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Abstract

Bayesian wavelet shrinkage methods are defined through a prior distribution
on the space of wavelet coefficients after a Discrete Wavelet Transformation
has been applied to the data. Posterior summaries of the wavelet coefficients
establish a Bayes shrinkage rule. After the Bayes shrinkage is performed, an
Inverse Discrete Wavelet Transformation can be used to recover the signal that
generated the observations. This article reviews some of the main approaches
for Bayesian wavelet shrinkage that span both smooth and multivariate types
of shrinkage.

Background

Thresholding rules became of considerable interest when De Vore and Lucier
(1992) and Donoho and Kerkyacharian (1995) applied them in the wavelet shrink-
age context. Wavelet shrinkage refers to a process of transforming the data or
a signal with a Discrete Wavelet Transformation (DWT), implementing some
type of reduction to the wavelet coefficients, and then applying the Inverse
Discrete Wavelet Transformation (IDWT) to reconstruct the signal. Hard/Soft
thresholding is a type of shrinkage in which those coefficients whose absolute
value is smaller than a certain bound, are replaced by zero. Analytically simple,
these rules are very efficient in data denoising and especially data compression
problems.

However, shrinkage by thresholding poorly accounts for any prior information
available about the structure of the data, the signal and the noise. From a
Bayesian perspective, methods of wavelet reduction have been developed to
incorporate prior knowledge on the parameters that define a model for the sig-
nal and noise. Bayesian approaches for choosing a shrinkage method have
shown to be effective. In general, Bayes rules are ”shrinkers” with the desirable
property that they heavily shrink small wavelet coefficients and only slightly
shrink large coefficients.

1



Discrete Wavelet Transformation

Basics on wavelets can be found in many different texts, monographs and papers at
many different levels of exposition, for example, the reader could consider Daubechies
(1992), Vidakovic (1999) and Efromovich (1999) among others. A brief review of the
DWT used in this article is now presented.

Let y be a data vector of dimension (size)N , whereN = 2k for some positive integer
k and suppose that the DWT is applied to the vectory and transformed into a vector
d, i.e., d = Wy. This transformation of the data is linear and is represented by an
orthogonal matrixW of dimensionsN × N . In practice, one performs the DWT
without explicitly exhibiting the matrixW and by using fast filtering algorithms based
on the so-called quadrature mirror filters that uniquely correspond to the wavelet of
choice. More precisely, the wavelet decomposition of the vector y is a vectord =
(Gy, GHy, GH2y, . . . , GHn−1y, Hny).

The operatorsG andH act on sequences and are defined via high-pass and low-pass
quadrature mirror filters corresponding to a particular wavelet basis. The elements
of d are the wavelet coefficients where its sub-vectors represent different levels in the
pyramid indexing of the wavelet coefficients. For instance,the vectorGy containsN/2
coefficients representing the level of finest detail. These elements are represented by
d1 = (d1,0, d1,1, . . . , d1,N/2−1).

In general, the levelj of the wavelet decomposition ofy is a vector that containsN/2j

elements and represented bydj = GHj−1y = (dj,0, dj,1, . . . , dj,N/2j−1). When the
coefficients correspond to a “smooth” level rather than a “coarse” level of details, then
the elements are typically denoted bysj,k. For simplicity, in this paper we denote any
type of wavelet coefficients asdjk. The main strength of the DWT in statistics is that it
induces local-in-time and time-space plane divisions thatform unconditional basis for
a range of function spaces.

Data Denoising and Bayes Inference

Let y = (y1, y2, . . . , yN ) be a vector of equally spaced observations of sizeN whose
elements satisfy that

yi = fi + εi; i = 1, 2, . . . , N.

