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Abstract

Bayesian wavelet shrinkage methods are defined through a prior distribution
on the space of wavelet coefficients after a Discrete Wavelet Transformation
has been applied to the data. Posterior summaries of the wavelet coefficients
establish a Bayes shrinkage rule. After the Bayes shrinkage is performed, an
Inverse Discrete Wavelet Transformation can be used to recover the signal that
generated the observations. This article reviews some of the main approaches
for Bayesian wavelet shrinkage that span both smooth and multivariate types
of shrinkage.

Background

Thresholding rules became of considerable interest when IDe Vore and | uciet
(1992) andDonoho and Kerkyacharian (1995) applied them in the wavelet shrink-
age context. Wavelet shrinkage refers to a process of transforming the data or
a signal with a Discrete Wavelet Transformation (DWT), implementing some
type of reduction to the wavelet coefficients, and then applying the Inverse
Discrete Wavelet Transformation (IDWT) to reconstruct the signal. Hard/Soft
thresholding is a type of shrinkage in which those coefficients whose absolute
value is smaller than a certain bound, are replaced by zero. Analytically simple,
these rules are very efficient in data denoising and especially data compression
problems.

However, shrinkage by thresholding poorly accounts for any prior information
available about the structure of the data, the signal and the noise. From a
Bayesian perspective, methods of wavelet reduction have been developed to
incorporate prior knowledge on the parameters that define a model for the sig-
nal and noise. Bayesian approaches for choosing a shrinkage method have
shown to be effective. In general, Bayes rules are "shrinkers” with the desirable
property that they heavily shrink small wavelet coefficients and only slightly
shrink large coefficients.



Discrete Wavelet Transfor mation

Basics on wavelets can be found in many different texts, goayghs and papers at
many different levels of exposition, for example, the reameild considelr EélE]BI)EEEies

(1992) | Vidakovicl(1999) and Efromavich (1999) among oshek brief review of the

DWT used in this article is now presented.

Lety be a data vector of dimension (siz&) whereN = 2* for some positive integer
k and suppose that the DWT is applied to the vegtand transformed into a vector
d, i.e.,d = Wy. This transformation of the data is linear and is represkhtean
orthogonal matrixi¥ of dimensionsN x N. In practice, one performs the DWT
without explicitly exhibiting the matriX¥}” and by using fast filtering algorithms based
on the so-called quadrature mirror filters that uniquelyrespond to the wavelet of
choice. More precisely, the wavelet decomposition of thetarey is a vectord =
(Gy,GHy, GH?y, ...,GH" 1y, H"y).

The operatorg: and H act on sequences and are defined via high-pass and low-pass
quadrature mirror filters corresponding to a particular elet/basis. The elements

of d are the wavelet coefficients where its sub-vectors repteserent levels in the
pyramid indexing of the wavelet coefficients. For instartlee vectoiGy containsV,/2
coefficients representing the level of finest detail. Thdsments are represented by

di = (di0,d11,- - dy Nj2—1)-

In general, the level of the wavelet decomposition gfis a vector that contain’/27
elements and representeddy= GH' 'y = (d;o,d;1,...,d; n/2i_1). When the
coefficients correspond to a “smooth” level rather than atse” level of details, then
the elements are typically denoted &y,.. For simplicity, in this paper we denote any
type of wavelet coefficients ak;,. The main strength of the DWT in statistics is that it
induces local-in-time and time-space plane divisions fiwaih unconditional basis for
a range of function spaces.

