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Abstract

Biophysicists use single particle tracking (SPT) methods to probe the dynamic
behavior of individual proteins and lipids in cell membranes. The mean squared dis-
placement (MSD) has proven to be a powerful tool for analyzing the data and drawing
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conclusions about membrane organization, including features like lipid rafts, protein is-
lands and confinement zones defined by cytoskeletal barriers. Here we implement time
series analysis as a new analytic tool to analyze further the motion of membrane pro-
teins. The experimental data track the motion of 40nm gold particles bound to Class
I major histocompatibility complex (MHCI) molecules on the membranes of mouse
hepatoma cells.

Our first novel result is that the tracks are significantly autocorrelated. Because
of this, we developed linear autoregressive models to elucidate the autocorrelations.
Estimates of the signal to noise ratio for the models show that the autocorrelated part
of the motion is significant. Next we fit the probability distributions of jump sizes with
four different models. The first model is a general Weibull distribution that shows
that the motion is characterized by an excess of short jumps as compared to a normal
random walk. We also fit the data with a chi distribution which provides a natural
estimate of the dimension d of the space in which a random walk is occurring. For
the biological data, the estimates satisfy 1 < d < 2, implying that particle motion
is not confined to a line but also does not occur freely in the plane. The dimension
gives a quantitative estimate of the amount of nanometer scale obstruction met by a
diffusing molecule. We introduce a new distribution and use the generalized extreme
value distribution to show that the biological data also have an excess of long jumps
as compared to normal diffusion. These fits provide novel estimates of the microscopic
diffusion constant.

Previous MSD analyzes of SPT data have provided evidence for nanometer-scale
confinement zones that restrict lateral diffusion, supporting the notion that plasma
membrane organization is highly structured. Our demonstration that membrane pro-
tein motion is autocorrelated and is characterized by an excess of both short and long
jumps reinforces the concept that the membrane environment is heterogeneous and
dynamic. Autocorrelation analysis and modeling of the jump distributions are power-
ful new techniques for the analysis of SPT data and the development of more refined
models of membrane organization.

The time series analysis also provides several methods of estimating the diffusion
constant in addition to the constant provided by the mean squared displacement. The
mean squared displacement for most of the biological data shows a power law behavior
rather the the linear behavior of Brownian motion. In this case, we introduce the
notion of an instantaneous diffusion constant. All of the diffusion constants show a
strong consistency for most of the biological data.
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1 Introduction

Single particle tracking methods (SPT) are used by biophysicists to visualize the motion of
macromolecules on the cell membrane [33]. The observed motion is erratic and is conse-
quently modeled as a random walk [43, 46, 56, 48, 50, 3]. The dynamic data acquired by
particle tracking are used to provide insight into the dynamic organization of the membrane
in living cells [24, 27, 55, 32, 42, 16, 17, 19, 58, 14, 54]. Understanding signal transduction
is a fundamental problem in cell biology [60, 44]. Results from SPT are integrated with
other measurements to develop spatiotemporal models of signal transduction. The tracking
requires the molecule be labeled with a probe. A standard label is a gold nanoparticles
40nm in diameter. Other labels used are particles of about the same size made from other
materials (e.g. polystyrene) or fluorescent molecules [21, 59]. Some recent tracking tech-
niques emphasize the use of quantum dots [2, 37, 35, 15, 36, 11], which are available in
several colors, allowing several particles to be tracked simultaneously. With gold labels, the
centroids of the particles can be located to within 30nm (nanometers) [50, 20]. The data are
commonly taken at video rate (1/30 second) but can be taken much faster [34]. Biophysicists
typically analyze SPT data using the mean squared displacement (MSD), which for random
walks generated by mean-zero, independent and identically distributed (IID) jumps, is pro-
portional to time. Usually the estimates of the MSD for biological data are not proportional
to time, and consequently the diffusion is viewed as anomalous [43]. A recent discussion of
the difficulties in analyzing SPT data is given in [13].

In this paper we view SPT data as a time series [52] and then use time-series analysis to
better understand the implications of some experimental data. We focus on understanding
the motion of particles at the finest nanometer spatial scale appropriate for the data. Because
the mean squared displacement of particle tracks grows with time, the particle positions are
not a stationary process. In this case, the usual strategy in statistical analysis is to study
the time series obtained by differencing the original time series which, in our context, is the
time series of jumps generating the random walk. It is the jumps that we analyze.

The experimental biological data are from the paper Short Class I Major Histocompat-
ibility Complex Cytoplasmic Tails Differing in Charge Detect Arbiters of Lateral Diffusion
in the Plasma Membrane by G.G. Capps, S. Pine, M. Edidin and M.C. Zúñiga [7, 18]. This
paper studies the directed and Brownian movement of the wild type and seven mutants of
the class I major histocompatibility complex (MHCI) molecule on the membranes of mouse
hepatoma cells. MHCI is a transmembrane protein with a single membrane spanning do-
main and an extracellular accessory subunit, β2-microglobulin. It plays a central role in
antigen presentation for the development of immune responses. In the biology paper, the
MHCI molecules are labeled with 40nm gold particles. The authors assume the the dynamic
behavior of the membrane molecule is not seriously affected by the presence of the gold tag.
The data consist of 34 gold particle paths with between 623 and 2117 points in a path. The
coordinates of the positions are in nanometers and the time step is given by the standard
video rate (1/30 second). Herein we refer to these data as the biological data. The paths
for these data are displayed in appendix B. We do not attempt to reanalyze completely the
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whole data set; we use a few selected data sets to illustrate the techniques being presented.
We supplemented the data with a 10,000 step random walk whose jumps have mean zero
normally distributed components. The artificial data were used to test our algorithms and
codes.

In this introductory section, we set up the notation for modeling the biological data and
introduce a null hypothesis that the components of the jumps between particle locations are
IID and have a normal distribution. We then give the results of some preliminary analyses
of the biological data. Graphically, the biological data analyzed appear to have normally
distributed components, which is equivalent to the jump sizes having a simple Weibull distri-
bution (see [8] equation (1)) while the angles are uniformly distributed. However, essentially
none of the biological data pass rigorous statistical tests for having these properties, that is,
the null hypothesis is rigorously shown to be false.

Section 2 provides a series of statistical tests for the time series of the jumps that help
elucidate the nature of the molecular motion. We then apply these test to the biological data.
First we show that the jumps are a statistically stationary process so that it is appropriate
to apply standard time series analysis. Our first important observation is that the time
series of the jumps is autocorrelated, meaning that some significant part of the motion is
deterministic. This is surprising, given that the time steps in the biological data are 1/30
of a second. The results imply that the walks are autocorrelated over significant times
and distances. To characterize the autocorrelated part of the motion, we produce linear
vector multi-step autoregression models for the biological data. These models isolate the
autocorrelated (deterministic) part of the motion from the random part (white noise) of
the motion. Essentially all of the biological data have a non-trivial deterministic model. We
estimate the importance of the deterministic motion using the signal to noise ratio. However,
the autocorrelations are not so strong that it is possible to predict the motion. This section
ends by showing the null hypothesis is false in a very strong sense. Consequently analysis of
the paths using techniques adapted to autocorrelated data will be more accurate than those
based on the assumption that the steps are independent.

In section 3, we propose four models for the marginal probability distribution of the
lengths of the jumps. The first is a generalized Weibull distribution. This analysis implies
that the biological data have excessive short jumps and possibly excessive long jumps as
compared to the normal diffusion where the jumps have a simple Weibull distribution. The
chi distribution also generalizes the simple Weibull distribution to spaces of arbitrary dimen-
sions. This model implies that the particles are diffusing on a space of dimension d where
1 < d < 2. This provides an estimate of the amount of fine scale obstructions to the diffu-
sion that can be interpreted as a fractal dimension [29]. The fractal dimension significantly
affects reaction kinetics [4, 47].

Next we introduce a novel distribution to test simultaneously if there are an excessive
number of both long and short jumps. All of the biological data have excess long jumps in
the sense that the distributions have polynomially decaying tails, not exponentially decaying
tails as in normal diffusion. Finally we introduce the generalized extreme value (GEV)
distribution studied by two of the authors [62, 9] that also shows that there are excessive
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long jumps in the biological data. All four of these distributions fit the data well in the
sense that the residual of the least squares fits is small. Additionally, the p values for the
fits indicate that the fits are good for all but two experiments. At the end of section 3,
we estimate the probability of the zero length jumps and then use maximum likelihood to
estimate the parameter for the GEV distribution. These results also show there are excessive
long jumps.

