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Abstract

A class of prior distributions for multivariate autoregressive models is pre-

sented. This class of priors is built taking into account the latent component

structure that characterizes a collection of autoregressive processes. In particu-

lar, the state-space representation of a vector autoregressive process leads to the

decomposition of each time series in the multivariate process into simple under-

lying components. These components may have a common structure across the

series. A key feature of the proposed priors is that they allow the modeling of

such common structure. This approach also takes into account the uncertainty in

the number of latent processes, consequently handling model order uncertainty

in the multivariate autoregressive framework. Posterior inference is achieved via

standard Markov chain Monte Carlo (MCMC) methods. Issues related to infer-

ence and exploration of the posterior distribution are discussed. We illustrate the

methodology analyzing two data sets: a synthetic data set with quasi-periodic

∗Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico
87131-1141, USA. E-mail: ghuerta@stat.unm.edu.

†Department of Applied Mathematics and Statistics. Baskin School of Engineering. University of
California, Santa Cruz 1156 High Street, Santa Cruz CA 95064, USA. E-mail: raquel@ams.ucsc.edu.

1



latent structure, and seasonally adjusted US monthly housing data consisting of

housing starts and housing sold over the period 1965 through 1974.
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1 Introduction

We propose a class of prior distributions for vector autoregressive processes with di-

agonal coefficient matrices or DVAR. The development of these models is motivated

by the need of studying multiple series recorded simultaneously in a system under

certain conditions. Typically, each one of the multiple time series has an underlying

structure, possibly but not necessarily quasi-periodic, that can be adequately described

by an autoregressive (AR) model. Some of the components in this underlying struc-

ture are usually shared across the multiple series. Data of this kind arise in many

applied areas such as signal processing and econometrics. In particular, univariate

time series arising in fields that involve seismic recordings, environmental time series,

biomedical and speech signals, to mention a few, have such characteristics and have

been analyzed in the past using autoregressive models, or sophisticated models that

involve autoregressive components. Huerta and West (1999b); Aguilar et al. (1999);

Godsill and Rayner (1998); West et al. (1999); Krystal et al. (1999) and Kitagawa and

Gersch (1996) present examples in the areas of application mentioned above.

A key component of the prior distributions and methods developed here, is that

they model the uncertainty in the number and form of the latent processes related to

each univariate series. In addition, these models provide a way to incorporate prior

beliefs on the characteristic roots of the AR processes, including unitary and zero roots.

Finally, this methodology allows the modeler to consider common latent components

across the series, which is a very important feature in many applications. For instance,
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the univariate analyses of several electroencephalogram series recorded on a patient

under ECT (a treatment of major depression) presented in West et al. (1999) and

Krystal et al. (1999), suggest that the multiple series are characterized by a common

underlying structure with two, or possible three, quasi-periodic components. In this

particular application it is relevant to obtain a probabilistic assessment of such common

latent structure. This can only be done through a multivariate analysis of the traces in

the which the possibly common underlying structure across series is explicitly included

in the prior distribution.

Although DVAR models could be perceived as models with very limited practical

use, when combined with the structured priors presented here, they form a flexible class

of models that can be used to search for latent structure in multiple time series from a

multivariate perspective. Therefore, the implementation of DVAR models constitutes a

first major step towards developing more sophisticated multivariate models that can be

useful in analyzing very complex multivariate data, such as the EEG series considered

in West et al. (1999) and Krystal et al. (1999).

Priors on latent component structure were introduced for univariate AR models in

Huerta and West (1999b). In this sense, the models proposed here are a multivariate

extension to the models developed by Huerta and West. As in the univariate case,

posterior inference is achieved via customized MCMC methods. However, additional

computational difficulties arise in the multivariate framework when considering many

multiple series with a rich latent component structure. In particular, the exploration
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of the posterior distribution may be a difficult task. This is highlighted in one of the

examples presented in Section 5. Some alternatives for exploring and summarizing the

posterior distribution are investigated.

The paper is organized as follows. Section 2 summarizes the multivariate decompo-

sition results that motivate the development of the structured priors for DVAR models.

Section 3 defines the prior structure in detail and discusses some aspects of assuming

such structure with some examples. Section 4 describes the MCMC methodology to

achieve posterior inference. Section 5 illustrates the methodology with two examples

and finally, Section 6 presents a discussion and points towards future extensions.

2 Multivariate time series decompositions

In this section, we describe general time series decomposition results for a class of

multivariate time series processes. The proposed approach focuses on models that

can be written in a multivariate dynamic linear model (MDLM) form. We discuss

such results in detail for the case of diagonal vector autoregressive (DVAR) models.

We begin by revisiting the developments on multivariate time series decompositions

presented in Prado (1998), including some extensions that handle more general models.

Consider an m-dimensional time series process yt = (y1,t, . . . , ym,t)
′, modeled using

a MDLM (West and Harrison, 1997)

yt = xt + νt, xt = F′θt, θt = Gtθt−1 + ωt, (1)
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where xt is the underlying m-dimensional signal, ν t is an m-dimensional vector of ob-

servation errors, F′ is an m×d matrix of constants, θt is the d-dimensional state vector,

Gt is the d × d state evolution matrix and ωt is a d-vector of state innovations. The

noise terms νt and ωt are zero mean innovations, assumed independent and mutually

independent with variance-covariance matrices Vt and Wt respectively.

