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Abstract

In this paper we propose a novel non-parametric sampling approach to

estimate posterior distributions from parameters of interest. This tech-

nique is particularly suited for models that are computationally expensive

to evaluate. Starting from an initial sample over the parameter space,

this method makes use of this initial information to form a geometrical

structure known as Voronoi tessellation over the whole parameter space.

This rough approximation to the posterior distribution provides a way

to generate new points from the posterior distribution without any addi-

tional costly model evaluations. By using a traditional MCMC over the

non-parametric tessellation, the initial approximate distribution is refined

sequentially, allowing to sample new points at any moment. We applied

this method to a couple of climate models to show that this hybrid scheme

successfully approximates the posterior distribution of the model param-

eters without any additional forward evaluation of the model itself. The

results obtained could be used not only to improve the estimation of the

posterior distribution of the climate model parameters but also to search

parameter space regions ideal for optimization of models in which the lim-

itation of computational resources is a challenge.
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1 INTRODUCTION

In many scientific fields, physical systems T(·) can be approximated by complex com-

puter models referred to as forward operators g(·). For instance, weather forecasting

uses highly sophisticated models for atmospheric pressures and humidities; the be-

havior of large engineering structures is typically modeled in great details as an aid to

their design; astronomers and physicists have long required massive computations to

model and predict movements of planets. Some cited applications in model calibration

are hydrocarbon reservoir, Craig et al. (2001), photo emission computed tomography,

Higdon et al. (2003), thermohaline circulation in the Atlantic, Goldstein and Rougier

(2006), cosmology, Heitmann et al. (2006), and so forth. A feature of such models

is that they generally require substantial amounts of computing time, even on super

computers. When it is necessary to use many model runs to compute the output over

a range of model configurations, the time required for each run becomes extremely

relevant.

Calibration is traditionally seen as a process of fitting the computer model to the

observational data, by adjusting the uncertain inputs until the model predicts those

data as closely as possible. The first Bayesian approach to calibration is given by

Craig et al. (1996), employing Bayes linear methods, and this is extended to a fuller

treatment of calibration and model uncertainty in Craig et al. (2001). Kennedy and

O’Hagan (2000) consider prediction and uncertainty analysis for complex computer

codes using a Bayesian approach in which prior beliefs about the codes are repre-

sented in terms of Gaussian processes (GP). Other examples of statistical emulators

based on GP are Sansó et al. (2008), and Christen and Sansó (2011). A different

approach for calibration is presented in Bliznyuk et al. (2008), who construct a ra-

dial basis function interpolant of the logarithm of the posterior density based on an

optimization strategy. A completely distinct approach drawn from the geophysical

literature (Sambridge, 1999) is applied in this paper and compared to other

statistical computational approaches. The novelty of the method is that it

is fully non-parametric and it only relies on a geometrical representation

of the data called Voronoi tessellation (Voronoi, 1908). The method is

conceptually simple, but is able to exhibit complex self-adaptive behavior

in searching over a parameter space. Unlike previous methods, this tech-

nique makes use of some simple geometrical structures which we show can

also be used to enhance existing search methods.
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The backbone of the method can be summarized in five main steps: Step (1) uses

an adaptive sampling strategy to gather information from the posterior distribution

of the parameters of interest; Step (2) employs the initial evaluations obtained in

step (1) to build the Voronoi tessellation; Step (3) draws a sample from the approxi-

mate surface constructed in step (2) by using a Markov Chain Monte Carlo (MCMC)

scheme; Step (4) adds the new points sampled in step (3) to the original data, and

rebuild the tessellation; Step (5) repeats iteratively steps (2) through (4). According

to Sambridge (1999), this algorithm provides the advantage of generating

new points without any additional computationally expensive evaluations

of the computer model g. Potentially this technique could be applied to

any computer model in which direct evaluation of the model is expensive.

We test our method in a couple of climate model applications. In differ-

ence to Sambridge (1999), we evaluate the method when initial samples

are produced from an Adaptive Metropolis or with a grid/factorial de-

sign instead of relying of using an stochastic optimizer such as simulated

annealing.

The organization of the article is as follows: Section 2 explains the algorithm

in detail and it provides a statistical example with detailed steps to illustrate our

methodology. Section 3 provides a couple of applications in climate model calibration,

and presents the results obtained by using the proposed non-parametric approach.

Section 4 discusses advantages, drawbacks, and alternative approaches to the method

presented in this paper.

