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Abstract

We explore some aspects of the analysis of latent component structure in non-stationary
time series based on time-varying autoregressive (TVAR) models that incorporate uncer-
tainty about model order. Our approach assumes that at each time, model order evolves
according to a discrete random walk and can take values up to a specified upper bound.
Priors that are conjugate-normal are considered for the autoregressive coefficients and
the evolution of such coefficients over time is specified through a random walk. Sim-
ulation from the posterior distribution of the AR coefficients and model order can be
obtained via a Gibbs sampling format based on Forward Filtering Backward Simulation
algorithms. Aspects of model implementation and inference on decompositions and la-
tent structure are discussed for some synthetic data and for electroencephalogram (EEG)
traces previously analysed with fixed order TVAR models.
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1 Introduction

Modern statistical analysis recognises the relevance of model uncertainty in parameter esti-
mation and inference. From a Bayesian perspective, model uncertainty can be handled and
summarised through the computation of posterior model probabilities. Additionally, in a
time series context, it is also crucial to study how prediction on future values and inference
on latent structure is affected by the propagation of uncertainty. This is the main goal of our
paper within the framework of time-varying parameter autoregressive (TVAR) models and
using Markov Chain Monte Carlo (MCMC) methods.

There is a vast literature of time series models that incorporate model uncertainty with
MCMC methods. For instance, in the case that the models in consideration are all linear au-
toregressive (AR) processes, Barnett et al. (1996) presented a MCMC, based on a stochastic
variable search approach, that deals with model order uncertainty through priors on the par-
tial autocorrelations that restrict to stationarity. On the same line, Barbieri and O’Hagan
(1997) developed a MCMC using a similiar parameterisation, but based on the reversible
jump (Green, 1995) to produce posterior inference on model order. Troughton and Godsill
(1997) developed an efficient MCMC method that uses the reversible jump to explore the
posterior distributions for model order, model coefficients and innovation variance. Their pri-
ors are defined on the standard AR coeflicients rather than on the autocorrelation function.
More recently, Huerta and West (1999) incorporated model order uncertainty in the linear
AR framework with emphasis on prior specification for latent structure. This leads to a novel
class of prior distributions on the characteristic reciprocal roots of the process. In terms of
posterior simulation, their MCMC appeals both, to a stochastic variable selection and re-
versible jump ideas. These references illustrate how model uncertainty may be incorporated
with MCMC methods in the context of linear and/or stationary time series models.

In the case of more general and non-stationary Dynamic Linear Models (DLM), West and
Harrison (1997), chapter 12 and following Harrison and Stevens (1976), presents an approach
to include model uncertainty through mixtures when each of the models in consideration is
a conjugate DLM. This approach is known as Multi-Process models for which p(k|D;), the
probability of model k£ given all the information up to time ¢, denoted by Dy, is available
in analytic form. The class of DLMs is broad and quite flexible; time series models that
incorporate cyclical patterns and trends can be expressed in this form. It is worth noting
that when some of the DLMs in consideration are not conjugate but conditionally conju-
gate, the Forward Filtering Backward Simulation algorithms in Carter and Kohn (1994) and
Frithwirth-Schnatter (1994) can be applied to compute the posterior probabilities of each
model. In the framework where there is no conditional conjugacy, posterior probabilities
may be obtained via particle filter methods as reported by Pitt and Shephard (1999). An-
drieu et al. (1999) constitutes a recent reference in this direction; model order uncertainty
and sequential updating are addressed for an autoregressive process with observational noise.
The algorithm is based on particle filters selected with Bayesian importance sampling and
MCMC reversible jump steps.

In this paper, we deal with model uncertainty restricting the potential models to the
class of time-varying autoregressive models or TVAR. This class of models has been success-
ful in studying underlying structure of non-stationary time series in many applications, in
particular, in analysis of various kinds of electroencephalographic (EEG) signals. Some of



the references in this area are Gersch (1987), Kitagawa and Gersch (1996), Prado and West
(1997), West et al. (1999) and Krystal et al. (1999). Specification of TVAR models and
decomposition theory of non-stationary time series, based on flexible DLM representations,
are developed in West et al. (1999). Here, we review these references and related theory of
decomposition and underlying structure analysis in Section 2. In Section 3, we extend and
discuss how to address model order uncertainty in TVAR models based on standard conjugate
priors for model coeflicients, variances and a discrete uniform prior on model order. Further-
more, issues of time series decompositions and latent structure are discussed within this class
of TVAR models. In Sections 4 and 5, we apply the models and methodology developed in
Section 3, to study latent structure in synthetic data and EEG traces. Concluding remarks
and possible extensions of the modelling framework are discussed in Section 6.