A scalar DLM can be written for each of the univariate components of xt as follows

Mi :
xi,t = F′

iθt

θt = Gtθt−1 + ωt,

(2)

with Fi the i-th column of the matrix F. We now show that each component xi,t can

be written as a sum of latent processes using the decomposition results for univariate

time series presented in West et al. (1999). Assume that the system evolution ma-

trix Gt is diagonalizable, i.e. that there exist a diagonal matrix At, and a matrix Bt

such that Gt = BtAtB
−1
t . If Gt has d∗ ≤ d distinct eigenvalues, λt,1, . . . , λt,d∗ with

algebraic multiplicities ma,1, . . . , ma,d∗ respectively. Then, Gt is diagonalizable if and

only if mg,i = ma,i for all i = 1, . . . , d∗, with mg,i the geometric multiplicity of the

eigenvalue λt,i. That is, Gt is diagonalizable if and only if the algebraic multiplicity

of each eigenvalue equals its geometric multiplicity. In particular, if Gt has exactly d

distinct eigenvalues, then Gt is diagonalizable. Note we are assuming that the number

of distinct eigenvalues d∗, the number of real and complex eigenvalues and their mul-

tiplicities remain fixed over time. This is, we assume that there are exactly c∗ pairs of

distinct complex eigenvalues rt,j exp(±iωt,j) for j = 1, . . . , c∗, and r∗ = d∗−2c∗ distinct
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real eigenvalues for j = 2c∗ + 1, . . . , d∗ at each time t. Then, Gt = BtAtB
−1
t with At

the d × d diagonal matrix of eigenvalues, in arbitrary but fixed order, and Bt a corre-

sponding matrix of eigenvectors. For each t and each model Mi define the matrices

Hi,t = diag(B′
tFi)B

−1
t for i = 1, . . . , m, and reparameterize Mi via γi,t = Hi,tθt and

δi,t = Hi,tωt. Then, rewriting (2) in terms of the new state and innovation vectors, we

have

xi,t = 1′γi,t

γi,t = AtKi,tγi,t−1 + δi,t,

(3)

where 1′ = (1, . . . , 1) and Ki,t = Hi,tH
−1
i,t−1. Therefore xi,t can be expressed as a sum

of d∗ components

xi,t =
c∗
∑

j=1

zi,t,j +
d∗
∑

j=2c∗+1

yi,t,j, (4)

where zi,t,j are real-valued processes related to the pairs of complex eigenvalues given

by rt,j exp(±iωt,j) for j = 1, . . . , c∗, and yi,t,j are real processes related to the real

eigenvalues rt,j for j = 2c∗ + 1, . . . , d∗.

2.1 Decomposition of the scalar components in a VARm(p)

Consider the case of an m-dimensional time series process xt that follows a VARm(p)

xt = Φ1xt−1 + Φ2xt−1 + . . . + Φpxt−p + εt, (5)

where Φj for j = 1, . . . , p are the m × m matrices of AR coefficients and εt is the

m-dimensional zero mean innovation vector at time t, with covariance matrix Σ.
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Any VARm(p) process can be written in the MDLM form (1), with d = mp, ν t = 0,

the m × (mp) matrix of constants F′ and the (mp)-dimensional state and the state

innovation vectors θt and ωt described by

F′ =































e′
1 0 . . . 0

e′
2 0 . . . 0

...
...

e′
m 0 . . . 0































; θt =































xt

xt−1

...

xt−p+1































; ωt =































εt

0

...

0































. (6)

Here each ej is an m-dimensional vector whose j-th element is equal to unity and all

the other elements are zeros. Finally, the (mp) × (mp) state evolution matrix G is

given by

G =































Φ1 Φ2 . . . Φp−1 Φp

Im 0m . . . 0m 0m

...
. . .

...

0m 0m . . . Im 0m































, (7)

with 0m the m × m dimensional matrix of zeros. The eigenvalues of G satisfy the

equation

det(Imλp − Φ1λ
p−1 − Φ2λ

p−2 − . . . − Φp) = 0,

i.e. they are the reciprocal roots of the characteristic polynomial given by Φ(u) =

det(Im − Φ1u − . . . − Φpu
p). Therefore, xt is stable, and consequently stationary, if

the eigenvalues of G have modulus less than one (see for instance Lütkepohl, 1993).

Assume that G has d∗ ≤ mp distinct eigenvalues with c∗ pairs of distinct complex
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eigenvalues rj exp(±iωj) for j = 1, . . . , c∗, and r∗ = d∗ − 2c∗ real eigenvalues rj for

j = 2c∗ + 1, . . . , d∗. If G is diagonalizable, then, using (2), (3) and the fact that

Ki,t = I for all i, j we have

xi,t =
c∗
∑

j=1

zi,t,j +
d∗
∑

j=2c∗+1

yi,t,j. (8)

Now, following the univariate AR decomposition results discussed in West (1997), we

obtain that each zi,t,j is a quasi-periodic process following an ARMA(2,1) model with

characteristic modulus rj and frequency ωj for all i = 1, . . . , m. Then, the moduli and

frequencies that characterize the processes zi,t,j for a fixed j, are the same across the

m univariate series that define the VAR process. Similarly, yi,t,j is an AR(1) process

whose AR coefficient is the real eigenvalue rj for all i = 1, . . . , m.

Example: vector autoregressions with diagonal matrices of coefficients or DVARm(p).