2 METHOD

In the method we are presenting, g is evaluated only a few times in order to explore

the parameter space and to give an initial approximate posterior probability distri-

bution (PPD) of the parameter vector m. This first approximation is represented

geometrically by a structure known as Voronoi cells (Voronoi, 1908). These are the

nearest neighborhood regions defined all over the parameter space that will be used

to sample new values of m employing a traditional MCMC. Once we have a new set of

points, these will be added to the initial sample to regenerate the Voronoi cells. This

procedure will be repeated several times to enhance the initial surface and therefore

to improve the marginal probability distributions of m without any additional costly

forward evaluations of g.
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2.1 ALGORITHM

The main goal of this technique is to deal with computational limitations (i.e., eval-

uations of the forward operator g) in computer models by using a completely non-

parametric approach. This technique is being called hybrid-regeneration since it

allows to effectively convert samples gathered during a typical computer model run

into a form that can be used as a surface approximation. Once the sampling densities

have been defined over the Voronoi structure, the next step is to refine the surface

approximation by running a Gibbs sampler on the initial surface. The new points

sampled will regenerate the surface. The method is summarized by the following

steps:

1. Initial Sampling Strategy: Run an efficient sampler method over the parameter

space, and save all the sampled model vectors and their likelihood values.

2. Voronoi Tessellation: Using the initial samples (m1, ...,mn) construct the Voronoi

cell structure and create the approximate PPD, π̂(m|dobs), where dobs is the

observed data.

3. Sampling new points: Run a traditional Gibbs sampler on the approximate

PPD and extract n∗ new points.

4. Regeneration: Add the new points to the initial sample and regenerate the

surface.

5. Repeat (2)-(4) many times.

The accuracy of the results depends mostly on the quality of the initial

surface provided by step (1), which means that, the sampler must gather

enough points from the entire d-dimensional space to allow the hybrid

algorithm to construct an adequate d-dimensional mesh. This is why we

propose to use an adaptive sampling strategy that does not require too

much tuning like for example, the Metropolis-Hastings algorithm. Any

serious biases in the initial sample could be inherited in the subsequent

approximation of the PPD. Since new evaluations of the computer model

and the posterior distribution are forbidden then steps (2) through (4) will

aid by generating new points in regions where there is higher posterior

density without additional cost.
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2.1.1 INITIAL SAMPLING STRATEGY

In order to provide a sampling scheme that reaches a balance between efficiency and

precision without the use of a burn-in period we consider the use of adaptive methods.

Haario et al. (2001) suggested a method called Adaptive Metropolis (AM) that basi-

cally updates the proposal distribution with the knowledge learned that far about the

target distribution. This is a non-Markovian algorithm that has the correct ergodic

properties. Haario et al. (2004), and Villagran et al. (2008) applied these methods

in gas profile inversion and climate calibration respectively to overcome the problems

that a traditional MCMC (Metropolis (1953), Hastings (1970), Geman and Geman

(1984), Sen and Stoffa (1996)) may have in selecting or tuning an effective proposal

distribution.

Adaptive Metropolis (AM) algorithm

Suppose that at time t − 1 we have sampled the states m(0), ...,m(t−1) where m(0)

is a d−dimensional vector representing the initial state. Then a candidate point z is

sampled from the proposal distribution qt(·|m(0), ...,m(t−1)), which now may depend

on the whole history. The candidate z is accepted with probability,

α(m(t−1), z) = min

(
1,

π(z)

π(m(t−1))

)
,

in which case we set m(t) = z, and otherwise m(t) = m(t−1).

The proposal distribution qt(·|m(0), ...,m(t−1)) employed in the AM algorithm is a

multivariate Gaussian distribution with mean at the current point m(t−1) and covari-

ance matrix Wt. The matrix Wt is computed using the sampled covariance matrix of

the parameters up to time t. The crucial aspect regarding the adaptation is how the

covariance of the proposal distribution depends on the history of the chain. In the

AM algorithm this is solved by setting Wt = sdCt−1 + sdεId after an initial period,

where sd is a positive constant that depends only on the dimension d and ε > 0 is

a constant that we may choose to be very small. The role of ε is to ensure that Ct

does not become singular. Let us define the matrix Mt with dimensions d by t as the

matrix of sampled values up to t.

Mt =

 m
(1)
1 m

(2)
1 . . . m

(t)
1

...
...

...
...

m
(1)
d m

(2)
d . . . m

(t)
d


5



We select an initial time t0 for the length of an initial period and define

Wt =

{
C0, if t ≤ t0

sdCt−1 + sdεId, if t > t0

We can compute the covariance matrix for time t ≤ t0 as

Ct =
1

t− 1
Mt

(
It −

1

t
1t1
′
t

)
Mt

′,

where It is an identity matrix of size t, and 1t is a row vector of ones with length t.

To avoid too much computational cost we can use recursive formulas for the mean

and the covariance. Then we can easily define the recursion for the vector of means

as

mt =
t− 1

t
mt−1 +

1

t
m(t)

and for t > t0. The recursion for the covariance matrix is,

Ct =
t− 2

t− 1
Ct−1 +mt−1m

′
t−1 +

1

t− 1

[
m(t)m(t)′ − tmtm

′
t

]
.

The AM chain defined above simulates properly the target distribution π: for any

bounded and measurable function f : S → <, it holds almost surely that

lim
n→∞

1

n+ 1

(
f(m0) + f(m1) + · · ·+ f(mn)

)
=

∫
S

f(m)π(dm).

