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Abstract

An important issue that arises in population genetics and anthropol-
ogy is the origin of dog domestication. Studies on this topic use Principal
Component Analysis to de-correlate genetic data from their samples and
identify groups based on the geographic region of origin. However, this
method only uses the first 2 Principal Components and relies heavily on
visual interpretation - furthermore, it does not allow for identification of
similar subjects based on non-geographic criteria. This study discusses
different clustering methods used, such as k-means and DAPC, and an-
alyzes their pros and cons on a set of genetic variants from over 5,000
different dogs and 4 wolves from Azerbaijan. The goal of this study is to
determine if there are additional insights that can be gleaned from using
different clustering methods on PCA data that can either use additional
Principal Components and/or algorithmically determine groups.

1 Introduction

The origin of dog domestication is a complicated topic. There have been many
studies, especially within the last 10 years, that give conflicting analyses and
results when trying to solve this problem. For example, a recent study in 2017
[2] concluded that dogs were domesticated between 20,000 and 40,000 years ago,
though does not comment on where this occurred. However, a paper published
just last year, in 2018 [11] postulated that concrete evidence for domestication
puts the earliest known domesticated dog at 13,000 years ago. This is a sig-
nificant temporal difference, as in the first case it could be argued that dogs
were domesticated when humans were hunter-gatherers, to help with hunting;
meanwhile, in the second case it could be argued that dogs were domesticated
during the Neolithic era, when humans adopted agriculture and farming, to help
herd other animals or to protect crops.

1



In addition to the temporal differences, there is debate on where precisely dogs
were first domesticated. Some papers [23] conclude that dog domestication oc-
curred in Central Asia, and that from there, domesticated dog breeds migrated
to the rest of Eurasia. Meanwhile, others [10] suggest that, rather than a sin-
gle domestication, dog domestication occurred twice: once in Western Eurasia
(i.e. Europe), and once in Eastern Eurasia (i.e. the Middle East, China, and
Russia). The Eastern Eurasian dogs then migrated over to Europe. Based on
both anthropological and genetic evidence, there are four main geographic areas
considered for dog domestication (which are discussed further in [2]):

1. Europe (i.e. Germany),

2. Central Asia (i.e. Kazakhstan),

3. The Middle East (i.e. Iran/Iraq),

4. East Asia (i.e. China)

From the conclusions drawn by the above studies, it is clear that, while there
is an agreed-upon range of dates and locations, there is no consensus on the
timescale nor where dogs were first domesticated.

This conflicting nature is due to the complex history of dog genetics, discussed
further in the next section. Despite this challenge, it is imperative to figure out
where dogs were first domesticated, because dogs were the very first animal to
be domesticated [16]. This domestication paved the way for further advances in
agriculture; through learning how to domesticate the dog, Neolithic (late Stone
Age, approximately 12,000 years ago) humans were able to domesticate more
animals such as cows and horses. This helped shape early farming communities
in the Neolithic era of humanity.

While the original intent of this study was to work with a sample of a Neolithic
dog genome [2] and compare it to modern dog genomes, this proved difficult to
accomplish. This is because the format the Neolithic genome was stored in did
not contain the necessary information on genetic variants (a copying error that
occurs when genomes duplicate during cell replication) required to convert it to
a variant file, and a proprietary sequence from Illumina (a sequencing company)
would be required to find the genetic variants and accurately compare them to
modern dogs.

Therefore, rather than use a sample from the Neolithic era, the study used
samples obtained from wolves instead. Wolves, in particular gray wolves, are
the closest living relatives to modern domesticated dogs. While there is evidence
to support the hypothesis that the individual breed of gray wolves that dogs were
domesticated from is now extinct, there is a clear branch between the ancestry
of dogs and gray wolves, and the ancestry of other wolves that confirms dogs
were domesticated from gray wolves [9]. Thus, modern gray wolves can still
be used as a surrogate for ancient dogs when genomic data from ancient dogs
is difficult to obtain. By using samples of gray wolves from Eurasia [21], the
wolves’ genetic data — in particular, their variants — can be compared to the
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genetic variant data obtained from many modern domesticated dogs [23]. An
example of how this genetic variant data is commonly stored can be found in
the Appendix.

The question of how to actually compare genetic variants still remains, however.
The first step biostatisticians take when comparing how genetic material varies
across different subjects is to perform Principal Component Analysis (PCA)
[19] on the genetic variant data to remove correlation between all of the variants
and samples, and obtain a “birds-eye-view” of the data through the resulting
principal component plots. However, current applications of PCA in published
research rely on two-dimensional plots of the first two principal components and
color-coding species based on their region of origin to visually identify clusters
and outliers [23] [2]. This allows room for human error in erroneously identifying
groups or patterns in the data where there are none, particularly when only
taking into account the first 2 principal components. In addition, this does
allow for a visualization of clusters based on geographic region of origin, but
other aspects may be ignored in the process.

This study aims to compare different algorithms in clustering the PCA data
to see if any algorithmic approaches could glean additional insights from the
data. For example, some methods may be able to account for more variance
in the entire dataset than simply the first 2 principal components, which may
lead to grouping data together that wouldn’t have been grouped together in a
traditional 2-dimensional PCA plot. By projecting the genetic samples of wolves
onto the existing data of modern dogs, relationships between the variants are
identified and connections are established between wolves and dogs. Then, by
implementing these new algorithms, outliers and points of interest are identified
for use in future analysis without relying as much on visual identification of
metrics of interest. In particular, this would be able to give insight as to how
close or how far away the variant data in wolves would be compared to dogs.
This would potentially allow for more data points to be used.

This paper is divided into the following sections:

• Section 2 is devoted to the history of dogs and wolves, and how they
evolved to where they are today. It defines terms used in the rest of this
paper.

• Section 3 contains a literature review on the main papers referenced in this
study. It briefly discusses the original paper with the Neolithic sample,
but the bulk of this section discusses the nature of the 2 datasets used in
this study.

• Section 4 contains a literature review of the different statistical methods
used. In particular, it discusses Principle Component Analysis (PCA).
This section also discusses other algorithms that were chosen in this study.

• Section 5 contains the results obtained from using PCA, distance measures
and other clustering data, as well as a discussion on those results.
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• Section 6 contains the conclusion, summarizes the results found in Section
5, and where future work lies. It also contains potential uses for the results
of this study.

• The Appendix contains additional information, such as comments on the
code used and descriptions of file types.

• The References contain all the references I used and consulted when per-
forming this study.

2 History of Dog Genetics

Before proceeding with the history of dogs, some terms need to be defined.
Borrowing from Larson et. al. [17], the term breed refers only to modern,
officially recognized pure-bred dog breeds, while mutt refers to cross-bred dogs
from officially recognized breed dogs. Both terms refer to fully domesticated
dogs. The term village dog refers to semi-domesticated dogs whose ancestors
are indigenous to a given geographic area.

The history of dogs has been fraught in recent years, but was very steady at
the beginning. Around 8,000 B.C., various domestic dog classes began to take
shape. These dog classes included scouting dogs, giant dogs, and shepherding
dogs, and helped humans by taking on various tasks relating to their dog class,
such as herding other animals, and aiding in the development of domestication
and training animals [17].

