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Summary. This paper considers the analysis of the Brazilian GDP and industrial produc-
tion index using statistical tools recently developed for time series. The main purpose is the
short-term forecast and structural decomposition of both series through an autoregressive
model that allows, but not imposes, nonstationary behavior. A very strong point in this
paper is that we incorporate all kinds of uncertainties by averaging forecasts across com-
peting models, weighted by their posterior probability, in contrast with traditional analysis

that puts probability one on a particular model.
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1 INTRODUCTION

Recently, many authors have shown interest in explaining and making short and long term
predictions of the Brazilian GDP and industrial production index or some of its variants
through univariate time series models, partially due to their importance in government
policies and as the majors indicators of economical growth, and partially because such
time series present nonstationary behavior, which makes the classical and Bayesian time
series analysis considerably different. A few examples in the literature that present such
issues are Lopes et al. (1998), Schmidt et al. (1998), Gamerman and Moreira (1998)
and Cribari-Neto (1993). The first three papers apply in different ways dynamic linear
models with structural components, such as local linear trends, seasonality and cycles, to
describe the time behavior of the monthly observed industrial production index. Even
though fairly general, their models do not account for uncertainty due to the specific choice
of the trend/seasonal/cycle terms. In a rather different way Cribari-Neto (1993) analyses
annually measured Brazilian GDP and shows that the cycle in that time series is relatively
small when compared to its stochastic trend. As in the other referred papers, this one does
not incorporate model uncertain when selecting the ARMA model for the first difference of
the series. In contrast to what we present here, all of these papers report their results by
selecting a particular model through some optimal criteria. In other words, the methods do
not recognize the uncertainty involved in choosing a specific model, omission that can lead
(and usually does) to extremely optimistic variances in forecasting.

In general, enormous amount of work has been done to develop useful models, but little
has been devoted to incorporate model uncertainty as another issue in statistical modeling.
In the context of time series, a classical work in this area is due to (Harrison and Steveuns,
1976) that developed multi-process dynamic linear models in a attempt to broaden the class
of models under consideration. More recently and not only related to time series, (Draper,
1995) suggests that model uncertainty should be taken very seriously both at forecasting
levels and parameter estimation.

In this paper, we will use an approach that incorporates all uncertainties involved in time
series modeling simultaneously. The model we use is Bayesian and allows for autoregressive
unit roots so naturally avoids any of the corrections in significance tests proposed for the
unitary root problem. For instance, an example of such corrections appears in Cribari-Neto
(1993) that shows the complications that classical procedures induce to test if a root is
unitary or not. Detailed discussion about unit root tests and their pitfalls is presented by
(Campbell and Perron, 1991) and from a Bayesian viewpoint by (Uhlig, 1994). We have
no purpose of suggesting that such works have no value but rather emphasize the unified
approach offered from a Bayesian point of view to deal with model uncertainty and inference

on autoregressive roots.



Specifically, for the analysis of the Brazilian GDP and industrial production index, we
are using an autoregressive model with prior modeling on latent components and charac-
teristic roots of the process as in (Huerta and West, 1998). The proposed model leads to a

new class of prior distribution in autoregressive models which have the following properties:

e They permit arbitrary collections of real and complex conjugate pairs of characteristic

roots.

e They allow for zero values among the characteristic roots, so taking care for prior

uncertainty about model order.

e They allow unit roots, and so cater for persistent low frequency trends and sustained

quasi-periodic components.

e They incorporate unobserved initial values of the data process as uncertain latent
variables, so that all resulting inferences are formally based on incorporating full

uncertainties about initial values.

It will be noticed on the following section, that a specific prior in the class is identified
by a small number of hyper-parameters, which may be chosen based on specific forms of
quantitative prior information. Alternatively (and usually), these hyper-parameters can
assigned essentially uniform or “reference” prior distributions themselves, so inducing what
may be viewed as a non-informative analysis. More on the advantages and implications of
these prior specifications can be found in the seminal paper by (Huerta and West, 1998).
We believe that an autoregressive model that recognizes full uncertainty on the order, model
parameters and number of unitary roots can be very helpful to describe economics as that
encompassed by the GDP or the industrial production index.

After a brief review of the time series models and methods in Section 2, we analyses the
Brazilian industrial production index in section 3. Section 4 is reserved to the analysis of
the Brazilian gross domestic product, while section 5 summarizes our findings and set our

conclusions.