For a detailed proof of this result, see Haario et al. (2001).

2.1.2 VORONOI TESSELLATION

Voronoi cells have been known for several years (Voronoi, 1908). They have been

rediscovered in a number of different fields and are primarily studied in the field

of computational geometry. A survey of their many properties and algorithms to

compute them can be found in Okabe et al. (2000). Recently they have been used in

geophysical calibration problems (Sambridge, 1999). For any distribution of points,

Voronoi cells are defined as the region about each point which is closer to that point

than any other point or the nearest neighbor region of each point. In two dimensions,

the cells are polygons whose edges are perpendicular bi-sectors between pairs of nodes,

in three dimensions they are convex polyhedra, and in higher dimensions they are

convex polytopes.
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Figure 1: Voronoi tessellation from two different bivariate distributions. Top left:

Uniform. Top right: Normal. Both surfaces were generated using 200 sampled points.

As formal definition of the Voronoi cells we have that, Ω = {m1, ...,mn} is a set of

points in d dimensions, where 2 ≤ n < ∞, and let mk 6= mj for k 6= j. The Voronoi

cell around point mk is given by

V (mk) =
{
x : ||x−mk|| ≤ ||x−mj||, k 6= j

}
.

Even though Voronoi cells are conceptually simple, they possess powerful properties.

Regardless of the dimension, or how uneven or anisotropic the points distribution may

be, the Voronoi cells always form local neighborhoods about each point, whose size

(area, volume, etc) automatically grows, shrinks or changes shape depending on the

local point density. This means that they can be used to produce an approximation

to the PPD in the entire parameter space, i.e., by setting the value of the PPD in

each cell to be equal to the known PPD at the point defining that cell (Okabe et al.,

2000). This is called neighborhood approximation. Using this approximation we have

that the density at each point is given by the reciprocal of the Voronoi cell volume.

In Figure 1, we can appreciate the difference in the shape of the surface and size

of the cells given a sample of 200 points coming from a uniform distribution, and a

Gaussian distribution in 2D.

2.2 REGENERATION

Since the neighborhood approximation is completely space filling, and is

uniquely defined for any number of points, it may be used for sampling

in the following way. After generating a set of n points (grid, uniform,
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Figure 2: Two adjacent Voronoi cells, Vk and Vj, intersecting a conditional (dotted)

line Y = yo. On top, the conditional approximate density (P (X|Y = yo)), which is

constant between each cell boundary. The change in density is given by the point xj.

MCMC), we can generate a new set of n∗ samples so that they are inde-

pendently distributed according to the current neighborhood approxima-

tion of the PPD. The new samples will be concentrated in regions of the

parameter space which have higher density, as given by the current best

estimate of the PPD based on all available information. We then update

the approximation and generate n∗ additional samples. As iterations pro-

ceed, the PPD approximation will be refined and each new generation will

be more concentrated in regions with higher density than regions with

lower density. Each new population is directly guided by all previous sam-

ples through the approximate PPD. The procedure described above can

be implemented by using a traditional Gibbs sampler (Geman and Ge-

man, 1984) over the Voronoi tessellation. Given any arbitrary value, we

can compute the discrete marginal probability density inside and across all

cells. This step can be done in many ways since it is a discrete piecewise

distribution, however, a refined approach (Sambridge, 1999) is suggested

in order to avoid simple brute force approaches. Without loss of gener-
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ality, let us consider the case when the dimensionality of the parameter

space is d = 2. In Figure 2, we show adjacent cells V (mk) and V (mj), where

mk = (θk1 , θ
k
2) and mj = (θj1, θ

j
2). Given a conditional value Y = yo, we have

that

||mk − x(yo)j || = ||mj − x(yo)j ||.

Where x
(yo)
j = (xj, yo) is the unique point in the boundary between cells k

and j that defines the intersection with the axis defined by Y = yo. Using

Euclidian distance we have,

(d⊥k )2 + (θk1 − xj)2 = (d⊥j )2 + (θj2 − xj)2.

Where (d⊥k )2 = |θk2 − yo| is the perpendicular distance from point mk from

the current axis Y = yo. Analogously, (d⊥j )2 = |θj2 − yo| is the perpendicular

distance from point mj to Y = yo. Solving for the intersection point xj we

obtain,

xj =
1

2

[
θk1 + θj1 +

(d⊥k )2 − (d⊥j )2

θk1 − θ
j
1

]
.