However, the genetic history of dogs became much more complicated to parse
during the 1800s. In Ireland, for example, Irish Wolfhounds hunted wolves to
extinction by 1786. With no more wolves to hunt, the need for Irish Wolfhounds
dropped significantly; by 1840 the Irish Wolfhound was all but extinct. The
breed was eventually restored, but they were saved via breeding the remaining
few Irish Wolfhounds with aesthetically similar, but genetically different, dogs.
This ensured common aesthetic similarities, such as body shape, among the
new Irish Wolfhounds, but introduced new DNA and gave rise to variants that
made these new Irish Wolfhounds genetically quite different from their ancestors.
Thus, the modern genetic lineage of Irish Wolfhounds is quite complicated and
contains different genetic material and mutations than a true, pre-1840s Irish
Wolfhound.

This concept of recovering breeds for aesthetics was used quite often, particularly
in the aftermath of World War 2, where many dog breeds only had 10 remaining
population members [17]. During the aftermath, many breeders not only bred
for aesthetics, but also in-bred the few remaining members of the breed. This
in-breeding caused genetic mutations, or a permanent alteration in the genome,
which give rise to many variants in the genetic data.

This method of breeding for artificial aesthetics without regard for ancestry, as
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well as in-breeding the few remaining members, created a bottleneck and skew
within purebred dog genetics. The rise of recent variants due to these methods
results in difficulty identifying relationships between purebred dogs and other
animals they are related to, such as wolves.

Using mutts for identifying variants gives rise to a new problem in excessive
admixture. Admixture is defined as the presence of DNA from a genetically
distant species, or interbreeding across different species. Because by definition
a mutt is a cross-bred dog across two or more different breed dogs, mutts have
excessive admixture which can potentially result in incorrect geographical areas
identified and patterns that exist when they shouldn’t.

To move past the issues of bottlenecked ancestry and admixture, many re-
searchers use village dogs instead. Village dogs, as defined previously, are in-
digenous to a close given region. This is important, because present day village
dogs are descendants of the area’s founding population of domesticated dogs,
and establish a link to the past for what dogs encompassed the original popula-
tion of domesticated dogs. So long as admixture remains minimal, village dogs
present a more accurate representation of the variants expected in dogs from a
particular region of the world. However, while village dogs lack the bottlenecked
ancestry of purebreds, they still have the potential for admixture, and they lack
the information found from local breed dogs.

The history of dogs is fraught with complications — this is why the genetic
history of dogs is such a contentious topic, and why many researchers observe
different results and come to different conclusions based on their samples. Many
papers [2] use genetic remains of ancient dogs from Neolithic dogs alongside
modern day samples from either village dogs, mutts, purebred dogs, or a com-
bination of the three. Some papers have even broached the topic of comparing
village dogs with wolves, which is similar to comparing village dogs with ancient
samples [20] as discussed previously.

3 Discussion of the Paper

The two data sets used in this paper were from Shannon et. al.’s [23] paper and
Pilot et. al.’s [21] papers. The former data set contains variants identified in
samples from 5,406 dogs. These dogs include mutts, breeds, and village dogs,
as well as geographical information on where the village dogs were sampled
from. Of these dogs, 2,662 are male and 2,744 are female. The samples were
genotyped (i.e. compared to a reference genome to identify differences between
the genomes) against a semi-custom version [23] of the Illumina CanineHD array
to find 166,171 variants.

Geographic data is available from the village dogs from this dataset, and was
used by the original authors in a PCA analysis to find clusters based on the
samples’ region of origin.
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Figure 1: Geographical Clusters as Identified in [2]

The latter data set contains variants from a set containing 334 specimens sam-
pled across Eurasia. From this dataset, 234 are village dogs across Eurasia, 96
are breed dogs, and 4 are gray wolves from Nagorno-Karabakh, an area in the
central-southwest region of Azerbaijan. Two of these wolves are male and two
of them are female. There are 173,662 variants in this data set. The wolves
were genotyped against the Illumina CanineHD array.

Asian wolves were chosen because, despite the differences in the precise region,
general consensus of dog domestication puts the origin somewhere in Eurasia.
Thus, even accounting for large-scale migration, Asian wolves give the closest
overall approximation to what dogs were like in the Neolithic era, before domes-
tication became widespread. This allows us to use wolves from Azerbaijan as
our sample. The combined data resulted in 5,410 unique specimens with 2,664
male and 2,746 female dogs and wolves, with 183,365 variants in total.

The discussion on the different file types that were used to store this data can
be found in the Appendix.

3.1 Methods

Comparing entire genomes together is a difficult task to accomplish due to the
size of a single genome, let alone comparing thousands of them. Thus, most
studies perform variant analysis, which looks at SNPs - Single Nucleotide Poly-
morphisms. These occur when DNA is copied during cell replication. During
this copying process, the nucleotides in DNA (Adenine, Thymine, Cytosine and
Guanine) are supposed to map to the same coordinates retaining the same order
as in the original DNA strand. There is a chance during this copying process
that there could be a single mistake, known as a mutation, that occurs. This
mutation is known as a SNP, an example of which is documented in Figure 2
[1].
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Figure 2: Notional Example of SNPs. Note that Adenine can only map to
Thymine and Cytosine can only map to Guanine.

Information about these SNPs are stored in different files, the specifics of which
are discussed further in the Appendix. The resulting files are processed using
PLINK 1.9 [5], which is a C/C++ code that interfaces with other existing codes
commonly used in research such as VCFtools and GATK. PLINK shares much
of its methodology — and in some cases, its code — with GCTA (Genome-wide
Complex Trait Analysis) [24], which is another free toolbox for genome analysis.

All data used in this study was processed in PLINK such that the major al-
lele is used as the reference for the data set. This is because identifying the
variants with respect to the most commonly occurring allele will give a bet-
ter representation of where genetic outliers are (i.e. dogs with many SNPs).
Essentially, if there is a dog with many variants, that dog will contain fewer
common genes and potentially more mutations. Because the mutations occur
during DNA replication, the resulting variants are much newer in origin than
the existing DNA which acts as a baseline. This means that the dog not only
has less in common with the average subject of the data set, but that the dog
and its children will continue to deviate from the distribution of prior dogs [5].
Furthermore, because mutations arise in DNA replication and can be passed
down as a trait across generations, the principle idea is that dogs with similar
SNPs will cluster closer together than dogs with vastly different SNPs.

PLINK contains different statistical processing codes within its toolbox, in-
cluding a method for calculating the Hamming Distances between subjects. Of
particular note, it contains the native PCA method of finding clusters (described
in the following subsection) as a port of the function from GTCA’s PCA calcu-
lation [24].

There are actually two versions of PLINK commonly used: PLINK2 and PLINK1.9,
which are somewhat different as PLINK2 is more modernized, updated code
that is currently testing new parameters in its alpha [5]. However, PLINK1.9
is considered stable and has been for quite some time, and had more options
to use when combining two different files into one cohesive file. To keep the
calculations consistent, I used PLINK1.9 for all data combining, cleaning, and
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PCA calculations.

