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Abstract

Hierarchical models provide a useful framework for the complexities encountered in policy-relevant re-

search in which the impact of social programs is being assessed. Such complexities include multi-site data,

censored data and over-dispersion. In this paper, Bayesian inference through Markov Chain Monte Carlo

methods is used for the analysis of a complex hierarchical log-normal model that attempts to determine

the impact of public and private-sector managed care strategies aimed at limiting length of hospital stays.

Parameters in this model account for existing variability across hospital/strategy and also for institution-

dependent effects due to program implementation. We emphasize on prior elicitation and sensitivity analysis

with respect to prior beliefs. All the calculations for the posterior and predictive distributions of relevance,

were obtained using the software BUGS.
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1 Introduction

In the past decade the health-care system has undergone a metamorphosis. No state, county, or hospital

has gone unchanged by efforts to ’manage care’. Sky-rocketing public-sector costs and tightened government

spending has forced states to take dramatic action to contain costs. This has resulted in a boon to an area

of research labeled as “Health-Services Research”. Health-services research focuses on determining the most

cost-effective ways of delivering health-care treatment. Most often this determination relies on naturalistic-

observation and field-study designs rather than randomized controlled clinical trials. This paper fits into

the category of “Health-Services Research” in that it assesses the impact of a managed-care strategy. The

outcome variable of interest is length-of-stay in the hospital. Study observations are neither randomized

nor is there much experimental control over the implementation of the alternative service strategies. In

determining the impact of the managed care strategy, a Bayesian hierarchical generalized linear model is

used to combine data across hospitals and assess the impact on hospital length-of-stay. Section 2 of the



paper presents the available data, introduces the hierarchical log-normal model that will be used to model

the data, and describes the prior distributions. Section 3 presents in terms of posterior distributions for key

parameters, predictive distributions for future observations. Section 4 will provide conclusions and discussion

of these results.

1.1 The Managed-Care Strategy

Since November of 1986, all elective Medicaid-reimbursed in-patient admissions in North Carolina, includ-

ing those for psychiatric services, have been subject to review by Medical Review of North Carolina, an

independent peer-review organization. In August of 1990, however, the North Carolina Division of Medical

Assistance sub-contracted with a private managed-care firm to implement a more stringent utilization review

(UR) program covering both elective and emergency admissions to selected hospitals. This UR program has

two management components. The first component is a formal precertification process conducted prior to

admission for elective admissions and within 2 days of admission for emergency admissions. Conducted by

an interdisciplinary team, the intent of the precertification process is to ensure that children’s psychiatric

admissions meet Medicaid’s admission criteria (42-CFR 441.152) and to ensure that this fact is recorded in

the medical record. These criteria are that (1) outpatient services available in the community are inadequate

to meet the needs of the child, (2) the child has a psychiatric condition requiring services under the direction

of a physician and (3) the services rendered must be reasonably expected to lead to an improvement in the

child’s condition or prevent further regression so that hospitalization will no longer be necessary. The second

management component is a length-of-stay review designed to ensure that children are not being kept longer

than clinically necessary. While a concurrent review process was used for the first 12 months of the program,

starting August, 1991, lengths-of-stay are monitored using a retrospective review process. Medical records

of all patients with stays of longer than 30 days are evaluated, while records of all patients with stays under

30 days are reviewed on a sample basis. If the retrospective review suggests that a child’s length-of-stay

was excessive, all Medicaid reimbursements for the excess days are recouped from the in-patient provider.

Initially, the UR program was designed to cover all admissions to any specialty public or private psychiatric

hospital and 4 general hospitals. In April of 1991, 14 additional general hospitals came under the review

process. Altogether the hospitals covered by the UR program account for over 95% of all admissions. Elec-

tive admissions to all remaining hospitals continue to be covered by the Medical Review of North Carolina

peer review process.



2 Methods

North Carolina has 35 hospitals that admitted children for mental-health or substance-abuse reasons in the

period under study. Only hospitals admitting at least two children in both the pre and post implementation

periods of the UR program (I=33) were included in the analysis. Data was provided by the Division of

Medical Assistance, the State’s Medicaid office, via the Division of MH/DD/SAS. Hospitalizations separated

by less than 7 days were treated as a single admission.