fi is the underlying signal generating the observed process and εi forms a sequence of
independent and identically distributed errors with constant varianceσ2. This model
can be rewritten in vector form as

y = f + ε

wheref = (f1, f2, . . . , fN ) andε = (ε1, ε2, . . . , εN).
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From a statistical point of view, the problem ofdata denoising is addressed as the
problem of estimating the unknown vectorf = (f1, f2, . . . , fN) given the observed
datay. After applying a DWT toy, we obtain the following model for the wavelet
coefficients

d = θ + ε′

whered = Wy, θ = Wf , andε′ = Wε with ε′ = (ε′
1
, ε′

2
, . . . , ε′N ). If εi ∼ N(0, σ2)

and sinceW is an orthogonal matrix, the probability distribution forε′ corresponds
to a multivariate Normal with a zero mean vector and covariance matrixσ2IN×N ,
i.e., ε′ ∼ MV N(0, σ2IN×N ) whereIN×N denotes an identity matrix of dimension
N . This implies that the probability distribution ofd givenθ andσ2, f(d|θ, σ2), is a
multivariate Normal with mean vectorθ and covariance matrixσ2IN×N . On the other
hand, for every DWT there is an Inverse Discrete Wavelet Transformation (IDWT) that
permits the reconstruction of the signal through the expressionf = W tθ, whereW t

is the transpose matrix ofW . In consequence, inferences aboutθ based on the wavelet
coefficientsd automatically produce inferences on the signal of interestf .

The problem of estimatingθ from a Bayesian perspective requires a prior probability
distributionp(θ, σ2). The joint posterior distribution for(θ, σ2) givend is defined by

p(θ, σ2|d) ∝ f(d|θ, σ2)p(θ, σ2).

This joint posterior distribution can be marginalized withrespect toσ2 to obtain the
marginal posterior distribution ofθ givend,

p(θ|d) =

∫ ∞

0

p(θ, σ2|d)dσ2.

A summary from this posterior distribution is typically used to define aBayes shrink-
age. For example, the posterior expectationE(θ|d) or the posterior median can be
used as a point estimator ofθ and then transformed back via the IDWT to the original
signal-noise model. More formal theoretic decision approaches can define shrinkage
rules based on loss function optimality criteria. In fact, the established Bayesian frame-
work is quite general and does not rely on the assumption of Normal errors. However,
the convenience of a Normal distribution assumption generally simplifies the calcula-
tions of the Bayes shrinkage.

Bayes Smooth Shrinkage

Different Bayes shrinkage methods depend on particular prior specifications. For ex-
ample, Vidakovic (1998) proposed a Double Exponential prior distribution for each
wavelet coefficient independently. Furthermore, the shrinkage problem is formulated
as a decision theoretic problem and the goal is that the resulting optimal actions will
mimic ”desirable thresholding rules”. In the case of this Double Exponential prior
distribution, the shrinkage rule corresponds to a posterior expectation in closed form
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that can be expressed in terms of a Laplace transformation. For the Adaptive Bayesian
Wavelet Shrinkage (ABWS) proposed by Chipman and McCulloch(1997), a mixture
of normals with different variances is used as a prior distribution for each wavelet
coefficients. One of the variances is chosen to be near zero which approximates the
situation of a point mass prior. The main advantage of this approach is that it provides
closed expressions for the posterior distribution of interest and so the computations
can be done quickly. The wavelet coefficientsdjk are modeled independently within
and across levels. Therefore, Chipman and McCulloch (1997)start with the model
p(djk|θjk, σ2) = N(θjk, σ2). The prior onθjk is defined as a mixture of two Normal
disributions where

p(θjk|γj) = γjN(0, (cjτj)
2) + (1 − γj)N(0, τ2

j )

p(γj) = p
γj

j (1 − pj)
1−γj ; γj = 0, 1

so theγj ’s are independently distributed Bernoulli(pj) variables. Since the hyperpa-
rameterspj , cj andτj depend on the levelj to which the correspondingθjk (or djk)
belongs and can be level-wise different, the method is adaptive. The Bayes rule under
squared error loss forθjk has an explicit form

θ̂(d)jk =

[

P (γj = 1|dj)
(cjτj)

2

σ2 + (cjτj)2
+ (1 − P (γj = 1|dj))

τ2

j

σ2 + τ + j2

]

djk

whereP (γj = 1|dj) is the posterior probability thatγj = 1 anddj is the vector of level
j wavelet coefficients. A sophisticated empirical Bayes argument is used for tuning the
hyperparameters level-wise.