Another software package used in this analysis is the R package adegenet [12],
which contains, among the typical PCA methods, a variant called Discrimi-
nant Analysis of Principal Components [13]. It also includes a variant of PCA,
known as spatial PCA (sPCA), which creates a graph of the distances between
previously calculated Principal Components. The current implementation of the
adegenet package does not allow for previously calculated Principal Components
to be passed in as inputs. However, this can be fixed with some modifications
to the source code, which is also contained in the Appendix.

3.2 Principal Component Analysis

Principal Component Analysis (PCA) [19] is a widely used statistical method
that is used in multivariate data. Often, multivariate data is correlated between
its data points. For example, measuring how closely related two dogs are can
be affected by geographic location, who the parent and grand-parent dogs were,
how many variants were found in comparing two SNPs, and so on. All of
these different factors give rise to correlation between samples. This correlation
between multiple variables makes accurate model building and analysis difficult.

PCA is an orthogonal transformation onto a multivariate data set such that the
new variables, called principle components, are linearly uncorrelated. Consider
a n× p data matrix X, and a matrix of different weights assigned to the data,
denoted as α, which is also of size n× p. Each pth column in αX is subject to
the constraint that its variance is maximized while remaining uncorrelated with
the rest of the columns [19].

The PCA algorithm that PLINK 1.9 uses is a port of the PCA algorithm found
in GCTA [24]. PLINK1.9 calculates the genetic relationship matrix (GRM),
denoted as A in the literature and equivalent to the weighting matrix α above.
This relationship matrix A estimates the genetic relationships between 2 distinct
individuals from analyzing their SNPs and looking for variants. This matrix is
calculated using the equation:

Aij =
1

N

N∑
k=1

(xki − 2pk)(xkj − 2pk)

2pk(1− pk)
(1)

where pk is the frequency of the reference allele for the sample, which is generally
considered to be the most frequently occurring allele in a given population; and
xki is the number of copies of the kth SNP of the ith individual within the
sample set. N represents the number of SNPs in the data set.

From this relationship matrix A, eigenvalues and eigenvectors are calculated for
PCA.
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3.3 Mahalanobis Distance

How the distances are calculated between points is significant because it estab-
lishes a baseline for relationships between points. They are just as important
as summary statistics, such as averages. The Mahalanobis Distance is a form
of measurement that requires linearly uncorrelated data to perform, but it can
be very informative. This distance is a measurement of how far a data point is
from the mean of a given distribution of data, provided that the distribution of
data is spherical in nature. [6] This measurement is expressed as:

||x− y|| =
√
det(M)1/n(x− y)M−1(x− y)

′
(2)

where x and y are the matrices containing different measurements, n is the
number of dimensions in Rn, and M is the covariance matrix.

An important aspect about the Mahalanobis distance is that, if M is the identity
matrix, I, then this equation becomes:

||x− y|| =
√
det(I)1/n(x− y)I−1(x− y)′

=
√

(x− y)(x− y)′

=
√

(x2 − y2)

(3)

which is the equation for the standardized Euclidean Distance. If M is not the
identity matrix I, then this becomes the scaled Euclidean distance:

||x− y|| =
√∑

i

(xi − yi)2
σi

(4)

where i represents the ith dimension in Rn [6].

It is important to note that the relationship matrix A is not diagonal — however,
another key factor to consider is that, due to the transformation into PCA-space,
the Euclidean distance calculated on the PCA transformed data is equivalent
to the Mahalanobis distance calculated on the original data space [3].

Due to the fact that the data set is heterogeneous as defined in [6], given that it
is the principal components of SNPs across several thousand examples, and that
M is the relationship matrix A the study will proceed with the scaled Euclidean
distance discussed above as equivalent to the Mahalanobis Distance.
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3.4 Discriminant Analysis of Principal Components

Before discussing Discriminant Analysis of Principal Components (DAPC), a
definition of Discriminant Analysis is required. Discriminant Analysis [15] (DA)
is a method of sorting data. Essentially, DA summarizes differences between
groups while overlooking minute differences within the groups. For example,
DA would allow dogs to be grouped into classes, such as farming dogs or hunting
dogs, without necessarily considering other characteristics such as their height.
This allows for sorting individuals into groups to ensure that the groups are
distinct from each other.

When sorting the data, it is assumed that the group priors (i.e. how the data
was distributed) are unknown. This is because the assumptions made often
rely on concepts such as population subdivision, which are difficult to model.
In particular, modelling any subdivision of a given population would rely on
existing assumptions about that population that may be untrue [13]. Given
that the problem statement relies heavily on historical data and that identifying
population subdivision is essentially the end goal, this means that methods
without group priors need to be used.

DAPC, then, is a two-step process that combines PCA and DA. It requires
a transformation of the variants via Principal Components to do an a priori
analysis, and then sorting the transformed data via DA.

To perform DA, the number of prescribed clusters needs to be calculated. This
is performed by the k -means [18] clustering algorithm, which is described in the
next section.

Before choosing the optimal number of clusters, however, the optimal number of
PCs must be retained. Too few PCs can result in a lack of information conveyed
and variance accounted for in the total dataset. While this may seem to imply
all of the PCs should be used, too many PCs can increase computational time
and make the results hard to interpret. Thus, a happy medium must be found.
While there are general “rules of thumb” to guide the selection of PCs [4], there
is no set practice. Therefore, the method I used was similar to the method
used in [13], which is simple to accomplish through plotting the number of PCs
retained compared to the total percentage of variance accounted for.
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Figure 3: Plot of the number of PCs compared to the total accounted variance.
Note how for high PC values, the graph takes on the shape of a square root
function

Any number between 4 and 12 in the above figure would be valid.

To choose the optimal number of clusters, the Bayesian Information Criterion
(BIC) [13] is used. The BIC is recommended in the paper as the optimal method
for choosing the number of clusters over the Akaike Criterion (AIC) and other
methods.

The BIC is calculated as:

BIC = n log(||y||2 + ||y − ŷ||2)) + k log(n) (5)

where ||y||2 is the vector of predictions from the k -means algorithm, ||y− ŷ2|| is
the vector of residuals from the k -means algorithm, k is the number of clusters
chosen, and n is the sample size. The optimal value of k from the BIC criterion
is located when the plot of k versus the BIC values creates an elbow shape, as
shown below as a notional example in the left graph. However, note in Figure
4, which is an example of what the BIC plots looked like for my data set -
the proposed elbow shape is much less steep, which makes picking an accurate
number of clusters difficult. Within this range, anything from k = 5 to k = 25
would be a valid number of clusters.
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Figure 4: Plot of the BIC for the dataset of wolves projected onto all village
dogs. 6 PCs were retained.

To prevent picking too large of a k value, another criterion is used that was not
included in the original DAPC paper. This criterion is known as the Average
Silhouette Method [14]. The Silhouette value is a ratio of how similar an object
inside its own cluster is to how similar it is to objects outside its own cluster; the
closer to +1 this ratio is, the more the clusters chosen are appropriate because
the divide the groups into clusters accordingly. The measure of similarity is
calculated using the Euclidean Distance.

