ) is a type, called a function type.

A type-assignment formula is an expression X : τ , read ‘X has the type τ ’, where X

is a λ-term, and τ is a type. For any atomic types σ, τ , and any atom x and λ-terms

M,N , with x /∈ FV (M), we define the system of type-assignments inductively on X

with the following base-case, and type introduction and elimination rules:

1. Γ, x : τ ⊢ x : τ (Var.);

2. Γ, x : σ ⊢M : τ (→ i);
Γ ⊢ (λx.M) : σ → τ

3. Γ ⊢M : σ → τ Γ ⊢ N : σ (→ e).
Γ ⊢MN : τ

This provides an algorithm, importantly a polynomial-time one, with which we

can judge the type of some compound λ-term from arbitrarily assigned types to

atomic λ-terms. For example, if for some atom x, arbitrarily assigned the type τ ,

then we can determine the type of λx.x with the term introduction rule by:

Γ, x : τ ⊢ x : τ (Var.)
Γ ⊢ (λx.x) : τ → τ (→ i).

We see then that we have the judgment that λx.x has type τ → τ , which makes sense

as we expect λx.x to take in xs of type τ and output objects of type τ , namely, the

exact same x as the input.

For a slightly more complex example, let Γ ⊢ x : σ → τ → ρ, Γ ⊢ y : σ → τ , and

Γ ⊢ z : σ. Then, to determine the type of λxyz.xz(yz), we break it down inductively.

We can write an abstraction as nested lambdas, so the term is λx.(λy.(λz.xz(yz))),

and thus the derivation will start first by determining the type of λy.(λz.xz(yz)),

which starts with determining λz.xz(yz). We have Γ ⊢ yz : τ by the type elimination

rule, and Γ ⊢ xz : τ → ρ similarly, so Γ ⊢ xz(yz) : ρ, and therefore Γ ⊢ λz.xz(yz) :
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σ → ρ. Therefore Γ ⊢ λy.(λz.xz(yz)) : (σ → τ) → σ → ρ, and therefore Γ ⊢

λx.(λy.(λz.xz(yz))) : (σ → τ → ρ) → (σ → τ) → σ → ρ.

We can already prove some simple properties about this system, notably some

that distinguish it from a set theory. For example, terms must have unique types in

this system, whereas elements can be members of multiple sets in set theories.

Theorem 11. If Γ ⊢M : σ and Γ ⊢M : τ , then σ = τ .

Proof. Assume that Γ ⊢ M : σ, Γ ⊢ M : τ , and σ ̸= τ . We induct with respect to

M . If M is an atomic variable, so that M = x : σ and M = x : τ , then we have

Γ ⊢ λx.x : σ → τ . But for any Γ ⊢ z : σ for which also Γ ⊬ z : τ , then Γ ⊢ (λx.x)z : τ ,

so that Γ ⊢ z : τ , a contradiction, so that σ = τ .

Let M be an application, so that M = NP : σ and M = NP : τ , such that if

Γ ⊢ N : α and Γ ⊢ N : β, then α = β, and if Γ ⊢ P : α and Γ ⊢ P : β, then α = β.

Assume that σ ̸= τ . N must be a function type here, so that we have Γ ⊢ N : ρ→ σ

and Γ ⊢ N : ρ→ τ for some ρ, but ρ→ σ ̸= ρ→ τ , since σ ̸= τ , a contradiction to

the inductive hypothesis. Therefore σ = τ in this case.

Let M be an abstraction, so that M = (λx.N) : σ and M = (λx.N) : τ , such that

if Γ ⊢ N : α and Γ ⊢ N : β, then α = β, and if Γ ⊢ x : α and Γ ⊢ x : β, then α = β.

Assume that σ ̸= τ . Here, σ and τ must be function types, so that for some ρ, π, υ, ξ,

σ = ρ → π and τ = υ → ξ. But then we must have Γ ⊢ N : π and Γ ⊢ N : ξ, so

therefore π = ξ, and that Γ ⊢ x : ρ and Γ ⊢ x : υ, so therefore ρ = υ. But then

σ = ρ → π = υ → ξ = τ , a contradiction to the inductive hypothesis. Therefore

σ = τ in this case. Therefore the result holds by induction on λ-terms.