To find out the required boundaries of the Voronoi cells, the previous equa-

tion must be evaluated for all n cells. The lower and upper boundaries

for each cell are given by max[ld, xj], and min[ud, xj] respectively. ld and ud

are the lower and upper bounds of the parameter space in the d dimen-

sion. Once we have all the xj’s, we can start constructing the approximate

marginals π̂(m|X) since all the points inside each cell have the same density

by definition. In Figure 3, we show that we can avoid a discretization of

the axis by knowing the exact intersection point between cells given any

conditional line. As we can see in Figure 3, each intersection point defines

the change in the density up to the boundary of the next cell. The den-

sity associated to each cell comes from the initial evaluation done by the

sampler before the creation of the first Voronoi tessellation. This means

that the model evaluations will be used as the only information needed to

build these approximate marginal densities. Once a new point is sampled,

it will have the same density as its nearest neighbor. The computational

cost of this procedure for each model depends on the number of samples

n and the dimensionality d of the vector of parameters.
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Figure 3: Voronoi tessellation in 2D. A single Gibbs sampler step is performed. It

is started with an arbitrary value Y = 0.42, then the approximate marginal density

P (X|Y = 0.42) is computed (Top Figure), then we sample a new point for X. With

the new generated point X = 0.1, we can compute the approximate marginal density

P (Y |X = 0.1) (Right Figure). Initial samples are represented by squares. The circles

are the intersection points between adjacent cells given a conditional (dotted) line.

2.2.1 STATISTICAL EXAMPLE

To test our non-parametric method, we use as a target function a mixture of bivariate

Gaussian densities,

f(x, y) = pN

((
4

6

)
,

(
1 0.8

0.8 1

))
+ (1− p)N

((
8

2

)
,

(
1 0

0 1

))
, (1)

where the weight of the mixture is set to be equal to 0.7. Following the algorithm

described in Section 2.1,

1. Initial Sampling Strategy: We use an Adaptive Metropolis scheme to simulate

200 samples from (1). Some specifications about the MCMC is that we do

not use a burn-in period, and we update the covariance matrix of the proposal

distribution every 50-th iteration since we are going to sample only two hundred

points.
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2. Voronoi Tessellation: Using the initial sample (m1, ...,m200), we construct the

Voronoi tessellation and create the approximate PPD, π̂(m).

3. Sampling new points: Run a Gibbs sampler on the approximate PPD and

extract n∗ = 500 new points.

4. Regeneration: Add the new points to the initial sample and regenerate the

surface .

5. Repeat steps (2)-(4) for 20 times to generate a sample of 10, 000 new points.

In Figure 4, (panel (a)) we look at the contour plots of the target distribution and

the initial sample of 200 points obtained from the AM scheme. The regeneration of

the surface (panels (b)-(c)) can be achieved by using sequentially a Gibbs sampler

over the tessellation. To improve the sampling, we use a rotation in the direction of

the sampling based on the eigenvalues computed from the sample covariance matrix

obtained during the Adaptive Metropolis sampling. Due to the design of the regen-

eration of the Voronoi cells, regions with high density (small cells) tend to be more

sampled than regions with low density (large cells), this explains the over sampling

(panel (d)) of the maxima of the objective function (1). It is worth noting that

in this example, the initial sample provides a crude approximation of the

mass of the two normal components. The new points and regeneration

step help to refine the initial mass and to provide more samples in areas

with high posterior mass. If in general the initial sample does not provide

good guidance of where the posterior mass is majorly located, then adding

new points could not provide good resolution to the PPD. Our approach

is different to what typically is done when approximating response sur-

faces with regression or polynomial techniques where one tries to specify

a design that fills the covariate space. In our case, the requirement of an

ensemble of draws from the posterior distribution could become a critical

step in achieving an efficient approximation of the PPD. The approach

largely hinges on the accuracy of the voronoi-based estimate of the PPD

given the initial sample. For further exploration, in Figure 5 we consider

the same example as in Figure 4 but with the initial sample defined on a

rectangular grid of the parameter space. The regeneration sampling re-

covers the mixture distribution. In this case, there were no issues dealing

with edges on parameter boundaries since the initial sample is set in a re-
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Figure 4: Target distribution (pN(µ1,Σ1) + (1 − p)N(µ2,Σ2) with µ1 = (4, 6)′,

µ2 = (8, 2)′, Σ1 is a matrix with elements, σ11 = σ22 = 1, and σ12 = 0.8; Σ2 is

an identity matrix, and p = 0.7 is the mixture weight.): (a) 200 Initial samples

from Adaptive Metropolis; (b) Surface regenerated with 400 points (200 new); (c)

Surface regenerated with 1000 points (800 new); (d) Real PDF (solid line) from the

marginal f(y) = 0.7N(6, 1) + 0.3N(2, 1) compared to histogram done with 10, 000

points obtained from hybrid regeneration.

gion that covers the probability mass almost completely. Further studies

would be needed to address boundary issues for other types of PPD’s.
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Figure 5: Target distribution (pN(µ1,Σ1) + (1− p)N(µ2,Σ2) with µ1 = (4, 6)′, µ2 =

(8, 2)′, Σ1 is a matrix with elements, σ11 = σ22 = 1, and σ12 = 0.8; Σ2 is an identity

matrix, and p = 0.7 is the mixture weight.): (a) Grid of 400 initial points; (b) Voronoi

tessellation generated with 600; (c) Scatter plot of 12, 000 new points; (d) Real PDF

(solid line) from the marginal f(y) = 0.7N(6, 1) + 0.3N(2, 1) compared to histogram

done with 12, 000 points obtained from hybrid regeneration, and to a kernel density

estimation by using the initial 400 points (dotted line).

