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ABSTRACT In recent years, wavelet shrinkage has become a very appealing method for data de-
noising and density function estimation. In particular, Bayesian modelling via hierarchical priors
has introduced novel approaches for Wavelet analysis that had become very popular, and are
very competitive with standard hard or soft thresholding rules. In this sense, this paper proposes
a hierarchical prior that is elicited on the model parameters describing the wavelet coefficients
after applying a Discrete Wavelet Transformation (DWT). In difference to other approaches, the
prior proposes a multivariate Normal distribution with a covariance matrix that allows for
correlations among Wavelet coefficients corresponding to the same level of detail. In addition, an
extra scale parameter is incorporated that permits an additional shrinkage level over the
coefficients. The posterior distribution for this shrinkage procedure is not available in closed
form but it is easily sampled through Markov chain Monte Carlo (MCMC) methods. Applications
on a set of test signals and two noisy signals are presented.
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Introduction

Thresholding rules recently became of considerable interest when DeVore et al. (1992)

and Donoho et al. (1995) applied them in the Wavelet shrinkage context. Wavelet shrink-

age refers to a process of transforming the data or a signal with a Discrete Wavelet Trans-

formation (DWT), implementing some kind of reduction to the Wavelet coefficients, and

then, applying the Inverse Wavelet Transformation (IDWT) to reconstruct the signal.

Hard or Soft Thresholding are a type of shrinkage in which those coefficients whose absol-

ute value is smaller than a certain bound, are replaced by zero. Analytically simple, these

rules are very efficient in data de-noising and especially data compression problems.

However, shrinkage by thresholding poorly accounts for any prior information available

about the structure of the data, the signal and the noise. From a Bayesian perspective, new

methods of Wavelet reduction have been developed to incorporate prior knowledge on the

parameters that define a model for the signal and noise. For example, in Vidakovic (1998),

a parametric model is defined for the Wavelet coefficients; a Double Exponential distri-

bution, then the shrinkage problem is formulated as an inference problem and the goal
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is that the resulting optimal actions will ‘mimic desirable thresholding rules’. In the case of

a Double Exponential distribution the rule corresponds to a posterior expectation that is

expressed in terms of a Laplace transformation. In Müller & Vidakovic (1995) and

Vannucci & Corradi (1999), the formulation is also within a parametric Bayesian

model but the unrealistic assumption of independence among the Wavelet coefficients

is relaxed. Applications to density estimation and regression are presented by these

authors. Clyde et al. (1998) use a Bayesian hierarchical model that incorporates a

mixture prior, which allows for each Wavelet coefficient to be zero with a positive prob-

ability (prior point mass). However, the MCMC method proposed in that paper to obtain

posterior estimates of the coefficients can be computationally very intensive. In Chipman

et al. (1997), a mixture of Normal distributions with different variances is used as a prior

distribution for the Wavelet coefficients. One of the variances is set very close to zero to

approximate a point mass prior. The main advantage of that approach is that it gives closed

expressions for the posterior distribution of interest and so the computations can be done

efficiently. In all the methods proposed in these papers, the shrinkage is achieved by repla-

cing the original coefficients by their posterior means. Additionally, Clyde & George

(2000) proposed a shrinkage approach that uses a hierarchical model with heavy-tailed

error distributions. The prior specifications for some of the parameters in their model

are difficult, hence an Empirical Bayes procedure is used to estimate these hyperpara-

meters. This procedure allows us to obtain threshold shrinkage estimators based on

model selection and multiple shrinkage estimators based on model averaging.

The approach proposed in this paper also falls within a Bayesian hierarchical frame-

work. Posterior means and posterior samples are used to de-noise the data and estimate

the underlying signal. However, the approach here is different from some others

because it establishes prior dependency in the Wavelet domain. Additionally, the prior

is robust because it is defined as a scale mixture of multivariate Normal distributions.