Suppose that we have a VARm(p) process with Φj = diag(φ1,j, . . . , φm,j) for j =

1, . . . , p. Then, the characteristic polynomial of the process is given by

Φ(u) =
m
∏

i=1

(1 − φi,1u − φi,2u
2 − . . . − φi,pu

p) =
m
∏

i=1

Φi(u),

with Φi(u) being the characteristic polynomial of series i. In other words, Φ(u) is

the product of the characteristic polynomials associated to each of the m series. Let

α1
1, . . . , α

1
p, . . . , α

m
1 , . . . , αm

p be the reciprocal roots of the characteristic polynomials

Φ1(u), . . . ,Φm(u), respectively, with αi
j 6= 0 for all i, j. Assume that for a fixed series i,

the reciprocal roots αi
j are all distinct, but common roots across series are allowed, this

is αi
j = αk

l for some i, k such that i 6= k and some j, l. If there are c∗ distinct complex
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pairs of reciprocal roots, denoted by rj exp(±iωj) for j = 1, . . . , c∗, r∗ pairs of distinct

real roots rj, for j = 2c∗ + 1, . . . , d∗ with 2c∗ + r∗ = d∗ ≤ mp, and G is diagonalizable,

then the decomposition (8) holds. We now prove that the state evolution matrix G in

this case is diagonalizable by showing that, for any eigenvalue λ 6= 0 of G, its algebraic

multiplicity ma,λ equals its geometric multiplicity mg,λ, with mg,λ the dimension of the

characteristic subspace of λ, {x : (G − λImp)x = 0mp}. Let λ be any eigenvalue of G

with algebraic multiplicity ma,λ. Then, λ is either a real or a complex characteristic

reciprocal root of Φ(u), i.e. λ = rj exp(iωj), λ = rj exp(−iωj) or λ = rj for some j.

The geometric multiplicity of λ, mg,λ, is the dimension of the characteristic subspace

of λ, {x : (G − λImp)x = 0mp}. The solutions of the system (G − λImp)x = 0, with

x = (x1,1, . . . , x1,m, . . . , xp,1, . . . , xp,m) must satisfy the m equations

(φ1,1 − λ)x1,1 + φ1,2x2,1 + . . . + φ1,pxp,1 = 0

φ2,1x1,2 + (φ2,2 − λ)x2,2 + . . . + φ2,pxp,2 = 0

... +
. . . + · · · +

...
...

...

φm,1x1,m + φm,2x2,m + . . . + (φm,p − λ)xp,m = 0

and the additional set of mp − m = m(p − 1) equations,
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x1,1 − λx2,1 = 0

...
...

...
...

...

x1,m − λx2,m = 0

...
...

...
...

...

xp−1,1 − λxp,1 = 0

...
...

...
...

...

xp−1,m − λxp,m = 0.

Using the last m(p − 1) equations we obtain xi,j =
x1,j

λi−1 , for i = 2, . . . , p and j =

1, . . . , m. Substituting these expressions in the first m equations we have that

x1,j

(

1 − φ1,j

(

1

λ

)

− φ2,j

(

1

λ

)2

− . . . − φp,j

(

1

λ

)p
)

= 0, j = 1, . . . , m. (9)

Now, λ 6= 0 has algebraic multiplicity ma,λ, therefore, λ is a reciprocal root of ma,λ

characteristic polynomials. Let j1, . . . , jma,λ
be the series associated to such polyno-

mials. Then, the equations (9) have non trivial solutions x1,jk
for k = 1, . . . , ma,λ and

all the other elements of x can be written as functions of x1,jk
, k = 1, . . . , ma,λ. This

implies that mg,λ = ma,λ for all λ and then G is diagonalizable, i.e. G = BAB−1

with A the diagonal matrix of eigenvalues, or reciprocal characteristic roots, and B a

corresponding matrix of eigenvectors.
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3 The prior structure

We extend the priors on autoregressive root structure developed in Huerta and West

(1999b), and studied for spectral estimation in Huerta and West (1999a), to the context

of DVAR models. We also discuss some specific aspects of the prior. In order to keep

the notation as clear as possible, we present the prior distribution for a two-dimensional

VAR model. This structure can be easily generalized for a VARm(p) process.

Assume that we have an m-dimensional series with m = 2. We begin by specifying

fixed upper bounds Ci and Ri on the number of complex root pairs and real roots

of series i, for i = 1, . . . , 2. Conditional on these upper bounds, we assume a prior

structure on the component roots αi
j for j = 1, . . . , 2Ci+Ri, that distinguishes between

real and complex cases. Let us introduce some notation that will be useful to define

the prior structure.

• ri
j and λi

j = 2π/ωi
j are the modulus and the wavelength or period of the j-th

component root of series i;

• πr,−1, πr,0 and πr,1 denote the prior probabilities that a given real root takes

the values −1, 0 and 1 respectively. Similarly, πc,0 and πc,1 denote the prior

probabilities that a given complex root takes the values 0 and 1 respectively.

• π∗
r,ri

j

denotes the prior probability that a real root of a series different from i,

takes the value ri
j conditional on ri

j being different from 0,−1 and 1, and also

different from any of the roots that have already been sampled for such series.
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This is, “repeated” roots within the same series are not permitted. Similarly,

π∗
c,ri

j

denotes the prior probability that the modulus of a complex root of a series

different from i takes the value ri
j, conditional on ri

j being different from 0 and 1

and also different from any of the roots that have already been sampled for such

series.

• ri
1:j = {ri

1, . . . , r
i
j}; λi

1:j = {λi
1, . . . , λ

i
j}; αi

1:j = (r, λ)i
1:j = {(ri

1, λ
i
1), . . . , (r

i
j, λ

i
j)};

• Iy(z) is the indicator function, i.e.,Iy(z) = 1 if z = y and 0 otherwise;

• U(·|a, b) denotes a Uniform distribution over the interval (a, b) and Beta(·|a, b)

denotes a Beta distribution with parameters a and b.