Denoting f(i) as the smallest average distance between points within a cluster,
and g(i) as the smallest average distance between a point within the cluster
i and any point in any cluster that isn’t i, then the silhouette coefficient is
calculated using the following:

s(i) =
g(i)− f(i)

max(f(i), g(i))
(6)

Then, choosing the optimal method of clusters involves both analyzing the BIC
plot and the Average Silhouette plot to see where the plot bends for the former,
and where the largest value is for the latter.
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Figure 5: Example of the Silhouette Coefficient calculated for n = 2 up to n =
40 clusters.

As shown in Figure 4, the BIC plot denotes a range of values for k, and as shown
in Figure 5, the Average Silhouette plot demonstrates a clear peak, or optimal
number of clusters. This cluster value of k found from the Average Silhouette
plot is then used as the optimal k value for both DAPC and the hierarchical
clustering methods.

Then, once the optimal value of k is chosen by the above two methods, DA is
performed on the principal components obtained from PLINK using the groups
denoted in k -means as the appropriate model. Once these values are obtained,
the results are plotted to show what groups they belong to.

4 Clustering Methods

To review, we have a methodology for finding the distance between a sample of
variants and its transformed space, as well as a method of combining principal
component analysis and discriminant analysis to form groups. One final question
that needs to be addressed is how to group the principal component projections
so that they aren’t reliant on manual color coding. Furthermore, how can they
be grouped so that they account for all the principal components?

Because the PCA plots can take on any shape, a clustering method chosen must
be robust enough that it does not simply assume all clusters are spherical in
nature. Furthermore, for it to be an optimal clustering method, it must be able
to handle multidimensional inputs (i.e. to create groupings in Rd where d ≥ 2.
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All methods of cluster analysis can be divided into two different methods:

• Partitioning Clustering, which splits existing data into k groups that are
distinct from each other, where k is often chosen by the user based on
some summary statistics for the most optimal k

• Hiearchical Clustering, which identifies groups of similar observations.
These groups are set up such that they all relate back to the entire set of
data.

The k -means clustering algorithm [18] works to group together n data points
into k clusters, where k is chosen by the number of clusters desired from the
dataset, with the limitation that k cannot be larger than the number of data
points x. It is an iterative algorithm that first assigns the k -means (the average
or center value of a cluster k, denoted as mk) to a random point within the
dataset. The next step in the algorithm is called the assignment step, where
each data point is assigned to a guess for a cluster k by minimizing the distance
between mk and x, i.e.

kguess = argmink{dist(mk, xn)} (7)

Once this is performed, a flag value fn is denoted as 1 if kguess is the closest
mean to the datapoint xn, and 0 otherwise. Each cluster k has a total flag value
Fn,k =

∑
n fn,k.

Then, the update step occurs, where the k -means values mk are updated to
reflect the sample averages: that is,

mk =

∑
n fnxn
Fn

(8)

The above process is repeated until the value of mk does not change - that is,
all data points are assigned to their closest clusters.

As discussed in the prior section, DAPC uses k -means to group together princi-
pal components, which is a method of partitioning clustering. This is effective
for identifying distinct groups within a given data set. However, partitioning
clustering methods do not give any insight into how these clusters - the parts of
the data set - relate back to the whole.

Hierarchical clustering, meanwhile, allows for the relation of a part to a whole.
These are expressed in terms of dendrograms, which are tree-like graphs that re-
late the different samples to different smaller clusters that relate to the whole of
the dataset. Figure 6 demonstrates the differences between partition clustering
using k -means and hierarchical clustering on the notional iris dataset included
previously in R.

14



Figure 6: Visual differences between partitioning clustering (left) and hierarchi-
cal clustering (right)

To interpret the dendrogram, look at the height of any two objects. This height
is a direct reference to how close, distance-wise, any two points are to each
other. The smaller the height is, the closer points are to each other. Each
branching point indicates a segment that is divided into a separate cluster, too
— removing the top branch results in two clusters, removing the next branch
results in three clusters and so on until each point is considered its own distinct
cluster. An important note about dendrograms is that they cannot be used to
determine the most optimal number of clusters, like how the optimal number of
clusters for k -means was determined. It is simply a method of relating objects
to each other via their distances, and categorizing how many objects are similar
to each other.

It is important to remember that, while visually similar, dendrograms and phy-
lograms are different graphs that demonstrate different ideas. A phylogram’s
branches demonstrate inferred evolutionary change between groups of points —
the longer the branch, the more change which occurred. A dendrogram, mean-
while, is more general. In the case of this study, a dendrogram visualizes how
close or how far away a datapoint is from its neighbors based on the PCs of its
variants.

An issue that arises across some methods of partitioning clustering is the native
assumption that the data — and thereby the clusters — are spherical in nature.
[18] If the data fall into a straight line, or overlap each other like a sine wave (as
shown in the below notional image), k -means will overcompensate and declare
there to be more clusters than actually exist. Thus, one final proposed clustering
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method is DBSCAN [7].

DBSCAN works on the assumption that clusters are groups of dense points,
regardless of the shape of those groups. For each point a within a cluster, there
has to be a distance greater than 0, denoted as ε0, that contains a set number
of neighbor points, denoted as MinPts: that is,

Neighborhoodε0(a) = {b1, b2, ...bMinPts ∈ D|dist(a, b) < ε0} (9)

This works well for points within a dense region, but for points on the border
of a cluster, there may not be enough points surrounding it to satisfy the ε0
neighborhood condition. If the ε0 distance condition was reduced to compensate
for identifying border points, the border points could be identified alongside
noise, which are observations that do not belong to any cluster.

There are two ways a border point can be defined with respect to the desired
density achieved from the ε0 factor specified. They can either be density reach-
able (a point a can be reached from Neighborhoodε0 of point b that is more
than one neighborhood away, but b cannot be reached from the point a), or they
can be density connected (there is a point o such that the border points a and
b can be reached from multiple neighborhoods from o). Figure 7 demonstrates
this visually and was taken from [7].

Figure 7: Illustrated example of core points (left) and border points (right).

There are some heuristic methods to choosing the parameters ε0 and MinPts.
The authors of the method recommend using 2 ∗dim, where dim represents the
dimension of the dataset, for the minimum number of points [22]. Thus, for a
2-dimensional plot, the recommended minimum number of points is 4. In the
examples with the wolf data following, this has the benefit of ensuring that the
wolves will all cluster together, as each wolf will only have 3 nearest neighbors,
ensuring that the 4th nearest neighbor is a dog. This number is also used for the
MinPts value for choosing the epsilon distance. Some articles [8] recommend
using a MinPts value of 2 ∗ dim − 1. However, because the dataset used has
4 wolves and a variety of dogs, using a MinPts value of 3 as recommended
would run the risk of only grouping wolves with wolves for recommended radii,
whereas a value of MinPts equal to 4 would ensure one of the nearest neighbors
to any wolf point would be a dog. This sort of analysis of data to choose the
MinPts value is recommended in [22], as well as leaving one parameter open to
variation. Because of this, values of MinPts equal to 3 and MinPts equal to 4
are used when choosing the epsilon value.
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Determining the epsilon distance is somewhat difficult, as discussed above. A
method similar to the BIC criterion discussed previously is employed, where the
points are sorted by the distance they are from each other, and an elbow area is
defined to be the optimal epsilon distance. The graph below demonstrates this
case for the mutts and wolves dataset — the optimal epsilon distance, in this
case, is ε0 = 0.011 [7].

