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Abstract 
Assessments of uncertainty in climate prediction require a meaningful ensemble of model 

configurations that represent the limitation of observations to constrain arbitrary choices 

in model formulation such as the values assigned to its multiple, non-linearly related 

parameters. We present a data directed importance sampling strategy that makes optimal 

use of distributed computing resources and improves the sampling efficiency over 

uniform or random sampling strategies by several orders of magnitude. The algorithm is 

then further developed to take into account uncertainties in our ability to establish a 
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normalized metric of model-data distance owing to the correlations that exist in space and 

time among the 15 fields that are used to evaluate model skill. By incorporating estimates 

of this uncertainty in the prior, further improvements can be attained in the accuracy and 

efficiency of the stochastic sampling algorithm. The algorithm is then applied to 

estimating an a posteriori probability density for 6 parameters important to clouds and 

convection of the Community Atmosphere Model version 3.1. The top six performing 

parameter sets improved model skill by 10% with nearly identical skill scores, but for 

different reasons related to the wide range of selected parameter values. Efficiently 

quantifying these uncertainties will provide important insights into the limitations of 

climate model predictive skill within a time frame practical for climate model 

development.  

1. Introduction 
The 2001 Working Group I report from the Intergovernmental Panel on Climate Change 

(IPCC, 2001) documents a wide disparity among existing models of the climate system in 

their response to projected increases in atmospheric CO2 concentrations. Predictions of 

global mean surface air temperature sensitivity to a doubling of atmospheric CO2 

concentration (in ~100 years) range from ~2 to 6 degrees (LeTreut and McAvaney, 2000; 

Cubasch et al., 2001). There are a number of possible reasons why these differences exist. 

Although each climate model has been tuned to reproduce observational means, each 

model contains slightly different choices of model parameter values as well as different 

parameterizations of under-resolved physics (e.g. clouds, radiation, convection). Climate 

model uncertainties are primarily estimated from model intercomparison projects (e.g. 

Gates et al. 1999; Joussaume and Taylor 2000; Meehl et al., 2000; also see 
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www.clivar.org/science/mips.htm for a list of 31 ongoing projects). It is often assumed 

that the range of behaviors exhibited by models that participate in the intercomparison 

projects is representative of a realistic range of probable outcomes (e.g. Meehl et al., 

2000). Although there may be some recognition of which models perform better than 

others, the qualitative approach to evaluating model performance does not lend itself to 

assigning quantitative likelihoods to model predictions. The 2001 IPCC report, in its 

assessment of current research needs, calls for “…a much more comprehensive and 

systematic system of model analysis and diagnosis, and a Monte Carlo approach to model 

uncertainties associated with parameterizations…” (Section 8.10, McAvaney et al., 

2001). The computational expense of typical atmosphere-ocean general circulation 

models (AOGCMs) is a major barrier to reaching this goal. Two approaches have been 

taken to address uncertainties arising from climate model parameters. One is based on a 

reduced complexity climate model (Forest et al., 2000, 2001, 2002) and the other one 

distributes the computational burden among thousands of under-utilized personal 

computers (see www.climateprediction.net; Allen, 1999; Stainforth et al., 2005). Data 

directed importance sampling for climate model parameter uncertainty estimation 

concerns an improved framework for taking advantage of distributed computing 

resources toward the goal of identifying multiple, non-linearly related parameter values 

of a single climate model that reflect observational constraints on climate model 

uncertainty. This goal is not trivial insofar as a single climate model experiment typically 

uses a 30-year simulation or 1500 cpu hours to characterize a climate state and one may 

need to complete millions of experiments to randomly sample all the potentially relevant 

combinations of 10 or more parameter values. 
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Predictive uncertainty up to this point has been mainly associated with uncertainty in 