2 TIME SERIES MODEL AND METHODS

2.1 The Model and a Decomposition Result

Define {z;} as the realization of an autoregressive process of order p, z; = ¢(B)e; where

Bz =241 and t € {0,1,...n}. ¢(u) = 1—pru—...—¢p,uP is the characteristic polynomial,
¢ = (¢1,...,Pp)" is the vector of standard coefficients, and {¢;} are zero-mean uncorrelated
errors with €, ~ N(e0,0?). Denote by {a1,...,a,} the reciprocals of the characteristic

roots or solutions of the equation ¢(u) = 0. If |a;j| < 1 for all j, the process is stationary



with unitary roots if any of these moduli equal one. Assume there are C' pairs of complex
conjugate roots and R = p — 2C real roots. Denote the complex pairs by r; exp(+iw;) for
Jj=1,...,C, and the real roots by r; for j =2C +1,...,p,.

As presented in West (1997), it can be shown that

C P
Ty = Zztﬂ' + Z atj

j=1 j=2C+1
where the z;; and a4; are latent processes related to the complex and real roots respectively.
Corresponding to the real roots j = 2C + 1,...,p, the a;; are autoregressive processes
of order one and corresponding to the complex conjugate pairs the z;; are autoregressive,
moving average processes of order (2, 1). That is, an autoregressive process can be expressed
as the sum of simpler process some of periodic behavior and some with low frequency
variation. In fact, the result implies that z;; has a quasi-periodic behavior with frequency
wj, or periodicity A\; = 27/w;. The damping determined by the modulus of the defining
complex root. Computation of the components can be handled through the state-space
representation of the autoregressive model and has been exemplified in the context of an
oxygen-isotope series in both West (1997) and West and Harrison (1997). In econometric
applications, like this one we are proposing here, the latent process decomposition will shed
some light on very important econometric issues, such as the probability that a particular

root is unitary, or for how long a shock in ¢; will keep affecting y;1p, for h > 0.

2.2 Prior Specifications

Huerta and West (1998) introduced a class of hierarchical priors on the component structure
of autoregressive time series as just presented. We briefly review these specifications.

The prior assumes fixed but arbitrary upper bounds Cy and R, on the number of
complex pairs and real roots, hence an upper bound p; = 2C; + R4 on model order.
Independent priors are specified on the real roots, the complex roots and the innovations

variance. Each real root r; has a prior that
e gives probability 7o to r; =0,
e gives probability m, _1 to r; = —1,
e gives probability 71 to 7; = 1, and
e otherwise has a continuous density g,(r;) from —1 to 1.
Each complex conjugate pairs of roots rj exp(+iw;) has a prior that

e gives probability 7. to r; =0,



e gives probability 7.1 to r; = 1, and

e otherwise has r; independent of w; with a continuous density g.(r;) with support in
(0,1) for the modulus and h();) a continuous density on the periods \; = 27/w; with
support on (2, A,) and A, is an upper bound. By default, A, can be fixed to n/2 the

maximum period observable in a time series of length n.

Notice that the prior is defined in the parameters that determine the time series de-
composition of 2.1 so implicitly quantifies prior knowledge on latent structure. In previous
applications of these priors particular forms for g,(-), g.(-) and h(-) have involved truncated
Normals, Uniform densities or more general Beta distributions. A detailed exploration
of how particular forms of these functions determine priors in other quantities of interest
like the standard autoregressive coefficients, has been fully addressed in Huerta and West
(1998). In this work and in a non-informative sense, we adopt the benchmark prior known
as the component reference prior which implies that g,(-) is a Uniform on (—1,1), g.(-) is
a Beta(3,1) and h(};) sin(27r/)\j)/)\§ with A; ranging form 2 to A,. This is the standard
reference prior obtained by treating components z;; and a;; individually.

Furthermore, the error variance is assumed independent of the roots and has a specified
marginal prior, usually a conditionally conjugate inverse gamma prior. Priors for the point-
masses may be specified as context dependent, but for simplification we use independent
uniform Dirichlet distributions, namely Dir(m, o, 71,7, —1]1,1,1) and Dir(n. o, m1|1,1).
Note that the prior point masses at zero for the numbers of roots, both complex and real,
may fall below the fixed upper bounds. This implies that the model order can be anywhere
from 0 to py. Also, the point masses at one allow for direct inferences on the number of
unitary roots distinguishing between real and complex cases.