Of central interest in this analysis is to describe how the distribution of length-of-stay changes with the

implementation of the UR program. Because hospitals entered the program at two time points the pre/post

dates differ for the two groups of hospitals. For hospitals beginning the UR program in August, 1990, the

time periods classified as pre and post included 11/89-6/90 and 11/90-6/91 respectively. For the group of

hospitals beginning the program in April, 1991, the pre and post periods included in the analysis were 7/90-

2/91 and 7/91-2/92. The months included in the pre and post time periods were held constant to control

for seasonal fluctuations. Hospital stays beginning during the pre period but extending beyond the start of

the program were censored at the starting date of the program.

To begin, the distribution of length-of-stay for each hospital was compared to several distributions includ-

ing the log-normal, exponential, and Weibull. The log-normal provided the closest fit to the Kaplan-Meier

empirical distributions, and hence is used throughout this paper.

2.1 Hierarchical Log-Normal Model

The statistical model chosen for length-of-stay needs to account for variability across the 35 hospitals, as

well as for the general effect of the UR process and the possibility that the effect of the UR process differs

across these 35 hospitals. Additionally, the effect of several individual and hospital-level characteristics were

of concern. At the individual level, four covariates were considered. First, number of psychiatric diagnoses

was used a proxy for illness severity. Second, because the unavailability of community-based services was

a condition for hospitalization and continued hospitalization, a variable that assessed this availability was

included. Lastly, gender and age were controlled for in the model. At the hospital level, a single covariate

was included. Hospitals were classified into three types: state-funded hospitals, privately-funded specialty-

psychiatric hospitals, and privately-funded general hospitals.

Before considering the covariates the following simple model was examined.



log(Tijk)|µij , σ
2
ij ∼ N(µij , σ

2
ij)I(log(Cijk),∞)(log(Tijk))

i = 1, · · · , I

j = 1, 2

k = 1, · · · , nij

where Tijk denotes length-of-stay which follows a truncated log-normal distribution with location param-

eter µij and scale parameter σij . IA(·) is the indicator function over the set A. The subscript i denotes

hospital, j denotes pre versus post implementation of the UR program, and k denotes observations within

each hospital by pre/post subgroup. When an observation is censored, Cijk = Tijk otherwise Cijk = 0 so

Cijk are censoring indicator variables. For convention, if Cijk = 0 then log(Cijk) = −∞. Note that both

means and variances are allowed to vary across hospitals and across pre versus post implementation.

Furthermore we are considering that

µij = hi + pj(i)

with the restriction that p1(i) = 0. Hence the location parameter is just the hospital effect, hi, for the pre-

implementation period, plus p2(i), a deviation from hi due to the UR program. This deviation is expected

to be negative for most hospitals implying a reduction in the length-of-stay. To model the variability in

hospital and program effects we add a second stage to the hierarchy.

hi ∼ N(µh, σ2
h)

p2(i) ∼ N(µp, σ
2
p)

σij ∼ IG(αj , βj)

It is worth noting that the adopted parameterization of our model follows closely the hierarchical centering

ideas introduced by Gelfand, A.E., et. al. (1995) and that can often enable improve algorithm convergence.

Here, the centering is applied separately to hi and pj(i) which define the overall mean µij . Finally prior

distributions for stage II parameters were added at the third level of the hierarchy. The choice of these priors

will be considered in detail in the next section.

2.2 Prior Specification

Prior specification is a challenging task in Bayesian analysis. The logarithmic data transformation used here

added an extra step of complexity to the elicitation procedure. Priors were elicited in the original units



(days) and then adjusted to the log scale. The entire prior specification is

StageI : log(Tijk) ∼ N(hi + pj(i), σ
2
ij)I(log(Cijk),∞)(log(Tijk))

StageII : hi ∼ N(µh, σ2
h)

p1(i) ≡ 0

p2(i) ∼ N(µp, σ
2
p)

σ2
ij ∼ IG(αj , βj)

StageIII : µh ∼ N(4.09, .182)

σ2
h ∼ IG(3.85, .35)

µp ∼ N(−.29, .122)

σ2
p ∼ IG(2.23, .07)

αj ∼ U(4, 6)

βj ∼ Ga(3, 1)

The elicitation will be explained using days, and the log conversions will be presented in parentheses

where necessary. Distributions for hi, pj(i), and σ2
ij were defined in the second stage of the hierarchical

model. All were set up as conjugate. The prior for hi, the hospitals’ pre-UR average length-of-stay, is a

normal distribution with mean µh and standard deviation σh denoted by N(µh, σ2
h). The prior for p2(i), the

hospitals’ UR-program effect on average length-of-stay, is a normal distribution with mean µp and standard

deviation σp, denoted by N(µp, σ
2
p), while p1(i) ≡ 0 for all values of i. The prior for σ2

ij , the variability in

length-of-stay within hospitals pre and post implementation, is an inverse gamma distribution with shape

parameter αj , scale parameter βj and denoted by IG(αj , βj).