2 The class of TVAR models and decompositions

In this Section we summarise the model specification and decomposition results developed in
West et al. (1999) for the class of time-varying autoregressions. A time-varying autoregression
of order p or TVAR(p) is described by,

P
T =Y bt T+ €, (1)

j=1
where ¢, = (¢¢1,...,¢tp) is the time-varying parameter vector and €; are zero-mean inde-

pendent innovations assumed Gaussian with possibly time-varying variances ¢; ~ N(0,0?).
No explicit stationarity constraints are imposed on the AR parameters at each time ¢. How-
ever, if such parameters lie in the stationarity region the series can be thought as locally
stationary and the changes in the parameters over time represent global non-stationarities.
The model is completed by specifying the evolution components for the time-varying AR pa-
rameters ¢, and the innovations variance o7. The evolution on the AR parameters is taken
as a random walk ¢, = ¢,_; + §;, with zero mean innovations §; that are uncorrelated and
normal &, ~ N (0, W;). Similarly, the changes in time of o? are modelled with a multiplica-
tive random walk o = o2 ;(d/n;) where 7; are mutually independent and independent of
e and &, with &, ~ Be(as, b;) (West and Harrison, 1997 chapter 10). Time variation in
the AR coeflicients and the innovations variance is controlled via standard discount factors
B and ¢ € (0,1). These discount factors measure the degree of variation in time of ¢, and
o? respectively. Low values of the discount factors are consistent with high variability of
the parameters over time, but values closer to one are typically more relevant in practice.
Sequential updating and retrospective filtering/smoothing algorithms (West and Harrison,
1997) can be applied to obtain posterior distributions for the AR parameters ¢,, and the
evolution variances o?.

The basic decomposition result for the class of TVAR models (West et al., 1999), arises
from writing the TVAR model in a particular DLM form and then using standard theory
of model structure and the notions of similar models in linear stochastic systems (West and
Harrison 1997, chapter 5). The TVAR model in (1) has a DLM form,

Ty = F'Ot, 0; =G0 1+ wy (2)



where F = (1, 0, cee ,O)I, Xt = (.’Et, Lt—T1y«-- ,IEt_p+1)l, Wi = €tF and

b1 bt2 .. Dip—1 Dip

1 0o ... 0 0
G;=G(¢,) = 0 1 ... 0 0 (3)
0 0o ... 1 0

for each t. Note that the eigenvalues of G are the reciprocals of the roots of the autoregressive
characteristic equation at each time ¢. Suppose that, at each time ¢, G; has p distinct
eigenvalues, with ¢ pairs of complex eigenvalues denoted by r; ; exp(+iwy ;) for j =1,...,¢,
and r = p — 2c real eigenvalues denoted by r;; for j = 2c + 1,...,p. Then, the basic
decomposition result for the class of TVAR states that

c p
=Y 2zt D, Ut (4)
j=1

j=2c+1

where the z;; processes are defined through the complex eigenvalues and the y; ; through
the real eigenvalues. In particular, for the standard AR(p) process, ¢, = ¢, G = G,
and the eigenvalues of G are the reciprocals of the roots of the usual AR characteristic
equation. In this case r;; = rj for j = 1,...,p and wy; = wj for j = 1,...,c. Furthermore,
each y;; follows a standard AR(1) process with AR parameter r;, and each z;; follows
an ARMA(2,1) whose AR(2) component is quasi-periodic with time-varying amplitude and
phase and constant characteristic frequency and modulus w; and r; respectively. In the
general TVAR case, the interpretation of the latent processes may be slightly different. In
many problems of applied interest (West et al. 1999, Krystal et al. 1999) ¢, changes slowly
in time and the eigenvectors of G; and G; 1 are very similar. As a result, the processes
yt,; approximately follow a TVARMA(1) with time-varying AR parameter r;; and the 2z ;
processes approximately follow a TVARMA(2,1) with time-varying characteristic frequency
wi,; and modulus r; ;. Now, if the changes in time of the ¢, parameters, and therefore the
changes in the eigenstructure of Gy, are more variable, the stochastic structure of the latent
processes is not represented by TVAR(1) and TVARMA(2,1) components (details appear in
Prado, 1998).

We present the above decomposition for an EEG series taken from West et al. (1999).
Figure 1 displays the data and estimated components in the decomposition of the series,
based on a TVAR(12) model with discount factors é = 1.0 and 8 = 0.997. The EEG
trace was recorded on a patient who received a moderate level of ECT stimulus intensity.
Components (1), (2), and (3) in the decomposition are the highest amplitude components
lying in the delta (0 to 4 Hz) and theta (4 to 8 Hz) frequency bands. These components are
individual processes dominated by a TVARMA(2,1) quasi-periodic structure. For instance,
process (1) has a TVARMA(2,1) quasi-periodic structure with time-varying characteristic
frequency lying in a delta band that starts around 4 Hz and gradually decays towards the
end of the seizure. The time-varying characteristic modulus of process (1) is consistently
high, with values higher than 0.95 over the seizure course. Components (4), (5) and (6)
are low amplitude components representing neural and experimental noise. The end of the
seizure occurs at around ¢ = 1800. Clearly, the contribution of components (2), (3), (4), (5)
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Figure 1: Data and estimated components in the decomposition of an EEG series based
on a TVAR(12). From the bottom up, the graph displays the series followed by estimated
components in order of decreasing amplitude.

and (6) is practically negligible after ¢ = 1800. The structure of the EEG signal is more
complex while the seizure starts and matures than when it begins to decay and eventually
dies off. Thus, it seems reasonable to consider a TVAR model with a higher model order
during the beginning and middle parts of the seizure than towards the end of the seizure.