Additionally, we must note that the roots are not identified. The model is unchanged
with arbitrary permutations of the roots. Identification of real roots can be imposed simply
by relabeling them in order of increasing value. Identification can be similarly achieved
for the complex roots by relabeling in order of increasing moduli or of increasing period or

frequency.

2.3 Posterior and Predictive Analysis

Posterior and predictive calculations are developed using Markov chain Monte Carlo method
based on the Gibbs sampling. With the component reference prior the conditional posterior
distributions are easy to sample except for the complex pairs of roots. This updating of the
complex roots requires a more complicated step based on the Metropolis-Hastings algorithm.
For the interested reader, full details can be found in Huerta and West (1998).



3 ANALYZING THE BRAZILIAN INDUSTRIAL PRODUCTION INDEX

The main purpose of this paper is the analysis of two relevant macroeconomic time series
from the Brazilian economy using AR models with priors on structure components and
comparing to alternative models. First, we present the analysis of the industrial production
indez which consists of 215 observations measured on a monthly basis from February of
1980 to December of 1997. The data appears displayed on a time plot in Figure 1 from
which two features must be noted: the strong cyclical-monthly pattern and the "ups” and
”downs” driven by a trend. The series seems to present a non-stationary behavior.

We fitted an AR model, as described in Section 2, that allows for a maximal number of
complex pairs of roots equal to 20 (C; = 20) and a maximal number of real roots also equal
to 20 (R4 = 20), allowing for a model order up to 60. The iterative algorithm to produce
posterior samples was run for a burn-in of 5000 iterations, collecting the following 5000
samples but skipping every 50 iterations to break for potential autocorrelations induced in
the MCMC. Based on this posterior samples, the Rao-Blackwell estimator of model order
was obtained and appears in Figure 2; the posterior for p is mostly concentrated within
orders from 20 to 30 and a mode at around 24. Notice that the distribution is not favoring
a few values for model order but instead reflects large uncertainty upon the lag of the
autoregressive model. This pattern is not unique for the particular application and it has
been noted in others, like those presented in the referred papers and enters in conflict with
model selection via AIC or BIC.

Following with the analysis, Figure 3 shows the Rao-Blackwell estimator, based on the
5000 collected posterior samples, for the number of complex pairs of roots and number of
real roots. Clearly the model likes 7 or 8 complex pairs with reasonably large probability
values for 6 and 9 pairs. The posterior distribution for real roots is very disperse and
centered around 10. This type of distributions have been obtained in other applications as
well and usually reflects the existence of several components of very low frequency variation
in the data. Figure 4 exhibits histograms of samples for the 2 smallest and two largest real
roots when these are ordered in increasing value. Only those probabilities of point masses
that are positive are reported in the picture. Two interesting issues here are the probability
of .423 that the largest root (labeled r(20)) has of being unitary and the probability of 0.296
that the smallest root (labeled r(19)) has of being equal to —1. This confirms that data
is indeed non-stationary with a possible random walk driving the trend of the series. We
will show below that the component associated to the root that could be equal to 1, can be
interpreted as this trend.

Posterior summaries for some of the complex roots appear in both Figures 5 and 6. They
show boxplots of samples corresponding to the modulus and wavelength of 5 complex roots

when, for identification, these are ordered by wavelength. The index ”1” corresponds to the



root with larger period and so forth. The boxplots for moduli do not consider samples where
the modulus equals to one and instead this posterior probability is reported in the lower
right side of Figure 5. Observe that the root that has the larger period or wavelength has a
posterior probability of being unitary equal to 0.77 and a period at around 12 time units.
This complex root defines a quasi-cyclical non-stationary component that correspond to the
seasonality in the data. The other roots also have a positive probability of being unitary
with periods that are at about 6, 4, 3, and 2.4 units of time, respectively. Then, these roots
have periodicities that can be interpreted as harmonics of the fundamental period of 12.
Note that the fifth harmonic has a very high probability of its defining root being unitary
if compared with the probabilities of the same event for the other roots. A very important
feature of analyzing time series with AR models that allow for unitary roots and inference
in quasi-cyclical patterns, is that the model is not imposing a particular type of seasonality
or trend behavior but rather discovers the underlying structure in the data through a full
Bayesian analysis with a hierarchical prior.