Figure 8: Epsilon Distance plot for the set of mutts and wolves. Note that a
case can also be made for slightly larger distances.

5 Results

When constructing this experiment, the data was divided into four different
sets:

• The entire set of dogs

• The set containing no village dogs (including breeds and mutts)

• The set containing only village dogs

• The set containing only mutts

Onto each of these subsets of the original data set, four selected wolves were
added to the data set, and PCA was calculated on the subset with the additional
four selected wolves. This resulted in a PCA-space which is then used for the
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previously discussed clustering methods, the results of which are discussed in
the following paragraphs.

The following graph shows the wolves chosen for this study based on the plot
of their first two Principal Components. The selection was based on obtaining
a sample from each of the outliers in the 3-pronged shape, as well as a sample
relatively close to the origin where there are clusters of similar wolves.

Figure 9: PCA Plot of Azerbaijan Wolves. Yellow labels indicate chosen sam-
ples.

These wolves were identified to be from Azerbaijan as described in the supple-
mentary material for [21].

PCA was performed on each of these subsetsets using PLINK and then im-
ported into R. The PCA plots are done using the raw PCA results obtained
from PLINK, and any distance measure calculated between points uses the Ma-
halanobis Distance, which would require the PCA points to be scaled. Note that
scaling the data does not change the actual shape of the data, it only changes
the axes because all points are divided by a scalar relative to the original vector
- in this case, all points in a vector x are divided by the standard deviation of
that vector, σx, so the actual shape doesn’t change. This data was then im-
ported into R and plotted below. In all proceeding plots, yellow circles indicate
where the Azerbaijan Wolf samples are.
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Figure 10: PC1 and PC2 Plot of Only Mutts and Wolves

The above plot demonstrates the PCA results from plotting on a space contain-
ing only mutts and the 4 selected wolf samples. From the plot, it is clear that
variant data divides the mutts and wolves into 2 groups: a group that contains
wolves, and mutts with very similar variants to the wolves, which corresponds to
the horizontal line; and a ring in the positive PC1 half, containing only mutts.
This variation in grouping indicates that there’s a clear separation of groups
based upon the variants across mutts.

The next graph shows the space containing all 549 village dogs and the 4 selected
Asian Wolf samples.
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Figure 11: PC1 and PC2 Plot of Village Dogs and the Azerbaijan Wolves

The next graph is an example of PCA results obtained from plotting on a space
that contains no village dogs, and the entire data set, and the 4 selected Asian
wolf samples. Note that the entire data set retains its overall shape, but shifts
the graph down slightly and contains more points in the centroid object on the
right.

(a) No Village Dogs (b) All Dogs

From here, the k -means results are shown, with the following table indicating
the most optimal number of clusters as chosen by the Silhouette Coefficient.
Note that the random starting point chosen by R during the k -means process
is chosen manually to be the same number used in the DAPC results.
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Data Set k
All Dogs 4
Village Dogs 3
No Village Dogs 4
Mutts 3

First is the k-means clustering results on the data set containing village dogs
and the Azerbaijan Wolves as shown in the following figure. Here, the cluster
results appear to be very coarse, selecting large clusters that appear to follow
an ellipsoid shape overall. In addition, they fail to identify the general 3- or
4-pronged shape clear from the original data set.

Figure 13: k-means clustering results for Village Dogs and the Azerbaijan
Wolves

The next figure demonstrates the k -means clustering results for the set of all
Mutts and the Azerbaijan Wolves. Note that in this plot, it appears that the
Silhouette Coefficient returned a recommended cluster number of 3, which splits
the doughnut shape into an upper u-shaped cluster and a lower u-shaped cluster.
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Figure 14: k-means clustering results for Mutts and the Azerbaijan Wolves

From this, because the datasets of all dogs and the set of all dogs without village
dogs are so similar, their figures are shown side by side below. Note that the
dataset without village dogs (a) has a much larger top cluster, and the dataset
containing all dogs (b) has more data points concentrated in the center orange
cluster.

(a) No Village Dogs (b) All Dogs

After this, the results from the DBSCAN method are shown and discussed.
The following is a summary table discussing the parameters chosen based on
the discussion in the DBSCAN section. Note that, for the datasets without the
village dogs, as the MinPts parameter increased, the ε0 value also increased.
However, the values of ε0 chosen still have some level of subjectivity due to
the need to visually evaluate the graph of their MinPts-nearest neighbors. In
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addition, the points corresponding to triangles correspond to points belonging
to a cluster, and the circles correspond to outliers.

Data Set MinPts ε0 MinPts ε0
All Dogs 3 0.0008 4 0.0008
Village Dogs 3 0.007 4 0.007
No Village Dogs 3 0.0008 4 0.0009
Mutts 3 0.01 4 0.014

The first plot discussed is the DBSCAN results for the Mutts and Azerbaijan
Wolves.

(a) Mutts (MinPts=3) (b) Mutts (MinPts=4)

From the results, it appears that when MinPts = 3, there are 3 clusters at the
apex of the circle that become grouped together when MinPts = 4. This is
because there appears to be a visually distinct gap between the groups which is
not detected when the minimum number of points in a cluster is 4 — the gaps
are ignored in order to create a cluster that satisfies the condition.

Next is the plot the DBSCAN clustering results of only village dogs. From the
results, it appears that, while some of the branches appear to fall into many small
clusters, the large branch at the top as well as the “centroid” consistently fall into
their own clusters. Comparing this to the geographical clustering demonstrates
that, while DBSCAN appears to group together the African and Egyptian village
dogs well, it separates many of the points in Central Asia into many small
clusters.
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(a) Village Dogs (MinPts=3) (b) Village Dogs (MinPts=4)

Finally, we can compare the clusters obtained between the set of no village dogs
and the set of all available dogs.

(a) No Village Dogs (MinPts=3) (b) No Village Dogs (MinPts=4)

(a) All Dogs (MinPts=3) (b) All Dogs (MinPts=4)

The clusters identified across both datasets are very similar, though it appears
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Data Set Number of Clusters (Silhouette) BIC Range Number of PCs
All Dogs 13 (10, 20) 11
Village Dogs 15 (6, 16) 10
No Village Dogs 12 (12, 20) 11
Mutts 17 (8, 20) 9

that there’s a very small cluster nestled close to the wolves (tan in the No Village
Dogs set) that grows in size in the set containing all dogs.

The next results presented will be the DAPC clustering results. All of the
presented clustering results were run using the same seed for reproducibility as
mentioned above when discussing k -means which is discussed in the Appendix
section. The native plotting function for DAPC does not include axes labels
because it’s intended as a diagnostic tool to identify trends in the data based on
where the clusters lay [13]. However, all plots show the projection of the first
two linear discriminants, where the x axis represents the first linear discriminant
and the y axis represents the second linear discriminant.

A table of the summary statistics used during the DAPC diagnostic process is
presented below. Note that, generally, the number of clusters tends to be on
the higher end for smaller datasets and on the lower end for the larger data
sets. The number of PCs was chosen so that they explained at least 70% of the
variance.