Because the biological data are autocorrelated, using the idea that the mean squared
displacement is proportional to time to estimate the diffusion constant may not be accurate.
In section 4, we introduce seven methods of estimating the diffusion constant. The most basic
method computes the diffusion constant in terms of the second moment of the jump sizes.
This estimates the diffusion constant on the finest possible scale. The diffusion constant can
also be computed from the second moment of models for the jump distribution for which
we report the results for the chi distribution. An important estimate uses the developed
autoregression models to decompose the jumps into a deterministic part and a white-noise
part and then uses the white noise to estimate the diffusion constant. We introduce four
methods of fitting the MSD, two linear models and two power law models, each of which
gives an estimate of the diffusion constant. These models indicate that the autocorrelations
do modestly affect the estimates. All of these methods produce modestly different estimates,
but overall, the results are consistent. All of the methods produce accurate results for our
artificial data. The MSD remains the tool of choice for the analyses of larger scale effects
such as cytoskeletal obstructions to free diffusion [24], but such analyzes should take into
account any autocorrelations in the data.

The last section gives some conclusions and some critical open problems that need to be
solved before these methods can be used for a full analysis of biological data.

1.1 Background

In this paper we will use the units nanometers (nm = 10−9m) to measure length and mi-
croseconds (µ = 10−6s) to measure time. Let

Jn = (∆Xn, ∆Yn) , 1 ≤ n ≤ N , (1.1)

be vector random variables, that is let ∆Xn and ∆Yn be random real variables. We will
not assume that the Jn are independent or identically distributed (IID). The positions of
particles in the plane will be modeled by a random walk in the plane given by

P0 = (X0, Y0) , Pn = (Xn, Yn) = J1 + J2 + · · · + Jn , 1 ≤ N , (1.2)

where (x0, y0) is a point in the plane. The data to be analyzed gives the positions Pn of the
walkers, so then the jumps are

Jn = Pn − Pn−1 = (∆Xn, ∆Yn) , 1 ≤ n ≤ N . (1.3)
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It is convenient to use polar coordinates to represent the jumps. So the lengths of the jumps
Ln and the angle Θn between the jump vector and the x-axis are

Ln = ‖Jn‖ =
√

∆X2
n + ∆Y 2

n , Θn = arctan(∆Xn, ∆Yn) , (1.4)

where arctan gives a value in [−π, π] such that if Ln 6= 0 then cos(Θn) = ∆Xn/Ln and
sin(Θn) = ∆Yn/Ln, and consequently tan(Θn) = ∆Yn/∆Xn if ∆Xn 6= 0. If J = (0, 0) then
Θ = 0 (in MatLab).

If the probability distribution function (PDF) of the jump lengths is given by a radial
distribution p(r) then the moments of the distribution are given by

Mi =

∫

∞

0

rip(r) dr , 0 ≤ i . (1.5)

For a PDF, M0 = 1. The moments are estimated using

Mi =
1

N

N
∑

n=1

Li
n . (1.6)

An important null hypothesis is that the Cartesian coordinates ∆X and ∆Y are inde-
pendent and each is IID with mean zero and standard deviation σ. If we use the fact that
dx dy = r dr dθ for polar coordinates, then the joint probability measure for X and Y is

1

σ
√

2 π
e−

x2

2 σ2 dx
1

σ
√

2 π
e−

y2

2 σ2 dy =
1

σ2 2 π
e−

x2
+y2

2 σ2 dx dy (1.7)

=
r

σ2
e−

r2

2 σ2 dr
dθ

2 π
. (1.8)

Consequently, L and Θ are independent, Θ is uniformly distributed in [−π, π], and L has a
simple Weibull probability distribution

w(r, σ) =
r

σ2
e−

r2

2 σ2 . (1.9)

Reversing the argument shows the converse is also true. The three dimensional analog of this
argument produces the Maxwell-Boltzman distribution commonly used in thermodynamics.

The mean squared displacement, which is frequently used to analyze random walks, is
the expected value of the square of the lengths of the paths:

MSDn = E(‖Pn‖2) . (1.10)

In the analysis of a path Pn the MSD is estimated by

MSDn =
1

N − n

m=N−n
∑

m=1

‖Pn+m − Pm‖2 , 1 ≤ n ≤ N − 1 . (1.11)
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The estimate is only meaningful for values of n << N .
In the null hypothesis, if we do not assume that the components of the jumps are normally

distributed, but only that the first and second moments of the jumps are finite, then

MSDn = E
(

‖Pn‖2
)

= E

(

‖
n
∑

k=1

Jk‖2

)

=

n
∑

k=1

E
(

‖Jk‖2
)

=

n
∑

k=1

E
(

L2
k

)

= M2 n , (1.12)

so the MSD grows linearly with the time step n. If the time step in the walk is dt and
t = n dt, then

MSD(t) = MSDn = M2 n =
M2

dt
t . (1.13)

In the case that the components of the jumps are normally distributed with mean zero
and standard deviation σ2 or equivalently, the length of the jumps have a simple Weibull
distribution with second moment M2 = 2 σ2 then

MSDn = 2 σ2 n , MSD(t) =
2 σ2

dt
t . (1.14)

The analysis of the data is performed either using MatLab programs that we have devel-
oped or utilities in the statistical software R. These are available on the web. One test we
performed on our software was to generate 10,000 jumps with mean zero normally distributed
components and then use these to generate an IID random walk that we analyzed.

1.2 Preliminary Analysis of the Biological Data

The results of all of our analyses are tabulated in appendix A. The data are divided into 8
groups that correspond to the experimental conditions given in [7]. The data in this appendix
are frequently reported with fewer digits than in the paper.

The results of the preliminary analysis of the biological data are given in table A.3.
The first column in this table labels the data set with a number that corresponds to the
experiment label in table A.7. The number N of the point in the track is given in column 2.
The first tests that we apply to data are simple sanity checks, the most important of which
is computing the largest jump (see column 3 of of table A.3) and the mean jump size (see
column 4). The error in measuring the position of the particle is less than 30nm, so column
5 gives the % of jumps less that 5nm, an indication of the number of jumps so small that
they could easily be zero. All of the tracks have a significant number of small jumps. Any
data set with a large percentage of small jumps cannot satisfy the null hypothesis of having a
Weibull distribution of the jump sizes because this distribution is zero for zero length jumps.
Column 6 of table A.5 gives the percentage of jumps that are exactly zero as this can cause
problems in some of the statistical tests. About half of the biological tracks had zero jumps.

We plotted the cumulative distribution functions (CDF) of X, Y , L and Θ (not shown).
For X and Y , the plots look normal, while for L the plots appear similar to the CDF for
the Weibull, and for Θ the plots look linear. However, careful statistical analysis shows that
none of these “null hypotheses” about the distributions of X, Y , L and Θ are correct.
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2 Time Series Tests

The application of time series tests [52] requires the time series data to be ergodic and
stationary. Intuitively, ergodic means that the statistics of many paths at some fixed time
is equivalent to looking at one path for a long time. Stationary means that the mean and
standard deviation over a large number of series do not depend on time. We will assume that
the data to be analyzed are ergodic. The positions Pn in a random walk are not stationary
because their standard deviation, which is proportional to the mean squared displacement,
commonly grows with time. In such a situation, the standard statistical approach is to study
the time series of the differenced data, which for particle tracking data is just the jumps Jn.
Note that Pn and Jn are vector valued where the vectors have a physical meaning of positions
in the plane. The statistical software R has packages for analyzing vector time series, but
the underlying assumption is that these are vectors of data. A common application would
be to check if the columns of data are correlated. For the biological data this would mean
that the x and y components of the time series are correlated, which turns out to not be
very relevant for the biological data.

The book [52] is an excellent reference for the statistical tests that we apply to the
biological data. We use the statistical software R to do the testing. Unfortunately R does
not contain a direct stationarity test for vector time series. However, the size of the mean of
the jumps for each of the experiments is less than 1nm (see column 6 of table A.3), so the
data can be modeled as having mean zero. Because the jumps are modeled as mean zero,
the standard deviation of the jumps Jn is the same as the second moment M2 of the lengths
of the jumps L2

n = X2
n + Y 2

n (see columns 7 of table A.3). As a result, it is reasonable to
test the scalar time series Ln. There are several test available to check if a scalar time series
is stationary; we use two tests that are described below. For the biological data, the scalar
time series Ln are stationary so we can now apply the standard time series analysis.

Surprisingly, the jumps have a significant autocorrelation, so they do not satisfy the
commonly used hypothesis of being independent. The first two autocorrelation coefficients
are displayed in columns 8 and 9 of table A.3. We confirm this conclusion by plotting
the autocorrelations coefficients with a 95% confidence interval for being zero. Next we
determine linear vector autoregression models with lag p (VAR(p) models) for the data. All
of the biological data sets have a nontrivial model.

Even though the steps are not independent, the marginal probability distributions ∆X,
∆Y , L and Θ still make sense. For essentially all of the biological data, ∆X and ∆Y are not
normally distributed, L does not have a simple Weibull distribution, and Θ does not have a
uniform distribution. Consequently, the null hypothesis (1.7) is definitely false.