The approach used by Clyde and Vidakovic (1998) is based on a mixture prior which
allows for each wavelet coefficient to be zero with a positiveprobability (prior point
mass) or to follow a Normal distribution,

p(θjk|γj , σ
2) = N(0, (1 − γj) + γjcjσ

2)

for non-zero cases. The indicator (zero-one) variables,γj , define which basis element,
i.e., column ofW should be selected. As before the subscriptj indicates the level to
which θjk belongs. The prior distribution onσ2 is an inverseχ2 and the vectorγ is
formed by all theγj elements. The posterior mean for the vector of all theθjk ’s is
obtained by averaging over allP (γ|d), the posterior probabilities of eachγ given all
the wavelet coefficients. Therefore,

E(θ|d) =
∑

γ

P (γ|d)E(θ|d, γ)

whereE(θ|d, γ) is the posterior expectation ofθ givend and a specificγ. However,
calculating the posterior probabilities ofγ and the mixture estimate for the posterior
mean implies summing over all2N values ofγ. The calculations for such mixing is
prohibitive even for problems of moderate size, and either approximations or stochastic
methods for selecting subsets ofγ that have a high posterior probability, must be used.
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In a related paper, Clyde and George (2000) proposed a shrinkage approach that uses
a hierarchical model with heavy-tailed error distributions that are a scale mixtures of
normals. The prior specifications for some of the parametersin their model are diffi-
cult, hence, anempirical Bayes procedure is used to estimate these hyperparameters.
These authors suggested various choices of priors and the posterior mean or median
was used as an estimator of the wavelet coefficients. Furthermore, their methods allow
to obtain threshold shrinkage estimators based on Bayesianmodel selection and mul-
tiple shrinkage estimators based on model averaging. An amazing volume of simula-
tions were performed to justify the various error distributions and the various Bayesian
models. All of these Bayesian models produce estimators as efficient (or better) than
the ones based on traditional thresholding rules no matter whether the errors are Nor-
mal or not. To the best of the author’s knowledge, the papers by Vidakovic (1998)
and Clyde and George (2000) are the only ones that deal with non-normal errors for
shrinkage problems in a Bayesian framework.

Multivariate Bayes Shrinkage

The main purpose in amultivariate Bayes shrinkage is to introduce a prior distribu-
tion that relaxes the unrealistic assumption of independence among wavelet coeffi-
cients. In particular, one can place a multivariate Normal-Inverse Gamma distribution
for p(θ, σ2) with p(θ|σ2) = MV N(0, σ2Σ) andp(σ2) = IG(α, δ). This model can
incorporate dependence of the wavelet coefficients via an appropriate specification of
theN ×N prior covariance matrixΣ. In this case, the posterior distribution for(θ, σ2)
is also a Normal-Inverse Gamma distribution with hyperparametersm∗, Σ∗, α∗ andδ∗

where

Σ∗ = (IN×N + Σ−1)−1,

m∗ = Σ∗d,

α∗ = α + ||d|| + (m∗)t(Σ∗)−1(m∗),

δ∗ = δ + N.

Therefore a Bayes estimator forθ is m∗.

Building on this structure, Huerta (2005) proposed the following model for a multivari-
ate Bayes shrinkage,

p(d|θ, σ2) = MV N(θ, σ2IN×N ),

p(θ|τ2) = MV N(0, τ2Σ),

whereσ2 and τ2 are scale parameters andΣ is again aN dimensional matrix that
induces prior correlations among the wavelet coefficients.In this model it is also as-
sumed thatσ2 ∼ IG(α1, δ1) andτ2 ∼ IG(α2, δ2). The additional scale parameterτ2

may induce some extra shrinkage to the wavelet coefficients leading to a more flexi-
ble Bayes wavelet shrinkage. This hierarchical prior implies a marginal multivariatet
prior on θ, however there is no useful closed form expression forE(θ|d). Therefore

5



Huerta (2005) introduced a Gibbs sampler to generate posterior samples of(θ, σ2, τ2)
to approximate the posterior mean ofθ. Specifically, the full conditional distribution
for θ given τ2, σ2 andd, is a multivariate Normal distribution with vector meanm∗

and covariance matrixΣ∗,

p(θ|τ2, σ2, d) = N(m∗, Σ∗)

wherem∗ = Σ∗σ−2d and Σ∗ = (τ−2Σ−1 + σ−2IN×N )
−1

. The full conditional
distribution ofσ2 givenθ, τ2 andd is an Inverse Gamma distribution with parameters
α∗

1
andδ∗

1
,

p(σ2|θ, τ2, d) = IG(α∗
1
, δ∗

1
),

with α∗
1

= N/2 + α1 andδ∗
1

= (θ − d)t(θ − d)/2 + δ1. Finally, the full conditional
distribution forτ2 givenθ, σ2 andd is an Inverse Gamma distribution with parameters
α∗

2
andδ∗

2
,

p(τ2|θ, σ2, d) = IG(α∗
2
, δ∗

2
),

with α∗
2

= N/2 + α2 andδ2
∗ = [θtΣ−1θ]/2 + δ2.