The first plot represents the data set containing only mutts. The group identified
in this plot containing the wolves is group 14, which only contains the values
associated with the wolves. Close to it is group 5, which contains a very small
group of about eight mutts.
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Figure 20: Only Mutts

The next plot shows the DAPC clustering results on the data set containing
all dogs and no village dogs. Both of these clusters are large, with the cluster
containing the wolves in the all dogs data set, cluster 2, containing 496 members,
some of which are village dogs from Afganistan and Basenji breed dogs. The
cluster containing the wolves in the no village dogs data set, cluster 1, contains
over 2,000 members, with many different breeds including Gordon Setters and
Doberman Pinschers.

(a) All Dogs (b) No Village Dogs

Finally, these two plots correspond to the DAPC clustering results obtained from
the data set containing only village dogs. This demonstrates the importance of
ensuring that the seed is documented for reproducability, as the plot on the left
was created with the same seed as the rest of the DAPC plots, and the plot on
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the right was generated with a different seed. On the left, the cluster containing
the wolves, cluster 8, also contains eight village dogs from Alaska, whereas the
cluster containing the wolves on the right, cluster 9, exclusively consists of the
wolves.

(a) Village Dogs (same seed) (b) Village Dogs (different seed)

From here, the results using dendrograms are discussed. Because the dataset
containing mutts and wolves has less than 200 samples, each datapoint is viewed
as its own in the dendrogram. Averages are taken for the sets of all dogs and
the sets of no village dogs so that each branch represents the average of all its
members (i.e. the Border Collie branch would represent the mean value of all
Border Collie samples.)

Figure 23: Dendrogram of Mutts and Wolves
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The above dendrogram uses the Mahalanobis distance (standardized Euclidean
Distance), and demonstrates that, while the 4 wolf samples colored in pink are
quite far away from the other samples, they still are close enough in distance
to some mutts that those mutts may be interesting to interpret. However, that
cluster of mutts is assuredly an outlier due to its relative distance from the
other, more densely packed clusters.

Figure 24: Dendrogram of the Averages of All Dogs and Wolves

Note in the above dendrogram that the clusters appear to have a cascading
pattern of some relatively small and some relatively large clusters. This actually
is not reflected when the village dogs are removed, where there is a very strange
branching pattern.
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Figure 25: Dendrogram of the Averages of All Dogs without Village Dogs and
Wolves

Here there seems to be a small group of outliers to the far right, and the cas-
cading pattern of clusters shown in the previous plots. The wolves fall into a
very small cluster toward the center, which is a bit odd.

Figure 26: Dendrogram of the Averages of All Village Dogs and Wolves

Finally, the group of village dogs only is much clearer to interpret. The wolves
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belong to a very small cluster in the center, and the cascading pattern of clusters
is still visible.

6 Conclusion

This paper was a summary of different clustering and distance measure algo-
rithms in an attempt to better describe the genetic distances between two similar
species. Rather than taking a visual approach using the first two PCs as is the
norm in current literature [2] [10], this paper is a mixture of different cluster-
ing methods such as DAPC, hierarchical clustering, partitioning clustering, and
DBScan to determine if there are any additional insights that cannot be gleaned
from merely eyeballing the data.

From the k -means data gathered, it’s clear that the clusters detected are indeed
visually distinct groups, but these groups often contain many different dogs.
While it does define groups that are distinct enough from each other to be
partitioned in individual clusters, the recommended number of clusters result
in coarse clusters that also fail to take into account the shape of the PCA plots
(see the previous k-means plots on the mutt dataset) in determining clusters. In
addition, this method still relies on only using the first two PCs, which means
that, often, less than 40 percent of all variance is accounted for in these plots.

Using the DBSCAN method of clustering, more unique clusters are identified
in most cases, the sole exception being the case in clustering all dogs with
an ε0 distance of 0.001 and a MinPts of 3. Generally, this method seems to
be better at identifying points that are very close to each other and would
theoretically be similar to each other in terms of their genetic variants, which
could be helpful for identifying different specimens similar to each other that
geographical clustering would fail to identify, especially in the large sample cases
like the set of all specimens. However, like k -means, this is again limited to a
2-dimensional plot for interpretation which means that in the majority of cases
less than 40% of the variance is accounted for.

Finally, using the DAPC method of clustering, more unique groups can be
identified and easily visualized in distinct groups. However, one major drawback
of the DAPC plots in their current implementation is that they are somewhat
difficult to interpret, given their lack of labels on the axes — thus, evaluating
how close or far a cluster is from its neighbors can only be done very coarsely.
In addition to this drawback, running DAPC results in different results each
time, due to the random nature of both k -means and how R finds the linear
discriminant functions. This means that situations like the one discussed, where
a cluster could be found either near its neighbors or very far away, could occur
and lead to irreproducible results if a seed is not specified beforehand. A future
method of resolving this issue could be to run DAPC multiple times and identify
how far or how close a certain cluster is to its neighbors. This metric of how
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close or how far a cluster is, however, would have to be calculated with respect
to the dataset itself, and is hard to implement without a proper scale set on
the DAPC plots. Furthermore, by using DAPC, more PCs can be used in
the plots, but now that the axes are the projections of the linear discriminant
functions, the problem of 2-dimensional projections is simply shifted onto the
linear discriminants rather than the PCs.

Both the issue of the 2-dimensional projection and the lack of PCs is addressed
by dendrogram plots, which are able to consider the entire PCA space when
identifying points either close to or far away from any point of interest. However,
visualization is a key part of the dendrograms - without a guide, they can be
confusing to interpret, especially for large data sets. Even in small datasets,
such as the notional iris dataset or the set of wolves and mutts, the density of
branches makes interpretation difficult. Taking the averages can help account for
this, but the averages can potentially be skewed by outliers within the sampled
groups.

Note that, in all of the clustering methods, the identified clusters do not match
very well with the clusters identified from looking at the geographic regions,
as shown in the original text [2]. In addition, this analysis of the data also
reveals something interesting about the sampled wolves - in particular, that
even though automated clustering algorithms tend to view them as outliers,
that’s not the case for all of the clustering methods, even when the entire PC
space is considered. This does make sense due to the fact that wolves are close
relatives to the modern domesticated dog.

From all of the above, I would argue that some clustering methods, such as
k -means, produce algorithmically optimal clusters that are simply too coarse.
While an algorithm may not surpass the clusters identified via geographical re-
gion, additional analysis of PCA data with various other algorithms can reveal
similarities that were not previously considered from simply analyzing the ge-
ographic clusters. This is especially evident with hierarchical clustering using
the Mahalanobis distance, where the dendrograms demonstrate similar points
using the entire PCA space to explain similar points given an uncorrelated space
which explains 100% of the variance in the original data set.

Furthermore, I would argue for, alongside the current literature standard of
using geographic clusters, using dendrograms on the entire PCA space to further
identify connections between samples of interest and the rest of the data. As
stated previously, this would allow for a comparison between clusters identified
based on sampled region of origin and clusters identified on the entire data
space. While this study alone does not help answer exactly where dogs were
domesticated, this study does demonstrate that algorithmic clustering methods
may not be optimal for identifying where exactly dogs were first domesticated.
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8 Appendix

8.1 Data Structure

The data set for the 5,406 dog sampled used in this study is stored across 3
different file types:

• bim - extended variant call file. This can be read as a text file and contains
the following information in tabular format:

1. Chromosome code

2. Variant ID

3. Position in centimorgans (unit of measurement for genetic linkage,
defined as the distance between chromosome positions where the ex-
pected average number of intervening chromosomal crossovers in a
single generation is 0.01.