This gives some elasticity to the approach in tuning the shrinkage via the hyperparameters

of the model. Exact posterior distributions are not available in analytic form and so

Markov chain Monte Carlo (MCMC) methods are necessary to implement the Bayes

shrinkage.

The paper is organized as follows. After a short introduction to the DWT in the next

section, the model and the induced shrinkage are described in the subsequent two sections.

The details related to the Markov chain Monte Carlo simulation method are presented in

the fifth section. Finally, three applications in data de-noising are discussed in the sixth

section.

Introduction to the Discrete Wavelet Transformation

Basics on Wavelets can be found in many different texts, monographs and papers at many

different levels of exposition. The interested reader is directed to Daubechies (1992) and

Meyer (1993), and the textbooks by Vidakovic (1999) and Efromovich (1999), among

others. For completeness, a brief review of the Discrete Wavelet transformation (DWT)

used extensively in this paper is presented.

Let y be a data vector of dimension (size) N, where N is a power of 2, and suppose that

DWT is applied to the vector y and transformed into a vector d, i.e., d ¼ Wy. This trans-

formation is linear and orthogonal and can be represented by an orthogonal matrix W of

dimension N � N. In practice, one performs the DWT without explicitly exhibiting the

matrix W and by using fast filtering algorithms based on the so-called quadrature mirror

filters that uniquely correspond to the Wavelet of choice. More precisely, the Wavelet
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decomposition of the vector y is a vector d given by

d ¼ (Hny, GHn�1y, . . . , GH2y, GHy, Gy) (1)

The operators G and H act on sequences and are defined via

(Ha)k ¼
X
n

hn�2kan,

(Ga)k ¼
X
n

gn�2kan (2)

where g and h are high- and low-pass quadrature mirror filters corresponding to the

Wavelet basis. For instance, in the case of the DAUB#2 Wavelet from the well-known

Daubechies’ family of wavelets, the low-pass filter is given by

h ¼ (0:4829629131, 0:8365163037, 0:2241438680, � 0:1294095226):

The elements of d are called ‘Wavelet coefficients’. The sub-vectors given in equation (1)

represent different levels in the pyramid indexing of the Wavelet coefficients. For instance,

the vector Gy contains N/2 coefficients representing the level of finest detail, the (n2 1)st

level. These elements are represented by (dn�1,0, dn�1,1, . . . , dn�1,N=2�1).

In general, the level j of the Wavelet decomposition of y is a vector that contains 2j

elements and is represented by

GHn�j�1y ¼ (dj,0, dj,1, . . . , dj, 2j�1) (3)

The main strength of the DWT in Statistics is that it unbalances the data. In addition, the

transformation induces local-in-time and time-space plane divisions that form uncondi-

tional bases for a range of function spaces. These properties explain the good performance

of shrinkage methods in the Wavelet domain.

The Statistical Model

Let y ¼ (y1, y2, . . . , yn) be a vector of equally spaced observations of size n whose

elements satisfy the relation

yi ¼ fi þ 1i : i ¼ 1, 2, . . . , n (4)

where fi is the underlying signal generating the observed process and 1i forms a sequence

of independent and identically distributed random variables with constant variance s2.

This model can be rewritten in vector form as

y ¼ f þ 1 (5)

where f ¼ (f1, f2, . . . , fn) and 1 ¼ (11, 12, . . . , 1n).
From a statistical standpoint, the problem of data de-noising is addressed as the problem

of estimating the unknown vector f ¼ (f1, f2, . . . , fn) given the observed data y.

Furthermore, after applying a DWT to the data, we have that

d̂ ¼ d þ 10 (6)
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where d̂ ¼ Wy, d ¼ Wf , and 10 ¼ W1 with 10 ¼ (101, 1
0
2, . . . , 1

0
n). SinceW is an orthogonal

matrix, if we assume that each 1i has a N(0,s2) distribution, the probability distribution

of 1 is the same as the probability distribution for 10. This is a multivariate Normal with

a zero mean vector, a covariance matrix s2In�n and In�n denotes an identity matrix of

dimension n.