3 CLIMATE MODEL CALIBRATION

In this Section, we consider a couple of climate model applications, the first

climate model arises from Milankovitch (1941) theory of climate change,

in which variations in the Earth’s orbit cause climate variability through

a local thermodynamic response to changes in insolation. The Earth’s
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orbital geometry parameters (obliquity, longitude of perihelion and eccen-

tricity) are astronomical factors that influence the timing and intensity of

the seasons. A second application in climate modeling is done by using

few evaluations coming from NCAR’s CAM model, where the parameters

to consider are precipitation efficiency, and the environmental air entrain-

ment rate. While dimensionality on these climate models may be low, the

computational cost to evaluate them is quite high, this is the case of the

CAM model experiments considered in this paper.

3.1 CLIMATE MODEL (Milankovitch)

Jackson and Broccoli (2003) take advantage of the short equilibration time (10 years)

of an atmospheric general circulation model (AGCM), land surface model and a static

mixed-layer ocean model, which includes a thermodynamic model of sea ice to derive

the equilibrium climate response to accelerated variations in Earth’s orbital configu-

ration over the past 165,000 years. By fitting a time series of the evolution of each

orbital component with the model output, they can estimate an amplitude of that

component within the time series. This amplitude represents the sensitivity of the

region and season to changes in that orbital component. The sensitivity of surface air

temperature to obliquity forcing Ao,ijk and precessional forcing Ap,ijk can be defined

for particular latitudes i, longitudes j, and seasons k. They represent the climate

model’s response to the seasonally and latitude varying changes in insolation for a

given unit change in orbital parameter values. They are derived from an ordinary

multiple least squares fitting procedure between modeled variations in climate found

within a climate model integration of the past 165,000 yrs forced only by changes

in Earth’s orbital geometry and two basis functions representing the known tempo-

ral variations in obliquity and precession. In particular, the obliquity basis function

Ao,ijkΦ′(t) consists of an unknown sensitivity Ao,ijk and the time series of obliquity

variations Φ′(t) over the past 165,000 years, where Φ′(t) = Φ(t)−Φo, is the deviation

of obliquity from its 165,000 yrs mean (Φo = 23.3515◦). The precessional basis func-

tion Ap,ijke(t)cos(φp,ijk − λ(t)) consists of an unknown sensitivity Ap,ijk, an unknown

phase angle of response φp,ijk, the time series of eccentricity e(t), and the time series

of the longitude of the perihelion λ(t). The time series e(t), λ(t), and Φ′(t) are known

from orbital mechanics and were used as input values in the AGCM which calculates

the changes in insolation as a functionof latitude and season for each year of the

experiment.
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The multiple least squares fitting procedure provides estimates of Ao,ijk, Ap,ijk, and

φp,ijk that best represent the climate model’s response to the time evolving changes in

orbital forcing. For instance, the variations in surface air temperature with respect to

the 165,000 years annual mean for a given region and season Tijk(t) may be represented

by,

Tijk(t) = Ao,ijkΦ′(t) + Ap,ijke(t)cos(φp,ijk − λ(t)) +Rijk(t), (2)

where Rijk(t) is a residual. The fitting procedure described above also allows one

to construct a surrogate climate model using the estimated latitude, longitude, and

seasonal obliquity and precessional forcing sensitivities. Villagran et al. (2008) give

a comparison of the ability of the least squares fitting procedure with imposed time

variations in Earth’s orbital geometry to reproduce the AGCM’s response to the

annual mean air temperature in Antarctica averaged from 70◦ S to 90◦ S and separated

into its obliquity, precessional, and residual components. This is done by averaging

together the sensitivities of all latitude, longitude, and seasons for this region and

estimating the response by imposing the changes in the obliquity and precessional

components.

3.2 SURROGATE CLIMATE MODEL

The surrogate model is based on surface air temperature fields generated by an AGCM

in its response to changes in three parameters specifying Earth’s orbital geometry over

the past 165,000 years. The response can be approximated in terms of obliquity and

precession components by using the multiple least squares fitting procedure described

in the previous section. We will use this surrogate climate model to test our non-

parametric method as a follow-up study to Jackson et al. (2004), and Villagran et al.

(2008), which consider the same surrogate model as in this paper but mostly com-

pare Multiple Very Fast Simulated Annealing (MVFSA) against Adaptive Metropolis

methods as sampling strategies for climate modeling. MVFSA is an heuristic method

that attempts to strike a balance between optimization and sampling of the PPD

from multiple starting points as described in Villagran et al. (2008).