4. Base-pair coordinate

5. ALT (alternative) allele code

6. REF (reference) allele code

• bed - binary biallelic genotype table. This contains the genotype data
stored in binary format to reduce the file size.

• fam - Information about the samples. This is stored as a text file contain-
ing the following categorical data.

1. Family ID

2. Individual ID

3. Individual ID of father

4. Individual ID of mother

5. Sex code

6. Phenotype value
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This data for the 334 wolves is stored in ped/map format. This format is
similar to the bed/bim/fam trio of files described above, and stores the following
information:

• .ped - Pedigree/Genotype table. Contains informaiton on the genotypes.

1. Family ID

2. Individual ID

3. Individual ID of father

4. Individual ID of mother

5. Sex code

6. Affected (Numerical code that describes if a variant exists within the
genotype)

7. Genotypes

• .map

1. Chromosome code - which chromosome the variant was found in.

2. Variant ID

3. Genetic distance in centimorgans

4. Physical position in the chromosome

8.2 Code Notes

The seed set at the beginning of the DAPC code, seed number 19274927 in R,
is only used for the DAPC plots for reproducability’s sake. The same seed was
used for the k -means code for the same reason. The DAPC code is a stripped
down version of the source code from the DAPC package [13]. The Other Code
was used for the other clustering methods, and is not meant to be run all at
once. It is meant to be run in smaller pieces, and those outputs and any changes
are meant as inputs for the next part of the code.

8.2.1 DAPC

l i b r a r y (MASS)
l i b r a r y ( adegenet )
l i b r a r y ( c l u s t e r )
l i b r a r y ( f a c t o e x t r a )
s e t . seed (19274927)

. compute . wss <− f unc t i on (x , f ) {
x . group . mean <− apply (x , 2 , tapply , f , mean)
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sum ( ( x − x . group . mean [ as . cha rac t e r ( f ) , ] ) ˆ 2 )
}

#in order to pass in the r e q u i s i t e PCs
sb = read . t a b l e ( ’/ f i l e p a t h / to / f i l e . e igenvec ’ )
sb2 = read . t a b l e ( ’/ f i l e p a t h / to / f i l e . e i genva l ’ )
sbNames = read . csv ( ’ ShannonBoyko All NoPheno . csv ’ , header=F)

PCLevels <− 100∗cumsum( sb2 [ 1 ] ) / sum( sb2 [ 1 ] )
x <− 1 :20
totalPCs = sb [ , −c ( 1 : 2 ) ]
p l o t (x , t ( PCLevels ) , x lab=”Number o f Retained PCs” , ylab=”Percent o f Variance Accounted For ” , type=”o ”)
i <− 10
PCs <− totalPCs [ , 1 : i ]
N<−nrow (PCs)
minNumClust = 2
maxNumClust = 40
nbClust = minNumClust : maxNumClust
WSS <− numeric (0 )
avg . s i l h o u e t t e <− numeric (0 )
f o r ( j in 1 : l ength ( nbClust ) ){

temp <− kmeans (PCs , c e n t e r s=nbClust [ j ] , i t e r . max=1e5 , n s t a r t =10)
WSS[ j ] <− . compute . wss (PCs , temp$c luster )
avg . s i l h o u e t t e [ j ] <− mean( s i l h o u e t t e ( temp$cluster , d i s t (PCs ) ) [ , 3 ] )

}
#f i n d AIC
WSS. o r i <− sum( apply (PCs , 2 , f unc t i on ( v ) sum ( ( v−mean( v ) ) ˆ 2 ) ) )
k <− nbClust
myStat <− N∗ l og ( c (WSS. or i ,WSS)/N) + 2∗ c (1 , nbClust ) #need to d e f i n e WSS and N
myLab <− ”AIC”
myTitle <−”Value o f AIC \ nversus Number o f C lu s t e r s ”

#f i n d BIC
WSS. o r i <− sum( apply (PCs , 2 , f unc t i on ( v ) sum ( ( v−mean( v ) ) ˆ 2 ) ) )
k <− nbClust
myStat <− N∗ l og ( c (WSS. or i ,WSS)/N) + log (N)∗ c (1 , nbClust ) #need to d e f i n e WSS and N
myLab <− ”BIC”
myTitle <−”Value o f BIC \ nversus Number o f C lu s t e r s ”

#p lo t AIC va lues
p l o t ( c (2 , nbClust ) , myStat , xlab=”Number o f C lu s t e r s ” , ylab=myLab , main=myTitle , type=”o ” , c o l=”blue ”)
a b l i n e (h=0, l t y =2, c o l=”red ”)

#c a l c u l a t e the s i l h o u e t t e and p lo t i t

#mine
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p lo t ( nbClust−1,avg . s i l h o u e t t e , type=”o ” , c o l=”blue ” , xlab =”(Number o f C lu s t e r s )” , ylab=”Average S I l ho u e t t e Value ”)
#package to double check
f v i z n b c l u s t (PCs , kmeans , method = ” s i l h o u e t t e ” , k . max=maxNumClust )

#use the p l o t s to inform num of c l u s t e r s
k <− 15

#grp <− f i n d . c l u s t e r s ( totalPCsubset , max . n . c l u s t =40) #
grp <− kmeans (PCs , k )
ldaX <− lda (PCs , g rp$c lu s t e r , t o l=1e−30)
barp lo t ( ldaX$svd ˆ2 , xlab=”Linear Disc r iminants ” , ylab=”F−s t a t i s t i c ” , main=”Discr iminant a n a l y s i s e i g e n v a l u e s ” , c o l=heat . c o l o r s ( l ength ( l e v e l s ( ( grp ) ) ) ) )

#choose the number o f l i n e a r d i s c r i m i n a n t s to r e t a i n
f <− 10
predX <− p r e d i c t ( ldaX , dimen=f )

#c r e a t e a DAPC ob j e c t
grp <− as . f a c t o r ( g r p $ c l u s t e r )
r e s <− l i s t ( )
res$n . pca <− i
r e s$n . da <− f
r e s$ tab <− PCs
re s$grp <− grp
re s$var <− PCLevels
r e s $ e i g <− ldaX$svd ˆ2
r e s $ l o a d i n g s <− l daX$sca l ing [ , 1 : f , drop=FALSE]
res$means <− ldaX$means
r e s$ ind . coord <−predX$x
re s$grp . coord <− apply ( r e s$ ind . coord , 2 , tapply , grp , mean)
r e s $ p r i o r <− ldaX$pr ior
r e s $ p o s t e r i o r <− predX$poster io r
r e s $ a s s i g n <− predX$class
r e s $ c a l l <− match . c a l l ( )

c l a s s ( r e s ) <− ”dapc”
s c a t t e r ( r e s )