For every DWT there is an Inverse Discrete Wavelet Transformation (IDWT) that

permits the reconstruction of the signal from the Wavelet coefficients through the

expression

f̂ ¼ Wtd̂ (7)

where Wt is the transpose matrix of W. In consequence, inferences over the Wavelet

coefficients d produce inferences on the signal of interest f.

As mentioned in the first section, the problem of estimating d can be approached from

different perspectives. Here, the Bayesian paradigm is adopted for which it is necessary to

specify a prior distribution on (d,s2), which we denote by p(d,s2). By Bayes theorem we

obtain the joint posterior distribution for (d,s2) given d̂,

p(d, s2jd̂)/ f (d̂j, d, s2)p(d, s2) (8)

where f (d̂j, d, s2) defines the likelihood function for (d,s2) which in our model is

determined by equation (6).

The scale parameter s2 is a nuisance parameter, we marginalize the joint posterior

with respect to s2 to obtain the marginal posterior distribution of d given d̂, i.e.,

p(djd̂) ¼

ð1
0

p(d, s2jd̂)ds2 (9)

The posterior expectation of d, E(djd̂) or the posterior median of d can be used as a point

estimator for d. However, it is very common in Bayesian Statistics that expressions for

moments of posterior distributions are impossible to integrate, and so Bayesian compu-

tation methods based on Markov chain Monte Carlo (MCMC) simulation is a powerful

tool to compute integrals associated with the posterior distribution.

Likelihood and Prior Specification

For a full Bayesian analysis, it is necessary to specify the likelihood function that we

define here by a multivariate Normal distribution with vector mean d and covariance

matrix s2In�n. That is

p(d̂jd, s2) � N(d, s2In�n) (10)

For the prior specification of d, Müller & Vidakovic (1995) suggest using a heavy-tailed

prior distribution on d with component-wise dependence. The independence assumption

among the Wavelet coefficients is unrealistic, although the DWT tends to eliminate cor-

relation in the data. Accordingly, the following hierarchical prior for (d,s2) is proposed

for the Bayesian shrinkage.

At the first level of the hierarchy, d follows a multivariate Normal distribution with

vector mean 0 and covariance matrix t2S, i.e.

p(djt2) � N(0, t2S) (11)
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where t2 is a scale parameter and S is a n� n matrix that defines the prior correlation

structure among the Wavelet coefficients.

At the second level, the scale parameter s2 has a prior distribution that follows an

Inverse Gamma with hyperparameters a1 and d1 or

p(s2) � IG(a1, d1) (12)

Also, an Inverse Gamma prior (a2,d2) is specified over the scale parameter t2, i.e.

p(t2) � IG(a2, d2) (13)

The additional scale parameter t2, not included by Müller & Vidakovic (1995), may

induce some extra shrinkage to the Wavelet coefficients leading to a more flexible

Bayes Wavelet shrinkage approach. This hierarchical prior implies a marginal multi-

variate t prior on d, however there is no useful closed form expression for the marginal

posterior p(djd̂).

MCMC Method

To obtain posterior inferences on the vector of Wavelet coefficients d, a standard Gibbs

sampling procedure is adopted. Gibbs sampling is an iterative algorithm that simulates

from a joint posterior distribution through iterative simulation of the full conditional dis-

tributions. For more details and various examples on Gibbs sampling and other MCMC

methods see Gamerman (1997), Tanner (1996) or Casella & Robert (1999).

For the hierarchical prior and likelihood function presented in the previous section, the

full conditionals for d, s2 and t2 can be determined exactly. In fact, by a direct application

of Bayes theorem it can be shown that the full conditional for d given t2, s2 and d̂, is a

multivariate Normal distribution with vector mean m� and covariance matrix S
�
,

p(djt2, s2, d̂) � N(m�, S
�
) (14)

where m� ¼ S
�
s�2d̂ and S

�
¼ (t�2S

�1
þ s�2In�n)

�1.