We denote the Earth’s orbital geometry parameters and their physical range

as obliquity, Φ ∈ (22◦, 25◦), eccentricity, e ∈ (0, 0.05) and longitude of perihelion,

λ ∈ (0◦, 360◦), therefore the dependency on t is omitted for the surrogate climate

model. The observed data is a 3D array dobs,ijk which represents the observed surface

temperature anomalies with respect to the long term 165,000 years mean at latitude i,
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longitude j, and season k. The grid spacing is approximately 4.5◦ latitude by 7.5◦ lon-

gitude, then the latitude can take I = 40 different values, and the longitude J = 48.

The season takes K = 12 values, which are selected days throughout the year. Each

value of k would apply for that season and for all time t over the past 165,000 years.

The observed data are simulated using Φ = 22.625, e = 0.043954, and λ = 75.93, as

ideal values for the climate model. We approximate the data using the relationship,

dobs,ijk = gijk(m) + ηijk, where m = (Φ, λ, e) is the vector of parameters, g represents

the forward operator and it has the same dimensionality as dobs,ijk. The definition of

the function g is crucial since it is completely defined by the physical system. The

term ηijk is a Gaussian error with estimated variance given by Bijk; this array repre-

sents the variance of the observations at each grid point. This variability comes from

the 1,500 year integration of the model itself, but with the appropriate seasonal and

climatological averages (i.e. 10 year means of particular seasons). Typically, in Earth

science models the observational uncertainties are assumed as Gaussian, see Jackson

et al. (2004), Tebaldi et al. (2005), and Lopez et al. (2006).

In this paper, the surface air temperature anomaly to a given change in the three

parameters that define the Earth’s orbital geometry is gijk(m). The surrogate climate

model is defined as follows,

gijk(m) = Âo,ijkΦ′ + eÂp,ijkcos(φ̂p,ijk − λ) + R̂ijk, (3)

where φ̂p,ijk is the phase of the response to precessional forcing and R̂ijk are the

residuals averaged over time obtained from the AGCM in (2). This term is added

to represent the effects of internal variability on 10 year seasonal means. Repeated

experiments of the climate model will cycle through 1 of 150 possible values of R̂ijk

that come from a 1,500 year long control integration of the AGCM. Âo,ijk and Âp,ijk

are the sensitivity of temperature to changes in obliquity and precession obtained

using the time series fitting procedure in (2).

3.3 CALIBRATION RESULTS

An element considered in some geoscience models (Mu et al. (2003), Jackson et al.

(2004), and Wang (2007)) to calibrate or measure the deviation generated from the

observed data (dobs) and the data generated from the model (g(m)) is called the cost

function. In general, the cost function can be represented as E(m) = ||dobs − g(m)||,
where m is any given vector of parameters of interest from the physical system, and

the difference between the data and the model is given by a specific metric. The cost
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Method E(m∗) Φ2.5% Φ97.5% λ2.5% λ97.5% e2.5% e97.5%

SCAM 0.191 22.164 23.131 60.663 91.543 0.0312 0.0495

MVFSA 0.202 22.160 24.507 18.333 311.938 0.0089 0.0482

Hybrid 0.191 22.215 23.066 63.406 97.933 0.0340 0.0490

Table 1: Comparative estimation after 500 forward evaluations. E(m∗) is the mini-

mum of the cost function, Φ is the Obliquity, λ is the Longitude of Perihelion and e

is the Eccentricity.

function can be defined in many ways. For instance, in the surrogate climate model

considered here, the cost function is defined as,

E(m) =
1

2

I∑
i=1

J∑
j=1

K∑
k=1

B−1ijk(dobs,ijk − gijk(m))2, (4)

where m = (Φ, e, λ) is the vector of Earth’s orbital geometry parameters (obliquity,

eccentricity, and longitude of perihelion). On the climate model studied here there

is just one field, surface air temperature anomalies, however we can have N different

sets of observations, such as seasonal and annual mean surface air temperature, pre-

cipitation, winds, and clouds at different latitudes. It is proposed that, the likelihood

function takes the form,

L(dobs|m,S) ∝ exp{−SE(m)}. (5)

The parameter S is connected to Bijk according to Jackson et al. (2004) as a scaling

factor. S performs the function of weighing the significance of model-data differences.

We now compare three different computational techniques, MVFSA, Single Com-

ponent Adaptive Metropolis (SCAM), and the hybrid non-parametric approach pre-

sented in this paper. Since one of the main concerns in climate modeling is the

time spent in performing forward evaluations, it is prohibited to think about doing

a typical MCMC simulation with thousands of iterations. Therefore, by suggestion

of our climate expert, we allow only 500 model evaluations to be done in order to

compare different strategies. In Table 1, we compare the uncertainty estimation of

the parameters and the minimum values of the cost function. The performance of

SCAM is remarkable since it does not only find a minimum cost with few forward

evaluations, but it does also provide acceptable estimates of the 95% credible inter-

vals of the orbital forcing parameters. The 95% credible intervals based on MVFSA