2.1 Autocorrelations

The assumption that the time series of jumps Jn is stationary implies that the mean and
standard deviation do not depend on the position in the series, so it then makes sense to
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define the mean, standard deviation, and autocorrelations of the series by

µ = E(Jn) , (2.1)

σ2 = E
(

‖Jn − µ‖2
)

(2.2)

ρp = E

(

(Jn+p − µ) ◦ (Jn − µ)

σ2

)

. (2.3)

where E is the expectation operator. Note that µ is a vector while σ is a positive real and
ρp ∈ [−1, 1] and ◦ is the scalar product of two vectors. If we assume that the time series is
ergodic then the mean, standard deviation, and autocorrelations can be estimated by

µ =
1

N

N
∑

n=1

Jn ,

σ2 =
1

N

N
∑

n=1

‖Jn − µ‖2 ,

ρp =
1

N − m

N−m
∑

n=1

(Jn+m − µ) ◦ (Jn − µ)

σ2
, m < N .

If j(r) is the PDF of the jump sizes, the moments of the jump sizes are defined by

Mk =

∫

∞

0

rk j(r) dr , k ≥ 0 . (2.4)

The moments are estimated by

Mk =
1

N

N
∑

n=0

Lk
n . (2.5)

If we assume the jumps are mean zero, then the standard deviation of the jumps Jn is the
second moment of the jump lengths Ln:

σ2 = M2 . (2.6)

These are given in column 7 of table A.3.
The autocorrelation coefficients ρ1 and ρ2 are given in columns 8 and 9 in table A.3.

Importantly, all of the data are significantly autocorrelated. Another way to see the au-
tocorrelations in the data is to use R to plot the autocorrelation function (ACF) ρp as a
function of the lag p along with two dashed horizontal lines that give the 95% confidence
interval for the ACF values being zero. As an example, we show a plot of the ACF for the
data from experiment 12 in Figure 2.1. Eight of the positive spikes fall outside the confidence
interval, while there are only a few small negative spikes, indicating that the data have sig-
nificant positive autocorrelation. All of the biological data show significant autocorrelation
using this test (not shown).
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Figure 2.1: The Autocorrelation Function of the Jumps for Experiment 12.

2.2 Testing the Stationarity of Time Series

To correctly apply the standard statistical tools to the jumps we need to test if the lengths of
the jumps are stationary. The augmented Dickey-Fuller (ADF) test assumes that the data
Ln can be modeled as an auto regressive process of order p, that is, as an AR(p) model.
First, let

∆Ln = Ln − Ln−1 , (2.7)

and then estimate the autoregression

∆Ln = µ + βLn−1 −
p
∑

i=1

αi ∆Ln−i + ǫn . (2.8)

where p ≥ 0, µ, β and the αi are real constants, and ǫn are scalar white noise random
variables. If the coefficient β is not zero, then the regression doesn’t have a unit root, and
the series is stationary.

Applying the ADF test in R to the biological data with the null hypothesis that the
data are not stationary (or β = 0) gives p-values that are all less than 0.01, implying that
the null hypothesis is false, that is, implying that the Ln series do not have unit roots. The
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, which tests the null hypothesis that Ln is
trend stationary gives results consistent with the results of the ADF test.

2.3 Linear Autocorrelation Models

To better understand the structure of the autocorrelations, we use R to construct the linear
vector autoregression VAR(p) models, using the ordinary least squares method, of the time
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series of jumps:

Jn = µ +

i=p
∑

i=1

Ai Jn−i + ǫn , (2.9)

where p is the number of lags, µ is a vector and Ai are 2 × 2 matrices. The ǫn terms are
white noise random variables. The model (2.9) without the white noise term is called the
deterministic model. The model (2.9) can be computed in the statistics software R, using
the ar command.

For the biological data, we constructed VAR(p) models for the jumps for all of the PTs.
The lag p (not p-values) for the model are listed in column 10 of table A.3. We find that
1 ≤ p ≤ 33 with most values of p < 10. In R we can also compute the signal to noise ratio
for scalar models of the x-component and the y-component of the model and report the norm
of this vector in column 11 of table A.3. These are between 2% and 53% and have a mean
of 16%. Experiments with a small ratio also have a small first autocorrelation coefficient
ρ1. The correspondence for large ratios is not as good as for small. High percentages are an
indication of strong non-random motion. We also analyzed the eigenvector and eigenvalues
of the coefficient matrices Ai, but did not find anything useful.

Here are some examples for the p = 2 model (see equation (2.9)). For experiment 8, the
VAR(2) model is

[

∆Xn

∆Yn

]

=

[

−.01
.01

]

+

[

.37 .18

.02 .05

] [

∆Xn−1

∆Yn−1

]

+

[

−.10 .01
−.00 −.11

] [

∆Xn−2

∆Yn−2

]

. (2.10)

For experiment 17, the VAR(2) model is

[

∆Xn

∆Yn

]

=

[

−.09
.13

]

+

[

−.05 −.04
−.09 −.12

] [

∆Xn−1

∆Yn−1

]

+

[

.11 −.02
−.02 −.01

] [

∆Xn−2

∆Yn−2

]

. (2.11)

For experiment 28, the VAR(2) model is

[

∆Xn

∆Yn

]

=

[

−.00
−.01

]

+

[

−.14 .04
.16 −.12

] [

∆Xn−1

∆Yn−1

]

+

[

−.08 .00
.03 −.08

] [

∆Xn−2

∆Yn−2

]

. (2.12)

The expected value for the jumps size ranges between 12 and 76 and the coefficients in the
linear models (see 2.10, 2.11 and 2.12) are significantly smaller than the expected value of
the jumps, so the linear model can only account for a modest part of the motion.

2.4 Marginal Probability Distributions

As noted in the introduction, from plots of the cumulative distribution functions of ∆Xn,
∆Yn, Ln and Θn it appears that the jumps ∆Xn and ∆Yn are normally distributed. Fur-
thermore, the Ln appear to have a simple Weibull distribution and the Θn appear uniformly
distributed. Thus, these marginal distributions appear to satisfy the null hypothesis de-
scribed in section 1.1, equation (1.7). Note that because the Jn are not independent, the
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Figure 2.2: The Q-Q plot for ∆X From Experiment 12.

equivalence given in equation (1.7) doesn’t apply, so we took these distributions as hypothe-
ses to test.

To check normality we use two tests: the Shapiro-Wilk (SW) [51] test and Anderson-
Darling (AD) [1] test. When we use the SW test in the statistical software R we need p < .05
to reject the null hypothesis that ∆Xn and ∆Yn are normally distributed. For the biological
data the values of p > .05 for ∆X (in descending size) are 0.7, 0.3, 0.2 for experiments 9, 33,
21. Otherwise p < .05 with most p values being near zero. For ∆Y , the p > .05 are 0.4, 0.3,
0.2, 0.2, 0.1 for experiments 17, 33, 12, 23, 30. So only experiment 33 has both ∆X and ∆Y
normally distributed. The data for experiment 3 appear unusual in several other tests. The
AD test gives results consistent with SW test. The AD test is nice as it can be used to see if
a sample of data comes from several specific distributions: normal, lognormal, Weibull, and
extreme value type I. (We will use this later.) Both the AD and SW tests are powerful, so
we have confidence that the components of the jumps are not normally distributed.

We used the normal Q-Q (Q stands for quantile) plot as a graphical tool for diagnosing
differences between the biological distributions and the normal distribution to confirm that
∆X and ∆Y are not normal. For a sample from a normal distribution, the Q-Q plot should
approximate a straight line, especially near the center (0.0). In Figure 2.2, we give a sample
Q-Q plot for ∆x for experiment 12 which clearly deviates from the normal distribution. The
plots (not presented) for ∆X and ∆Y for the remaining experiments support that these
variables are not normally distributed.

We use the Kolmogorov-Smirnov (KS) goodness-of-fit test to test whether the angles Θn
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are uniformly distributed. This test is an alternative to the AD test, but the KS test is non-
parametric and distribution free in the sense that the critical values do not depend on the
specific distribution being tested. If the assumption about the distribution can be validated,
then the AD test is more powerful and preferred, but the null hypothesis will be seen not
to be valid, so we use the KS test instead. If p < .05, then the null hypothesis is rejected,
the angles are not uniformly distributed. The large p-values for the KS test of the biological
data are .95, .88, .82, .64, .46, .44, .38, .21, .12, .05 for experiments 29, 12, 3, 14, 33, 4, 21,
27, 5, 19. This matches our impression from the cumulative distribution plots (CDF) plots
that the angles are close to uniformly distributed – as this is true for 10 out of 33 data sets.
Note that the angles for experiment 33 are uniformly distributed, as suggested by formula
(1.7) and the fact that ∆X and ∆Y are normally distributed for this experiment.