Additionally, the full conditional distribution of s2 given d, t2 and d̂ is an Inverse

Gamma distribution with parameters a�
1 and d�1,

p(s2jd, t2, d̂) � IG(a�
1, d

�
1) (15)

with a�
1 ¼ n=2þ a1 and d�1 ¼ (d � d̂)t(d � d̂)=2þ d1.

Furthermore, the full conditional distribution for t2 given d, s2 and d̂ is also an Inverse

Gamma with parameters a�
2 and d�2, i.e.

p(t2jd, s2, d̂) � IG(a�
2, d

�
2) (16)

with a�
2 ¼ n=2þ a2 and d

�
2 ¼ ½dtS

�1
d�=2þ d2. The implementation of the Gibbs sampler

with this model only requires simulation routines for the multivariate Normal and the

Inverse Gamma distributions. There is a Splus/R program available from the author to

implement the methodology described in this paper.

The selection of the hyperparameters for the hierarchical prior deserves attention since

its values could mostly determine the resulting shrinkage and the respective reconstruction
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of the signal. A convenient selection for the S matrix is to fix it as block diagonal matrix

with each block of the form lkSk. Each of the terms Sk defines a correlation structure

inside the kth level of coefficients for the Wavelet decomposition. The values of lk are

intended to tune the amount of shrinkage at level k. The block diagonal assumption for

S establishes no correlation between coefficients at different levels of the Wavelet

decomposition of the data. Following Müller & Vidakovic (1998), the applications pre-

sented in the next section are made with Sk defined as a matrix with entries Sij ¼ rji�jj,

so the larger the difference between the sub-indexes i and j, the smaller the correlation

between coefficients. r is a scalar quantity in the interval (0, 1). This structure defines

the so-called Laurent matrix. See Vidakovic (1999) for further discussion about this

matrix specification.

Applications

Benchmark Signals

The Bayes Wavelet shrinkage is illustrated with the test functions HeaviSine, Blocks,

Bumps and Doppler used by Vannucci & Corradi (1999). These functions are often

used as a benchmark in the context of Wavelet shrinkage since they represent signals

with patterns that arise in several scientific fields. Figure 1 presents the four signals

based on 512 observations and Figure 2 shows the same signals but corrupted by a

Gaussian noise N(0, s2). As in Vannucci & Corradi (1999), the value of s was chosen

to establish a signal-to-noise ratio of 5.

Figure 3 shows the reconstructed signals using the proposed Bayes Wavelet shrinkage.

The number of Gibbs sampling iterations was 2,000 and the posterior means over MCMC

iterations were used to obtain point estimates of the underlying signals. The data were

transformed into the Wavelet domain using the wavelet S8, which is one of the symmlets

and default for the package Splus Wavelets. This basis provides a sensible balance

between the compactness of support and smoothness of the Wavelet.

Figure 1. The four test signals: Blocks, Bumps, HeaviSine and Doppler
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For the specification of S, a Laurent-matrix form was adopted with r ¼ 0:5, l1 ¼ 100,

l2 ¼ l3 ¼ 10, l4 ¼ 1, l5 ¼ 0:1, l6 ¼ 0:01 and l7 ¼ 0:001. This specification tries to

keep the same the smooth part and first level of details after the shrinkage is performed.

Coefficients at the third and fourth level will be somehow shrunk and, for the fifth,

sixth and seventh levels, the coefficients will be practically made zero. All the

Figure 2. The four test signals corrupted by a Gaussian white noise

Figure 3. The four test signals reconstructed with the Bayesian Wavelet Shrinkage
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hyperparameters of the priors for s2 and t2 were set equal to one. From the results it can be

noticed that the method gives a reasonable reconstruction of all the four signals, especially

in the cases of Bumps and HeaviSine. However, in all the reconstructions there is a bit of

noise that remains present in the estimate, particularly with Blocks and Doppler. This may

be due to the Bayes rule adopted since the posterior mean only performs a shrinkage of the

Wavelet coefficients, but never sets these coefficients to a zero value as in thresholding

rules. The results are comparable to those reported for the same signals by Vannucci &

Corradi (1999).