Note that this typing system is incapable of assigning types to every λ-term, on

purpose. For example, the term xx has no way to be assigned a type, regardless of
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what the type of x may be. This is why the typed lambda calculus gets rid of the

non-computable functions that do not have a β-normal form, as those terms that do

not have a β-normal form in the untyped lambda calculus are not typable.

Theorem 12. Every well-typed expression in the type assignment system described

above has a β-normal form.

Proof. Define the degree δ(τ) of a type τ inductively for some atomic type p and

types τ, σ by δ(p) = 0 and δ(τ → σ) = 1 + max(δ(τ), δ(σ)). Then let the degree of a

β-redex ∆ = (λx : τ.P : ρ)R be δ(τ → ρ).

Let M be a well-typed λ-term. Let nM be the number of β-redexes that occur in

M that are of maximal degree, and let the maximal degree of β-redexes that occur

in M be mM . We will use the notation M = (nM ,mM). Let ∆ be the right-most

β-redex of maximal degree in M , that is, that the position of the first symbol of ∆ is

further to the right than any other β-redex in M . Let M ′ be the term obtained from

β-reducing ∆ in M . Then it suffices to show that nM ′ < nM , as then the process of

β-reducing M from the right like this will gradually reduce nM to 0, therefore putting

M in β-normal form. We will do this by double induction on nM and mM .

If mM = 0, then the maximal degree of any β-redex in M = (nM , 0) is 0, which

means that the only β-redexes in (n, 0) must be atomic terms, so that (n, 0) must be

in β-normal form. Now assume that for any k < m, (nM , k) has a β-normal form,

and we want to show that (nM ,m) has a β-normal form. If nM = 0, then (0,m) has

no β-redexes of its maximal degree, and therefore there are no β-redexes in (0,m),

so that (0,m) has a β-normal form. Then for any ℓ < n, assume that (ℓ,m) has a

β-normal form, and we want to show that (n,m) has a β-normal form. To show this,

it suffices to show that if we β-reduce the rightmost β-redex of degree m in (n,m),

then we cannot end up getting more β-redexes of degree m from it, as then (n,m)

would reduce to (ℓ,m) for some ℓ < n, which has a β-normal form by the inductive
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hypothesis.

There are two possible cases in which the number of β-redexes will increase after

reduction: by copying existing β-redexes or creating new ones. New β-redexes are

created when a non-abstraction A that occurs in M is turned into an abstraction by

the reduction of ∆, which is only possible when A is an atomic variable or A = ∆. If

A is an atomic variable, then the new β-redex is degree 0, so that it necessarily will

have a lower degree than M started with, so the result holds in that case. If A = ∆,

then there are three cases that cause new β-redexes to form under reduction:

1. ∆ has the form (λx : ρ → µ. . . . xP : ρ . . .)(λy : ρ.Q : µ). This has degree

δ((ρ → µ) → (ρ → µ)) When reduced we end up with the β-redex · · · (λy :

ρ.Q : µ)(P : ρ . . .), which has degree δ(ρ → µ), which is less than ∆, so the

degree after reduction is less than initially, so the result holds.

2. ∆ has the form ((λx : τ.λy : ρ.R : µ)(P : τ))(Q : ρ). This has degree

δ(τ → ρ→ µ). The inside reduces to (λy : ρ.R1 : µ)(q : ρ), and this has degree

δ(ρ→ µ), which is less than the degree of ∆, so the degree reduces in this case.

3. ∆ has the form ((λx : ρ → µ.x)(λy : ρ.P : µ))(Q : ρ). This has degree

δ(ρ → (ρ → µ)) The inside reduces to (λy : ρ.Pµ)(Q : ρ), which has a lower

degree of δ(ρ → µ), which is less than the degree of ∆, so the degree also

reduces in this case.