3 Autoregressions with time-variation on the AR coefficients
and model order

A time-varying autoregression with time-varying order p; or TVAR(p;) is described by,

Pt
T =Y brjTi—j + €, (5)

j=1

where the autoregressive coefficients evolve according to a random walk as defined in Section
2 for the fixed order TVAR, and ¢; ~ N(0,02). We assume that p;, the model order at time
t, is an integer that can only take values from a lower bound ppin, up to a fixed upper bound
Pmax both assumed fixed. Equivalently, we may write the TVAR(p;) via a set of indicator
variables,

pmax
ze= Y Iy i+ e, (6)

i=1
where 1; ; can only take the values 0 or 1 and the vector of coefficients ¢, = (¢t.1, - - - , Dt pmax)’
has always dimension pmax. In addition, we define Iy = (Iy1, i, ..., Ltp,..), the vector of



indicator variables at time ¢. Notice that each of the possible 2(Pmin—Pmax) vectors I; indexes
a particular model order. Furthermore, we reduce the model space so that for every time ¢,
if an autoregression of lag j is significant, i.e. ¢;; # 0, any smaller lag is also included in
the model, i.e. ¢ s # 0 for s < j. This imposes the following restriction on I;: if 1;; =0
for a particular j, then 1; ; = 0 for all values of the index s greater than j. In consequence,
whenever 3077 It ; = pt, I can only be a vector whose first p; entrances are ones and the
remaining are zero.

Model completion requires specification of an initial prior p(¢;,0?|Dy) where Dy de-
notes initial information and all details of the model structure. For simplicity, we assume
1; = (1,1,1,...,1) so that p; = pmax, and the standard conjugate framework based on
normal/inverse gamma distributions with a relative diffuse initial prior. The evolution of p;
is defined through a first order random walk whose transition probabilities are denoted by
P[p; = i|p;—1 = j| and the possible values for ¢ and j range from pmin t0 pPmax. Particular
forms for this transition matrix will be specified in the applications.

In this framework, estimation of the TVAR(p;) follows a two-stage Gibbs sampling for-
mat. Conditional on the sequence p;, or equivalently on the sequence of vectors I; over
t = 1,...n, the standard sequential updating and retrospective filtering/smoothing algo-
rithms for DLMs apply. Based on all the observed information D,, = {Dy, z1, z2, ..., 2z} the
sequences ¢, and o2 are simulated from joint normal/gamma distributions that depend on
p;; t =1,2,...,n. On the other hand, given ¢, for all ¢ and o2, we sample from the condi-
tional posterior distribution of p; via the filtering/smoothing algorithm for discrete random
variables described in Carter and Kohn (1994). For clarity of exposition, we include in Dy
the conditioning sequences ¢, and 2. For each t = 1,2,...,n, we compute the conditional
prior probabilities for p;, P[ps = ¢|D;_1]; for i = Pmin, - - - , Pmax Dy marginalising the joint
probability distribution P[p; = ¢,ps_1 = j|D¢_1] over the values of j. Through Bayes theo-
rem, we compute the posterior probabilities for p;, P[p; = i|D;] and keep the values for both,
the prior and posterior probabilities at each time ¢. At this point, we generate a value p,
from the discrete distribution P[p, = i|Dy,]. Then, for t =n —1,n —2,...,1, we compute
Plp; = i|pt+1, D¢ for all ¢ = pmin, - - -, Pmax; Where p;11 is the sampled value for model order
at time ¢+ 1. We generate a value p; from this discrete distribution and continue in this way
until we reach ¢ = 1. The collection of values p,,pn—1,Pn—2,--.,p1 conform a sample from
the conditional posterior distribution for model orders. Full details of the Gibbs sampling
scheme are presented in the Appendix.

3.1 Decompositions for TVAR models with time-varying order

The TVAR model with time-varying order p; at each time ¢, can be written in DLM form as

/
vy =Fx;, xp=Gyxg1 +wy



where F is a pmax X 1 vector F = (1,0,...,0), x¢ = (@4, T4—1, - - -, Tt—pmar+1)» @t = &F and
Gt 3 Pmax X Pmax matrix,

b1 Pt2 - Otp-1 btp, O 00

1 0o ... 0 0 0 ... 00

1 ... 0 0 0 ... 00

0 0 1 0 00

0 0o - 0 0o --- 10
Then, at time ¢, only p; coefficients appear in the matrix G;. Assume that G; has p; distinct
non-zero eigenvalues o ¢,...,qp, ¢+ and a zero eigenvalue a = 0 with multiplicity pmax — ps-
The non-zero eigenvalues correspond to the reciprocal roots of the characteristic polynomial

at time ¢, ®p,(u) = (1 — ¢y 4u — ... — ¢y p,uPt). Then, G; = E,AE; ! with

A; = block diag[AptaJ(pmax—pt)(O)]a E; = [el,tv -y €py ity hl,ta ce ?h(pmax_pt),t]’

where Ap, = diag(agi,...,atp,) and Jp. —p,)(0) is the (Pmax — Pt) X (Pmax — p¢) Jordan
block associated to the eigenvalue a@ = 0,

010 0 0

0 01 0 0

0 0O 0 0

J(pmax*pt)(O) = : : : : :

