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Abstract

We review the class of time-varying autoregressive (TVAR) models within
a Bayesian dynamic linear modelling framework. Focusing on issues of latent
structure analysis, we present time-domain decomposition methods which al-
low to make inferences on the structure underlying non-stationary time series.
TVAR model extensions that deal with model order uncertainty via efficient
Markov Chain Monte Carlo simulation are considered. We emphasize the rele-
vance of TVAR modelling in applied contexts such as the analysis of multiple
electroencephalographic (EEG) traces.
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1 Introduction

Time varying autoregressive (TVAR) models have provided useful empirical represen-
tations of non-stationary time series in various applied fields. Since the early 1980s,
W. Gersch, G. Kitagawa and coauthors, have demonstrated the flexibility of high-order
TVAR models to describe changes in the stochastic structure of series with marked and
time-varying periodicities. These authors have focussed on issues of changes in the in-
stantaneous power spectra implied by the TVAR models, and questions of feedback and
time lags in multiple time series in the analysis of seismic and electroencephalographic
data (e.g., Kitagawa 1983, Gersch 1987, Kitagawa and Gersch 1996).

More recently, useful time series decomposition results were introduced in West
(1997) to explore latent quasi-periodic components in standard AR models. These
methods provide useful insights into the latent structure of observed time series that
often have physical interpretations. In connection with these developments, Huerta
and West (1999) proposed a novel class of priors for model parameters and model
order, that characterise the number and structure of latent underlying components in
AR processes. West et al. (1999), Prado and West (1997) and Prado (1998), extended
the decomposition theory introduced in West (1997), to the important class of TVAR
models, and discussed practical issues of model fitting and resulting inferences for
component structure underlying non-stationary time series. These works have proven
the great utility of such decomposition methods in applied areas, in particular in studies
of electroencephalogram (EEG) recordings on human subjects (Krystal et al. 1999).

Standard TVAR models and decompositions are easily implemented using sequen-
tial updating and filtering/smoothing algorithms for dynamic linear models (West and
Harrison, 1997). However, due to the developments of Markov Chain Monte Carlo
(MCMC) methods, efficient algorithms are available for implementation of more flex-
ible and sophisticated time series models (e.g. Carter and Kohn 1994, de Jong and
Shephard 1995). In particular, Prado and Huerta (1999), deal with model order uncer-
tainty within the TVAR modelling framework via MCMC methods. This work focuses
on issues of studying how inference on latent structure is affected when uncertainty on
model order is considered. In connection with the use of sophisticated simulation meth-
ods for model implementation, a key area of current research interest in time series is
focussed on adapting simulation methods to a sequential analysis context via particle
filtering. Pitt and Shephard (1999) and Doucet et al. (2000) are key references in
this area. Additionally, methods for performing Monte Carlo smoothing in non-linear
non-Gaussian dynamic models, with applications to TVAR models are developed in
Godsill et al. (2000).

The purpose of this paper is to review the recent theory of TVAR modelling and
related decomposition results, with emphasis on the use of such theory in applied
areas. Current and future research directions will be highlighted here. In Section 2 we
introduce TVAR models and describe the decomposition structure for the univariate
and multivariate cases. In Section 3 we consider extensions of the TVAR models and



decompositions to address model order uncertainty. Various analyses of non-stationary
EEG series illustrate the methodology and implied practical aspects of the theory
described in Sections 2 and 3. Finally, Section 4 provides summary comments and
future directions.

2 TVAR models and decomposition theory

2.1 Model specification

A univariate time series x;, follows a time-varying autoregressive model of fixed order

p, or TVAR(p), if

p
Ty = Z GrjTe—j + €, (1)

j=1
where ¢, = (¢p1,...,¢1p) is the time-varying vector of coefficients and €, are zero-

mean independent innovations assumed Gaussian with possibly time-varying variances
o?. No explicit stationarity constraints are imposed on the AR parameters at each
time t. However, if such parameters lie in the stationary region, as it is the case in
many applications, the series can be thought as locally stationary and the changes in
the parameters over time represent global non-stationarities.