Finally, we test if the jump lengths have a (simple) Weibull distribution (1.9), that is,
w(r/s)/s where

w(r) = r e−
r2

2 , (2.13)

as conjectured in equation (1.7). For the biological data, the p-values are 0.25, 0.198, 0.103,
0.076, 0.065, for experiments 8, 21, 17, 6, 33. So most of the jump size data does not have
a simple Weibull distribution.

We see that only experiment 33 passes all four tests for being a normal distribution;
experiment 21 passes three tests. However, experiment 33 has a nontrivial autoregressive
model with 14 lags and a signal to noise ratio of 52%. All but one of the data sets deviate
significantly from a IID random walk where the components of the jumps come from a normal
distribution.
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3 Modeling the Distribution of the Jumps

A standard approach for understanding a data set is to find a probability distribution for the
data. In this section we study four models for the probability distribution function p = p(r)
of the jump sizes: the general Weibull (GW), the chi, the long-short (LS), and the generalized
extreme value (GEV) distributions. To help keep our results organized, the PDFs and CDFs
of the distributions are labeled as follows: the GW uses w and W ; the chi uses c and C;
the LS uses p and P ; and the GEV uses h and H . Plots of the PDFs for these models are
shown in figure 3.3 for biologically relevant values of their parameters. The plotted PDFs
are normalized so that their first moment is one and the simple Weibull PDF (SW) is given
to assist in comparing the distributions. We know that the simple Weibull PDF (2.13) does
not represent the biological data accurately, but the general Weibull (GW) PDF fits the data
well. The GEV PDF [9] is good for detecting long jumps. Both the general Weibull and chi
distribution contain the simple Weibull as a special case and thus can easily detect normal
diffusion.

The main concern is to understand if there are more or fewer long or short jumps in
a PDF p than would be predicted by the simple Weibull PDF. Note that for a uniform
distribution particles in a finite region in d dimensional region containing the origin and for
a sufficiently small R, the probability that the particle distance r from the origin is less than
R is proportional to the volume of the sphere of radius R:

Prob(r < R) = P (r) ∝ Ωd Rd , (3.1)

where Ωd is the volume of the d-dimensional unit sphere. Consequently the probability
distribution p(r) must satisfy

p(r) ∝ rd−1 , (3.2)

for r small. For two dimensional space, this is exactly what the simple Weibull distribution
gives, that is, d = 2. So in two dimensional space, if a probability distribution p satisfies

p(r) ∝ rd−1 for r → 0 , d > 0 , (3.3)

then p has excessive short jumps if 0 < d < 2 and a paucity of short jumps if d > 2. If
the 1 < d < 2, then d has a natural interpretation as a fractal dimension [29]. From figure
3.3 we see that the General Weibull, chi and long-short distributions have excessive short
jumps. The GEV distribution is unusual, so it will be discussed later. For the biological
data, 1 < d < 2.

If the PDF decays exponentially for r → ∞, then there are no excessive long jumps,
which is the case for GW and chi distributions. If

p(r) ∝ 1

rk+1
for r → ∞ , k > 0 , (3.4)

then there are excessive long jumps and the number increases as k decreases. Note that only
the first k moments of p(r) are finite. If k ≤ 2 then the second moment of p(r) is infinite as is
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residual p-value
Weibull 0.16 × 10−3 .11 < p < .93
Chi 0.23 × 10−3 .06 < p < .82
L-S 0.07 × 10−3 .28 < p < .94
GEV 0.09 × 10−3 .27 < p < .96

Table 3.1: The Maximum Residuals and p-Values for the Weibull, Chi, Long-Short and GEV
Distributions.
.

the diffusion constant for the related random walk. Such diffusion are known as anomalous
in the mathematical literature [22, 41]. The long-short and GEV distributions have excessive
long jumps (fat tails).

To simplify our notation, we give PDFs and CDFs for the distribution of jump sizes
with scale parameter equal to one. If p(r) and P (r) are a PDF and a CDF, then the scale
parameter s can be introduced using p(r, s) = p(r/s)/s and P (r, s) = P (r/s).

There are several methods of estimating the parameter of a PDF so that it fits the
biological data. A commonly used method is maximum likelihood. However, this method
is designed for distributions that are nowhere zero. All distributions have a zero value, so
this is not a good choice. Other possibilities are to make a least squares (LS) fit to either
the PDF or CDF. We use the PDF and for this we binned the jumps. Because the position
data Pn has measurement errors on the order of 10nm, we used 5nm bins. The maximum
residual for fitting the four PDFs to the data are given in table 3.1. They are small indicating
good fit. The p values for the fits were estimated using a two sample Kolmogorov-Smirnov
(K-S) test. The null hypothesis is that the data are distributed according to the proposed
distribution. The K-S test compares the jump length data to simulated data from the
proposed distribution with estimated parameters. A p-value with p > .05 means we accept
the null hypothesis that the data come from the proposed distribution. For the Weibull and
Chi distributions the p values for experiments 2 and 19 are essentially zero, indicating poor
fits. However, plots of the data for these experiments are given in figure 3.4 and they look
good so the test is measuring a subtle difference not detected by the residuals. In all other
cases the p > .05, so the fits are statistically significant.

At the end of this section, we separately analyze the zero and non-zero jumps. Then
we can apply the maximum likelihood (ML) method to estimate the parameter in the GEV
distribution for the non-zero jumps. We have also used the method of moments (MOM) to
check some of our estimates (not presented).
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3.1 The General Weibull Distribution

The general Weibull PDF and CDF are w(r, λ, k) = w(r/λ, k) and W (r, λ, k) = W (r/λ, k)
where

w(r, k) = k rk−1e−rk

, W (r, k) = 1 − e−rk

, (3.5)

and k > 0, λ > 0 and r > 0. We will estimate λ and k for fitting the biological data. The
moments of w(r, λ, k) are

M1 = λ Γ(1 +
1

k
) , M2 = λ2 Γ(1 +

2

k
) (3.6)

For the plots in figure 3.3, the value of λ is computed by choosing M1 = 1. When k = 2,
the general Weibull distribution is just the simple Weibull distribution, while, for k = 1, it
is the simple exponential distribution. For the biological data, we use this distribution for
1 ≤ k ≤ 2, and plots for this range of values are given in figure 3.3. Also, in this range of
values, w(r, λ, k) ∝ rk−1 and thus has an excessive number of small jumps. The distribution
decays exponentially at infinity and so gives no indication of excessive long jumps.

For the biological data the values of λ and k are given in columns 2 and 3 of table A.4.
The two smallest values of k are 1.3829 and 1.4752, while the two largest values are 1.9781,
2.0145 for experiments 19, 2, 9 and 25. We see that 1 < k < 2 for all but experiment 25, so
essentially all of the data has excess small jumps.

3.2 The Chi Distribution

The chi PDF and CDF are c(r, σ, d) = c(r/σ, d)/σ and C(r, σ, d) = C(r/σ, d)/σ where

c(r, d) =
2

2d/2Γ(d/2)
rd−1 e−

r2

2 , C(r, d) = 1 −
Γ
(

d
2
, r2

2

)

Γ
(

d
2

) , (3.7)

d ≥ 1, σ > 0 and the Γ of two arguments is the incomplete gamma function. We will
estimate σ and d for the fitting biological data. The chi distribution is a special case of the
Nakagami distribution and can be transformed to either the chi-square distribution or the
gamma distribution. The moments of c(r, σ, d) are

M1 = σ

√
2 Γ
(

d+1
2

)

Γ
(

d
2

) , M2 = σ2 d . (3.8)

Plots of c(r, σ, d) with σ chosen so that M1 = 1 are given in figure 3.3 for the biologically
relevant cases of 1 ≤ d ≤ 2. For d < 2, the distributions have both excessive short jumps
and exponentially decaying long jumps.

Extending the reasoning used to derive equation (1.9) for the distribution of the jump
length of a normal IID random walk in two dimensions to a space of d dimensions implies
that the jump sizes should be distributed according to c(r, σ, d) where d is and integer.
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However, this distribution makes sense for all positive real d. Consequently, when analyzing
the distribution of jumps by fitting them with c(r, σ, d) we can interpret d as the dimension of
the space in which the diffusion is occurring. For the biological data, the dimension satisfies
1 < d < 2. If d = 2 then the diffusion is in the plane while if d = 1, the motion is confined
to a curve. For 1 < d < 2 a plausible interpretation is that the diffusion is restricted to a
nanometer scale fractional part of the membrane.

For the biological data the values of λ and d are given in columns 4 and 5 of table A.4.
The two smallest values of k are 1.2 and 1.3, while the two largest values are 1.97 and 2.02
for experiments 19, 2, 25 and 9. These are the same experiments as for the general Weibull
distribution. In figure 3.5 we show the paths for these data, while in figure 3.4 we show the
fits to the PDFs. For essentially all of experiments the values for d imply there is significant
obstruction to the diffusion. The consistency of the results for the general Weibull and chi
distributions supports this conclusion.