000 ... 01

000 ... 00
E; is a Pmax X Pmax matrix whose first p; columns correspond to the p; eigenvectors associated
to the non-zero distinct eigenvalues o ¢, ..., ap, . The last pmax — p¢ columns of the matrix
E; correspond to the pmax X 1 vectors hyy, ..., b .. p,) ¢ Where each h;; is such that

its last j components are ones and its first ppax — j components are zeros. Some of the
non-zero eigenvalues could be complex and in such case they appear in pairs of complex
conjugates. Assume that at each time ¢, there are ¢; pairs of complex eigenvalues denoted
by 7 exp(Fiwy ;) for j = 1,...,¢ and ry = py — 2¢; non-zero real and distinct eigenvalues
denoted by ry; for j = 2¢; + 1,...,p;. For each time ¢, define the matrix H; = DtEgl,
with D; = diag(E,F)E; ! and linearly transform x; via v = Hix;. Then, we can write
zy = (1,...,1)5, or equivalently,

ct Pt

= 2+ Y. U (8)
j=1 j=2ct+1

with z¢; = v42j-1 + Y25 for j =1,...,¢, and yy; = 4,5 for j = 2¢; +1,...,ps. Notice that

the decomposition result is analogous to (4) but now the number of components depend on

time-varying c; and r;.



In order to gain insight on the structure of the latent processes z; ; and y; j, consider the
models M; for i = puyin, - - - , Pmax,

M;: z=F'xq, x4 = Ggi)xt_1 + wy

with
dt1 b2 --. Gri-1 Pt O 0 0
1 0 ... 0 0 0 00
¢gP=| 0 1 ... 0 0 0 00 |,
o 0 0 0 0 0 ..10

i.e. model M; is a TVAR(Z). For each model M; reparameterise x; and w; via 'y,(j) = Hgi)xt
. . . . N =1
and 69 = ng)wt with ng) = DE')(Egz)) . Then we have,

2= 1) 4 = ADKOLO | 50

. . N =1 . . . . . .
with ng) = Dg') (Egz)) Eg?ng’{ = Hg”HgQI Dgz)*, HSB’{ are generalised inverse ma-
trices of Dgz) and H,El_)l respectively. Given known, estimated or simulated values of F,

Ggi) and x; for each ¢, we can obtain a decomposition for z; based on model M; for each

? = Pmin; - - - y Pmax,

()

Z D S}

j=2¢(M+1

such that r(® = §—2¢(). The value () is the number of pairs of complex non-zero eigenvalues

of Ggi), denoted by rsj) exp(:l:iwg])-) for j=1,...,¢® and 7 is the number of real eigenval-

ues. As in the standard TVAR case and for simplicity, we are assuming that ¢(9 and r(®) are
fixed in time (see West et al. 1999). In cases where the AR coefficients change slowly in time,

Kgi) ~ blockdiag[I;x;, 0 Then, each zE ]) is dominated by a TVARMA(2,1)
(%) (@) .

(pmax _Z) (pmax —Z)]

(4)

process with time-varying modulus r; ; and frequency w5, and each y; ; is dominated by
a TVAR(1) with time-varying modulus ri?]) On the other hand, if the changes in the AR

coefficients in time are highly variable between times ¢t and ¢ — 1, the latent processes 2

t,j
(2) ()

and y, ; are “mixed” via K;’ and the stochastic latent structure is not exactly represented
by the TVAR(1) and TVARMA(2,1).
The general decomposition result (8) for TVAR models with time-varying model order

(pe) (pt) _ ()

pt, is such that at a particular time ¢, z;; = Zei Ytg = Yii > Tt = Ti;j and wy; =

(Pt

wy J) Then, each z;; in (8) coincides instantaneously, specifically at time ¢, with a process
that, conditionally on smooth changes in the AR parameters over time, is dominated by a
TVARMA(2,1) and has instantaneous modulus and frequency r; g *) and wy 2 Similarly, each

yz,; coincides at time ¢ with a process that is dominated by a TVAR(1) with time-varying

(pt)

modulus Tej -



3.1.1 Example

Consider a time series x;, t = 1,...,500 such that for t =1,...,250 follows a TVAR(2) and
for t = 251,...,500 follows a TVAR(3). Figure 2 (c) displays a sequence of 500 observations
generated from a TVAR(3) with a pair of complex reciprocal roots with time-varying modulus
and wavelength denoted by r; ; and A; ¢, and a real characteristic reciprocal root with modulus
ro,¢. Figures 2 (d), (g) and (e) display the trajectories in time of 71 ¢, A1 ¢ and ro ; respectively.
Note that 7, is zero for t = 1,...,250 indicating that we have a TVAR(p;) with p; = 2 for
t=1,...,250 and p; = 3 for ¢t = 251,...,500. This particular TVAR(p;) can be written in
DLM form with F = (1, 0, 0)’, Xt = (:L‘t, Tt—1, xt_2)l, Wi = (Gt, 0, 0),

$1t ¢2t O
G=| 1 0 0] for t=1,...,250,
0 1 0
and
b11 Dr2 Pi3
Gi=| 1 0 0 | for t=251,...,500.
0 1 0

Then, for t = 1,...,250, G; = B;A(E; * with,

1,0 exp(i27/ A1) 0 0
A= 0 rieexp(—i2w/Ae1) 0 |,
0 0 0

and E; = [e¢ 1, €1, ¢ 1] where e;; and €;; are a pair of complex conjugate eigenvectors asso-
ciated to the complex characteristic roots 71 ¢ exp(£i27/As1) and hy; = (0,0,1)". Similarly,
for t = 251,...,500 we have G; = E;A;E; ! with

1,6 exp(i2m /e 1) 0 0
A = 0 rieexp(—i2m/A¢1) 0 ,
0 0 7’2,t

and E; = [e;1,8;1,€2] with e;1,&;1,e;2 the eigenvalues associated to 7y ;exp(£i27/ A1)
and r¢2. The decomposition for z; is

_ ) A for t=1,...,250 (©)
216 +y1¢ for t=251,...,500.