The model is completed by specifying the evolution structure for ¢, and o7. Here
we assume that the AR parameters evolve according to a random walk, however, more
complex evolution modelling components may be specified. A random walk evolution
structure on ¢,, that is, ¢, = ¢,_, + &, with &, ~ N(0, W,), provides adaptation to
the changing structure of the series over time without anticipating specific directions of
changes (West and Harrison 1997, chapter 3). The variation in time of ¢, is controlled
via standard discount factor methods (West and Harrison 1997). A single discount fac-
tor 5 € (0, 1] leads to values of each W, such that low values of 5 imply high variability
of the ¢, sequence, while high values, in the range 0.9-0.999, are typically considered
in practice. Similarly, the changes in time of o? are modelled with a multiplicative
random walk o7 = o7 _,(6/n;), where n; are mutually independent and independent of
¢; and &,, and with n; ~ Beta(as, b;). The parameters a; and b, are defined at each ¢
by a discount factor ¢ € (0, 1] analogous to 3. Suitable values for the discount factors
and the model order p may be obtained via marginal likelihoods, mean square errors or
mean absolute deviations as discussed in West et al. (1999) and Prado (1998). Given
p, the TVAR model can be framed as a dynamic linear regression with model coeffi-
cients ¢,. The equations for sequential updating and retrospective filtering/smoothing
of general dynamic linear models (West and Harrison 1997, chapter 4) lead to posterior
inferences on ¢, and o?.



2.2 Time series decompositions

In recent years, applied interests in a variety of fields have stimulated Bayesian time
series research focussed on latent time-frequency structure analysis. In particular,
decomposition methods and related theory and analysis for TVAR models have been
recently developed in West et al. (1999), Prado and West (1997) and Prado (1998).
This section reviews the key points of these developments.

Consider a general dynamic linear model (DLM) in which the observed scalar time
series y;, t = 1,2, ..., is modelled as

y=x+v, v,=F0;, 0,=G0, 1+ w, (2)

where x; is the latent signal, v; is an observation error, 6, is a d x 1 state vector, F
is a column d-vector, Gy is the d x d state evolution matrix and w; is the d-vector of
state innovations. The state evolution matrix G; may depend on uncertain, possibly
time-varying parameters. The noise terms v; and w; are mutually uncorrelated white
noise, though more complex structures may be considered to handle measurement error
and outlier components (Carter and Kohn 1994; West 1997).

The decomposition results summarised below are based on standard theory of model
structure and similar models (West and Harrison 1997, chapter 5). Assume that at
each time ¢, the state matrix Gy in (2) has exactly d different eigenvalues, some of which
could be complex and in such case they will appear in conjugate pairs. The number of
complex and real eigenvalues may vary over time but, for the sake of simplicity, assume
that at each time ¢ there are ¢ pairs of complex eigenvalues denoted by 7 ; exp(iw; ;)
for j =1,...,¢c, and r = d — 2c real eigenvalues denoted by r,; for j =2c+1,...,d.
Then G, = E;AE, ! where A, is the diagonal matrix of eigenvalues in arbitrary but
fixed order, and E; is a d x d matrix whose columns correspond to the eigenvectors
appearing in the order given by the eigenvalues. For each t define H, = diag(E,F)E;'
and linearly transform the state parameter vector 8, to v, = H;08,. Then, rewriting
(2) we have

Y =X+, Ty = ll’Yt, Y = Ath'Yt_1 + 0y, (3>

where 1 = (1,1,...,1), §; = Hyw; is a zero-mean normal innovation with a structured
and singular variance matrix and K; = H;H,*,. Then (3) implies that x; is the sum of
the individual components of v, = (v.1,...,7.4)"- The final r elements of ~, are real-
valued processes, corresponding to the real eigenvalues 7, ;. Rename these processes y; ;.
The initial 2¢ elements of v, appear in complex pairs and therefore z;; = 7251+ Vi2j
is also a real-valued process. Then, the basic decomposition result for the class of
models that can be expressed in the form (2) is simply

c d
=zt D, Y (4)
Jj=1

J=2c+1



Given known, estimated or simulated values of F, G; and 8; at each time ¢, the
processes z;; and y,; can be evaluated over time by computing the eigenstructure
of the evolution matrix G; and the linear transformations described above. We now
explore the structure of the processes z ; and y, ; for the class of TVAR and vector AR
models.