8.2.2 Other Code

l i b r a r y ( adegenet )
l i b r a r y (MASS)
l i b r a r y ( ggp lot2 )
l i b r a r y ( f a c t o e x t r a )
l i b r a r y ( FactoMineR )
l i b r a r y ( fpc )
l i b r a r y ( dbscan )
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l i b r a r y ( dendextend )
l i b r a r y ( RColorBrewer )
l i b r a r y ( s t r i n g r )
p a l e t t e ( brewer . pa l (n=8,name=”Set2 ”) )
s e t . seed (19274927)
#import da ta s e t s
sb = read . t a b l e ( ’/ f i l e p a t h / to / f i l e . e igenvec ’ )
sb2 = read . t a b l e ( ’/ f i l e p a t h / to / f i l e . e i genva l ’ )
sbNames = read . csv ( ’ ShannonBoyko All NoPheno . csv ’ , header=F)
sbNames2 = read . csv ( ’ ShannonBoyko VillageDogNames . csv ’ , header=F)

PC1 = sb$V3
PC2 = sb$V4

#check to see how much o f the var iance the PCs correspond to
PCLevels <− 100∗cumsum( sb2 [ 1 ] ) / sum( sb2 [ 1 ] )
( sb2 [ 1 ] ) / sum( sb2 [ 1 ] )
#p lo t code f o r g e n e r i c r p l o t . PC% come from l i n e 11 .
p l o t (PC1, PC2, pch=19, xlab=”PC1 (21.2%)” , ylab=”PC2 (11.3%)”)
po in t s (PC1 [ 1 : 4 ] , PC2 [ 1 : 4 ] , pch=19, c o l=”ye l low ”)
PCi <− data . frame (PC1,PC2)
ggp lot (PCi , aes ( x=PC1, y=PC2) ) + geom point ( s i z e =3, alpha =0.5)

#kmeans code f o r grouping the po in t s .
f v i z n b c l u s t (PCi , kmeans , method = ” s i l h o u e t t e ” , k . max=20)

k = 3 #number o f c l u s t e r s
c l u s t e r I n f o <− kmeans (PCi , k )
c l u s t e r C o l <− c l u s t e r I n f o $ c l u s t e r
p l o t (PC1, PC2, c o l=c lu s t e rCo l , pch=19, xlab=”PC1 (24.8%)” , ylab=”PC2 (16.9%)”)
po in t s (PC1 [ 1 : 4 ] , PC2 [ 1 : 4 ] , pch=19, c o l=”ye l low ”)
legend (” t o p l e f t ” , l egend=c (” Clus te r 1” ,” Clus te r 2” ,” Clus te r 3” ,” Wolves ”) , c o l=c (1 ,2 , 3 , ” ye l low ”) , pch=19)

k = 4 #number o f c l u s t e r s
c l u s t e r I n f o <− kmeans (PCi , k )
c l u s t e r C o l <− c l u s t e r I n f o $ c l u s t e r
p l o t (PC1, PC2, c o l=c lu s t e rCo l , pch=19, xlab=”PC1 (16.8%)” , ylab=”PC2 (12.2%)”)
po in t s (PC1 [ c ( 3 , 4 , 6 , 8 ) ] ,PC2 [ c ( 3 , 4 , 6 , 8 ) ] , pch=19, c o l=”ye l low ”)
legend (” bottomright ” , l egend=c (” Clus te r 1” ,” Clus te r 2” ,” C lus te r 3” ,” Clus te r 4” ,” Wolves ”) , c o l=c (1 , 2 , 3 , 4 , ” ye l low ”) , pch=19)

namesCol = f a c t o r ( sbNames2$V2 )
indexes = match ( sb$V1 , sbNames$V1 )
indexes [ 1 : 4 ] =NA
plo t (PC1, PC2, pch=19, c o l=namesCol [ indexes ] )
po in t s (PC1, PC2, pch=19, c o l=namesCol [ indexes ] )
l egend ( 1 , 0 . 1 , namesCol [ indexes ] )
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#mahalanobis d i s t a n c e s on the f i r s t 2 PCs
#f o l l o w i n g along with Chemometrics as an e x e r c i s e
PC1 = s c a l e (PC1)
PC2 = s c a l e (PC2)
#d e c l a r e a c en t r o id
centroidX = ( min (PC1) + max(PC1))/2
centroidY = ( min (PC2) + max(PC2))/2
MLDist = s q r t ( (PC1−centroidX )ˆ2 + (PC2−centroidY )ˆ2)
which ( MLDist==max( MLDist ) )
#don ’ t d e c l a r e c en t r o id
centroidX = 0
centroidY = 0
MLDist = s q r t ( (PC1−centroidX )ˆ2 + (PC2−centroidY )ˆ2)
which ( MLDist==max( MLDist ) )

totalPCs = sb [ , −c ( 1 : 2 ) ]
totalPCs = s c a l e ( totalPCs )
#Hi r ea r cha l c l u s t e r i n g o f p r i n c i p a l components
tota lPCsubset = as . data . frame ( totalPCs ) #want a sma l l e r subset o f data
x <− h c l u s t ( d i s t ( totalPCsubset , ’ euc l idean ’ ) )
dend <− as . dendrogram ( x )
dend %>% s e t (” b y l a b e l s b r a n c h e s c o l ” , va lue=c (235) , TF values = c (2 , I n f ) ) %>% s e t (” b y l ab e l s b ra n ch e s l wd ” , va lue = c (235) , TF values = c ( 4 , 1 ) ) %>% s e t (” l a b e l s ” ,NULL) %>% plo t ( main=”Dendrogram of Averages o f Al l Dogs and Wolves ”)
legend (” top r i gh t ” , l egend = c (” Wolves ” , ”Dogs ”) , f i l l = c (2 ,” black ”) )

p l o t (x , l a b e l=FALSE)
y <− h c l u s t ( d i s t ( totalPCSubset , ’ maximum ’ ) )
p l o t (y , l a b e l=FALSE)
x$order #re tu rns the index order f o r the dendogram branches from l e f t to r i g h t

#dbscan c l u s t e r i n g
#determine the e−d i s t anc e
minPts = 4
dbscan : : kNNdistplot (PCi , k = minPts )
a b l i n e (h = 0 .007 , l t y = 2)
eps = 0.007
db <− fpc : : dbscan (PCi , eps = eps , MinPts = minPts )
p l o t (db , PCi , xlab=”PC1 (24.8%)” , ylab=”PC2 (16.9%)”)
po in t s (PC1 [ c ( 3 , 4 , 6 , 8 ) ] ,PC2 [ c ( 3 , 4 , 6 , 8 ) ] , pch=19, c o l=”ye l low ”)

index <− match ( sb$V2 , sbNames$V1 )
nameLst <− sbNames$V2 [ index ]
datFrame <− data . frame ( sb , nameLst )
sampleLis t <− as . cha rac t e r ( unique ( sbNames$V2 ) )
a <− l ength ( sampleLis t )
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#f i n d the terms
avgVals <− matrix ( data=NA, nrow=a , nco l =21)
f o r ( i in 1 : a ){

temp <− which ( s t r d e t e c t ( as . cha rac t e r ( nameLst ) , sampleLis t [ i ] ) )
temp2 <− tota lPCsubset [ temp , ]
temp3 <− colMeans ( temp2 )
avgVals [ i , 2 : 2 1 ] <− temp3
avgVals [ i , 1 ] <− sampleLis t [ i ]

}
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