Figures 2 (a) and (b) display the processes z;; and y;1 over time. Note that the component
y¢,1 only appears for ¢ = 251,...,500 and that its contribution to the decomposition of the
series is practically negligible due to the fact that its modulus is never higher than 0.14. Now,
in order to explore the structure of the latent processes in the decomposition we consider Ms

and Mg,

Moz =F'xy, x4 = ng)xt_l 4wy, forall t=1,...,500
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Figure 2: (a) Latent process z;1 in the decomposition of z; based on the actual values of the
TVAR(3) model parameters. (b) Latent process yﬁt) in the decomposition of the z; based on

the actual TVAR(3) model parameters. (c) Latent process zi(’zl) based on a TVAR(2) process;
(3)

this process also corresponds to the actual data series. (d) Trajectory of r;;. (e) Trajectory

of rg’t) (f) Trajectory of rft) (g) Trajectory of )\g?t) (h) Trajectory of /\g’t) (i) Trajectory of
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and

Ms:z=F'xy, x4 = Gg?’)xt_l 4wy, forall t=1,...,500,

with
, $1t Pt2 O . d1t P2 Pi3
cP= 1 o o, g¥=[ 1 0o o
0 1 0 0 1 0

Then, we obtain two decompositions for x;, one based on model My, and another one based
on model M3,

2) (3) (3)

( _
Ty =24 and T =214 +Yiis
bl b b

where zft) is a TVARMA(2,1) process with time-varying characteristic modulus rft) and

wavelength )\ft) (or frequency 27/ )\ft)) Figure 2 (c) shows the process zft) (this process

obviously corresponds to the actual data series z;) and Figures 2 (f) and (i) display the
trajectories in time of the chacteristic modulus and wavelength, rft) and )\fz Similarly,

zﬁt) is dominated by a TVARMA(2,1) process with time-varying modulus and wavelength

rf’t) and )‘ft) and y; ¢ is dominated by a TVAR(1) process with time-varying modulus rg’t) .

Figures 2 (a), (b), (d), (e), (g) and (h) display the processes zf’t), y(3) and the trajectories

of r@ , rgt) )\g?:t) and )\(t) respectively. The decomposition in (9) is such that z;; = zft)

for t = 1,...,250 and 21; = zé’t), Y = yﬁg for t = 251,...,500. In this particular case
xgt) —:12532 fort=1,...,250.

In order to illustrate other aspects of the computation and interpretation of the latent
processes in the decomposition, assume that a TVAR(p;) was fitted to the data and that we
want to compute the decomposition based on estimated values of the model parameters (2>t
and p;. Furthermore, assume that the estimated values of the time-varying AR coefficients
are exactly the true values, i.e. ¢, = ¢, = (h1,6, P24, #3,¢)', but that p, =2 for t =1,...,350
and p; = 3 for t = 351,...,500. Then, based on the estimated values of the parameters, we
would have the following decomposition,

. :{ 21 for t=1,...,350 (10)

216 +y1¢ for t=2351,...,500,

with z1; = zft) for t = 1,...,350 and 21 = zﬁt), Y1t = yf’t) for ¢t = 351,...,500. In
other words, the decomposition based on the estimated model is such that z; ; is a process
with a TVARMA(2,1) structure with characteristic modulus r£2 and wavelength )\gt) for

t =1,...,350 and a process dominated by a TVARMA(2,1) structure with characteristic

modulus rft) and wavelength )\g,z for ¢t = 351,...,500.

4 Study of synthetic data

In this Section we present the analysis of a synthetic data set via TVAR models that consider
model order uncertainty. Figure 3 (a) displays the synthetic data at the bottom and the
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two main quasi-periodic components ordered in terms of decreasing wavelength from the
bottom up, i.e. component (1) corresponds to the higher wavelength component. The latent
processes shown in the graph were computed using the actual values of the ¢, parameters for
t=1,...,2000. The first 500 data points were generated from a TVAR(2) while the last 1500
observations were generated from a TVAR(4). The trajectories in time of the characteristic
wavelengths, moduli and amplitudes associated to the actual time-varying AR parameters
are displayed in Figures 3 (b), (c) and (d) respectively. We analyse the series with various
TVAR(p;) models, with p; taking values from ppin = 2 up t0 pmax and pmax = 4,5,6,7,8.
Relatively high values of the discount factor for the AR coefficients, in the range 0.99 — 0.998
are considered. The transition probabilities that describe the evolution of the model order in
time are defined as follows,

Gii J=1

Gi—1i J=1t—1, @< Pmax
qi—2,i J=1—2, 1< Pmax
gi+1; J=1t+1, 72> pmin
Gi+25 J =112, ©2> Pmin
L 0 otherwise,

Plps = ilpt—1 = j]

A

with high values of g;;, usually in the range 0.9 — 0.99. A discrete uniform prior P(p; = i) =
1/(Pmax — Pmin + 1) for ¢ = Pmin, - - - , Pmax 1S set on the model order while relatively diffuse
and conjugate normal/inverse-gamma priors are considered for the AR coefficients and the
innovations variance.