2.2.1 Decompositions for TVAR models

The TVAR model (1) can be expressed in a DLM or state-space model form (2), with
d= P, Vg = 0, F= (1, 0, .. .,O)I, Ot = (xt,xt_l, ce ,.Tt_p+1)l, Wi = GtF and

¢t,1 ¢t,2 ¢t,p71 ¢t,p

1 0 ... 0 0

G, =G(¢,) = 0 ... 0 0

0 0 ... 1 0
The eigenvalues of G; are the reciprocals roots of the instantaneous autoregressive
characteristic equation at time ¢, ¢,(u) = (1 — ¢pu — ... — ¢ pu?). In particular,
for the standard AR(p) process G; = G, therefore r,; = r; for j = 1,...,p and
wrj = wj for j = 1,...,c. Furthermore, it is easy to see that each y,; follows a

standard AR(1) process with AR parameter r;, and each 2 ; follows an ARMA(2,1)
whose AR(2) component is quasi-periodic with constant characteristic frequency w; (or
wavelength 27 /w;) and modulus r; (West et al. 1999). In this case, the decomposition
is essentially that derived by the partial fractions decomposition of an AR(p) process
in the stationary case (Box and Jenkins 1976).

In the general TVAR case each y, ; is dominated by a TVAR(1) with time-varying
AR parameter r; ;, while each 2 ; is dominated by a TVARMA(2,1) with time-varying
characteristic frequency w; ; and modulus r; ;. The stochastic structure of y, ; and z ;
is not exactly represented by TVAR(1) and TVARMA(2,1) components, since there is
an element of linear mixing of the latent processes through time. However, the mixing
components are negligible in most practical applications. The main point for this result
is that the matrix K, in equation (3) for a TVAR model, will generally not be equal
to the identity, a key feature for the special latent structure on a constant AR model.
K; will be close to the identity when G; and G;_; are similar, i.e. in cases when
¢, changes slowly in time. When the K; matrices are very close to identity matrices
the component processes in the decomposition have a structure almost completely
dominated by TVAR(1) and TVARMA(2,1) processes. A detailed discussion on this
topic appears in Prado (1998) and West et al. (1999).

2.2.2 Multivariate Decompositions

The univariate decompositions presented above have a direct extension to the mul-
tivariate framework. Details of the results summarised here can be found in Prado



(1998).
Consider an m-dimensional time series process y, = (Y14, ..., Ym,) modelled using
a multivariate DLM (West and Harrison 1997, chapter 16)

y,=x+v, x=F60, 6,=G0O, +w, (5)

where x; is the underlying m-dimensional signal, v; is an m-dimensional vector of
observation errors, F is a d X m matrix of constants, 8, is the d-dimensional state vector,
G, is the d x d state evolution matrix and w; is a d-vector of state innovations. The
noise terms v; and w; are zero mean innovations, assumed independent and mutually
independent with variance-covariance matrices V; and W, respectively. As in the
univariate case, assume that G; has exactly d distinct eigenvalues at each time ¢, with
¢ pairs of complex eigenvalues r;jexp(tw;;) for j = 1,...,¢, and r = d — 2c¢ real
eigenvalues 14 ; for j = 2c+1,...,d. Define m matrices H; ; = diag(E;F;)E, ", with F;
the i-th column of the matrix F, and consider m new state vectors «y; , = H; ;6; and m
new state innovation vectors d;; = H; jw; for i = 1,...,m. Then, we obtain m DLMs,
M, one for each of the scalar components of x;, that is

_ !
M, - ripg = Ly (6)
it
Yie = AKivip o, + 0O
with K;; = H; ;H; tl—l' Therefore, using the decomposition results for univariate time
series, x;; can be expressed as a sum of d components

c d
Tie =) Ziegt D Vit (7)
where z;, ; are real-valued processes related to the pairs of complex eigenvalues for j =
1,...,c, and y; ; are real processes related to the real eigenvalues for j = 2¢+1,...,d.