17



22 23 24 25
0

100

200

300

Obliquity

L
o

n
g

it
u

d
e
 o

f 
P

e
ri

h
e
li

o
n SCAM

22 23 24 25
0

100

200

300

Obliquity

MVFSA

22 23 24 25
0

100

200

300

Obliquity

HYBRID

22 23 24 25
0

0.01

0.02

0.03

0.04

0.05

Obliquity

E
c
c
e
n

tr
ic

it
y

22 23 24 25
0

0.01

0.02

0.03

0.04

0.05

Obliquity
22 23 24 25
0

0.01

0.02

0.03

0.04

0.05

Obliquity

0 100 200 300
0

0.01

0.02

0.03

0.04

0.05

Longitude of Perihelion

E
c
c
e
n

tr
ic

it
y

0 100 200 300
0

0.01

0.02

0.03

0.04

0.05

Longitude of Perihelion
0 100 200 300

0

0.01

0.02

0.03

0.04

0.05

Longitude of Perihelion

Figure 6: Bivariate scatter plots of orbital forcing parameters with just 500 forward

evaluations. First column: SCAM. Second column: MVFSA. Third column: Hybrid

regeneration.

are not informative at all because they practically cover the entire parameter space.

Applying hybrid regeneration of the surface to the initial 500 forward evaluations,

we generate 100, 000 new points that provided comparable credible intervals to the

Adaptive Metropolis scheme. A particular remark to be made is that SCAM was

used as initial sampling strategy for the hybrid non-parametric approach presented

here because Villagran et al. (2008) demonstrated that it was a good choice for prob-

lems with parameter restrictions, which is the case of the climate model used in this

paper. In addition, they showed that MVFSA produces biases in the tails since it

uses multiple independent initial points along the parameters space.

In Figure 6, we look at the bivariate scatter plots of the samples of the different

methods corresponding to each orbital parameter. No burn-in period was allowed

neither for SCAM nor for MVFSA. The Adaptive Method concentrates around the

optimum values with only few forward evaluations while MVFSA samples are dis-
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tributed loosely all over the parameter space. The samples coming from the hybrid

regeneration approach gather around the optimum values as SCAM does since the

initial surface was based in the Adaptive sampling method.

In Figure 7, we can observe the regeneration of the surface at four

stages of the process for longitude of perihelion and eccentricity. Just by

using the initial 500 points sampled from the Adaptive Metropolis method, the hybrid

non-parametric approach presented in this paper is able to rebuild the surface of the

climate model parameters practically from scratch. Even though we transform the

samples to the square [0,1] to improve visualization, it is not clear to observe at the

first phase that there is any pattern in the shape of the cells. However, after some new

samples are drawn and some regenerations of the surface are done, the distribution of

the parameters becomes evident. These results were obtained by sampling 500 new

points from each surface, and regenerating the surface 200 times.

In Figure 8, we first compare the estimation of the PPD for the obliq-

uity parameter using only 500 forward model evaluations. If we use the

samples coming from either SCAM and MVFSA to estimate the PPD for Obliquity

and eccentricity, we can see there are some bumps even after having being used a ker-

nel smoother. The hybrid method does a good job estimating the posterior densities

by using only the 500 initial points and generating up to one hundred thousand new

points. Even if we compare what would happen in the hypothetical case that we were

able to evaluate a climate model 100, 000 times, we can see there are small differences

in the densities using hybrid regeneration and the Adaptive Metropolis scheme. Being

able to avoid thousands of expensive forward evaluations in the climate model itself

is a huge difference in favor to the former scheme. The calibration can be done quite

reasonably using the non-parametric approach since the optimum values (triangles)

are covered by high density regions around them.

3.4 Community Atmospheric Model (CAM3.1)

Climatologists have an interest in making inferences about models that

may take hours to days to execute a single iteration of a stochastic sam-

pler. We consider the use of the technique presented in this paper useful,

especially when forward evaluations have already been done and there is

an interest in using them to calibrate the computer model. This is the

case of the Community Atmospheric Model (CAM3.1) developed by the
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Figure 7: Longitude of Perihelion vs Eccentricity. Hybrid surface regeneration at four

stages, from top left to bottom right: 500, 1000, 2500, and 5000 sampled points.

National Center for Atmospheric Research (NCAR). Using hybrid regen-

eration in the CAM3.1 imposes a new challenge, since the initial sample to

construct the Voronoi tessellation would be from MVFSA instead of AM.