Priors in the third stage of the hierarchy, were set up around the belief that the average of hi, µh, would

be around 60 days (4.09 on the log scale) with almost all of the probability being between 30 (3.4) and 90

(4.5) days. If we let the range 3.4 to 4.5 represent ±3 standard deviations, then the prior for µh can be

set up as a normal distribution with a mean of 4.09 and standard deviation of .18, N(4.09, .182). The prior

for the UR-program effect, µp, was built around the belief that the UR program would result in an average

reduction of average length-of-hospital stay of about 15 days. A reduction in average length-of-stay from

60 (4.09) to 45 (3.81) days would be an effect of -15 in days or -.28 in log(days). The uncertainty in the

UR-program effect must reflect the range of potential average reductions of 0 to 30 days. A reduction of 0

days corresponds to a difference in log(days) pre versus post of 0, and a reduction of 30 days corresponds

to a difference in log(days) pre versus post of -.69. If we let the range of 0 to -.69 represent ±3 standard



deviations, then the prior for µp can be represented by a normal distribution with a mean of -.28 and a

standard deviation of .12, N(−.28, .122). This set of priors gives small positive weight even to values more

extreme than what was plausible, but yet are clearly informative proper priors.

Priors for σ2
h and σ2

p are both inverse gamma distributions. The parameter σ2
h represents the variance

in pre-UR average length-of-stay across hospitals. It was believed that the pre-UR average length-of-stay

across hospitals would vary between 15 (2.7) and 120 (4.8) days. If the range of 2.7 to 4.8 represents ±3

standard deviations, then the prior on σ2
h should have a mean of .352. The minimum plausible variability

across hospitals was 45 to 75 days and the maximum plausible variability was 5 to 180 days. Converting

these estimates to the log scale and letting the difference between the minimum and maximum represent ±3

standard deviations yields a prior standard deviation for σ2
h of .09 which corresponds to an Inverse Gamma

distribution of shape parameter 3.85, scale parameter .35 and denoted by IG(3.85, .35).

It was believed that the UR program could result in a change in average length-of-stay for each hospital

between +5 and -45 days. An increase was plausible because the program would effect length-of-stay in

two ways. The program potentially could eliminate short stays by diverting the least severe cases from

hospitalization all together. This would work to increase the average length-of-stay. On the other end of

the distribution the program would also be working to minimize long lengths-of-stay, hence reducing average

length-of-stay. For a hospital with a pre-UR average length-of-stay of 60 days (4.09), an increase of 5 days

would result in a post-UR length-of-stay of 65 days (4.17), hence a change of 5 in days and .08 in log(days).

For a hospital with a pre-UR average length-of-stay of 60 days (4.09), a reduction of 45 days would result in

a post-UR length-of-stay of 15 days (2.7), hence a change of 45 in days or 1.39 in log(days). If the range .08

to 1.39 represents ±3 standard deviations, this supports a prior on σ2
p with a mean of .242. The minimum

plausible variability across hospitals in program effect was a reduction of 10 to 20 days and the maximum

plausible variability was an increase of 20 to a decrease of 59 days. (We did not allow for the possibility

that the program would cause a hospital to close its doors completely.) Converting these estimates to the

log scale and letting the difference between the minimum and maximum represent ±3 standard deviations

yields a prior standard deviation for σ2
p of .12 which leads to a prior IG(2.23, .07).

Finally at third stage, priors for αj and βj are defined. Almost all pre-UR lengths-of-stay were expected

to be between 1 and 180 days, and post-UR stays between 1 and 120 days. Letting these ranges represent

±3 standard deviations, the former converts to a standard deviation of approximately .87 and the latter

.80 on the log scale. Hence third stage priors were defined that would yield a distribution for σ2
ij with a

mean of .872. The mean of an inverse gamma distribution is β
α−1 , so priors for α and β were chosen so that

prior means yielded β
α−1 = .872. A Uniform distribution with support on (4,6) and denoted by U(4, 6) was

used as the prior for αj . A Gamma distribution prior with scale parameter equal to 3 and shape equal to 1

(Ga(3, 1)) was used for βj .



These prior distributions represent the belief of one researcher (DS). To assess the sensitivity of results

to these priors a series of priors was developed ranging from the base prior above to highly diffuse yet proper

priors. In addition, priors that modeled progressively smaller UR-program effects of 10, 5, and 0 days, were

also compared to the base prior that modeled a UR-program effect of 15 days.