Data Denoising and Bayes | nference

Lety = (y1,¥2,-..,yn) be a vector of equally spaced observations of &izezhose
elements satisfy that

ylzfz—l-al, 221,2,,]\7

fi is the underlying signal generating the observed proces$s;dorms a sequence of
independent and identically distributed errors with cansvariancer. This model
can be rewritten in vector form as

y=f+e

Wheref = (f17f21"'7fN) ande = (817521"'a€N)'



From a statistical point of view, the problem déta denoising is addressed as the
problem of estimating the unknown vectér= (fi, f2,..., fnv) given the observed
datay. After applying a DWT toy, we obtain the following model for the wavelet
coefficients

d=0+¢

whered = Wy, 0 = W f,ande’ = We with e’ = (&,¢5,...,¢'y). If & ~ N(0,0?)
and sincell is an orthogonal matrix, the probability distribution fgrcorresponds
to a multivariate Normal with a zero mean vector and covagamatrix o2y « n,
i.e., e’ ~ MVN(0,0%Inxn) Wherely .y denotes an identity matrix of dimension
N. This implies that the probability distribution afgivené ando?, f(d|0,0?), is a
multivariate Normal with mean vectérand covariance matrix?Iy « y. On the other
hand, for every DWT there is an Inverse Discrete Wavelet3i@mation (IDWT) that
permits the reconstruction of the signal through the exgioesf = W', whereW?*

is the transpose matrix @F. In consequence, inferences abébiased on the wavelet
coefficientsd automatically produce inferences on the signal of intefest

The problem of estimating from a Bayesian perspective requires a prior probability
distributionp(6, 02). The joint posterior distribution fof, o%) givend is defined by

p(0,0°|d) o< f(d]§, o*)p(6,0?).

This joint posterior distribution can be marginalized wit)spect tar? to obtain the
marginal posterior distribution d@f givend,

p(0)d) = /OOO (0, 0%|d)do.

A summary from this posterior distribution is typically ust define eBayes shrink-
age. For example, the posterior expectatifiid|d) or the posterior median can be
used as a point estimator éfand then transformed back via the IDWT to the original
signal-noise model. More formal theoretic decision apphes can define shrinkage
rules based on loss function optimality criteria. In falog established Bayesian frame-
work is quite general and does not rely on the assumption afldberrors. However,
the convenience of a Normal distribution assumption géiyesenplifies the calcula-
tions of the Bayes shrinkage.

Bayes Smooth Shrinkage

Different Bayes shrinkage methods depend on particular gpecifications. For ex-
ample,mm& proposed a Double Exponentialmpdigtribution for each
wavelet coefficient independently. Furthermore, the &age problem is formulated
as a decision theoretic problem and the goal is that thethegudptimal actions will
mimic "desirable thresholding rules”. In the case of thisuble Exponential prior
distribution, the shrinkage rule corresponds to a postexpectation in closed form



that can be expressed in terms of a Laplace transformatarthE Adaptive Bayesian
Wavelet Shrinkage (ABWS) proposed by Chipman and McCuUlid€97), a mixture
of normals with different variances is used as a prior distibn for each wavelet
coefficients. One of the variances is chosen to be near zeichvalpproximates the
situation of a point mass prior. The main advantage of this@guch is that it provides
closed expressions for the posterior distribution of ies¢rand so the computations
can be done quickly. The wavelet coefficiedts are modeled independently within
and across levels. Therefote, Chipman and McCulloch (188} with the model
p(djk|0jk, o) = N(6;1,0%). The prior ondj;, is defined as a mixture of two Normal
disributions where

plly) = %N, (em)?) + (1= 3N, 7)
p(i) = p(1=p)' 7 =0,1

so thew;’s are independently distributed Bernoylljf variables. Since the hyperpa-
rameters;, ¢; andr; depend on the level to which the corresponding), (or d;)
belongs and can be level-wise different, the method is agapthe Bayes rule under
squared error loss fdk;;, has an explicit form

2

é(d)‘k: P(7:1|d)M+(1—P(’7:1|d)) 75 din
J J J 0.2+(Cj7-j)2 J J 0_2_|_7_+j2 i

whereP(; = 1|d;) is the posterior probability that; = 1 andd; is the vector of level
j wavelet coefficients. A sophisticated empirical Bayes argnt is used for tuning the
hyperparameters level-wise.