The other case where the number of β-redexes increases by copying occurs when

∆ = (λx : τ.P : ρ)(Q : τ), where P contains more than one free occurrence of x, so

that each β-redex in Q would be multiplied when reduced. But ∆ is the rightmost

redex of degree δ in the term M , so that each β-redex in Q is either a smaller degree

than ∆, or gets reduced to β-redexes of degree smaller than δ, so that the degree of

the terms in ∆ after reduction would be smaller than δ in the end. Therefore, in all

cases (n,m) reduces to (ℓ,m) for some ℓ < n, so the result holds by induction.
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This is the statement that the simply typed lambda calculus is normalizing. There

is a stronger, and harder to prove, statement that the simply typed lambda calculus

is strongly normalizing, which means that there is a bound on the length of every

normalization sequence. Note that strong normalization, along with the Church-

Rosser theorem lifted to the simply typed lambda calculus, implies the consistency of

the simply typed lambda calculus.

Theorem 13. The simply typed lambda calculus is consistent. That is, there are

λ-terms M and N for which Γ ⊬M = N .

Proof. Let Γ ⊢ x : σ → τ → ρ, Γ ⊢ y : σ → τ , Γ ⊢ z : σ, with ρ ̸= σ, M = λxy.x,

and N = λxyz.xz(yz), and assume that Γ ⊢M = N . Then

Γ ⊢ λxy.x = λxyz.xz(yz) ⇔ Γ ⊢ λxy.x =β λxyz.xz(yz)

⇔ Γ ⊢ ∃P, λxy.x ▷β P ∧ λxyz.xz(yz) ▷β P,

where the first implication is immediate from the definition of β-reduction, and the

second implication is from the Church-Rosser theorem. But note that we found earlier

that Γ ⊢ λxyz.xz(yz) : (σ → τ → ρ) → (σ → τ) → σ → ρ, and we can also find

Γ ⊢ λxy.x : (σ → τ) → σ, so that each of these terms uniquely β-reduce to P which,

by the method of β-reduction detailed above, must then be such that Γ ⊢ P : ρ and

Γ ⊢ P : σ, a contradiction to Theorem 11 since ρ ̸= σ.

All of these theorems together form the basis for our trust in proof assistant

systems. The type theories that are implemented by any proof assistant system have

many more parts than the simply typed lambda calculus, and their consistency is

generally an open problem, but they all build on top of this system. Most importantly,

as far as implementing mathematics in these systems goes, there is a theorem called

the Curry-Howard correspondence. The Curry-Howard correspondence gives the
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fundamental relationship between propositional logic given in Definition 10, and the

simply typed lambda calculus of Definition 11. We can already see an instance of

this correspondence coming up even just in the statements of the definitions. The

implication rules of propositional logic (with bold characters inserted for emphasis)

are

1. Γ,φ ⊢ ψ (→ I);
Γ ⊢ φ→ ψ

2. Γ ⊢ φ→ ψ Γ ⊢ φ (→ E),
Γ ⊢ ψ

and the function type formation rules are

1. Γ, x : σ ⊢M : τ (→ i);
Γ ⊢ (λx.M) : σ → τ

2. Γ ⊢M : σ → τ Γ ⊢ N : σ (→ e).
Γ ⊢MN : τ

We can see immediately how the types in the type formation rules follow the same

pattern as the propositions in the implication rules. The interpretation of this is that

proofs are programs and vice versa. A proof in (constructive) propositional logic has

an interpretation in the simply typed lambda calculus, where it is understood as a

computation, and similarly any computation in the simply typed lambda calculus

represents a proof. Precisely, a proof in propositional logic is a proof of the type of

the term of the corresponding program, which is exactly the pattern that is followed

all the time when working with proof assistants. To prove a proposition in a proof

assistant, you have to construct a term that has that proposition as a type, which is

exactly what the Curry-Howard correspondence states. Here is the precise statement

of the Curry-Howard correspondence:

Theorem 14. For a context Γ, define rg(Γ) = {τ | (x : τ) ∈ Γ, for some x}. Then

53



Chapter 2. Dependent type theory

1. If Γ ⊢M : φ in the simply typed lambda calculus, then rg(Γ) ⊢ φ in propositional

logic.