Posterior samples of the roots directly lead to samples for the components associated to
the complex and real roots simply because these components are functions of the param-
eters in the AR model. In consequence, posterior summaries of the decomposition can be
displayed as with other quantities of interest. In fact, Figure 7 presents the data with pos-
terior means for two components corresponding to the complex roots and two components
corresponding to the real roots. The quasi-cyclical component labeled by (C1) corresponds
to that complex pair that has a periodicity of about 12 months and so can be interpreted as
the underlying seasonality in the data. This component has a time-varying amplitude re-
flecting its non-stationary nature and this amplitude is comparable to the one presented by
the series. Notice two high peaks between 1990-1992 that could reflect imposed economical
policies by the country previous or in that time interval. Actually, during the years between
1986 and 1994 Brazil’s economy has received numerous monetary shocks, such as the famous
Summer Plan in 1986 or even the most recent Real Plan. The component labeled by (C2)
corresponds to the root that has a harmonic periodicity of 6 months. It shows a very low
amplitude in relation to the data and all other complex components have a similar pattern
in terms of this characteristic. Furthermore, the component labeled by (R3) corresponds
to the maximal real root, that as shown in Figure 4 has about 2/5 probability of being
unitary. This component has a similar amplitude as the data and we think that drives its
underlying trend. Once again, the changes in the Brazilian economy mentioned previously
can be seen in this components as well. During the period 1988-1992, this components
looks like a legitimate random walk with larger ups and downs. The last posterior mean
displayed (R4) corresponds to the smallest real root; its amplitude is very low in regards to

the data and presents this switches in time particular of AR(1) processes that have a root



equal or close to —1.

We must establish at this point that the model was fitted with all the observations
previous to and including January 1997. The remaining 11 observations were left out for
model validation and forecasting. As with exploration for the posterior distribution of
model parameters, inference on future observations can be obtain via simulation and as an
additional step in the Gibbs sampler. Samples of forecasts can be generated conditional on
all other parameters using the autoregressive equation that defines the model in a recursive
manner. Based on 5000 of these posterior samples, Figure 8 presents the 95% predictive
probability intervals and posterior means for forecasts corresponding to February 1997 to
December 1997 compared against the actual observed values. Posterior means are lower
but close to the observed values.

In terms of comparison, we computed similar forecasts with AR models, model order
selected using the AIC and for two different situations. One in which we produce paths
of forecasts for the period of interest treating the maximum likelihood estimator of the
model parameters as the "true” parameters. In the second framework, we assume that the
standard model coefficients ¢ and error variance o2 has the reference prior p(¢, 0?) oc 1/02.
The reference posterior is a Normal-Gamma, with posterior mean equal to the maximum
likelihood estimator. This distribution can be easily sampled and so the corresponding
forecasts under this Normal-conjugate setting. For the Brazilian IPI, AIC leads to a model
order of 13, in the lower tail of the posterior distribution of Figure 2. In fact, Figure 9
compares the 95% predictive forecasts from February 1997 to December of the same year
with the 3 models discussed so far: the AR with priors on structure components, an AR
model treating point estimators as true parameters and an AR model with a reference prior
on ¢ and o2. Intervals for the AR model with priors on the roots have more or less the
same width as those corresponding to the other models. Also, we note that the intervals
are shifted down with respect to those obtained with structured priors on roots and will
tend to underestimate more the observed values. Actually, using the posterior means of
forecasts as point estimators of future values, it results that the mean square error (MSE)
with our model is 32.6781 and for the models that use AIC, the MSE is 45.62093 with
the standard reference prior and 61.1393 with the maximum likelihood estimator. This
application confirms that when AR models are used as empirical devices for data, it is
worth the effort of incorporating model uncertainty, unitary roots and treatment of initial
values in a scenario that requires forecasting.

Other models have been used to forecast some of the months of the industrial produc-
tion index for 1997. Once again, we refer here to the analysis of this series presented in
Schmidt et al. (1998) and Gamerman and Moreira (1998) through Dynamic Linear Mod-
els. A comparison of point estimators of forecasts for March 1997 to August 1997 obtained



with this dynamic models and AR models as discussed in this paper, appears in Figure 10.
Evidently, all the five models considered underestimate the observed values with dynamic
models having a better performance than autoregressive processes. This is not a surpris-
ing, since Dynamic Linear Models are usually more adequate for short-term forecasting of
nonstationary series than AR or more general ARMA models. On the other hand, the AR
model with priors on roots do not required the specification of particular trend, seasonal
components or differentiation of the series. In terms of predictive intervals, Figure 11 com-
pares the 95% probability intervals for the AR models with priors on component structure
and the dynamic models of Schmidt et al. (1998) and Gamerman and Moreira (1998), again
for the period that covers March 1997 to August 1997. We find interesting that the AR
model contains the predictive intervals for the Dynamic Models except for June 1997. This
leads to the conclusion that incorporating model uncertainty produces more conservative
predictive intervals, which will eventually be used by policy makers as a measure of risk for

their alternative scenarios.