CO2 emissions and/or natural variability, factors that may be treated in a fairly 

straightforward manner. A far greater challenge is to represent the uncertainty that arises 

from arbitrary differences in climate model parameter values when the parameters 

themselves are non-linearly related (Kheshgi and White, 2001).  This fact presents unique 

challenges to those working to improve climate model predictions. One example of this 

challenge became apparent within a presentation at the 2001 NCAR Community Climate 

System Model (CCSM) Workshop in Breckenridge, Colorado. In an effort to improve 

simulations of arctic climate, changes were made within the infrared radiation scheme to 

make it more physical. This had the effect of improving the simulation of arctic climate 

but at the expense of drying out the tropics. This was remedied in part by increasing the 

amount of water that is allowed to evaporate from hydrometeors (rain drops) within 

unsaturated downdrafts of convective clouds. In another particularly dramatic example, 

Williams et al. (2001) document the effect of specific changes made in the process of 

creating the next version of HadCM2 (Hadley Center Climate Model 2, United 

Kingdom). The authors noticed that the response of precipitation over the tropical Pacific 

to a doubling of atmospheric CO2 concentration within HadCM3 was entirely different 

from the distribution found within HadCM2. The cause of these differences was found to 

originate from the combined influence of small changes within two parameters affecting 

mixing within the boundary layer and the critical humidity for cloud formation. Many of 

these non-linear behaviors within models go unpublished, as the root causes are often 

hard to identify and there often is not a strong link to any particular science question. 
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However, even these few examples underscore the need for a systematic approach for 

evaluating climate model performance and a way to navigate through the seemingly 

endless cycle of ‘educated guessing’ that now takes place each time a new version of a 

climate model is released.  

 

There are two useful objectives to an uncertainty analysis that considers how non-ideal 

parameter value choices affect model predictions of climate. The first is to identify sets of 

model parameter values that define members of an ensemble that is assured to be 

representative of the combined uncertainty in the observations and model physics. The 

second is the ability to identify an optimal set of parameter values that maximizes climate 

model performance. As of yet, there has been little progress on meeting these objectives 

outside of what can be gleaned from individual sensitivity experiments and model 

intercomparison projects. The principal reason for this lack of progress is that most 

traditional methods for meeting the first objective (e.g. Monte-Carlo or 

Metropolis/Gibbs’ ‘importance sampling’) require 104 to 106 model evaluations 

(experiments) for problems involving fewer than ten parameters.  

 

Over the past decade, there has been significant progress within the mathematical 

geophysics community for solving non-linear problems in geophysical inversion using 

statistical methods to account for the possibility of multiple solutions (interpretations) of 

geophysical data (for a review, see Barhen et al., 2000).  Like climate models, 

geophysical models are complex, computationally expensive, and involve many potential 

degrees of freedom. Within the geophysics community, particular emphasis has been 
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placed on efficiency, although with some measured compromises.  Similarly dramatic 

advances have taken place within the statistics community over the past decade on a class 

of methods of statistical inference known as Markov Chain Monte-Carlo (MCMC). In 

particular, greater awareness now exists for how different challenges in robust statistical 

inference can be addressed with Bayesian inference and sampling rules that obey the 

properties of a Markov chain. In what follows we document progress being made on both 

these fronts to advance the feasibility of quantifying climate model uncertainties that 

stem from multiple, non-linearly related parameters.  

 Other, potentially useful approaches exist to estimating parameters and 

uncertainties for complex systems. Examples include Latin-hypercube sampling and 

kriging interpolation techniques to reduce the number of experiments that may be needed 

to estimate the multidimensional dependencies (Sacks et al. 1989; Welch et al. 1992; 

Bowman et al. 1993; Chapman et al. 1994; Santer et al., 2003). Within the climate 

community, there has been some interest to apply the Ensemble Kalman Filter which uses 

time trajectories of the climate system in much the same way traditional data assimilation 

works in numerical weather prediction (e.g. Grell and Devenyi, 2002; Evensen, 2003; 