To incorporate further covariates, the µij were modeled as

µij = hi + pj(i) + β
′

x.

The β
′

x represents the vector of additional covariates. The effect of each covariate was not allowed to vary

across the hospitals. The prior distribution for each β was an independent normal centered at 0 with a

precision of .01.

3 Results

Posterior and predictive distributions were calculated using BUGS software. BUGS samples from the full

conditional distributions to come up with samples from the desired posterior and predictive distributions.

Censored observations are fully incorporated because they are part of the model definition and BUGS allows

for truncated distributions through the use of indicator functions. The obtained samples serve as the basis

of inference about the hospital and program effects. To obtain inferences about the mean length-of-stay for

each hospital we need the mean of Tijk under the log-normal distribution. This mean equals

exp(hi + pj(i) + σ2
ij/2)

when Cijk = 0, otherwise to obtain the correct mean this expression needs to be multiplied by the factor

1 − Φ((log(Cijk) − hi − pj(i) − σij
2)/σij)

1 − Φ((log(Cijk) − hi − pj(i))/σij)

where Φ denotes the cumulative distribution function of a standard Normal. Samples from the distribution of

this mean are obtained by using the above transformation on samples of hi, pj(i), σ2
ij . Predictive distributions

for future observations can be obtained by generating Tijk from the corresponding Log-normal distributions

given the sampled parameter values.

3.1 Descriptive Analysis

Figure 1 presents Kaplan-Meier plots for all 35 hospitals combined and the five hospitals with the most

admissions. From the plots we see a UR program effect for all hospitals combined, and for 4 of the 5 largest

hospitals we see a clear UR program effect. With all hospitals combined the mean length-of-stay declines

from 61.5 pre to 49.1 post, a decline of 11.4 days. The median length-of-stay declines by 17 days from 49 days



pre to 32 days post. The heterogeneity between the 5 hospitals with the most admissions is considerable.

Four of the 5 hospitals show clear declines in length-of-stay with means declining between 16.7 and 21.4

days and medians declining between 9 and 22 days. Table 1 presents samples sizes, median length-of-stay

pre and post implementation of the UR program, difference in medians and type of institution for all 35

hospitals. Tables 2 and 3 summarize information with respect to the related covariables: ”Age”, ”Gender”

and ”Number of Diagnosis”. The distribution of both ”Age” and ”Diagnosis” appeared to be homogeneous

across ”Gender”. This justifies the use of a general covariate effect. None of the subjects in the sample

reported more than 3 cases of diagnosis. Figure 2 presents a plot of hospital number against the percentage

of censored observations. The figure shows that the percentages have a large variability across hospitals

and particularly for hospital 19 the percentage of censored data is closed to 50%. In addition, the overall

percentage of censored observation is 6.5%. Clearly, the estimation of individual program effects can be

misleading if censoring is not given appropriate consideration.

3.2 Posterior and Predictive Distributions

Based on 2000 samples from the desired posterior, Figure 3 presents density estimators for the posterior

densities of µh, µp, σ2
h, and σ2

p. The posterior distributions for µp and σ2
p are of most interest as they

reflect the UR-program effect and the heterogeneity in the UR-program effect across hospitals. We see that

the posterior mode for µp is -0.45. The area to the right of 0 represents the posterior probability that the

program increased rather than decreased average length-of-stay. This probability is very small. Also with

this 2000 samples, 95% highest posterior density regions, posterior medians for mean length of stay, pre and

post of an ”unobserved” hospital, and difference in posterior medians are presented in Table 4 for several

models. The only difference among the first 4 models, numbered 1.1 to 1.4, is the location of the UR-program

effect, µp. The second set of 4 models numbered in the table as 2.1-2.4, replicates the first 4, but increases

the standard deviations of each prior distribution by a factor of 2. The last set of 4 models indexed as

3.1-3.4, replicates the first 4 but increases the standard deviation of each prior distribution by a factor of 4.

The table shows that the posterior distribution for µp is quite robust across the various prior specifications.

The difference between posterior medians for mean length-of-stay pre and post UR-program implementation

ranges between 10 and 14 days. Even for model 1.4, a model that placed equal prior mass on positive and

negative UR-program effects, the 95% HPD for µp is (-0.44,-0.22). To compute this posterior medians for

an unobserved hospital, at the model specification we increased I, the number of total institutions by one,

and sampled the new additional parameters from stage II of the hierarchical model. Then samples of the

mean length-of-stay of a new hospital are obtained and posterior summaries can be produced.