We assume the following prior structure on the component roots of the m = 2 series.

(a) Priors for real roots. Let R1 = 2 and R2 = 2 be the maximum number of real

roots of the first and second series respectively. Additionally, let ri
j denote the root j

of the series i and ri
1:Ri

all the real roots of series i. A conditional prior structure is

proposed, p(r1
1:R1

, r2
1:R2

) = p(r1
1:R1

) × p(r2
1:R2

|r1
1:R1

), such that p(r1
1:R1

) =
∏2

j=1 p(r1
j ) and

p(r2
1:R2

|r1
1:R1

) = p(r2
1|r

1
1:R1

)×p(r2
2|r1:R1

, r2
1). Specifically, we have the following structure

for the roots of the first series

r1
j ∼ πr,−1I−1(r

1
j ) + πr,0I0(r

1
j ) + πr,1I1(r

1
j ) + (1 − πr,−1 + πr,0 + πr,1)gr(r

1
j ),

for j = 1, 2 and gr(·) a continuous density over (−1, 1). The mass probability πr,0 is

a prior probability at r1
j = 0. This prior probability at zero allows the modeling of
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uncertainty in the number of latent components. Additionally, prior point masses at

−1 and 1, πr,−1 and πr,1, are incorporated to allow non-stationary components (see

Figure 1). Now, for the roots of the second series we have

r2
1|r

1
1, r

1
2 ∼ πr,−1I−1(r

2
1) + πr,0I0(r

2
1) + πr,1I1(r

2
1) + π∗

r,r1

1

Ir1

1

(r2
1) + π∗

r,r1

2

Ir1

2

(r2
1) +

(1 − πr,−1 − πr,0 − πr,1 − π∗
r,r1

1

− π∗
r,r1

2

)gr(r
2
1)

r2
2|r

1
1, r

1
2, r

2
1 ∼ πr,−1I−1(r

2
2) + πr,0I0(r

2
2) + πr,1I1(r

2
2) + π∗

r,r1

1

Ir1

1

(r2
2) + π∗

r,r1

2

Ir1

2

(r2
2) +

(1 − πr,−1 − πr,0 − πr,1 − π∗
r,r1

1

− π∗
r,r1

2

)gr(r
2
2),

where π∗
r,r1

j

are prior probabilities on the roots of the first series if such roots are different

from 0,±1, and have not been sampled already as roots of the second series.

Various choices for gr(·) can be considered. For instance, the reference prior is

the uniform distribution gr(·) = U(·| − 1, 1), i.e., the formal reference prior for the

component AR(1) coefficient ri
j truncated to the stationary region. The prior masses

πr,· and π∗
r,· can be considered fixed tuning parameters or alternatively, as it is usually

preferred in many applications, they can be treated as hyperparameters to be estimated.

In the later case relatively or absolutely uniform priors that can be viewed as non-

informative priors should be imposed on these probabilities. Huerta and West (1999b)

propose the use of Dirichlet prior distributions for the univariate case.

To illustrate the prior on the real reciprocal roots, we use Figure 1. The first row

corresponds to the roots of the first series and on the second row, to those of the second

series. We are assuming that the continuous part of the prior is U(·| − 1, 1) and the

different probability masses are represented by vertical lines. In the figure, we are also

14



 

 

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

r^1_1

 

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

r^1_2

 

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

r^2_1|r^1_1=-.65,r^1_2=.85

 
 

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

r^2_2|r^1_1=-.65,r^1_2=.85,r^2_1

Figure 1: Prior on real roots. m = 2; R1 = R2 = 2. gr(·) = U(·| − 1, 1). The vertical

lines along the (−1, 1) axis represent the probability masses for each reciprocal root.

including probability masses at the boundary points, −1 and 1. For the roots of the

second series, the prior is conditional on r1
1 = −0.65 and r1

2 = .85 and so, point masses

appear at these two values.

(b) Priors for complex roots. The structure for the complex roots is similar to that

proposed for the real roots. Again, it is necessary to specify upper bounds for the

maximum number of pairs of complex roots for each series, or equivalently, for the max-

imum number of quasi-periodic latent processes, and then use a conditional structure.

In order to illustrate how this is done, assume for instance that m = 2 and C1 = C2 = 2

are the maximum number of pairs of complex roots of the form αi
j = (ri

j, λ
i
j), with ri

j

and λi
j = 2π/ωi

j the modulus and wavelength of the j-th quasi-periodic process for
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series i. Then, a conditional prior structure p(α1
1:C1

, α2
1:C2

) = p(α1
1:C1

) × p(α2
1:C2

|α1
1:C1

),

is proposed. The component roots of the first series have an independent prior struc-

ture, p(α1
1:C1

) = p(r1
1)p(λ1

1)p(r1
2)p(λ1

2) with priors specified over support 0 ≤ r1
j ≤ 1 and

2 < λ1
j < λu for j = 1, 2, and a given upper bound λu on the wavelengths. Specifically,

r1
j ∼ πc,0I0(r

1
j ) + πc,1I1(r

1
j ) + (1 − πc,0 − πc,1)gc(r

1
j ), λ1

j ∼ h(λ1
j),

with h(λ1
j) a density over the support (2, λu) and gc(·) a continuous density over (0, 1).