Annan et al., 2007). This may provide another computationally feasible approach to the 

tuning problem, but this approach still needs to prove its viability for the longer-term 

climate problem. One concern is that many of the effects and feedbacks of model 

parameter changes take time to express themselves. The parameter choices constrained 

by short term weather would not be the same or ideally suited for a model meant for 

predicting climate change (Lea et al., 2000). The point that will be developed below is 

that estimates of the posterior distribution and optimization of model skill can be 



Wiley STM / Editor: Advanced Computational Infrastructures for 
Parallel and Distributed Adaptive Applications,  
Chapter 6 / Authors Jackson, Sen, Stoffa, Huerta / filename: ch6.doc 

page 7

performed through direct sampling, in parallel, with relatively few iterations and without 

surface approximations. 

 

2. Computing Climate Model Parameter 
Uncertainties in Parallel 

The computation of parametric uncertainties in a climate model will take advantage of 

two levels of parallelism; the parallelism of the climate model code and the parallelism 

permitted by the stochastic sampler.  In order to appreciate the advantages of the choice 

of stochastic sampler it will be helpful to first document the computational characteristics 

of the Community Atmosphere Model version 3.1 (CAM3.1) for which we are currently 

testing the effects of 6 model parameters important to clouds and convection. CAM3.1 

resolves the physics and fluid motions of the atmosphere on a 64 x 128 spectral grid with 

26 vertical levels. For parallelism, the code exploits domain decomposition by the 64 

latitude bands which place an effective upper limit on number of processors for which the 

model can be run efficiently. The performance of CAM3.1 may be expressed by the 

number of simulated years per wall clock day for a given number of processors. This 

number may be normalized by the number of processors (years per day per processor) to 

give a measure of the scaling efficiency of the code. Table 1 shows the performance of 

CAM3.1 on a distributed computing platform available at the Texas Advanced 

Computing Center. This platform consists of a distribution of Dell PowerEdge 1955 

Blade servers each with dual socket/dual core 2.66 GHz Intel 64-Bit Xeon (Woodcrest) 

processors and a 1333 MHz Front Side Bus and dual channel 533 MHz fully buffered 

DIMMS. Each server is interconnected by an InfiniBand switch with a nominal 

bandwidth of 1 Gigabit/s with 6µs latency, the overhead time for sending a packet of 
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information between any two processors. Climate models do not scale particularly well 

within distributed computing environments because of the frequency at which 

information needs to be shared among processors. This makes scaling performance 

numbers more sensitive to latency numbers. 

 

The performance numbers of table 1 provide a reality check on the enormity of the 

problem to systematically evaluate all possible combinations of parameter values. 

Without model parallelism, a single 10-year long experiment would take over a week. In 

order to take advantage of the data-directed importance sampling described below, one 

needs at least 150 of these experiments to be run sequentially. We therefore depend on 

the model parallelism in addition to the stochastic sampling algorithm parallelism to 

obtain scientifically relevant results within a reasonable time frame. 

3. Stochastic Inversion 
Bayesian statistics uses rules of conditional probabilities to infer how a set of parameters 

may be constrained by available observations given knowledge of a system’s physics. 

The desired result is known as a posteriori probability density function (PPD). The PPD 

is a powerful summary of information about how observational data can inform us about 

key relationships of a physical system. The key to making this work efficiently is to allow 

data to be involved in selecting candidate parameter values through a meaningful metric 

of the distance between observations and model predictions. That is, the improved 

efficiencies come from the process by which the choices of candidate parameter values 

depend on past values. This dependency is not great news for application in distributed 

computing environments as one wants to be completing as many experiments at once as 
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possible. Moreover, most algorithms for choosing candidate parameter values are not 

terribly efficient, even when directed by data, and whatever efficiency they do achieve is 

sensitive to characteristics of the shape of the likelihood function, the metric of model-

data discrepancies as a function of model parameters. 