Microscopy Example

To illustrate the proposed shrinkage method, we use 1024 measurements in atomic force

microscopy (AFM) that appears in the top frame of Figure 4. The AFM is a type of scanned

proximity probe microscopy (SPM) that can measure the adhesion strength between two

materials at the nano-newton scale. In AFM, a cantilever beam is adjusted until it bonds

with the surface of a sample, then the force required to separate the beam and sample is

measured from the beam deflection. Beam vibration can be caused by factors such as

thermal energy of the surrounding air or the footsteps of someone outside the laboratory.

The vibration of a beam acts as noise on the deflection signal so in order for the data to be

useful this noise must be removed. Similar data were analysed via a G�Minimax Wavelet

Shrinkage approach in Angelini & Vidakovic (2004). The middle frame of Figure 4 shows

the Bayes Shrinkage reconstruction based on the IDWT of the posterior mean of 2000

MCMC draws. The prior specification is the same as with the test functions discussed

in the previous subsection. For comparison, the bottom frame of Figure 4 shows the

Figure 4. Microscopy data, Bayes Shrinkage reconstruction and Sure-shrink reconstruction
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reconstruction of the signal using a Sure-Shrink approach. Notice that the reconstruction

of the signal with the Bayes shrinkage is quite smooth, while the reconstruction with

Sure-Shrink is less smooth and includes some noisy artefacts around the middle section

of the data.

The multiresolution analysis (MRA) of the original data and the reconstructed signal

using Bayes shrinkage appear in Figure 5. The rows indexed d1 � d6 include the values

of the coefficients for the details, d1 representing the finest level and d6 the coarsest

level. The row indexed by s6 includes the coefficients of the smooth level. From this

figure it can be noticed that the proposed Bayes method shrinks the values for the fine

levels of details that are close to zero, while keeping practically intact coefficients

corresponding to the smooth part or high levels of details (s6, d6).

The actual AFM measurements (circles) and 50 posterior samples of the Bayes

reconstruction of the signal appear in Figure 6. For each MCMC iteration, the IDWT

was applied to the sampled coefficients to obtain a realization of the posterior distribution

of the signal (parameter) of interest. This plot of several realizations gives an idea of the

general structure and the level of uncertainty of estimation for the underlying signal. This

goes beyond summarizing results based only with a point estimate.

Glint Data

The Glint data presented by Bruce & Gao (1994), consists of 512 equally spaced

observations. The true signal is a low frequency oscillation about zero, resulting from

rotating an aeroplane model. As the model rotates, the centre of mass will shift slightly.

Figure 5. MRA of the Microscopy data and its Bayes Wavelet Shrinkage estimate
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The measurements, given in angles, are subject to large errors represented by a large

number of spikes, and can be off the true signal by as much as 150 degrees. Data de-

noising of the Glint signal is very challenging. A time series plot of the original Glint

data appears as a dotted line in Figure 7.

Figure 7. Glint data and reconstruction

Figure 6. Microscopy data and 50 posterior samples of signal reconstruction
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The DWT was applied to Glint with the symmlet wavelet S8. The prior specification

for all the hyperparameters is defined in the same way as in the previous applications.

Based on 2,000 MCMC draws, the posterior mean was calculated to approximate

E(djd̂). Then, the IDWT was applied to this estimated posterior mean to obtain an estimate

or reconstruction of the underlying signal, which appears in Figure 7 as a solid line. Notice

that the reconstruction eliminates the high peaks and produces a smooth signal around

zero.