This method has shown to be robust for large errors in the observations. In particu-
lar, the multiresolution analysis of a sequence of measurements in Atomic Force Mi-
croscopy (AFM) and the reconstructed signal using the multivariate Bayes shrinkage
appears in Figure 1. The rows indexedd1 − d6 are the values of the coefficients for the
details,d1 representing the finest level andd6 the coarsest level. The row indexed by
s6 includes the coefficients of the smooth level. The Bayes shrinkage reduces the val-
ues for the fine levels of details towards zero while keeping almost intact coefficients
corresponding to the smooth part or high levels of detailss6, d6. Notice that the recon-
structed signal is quite smooth while other shrinkage approaches such asSure Shrink
provide less smooth signal estimates with noisy artifacts.Similar data was analyzed
via aΓ-Minimax wavelet shrinkage approach in Angelini and Vidakovic (2004) with
comparable results to those shown here.

Hyperparameters and Laurent submatrices

For the case,p(θ|σ2) = MV N(θ, σ2Σ), a reduction on the number of hyperparameters
and imposing a hierarchical prior structure on some of the remaining hyperparameters
was suggested by Vannucci and Corradi (1999). These authorsapplied their method,
which they callBayes Shrink, to density estimation and regression problems. Assuming
that θ corresponds to an autoregressive process in time,Vannucciand Corradi (1999)
demonstrate that the matrixΣ depends on only two hyperparameters,λ andρ. The
parameterρ is the “autocovariance index” andλ is the precision parameter. The co-
variance matrixΣ(λ, ρ) = λΣ(ρ) has an interesting “finger like” structure. These
authors suggest that,

p(λ) = IG(p/2, q/2)

p(ρ) ∝ (C − ρ)r1−1(C + ρ)r2−1, |ρ| < C.
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An alternative specification for theΣ matrix that also produces interesting shrinkage
results is to fix it as a block diagonal matrix with each block of the formλjΣj . Each of
the termsΣj defines a correlation structure inside thej-th level of coefficients for the
wavelet decomposition. The values ofλj are intended to tune the amount of shrinkage
at levelj. The block diagonal assumption forΣ establishes no correlation between
coefficients at different levels of the wavelet decomposition of the data. Furthermore,
Σj can be defined as a matrix with entriesσi,s = ρ|i−s|, i.e., the largest the difference
between the sub-indexesi ands, the smaller the correlation between coefficients.ρ is a
scalar quantity in(0, 1). This type of specification was extensively applied in the mod-
eling framework of Huerta (2005) and used to obtain Figure 1.Also, Vidakovic (1999)
presents an example of “affine” or linear Bayes shrinkage viaLaurent submatrices for
the well knowngalaxy velocities data set.

A Full Bayes Model

The methods in previous sections are similar to the the traditional wavelet-shrinkage
paradigm but with the wavelet coefficient being shrunk in a Bayesian fashion. Addi-
tionally Mueller and Vidakovic (1995) proposed a full Bayesian model for the wavelet
coefficients targeted for density estimation problems. Their prior model explicitly de-
fines geometrically decreasing prior probabilities for non-zero coefficients at higher
levels of detail. An indicator variable performs the modeled induced thresholding and
if a wavelet coefficient is not included, apseudo-prior is assumed to avoid parameter
spaces of varying dimension. MCMC techniques withMetropolis-Hastings updating
steps can be used to sample the posterior distribution defined on the wavelet parameter
space.

Conclusion

Bayes wavelet shrinkage methods provide powerful tools fordata denoising prob-
lems. This paper reviews some of the most important Bayes wavelet shrinkage ap-
proaches and in particular, a multivariate Bayes shrinkagethat relies on MCMC meth-
ods. Other Bayes shrinkage methods can be computationally less or more demanding,
like empirical-Bayes approaches or Full Bayes methods, andmore formally based on
decision theoretic aspects.
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