Figure 4 shows the estimated posterior mean, the estimated posterior median (solid lines)
and 95% posterior bands (dotted lines) for the model order at each time t. These results
were obtained using pmin = 2, Pmax = 8, 8 = 0.995, and a transition probability matrix

0.97 0.015 0.015 0 0 0 0
0.011  0.97 0.011 0.008 0 0 0
0.006 0.01 097 0.01 0.005 0 0
Q = 0 0005 0.01 097 0.01 0.005 0 ,
0 0 0005 0.01 097 0.01 0.005
0 0 0 0.008 0.011 0.97 0.011
0 0 0 0 0.015 0.015 0.97

and are based on 2000 samples of the posterior distribution taken from 8000 iterations of the
Gibbs sapler after a burn-in of 3000 iterations. The graph shows that the model order order
roughly oscillates between 2 and 3 for the first 500 observations, with a median p; = 2, in
agreement with the actual value of the model order between ¢ = 1 and ¢t = 500. After ¢ = 500
and up to approximately ¢ = 1250, the model order takes values between 2 and 5, with a
median p; = 3. From about ¢ = 1250 until the end of the series, p; oscillates between 3 and
5 with a median p; = 4 for most of the time interval. The posterior median for p¢, starts
around p; = 2, and it increases up to roughly p; = 4 towards the end of the series.

Figures 5 (a) and (b) show the estimated latent processes, ordered by decreasing wave-
length from the bottom up, and the trajectories of the characteristic wavelengths for a
TVAR(4) model. The highest amplitude characteristic wavelength displays a similar trajec-
tory in time to the trajectory of the actual characteristic wavelength up to roughly ¢ = 1000.
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Figure 3: (a) Simulated process and the two main quasi-cyclical components ordered by
wavelength. (b) Traces of values for wavelengths corresponding to the 2 main complex roots
ordered by wavelength. (c) Traces of values for moduli corresponding to the 2 main complex
roots ordered by wavelength. (d) Traces of values for amplitude corresponding to the 2 main
complex roots ordered by wavelength.
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Figure 4: Simulated series: the estimated posterior mean and posterior median for model
order at each time ¢ with 95% posterior bands.
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Figure 5: (a) Fixed order TVAR: simulated process and estimated quasi-cyclical components
ordered by decreasing wavelength from the bottom up. (b) Fixed order TVAR: Traces of
estimated values for wavelengths. (c) TVAR(p;): simulated process and the main two esti-
mated quasi-cyclical components ordered by wavelength. (d) TVAR(p;): Traces of estimated
values for wavelengths.

After ¢t = 1000 the estimated highest characteristic wavelengths obtained with the TVAR(4)
model have higher values than the actual characteristic wavelengths. The lowest amplitude
characteristic wavelengths appear intermittently from ¢ = 1 to roughly ¢ = 1000, i.e. switches
from complex to real characteristic components are experienced at this time period, and the
trajectory of the estimated characteristic wavelength is similar to the trajectory of the actual
characteristic wavelength (see Figure 3 (b)). Figures 5 (c) and (d) show the estimated latent
processes in the decomposition, again ordered by decreasing amplitude from the bottom up,
and the trajectories of the characteristic wavelengths for the TVAR(p;) model described pre-
viously, based on the estimated posterior median for the model order at each time ¢, p;. The
highest characteristic wavelength displays similar values to the actual highest characteristic
wavelength from ¢ = 1 up to aproximately ¢ = 1280, and values similar to the actual lowest
characteristic wavelength after ¢ = 1280.

5 An application: analysis of an EEG trace via TVAR models
with uncertainty on the model order

Consider again the EEG series displayed at the bottom of Figure 1. The latent components

in the decomposition of the series shown in the graph, were computed using estimated pos-

terior means for the AR coefficients and the innovations variance of a TVAR(12) model. In
this Section, we model the series with a TVAR(p;) whose model order at time ¢, p;, can take

14
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Figure 6: From the top down we have the EEG data, the estimated posterior mean for model
order and each time ¢ with 95% posterior bands and the estimated posterior median for model
order at each time ¢t with 95% posterior bands

values from pmin = 0 up t0 pmax = 14. Higher values of pmin and pmax were also consid-
ered, obtaining similar inferences in terms of the latent structure. The transition probability
structure considered here is similar to the structure described in the previous Section for the
synthetic data example. In particular, high values of ¢;;, usually in the range 0.9 - 0.9999,
are taken for ¢ = 0,...,14, i.e. abrupt changes in the model order from time ¢ — 1 to time ¢
are not permitted. Similarly, high values of the discount factors for the AR coefficients, in
the range 0.99 - 0.999, are used. A discrete uniform prior P(p; =) =1/15 for ¢ =0,...,14
is set on the model order and relatively diffuse and conjugate normal/inverse-gamma priors
are used for the AR coefficients and the innovations variance.