Again, πc,0 and πc,1 represent probability masses at values 0 and 1 for the modulus of

the root. Similar to the real case, the priors on the AR structure for the complex roots

of the second series, α2
j , are conditional on the root components of the first series and

on the complex roots previously sampled for the second series, that is

r2
1|r

1
1, r

1
2 ∼ πc,0I0(r

2
1) + πc,1I1(r

2
1) + π∗

c,r1

1

Ir1

1

(r2
1) + π∗

c,r1

2

Ir1

2

(r2
1) +

(1 − πc,0 − πc,1 −
2
∑

j=1

π∗
c,r1

j
)gc(r

2
1)

r2
2|r

1
1, r

1
2, r

2
1 ∼ πc,0I0(r

2
2) + πc,1I1(r

2
2) + π∗

c,r1

1

Ir1

1

(r2
2) + π∗

c,r1

2

Ir1

2

(r2
2) +

(1 − πc,0 − πc,1 −
2
∑

j=1

π∗
c,r1

j
)gc(r

2
2)

λ2
1|α

1
1, α

1
2 ∼

2
∑

j=1

Ir1

j
(r2

j )Iλ1

j
(λ2

1) + [1 −
2
∑

j=1

Ir1

j
(r2

j )Iλ1

j
(λ2

1)]h(λ2
1)

λ2
2|α

1
1, α

1
2, α

2
1 ∼

2
∑

j=1

Ir1

j
(r2

j )Iλ1

j
(λ2

2) + [1 −
2
∑

j=1

Ir1

j
(r2

j )Iλ1

j
(λ2

2)]h(λ2
2).

Different choices for gc(r
i
j) and h(λi

j) can be considered, including uniform priors and

marginals for λi
j based on uniform priors for the corresponding frequency ωi

j. The

default prior is the “component reference prior” (Huerta and West, 1999b), induced
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Figure 2: Prior on complex roots m = 2; C1 = C2 = 2; gc(·) and h(·) are specified

with the component reference prior. The figure shows the marginals for ri
j and ωi

j. The

vertical lines indicate a probability mass.

by assuming a uniform prior for the implied AR(2) coefficients 2ri
j cos(2π/λi

j) and

−(ri
j)

2 but with finite support for λi
j. In addition, as with the real roots, relatively or

absolutely continuous priors can be imposed on πc,· and π∗
c,·.

In Figure 2 we illustrate the prior for the complex case. The first row presents the

marginals for the modulus and frequencies of the reciprocal roots of the first series

(r1
j , ω

1
j ) for j = 1, 2. The second row shows the marginals for the reciprocal roots

of the second series, (r2
j , ω

2
j ) for j = 1, 2. The continuous part of these marginal

densities is defined by the component reference prior of Huerta and West (1999b).

Then, gc(r
i
j) = Beta(ri

j|3, 1) and h(ωi
j) ∝ sin(ωi

j). For the first row, the vertical lines

represent probability masses for the moduli at 0 and 1. For the second row, the vertical
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lines also appear at specific values of the modulus and frequency corresponding to the

first series. The prior is conditional on r1
1 = 0.9, r2

1 = 0.8, ω1
1 = 0.52 and ω1

2 = 0.75.

This prior structure discussed above can be generalized for the case of m series and

arbitrary upper bounds Ri and Ci for i = 1, . . . , m (Huerta and Prado, 2002). The

rich and flexible prior structure placed on functions of the parameters that define the

DVAR lead to a models that are capable of identifying common latent structure across

multiple series from a multivariate perspective.

3.1 Some aspects of implied prior structure

The prior specified on the reciprocal characteristic roots structure induces priors, of

complicated mathematical forms, on the standard linear autoregressive parameters

φi,k, for i = 1, . . . , m and k = 1, . . . , p. For instance, consider a V AR2(5) model

that allows exactly one real component in each series R1 = R2 = 1, and two quasi-

periodic components in each series, C1 = C2 = 2. Some of the point masses are

set to zero by making πr1,0 = πr2,0 = πc1,0 = πc2,0 = 0, πr1,−1 = πr2,−1 = 0 and

πr1,1 = πr2,1 = πc1,1 = πc2,1 = 0. In addition, we take gr(r
i
j), gc(r

i
j) and h(λi

j) as

Uniform distributions. A discrete Uniform distribution is set on the probabilities of

equal roots, i.e. on the weights πri,· and πci,·, which are not equal to zero. We explore

the implied prior structure on the ten AR coefficients φ = (φ1,1, . . . , φ1,5, φ2,1, . . . , φ2,5)

via simulation: for a random draw from the prior in the root parameterization, we can

compute the corresponding value of φ by polynomial multiplication. Figure 3 displays
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Figure 3: Samples by pairs from the prior of φ in a DVAR2(5) model with R1 = R2 = 1

and C1 = C2 = 2.

two-dimensional marginals for a sample of 1000 draws from the prior.

The two-dimensional marginals of the AR coefficients φ1 = (φ1,1, . . . , φ1,5) and

φ2 = (φ2,1, . . . , φ2,5) appear in the five by five diagonal picture blocks. The two five

by five off diagonal blocks in the Figure show the correlation structure between the

AR coefficients φ1 and φ2. By construction, the prior for φ1 and φ2 is constrained to

the stationary region and so the shapes in Figure 3 are contained in this region. The

induced priors over φ1 and φ2 are not uniform.

In Figure 4 we show the univariate marginals for each of the model coefficients. The

first row shows the marginals for φ1 = (φ1,1, . . . , φ1,5) and the second row shows the

marginals for φ2 = (φ2,1, . . . , φ2,5). This is a shrinkage prior in the sense that as the
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Figure 4: Univariate margins, prior for φ in a DVAR2(5) model with R1 = R2 = 1 and

C1 = C2 = 2.

lag of the AR coefficient increases, the prior mass is more concentrated around zero.