In particular, if x, = (241, .., %) follows an m-dimensional vector autoregressive

model, VAR(p)

p
Xt = Z q)thfj + € (8)
j=1

where ®; are m x m matrices of AR coefficients and €; are m-dimensional zero mean
innovation vectors with covariance matrix V, it is easy to see that each x;; series
has a decomposition as the sum of several AR(1) and ARMA(2,1) processes. The
zi1; processes in the decomposition are quasi-periodic, following ARMA(2,1) models
with characteristic frequencies and moduli w; and r; for j = 1,..., ¢, while the y;,;
processes have an AR(1) structure with AR coefficients r; for j = 1,...,mp. Thus,
each univariate element x;, has a decomposition whose latent ARMA(2,1) and AR(1)
processes are characterised by the same frequencies and moduli across 7, though the
phases and amplitudes associated with these components are specific to each univariate
element x; ;.
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Figure 1: top frame: data and estimated components in the decomposition of EEG
series Fz based on a TVAR(12) model. From the bottom up, the graph displays the
time series followed by two estimated components in order of increasing characteristic
frequency. Bottom frames: trajectories and 95% posterior bands of the estimated
characteristic frequency and modulus of the lowest frequency component in series Fz.

2.3 Latent structure in multiple EEG traces

Various applied studies have been generated recently in the area of EEG analysis (Prado
and West 1997, Krystal et al. 1999, Prado et al. 2000). We illustrate the use of TVAR
models and decompositions in the analysis of an EEG trace from a dataset previously
studied in Prado and West (1997) and Prado et al. (2000). The EEG series analysed
here is one of 19 traces recorded at different scalp locations during a patient seizure,
elicited by electroconvulsive therapy (ECT) as antidepressant treatment. Details on
the analyses of the full dataset via TVAR models and related decomposition theory can
be found in Prado and West (1997), and further developments, including estimation of
time-varying lag/lead structure among the 19 channels, appear in Prado et al. (2000).
The purpose of these studies is to explore differences and commonalities in latent
structure across the 19 traces in order to characterise aspects of the spatio-temporal
dynamics that improve the understanding of the physiology driving the antidepressant
effectiveness of ECT.

The top frames of figures 1 and 5 display a section of an EEG series recorded at a
channel located in the central frontal cortical region of a patient scalp, named Fz in
EEG nomenclature. The series displays high frequency oscillations at the beginning
that slowly decay into lower frequencies, accompanied by an increase in the amplitude of



the signal, relative to the amplitude observed at initial stages, until it finally decreases
towards the end of the seizure episode. Figure 1 (top frame) displays the data and
two of the estimated latent components in the decomposition of the series, based on
a TVAR(12) model with constant observational variance o7 = o2, and discount factor
f = 0.996 controlling the variability of ¢,. Components (1) and (2) correspond to
the highest amplitude components, lying in the delta (0 to 4 Hz) and theta (4 to
8 Hz) frequency bands. These components are individual processes dominated by
TVARMA(2,1) quasi-periodic structures. Process (1) is dominated by a TVARMA(2,1)
with a time-varying characteristic frequency that gradually decays in time, as shown
in the left bottom frame of figure 1. This component, characteristic of slow-waves that
usually appear in middle and late phases of effective ECT seizures (Weiner and Krystal
1993), also dominates in amplitude, having moduli values higher than 0.8 during most
of the seizure course (see right bottom frame of figure 1). Component (2) lies in the
theta frequency band and is much lower in amplitude and modulus than component
(1). Higher frequency components also appear in the decomposition having much lower
amplitudes than the lower frequency components that really characterise the seizure
episode.

The trajectories in time of the characteristic frequency and modulus of the latent
processes in the decomposition have an equivalent frequency-domain interpretation.
In cases where the stationarity conditions are satisfied, i.e. if |r,;| < 1, the instanta-
neous spectral density of each latent quasi-periodic process z;; is peaked around its
characteristic frequency w; ; and the sharpness of the peak is an increasing function of
its characteristic modulus r; ;. Then, the spectrum of the full signal is time-varying,
given at each time ¢ as the product of the instantaneous spectra of the y, ; and of the
AR part of z ;. The top frames of figure 2 display six instantaneous spectra, com-
puted at posterior mean estimates of the AR parameter ¢, at different times during
the seizure course. The vertical dotted lines indicate the value of the frequency (in
Hz or cycles/sec) with the highest peak in each spectrum. The bottom frame of the
figure displays the evolution of the instantaneous spectra computed at estimated pos-
terior means of the AR parameter ¢, at 50 equally spaced time points over the seizure
course. The dotted lines correspond to the spectra displayed at the top frames. As
seen previously in the time-domain graphs displayed in figure 1, the estimated spectra
show that the EEG signal is dominated by the quasi-periodic process with the lowest
characteristic frequency. The frequency is time-varying, having estimated values higher
that 5 Hz at the beginning of the seizure that gradually decay towards the end (see
dotted vertical lines). The degree of sharpness in the estimated spectra also varies over
time, being sharpest at early-central portions of the seizure. This result is consistent
with the estimated modulus trajectory in time of the latent process (1) displayed in
figure 1.
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Figure 2: top frame: instantaneous estimated AR spectra for channel Fz computed at
times t = 260, 1060, 1780, 2420, 3140, 3860. Bottom frame: evolution of the instanta-