 

The optimal approach to stochastic inversion for data and/or computational demanding 

problems is a subject of current research. One strategy that provides an adequate blend of 

efficiency and accuracy is Multiple Very Fast Simulated Annealing (Sen and Stoffa, 

1996; Jackson et al. 2004).  The rules for selecting samples is similar to a 

Metropolis/Gibbs sampler insofar as candidate parameter set values are either accepted or 

rejected (for stepping through parameter space) in proportion to a probability  

⎟
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⎛ ∆−
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T

EP exp ,         (1) 

where  is the change in the metric of model-data discrepancies, 

also called the “cost function”, for going from a model with parameter set values mk to 

model with parameter set values mk+1. The mathematical form of E(m) is defined below. 

The Metropolis/Gibbs sampler is sensitive to the algorithm “temperature” parameter T 

which controls how freely the stochastic sampler will jump around parameter space. If 

too high a temperature is selected, then the benefits of data-directed sampling are lost. If 

too low a temperature is selected, then sampling will not be representative of the range of 

possible solutions. Multiple Very Fast Simulated annealing avoids the ambiguity of 

knowing in advance what the ideal temperature is by starting at a relatively high 

temperature and allowing the stochastic sampler to experience a range of temperatures 

according to the schedule in which iteration (k) has temperature 

)()( 1 kk EEE mm −=∆ +
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The size of the steps that are taken through parameter space within MVFSA is connected 

to temperature with larger steps at higher temperatures and smaller steps as T approaches 

0. After a relatively few number of iterations, depending primarily on the dimensionality 

of m, the MVFSA algorithm will converge on a solution that tends to favor the global 

minimum of the cost function. The convergence process should be repeated 10 to 100s of 

times to accumulate sufficient statistics to estimate the PPD. The advantage of MVFSA 

for distributed computing is that the convergence attempt chains can be run in parallel 

with the final estimate of the PPD coming from an accumulation of statistics across 

chains. Because of its data-directed sampling, MVFSA can be several orders of 

magnitude more efficient than the Metropolis/Gibbs sampler (Figure 1). So the 

combination of the sampling efficiency and the fact that one can separate the problem 

into multiple pieces brings a new class of problems within reach of Bayesian stochastic 

inversion.  

 

4. Application to Climate Prediction 
Within the Bayesian formulation of probability, the likelihood of a given choice in 

parameters is measured by an exponential of the effects of those parameters on model 

performance (i.e. the cost function) relative to all other parameter choices tested. The use 

of exponential implies Gaussian errors in both the data and observations. Many potential 

applications of Bayesian stochastic inversion may not know or may not depend heavily 

on quantifying these errors. For instance, in some cases it may be sufficient to simply 

identify the locations of the peaks in the PPD and exhibit the uncertainty as a qualitative 
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re-weighting of the PPD given slightly different scaling factors, S, for the uncertainty in 

size in the error normalization (data covariance) part of the metric of model performance,  

∫ ⋅−

⋅−=
mm

mm
dES

ESPPD
))(exp(

))(exp()( .      (3) 

For the climate prediction problem, where there is more interest in quantifying the 

likelihood of extremes, it is necessary to develop a more formal way to incorporate 

information about sources of uncertainty.  In the following two sections, we discuss why 

there exists a need for incorporating prior information acknowledging uncertainties in 

selecting ‘S’ into the definition of the metric of model performance and its role in 

improving the efficiency and accuracy of estimating the PPD. 

 

4.1 Definition of the Metric of Model 

Performance 

The cost function E(m) contains an inverse of the data covariance matrix  which 

provides a means to normalize the significance of model-data mismatch among  N 

different fields dobs (e.g. surface air temperature, precipitation, etc…) and model 

predictions g(m) at M points (note that each field may contain a different number of 

points M), 
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Equation (1) includes vector m of model parameter values and T for the matrix transpose. 