This makes a difference since MVFSA provide samples over all the param-

eter space. This can lead to non-informative interval estimation (Table 1),

and regeneration of cells that have extremely low density and that are not
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Figure 8: Comparison for Obliquity parameter. Top left: PPD estimation with 500

forward evaluations. Top right: PPD estimation with 100,000 forward evaluations

for SCAM and MVFSA. Although Hybrid regeneration uses 100,000 samples, it only

used 500 forward evaluations to estimate the PPD. Bottom: Box plots of the samples

from different methods.

meaningful in terms of model calibration. Ongoing investigation is being

done to make hybrid regeneration less dependent of the initial sample,

and to provide ergodic properties of the method. It is also not clear that

Gaussian process models provide better posterior approximations in these

situations given that the climate response generated by CAM is highly

multivariate. This climate model uses fourteen fields of response (Jackson

et al. (2008)) and has six parameters, RHMINL (low cloud critical rela-
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tive humidity), RHMINH (high cloud critical relative humidity), ALFA

(initial cloud downdraft mass flux), TAU (consumption rate of CAPE),

ke (environmental air entrainment rate), and c0 (precipitation efficiency).

Currently forward evaluations of this model are being performed by using

MVFSA. Work is in progress to replace MVFSA by Adaptive Metropolis

to reduce biases in the sampling and attempts of estimating parameters of

such model with Gaussian processes had not been very successful. On the

hand, we had implemented the methods of this paper to a situation where

only two parameters of the CAM 3.1 (ke and c0 ) vary according to an

8× 8 factorial design. A similar likelihood and cost function like the ones

introduced in Section 3.3 was constructed based on the various response

fields and seasons. Each response field provides a coarse spatial resolution

that covers the tropics and poles of the Earth. Figure 9 shows the points

where initial experiments were run and for which cost function values were

computed. This 64 points are treated as the initial sample in our sampling

scheme. The crosses are the sampled value after implementing step (1)-(4)

of the algorithm and the contours represent a smooth version of the sam-

ples that correspond to the PPD. Figure 10 show the resulting marginal

PPD distributions for both parameters ke and c0. Although the results in

Jackson et al. (2008) vary six parameters at a time, the resulting posterior

distribution reported there resembles the marginals obtained for Figure

10 from the hybrid-regeneration algorithm.

4 DISCUSSION

From a statistical standpoint, calibration in complex computer models has been dealt

traditionally by proposing a statistical model or emulator that can avoid computa-

tional limitations. Emulators based on Gaussian process (Kennedy and O’Hagan

(2000), Sansó et al. (2008), Christen and Sansó (2011)) assume that the model can

be run at different levels of complexity, while Bliznyuk et al. (2008) propose a dif-

ferent approach by using a radial basis function approximation to the logarithm of

the posterior density. The non-parametric method presented in this paper follows

a completely different approach, a combination of a geometrical structure (Voronoi,

1908) and a nearest-neighbor approach drawn from geophysics (Sambridge, 1999),

providing a non-standard way to avoid expensive evaluations in the computer model
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Figure 9: 8 × 8 factorial design for CAM 3.1 parameters ke and c0, samples for

hybrid-regeneration algorithm and PPD contour plots.

itself. Following the Kennedy et al. (2001) notation, a physical process zi

can be expressed as the sum of a real process ξ(x) and an observational

error ε, thus zi = ξ(xi) + εi. Furthermore, ξ(x) = ρη(x, θ) + δ(x). In a GP

model, a Gaussian Process prior distribution is assumed both in the com-

puter code η(·) and the model inadequacy function δ(·). In the climate

model applications presented in this paper, no δ(x) is assumed, and the

hybrid non-parametric procedure explore and estimate the parameters of

the forward operator g, which is an estimator of the real process ξ(·). In

contrast to these Gaussian process emulators, the geometrical structure

studied here does not provide a direct estimate of model discrepancy error

or a surface approximation to response. On the other hand, the Voronoi
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PPD for c0 parameter.

tessellation can provide a quick approximation to the posterior distribu-

tion of parameters when a Gaussian process model is not practical due to

a high-dimensional response or parameter space.

By definition, the Voronoi tessellation defines a unique geometrical structure that

completely covers the parameter space. In addition, the cells of the tessellation have

a size proportional to the concentration or distribution of the cells over the entire

space. These facts resemble the description of random vector and its joint probability

density function over its support. Therefore, we have applied these ideas to formulate

a non-parametric procedure. The algorithm can be depicted in few steps: (1) Propose

a sampling scheme to obtain points from regions of the parameter space where there

is high density, with this initial sample (2) construct the Voronoi tessellation. Using
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this approximated surface, (3) draw a sample of new points; add the new points to the

original sample and (4) rebuild the Voronoi tessellation. These steps can be repeated

N times, resulting in an iterative procedure that will refine the surface by generating

more new small cells (points with high density) than new big cells (points with low

density).

The potential applications are broad and may prove invaluable for problems that

are currently limited by computational requirements of the forward model. In this

paper we have applied hybrid regeneration to a couple of AGCM climate models.

Sambridge (1999) has applied the nearest neighborhood approach to a

problem with 24 parameters. We have compared the results from our method

against a long MCMC run (using either Adaptive Metropolis or MVFSA) and have

concluded that hybrid regeneration provides a successful calibration given that the

generation of new samples take place after a few number of forward evaluations in the

computer climate models. The approach we have proposed allows to generate new

points without the computational burden of additional model evaluations.
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