2. If ∆ ⊢ φ in propositional logic, then Γ ⊢ M : φ in the simply typed lambda

calculus, for some M and some Γ with rg(Γ) = ∆.

Proof. Assume that Γ ⊢M : φ in the simply typed lambda calculus. Then φ ∈ rg(Γ),

so by the Ax. rule of propositional logic, rg(Γ) ⊢ φ.

Assume that ∆ ⊢ φ in propositional logic. Let Γ = {(xφ : φ) | φ ∈ ∆}, where

xφ are any distinct variables. Then by the Var. rule of the simply typed lambda

calculus, we have Γ ⊢ xφ : φ.

The simply typed lambda calculus as we can see has a lot of nice properties, but it

still is not sufficient for truly covering every pattern commonly used in mathematical

practice. Chiefly, the propositional logic and simply typed lambda calculus that we

have introduced do not have support for quantifiers. In order to extend our logic to

at least a first-order theory which can express statements with ∀ or ∃, we need to

introduce dependent types.

2.4 Dependent type theory and the construction of

mathematical objects

Dependent type theory was made to increase the expressiveness of the type theories

considered earlier to a wider range of possible functions. Intuitively, dependent type

theory allows us to create new types out of terms of other types. Some functions

that we might want to consider have the type of their outputs depending on the

type of their inputs. For example, a function that concatenates two vectors of length
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m and n outputs a vector of length m+ n, so that the space or type of the output

depends on the type of the inputs. We specifically will be considering Martin-Löf’s

intuitionistic dependent type theory as originally described here [Mar75], the first

dependent type theory constructed, and the basis of what most proof assistants

implement today. In this section, I will focus less on the meta-theoretical properties

of dependent type theory as I did in the previous sections but instead will be focusing

on how mathematical objects are constructed in dependent type theory.

The definition of the basic rules of Martin-Löf dependent type theory is not

entirely similar to how the simply typed lambda calculus is defined, and there are

significantly more rules, but most of these rules serve to make the same constructions of

substitution and conversions/reductions that we have for the simply typed λ-calculus

in a purely type theory context.

Definition 12. There are four judgments in dependent type theory:

1. A typing judgment:

Γ ⊢ A type;

2. type judgmental equality:

Γ ⊢ A = B type;

3. term judgments:

Γ ⊢ a : A.

4. and term judgmental equality:

Γ ⊢ a = b : A.
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If Γ ⊢ A type, then a family of types B(x) over A is an object in a judgment

Γ, x : A ⊢ B(x) type.

There are six inference rules that govern the formation of types and terms:

Γ, x : A ⊢ B(x) type
F;

Γ ⊢ A type

Γ ⊢ A = B type
eqlT;Γ ⊢ A type

Γ ⊢ A = B type eqrT;
Γ ⊢ B type

Γ ⊢ a : A T;
Γ ⊢ A type

Γ ⊢ a = b : A eqlt;Γ ⊢ a : A

Γ ⊢ a = b : A eqrt.
Γ ⊢ b : A

The rules governing judgmental equality state that judgmental equality is reflexive,

symmetric, and transitive:

Γ ⊢ A type
idT;Γ ⊢ A = A type

Γ ⊢ A = B type
rflT;Γ ⊢ B = A type

Γ ⊢ A = B type Γ ⊢ B = C type
transT;

Γ ⊢ A = C type
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Γ ⊢ a : A idt;Γ ⊢ a = a : A

Γ ⊢ a = b : A rflt;Γ ⊢ b = a : A

Γ ⊢ a = b : A Γ ⊢ b = c : A transt.Γ ⊢ a = c : A

Then for any judgment J , we have the following variable conversion rule that allows

us to substitute in any judgmentally equal type in a derivation:

Γ ⊢ A = A′ type Γ, x : A,∆ ⊢ J
conv.