The data covariance matrix includes information about sources of observational or model 
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uncertainty, including information about uncertainty originating from natural (internal) 

variability, measurement errors, or theory. This form of the mean square error E is the 

appropriate form for assessing more rigorously the statistical significance of modeled-

observational differences when it is known that distributions of model and observational 

uncertainty are Gaussian. Our focus here will be entirely on sources of uncertainty that 

arise from natural variability.  

 

If one assumes uncertainties are spatially uncorrelated, the data covariance matrix will 

contain non-zero elements only along the diagonal. When considering uncertainty 

originating from spatially uncorrelated natural variability, each of these elements is equal 

to the variance of the natural variability within the corresponding grid point where model 

predictions are compared to observations. However data points are correlated in space, 

season, and among fields. Some points and/or fields have very little associated variance, 

such as rain over a desert. The cost function can be very sensitive to the choices one 

makes in accounting for these correlations and/or singularities within the data covariance 

matrix (Mu et al., 2004).  Estimating normalizing factors for complex systems is an area 

of active research (Gelman et al., 2004, see page 345). Although not satisfactory to a 

statistician, some have treated this unknown through a re-weighting of the posterior 

distribution (i.e. S within equation 3). The problem is that such a re-weighting does not 

give the statistical sampling algorithm the opportunity to only sample from the posterior 

which can lead to in-efficiencies and biases in the results. A more statistically correct 

procedure would be to introduce a renormalizing factor before sampling. One empirical 

Bayesian approach is to estimate S in advanced through an ensemble of experiment in 
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which one imposes uncertainties. For instance, in the climate problem where the 

uncertainty is from natural variability, one may consider how the cost function would be 

affected if the climate model (or data) were taken from different segments of a long 

integration. One may estimate a fixed re-normalizing factor to be ES ∆= 2 where 

 represents the 2σ range in cost function values that arise from internal 

variability. One may then apply the logic that parameter sets that are ∆E away from the 

optimal parameter set will be given a likelihood measure of exp(-2), which is equivalent 

to the 95% probability measure for a normalized Gaussian distribution. 

095 EEE −=∆

 

4.2 Incorporating Uncertainties in Error 

Normalization in the Prior 

The re-weighting of samples according to equation (3) give a skewed perspective of the 

PPD as it tends to have more narrow peaks and fat tails relative to a cost function that had 

been correctly normalized. This is because correlations among constraints in the data tend 

to increase the significance of changes in the cost function. Thus stochastic sampling 

uninformed about the effects of these correlations will tend to sample more frequently the 

regions that end up being weighted down in equation (3). This represents a sampling 

inefficiency.  

 

Along the lines suggested by Gelman et al. (2004) it is possible to treat S as one of the 

uncertain parameters within MVFSA and use principles of Bayesian inference to select 
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candidate choices of S from a prior Gamma distribution whose mean and variance is 

determined by a process similar to the choice of S in Section 4.1. The choice of a Gamma 

distribution was mostly for mathematical convenience and given that a Gamma prior is 

"conditionally conjugate" to our definition of the cost function. It is a mathematical way 

to express uncertainties in the denominator (i.e. the variance). The Gamma distribution 

looks alike a skewed Gaussian distribution with no probability for a value of 0, a mean 

value that corresponds to the choice of S from the previous section, and a tail that 

conveys uncertainties in defining an appropriate S.  In a fully Bayesian approach, one can 

construct candidate choices of S to depend on a corresponding evaluation of E(m) in 

order to incorporate uncertainties in the data covariance matrix into the stochastic 

sampling algorithm (Jackson et al, in prep).  

 

Although this revised method adds a randomly generated number S to the 

acceptance/rejection criterion (equation 1), there can be significant improvements in the 

accuracy and efficiency (Figure 1) to estimating the PPD. In fact, samples selected in the 

case where S is included through a prior no longer require weighting for estimating the 

PPD as these samples are now assumed to be drawn directly from a distribution that is 

proportional to the actual PPD. The effect of this choice can be dramatic as illustrated in 

Figure 2 where the PPD derived from including S as a prior is a much better match to the 

target distribution of an idealized example than without it. 