Figure 6 displays from the top down, the EEG data, the trajectory in time of the estimated
posterior mean for model order with 95% posterior bands (center panel) and the trajectory
of the estimated posterior median for model order with 95% posterior bands. The model was
specified with a discount factor 8 = 0.997 for the AR coefficients, and transition probability
matrix defined by, ¢; = 0.99 for all ¢; g; ;41 = gi3—1 = 0.004 and g; ;42 = ¢;;—2 = 0.001 for
2 <1 <125 go1 = qo2 = q14,13 = qua,12 = 0.005; g10 = q1,2 = q13,14 = @13,12 = 0.004 and
¢1,3 = q13,11 = 0.002. The instantaneous posterior means, medians and 95% posterior bands
for model order displayed in Figure 6, are based on 5000 samples of the posterior distribution
taken from 15000 iterations of the Gibbs sampler after a burn-in of 3000 iterations. The
graphs show that the model order is higher in middle parts of the seizure - roughly from
t = 350 until ¢ = 1300 - than at the beginning and towards the end of the seizure. The
posterior median for model order increases from p; = 4 up to p = 12 at the beginning of the
seizure and it decreases from p; = 12, at approximately ¢ = 1300, to p; = 4 at approximately
t = 2400. The patterns observed in the trajectories of the estimated model order posterior
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Figure 7: Estimated posterior probabilities for model order at each time ¢

mean and median over time, indicate that the complexity of the latent structure is higher at
middle parts of the seizure than at the beginning and once the seizure is over. Furthermore,
the complexity of the data structure measured as a function of model order starts to decrease
prior to the seizure dissipation, just before ¢ = 1500.

Figure 7 displays estimated posterior probabilities for model order at each time ¢. Model
orders 11,12, 13 and 14 have higher posterior probabilities at the middle parts of the seizure,
while lower model orders are preferred for starting and late periods of the series.

Figure 8 shows the decomposition of the EEG series based on estimated posterior means
of the AR coefficients and posterior medians for model order at each time ¢. From the bottom
up, the graph displays the data followed by estimated latent processes in order of decreasing
amplitude. Component (1) has the highest amplitude and it is related to a pair of complex
conjugate characteristic roots from approximately ¢ = 1 to ¢ = 2200. This component is
also associated with the highest characteristic wavelength for almost all £ in the time interval
that spans from ¢t = 1 to t = 2200. Trajectories of the wavelengths related to the quasi-
periodic processes, based on estimated posterior means of the AR coefficients truncated at the
posterior median for model order, appear in Figure 9 (a). Component (1) has a characteristic
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Figure 8: Data and estimated components in the decomposition of an EEG series based
on a TVAR(p;). From the bottom up, the graph displays the series followed by estimated
components in order of decreasing amplitude.

wavelength of about 10 to 8 from ¢ = 1 to approximately ¢ = 850 that then increases from
12, right after ¢ = 850, up to roughly 20 at ¢ = 2200 (see Figure 9 (a)). Equivalently, in
terms of frequency in the original sampling scale (see discussion on West et al. 1999 about
subsampling of the original data series), we have a dominant frequency of about 4.35 to 5.33
Hz during the first 850 observations and a frequency that decreases from approximately 3.56
Hz right after ¢ = 850 to 2.13 Hz at ¢ = 2200. These findings are consistent with the results
presented in West et al. (1999) obtained with a fixed order model, but now we are taking
model order uncertainty into account. After ¢ = 2200 the latent process (1) is associated to
a real characteristic root with relatively high time-varying modulus. Component (2) in the
decomposition corresponds to a real characteristic root and component (3) is a quasi-periodic
process related to the second highest wavelength. Component (4), denoted in the Figure as
“fast waves”, is the sum of all remaining low amplitude processes that correspond to high
frequency and noise components.

Figure 9 (a) sketches the frequency components present in the data taking into account
uncertainty on the number of such components over time. However, these wavelength trajec-
tories display jumps and artifacts that are simply the result of using the first p; elements of
the estimated ¢, vector at each time ¢. A graph of the approximate wavelengths trajectories
can be obtained by considering the maximum order model. Figure 9 (b) displays the wave-
lengths trajectories of the first four quasi-periodic components computed at the estimated
posterior mean of ¢, with p; = pmax = 14 for all ¢. The highest wavelength also corresponds
to the highest amplitude component in the decomposition for ¢ = 1 to roughly ¢ = 2100.
This is indicated in the Figure by the dark segment on the trajectory. After ¢ = 2100 this
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Figure 9: (a) Traces of wavelengths corresponding to the first four quasi-cyclical components
computed at instantaneous model order medians. (b) Traces of wavelengths corresponding
to the first four quasi-cyclical components ordered by wavelength computed at the maximum
order for all ¢.

quasi-periodic process dissipates being a real component the one with the highest amplitude.
The second highest and the lowest wavelengths in the Figure correspond to the second high-
est amplitude components. Again, the darker segments indicate the portions in which each
component is dominant.

As mentioned before, inferences obtained by including model order uncertainty as a mod-
elling component are consistent with the results obtained in previous analyses of the same
series (West et al., 1999; Krystal et al., 1999). However, additional insight in terms of com-
plexity of the latent structure is gained using a TVAR(p;) model approach. For instance, the
decrease in model order observed just prior to the end of the seizure might be relevant in
connection with assessing the clinical efficacy of the treatment.