The density estimator for the posterior of σ2
p in Figure 3, is clearly centered away from zero, supporting

the notion that the UR-program effect was not homogeneous across hospitals. Figure 4 shows more clearly



the heterogeneity in program effect across the hospitals. It displays box-plots for 2000 posterior samples

of p2(i), the UR-program effect for each hospital. Here we see that all hospitals show a decline in average

length-of-stay, with only a few hospitals (8, 12, and 32) showing posterior medians greater than -.25. Similar

plots were drawn for the other 11 prior distributions considered. Differences were minute, and hence are not

presented here.

Results did not change when additional covariates as “Age”, “Number of Diagnosis” or “Gender”, were

added to the model. None of the covariates either at the individual level or at the hospital level added

predictive power to the model. That is, the 95 % posterior probability intervals for each of the βs included

the value zero. In addition the inclusion of these covariates did not change the posterior distributions of the

hospital or UR-program effects.

While these posterior distributions are useful for understanding the impact of the program and the

heterogeneity across hospitals, they do not provide the answers in a manner easily understood by non-

statisticians. Decision makers want to know how many hospital days are saved at each of the hospitals

and for the hospitals in general, and what would we expect if we implemented the program at hospitals not

represented in the sample. These questions are more directly addressed by the use of predictive distributions.

Predictive distributions provide our updated beliefs about the distribution of the outcome of interest for

observations not yet observed. Predictive distributions are in the metric most understandable to the decision

maker, length-of-stay in days, rather than the often times foreign metric of the model parameters. Figure

5 presents the predictive distributions for length-of-stay for the 5 hospitals with the most observations as

well as for a 6th as yet unobserved hospital. The two curves represent the predictions with/without the

UR program and except for hospital 23, a reduction in length-of-stay is noticeable. These distributions are

usually compared to Kaplan-Meier curves to assess lack of fit of the model but here such comparisons are

avoided. A predictive distribution is built on a combination of prior beliefs and sample information and its

performance should not only be evaluated in terms of a data summary such as the Kaplan-Meier estimator.

The curves were obtained by smoothing histograms of samples from the predictive distributions.

3.3 MCMC convergence

When BUGS is implemented in practice for complicated hierarchical models convergence of the simulation

method can only be obtained after several thousand iterations. In our case, we implemented the MCMC

and after a burn-in of 2000 iterations, collected the next 2000 iterations of two chains created with different

starting values. Then, we applied the convergence diagnostic described in Gelman, A., et.al. (1992), for which

the basic idea consists in estimating the factor by which the scale of the current distribution is reduced, if

more iterations of the chain were continued. This shrink factor can also be thought as the comparison

of a current variance estimate to a within-sequence variance estimate. The median and 97.5% quantile of



the shrink factors for the parameters µh, µp, σ2
h and σ2

p appear plotted against the iteration in Figure 6.

Essentially we noticed that after 2200 iterations there is evidence that the shrink factor will be below the

suggested value of 1.2 for all the cases. Similar results were obtained with other parameters of the model.

4 Conclusions and Discussion

This paper has demonstrated the use of Bayesian hierarchical models to explore the existence of a UR

program effect. The analysis clearly shows an effect and gives us predictive distributions that allow to easily

incorporate results into a decision-theoretic framework. Although many issues deserve discussion.

Eliciting priors on the log scale resulted simple but has some drawbacks. For example, prior probability

assessments in log parameters are not preserved in the original units. Also, properties as symmetry and

skewness can be affected due to the transformation. In this sense, the priors used here require a more careful

study of what their meaning is in the original scale.

The assumption of independence between hospital means hi and program effect p2(i) could be in general

unrealistic. Perhaps length-of-stay will change dependent on the average length-of-stay by hospital. For

the data analyzed here, Figure 7 presents the sample means Pre for each hospital plotted against the mean

increase/decrease with the least square for the scatter plot. There are no obvious trends in the picture, in

fact, the square of the correlation coefficient is 0.0019. We produce a similar plot but for the logarithm of

length-of-stay and did not noted any particular patterns.