Γ, x : A′,∆ ⊢ J

And we have the following three rules governing substitution, the first which shows us

how to substitute, the second two that substitution respects judgmental equality:

Γ ⊢ a : A Γ, x : A,∆ ⊢ J
S;

Γ,∆[a/x] ⊢ J [a/x]

Γ ⊢ a = a′ : A Γ, x : A,∆ ⊢ B type congT;
Γ,∆[a/x] ⊢ B[a/x] = B[a′/x] type

Γ ⊢ a = a′ : A Γ, x : A,∆ ⊢ b : B congt.
Γ,∆[a/x] ⊢ b[a/x] = b[a′/x] : B[a.x]

We have a weakening rule, that allows us to expand a context by an arbitrary variable:

Γ ⊢ A type Γ,∆ ⊢ J
W.

Γ, x : A,∆ ⊢ J

And lastly we have a variable rule:

Γ ⊢ A type
δ.

Γ, x : A ⊢ x : A

57



Chapter 2. Dependent type theory

The chief thing that makes this system dependent is the type family construction

Γ, x : A ⊢ B(x) type. In other words, for every term x of type A, we get a type B(x).

This can be thought of as an A-indexed family of types B(x). We can use this to

make a definition of dependent product types, or Π-types, which are necesary to

define dependent function types:

Definition 13. Let B be a type family over A. Then the Π-formation rule states

that we can then form a type of the form Πx:AB(x), which can be thought of as the

type of functions from x : A to B(x):

Γ, x : A ⊢ B(x) type
Π.

Γ ⊢ Πx:AB(x) type

The Π-introduction rule then shows us how to construct terms of type Πx:AB(x):

Γ, x : A ⊢ b(x) : B(x)
λ.

Γ ⊢ λx.b(x) : Πx:AB(x)

The Π-elimination rule shows us how to use terms of type Πx:AB(x):

Γ ⊢ f : Πx:AB(x)
ev.

Γ, x : A ⊢ f(x) : B(x)

Then there are two Π-computation rules that give us how Π-types should behave. The

β-rule, which gives us the equivalent of β-reduction:

Γ, x : A ⊢ b(x) : B(x)
β,

Γ, x : A ⊢ (λy.b(y))(x) = b(x) : B(x)

and the η-rule, which ensures that Π-types are λ abstractions:

Γ ⊢ f : Πx:AB(x)
η.

Γ ⊢ λx.f(x) = f : Πx:AB(x)
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Lastly we need rules that ensure that the construction and evaluation of Π-types

respects judgmental equality:

Γ ⊢ A = A′ type Γ, x : A ⊢ B(x) = B′(x) type
Πeq;

Γ ⊢ Πx:AB(x) = Πx:A′B′(x) type

Γ, x : A ⊢ b(x) = b′(x) : B(x)
λeq;

Γ ⊢ λx.b(x) = λx.b′(x) : Πx:AB(x)

Γ ⊢ f = f ′ : Πx:AB(X)
eveq.

Γ, x : A ⊢ f(x) = f ′(x) : B(x)

This is all very abstract, so let us see how these rules are applied to construct

something down-to-earth. For two types A and B, we define the type A→ B through

this derivation:

Γ ⊢ A type Γ ⊢ B type
W

Γ, x : A ⊢ B type
Π

Γ ⊢ Πx:AB type
def.

Γ ⊢ A→ B := Πx:AB type

Here we simply combined the weakening rules and the Π-formation rules as applied

to two arbitrary types, and defined the result as the type A→ B. From a derivation

like this, we can cut out the middle parts to get the inference rule for function types:

Γ ⊢ A type Γ ⊢ B type →,
Γ ⊢ A→ B type

and we also get the following definition rule:

Γ ⊢ A type Γ ⊢ B type →def .
Γ ⊢ A→ B = Πx:AB type

We want to make sure that this actually has the properties that we usually expect

for functions. First, I prove a helpful term conversion rule:
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Lemma 3.

Γ ⊢ A = A′ type Γ ⊢ a : A
convt.

Γ ⊢ a : A′

Proof.