3.3 The Long-Short Distribution

To better understand the nature of both the long and short jumps we introduce the PDF
p(r, s, α, β) = p(r/s, α, β)/s, which has the CDF P (r, s, α, β) = P (r/s, α, β)/σ where

p(r, α, β) =
α (β − 1) rα−1

(1 + rα)β
, P (r, α, β) = 1 − (rα + 1)1−β , (3.9)

and r ≥ 0, s > 0, α > 0 and β > 1. We will estimated s, α and β for the biological data.
The first two moments of this distribution are

M1 =
s(β − 1)Γ

(

1
α

)

Γ
(

β − 1
α
− 1
)

αΓ(β)
, α(β − 1) > 1 ,

M2 =
s2(β − 1)Γ

(

α+2
α

)

Γ
(

β − 2
α
− 1
)

Γ(β)
, α(β − 1) > 1 .

Because this distribution looks like rα−1 near r = 0, the discussion on the general Weibull
distribution indicates that we are interested in 1 < α < 2. When r is large, the distribution
has polynomial decaying tail: p(r) ∝ 1/r1+α(β−1). The values of s, α, β and k = 1+α(β−1)
are given in columns 6, 7, 8, and 9 of table A.4. The two smallest values of α are 1.66
and 1.81, while the two largest values are 2.18 and 2.19 for experiments 23, 20, 16 and 13.
The mean of the values of α is 1.98, so this distribution is indicating that there are only a
modest number of experiments with excesses short jumps. The two smallest values of k are
6.50 and 6.57, while the two largest values are 35.67 and 37.37 for experiments 1, 22, 9 and
12. These experiments do not correspond to those for the general Weibull or the chi PDFs
that had some special property. The data sets do have fat tails, but k >> 2 so none of the
experiments show mathematically anomalous diffusion.
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3.4 Generalized Extreme Value Distribution

It is important to confirm the conclusion that the jumps have fat tails. Two of the authors
[62] have used the generalized extreme value (GEV) distribution to study such problems, so
we also do that here. The GEV PDF and CDF [9] are h(x, µ, σ, ξ) = h((x − µ)/σ, ξ)/σ and
H(x, µ σ, ξ) = H((x − µ)/σ, ξ) where

h(z, ξ) = [1 + ξ z]−1/ξ−1
+ e−[1+ξ z]

−1/ξ
+ , H(z, ξ) = e−[1+ξ z]

−1/ξ
+ . (3.10)

The parameter spaces are −∞ < x, µ, ξ < ∞ and σ > 0 We estimate the parameters µ, σ
and ξ for fitting the biological data. and the + sign in the model denotes the positive part.
The first two moments of h(x, µ, σ, ξ) are

M1 = µ+
σ

ξ
(Γ(1 − ξ) − 1) , M2 =

(

µ − σ

ξ

)2

+
2 σ

ξ

(

µ − σ

ξ

)

Γ(1−ξ)+
σ2

ξ2
Γ(1−2ξ) . (3.11)

This distribution contains 3 subfamilies as special cases:

name support
ξ < 0 Weibull x < µ − σ/ξ
ξ = 0 Gumbel −∞ < µ < ∞
ξ > 0 Fréchet x > µ − σ/ξ

Note that the Weibull case is not the same as what we have studied before. More precisely,
when ξ < 0, h is a translation of the previous general Weibull distribution. Because the
biological data have support for x > 0, we had hoped that our fits would have values of
ξ > 0 so that our model would have support for x > x0 with x0 = µ−σ/ξ. Typically x0 < 0,
which we interpret as meaning there are excess short jumps. When ξ > 0 the distribution
decays at infinity like 1/xk with k = 1/ξ. The values of σ, µ, ξ and k = 1/ξ in columns 2, 3,
4 and 5 of table A.4. Unfortunately, experiments 3, 9, 21, 25, 27, 30, and 33 have negative
ξ and so cannot be analyzed with this method. For the remaining experiments, the two
smallest values of k are 1.9663 and 2.7941, while the two largest values are 69.6 and 120.5
for experiments 19, 2, 12 and 5. These result do not agree with those for the long-short
distribution.

To improve these result, we first analyze the zero jumps and then remove them and then
fit the remaining non-zero jumps using the GEV distribution. In table A.5 we give the
percentage of zero jumps, which, if we interpret as a probability q, then our full model will
have the form

q δ0(x) + (1 − q) h(x, µ, σ, ξ) . (3.12)

Now we use ML to estimate the parameters σ, µ and ξ, which are listed in columns 10, 11, 12,
and 13 of table A.5. Now all of the data sets have ξ > 0 except for experiments 9 and 33. For
all of the experiments for which both methods produced ξ > 0, 0.9 < ξ(LS)/ξ(ML) < 3.2
so the two methods of estimating ξ (or k) are close. For the data sets for which ξ > 0,
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Figure 3.6: Diagnostic Plots for GEV Fit to the Jump Data for Experiment 6.

1.9 < k < 37. However, for all but experiment 19, k < 2, so only this data set can possibly
have slightly mathematically anomalous diffusion.

We also used maximum likelihood to estimate the parameters and p-values for the general
Weibull and chi fits. The estimated values are close to those for the least squares method
and, except for one experiment, the p values indicate that the fits are good.

Sometimes conclusions can be sensitive to the fitted model. To check that the model
fits data well, we applied two test to all of the GEV ML fits. In figure 3.6 we present the
diagnostic plots for assessing the accuracy of the GEV model for experiment 6. The plots
in the first row of figure 3.6 are a probability plot and a quantile plot. Both of these plots
provide techniques for assessing whether or not a data set follows a given distribution. The
data are plotted against a theoretical distribution in such a way that the points should form
a straight line. Departures from this straight line indicate departures from the specified
distribution. We can see each set of plotted points is near-linear, so neither plot gives cause
to doubt the validity of the fitted model.
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The lower two plots are return level plots and density estimate plots. The return level
plot shows the return period against the return level, and shows an estimated 95% confidence
interval. The return level is the level (in this case for jumps) that is expected to be exceeded,
on average, once every m time points (in this case steps). The return period is the amount
of time expected to wait to exceed a particular return level. For example, the biological data
show that one would expect the maximum jumps to exceed 150nm on average every 200
steps. The density plot shows that the density estimate is consistent with the histogram of
the data. Thus all these diagnostic plots lend support to the fitted model.
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ratio min mean max
Dχ/D 0.36 0.52 0.80
DW/D 0.73 0.91 0.98
D1/D 0.07 0.68 1.29 B 6= 0
D2/D 0.27 0.77 1.28 B = 0
D3/D 0.31 0.91 1.99 B 6= 0
D4/D 0.24 0.83 1.35 B = 0

Table 4.2: The Ratios of the Alternate Diffusion Constants to the Fine Scale Diffusion
Constant D (4.4).

4 Diffusion Constants

In applications to cell biology, it is important to be able to estimate the diffusion constant
for molecules in the cell membrane. Time series analysis and modeling the probability
distribution of the jump sizes offer several different ways of estimating the diffusion constant.
In this paper we focus on finest time and spatial scales supported by the data. Consequently
our fundamental diffusion constant D is computed directly from the jump sizes. The models
for the jump size distributions provide alternate estimates. Additionally, the white noise in
the VAR(p) (2.9), models can be used to estimate the diffusion constant for only the random
part of the motion.

Visual inspection of the plots of the MSD for the biological data indicates that the MSD
is often given by a power law, at least for few time steps. Sample plots are given in figure
4.7, which also contains plots of the data fitting results obtained below. For our 33 data
sets, 19 appear concave down, 9 appear linear, 3 appear concave up, and 2 are not easy
to classify. Consequently we fit the MSD with both linear and power-law functions for 10
time steps. Small changes in the number of of steps do not affect our results significantly.
Also, we fit the data in a way that should provide estimates of the measurement error, which
is on the order of 30nm. Fitting with linear functions is a standard way of estimating the
diffusion constant [50]. It is also common to fit the MSD with a power law [49, 48], but to our
knowledge, in this context, no one has introduced a diffusion constant that is truly constant.
Instead, the diffusion constant varies with time. To facilitate comparing the power law fits
to our other results, we introduce an “instantaneous” diffusion constant for such power-law
fits. Because we only look at diffusion for short times, we do not estimate the cross-over
time to normal diffusion as was done in [49]. However the instantaneous diffusion constant
that we introduce is equal to D∗(C) discussed in this paper.

All of our estimates of the diffusion constants are given in table A.6. They are reported
in units of

10−2nm2/µs = 10−2µm2/s = 10−10cm2/s , (4.1)

(see figure 2 of [7]). These results are reasonably consistent, but vary enough to make the
analysis of biological data more difficult, but more accurate. With the exception of a few
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experiments, the fact that the ratios used to derive table 4.2 vary between 1/4 and 5/4
quantifies the essential consistency of the estimates. Importantly, the diffusion constant
computed directly from the jump sizes and those computed from fitting the jump size distri-
bution are independent of the order of the jumps and thus are not strongly affected by the
autocorrelations.