On the other hand and based on the model, Hospitals 12, 19 and 20 showed decreases in the length-

of-stay pre/post while the exploratory analysis exhibits the contrary. To determine if this was due to the

Normal distribution assumpiton, we ran again BUGS using t-distributions with 5 degrees of freedom at the

second and third stages and with location and scale parameters so that the same prior means and standard

deviations were preserved. For this case, a picture like the one on Figure 4 is presented in Figure 8. This

leads essentially to the same conclusions as before, though the variability of the boxes is wider because of

the fat tails of the t distribution.
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Table 1: Data: Sample Sizes and Median Length-of-Stay Pre and Post Implementation of the UR Program.
Hospital N N Median Median Difference Type

pre-UR post-UR LOS LOS Of
pre-UR post-UR Hospital

1 27 24 31 14 -17 General
2 52 62 73 46 -27 General
3 3 4 6 4 -2 General
4 33 13 61 29 -32 General
5 50 44 39 27 -12 General
6 18 15 36 24 -12 General
7 9 17 28 24 -4 General
8 53 43 24 23 -1 General
9 18 8 13 6 -8 General

10 27 16 29 38 9 General
11 0 6 – 27 – General
12 29 33 69 123 54 General
13 38 70 42 16 -26 General
14 27 32 21 16 -5 General
15 15 34 71 35 -36 General
16 12 23 30 15 -15 General
17 4 1 15 13 -2 General
18 21 35 57 39 -28 Private
19 7 3 122 150 28 Private
20 62 42 58 77 22 State
21 87 101 37 28 -9 State
22 78 87 47 30 -17 State
23 69 97 48 42 -6 State
24 28 52 81 63 -28 Private
25 25 35 33 32 -1 Private
26 117 153 49 29 -20 Private
27 5 5 51 21 -30 Private
28 19 49 24 27 3 Private
29 39 14 43 16 -27 Private
30 100 82 44 31 -13 Private
31 90 80 52 37 -15 Private
32 49 50 25 23 -2 Private
33 5 15 76 36 -40 Private
34 51 30 45 44 -1 Private
35 5 3 14 16 2 Private

Average -9.35
Median -10.50

SD 19.03
Note that 19 of the 35 hospitals admitted more children post-UR, 15 admitted
fewer, and 1 had no change. The average change in admissions was 16.6%.
The increase in number of children eligible for Medicaid increased by
approximately 17% between fiscal years ’90-’91 and by approximately 16%
between fiscal years ’91-’92.



Table 2: Basis statistics for covariable Age for all the sample and by gender.

Mean Standard Deviation

All the sample 13.54 yrs. 2.61 yrs.

Boys 13.17 yrs. 2.84 yrs.

Girls 13.91 yrs. 2.24 yrs.

Table 3: Proportions of number of diagnosis for all the sample and by gender.

Number of cases 0 1 2 3

All the sample 0.56 0.26 0.07 0.11

Boys 0.58 0.23 0.07 0.11

Girls 0.52 0.28 0.07 0.12



Table 4: Posterior Medians of Mean Length-of-Stay for an Unobserved Hospital and 95% HPD Regions for

UR-Program Effect.

Model Prior mean Median LOS Median LOS Difference 95% HPD

of µp pre-UR post-UR for µp

Days Days

1.1 -.29 42 28 14 ( -0.51, -0.29)

1.2 -.18 40 27 13 ( -0.48, -0.27)

1.3 -.09 40 28 12 ( -0.47, -0.26)

1.4 -.00 39 28 11 ( -0.44, -0.22)

2*Baseline SDs

2.1 -.29 39 27 12 ( -0.53, -0.29)

2.2 -.18 37 27 10 ( -0.52, -0.28)

2.3 -.09 40 27 13 ( -0.51, -0.28)

2.4 -.00 39 26 13 ( -0.51, -0.28)

4*Baseline SDs

3.1 -.29 38 27 11 (-0.54, -0.30)

3.2 -.18 40 28 12 (-0.53, -0.29)

3.3 -.09 39 27 12 (-0.53, -0.29)

3.4 -.00 38 25 13 (-0.52, -0.29)



Figure 1: Kaplan-Meier Plots for all Hospitals Combined and the Five Hospitals with the Most

Admissions
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Figure 2: Proportion of Censored Observations Across Hospitals
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Figure 3: Posterior Distributions for Stage II Means and Variances
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Figure 4: Heterogeneity of UR-Program Effect Across Hospitals
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Figure 5: Predictive Distributions of Length-of-Stay for Future Observations
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Figure 6: Gelman and Rubin Diagnostic for Stage II Means and Variances
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Figure 7: Means PRE vs. Mean Increase-Decrease Across Hospitals
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Figure 8: Heterogeneity of UR-Program Effect Across Hospitals. T distribution
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