Γ ⊢ a : A

Γ ⊢ A = A′ type
rflTΓ ⊢ A′ = A type

Γ ⊢ A = A′ type eqrT
Γ ⊢ A′ type

δ
Γ, x : A′ ⊢ x : A′

conv
Γ, x : A ⊢ x : A′

S.
Γ ⊢ a : A′

From convt and →def , we can immediately derive λ-abstractions, function evalua-

tion, β-reduction, and the η-rule for function types as we have defined them, as is

desired for the usual behavior of functions:

Theorem 15.

Γ ⊢ B type Γ, x : A ⊢ b(x) : B
λ→;

Γ ⊢ λx.b(x) : A→ B

Γ ⊢ f : A→ B ev→;
Γ, x : A ⊢ f(x) : B

Γ ⊢ B type Γ, x : A ⊢ b(x) : B
β→;

Γ, x : A ⊢ (λy.b(y))(x) = b(x) : B

Γ ⊢ f : A→ B η→.
Γ ⊢ λx.f(x) = f : A→ B

Proof.
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Γ, x : A ⊢ b(x) : B
T

Γ, x : A ⊢ B type
F

Γ ⊢ A type Γ ⊢ B type →def
Γ ⊢ A→ B = Πx:AB type

rflTΓ ⊢ Πx:AB = A→ B type

Γ, x : A ⊢ b(x) : B
λ

Γ ⊢ λx.b(x) : Πx:AB convt.
Γ ⊢ λx.b(x) : A→ B

The rest follow from very similar proofs to this one.

We have now completely specified the type of functions between types, and as

such we have recovered the simply typed lambda calculus. We are now ready to

start proving properties about functions. One primary thing we want to do with

functions is compose them, and in order to do that, we need to construct an inference

rule that takes in two functions g : B → C and f : A→ B and provides a function

g ◦ f : A→ C, defined by λx.g(f(x)). We derive this as such:

Γ ⊢ f : A→ B
ev→

Γ, x : A ⊢ f(x) : B
Γ ⊢ g : B → C

ev→
Γ, y : B ⊢ g(y) : C

S
Γ, x : A ⊢ g(f(x)) : C

λ→
Γ ⊢ λx.g(f(x)) : A→ C

def.
Γ ⊢ g ◦ f = λx.g(f(x)) : A→ C

An important property of function composition is that it is associative, and we

can prove that now:

Theorem 16.

Γ ⊢ f : A→ B Γ ⊢ g : B → C Γ ⊢ h : C → D

Γ ⊢ (h ◦ g) ◦ f = h ◦ (g ◦ f) : A→ D.

Proof. We split the derivation into three parts in the interest of space. The basic

idea is that ((h ◦ g) ◦ f)(x) and (h ◦ (g ◦ f))(x) both evaluate to h(g(f(x))).
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Γ ⊢ h : C → D

Γ ⊢ g : B → C Γ ⊢ f : A→ B ◦
Γ ⊢ g ◦ f : A→ C ◦

Γ ⊢ h ◦ (g ◦ f) : A→ D ◦def
Γ ⊢ h ◦ (g ◦ f) = λx.h((g ◦ f)(x)) : A→ D ◦def

Γ ⊢ h ◦ (g ◦ f) = λx.h(λy.g(f(y))(x)) : A→ D
β→.

Γ ⊢ h ◦ (g ◦ f) = λx.h(g(f(x))) : A→ D

Γ ⊢ h : C → D Γ ⊢ g : B → C ◦
Γ ⊢ h ◦ g : B → D Γ ⊢ f : A→ B ◦

Γ ⊢ (h ◦ g) ◦ f : A→ D ◦def
Γ ⊢ (h ◦ g) ◦ f = λx.(h ◦ g)(f(x)) : A→ D ◦def

Γ ⊢ (h ◦ g) ◦ f = λx.λy.h(g(y))(f(x)) : A→ D
β→.

Γ ⊢ (h ◦ g) ◦ f = λx.h(g(f(x))) : A→ D

Γ ⊢ (h ◦ g) ◦ f = λx.h(g(f(x))) : A→ D

Γ ⊢ h ◦ (g ◦ f) = λx.h(g(f(x))) : A→ D
transt.