It is important to note here that the reconstruction obtained stands between universal-

hard thresholding and the multiple shrinkage proposed by Clyde et al. (1998). Comparing

Figure 7 with Figures 1–5 in that paper, we can realize that our shrinkage is not as spiky as

thresholding but not as smooth as the one corresponding to multiple shrinkage. Possible

this is due to the non-linearity of our Bayesian shrinkage and because our approach

does not permit any coefficient to be exactly zero.

In fact, in Figure 8 we have the time series of the original coefficients (a) with three

shrinkage curves (b)–(d). The shrinkage curve is defined by a scatter plot of the original

Figure 8. (a) Top left: Shrinkage curve no. 1, l1 ¼ 100; l2 ¼ 10; l3 ¼ 10; l4 ¼ 1; l5 ¼ 0.1 and

l6 ¼ 0.01. (b) Top right: Shrinkage curve no. 2, l1 ¼ 10; l2 ¼ 10; l3 ¼ 1; l4 ¼ 1; l5 ¼ 0.1 and

l6 ¼ 0.1. (c) Bottom left: Shrinkage curve no. 3, l1 ¼ 10; l2 ¼ 1; l3 ¼ 1; l4 ¼ 0.1; l5 ¼ 0.01

and l6 ¼ 0.01. (d) Bottom right: Shrinkage by levels, l1 ¼ 1000; l2 ¼ 1000; l3 ¼ 10; l4 ¼ 1;

l5 ¼ 0.1 and l6 ¼ 0.01
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coefficients versus their posterior means. Notice that the non-linearity in the transform-

ation and the non-monotonicity is enforcing a stronger shrinkage at higher level of

details. Another point to observe from this figure is that the shrinkage curves correspond

to different combinations of the lk parameters. This explores the sensitivity of the results

with respect to the hyperparameters specification. Essentially, no changes are observed

across the three shrinkage curves, and so the corresponding reconstructions look exactly

as the one shown in Figure 7.

Figure 9(a) presents a time series plots for the 2,000 iterations of the simulated values

for some of the Wavelet coefficients. The MCMC moves rapidly through the parameter

space, and this implies that there is no need to iterate more the Gibbs sampler to

achieve posterior convergence. In Figures 9(b)–(d) histograms of the posterior simu-

lations are presented for a coefficient corresponding to the smooth part, a coefficient of

the second level of details and a coefficient of the last level of details. All the features

Figure 9. (a) Top left: 2000 iterations of the MCMC for the coefficients of the smooth part.

(b) Top right: Posterior histogram for the coefficient S1 corresponding to the smooth part.

(c) Bottom left: Posterior histogram for the coefficient d11 corresponding to the first level of

details. (d) Bottom right: Posterior histogram for the coefficient d51 corresponding to the fifth

level of details.

540 G. Huerta



of the posterior distribution will appear in such pictures (symmetry, fat tails, etc). In

this example, it can be observed that the smooth part and first level of details will

remain the same while, for the last level, the posterior distribution has most of its mass

centred at zero.

Concluding Remarks

The goal of this paper is to present a hierarchical Bayesian model that allows for

data de-noising using Wavelet shrinkage through Gibbs sampling and that has the

possibility of tuning the shrinkage with the hyperparameters of the model. The shrinkage

method is illustrated with three different data sets. For the Glint signal, no differences

were observed for the resulting shrinkage for different values of the hyperparameters

lk. For other applications it is possible that the model may be more sensitive to these

parameters On the other hand, it is feasible to learn about the hyperparameters lk and

r by adding another level or hierarchy into the model. For example, Vannucci &

Corradi (1999) propose a Beta prior on r and an Inverse Gamma prior on l. In this

scenario, the proposed MCMC method of the fifth section becomes a hybrid algorithm

that requires a Metropolis–Hastings step to simulate the full conditional distribution

of (r, l). This extension is proposed for future research; however, preliminary results

under such model specifications prove to be of little improvement with respect to

pre-specified hyperparameter values. The method presented here is computationally

more intensive than other Bayes shrinkage methods due to the simulations of the multi-

variate Normal distribution but it has the advantage of being robust against large errors

in the data.
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