The approach used hy Clyde and Vidakbvic (1998) is based oixtam@ prior which

allows for each wavelet coefficient to be zero with a posipivebability (prior point
mass) or to follow a Normal distribution,

p(0k|vj,0%) = N(0, (1 — ;) +v;ci0%)

for non-zero cases. The indicator (zero-one) variablgsjefine which basis element,
i.e., column ofl¥ should be selected. As before the subscfiptdicates the level to
which 0, belongs. The prior distribution om® is an inverse¢® and the vectory is
formed by all they; elements. The posterior mean for the vector of all @hes is
obtained by averaging over al(v|d), the posterior probabilities of eachgiven all
the wavelet coefficients. Therefore,

E(6]d) = Y P(y|d)E(0]d, )

where E(6|d,~) is the posterior expectation éfgivend and a specificy. However,
calculating the posterior probabilities gfand the mixture estimate for the posterior
mean implies summing over &@b¥ values ofy. The calculations for such mixing is
prohibitive even for problems of moderate size, and eitpereximations or stochastic
methods for selecting subsetspthat have a high posterior probability, must be used.
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In a related paper, Clyde and George (2000) proposed a sigérdpproach that uses

a hierarchical model with heavy-tailed error distribudhat are a scale mixtures of
normals. The prior specifications for some of the paramétetiseir model are diffi-
cult, hence, aempirical Bayes procedure is used to estimate these hyperparameters.
These authors suggested various choices of priors and #terjws mean or median
was used as an estimator of the wavelet coefficients. Funtbrer, their methods allow
to obtain threshold shrinkage estimators based on Bayesiae! selection and mul-
tiple shrinkage estimators based on model averaging. Arzimga&olume of simula-
tions were performed to justify the various error distribos and the various Bayesian
models. All of these Bayesian models produce estimatoréfiagenat (or better) than
the ones based on traditional thresholding rules no mattethver the errors are Nor-
mal or not. To the best of the author’s knowledge, the papyzm @)

and/Clyde and George (2000) are the only ones that deal witknoomal errors for

shrinkage problems in a Bayesian framework.

Multivariate Bayes Shrinkage

The main purpose in eultivariate Bayes shrinkage is to introduce a prior distribu-
tion that relaxes the unrealistic assumption of indepeceleamong wavelet coeffi-
cients. In particular, one can place a multivariate Noringerse Gamma distribution
for p(0, 0%) with p(A|o?) = MV N(0,0%%) andp(c?) = IG(a, §). This model can
incorporate dependence of the wavelet coefficients via gnogpiate specification of
the NV x N prior covariance matriX. In this case, the posterior distribution f@; o2)

is also a Normal-Inverse Gamma distribution with hyperpeetersn*, ¥*, o* anddé*
where

2 = (Inxn+37H7

m* = X*d,

af = a+|ld]+ (m*)(Z) " (m"),
o0* = 0+ N.

Therefore a Bayes estimator fdis m*.

Building on this structuré;..l:l._u.eh@%) proposed theofeihg model for a multivari-
ate Bayes shrinkage,

p(df,0?) = MVN(@,0°InxnN),
p(0|7®) = MVN(0,7°%),

whereos? and 2 are scale parameters adiis again aN dimensional matrix that
induces prior correlations among the wavelet coefficielitghis model it is also as-
sumed that? ~ IG(ay,d,) andr? ~ IG(az, d2). The additional scale parameter
may induce some extra shrinkage to the wavelet coefficieaiding to a more flexi-
ble Bayes wavelet shrinkage. This hierarchical prior i@k marginal multivariate
prior on 6, however there is no useful closed form expression#(|d). Therefore
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m@) introduced a Gibbs sampler to generate possamples of 0, o2, 72)
to approximate the posterior meanf Specifically, the full conditional distribution
for 6 givenr2, o2 andd, is a multivariate Normal distribution with vector meatt
and covariance matrixX*,

p(0|7%,0%,d) = N(m*,¥%)

wherem* = Y*0~2d andX* = (772071 + a*QINxN)_l. The full conditional
distribution ofo? givend, 72 andd is an Inverse Gamma distribution with parameters
of andoy,

p(o®l0,7%,d) = IG(a1,d)),

with o = N/2 + a; andd; = (0 — d)'(6 — d)/2 + &;. Finally, the full conditional
distribution forr2 givend, o2 andd is an Inverse Gamma distribution with parameters
o andos,

p(t%10,0%,d) = IG(a3,83),
with a2 N/2 + o and62 [9t2_19]/2 + 0s.