Γ ⊢ (h ◦ g) ◦ f = h ◦ (g ◦ f) : A→ D

These derivations are a lot of work to write at this level of rigor and formality,

but this is, in many ways, one of the motivations for creating proof assistant systems.

In Lean, function types as we specified earlier are built-in to the foundations of the

language. Typically also function composition is given in the standard library, but if

we wanted to specify it ourselves in Lean, we write

def mycomp (f : β → δ) (g : α → β) : α → δ := λ x => f (g x)

Just this snippet on its own works. All the work that we had to do with the

derivation is the work of the typechecker, which can algorithmically decide that the

thing that we want, namely λx.f(g(x)), does indeed have the type α → δ. So, to

specify function composition, we only have to give it the formula that we want, and

the typechecker guarantees that that formula is precisely the resulting composed

function that we want.

62



Chapter 2. Dependent type theory

From here, a proof of the associativity of composition is a triviality:

theorem mycomp_assoc (f : φ → δ) (g : β → φ) (h : α → β) : mycomp

(mycomp f g) h = mycomp f (mycomp g h) := rfl

rfl is a type constructor that instructs Lean to check if the left hand side of the

equals sign is judgmentally equal to the right hand side of the equal sign, and in this

case Lean’s typechecker is able to re-construct the derivation that was given above to

show that. So, we can appreciate then the hard work that Lean is doing ‘under the

hood’ so to speak, and it is all specified with polynomial-time algorithmic procedures.

Lean really is saving us a lot of grief as far as being an implementation of dependent

type theory goes. Lean also makes it explicit how Π-types as we have defined them

are the same as universal quantification:

theorem univ (p : α → Prop) : (∀ x : α, p x) ↔ ((x : α) → p x) := by

simp

Now we will study the implementation of the natural numbers in Lean, and

understand by formulating it in plain dependent type theory. The natural numbers

are defined in Lean as such:

inductive Nat where

| zero : Nat

| succ (n : Nat) : Nat

There are two type constructors for natural numbers: zero and succ. These

correspond to the introduction rules of natural numbers and they specify how we

introduce new natural numbers. That is, they are either zero or the successor of some

other natural number. There are no high-level assumptions, so these constructors

exist in the empty context. The two introduction rules of N then are:

⊢ 0N : N
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succN : N → N

Note that these exist in an empty context, so that there are no requirements for

constructing these terms. The natural numbers in Lean are defined as an inductive

type, which makes Lean automatically generate an induction principle for the type.

We can check what the induction principle is by checking the type of the recursor for

the natural numbers:

Nat.rec : {motive : Nat → Sort u} → motive Nat.zero → ((n : Nat) →

motive n → motive n.succ) → (t : Nat) → motive t

Here we can think of motive as a type family P over N. Breaking down this type,

we see that this looks a lot like the usual induction principle. If we can derive a type

P (0N) and a type ∀n, P (n) → P (succN(n)), then we have that the type family can

be applied for any natural number. We can re-write this into our notation as:

Γ, n : N ⊢ P (n) type
Γ ⊢ p0 : P (0N)

Γ ⊢ pS : Πn:NP (n) → P (succN(n)) N−ind
Γ ⊢ indN(p0, pS) : Πn:NP (n)

We then see that N−ind is the rule that shows us how to construct a Π-type of

the form Πn:NP (n), so that some proposition P on the natural numbers holds for

every natural number. To fully specify the natural numbers, we need computation

rules for N. These computation rules tell us how the function indN(p0, pS) works

when applied to either zero or the successor of a natural number:

Γ, n : N ⊢ P (n) type
Γ ⊢ p0 : P (0N)

Γ ⊢ pS : Πn:NP (n) → P (succN(n)) N−comp0
Γ ⊢ indN(p0, pS, 0N) = p0 : P (0N)
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Γ, n : N ⊢ P (n) type
Γ ⊢ p0 : P (0N)