6 Remarks, conclusions and future directions

In this paper we presented a TVAR model that fully incorporates uncertainty on model
order with a first order random walk. The model can be decomposed in terms of latent
processes, perhaps of quasi-cyclical nature, which generalises the decomposition results for
fixed order TVAR presented in West et al. (1999). Based on MCMC methods, we explored the
performance of the model for a synthetic series and an EEG series. In both cases, we studied
the impact of discount factor selection and specification of transition probabilities for model
order in terms of inference on latent structure and on the model order p;. Since model fitting
relies on simulation, the TVAR(p;) requires a higher computational demand than a fixed order
TVAR. Additionally, and as seen in the EEG series analysis of Section 5, the TVAR(p;) may
need more thoughtful interpretations for the estimated latent components and trajectories
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of wavelengths, moduli and amplitudes corresponding to the different characteristic roots of
the process.

In connection to other mixture models, the TVAR(p;) can be seen as a multi-process,
class IT mixture model (West and Harrison (1997), pp. 444-445) where each of the defining
models is determined by the possible values of p;. The limitation of this approach, is that it
introduces a mixture of DLMs where each component has state vectors of different dimension.
In consequence, expressions for the posterior distributions of the state vectors and model order
are not available in closed form and the multi-process requires MCMC methods as presented
in this paper. In contrast, an alternative for the TVAR(p;) arises if we consider a mixture of
TVARs, each with a fixed order, and assuming that one of the models holds for all time t.
Such a mixture introduces a multi-process class I model with posterior distributions available
in closed form. Although, this multi-process model can be handled easily, it lacks flexibility
compared to the TVAR(p;) since it does not allow instantaneous transitions on model order.
Comparisons on these lines are part of current research.

In a further extension, we are considering TVAR models of time varying order but with
priors on the characteristic polynomial roots following the work by Huerta and West (1999)
for standard autoregressions. At each time ¢, the model controls for the number of complex
pairs and real reciprocal roots and consequently defines model order uncertainty on p;. Imple-
mentation issues have to explore different evolutions on the reciprocal root parameterisation
and consideration of both particle filter methods and Forward Filtering Backward Simulation
algorithms. We expect that this new approach will produce very interesting results and lead
to challenging methodological issues.
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Appendix: posterior sampling algorithm

We describe the details to simulate samples from the full posterior distribution of (¢;, a2, p;)
given D, for t = 1,...,n with the model specifications described in Section 3. Define ® =

{1,--,0,}, with ¢, = (D11, Dtpmar)> X = {x1,..., 2}, and P = {p1,...,p,}. We
follow a Gibbs sampling format defined in two stages.

e Sampling from the full conditional distribution of & and o2.

This can be done by sampling ® from p(®|X, P, 0?) and sampling o2 from p(o?|X, @, P).
Conditional on model order, we have the DLM structure

vy = Fip+e
¢y = 1+ &

with Fy = (11,4@4-1,-- -, Lppae tTt—pmae) - Efficient generation via Forward Filtering-
Backward Sampling (Carter and Kohn, 1994) can be performed conditional on X, P,
and o2. The set of system covariance matrices {Uy;t = 1,...,n} is assumed known or
spec1ﬁed by a single discount factor following standard DLM theory (West and Harrison,
1997).

In order to sample from p(c?|X, ®, P), we compute

Pmax

= Z( Z 1 t,iPt,iTt—;)
t=1 j=1

and sample a distribution proportional to p(2)(g?)~(¢t1) exp{—f(/0?} witha = n/2—1
and 8 = e€2/2. We are assuming a reference prior for o2, p(6?) « 1/0?. Inverse gamma
priors are conditionally conjugate.

e Sampling from the full conditional distribution of P = {p1,pa,...,pn}-

Let D; be the information up to time ¢, i.e., Dy = {Dg, X3, ®;, 02} with Xy = {z1,..., ¢},
&, ={dy,---,¢:}. Plpt = t|pi—1 = j] defines the transition probabilities for model or-
der between timest—1and ¢. Fort =1,2,3,...,n and % = pujn, - - - , Pmax, We recognise
that if p; = ¢ then I; is a vector whose first i entrances are ones and the remaining
are zeroes. The filtering part of the algorithm requires that we compute and save the
probabilities P[p; = i|D¢] and P[p; = i|D¢_1], for i = pmin,---,Pmax and t = 1,...,n
By Bayes theorem,

Plp; = i|Dy] o f(zi|e, 0, 1t) Plpy = i|Dy_1],

where f(x¢|¢¢, 02, 1;) is the likelihood function for the observation z; that is easily
obtained with the model definition of the TVAR. Additionally,

Pmax

Plpy =i|Di—1] = > Plpt = ilp—1 = j]P[pt—1 = j|Dy—1]
J=Pmin
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with P[p; 1 = j|D¢—1] the posterior probability evaluated at time ¢ — 1. For ¢t = 1,
Plpi = j|Dy] is a discrete uniform distribution.

Now, to simulate each entrance of P, at each time ¢, we apply the Backward Simulation
Sampling algorithm step for discrete random variables presented in Carter and Kohn
(1994). First, we generate a value p}, from the distribution P[p, = i|Dy]. Then, for
t=n-1,n-2,...,1, we compute Plp; = i|psy1 = p},, D¢] with the expression

Plpiy1 = pii1|pe = 1] P[py = i| Dy
Plpir1 = piy1|Dy]

Plp; = i|psr1 = pir1, Di) =

where p;,; is a generated value of the distribution Plp;11 = i|pi12 = pi 9, Di]. We
sample a value p} from Plp; = i|ps11 = pj 1, D¢] and continue until ¢ = 1. The values
pi,P5,--.,py are a sample from the conditional posterior distribution of P.
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