 

5. Results 
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 The MVFSA stochastic sampler has been applied to estimating the PPD of six 

parameters (Table 2) of the Community Atmosphere Model version 3.1 (CAM3.1) 

important to clouds and convection as constrained by observations or reanalysis of 15 

fields separated into 4 seasons and 6 regions covering the globe (Mu et al., 2004). In 

addition MVFSA incorporates a prior distribution estimate for S, the parameter 

controlling inadequacies of properly defining the data covariance matrix (Jackson et al, in 

prep).  

 

 Each experiment testing the sensitivity of CAM3.1 to combined changes in select 

parameters follows an experimental design in which the model is forced by observed sea 

surface temperatures (SST) and sea ice for an 11-year period (March 1990 through Feb. 

2001). The model includes 26 vertical levels and uses an approximately 2.8˚ latitude by 

2.8˚ longitude (T42) resolution.  

 

Up to this point 518 experiments have been completed over 6 independent VFSA 

convergence attempt “lines”. Each line starts at a randomly chosen point in the multi-

dimensional parameter space. Each model experiment runs in parallel over 64 processors, 

bringing the total number of processors being occupied at any point in time to 384. The 

average number of experiments that we anticipate will be required to reach convergence 

for each line is 150 (Jackson et al, 2004). We therefore estimate that we are about two 

thirds of the way toward a stationary estimate of the PPD.  
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Of the 518 completed experiments, 332 configurations have cost values the same or 

better relative to the default model configuration with the optimal experiments in each 

line averaging a respectable 10% improvement in their cost values. The size of the cost 

function gives a normalized perspective of the distance between observations and model 

predictions with the units relating to the size of the effect of internal variability on each 

component. Large cost values tend to be associated with fields that have very little 

variability. In this case the field with the largest associated cost value in the default model 

configuration is the annual mean global mean radiative balance at the top of the 

atmosphere with a value of 202 cost units. The field with the lowest cost value is 

precipitation with a value of 24.2 cost units.  

 

We have separately analyzed the six top performing experiments, one for each of the 

independent lines considered. The fields that improved the most across these six 

experiments were shortwave radiation reaching the surface (averaging 14% 

improvement), net radiative balance at the top of the atmosphere (33% improvement), 

and precipitation (12% improvement). However, the performance gains or losses for the 

other fields were not consistent. The similar cost values achieved for all six optimal 

model configurations is achieved through different compromises in model skill for 

predicting particular fields.  

 

The marginal PPD for each of the six model parameters along with the position of the 

default model and the optimal values chosen by the six lines is shown in Figure 3. The 

PPD is generated only from the 332 configurations that have the same or better cost than 
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the default configuration. The range of parameter values that improved model 

performance is quite broad for all parameters except for the critical relative humidity for 

low cloud formation. Also of interest is the desired result that the six optimal parameter 

sets are representative of the uncertainty as quantified by the PPD. Capturing climate 

model parametric uncertainties within a limited number of candidate model 

configurations is the key step in quantifying observational constraints on these important 

degrees of freedom for model development. For instance, one may use these different 

parameter sets to test the impacts of these uncertainties on the model’s sensitivity to CO2 

forcing. Although we are still a third of the away from completing the number of 

necessary experiments to draw a firm conclusion, the implication of the wide ranges 

apparent in Figure 3 is that it may be very difficult to use available observations to 

constrain sufficiently some of the choices that need to be made in assigning values to 

parameters that are involved in clouds and convection which are processes thought to be 

key sources of climate prediction uncertainty.  