Our fine scale diffusion constant D is computed from the second moment M2 (1.6) of the
jump sizes. From (1.13),

MSDn = M2 n or MSD(t) =
M2

∆t
t , (4.2)

where M2 is the second moment of the jump sizes. The standard definition [50] of the
diffusion constant is given via

MSD(t) = 4 D t . (4.3)

Consequently

D =
MSD(t)

4 t
=

M2

4 dt
, (4.4)

For the biological data, the diffusion constants computed using this formula are given in
column 2 of table A.6. We use this diffusion constant as a basis for comparing definitions of
the diffusion constant.

The chi, Weibull and GEV models for the probability can also be used to compute the
diffusion constant. Because the chi distribution can be used to estimate the dimension of
the space in which the diffusion is occurring, it is the most interesting. In this case

Dχ =
Mχ

2

4 dt
, (4.5)

where Mχ
2 is the second moment (3.8) of c(r, σ, d) computed using (1.5). For the biological

data, the values of Dχ are given in column 3 of table A.6. Comparisons to other diffusion
constants is given in table 4.2. The chi distribution produces diffusion constants Dχ that are
about one-half of the diffusion constant D obtained from the second moment of the jump
size data. We do not report diffusion constants using the Weibull and GEV distributions,
but the results are similar.

Given that the linear models given in section 2.3 decompose the jumps into a deterministic
part and a white noise ǫn random part (2.9), it makes good sense to estimate the diffusion
constant using the white noise:

DW =
E(ǫ2

n)

4 dt
. (4.6)

This definition has the advantage that it directly eliminates the effects of the autocorrelations.
For the biological data, the values of DW are given in column 4 of table A.6 and comparisons
with the other diffusion constants are given in table 4.2. The diffusion constant DW is about
10% lower than D, which is in reasonable agreement with our signal to noise ratio estimates
given in column 10 of table A.3 that have a mean of 16%.
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To motivate the form of the fits we use [38, 14] we return to the null hypothesis that the
jumps Ji are mean zero IID and jump lengths have a PDF that has a finite second moment
M2. Also assume that there is an error in the measurements of the positions that can be
modeled by mean-zero IID random variables En with a finite second moment µ. In addition,
if the errors and jumps are independent, then equation (1.10) becomes

MSDn = E(‖Pn + En‖2) = E(‖Pn‖2) + E(‖En‖2) . (4.7)

Then, as in (1.12)
MSDn = M2 n + µ . (4.8)

Consequently, for linear fits we use the form

MSDn = A n + B , 1 ≤ n ≤ N . (4.9)

After some experimentation, we chose N = 10 so we are looking at a scale an order of
magnitude greater than the finest scale. We also fit the data assuming that B = 0. Samples
of these fits are shown in figure 4.7. For the biological data, the fits with B 6= 0 are
significantly different from those with B = 0 and those with B 6= 0 are visually better and
have smaller residuals than fits that assume B = 0. In both cases the diffusion constant is
defined by

Dlinear =
A

4 ∆t
. (4.10)

For the biological data, comparisons of these diffusion constants to D are given in table 4.2
where D1 = Dlinear with B 6= 0 and D2 = Dlinear with B = 0. The values of these diffusion
constants are given in table columns 5 and 6A.6. So, on average, D1 and D2 are about about
two thirds of D. Assuming B = 0 on average increases the diffusion constant. This can
easily be seen in the plots of the MSD.

On the other hand, the values of B are not close to 30nm and in fact many are negative.
Perhaps the fact that the biological data are autocorrelated is a source of this discrepancy?
The parameter r = |B|/(A dt) is dimensionless and, for the biological data, satisfies 0.005 <
r < 15.436 with the mean of r being 1.9055. So B is always significant. Using exactly 10
steps is not important in these estimates.

The discussion so far suggest the use of a power law of the form

MSDn = A nα + B , (4.11)

to model the MSD. First write (4.11) in the form

MSD(t) = A

(

t

∆t

)α

+ B (4.12)

and then set

D(t) =
1

4

d

dt
MSD(t) =

α A

4 ∆t

(

t

dt

)α−1

(4.13)
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and

Dn =
α A

4 ∆t
nα−1 . (4.14)

Consequently, we define the instantaneous diffusion constant as

D′ =
α A

4 ∆t
. (4.15)

In the case that α = 1 this is consistent with the definitions using linear fits. When we
assume B 6= 0 then D3 = D′, while if B = 0, we set D4 = D′. For the biological data if we
set α3 = α when B 6= 0 and α4 = α when B = 0, then

−0.9801 ≤ α3 − 1 ≤ 0.2409 , −0.7769 ≤ α4 − 1 ≤ 0.1369 (4.16)

In both cases there are 5 α − 1 that are positive, indicating that the power-law fits are
concave up and the track displays at least some super diffusion. The remaining 28 tracks
are concave down. For 6 of the MSD plots, both α satisfy |α−1| < .01 indicating that these
MSDs are nearly linear. This is close to what we guess by looking at the plots of the MSD.

For most of the biological data, the plots of the two fits are very close. Comparisons
of these diffusion constants to D are given in table 4.2 and the values of these diffusion
constants are given in columns 7 and 8 of table A.6. So, on average, D3 is 91% of D and D2

is about 83% of D.
There are several advantages to instantaneous diffusion constant. First, it separates the

diffusion “constant” D(t) into two parts, a true constant D′ = D(1) that has the correct
units for a diffusion constant and a dimensionless power law determined by α. If in (4.9) we
choose N = 3 and use (4.11) to interpolate the data (not just fit the data) and make the
approximation

D(1) ≈ MSD2 − MSD1

4 ∆t
, (4.17)

then (4.2) gives

D′ ≈ M2

4 ∆t
= D . (4.18)

So this definition is compatible with our basic definition.
As mentioned in the introduction, to check our algorithms, we supplemented our data

with an artificial data set generated using a random walk of 10,000 steps whose jumps have
components that are normally distributed with mean zero and standard deviation of 10nm.
For such a walk the diffusion coefficient is .0015 nm2/µs. This would be reported as .15 in
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table A.6. For this artificial data, the diffusion constant computed by our methods are

D = 0.1522

Dχ = 0.1569

DW = 0.1522

D1 = 0.1584

D2 = 0.1563

D3 = 0.1498

D4 = 0.1535

This is very strong support for the correctness of our algorithms and codes.
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5 Conclusions and Future Work

We have introduced some time series analysis methods, confirmed that they are appropriate
for analyzing jump data and have used these methods to analyze some high quality data
that track the movement of individual molecules in cell membranes. The tracked molecules
are MHCI expressed on rat hepatoma cells. The analysis has led to two important results.
First, the jump data have significant autocorrelations. To understand the correlations, we
provide linear autoregressive models for the data and, based on these models, use the signal
to noise ratio to quantify the importance of the correlations. Second, for the size of jumps
data, we give four statistical models that fit the data well. These models suggest that the
there are excessive short and long jumps compared to normal diffusion. The fit with the
chi distribution provides an estimate of the fine-scale obstructions in the membrane. Based
on these results, we introduced four alternate methods for estimating diffusion constants
and applied these to the biological data. The diffusion constants are different, but these
differences are consistent for the biological data set.

To facilitate the use of our results we provide MatLab and R code on our web page. In
the future, we will start our analysis of SPT data with time series analysis and use this to
characterize the properties of the membrane at the finest time and spatial scales reasonable
for the data. We will then follow this with MSD analysis to quantify larger scale structures.
If others can replicate our results for other types of data, then time-series analysis should be
incorporated into the next generation of analysis tools for the analysis of SPT data.

There is still significant work to be done to fine tune the techniques presented.

• A critical need is to combine this work with an algorithm to decompose the paths into
pieces that display the same type of motion. In [7], this is done by assigning the motion
to be confined if the MSD for a segment of the path grows below linear, and to directed
if the MSD grows faster than linear along with visual examination. An alternate
methods is described in [23]. Once the decomposition is accomplished, the estimates
of the diffusion constant given here can be combined with the information from the
MSD to investigate larger scale structures in the membrane [40, 24, 25, 5, 46, 12].

• We are in the process of extending this analysis to particle tracking data from exper-
iments in which the labeling is done using one or more sizes of quantum dots [36, 2].
An important problem is that the quantum dots blink and the length of the time that
a dot can be off can be quite large. This makes the analysis more complicated. For the
quantum dot analysis we are comparing the dynamic behavior of membrane molecules
from experimental situations in which the labeling is assumed not to alter the dynamic
behavior of the tagged molecule (as in the present paper) and also where the labeling
is known to alter rector dynamics (as in [36]).