neous spectra computed at estimated posterior mean values of ¢, at 50 equally spaced
points along the seizure course.



2.3.1 Additional time-varying lag/lead structure in the multiple EEG traces

Similar univariate TVAR(12) analyses and related decompositions yield to similar in-
ferences across the full set of 19 EEG traces (Prado and West 1997). The instantaneous
AR characteristic polynomials exhibit and maintain at least two pairs of complex con-
jugate roots across the 19 series, one of which corresponds to the dominant “seizure”
latent process that lies in the delta frequency band. The range of values taken by
the characteristic frequencies and moduli of the lowest frequency components over the
seizure course, is consistent across the 19 EEG channels. Such common patterns sug-
gest the notion of modelling the multiple traces via latent factor models, with one or
two quasi-periodic latent processes or factors driving the behaviour of the series. As
the factors may have a different impact on channels located at different sites on the
patient scalp, the influence of the factors on each EEG series would be then weighted
by individual regression coefficients or factor weights. This direction was anticipated in
Prado and West (1997) and further developed in Prado (1998) and Prado et al. (2000).
Single factor model analyses of the multiple series reveal a spatial structure across the
19 EEG traces that univariate TVAR models are not able to capture: channels located
closer on the scalp display similar estimated values of the factor weights. However, as
discussed in Prado et al. (2000), cross-correlograms of the residuals of these models
exhibit time dependent phase delays between some of the channels, evidencing sub-
stantial remaining structure across the 19 series. This motivates the use of dynamic
regression models with time-varying lag/lead structures. We now describe such models
following Prado et al., (2000).

Let y;+ be the observation recorded at time ¢ on channel 7 and consider the model

Yie = ﬁ(i,t)xifli7t+yi,t 9)
By = Bli—1) + Wit

where z; is an underlying process assumed known at each time ¢; [;; is the lag/lead that
Y displays with respect to ¢, with l;; € {—ko,...,0,..., ki } and ko, ki known; 3, ) is
the dynamic regression coefficient of x; for channel ; v;; and w;, are independent and
mutually independent zero mean innovations with variances v; and s;;. The changes
in lag/lead structure over time are described via a one-step Markov chain model with
known transition probabilities p(l;; = k|l;; = m), k,m € {—ko,...,0,..., ki }, while a
random walk is adopted to model the evolution of S(;;. We also assume that v;; and
we; are independent across channels so that the equations (9) describe a collection of
univariate models rather than a multivariate m-dimensional model. The specification of
the evolution variances s;, is handled via standard discount factor methods. Once the
priors on f3;0) and v; are specified, posterior inference may be obtained via customised
MCMC algorithms detailed in Prado et al. (2000).

Given that z; is the same fixed underlying process for all channels it is possible
to make comparisons between channels by comparing the estimated values of 3
and [;; across ¢ over time. Figure 3 displays the estimated posterior means of the /.
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Figure 3: estimated posterior means of the dynamic factor weights at selected time
points.

coefficients for all the channels at selected time points during the seizure, based on
a model that takes x; = y; ¢z, that is, a; is the actual signal recorded at the channel
located centrally, at the very top of the scalp. Details on the priors, discount factors and
transition probabilities considered, as well as a discussion on MCMC convergence for
this model appears in Prado et al. (2000). The values that appear at the approximate
electrode locations in the graphs correspond to the actual estimated posterior mean
values. In addition, an image plot, created by linear interpolation of B(i,t) onto a grid
defined by the approximate electrode locations is displayed. Dark intensities correspond
to high values of the regression coefficients while light intensities match low values.
Various features of the spatio:temporal relations between channels are evident from
these pictures. The graphs exhibit marked patterns of relations across neighbouring
channels: a given channel shares more similarities with channels located closer to it.
There is also an element of asymmetry, more evident towards the end of the seizure.
Channels located at right-fronto temporal sites have smaller regression coefficient values
than channels located at left-fronto temporal sites.