 

6. Summary 

 The increase in availability in distributed computing provides an opportunity for 

the climate sciences to address more quantitatively the sources and impacts of 

uncertainties in climate model development on climate predictions. This is achieved 

through a selection of alternate climate model configurations that reflect the scientific 

values for how these models are constrained by observations (i.e. the definition of the 

cost function). One of the barriers to achieving this goal is the substantial computational 
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expense of climate models where the ideal choice of multiple parameter values is inter-

dependent. For these cases, one needs to draw inferences about the relative likelihood of 

different possible choices from a random sampling of candidate parameter combinations 

that do not bias the end result. Data directed importance sampling achieves improved 

efficiency from sampling more often, and in proportion to the final PPD, those regions of 

parameter space that contribute effectively to the PPD. There exist many types of 

stochastic samplers that make use of data-direction. However, many of these approaches 

depend on the sequential integration of experiments which make it difficult to fully 

exploit available computational resources. Moreover, the efficiency of most methods 

depends on knowledge about the characteristics of the problem which may be difficult to 

gage without significant experimentation. We present Multiple Very Fast Simulated 

Annealing (MVFSA) as an alternative which is less sensitive to problem characteristics 

and produces helpful estimates of the PPD.  

 

 We also show that additional improvements in accuracy and efficiency of the 

MVFSA algorithm can be incorporated into data-directed importance samplers when 

prior information is incorporated about the size of the effects of sources of uncertainty on 

the cost function through a parameter ‘S’ which is conceptually correcting for errors in 

defining a data covariance matrix that appropriately accounts for correlations that may 

exist among the many data constraints.  

 

 The results of estimating a PPD for 6 parameters of the CAM3.1 climate model 

reinforce the notion that there exist many possible model configurations that can do an 
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equally adequate job in reproducing a multi-field average skill score. More sampling will 

be required to establish with greater confidence the relative likelihood of the solutions 

that have been identified so far. The main point of this exercise is to illustrate the 

practicality of data-directed importance sampling and uncertainty characterization of 

parameters within a non-idealized climate model.  
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Table 1. Performance of CAM3.1 over a cluster of Dell PowerEdge 1955 Blade servers 

# of 
processors 

1 2 4 8 16 32 6

Simulated 
years/wall clock 
day 

0.92 1.70 2.91 5.56 10.26 17.91 2

Simulated 
years/wall clock 
day  

per 
processor 

.92 .883 .729 .696 .641 .560 .4

 

 

Table 2. Names and descriptions of parameters important to clouds and convection 

in CAM3.1 

Parameter description 

RHMINL critical relative humidity for low cloud formation 

RHMINH critical relative humidity for high cloud formation 

ALFA initial cloud downdraft mass flux 

TAU rate at which convective clouds consume available potential energy 

ke environmental air to cloud entrainment rate coefficient 

c0 deep convection precipitation production efficiency parameter 
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Figure 1. Convergence fraction as a function of experiment number for MVFSA not 

incorporating S into the stochastic sampling (red line),  MVFSA with incorporating S into 

the stochastic sampling (black line), and the Metropolis/Gibbs sampler (green line). 

Convergence fraction is given by the rms difference among the distributions for 6 climate 

model parameters as a function of experiment number and the final distribution. The 

climate model is described in Jackson et al. 2004. 
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Figure 2. Idealized example using different sampling schemes. Sampling efficiency is 

improved when information about ‘S’ is included within the prior. Target distribution 

(gray bars) was generating using Gibbs’ sampling using a prior for ‘S’. Gibbs’ sampling 

without a prior for ‘S’ is given by the dashed blue line. MVFSA sampling using a prior 

for ‘S’ is given by the solid red line and without using a prior for ‘S’ is given by the 

dashed red line.  
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Figure 3. PPD for 6 parameters of CAM3.1 important to clouds and convection (see 

Table 2). The histograms are derived from the 332 experiments whose cost values were 

the same or showed an improvement of over the default model configuration. The 

parameter values of the default model are given by an asterisk (*). The values of the top 

performing six parameter sets are labeled by the particular line number that produced 

them. 

 