The marginal prior distribution for each AR coefficient is, in general, not symmetric.

4 Posterior structure in DVAR models

Posterior and predictive calculations are obtained via Markov chain Monte Carlo

(MCMC) simulation methods. We briefly outline the structure of relevant conditional

posterior distributions.

Assume we have m series. Let X = {x1, . . . ,xn}, with xt = (x1,t, . . . , xm,t)
′, be

the observed m-dimensional time series vector. Given the maximum model order p,
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with p = max{p1, . . . , pm}, write X0 = {x0,x−1, . . . ,x−(p−1)} for the latent initial

values. Let Σ be the m × m variance-covariance matrix. The model parameters are

denoted by α = {α1
1, . . . , α

1
p1

, . . . , αm
1 , . . . , αm

pm
}. Assuming that Σ and X0 are known,

the posterior inferences are based on summarizing the full posterior p(α|X0,X, Σ).

For any subset ξ of elements of α, let α\ξ denote the elements elements of α with ξ

removed. The MCMC method used to obtain samples from the posterior distribution

follows a standard Gibbs sampling format, specifically

• for each i = 1, . . . , m,

1. sample the real roots individually from p(ri
j|α\r

i
j,X,X0, Σ), for each

j = 2Ci + 1, . . . , 2Ci + Ri;

2. sample the complex roots individually from p(αi
j|α\α

i
j,X,X0, Σ), for each

j = 1, . . . , Ci.

Specific details about how to sample from the distributions in steps 1. and 2. of the

MCMC algorithm are given below.

1. Conditional distributions for real roots. Assume that we want to obtain a sample

from the conditional distribution p(ri
j|α\r

i
j,X,X0, Σ), for some series i and some j.

Given all the other model parameters and the DVAR structure, the likelihood function

for ri
j provides a normal kernel. Therefore, under a mixture prior of the form previously

described in Section 3, this leads to the mixture posterior

i−1
∑

l=1

Rl
∑

k=1

pi
j,rl

k
Irl

k
(ri

j) +
∑

q=−1,0,1

pj,qIq(r
i
j) + (1 −

∑

q=−1,0,1

pj,q −
i−1
∑

l=1

Rl
∑

k=1

pi
j,rl

k
)Nt(r

i
j|m

i
j, M

i
j).
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Here Nt(·|m, M) denotes the density of a normal distribution with mean m and variance

M truncated to (−1, 1). The values (mi
j, M

i
j) and the point masses can be easily

computed. This mixture posterior is easily sampled with direct simulation of the

truncated normal by c.d.f. inversion.

2. Conditional for complex roots. For each series i, the index j, with j = 1, . . . , Ci,

identifies a pair of complex conjugate roots (αi
2j−1, α

i
2j) with parameters (ri

j, λ
i
j). Let

Ai
j be the index set of all other roots, α\(ri

j, λ
i
j). Given α\(ri

j, λ
i
j) and X we can

directly compute the filtered time series as zt,l =
∏

k∈Ai
j
(1 − αl

kB)xt,l if l = i and

zt,l =
∏pl

k=1(1 − αi
jB)xt,l for l 6= j. Now, the likelihood on φi

j,1 = 2ri
j cos(2π/λi

j) and

φi
j,2 = −(ri

j)
2 provides a bivariate normal kernel with a mean vector and a variance-

covariance matrix that are functions of the filtered time series zt,1, . . . , zt,m. However,

given that the support of (φi
j,1, φ

i
j,2) is a bounded region defined by the stationary

condition of the process, sampling from the resulting conditional posterior directly is

difficult. Because of this and following Huerta and West (1999b), we use a reversible

jump Markov chain Monte Carlo step.

The structure of the MCMC algorithm in the multivariate case is very similar to

the structure of the MCMC algorithm developed in Huerta and West (1999b) for the

univariate case. However, the number of computations increases considerably when

the number of series and/or the model orders are large. This issue will be addressed

in the following examples.
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Figure 5: Simulated series. Graphs (a) and (b) correspond to the first and second

series.

5 Examples

5.1 Analysis of synthetic data

Figure 5 displays two time series of 500 observations simulated with innovation co-

variance matrix Σ = 10.0 ∗ I3 and the following latent structure. The first series was

generated from an AR process with one real root with modulus r1
1 = 0.98 and two pairs

of complex roots with modulus and wavelengths of r1
2 = 0.97, r1

3 = 0.8 and λ1
2 = 17.0,

λ1
3 = 6.0, respectively. The second series has one common pair of roots with the first

series, namely r2
2 = 0.97 and λ2

2 = 17.0, another pair characterized by r2
3 = 0.8 and

λ2
3 = 3.0 and a real root r2

1 = −0.98. Parameter estimation using a prior structure with

a maximum of three pairs of complex roots Ci = 3 and one real real root Ri = 1 per
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series is achieved via the reversible jump MCMC algorithm detailed in the previous

section. The prior masses for the roots on the stationary boundary were set to zero.

Discrete uniform priors were used for the prior masses of the roots lying in the station-

ary region. In addition, gr(·), gc(·) and h(·) were taken as component reference priors.

The results presented here are based on 4,000 samples from the posterior distribution

taken after convergence was achieved, following a burn-in period of 10,000 iterations.