Figure 4, displays estimated lag/leads, based on posterior means of the [. quantities
at different time points over the seizure. If a given site shows the lightest intensity at
time ¢, then the signal recorded at this site is delayed in two units of time with respect
to the signal recorded at site Cz. Similarly, if a site shows the darkest intensity at time
t then the signal recorded at this site leads the signal recorded at site Cz in two units
of time. Central portions of the seizure display intense lag/lead activity characterised
by lags in the occipital regions and leads in the frontal and pre-frontal regions with
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Figure 4: dynamic lag/leads based on posterior mean estimates.

respect to channel Cz while almost no lags/leads are apparent at the beginning and
towards the end of the seizure.

3 Time-variation on model order

A vast literature of time series models that incorporate model uncertainty via Markov
chain Monte Carlo (MCMC) methods has flourished in recent years. Examples for
the case where the class of models is restricted to the linear autoregressive process
are, among others, Barnett et al. (1996); Barbieri and O’Hagan (1997); Troughton
and Godsill (1997). More recently, Huerta and West (1999) incorporated model order
uncertainty on an AR(p) with emphasis on prior specification for latent structure.

For general DLMs, West and Harrison (1997, chapter 12), following Harrison and
Stevens (1976), present the multi-process class of models, where model uncertainty is
addressed using mixtures of conjugate DLMs. When some of the DLMs in considera-
tion are not conjugate but conditionally conjugate, the multi-process analysis requires
Forward Filtering Backward Simulation (FFBS) algorithms (Carter and Kohn 1994;
Frithwirth-Schnatter 1994) to obtain posterior model probabilities. Prado and Huerta
(1999), adopt this approach to deal with model order uncertainty for TVAR models.
We now review the main ideas of this work.

A time-varying autoregression with time-varying order p;, is described by

Pt
Ty = Z Gt jTi—j + €, (10)

J=1
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where the autoregressive coefficients change in time according to a random walk, as
defined for a TVAR(p). For simplicity, €, are zero-mean innovations, assumed Gaus-
sian with constant variance o2, but extensions to the time-varying case follow easily.
Additionally, assume that p;, the order of the autoregression at time ¢, is an integer
that takes values between a fixed lower bound p,,;, and a fixed upper bound py.x. The
TVAR(p;) model in (10), is a sub-model of a fixed order TVAR(pmayx) described by

Pmax

Ty = Z GrjTe—j + €, (11)
j=1

with a pmax-dimensional vector of coefficients ¢, = (d¢1,. .., Pip,»0,...,0). Model
completion requires specification of an initial prior for (¢, 0?) and details concerned
with the evolution of model parameters. Relatively diffuse normal/inverse gamma
priors are used on ¢, and vague inverse-gamma priors on o. The evolution of p;
is considered as a first order discrete random walk with known transition probabili-
ties. Posterior inference of the TVAR(p;) follows a two-stage Gibbs sampling format.
Conditional on model orders, the standard sequential updating and retrospective fil-
tering/smoothing algorithms for DLMs apply to update ¢, and 0. The second stage
consists on sampling from the conditional posterior distribution of model orders, given
the ¢, for all ¢ and o2, via the filtering/smoothing algorithm for discrete random vari-
ables of Carter and Kohn (1994). Full description of the simulation algorithm and
mathematical details appear in Prado and Huerta (1999).

3.1 Decompositons for time-varying autoregressions

Decomposition of a TVAR(p;) is obtained via decomposition theory for a general
DLM. The representation of the TVAR(p;) in DLM form involves an evolution matrix
G, that has p; distinct non-zero eigenvalues and a zero eigenvalue with multiplicity
Pmax — Pt~ The decompositon result is derived from similarity transformations and
eigenvalue/eigenvector representation in Jordan form of G, (West and Harrison 1997).
The result is now

ct Pt
Ty = Z Ztj + Z Ytjs (12)
7=1

Jj=2ct+1

where ¢; is the number of complex pairs of non-zero eigenvalues of G;. Notice that the
decomposition results is analogous to (4), but now the number of components depend
on time varying ¢; and p;. As in the fixed order TVAR case, z,; are related to the
complex non-zero eigenvalues of G; and dominated by a TVARMA(2,1). The y; ; are
related to the real non-zero eigenvalues of G; and dominated by a TVAR(1). Complete
developments are reported in Prado and Huerta (1999).
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Figure 5: From the top down we have the EEG data and a graph of the estimated
posterior mean for model order at each time ¢ with 95% posterior bands.