4 ANALYZING THE BRAZILIAN GDP

In this section, we emphasize on the analysis of the Brazilian GDP series. The data,
displayed in 12 in logarithmic scale, consists of 91 annual observations of the GDP since
the beginning of the century. Since the seasonality has been removed, the data has no
obvious cyclical patterns and only seems driven by a trend. This data has been previously
analyzed in Cribari-Neto (1993) where the standard and augmented Dickey-Fuller tests and
the Phillips-Perron test for unitary roots were applied to the series. The author concluded
that even at the 10% level it is not possible to reject the null of a unit root and hence
the series has a stochastic trend. After reaching this conclusion, the series was differenced
once and an ARMA model fitted via maximum likelihood with orders on the AR and MA
parts chosen with the bias-corrected version of AIC. Cribari-Neto finds that an AR(1) with
coefficient 0.0653 is adequate to the differenced series (corrected by the mean) and this
implies an AR(2) model for the logarithm of the GDP with a couple of real roots, one of
them unitary. Now, we discuss the results of an analysis of the series using AR models with
prior on structure components.

Since cycles are not expected in the data, we fitted an AR that has no complex pairs
of roots (C; = 0) and allows for a maximal number of real roots Ry, equal to 15. Other
analysis with C; > 0 showed that this is a sensible specification since most of the mass for
the posterior distribution of number of complex pairs is concentrated at zero. We obtained
5000 posterior samples after an initial burn-in of 5000 iterations and skipping every 50 for
recollection. Figure 13 presents the posterior distribution for model order based on these

samples. Notice that there is probability one for the model order to be greater than 2, most



of the mass is equally concentrated at 3 and 4 with decaying probability up to an order
of 10. Following with the analysis, in Figure 14 we present histograms of samples for the
smallest and two largest real roots of the model. There is a very high probability (0.9425)
that the largest root is unitary, consistent with Cribari-Neto’s analysis, but also there is
a slight chance (0.087) of the existence of a second unitary root. In regards to the point
mass at zero for each root, only the smallest and the two largest have probability one of
not being null.

Applying the decomposition result of Section 2, we computed samples of those compo-
nents corresponding to the minimal and the two maximal roots, which are the only ones
that have no probability of being zero. The samples were obtained conditional on only one
unitary root. That is, we discarded those samples where we had two unit roots, since in
this case the decomposition is not applicable. The posterior mean of the sum of the three
components is presented in Figure 12 with the data. We believe that this mean can be

interpreted as the underlying stochastic trend in the logarithm of the GDP.

5 (CONCLUSIONS

This paper analyzes the Brazilian industrial production index and GDP using a Bayesian
methodology based on a new class of prior distributions for AR models. The two applications
discussed show how a unified approach is able to deal with model uncertainty, inference on
latent structure, perhaps of quasi-cyclical nature, inference on unitary roots or stochastic
trends and forecasting, all simultaneously. It avoids the imposition of trends and polynomial
seasonal components to capture structure and multiple significant tests to show the presence

of an underlying stochastic trend.
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Figure 1: Brazilian Industrial Production Index. 215 Monthly observations taken since
February 1980.
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Figure 2: IPI analysis. Posterior distribution for model order p based on 5000 posterior
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(labeled C1 and C2) are the two maximal when ordered by wavelength and real components
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Figure 12: GDP analysis Logarithm of the series (solid line) and posterior mean for the
stochastic trend (dotted line) based on an AR model with C = 0 and Ry = 15. Data was

annually observed over a period of 91 years.
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Figure 13: GDP analysis Posterior distribution for model order p based on 5000 posterior
samples; C = 0 and R, = 15.
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Figure 14: GDP analysis. Histograms of samples for the two largest and the two smallest

roots with reported probabilities of point masses if positive.
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