Stats 579 – Intermediate Bayesian Modeling

Assignment # 3

1. An hypothetical study considers the lifespan of fluorescent light bulbs. Let $y_1, ..., y_n$ be the duration (in years) it takes for each of n light bulbs to fail. Assume that all tests are performed under laboratory conditions and observations are iid. Researchers are interested in whether bulb lifespan is better modeled with model M_1 , an $\text{Exp}(\lambda)$ distribution, or with model M_2 , a Weibull $(3, \lambda)$ distribution. For both models, the researchers assume $p(\lambda) = e^{-\lambda}$.

For this problem, please use the Exponential and Weibull parameterizations from your textbook, which give

$$y_E \sim \operatorname{Exp}(\lambda)$$

$$f(y_E \mid \lambda) = \lambda \exp(-\lambda y) I_{(0,\infty)}(y)$$

$$y_W \sim \operatorname{Weibull}(\alpha, \lambda)$$

$$f(y_W \mid \alpha, \lambda) = \lambda \alpha y^{\alpha - 1} \exp(-\lambda y^{\alpha}) I_{(0,\infty)}(y)$$

- (a) Obtain the marginal density for these data under each model. (HINT: Take advantage of conjugacy.)
- (b) Obtain an expression for the Bayes factor comparing M_1 to M_2 .
- (c) Evaluate the Bayes factor when the data are: $\{8.05, 6.56, 3.20, 6.85, 5.67\}$.
- (d) Explain which model seems preferable based on the Bayes factor. Explain which model would be preferable if you had a prior belief that M_1 were nine times more likely to be correct than M_2 .
- 2. Using the same set-up as in Problem 1, the researchers want to compare these models in terms of AIC.
 - (a) Find the MLE for λ under M_1 and M_2 . Note that although both models have a parameter named λ , these parameters are not the same and may maximize at different values for each model. It may be helpful to write the MLEs as $\hat{\lambda}_1$ and $\hat{\lambda}_2$ to help distinguish them.
 - (b) Calculate AIC for each model using the data provided above. Which model seems preferable based on AIC?
- 3. Let $y_1, ..., y_n$ be independent conditional on some model parameter θ . Let $y_i \sim f(y_i \mid \theta)$ and let θ have prior $p(\theta)$. Consider the conditional predictive ordinate for an observation y_i ,

$$CPO_j = f\left(y_j \mid y_{(j)}\right),$$

where $y_{(j)}$ denotes the set $\{y_1, ..., y_{j-1}, y_{j+1}, ..., y_n\}$.

(a) Show that

$$CPO_j = \frac{\int \prod_{i=1}^n f(y_i \mid \theta) p(\theta)}{\int \prod_{i \neq j} f(y_i \mid \theta) p(\theta)}.$$

(b) Now show that

$$CPO_j^{-1} = \int \left[\frac{1}{f(y_j \mid \theta)} \right] p(\theta \mid y) d\theta.$$

1