3.2 Describing changes in the number of latent EEG processes

Consider again the EEG series displayed in figure 1. The latent components shown in
the graph were computed using estimated posterior means for the AR coefficients and
the innovations variance of a TVAR(12) model. Here, we model the same series with a
TVAR(p;), where p; may take values from pyin = 0 up to pmax = 14. Different values for
the lower and upper bands pyi, and py.x were considered, leading to similar inferences
in terms of the latent structure. Discount factors in the range of 0.99 —0.999 were used
to control de evolution of the AR coefficients in time. Such values impose smoothness
restrictions on the changes of ¢, in time that are typical in EEG analyses (West et al.,
1999). Similarly, the transition probability structure that describes the evolution of p,
in time is specified to impose smoothness conditions, allowing to include or delete only
one characteristic root - complex or real - at each time t. Specifically in this example,
denoting ¢;; = Plpy = i|pi—1 = j| , we take ¢; = 0.99 for all 4, ¢; ;41 = ¢i,i—1 = 0.004,
Giiv2 = Gii—2 = 0.001 for 2 <7 < 12, o1 = Qo2 = qua13 = qua2 = 0.005, q1p =
q1,2 = 41314 = (13,12 = 0.004 and q1,3 = 413,11 = 0.002. In addition, a discrete uniform
prior on model order, P(p; = i) = 1/15 for all i, and relatively diffuse conjugate
normal/inverse-gamma priors were used for the AR coefficients and the innovations
variance.

Figure 5 displays from the top down, the data and the trajectory in time of the
estimated posterior mean for model order (solid line) with 95% posterior probability
bands (dotted lines). The instantaneous posterior means and probability bands for
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model order are based on 4,000 samples taken from 17,000 iterations of the Gibbs
sampler after a burn-in of 3,000 iterations for MCMC convergence. The graph shows
that the model order is higher roughly between ¢t = 400 and ¢t = 2000, indicating that
the latent structure is more complex during this period than at the beginning of the
seizure and after ¢ = 2000. The posterior mean oscillates around 12 between ¢ = 400
and ¢t = 2000, with 95% bounds in the range from 10 to 14. Approximately at ¢t = 1800
the uncertainty on model order starts to increase, with 95% posterior bands in the 2
to 10 range. This is consistent with the relatively broad posterior bands observed in
the graphs of the trajectories in time of the characteristic frequency and modulus of
component (1) in the decomposition obtained with a TVAR(12) (see figure 1).

4 Discussion and future directions

Time-varying autoregressive models constitute a suitable class of models to study the
behaviour of non-stationary time series. The related decomposition theory summarised
here, has proven useful in a variety of applications where the interest lies in discovering
and interpreting latent structure in the series. Via efficient MCMC simulation, the
model may be extended to have time varying order which permits to describe the
changes in the number of latent components.

Related research for latent structure in DLMs appears in Aguilar and West (2000).
These authors propose dynamic factor models that incoporate stochastic volatitility
components for latent factor processes. The models are direct generalisations of uni-
variate stochastic volatility models, and represent specific varieties of models recently
discussed in the growing multivariate stochastic volatility literature. The central goal
of such models is to explain patterns of correlation among series by a small number
of latent factor processes. In difference to the TVAR modelling framework, the latent
structure of dynamic factor models is inheritely imposed by the model specification
and not discovered with a time series decomposition result.

Current research considers the multivariate decomposition results of section 2.2.2, to
extend the prior specifications of Huerta and West (1999) for univariate AR processes to
multivariate vector autoregressive models. In fact, a first extension proposes a diagonal
VAR(p) with a prior that allows for possible zero characteristic roots,i.e. takes into
account model order uncentainty, but also allows for potential ties of characteristic
roots across series. These devolopements are also considered for multivariate time-
varying vector autoregressions.
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