• There has been some work done in understanding how correlations in the successive
jump angles affect the MSD [61, 39]. These models should be studied using time series
analysis.
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• Models of the deviation of the jump angles from uniform should provide additional
insight into the fine scale structure of the membrane [57].

• Correlated random walks have been used to study the movement of several types of
animals [26, 6, 53]. These studies have included the use of state-space models and
Kalman filters. The correlations studied are significantly simpler than the ones found
in our data, but the methods should be able to be extended to membrane data.

• It should be possible to refine the modeling of jump distributions using higher moments
of the jump sizes [10].

• To better understand the membrane organization, it is important to build models that
help explain the biological data. Models of membrane motion that include diffusion,
transport, and attractive harmonic forces have been studied in [10]. We also have been
studying similar models, but in our models the jump lengths have a Weibull distribution
rather than the normal distribution used in [10]. We also use a force generated by a
Lennard-Jones potential rather then a harmonic potential so that there are no long
range forces between molecules.

• Autocorrelations (two-time correlations) of a particle confined to a box in the plane
were studied in [13] and then used this to estimate the size of the confining box and
then the results were used to estimate confinement zones in SPT data. In [28, 30]
models containing two confinement zones have been used that capture some of the
effects of cytoskeletal fence confinement zones (see also [47, 45, 31]).
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1 2 3 4 5 6 7 8 9 10 11
# N max L mean L % small L ‖µ‖ M2 ρ1 ρ2 p % S/N
1 1007 56 13 14.5 1.915 226.7 -0.19 -0.03 9 11.4
2 2113 316 17 17.5 0.413 640.2 -0.23 -0.05 31 22.8
3 1300 142 31 2.5 0.889 1326.1 0.07 -0.02 4 5.7
4 1447 197 33 3.3 1.360 1687.0 0.16 -0.02 2 5.7
5 1229 170 47 1.0 0.264 2990.3 0.21 -0.07 5 12.8
6 893 189 43 1.0 1.648 2461.3 0.12 -0.00 9 10.0
7 2018 241 41 1.0 2.038 2374.5 0.08 0.02 8 8.1
8 1269 217 34 2.1 0.107 1777.1 0.25 -0.01 2 15.0
9 932 257 76 0.3 3.182 7530.1 0.03 0.01 4 5.4

10 1126 123 29 3.1 0.511 1143.0 -0.18 -0.07 6 16.5
11 1171 315 62 0.8 1.792 5368.8 0.04 0.04 3 5.8
12 1004 263 76 0.5 1.350 7865.4 -0.22 0.02 1 9.8
13 1013 215 41 1.3 0.118 2333.1 -0.19 -0.02 9 19.9
14 789 245 45 1.5 0.217 3023.6 0.10 0.01 1 6.0
15 832 296 70 1.0 1.239 6855.3 -0.05 -0.02 1 3.6
16 1012 215 41 1.3 0.100 2334.7 -0.19 -0.02 9 19.9
17 912 204 55 0.3 3.990 3936.0 -0.08 0.06 2 2.8
18 1059 312 65 0.3 0.635 5903.6 0.07 0.05 16 12.5
19 1039 231 31 7.7 0.322 2101.2 -0.18 -0.11 16 42.4
20 977 122 23 5.6 0.293 799.7 -0.13 0.00 1 4.5
21 916 116 17 7.6 0.419 374.4 -0.22 -0.12 19 32.6
22 1569 118 14 10.0 0.155 277.3 -0.18 -0.09 28 26.6
23 623 128 34 2.2 1.307 1623.2 -0.32 0.06 17 37.6
24 1196 242 44 1.2 0.701 2946.2 -0.19 -0.01 10 18.0
25 1206 217 22 3.6 0.205 689.2 -0.21 -0.05 18 19.7
26 660 306 66 0.1 0.470 6027.2 -0.14 0.02 4 14.0
27 791 409 46 1.5 0.939 3104.7 -0.06 -0.05 3 5.0
28 1673 131 30 2.6 0.295 1230.4 -0.16 -0.05 2 5.8
29 1379 282 49 1.2 0.995 3507.2 0.10 -0.13 3 5.0
30 1381 204 53 0.7 0.200 3793.0 -0.32 -0.01 5 29.7
31 2117 170 37 2.5 0.116 1908.2 -0.20 -0.10 9 15.3
32 1044 262 20 5.8 0.224 603.4 -0.28 -0.03 8 25.8
33 1311 163 43 1.1 0.348 2416.2 -0.37 -0.08 14 52.3

Table A.3: Results of the Statistical Analysis of the Biological Data.
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Weibull Chi Long-Short
1 2 3 4 5 6 7 8 9
# λ k σ d s α β k
1 14 1.7 11 1.6 25 1.9 4.3 7.3
2 15 1.5 13 1.3 12 2.0 2.0 2.9
3 34 1.9 25 1.9 105 2.0 10.3 19.4
4 34 1.7 28 1.6 43 2.0 3.0 4.8
5 51 1.8 39 1.7 137 1.9 7.8 13.8
6 46 1.9 34 1.8 92 2.0 5.5 10.0
7 43 1.8 32 1.8 70 2.0 4.1 7.3
8 35 1.8 27 1.7 48 2.0 3.2 5.6
9 84 2.0 60 2.0 276 2.0 12.9 25.2

10 31 1.8 24 1.7 46 2.0 3.6 6.2
11 66 1.8 52 1.7 145 1.9 5.8 10.1
12 83 1.8 65 1.7 222 1.9 7.6 13.3
13 43 1.8 32 1.8 51 2.2 2.9 5.1
14 47 1.8 36 1.7 63 2.1 3.2 5.6
15 74 1.8 56 1.8 93 2.1 3.0 5.3
16 43 1.8 32 1.8 51 2.2 2.9 5.1
17 60 1.8 45 1.8 114 2.0 5.0 9.0
18 69 1.8 53 1.7 144 1.9 5.5 9.5
19 26 1.4 24 1.2 18 1.8 1.9 2.6
20 25 1.6 21 1.5 38 1.8 3.6 5.7
21 18 1.9 14 1.8 149 1.9 54.6 103.0
22 15 1.9 11 1.9 20 2.2 3.2 5.7
23 38 1.6 33 1.5 135 1.7 9.5 15.0
24 46 1.7 37 1.6 71 1.9 3.7 6.0
25 24 2.0 17 2.0 229 2.0 93.6 188.1
26 68 1.8 51 1.8 94 2.1 3.4 6.0
27 49 1.8 37 1.8 141 1.9 8.9 16.1
28 32 1.8 25 1.7 54 2.0 4.1 7.1
29 51 1.7 41 1.6 71 1.9 3.3 5.4
30 58 1.9 44 1.8 172 1.9 9.5 17.6
31 40 1.7 31 1.6 86 1.9 5.6 9.6
32 21 1.8 16 1.7 25 2.1 2.8 4.8
33 48 1.9 35 1.9 135 2.0 9.5 18.2

Table A.4: The Mean Square Fit Parameters.
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GEV (LS) zeros GEV (ML)
1 2 3 4 5 6 7 8 9 10 11
# σ µ ξ k % σ µ ξ k p
1 6.5 8.9 0.05 19.9 0.20 9.1 5.8 0.07 13.9 0.7
2 7.1 8.6 0.36 2.8 0.47 8.4 6.8 0.42 2.4 0.8
3 14.9 22.6 -0.02 -59.2 0.00 22.9 13.8 0.04 25.6 0.4
4 15.7 21.7 0.18 5.6 0.14 21.8 14.9 0.17 5.7 0.6
5 23.0 32.9 0.01 120.5 0.00 33.7 21.3 0.04 23.8 0.9
6 20.0 30.2 0.04 27.5 0.00 30.6 18.6 0.06 16.4 0.5
7 18.8 28.5 0.08 12.2 0.00 28.6 17.8 0.11 9.3 0.7
8 15.7 22.9 0.14 7.3 0.00 22.8 15.0 0.16 6.1 1.0
9 35.7 55.8 -0.07 -13.4 0.21 56.9 33.2 -0.00 -333.3 0.8