Exploring the posterior distribution involves thinking about the possible models

that may result from considering the priors described in Section 3. We use a vectorial

notation to denote the structure of a given model. For instance, in this example, a

possible model structure is (R1
1, 0, C

1
2 , C

1
3 ; 0, C

1
2 , C

2
2 , C

2
3). In this notation the first four

components of the vector refer to the roots of the first series, while the last four refer

to the roots of the second series. This is, for the first series, the first root is a real root

different from zero, the second root is a zero root and the third and fourth roots are

complex and different from zero. Similarly, for the second series, the first root is a zero

root, the second one is a complex root equal to the third root of the first series and the

third and fourth components are complex roots different from zero and also different

from any of the complex roots of first series. Note that in this example the number of

possible models is large, considering that we have a small number of series (m = 2) and

relatively small model orders (the maximum model order per series is 7). For a single

time series with a maximum of one real root and three complex roots, we have a total

number of 8 possible models. When a second series with similar structure is added,

24



the number of possible models increases enormously due to the fact that the roots of

the first series can also appear in the second series if common latent structure is shared

by the two series. For instance, considering only the models in which all the roots are

distinct, or in which only the real root can be repeated and all the complex roots are

distinct, we get 80 models. It is easy to see that the total number of models that can

be considered in cases where several series with a rich latent component structure have

to be analyzed is very large.

One possible way to explore the posterior distribution is by looking at the results

marginally. In this example we obtain that the terms with the highest marginal pos-

teriors and their corresponding probabilities are

Pr(R1
1 ∼ R|X) = 1.000, P r(C1

1 = 0|X) = 0.721,

P r(C1
2 ∼ C|X) = 1.000, P r(C1

3 ∼ C|X) = 1.000,

for the first series and

Pr(R2
1 ∼ R|X) = 1.000, P r(C2

1 = 0|X) = 0.826,

P r(C2
2 = C1

2 |X) = 0.526, P r(C2
3 ∼ C|X) = 0.710,

for the second series. Therefore, if we have to select a model structure based on these

marginal posterior results we would choose model M : (R1
1, 0, C

1
2 , C

1
3 ; R

2
1, 0, C

1
2 , C

2
3).

Then, according to model M , the first series is characterized by one real root, a zero

root and two complex roots, while the second series has a real root, a zero root and

two complex roots, one of which is a repeated root from the first series.
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In this example, the model built from the terms with the highest marginal posteriors

is the correct model, since it captures the structured used to simulate the two series.

However, this is not necessarily the case in all the applications (see Huerta and Prado,

2002) and so, it is important to look for the model with the highest joint posterior

probability. A good way of finding models with high joint posterior probabilities is

by means of clustering analysis, following an idea proposed in Bielza et al. (1996)

and used in Sansó and Müller (1997) in the context of optimal design problems. If a

distance between models is defined, then it is possible to produce a cluster tree, cut

the tree of model structures at a certain height and consider the sizes and the models

of the resulting cluster. In this case it was possible to follow this idea, cut the tree at

zero height, since various models were visited several times, and find the cluster with

the largest size. The following three models were the most likely models obtained after

exploring the joint posterior distribution

Pr(R1
1, 0, C

1
2 , C

1
3 ; R

2
1, 0, C

1
2 , C

2
3) = 0.377

Pr(R1
1, C

1
1 , C

1
2 , C

1
3 ; R

2
1, 0, C

1
2 , C

2
3) = 0.192

Pr(R1
1, 0, C

1
2 , C

1
3 ; R2

1, 0, 0, C
2
3) = 0.092.

Again, the most popular model was the correct model M : (R1
1, 0, C

1
2 , C

1
3 ; R

2
1, 0, C

1
2 , C

2
3)

with posterior probability 0.38.

Figure 6 shows the histogram of the posterior samples of the real root for the

first series (graph (a)) and the histogram of the posterior samples of the real root for

the second series (graph (b)), assuming the correct model is M . The points in the
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Figure 6: Graphs (a) and (b) display the posteriors of the two real roots for the

simulated series.

histograms indicate the posterior means for each case. As seen in the graphs, the

model is appropriately estimating the real roots for the two series. Similarly, Figure

7 shows the histograms of the posterior samples of the complex roots for the first and

second series. In these graphs we are conditioning on the model structure M . Then,

panels (a) and (d) display, respectively, the posterior distributions of the modulus and

wavelength of the complex root with the highest modulus for the first and second

series. Panels (b) and (e) show the modulus and wavelength of the complex root with

the smallest modulus for the first series. Finally, panels (c) and (f) show the modulus

and wavelength of the complex root with the smallest modulus for the second series.

As seen in these graphs, our methodology performs very well in terms of capturing the

latent structure present in the simulated data.
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Figure 7: Graphs (a)-(f) display the posteriors for the complex roots of the two simu-

lated series.

The results and figures presented so far are conditional results, i.e., we are looking

at the posterior distribution for the parameters conditioning on M , the model with

the highest posterior probability, being the correct model. It is also possible to report

some interesting results obtained by averaging across all possible models. For example,

the posterior probability that the two series have real roots different from zero is one:

Pr(R1
1 6= 0 & R1

2 6= 0|X) = 1.0. The posterior probability that each series has a zero

root is 0.721 for the first series and 0.826 for the second series. Another interesting

result is the probability that the second series has a complex root that also appears in

the first series. Based on the 4,000 posterior samples we obtain that this probability

is 0.6975.
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5.2 Analysis of US monthly housing data

We now consider an application of our methodology for a situation with m = 2 time

series. This is for the seasonally adjusted U.S. Monthly Housing Data observed during

the period January 1965 through December 1974 and where each series consists of 120

observations. The first series is formed by seasonally adjusted housing start values

while the second series is formed of housing sold values. The deseasonalized data are

obtained by subtracting the monthly average seasonal values from the original series.