Γ ⊢ pS : Πn:NP (n) → P (succN(n)) N−compS
Γ, n : N ⊢ indN(p0, pS, succN(n)) = pS(n, indN(p0, pS, n)) : P (succN(n))

In normal language, N−comp0 tells us that for some P (n) that holds for any n,

P (0) is the same as the inductive base case for P . N−compS tells us that for some

P (n) that holds for any n, P (succ(n)), or P (n+1), is computed by applying P (n) to

the procedure given in the inductive step, pS. With this, we have completely specified

the natural numbers. There is not too much to prove about natural numbers at this

point, so we will now define addition on N in a way that recovers all the properties

we expect of addition and demonstrate the induction principle to prove some of these

properties. Addition is defined by induction in Lean with pattern matching:

def Nat.add : Nat → Nat → Nat

| a, Nat.zero => a

| a, Nat.succ b => Nat.succ (Nat.add a b)

This states that a+ b is defined by induction on b with a+0 = 0, and a+(b+1) =

(a + b) + 1. To derive this formally for ourselves, we want to construct a term of

the form addN : N → (N → N). Equivalently, we want to construct a term of the

form m : N ⊢ addN(m) : N → N = Πn:NP (n), which the induction principle gives

us the rules to do. To use the induction principle, we need to construct m : N ⊢

add−zeroN(m) : N and m : N ⊢ add−succN(m) : N → (N → N). add−zeroN(m) is

easy, as it is just m:

⊢ N type
δ

m : N ⊢ m : N
def.

m : N ⊢ add−zeroN(m) = m : N

For add−succN(m) : N → (N → N), we equivalently want to construct n :

N ⊢ add−succN(m) : N → N. If we inductively assume that we have the result of
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add(m,n) = x, then to get the value of add−succN(m,n, x) : N, we want to apply

the successor function to x, so thus we should define n : N ⊢ add−succN(m) = succN :

N → N, and we can recover the type N → (N → N) easily from here:

⊢ succN : N → N
W

n : N ⊢ succN : N → N
W

m : N, n : N ⊢ succN : N → N
λ→

m : N ⊢ λn.succN : N → (N → N)
def.

m : N ⊢ add−succN(m) = λn.succN : N → (N → N)

Thus, we can finish the derivation with the induction principle:

m : N ⊢ add−zeroN(m) : N m : N ⊢ add−succN(m) : N → (N → N)
N−ind

m : N ⊢ indN(add−zeroN(m), add−succN(m)) : N → N
def.

m : N ⊢ addN(m) = indN(add−zeroN(m), add−succN(m)) : N → N

Now we can show from this derivation that the two defining features of addition,

m+ 0 = m and m+ succ(n) = succ(m+ n), hold:

Theorem 17. addN(m, 0N) = m, addN(m, succN(n)) = succN(addN(m,n)).

Proof.

add−Ndef
m : N ⊢ addN(m) : N → N

ev→
m : N, 0N : N ⊢ addN(m, 0N) : N N−comp0

m : N, 0N : N ⊢ addN(m, 0N) = add−zeroN(m) : N
add−zero−Ndef.

m : N, 0N : N ⊢ addN(m, 0N) = m : N

add−Ndef
m : N ⊢ addN(m) : N → N

W
m : N, n : N ⊢ addN(m) : N → N

ev→
m : N, n : N ⊢ addN(m, succN(n)) : N N−compS

m : N, n : N ⊢ addN(m, succN(n)) = add−succN(n, addN(m,n)) : N
add−succ−Ndef.

m : N, n : N ⊢ addN(m, succN(n)) = succN(addN(m,n)) : N
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These proofs as I am presenting them are already abridged versions, as writing

out the whole derivation would be very difficult to fit on a page and significantly

reduce the conceptual clarity of the derivation, so I leave just the essential parts

and ideas. But when we move on to slightly more nontrivial statements, such as

commutativity, the notation gets even more cumbersome, and at that point proof

assistants make their case as a valid way to express these proofs very well. Both of

the above theorems can be simply proven with rfl in Lean.
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