This method has shown to be robust for large errors in thergagens. In particu-
lar, the multiresolution analysis of a sequence of measenésrin Atomic Force Mi-
croscopy (AFM) and the reconstructed signal using the wariite Bayes shrinkage
appears in Figurld 1. The rows indexéd- dg are the values of the coefficients for the
details,d; representing the finest level adg the coarsest level. The row indexed by
sg includes the coefficients of the smooth level. The Bayesikhge reduces the val-
ues for the fine levels of details towards zero while keepingpat intact coefficients
corresponding to the smooth part or high levels of detgilgs. Notice that the recon-
structed signal is quite smooth while other shrinkage aggites such aSure Shrink
provide less smooth signal estimates with noisy artifaBisnilar data was analyzed

via aT-Minimax wavelet shrinkage approachlin Angelini and Vidakio(2004) with

comparable results to those shown here.

Hyperparametersand L aurent submatrices

For the casey(f|o?) = MV N(6,02X), areduction on the number of hyperparameters
and imposing a hierarchical prior structure on some of theaiging hyperparameters

was suggested hy Vannucci and Cotradi (1999). These audppid their method,

which they calBayes Shrink, to density estimation and regression problems. Assuming

that# corresponds to an autoregressive process inltime,VananddCorradil(1999)
demonstrate that the matrix depends on only two hyperparametexsandp. The
parametep is the “autocovariance index” andis the precision parameter. The co-
variance matrixx(\, p) = AX(p) has an interesting “finger like” structure. These
authors suggest that,

p(A) = IG(p/2,q/2)
p(p) o< (C=p)"HC+p) "t pl < C.
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An alternative specification for the matrix that also produces interesting shrinkage
results is to fix it as a block diagonal matrix with each blo€ke form\;>;. Each of
the termsy; defines a correlation structure inside thth level of coefﬂments for the
wavelet decomposmon The valuesXfare intended to tune the amount of shrinkage
at levelj. The block diagonal assumption far establishes no correlation between
coefficients at different levels of the wavelet decompogitf the data. Furthermore,
¥, can be defined as a matrix with entrigs, = pli=sl i.e., the largest the difference
between the sub-indexéands, the smaller the correlat|0n between coefficiepts a
scalar quantity if0, 1). This type of specification was extensively applied in thelmo
eling framework o 5) and used to obtain Fi@mlio,%t @b)
presents an example of “affine” or linear Bayes shrinkage.giarent submatrices for
the well knowngalaxy velocities data set.

A Full Bayes M odel

The methods in previous sections are similar to the thettoadil wavelet-shrinkage
paradigm but with the wavelet coefficient being shrunk in gd&an fashion. Addi-
tionallyIMueller and Vidakovicl(1995) proposed a full Bajggsmodel for the wavelet
coefficients targeted for density estimation problems.ifTxéor model explicitly de-
fines geometrically decreasing prior probabilities for 1z@mo coefficients at higher
levels of detail. An indicator variable performs the modeleduced thresholding and
if a wavelet coefficient is not included,seudo-prior is assumed to avoid parameter
spaces of varying dimension. MCMC techniques withktropolis-Hastings updating
steps can be used to sample the posterior distribution difim¢he wavelet parameter
space.

Conclusion

Bayes wavelet shrinkage methods provide powerful toolsdia denoising prob-
lems. This paper reviews some of the most important Baye®ashrinkage ap-

proaches and in particular, a multivariate Bayes shrinklagerelies on MCMC meth-

ods. Other Bayes shrinkage methods can be computatiorafiyor more demanding,
like empirical-Bayes approaches or Full Bayes methods namck formally based on

decision theoretic aspects.
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