The series are identified with an AR(2) model (Reinsel, 1997) and so, we selected

C1 = C2 = 0 and R1 = R2 = 2. Based on 10,000 posterior samples, we present the

histograms for the ordered real and reciprocal roots of each series in Figure 8.

Our MCMC produces posterior samples of the roots that are essentially exchange-

able. Graphical summaries of these posterior samples have the same characteristics

and are not distinguishable. This is a consequence of our priors being invariant to

permutations of the roots. A priori and for any given series, the roots are treated

as independent variables and so, they are invariant to permutations of the indexes as-

signed to each root. For posterior analysis, an ordering of the roots needs to be imposed

for identifiability and since all the roots considered in this example are real, a natural

ordering is rj
1 < rj

2 for j = 1, 2, with j = 1 assigned to the housing start values and

j = 2 for the housing sold values. The histograms show that both series are driven by

a unit root process with high probability. In fact, the posterior probability that r1
2 = 1

is 0.9295 and the posterior probability that r2
2 = 1 is 0.8023. Additionally, the roots
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Figure 8: U.S. Monthly Housing Data: Posterior histograms of ordered roots for DVAR

model with C1 = C2 = 0, R1 = R2 = 2.
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Figure 9: U.S. Monthly Housing Data: (left) Housing Starts Series and latent com-

ponents associated to r1
2 and r1

1. (Right) Housing Sold Series and latent components

associated to r2
2 and r2

1.

labeled rj
1 have a very similar posterior density function. The posterior probability

that r1
1 = r2

1 is 0.7671. By switching the labels of the series (j = 1 housing sold and

j = 2 housing start), we obtained the same posterior structure for the roots, showing

that our models are also invariant to the ordering of the vector time series.

The posterior means of the AR(2) coefficients for each series are given by φ1 =

(1.29,−29) and φ2 = (1.30,−.3). Using these posterior means we obtained the decom-

position of latent structure for each of the observed processes. The resulting decom-

positions and the observed time series are presented in Figure 9.

The components labeled R1 are associated to the largest roots r1
2 and r2

2. Clearly
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these components have the same amplitude of the data and the main characteristics

of a random walk process so these components represent a “common trend series”.

The components labeled R2 correspond to the roots r1
1 and r2

1 that are not unit and

common to both series. These components exhibit the pattern of a stationary AR(1)

with a low modulus. Furthermore, Figure 6.1 in Reinsel (1997), Chapter 6, shows a

cointegrated process for these data using a VAR2(1) formulated via canonical correla-

tions. Our components labeled R2 resemble the transformed series showed by Reinsel

and correspond to the stationary latent component underlying the two series.

6 Conclusions and Extensions

A new class of prior distributions for multivariate times series models that follow a

vector autoregressive structure with diagonal coefficient matrices is presented here.

This class of priors naturally incorporates model order uncertainty and characteristic

root structure in a multivariate framework.

Vector autoregressions with upper triangular or lower triangular matrices of coef-

ficients, as the DVAR models, have characteristic polynomials that can be written as

the product of polynomials associated with each individual series. In future research

we will investigate the use of structured priors for triangular VAR models. It is natu-

ral to use the priors developed here for the coefficients that lie on the diagonal of the

triangular VAR coefficient matrices, since these parameters define the latent structure

of the individual series. In addition, a variety of priors can be considered for the coeffi-
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cients that lie off the diagonal in triangular VAR processes. Such coefficients model the

dependence of one particular series and the lagged values of the rest of the series. So

for example, a prior structure with spikes at zero could be used to allow the inclusion

or exclusion of such coefficients. If a coefficient is included, a continuous prior can be

specified.

For general VAR processes with coefficient matrices Φj of arbitrary form, it is not

trivial to extend the prior structure developed in Section 3. In particular, extending

such prior structure in a way that guarantees stationarity of the VAR process is a very

difficult task. The latent processes of each of the scalar components in the multivari-

ate series are defined in terms of the roots of the characteristic polynomial, which for

general VAR processes cannot be written as the product of individual characteristic

polynomials. In connection with this, transformations of the VAR leading to a collec-

tion of univariate processes that can be fitted separately, such as the transformations

proposed by Kitagawa and Gersch (1996), will be considered in future extensions of

this work.

One of the assumptions made here was that of the innovation error covariance

matrix Σ being known. This assumption can be relaxed with the use of inverse-Wishart

priors. Alternatively, representations of Σ where the matrix elements take simple

parametric forms such as σ2ρ|i−j|, lead to prior specifications of only a few parameters.

Reference priors as in Yang and Berger (1994) and the conditionally conjugate prior

distributions for covariance matrices presented in Daniels and Pourahmadi (2002) can
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also be explored.

Finally, the proposed structured prior leads to exploration of a very large model

space through MCMC simulation. The use of clustering ideas for more efficient explo-

ration of the posterior distributions of interest is initially investigated here. We expect

to further investigate this issue by defining distances between models. Such distances

can be defined in terms of the closeness of the latent structures of the different models

being considered. Models with different structures which may be roughly equivalent

in terms of the dominant latent components, or equivalent in terms of predictive per-

formance, would belong to the same class of models. The classes can be defined in

terms of a given distance. Then, it would be possible to, for example, choose the most

parsimonious model within a particular class in order to describe the structure of the

series or for predictive purposes.
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