10 13.7 20.2 0.11 8.9 0.18 20.4 12.8 0.08 13.0 0.9
11 29.7 42.5 0.05 18.8 0.00 43.2 27.6 0.09 11.5 0.9
12 37.4 52.5 0.02 59.5 0.40 54.2 34.1 0.06 16.9 0.9
13 18.5 28.2 0.13 7.8 0.00 28.4 17.7 0.11 9.1 0.5
14 20.6 30.5 0.12 8.6 0.13 30.7 19.6 0.15 6.7 0.8
15 32.3 48.9 0.13 7.8 0.00 49.4 31.0 0.09 11.2 0.6
16 18.5 28.2 0.12 8.1 0.00 28.4 17.7 0.11 9.1 0.9
17 25.9 39.1 0.09 11.6 0.00 39.9 24.1 0.03 37.0 0.8
18 30.9 44.3 0.06 17.9 0.09 45.2 28.9 0.10 10.2 0.9
19 13.2 14.6 0.51 2.0 0.10 14.6 12.3 0.51 1.9 0.6
20 11.6 15.2 0.21 4.7 0.10 15.3 10.6 0.16 6.3 0.9
21 8.2 11.9 -0.09 -11.7 0.00 12.0 7.3 0.04 25.6 0.8
22 6.6 10.1 0.07 14.5 0.32 9.9 6.2 0.09 11.1 0.5
23 18.0 23.0 0.17 5.9 0.00 24.0 16.2 0.05 18.9 0.7
24 21.0 28.6 0.17 6.0 0.00 28.8 19.6 0.18 5.5 0.9
25 10.1 16.4 -0.09 -11.4 0.08 16.2 9.4 0.06 18.2 0.8
26 29.7 45.2 0.08 12.3 0.00 45.8 28.4 0.11 9.0 0.5
27 21.9 31.9 -0.01 -76.3 0.25 32.3 20.3 0.10 10.3 0.9
28 14.3 20.7 0.10 9.7 0.12 21.0 13.3 0.08 12.3 0.9
29 23.3 32.5 0.17 5.8 0.00 33.0 21.9 0.14 7.0 0.8
30 25.5 38.2 -0.00 -208.3 0.14 39.0 23.6 0.03 34.5 0.4
31 18.0 24.9 0.06 16.3 0.00 25.5 16.8 0.09 11.5 0.7
32 9.2 13.6 0.16 6.2 0.29 13.7 8.6 0.13 7.8 0.4
33 20.5 31.6 -0.05 -21.5 0.08 32.2 19.2 -0.02 -62.5 0.9

Table A.5: The GEV Parameters by Least Squares and Maximum Likelihood.

42



1 2 3 4 5 6 7 8
PDF White Linear Power

B 6= 0 B = 0 B 6= 0 B = 0
1 2 3 4 5 6 7 8

# D Dχ DW D1 D2 D3 D4

1 0.17 0.16 0.16 0.12 0.12 0.13 0.13
2 0.48 0.17 0.41 0.26 0.30 0.26 0.33
3 0.99 0.90 0.96 0.92 0.99 1.37 1.09
4 1.27 0.92 1.22 1.51 1.51 1.54 1.54
5 2.24 2.01 2.06 1.81 2.22 4.46 2.65
6 1.85 1.60 1.72 2.34 2.23 2.10 2.10
7 1.78 1.42 1.68 2.14 2.07 2.05 1.99
8 1.33 0.95 1.20 1.67 1.71 2.38 1.79
9 5.65 5.24 5.47 4.54 5.14 7.27 5.82

10 0.86 0.74 0.79 0.45 0.54 0.51 0.62
11 4.03 3.40 3.86 4.12 4.22 5.08 4.40
12 5.90 5.25 5.57 2.60 3.40 3.97 4.09
13 1.75 1.38 1.61 0.74 1.01 1.23 1.23
14 2.27 1.67 2.20 2.73 2.64 2.62 2.54
15 5.14 4.18 5.00 3.49 4.10 5.94 4.75
16 1.75 1.38 1.61 0.74 1.01 1.34 1.23
17 2.95 2.72 2.89 3.29 3.04 2.22 2.67
18 4.43 3.64 4.09 5.71 5.37 5.37 5.01
19 1.58 0.54 1.26 0.35 0.71 0.84 0.84
20 0.60 0.49 0.58 0.49 0.49 0.49 0.49
21 0.28 0.26 0.21 0.07 0.12 0.15 0.15
22 0.21 0.18 0.17 0.08 0.12 0.14 0.14
23 1.22 1.17 0.94 0.51 0.63 0.74 0.74
24 2.21 1.62 2.01 1.20 1.43 1.50 1.64
25 0.52 0.45 0.42 0.19 0.27 0.33 0.33
26 4.52 3.52 4.20 2.88 3.30 3.72 3.72
27 2.33 1.86 2.26 1.37 1.71 2.58 2.04
28 0.92 0.79 0.89 0.51 0.60 0.68 0.68
29 2.63 2.04 2.52 1.94 2.29 3.35 2.65
30 2.84 2.60 2.35 0.73 1.19 1.24 1.47
31 1.43 1.21 1.29 0.44 0.71 1.09 0.87
32 0.45 0.33 0.39 0.07 0.16 0.18 0.18
33 1.81 1.72 1.33 0.13 0.50 0.57 0.43

Table A.6: The Diffusion Constants.
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# name

1 221 00000000XptlX1 xy
2 221 00000000XptlX3 xy
3 221 000092806XptlX1a xy
4 221 00061418XptlX2 xy
5 911 001255104XptlX4 xy
6 911 00542314rtXptlX6 xy
7 911 01183800 pt4 xy
8 911 01353510ptlX4 xy
9 C48 012940 pt1b xy
10 C48 013812 pt3 xy
11 C48 014210 pt1 xy
12 C48 015022 pt2a xy
13 wildtypeLd 00435612XptlX1 xy
14 wtLd 00212.50 xy
15 wtLd 003650.10 xy
16 wtLd 00435612Xptl1 xy
17 Z1 003224 pt1 xy
18 Z1 003224 pt2 xy
19 Z1 00.42.33 pt1 xy
20 Z1 00.46.00 Pt1 xy
21 Z2 00.09.20 Pt1 xy
22 Z2 00.10.11 Pt1 xy
23 Z2 00.13.23 Pt2 xy
24 Z2 00.14.45 pt2 xy
25 Z2 00.18.58 Pt1 xy
26 Z3 004731 pt1b xy
27 Z3 004950 pt1 xy
28 Z3 005430 pt2 xy
29 Z3 010100 pt1 xy
30 Z3 010444 pt1 xy
31 Z4 0001 pt1 xy
32 Z4 0003 pt1 xy
33 Z4 001600 pt1 xy

Table A.7: Experiment Number and Name.
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B The Particle Paths

The figure of the particle paths are grouped according to the experimental conditions under
which the paths were observed. There are from 3 to 5 figures per group.
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Figure B.8: Paths for Experiments: 1, 2, 3, 4
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Figure B.9: Paths for Experiments: 5, 6, 7, 8

46



1.7 1.75 1.8 1.85 1.9 1.95 2

x 10
4

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2
x 10

4

x (nm)

y 
(n

m
)

Probe Path (C48_012940_pt1b_xy.dat)

5300 5400 5500 5600 5700 5800 5900 6000 6100
1.68

1.7

1.72

1.74

1.76

1.78

1.8
x 10

4

x (nm)

y 
(n

m
)

Probe Path (C48_013812_pt3_xy.dat)

2.1 2.15 2.2 2.25 2.3 2.35

x 10
4

7400

7600

7800

8000

8200

8400

8600

x (nm)

y 
(n

m
)

Probe Path (C48_014210_pt1_xy.dat)

1.18 1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34 1.36

x 10
4

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26
x 10

4

x (nm)

y 
(n

m
)

Probe Path (C48_015022_pt2a_xy.dat)

Figure B.10: Paths for Experiments: 9, 10, 11, 12
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Figure B.11: Paths for Experiments: 13, 14, 15, 16
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Figure B.12: Paths for Experiments: 17, 18, 19, 20
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Figure B.13: Paths for Experiments: 21, 22, 23, 24, 25
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Figure B.14: Paths for Experiments: 26, 27, 28, 29, 30
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Figure B.15: Paths for Experiments: 31, 32, 33
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C The PDF fits
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Figure C.16: PDF Fits for Experiments: 1, 2, 3, 4
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Figure C.17: PDF Fits for Experiments: 5, 6, 7, 8
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Figure C.18: PDF Fits for Experiments: 9, 10, 11, 12
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Figure C.19: PDF Fits for Experiments: 13, 14, 15, 16
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Figure C.20: PDF Fits for Experiments: 17, 18, 19, 20
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Figure C.21: PDF Fits for Experiments: 21, 22, 23, 24, 25
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Figure C.22: PDF Fits for Experiments: 26, 27, 28, 29, 30
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Figure C.23: PDF Fits for Experiments: 31, 32, 33
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D The MSD fits
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Figure D.24: MSD Fits for Experiments: 1, 2, 3, 4
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Figure D.25: MSD Fits for Experiments: 5, 6, 7, 8
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Figure D.26: MSD Fits for Experiments: 9, 10, 11, 12
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Figure D.27: MSD Fits for Experiments: 13, 14, 15, 16
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Figure D.28: MSD Fits for Experiments: 17, 18, 19, 20
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Figure D.29: MSD Fits for Experiments: 21, 22, 23, 24, 25
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Figure D.30: MSD Fits for Experiments: 26, 27, 28, 29, 30
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Figure D.31: MSD Fits for Experiments: 31, 32, 33
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